WorldWideScience

Sample records for personal dosimetry performance

  1. Performance testing of UK personal dosimetry laboratories

    CERN Document Server

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  2. Performance testing of UK personal dosimetry laboratories

    International Nuclear Information System (INIS)

    Marshall, T.O.

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it are also estimated. (author)

  3. Personal dosimetry performance testing in the United States

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2008-01-01

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11. Now in it's fourth edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Laboratory Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by U.S. Nuclear Regulatory Commission (NRC) regulations. The U.S. Department of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Department of Energy Laboratory Accreditation Program (DOELAP). One of the goals of this current revision was the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonization to U.S. personal dosemeter performance testing. The testing philosophy of ANSI/HPS N13.11 has always combined elements of type testing and routine performance testing and is thus different from the testing philosophy used in the rest of the world. In this paper, the history of performance testing in the U.S. is briefly reviewed. Also described is the revision that produced the fourth edition of this standard, which has taken place over the last three years (2005-2008) by a working group representing national standards laboratories, government laboratories, the military, dosimetry vendors, universities and the nuclear power industry. (author)

  4. Personal dosimetry performance testing in the United States

    International Nuclear Information System (INIS)

    Soares, C.G.

    2005-01-01

    Full text: The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11 (2002). Now in its third edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by US Nuclear Regulatory Commission (NRC) regulations. The US Department of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Department of Energy Laboratory Accreditation Program (DOELAP). A focus in recent years has been the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonization to US personal dosimeter processing testing. The testing philosophy of ANSI N13.11 has always combined elements of type testing and routine performance testing and is thus different from the testing philosophy used in the rest of the world. This unique philosophy is explored in detail in this presentation, along with trends in the development of the document to its present state. In addition, a look will be taken at what the future holds for the next revision of the document, scheduled to begin in 2005. (author)

  5. History of personal dosimetry performance testing in the United States

    International Nuclear Information System (INIS)

    Soares, C. G.

    2007-01-01

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11 (2001). Now in its third edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by US Nuclear Regulatory Commission (NRC) regulations. The US Dept. of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Dept. of Energy Laboratory Accreditation Program (DOELAP). A focus in recent years has been the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonisation to US personal dosemeter processing testing. Since there is no type testing program in the US for personal dosemeters, the testing philosophy of ANSI N13.11 has always combined elements of type testing and routine performance testing. This philosophy is explored in detail in this presentation, along with trends in the development of the document to its present state. In addition, a look will be taken at what the future holds for the next revision of the document, scheduled to begin in 2005. (authors)

  6. Argentine intercomparison programme for personal dosimetry

    International Nuclear Information System (INIS)

    Gregori, B.N.; Papadopulos, S.B.; Cruzate, J.; Kunst, J.J.; Saravi, M.

    2005-01-01

    Full text: In 1997 began in Argentine, sponsored by Nuclear Regulatory Authority (ARN) the intercomparison program for personal dosimetry laboratories, on a voluntary basis. Up to know 6 exercises have been done. The program began with a workshop to present the quantities, personal dose equivalent, Hp(10) and extremities dose equivalent, Hs(d). The first aim of this program was to know the true sate of personal dosimetry laboratories in the country, and then introduce the personal dose equivalent, Hp(10) into the dose measurements. The Regional Reference Center for Dosimetry (CCR), belonging to CNEA and the Physical Dosimetry Laboratory of ARN performed the irradiation. Those were done air free and on ICRU phantom, using x-ray, quality ISO: W60, W110 and W200; and 137 Cs and 60 Co gamma rays. The irradiation was made following ISO 4037 (2) recommendations. There are studied the dose, energy and angular response of the different measuring system. The range of the dose analyzed was from 0.2 mSv up to 80 mSv. The beam incidence was normal and also 20 o and 60 o . The dosimeters irradiation's were performed kerma in free in air and in phantom in order to study the availability of the service to evaluate the behavior as a function of kerma free in air or Hp(10). At the same time several items have been asked to each participant referring to the action range, the detectors characteristics, the laboratory procedures, the existence of an algorithm and its use for the dosimeter evaluation and the wish to participate in a quality assurance program. The program worked in writing a standard of personal dosimetry laboratories, that was published in 2001. In this work the results of each laboratory and its performance based on the ICRP-60 and ICRP-35 acceptance criteria are shown. Also the laboratory evolution and inquiry analyses have been included. (author)

  7. Non-conventional personal dosimetry techniques

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1984-01-01

    Established dosimetry has achieved a high standard in personnel monitoring. This applies particularly to photon dosimetry. Nevertheless, even in photon dosimetry, improvements and changes are being made. The reason may be technological progress, or the introduction of new tasks on the basis of the recommendations of international bodies (e.g. the new ICRU measurement unit) of national legislation. Since we are restricting ourselves here to technical trends the author would like to draw attention to various activities of current interest, e.g. the computation of receptor-related conversion coefficients from personal dose to organ or body doses, taking into account the conditions of exposure with respect to differential energy and angular distribution of the radiation field. Realistic data on exposure geometry are taken from work place analyses. Furthermore, the data banks of central personal dosimetry services are subject to statistical evaluation and radiation protection trend analysis. Technological progress and developments are considered from the point of view of personal dosimetry, partial body or extremity dosimetry and accidental dosimetry

  8. Personal dosimetry service of VF, a.s. company

    International Nuclear Information System (INIS)

    Prasek, P.

    2009-01-01

    The VF, a.s. Company will extend its services in the area of personal dosimetry at the end of 2008, which is fully in compliance with the requirements of the Atomic Act, section 9 paragraph (1) letter r) and Decree on Radiation Protection, section 59 paragraph (1) letter a). Optically stimulated luminescence was selected in VF .a.s. as the most advantageous and the most advanced technology for the integral personal dosimetry. Optically stimulated luminescence (OSL) has been using in dosimetry for more than ten years. Although it is relatively new technology , its indisputable advantages predetermine that technology has significantly benefited in personal dosimetry services within a short time all over the advanced world. The VF, a.s. personal dosimetry service is based on the licensed products of LANDAUER, the US company, which is the world leader in OSL dosimetry. Crystalline Al 2 O 3 :C was selected as the detection material. All equipment of personal dosimetry service is installed in the VF Centre of Technology in Cerna Hora. The personal dosimetry service is incorporated in the International LANDAUER Dosimetry Service Network, and in the European Union, it is directly linked to the LANDAUER European Headquarters with its office in Paris. As a part of the OSL technology licence, the VF personal dosimetry service was included in the inter-laboratory comparison programme of the LANDAUER syndicate. (author)

  9. Personal dosimetry service of VF, a.s. company

    International Nuclear Information System (INIS)

    Prasek, P.

    2008-01-01

    The VF, a.s. Company will extend its services in the area of personal dosimetry at the end of 2008, which is fully in compliance with the requirements of the Atomic Act, section 9 paragraph (1) letter r) and Decree on Radiation Protection, section 59 paragraph (1) letter a). Optically stimulated luminescence was selected in VF .a.s. as the most advantageous and the most advanced technology for the integral personal dosimetry . Optically stimulated luminescence (OSL) has been using in dosimetry for more than ten years. Although it is relatively new technology , its indisputable advantages predetermine that technology has significantly benefited in personal dosimetry services within a short time all over the advanced world. The VF, a.s. personal dosimetry service is based on the licensed products of LANDAUER, the US company, which is the world leader in OSL dosimetry. Crystalline Al 2 O 3 :C was selected as the detection material. All equipment of personal dosimetry service is installed in the VF Centre of Technology in Cerna Hora. The personal dosimetry service is incorporated in the International LANDAUER Dosimetry Service Network, and in the European Union, it is directly linked to the LANDAUER European Headquarters with its office in Paris. As a part of the OSL technology licence, the VF personal dosimetry service was included in the inter-laboratory comparison programme of the LANDAUER syndicate. (author)

  10. Neutron personal dosimetry: state-of-art

    International Nuclear Information System (INIS)

    Spurný, František

    2005-03-01

    State-of-art of the personal neutron dosimetry is presented, analysed and discussed. Particular attention is devoted to the problems of this type of the dosimetry of external exposure for radiation fields at nuclear power plants. A review of general problems of neutron dosimetry is given and the active individual dosimetry methods available and/or in the stage of development are briefly reviewed. Main attention is devoted to the analysis of the methods available for passive individual neutron dosimetry. The characteristics of these dosemeters were studied and are compared: their energy response functions, detection thresholds and the highest detection limits, the linearity of response, the influence of environmental factors, etc. Particular attention is devoted to their behavior in reactor neutron fields. It is concluded that the choice of the neutron personal dosemeter depends largely on the conditions in which the instrument should be used (neutron spectrum, the level of exposure and the exposure rate, etc.). The results obtained with some of these dosemeters during international intercomparisons are also presented. Particular attention is paid to the personal neutron dosimeter developed and routinely used by National Personal Dosimetry Service Ltd. in the Czech Republic. (author)

  11. Personal dosimetry in Kazakhstan

    International Nuclear Information System (INIS)

    Khvoshnyanskaya, I.R.; Vdovichenko, V.G.; Lozbin, A.Yu.

    2003-01-01

    KATEP-AE Radiation Laboratory is the first organization in Kazakhstan officially licensed by the Kazakhstan Atomic Energy Committee to provide individual dosimetry services. The Laboratory was established according to the international standards. Nowadays it is the largest company providing personal dosimetry services in the Republic of Kazakhstan. (author)

  12. Personal dosimetry and information platforms

    International Nuclear Information System (INIS)

    Sanchez Hidalgo, M.; Galan Montenegro, P.; Bodineau Gil, C.; Hernandez Rodriguez, R.; Jimenez Nartin, A.; Cano Sanchez, J. J.

    2011-01-01

    One question often raised by the hospital personnel dosimetry is the high incidence in the no monthly turnover of dosimeters, which is currently a high number of administrative dose assignments. The high number of workers with personal dosimetry and in many cases, the dispersion of workplaces makes it impossible to personalized management. To make a more direct and personal, and transmit information quickly and with guaranteed reception, has developed and implemented a system of personalized dosimetric information through messaging Short Message Service (SMS) and access to the history of dosimetric dosimetric and management through web space Service Hospital Radio physics.

  13. The personal dosimetry in Mexico

    International Nuclear Information System (INIS)

    Salazar, M.A.

    2006-01-01

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  14. Personal Dosimetry in UHC Sestre Milosrdnice: 10-Years Review

    International Nuclear Information System (INIS)

    Bokulic, T.; Budanec, M; Gregov, M.; Kusic, Z.; Mlinaric, M.; Mrcela, I.; Suric Mihic, M.

    2013-01-01

    Personal dose monitoring in UHC 'Sestre milosrdnice' is regulary performed for about 300 exposed workers involved in a variety of tasks with different sources of ionizing radiation. Exposed workers are required to wear personal dosimeters which are read on monthly basis and dose records are kept in the hospital. In this paper an overview of personal dosimetry data from year 2003 till 2013 is presented. Film dosimeters were used for personal dosimetry untill 2010 when the thermoluminescent (TL) dosimetry was introduced. Dosimeters are calibrated to measure personal dose equivalent H p (10). Received doses are analyzed for workers in the field of nuclear medicine, radiotherapy (external beam and brachytherapy), general diagnostic radiology and interventional radiology. Analysis of received doses in the whole period resulted with an average individual dose in nuclear medicine of 0.6 mSv/y, which decreased to 0.21 mSv/y in the last three years, caused by more precise dosimetric methods with TL dosimetry and improved conditions of radiation protection. In the same three-year period, in interventional radiology doses were 0.32 mSv/y, compared to 0.29 mSv/y obtained for a previous seven years. This was expected due to the escalation in a number of interventions and new installed equipment. There was no such difference in diagnostic radiology doses, showing that film dosimetry is suitable for x ray energies. Analysis of all the readings showed a significant influence of measurement procedures on personal dosimeter dose and also the importance of continuous monitoring of the dose records in order to improve the conditions of radiation protection and achieving the ALARA goal.(author)

  15. Glass badge dosimetry system for large scale personal monitoring

    International Nuclear Information System (INIS)

    Norimichi Juto

    2002-01-01

    Glass Badge using silver activated phosphate glass dosemeter was specially developed for large scale personal monitoring. And dosimetry systems such as an automatic leader and a dose equipment calculation algorithm were developed at once to achieve reasonable personal monitoring. In large scale personal monitoring, both of precision for dosimetry and confidence for lot of personal data handling become very important. The silver activated phosphate glass dosemeter has basically excellent characteristics for dosimetry such as homogeneous and stable sensitivity, negligible fading and so on. Glass Badge was designed to measure 10 keV - 10 MeV range of photon. 300 keV - 3 MeV range of beta, and 0.025 eV - 15 MeV range of neutron by included SSNTD. And developed Glass Badge dosimetry system has not only these basic characteristics but also lot of features to keep good precision for dosimetry and data handling. In this presentation, features of Glass Badge dosimetry systems and examples for practical personal monitoring systems will be presented. (Author)

  16. Gaining competitive advantage in personal dosimetry services through ISO 9001 certification

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2005-01-01

    Full text: In Malaysia, the harmonization of dose monitoring for almost 12,000 radiation workers is assigned to the Secondary Standard Dosimetry Laboratory of Malaysian Institute for Nuclear Technology Research, SSDL-MINT. Established in 1980, SSDL-MINT is responsible for improving personal and workplace safety by providing high quality personal dosimetry services. It is important to demonstrate that the performance of personal dosimetry meets recognized standards, to ensure radiation doses to individual workers are within the safe limits and to verify compliance with dose limits. Concern on the quality of personal dosimetry service began to be expressed in 2000. The concern led to the ISO certification, which brought an unprecedented effort characterized by high degree coordination, proper documentation and well trained of personal dosimetry operators. These huge efforts resulted with certification ISO 9002:1994 by the SIRIM International QAS Sdn. Bhd. in January 2002. The adoption of these requirements for the ISO 9002 standard makes routine handling of the process easier, and increases the reliability and effectiveness of the services. This helps to increase the quality and uniformity of personal dosimetry. The revision of the ISO 9002:1994 to ISO 9001:2000 necessitated SSDL-MINT revising its quality management system. The work began in middle 2002, and by May 2003, SSDL-MINT has been upgraded to ISO 9001:2000. Certification to the ISO 9001:2000 demonstrates our ability to consistency provide service that meets the requirements of the customer and the regulatory authority. These includes: improved consistency of service / product performance and therefore higher customer satisfaction levels; uniformity in work processes across organizations; simplified and more uniform structure for quality documents; improved customer perception of the organizations image, culture and performance; reduced number of product and process non-conformances; greater employee

  17. Eurados trial performance test for neutron personal dosimetry

    DEFF Research Database (Denmark)

    Bordy, J.M.; Stadtmann, H.; Ambrosi, P.

    2001-01-01

    This paper reports on the results of a neutron trial performance test sponsored by the European Commission and organised by EURADOS. As anticipated, neutron dosimetry results were very dependent on the dosemeter type and the dose calculation algorithm. Fast neutron fields were generally well...

  18. The personal dosimetry in Mexico; La dosimetria personal en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.A. [Proxtronics/ Asesoria Integral en Dosimetria Termoluminiscente S.A. de C.V., Canal de Miramontes 2030-14, Col. Educacion, 04400 Mexico D.F. (Mexico)]. e-mail: aidtsa@avantel.net

    2006-07-01

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  19. First national intercomparison of personal dosimetry for dosimetry service providers in paec

    International Nuclear Information System (INIS)

    Akhter, J.; Ahmed, S.S.

    2006-12-01

    Health Physics Division, PINSTECH, has conducted an intercomparison exercise for PAEC organizations which are responsible for providing personal dosimetry services for the assessment of occupational doses of radiation workers. The exercise was on voluntary basis and it was designed to harmonize the procedure of individual dose monitoring techniques in terms of new ICRP operational quantities of personal dose equivalent Hp (10) for photons. Cobalt-60 and Cesium-137 protection level sources were used for irradiation. The dosimeters were exposed to radiation in the range of 0.46 to 24.20 mSv. Irradiations were performed in Secondary Standard Dosimetry Laboratory (SSDL) at HPD, PINSTECH according to IAEA/WHO standards. The performance of the participating laboratories was judged by trumpet curve that provides the acceptable limits on overall accuracy for occupational dose monitoring at 95% confidence level according to international standards. The response of measured dose/standard true dose (Hm/Ht lies in the range of 0.66 to 1.11 for 60CO and 0.84 to 1.17 for 137CS. This report describes the procedure and results of the intercomparison exercise. (author)

  20. Albedo neutron dosimetry in Germany: regulations and performance

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Zimbal, A.; Busch, F.; Jordan, M.; Eichelberger, A.; Engelhardt, J.; Martini, E.; Figel, M.; Haninger, T.; Frasch, G.; Guenther, K.; Seifert, R.; Rimpler, A.

    2014-01-01

    Personal neutron dosimetry has been performed in Germany using albedo dosemeters for >20 y. This paper describes the main principles, the national standards, regulations and recommendations, the quality management and the overall performance, giving some examples. (authors)

  1. Quality assurance in personal dosimetry of external radiation: present situation and future needs

    International Nuclear Information System (INIS)

    Ma, N.

    2006-01-01

    Whole body personal dosimetry is well established for the individual monitoring of radiation workers. High quality radiation dosimetry is essential for workers who rely upon personal dosemeters to record the amount of radiation to which they are exposed. The mandate has been given to the Personal Dosimetry, (secondary standard dosimetry laboratories) S.S.D.L., (Malaysian institute for nuclear energy research) M.I.N.T. to assure the individual monitoring for radiation workers in Malaysia. In 2005, the S.S.D.L;-M.I.N.T. supply, process and read out of personal dosemeters of nearly 13,000 dosimeters monthly, whereby. 12,000 are films and 1,000 are T.L.D.s. The objective of individual monitoring is not limited to the measurement of doses delivered to individuals, but it should demonstrate that limits of exposure have not been exceeded and that working conditions have not unexpectedly deteriorated. Dosimetry measurements are an important component of radiation protection programs and must be of high quality. The exposure of workers to radiation must be controlled and monitored in order to comply with regulatory requirements. S.S.D.L.-M.I.N.T; demonstrates that its performance is at an acceptable level by implementing overall system performance, as evidenced by the ISO 9001 certification of the Personal Dosimetry Service in 2002 and ISO/I.E.C. 17025 accreditation to the calibration laboratory in 2004. The certification and accreditation processes achieved the goal by formalizing the recognition of satisfactory performance, and providing evidence of this performance. Overall performances are assessed, personnel operating the system will be trained and are well qualified and all actions will be documented. The paper describes the overview of the Q.M.S. carried out at the S.S. D.L.-M.I.N.T.. During the implementation of Q.M.S. a few areas has been identified for future consideration. These include performance specification and type testing of dosemeters, which provide a

  2. System of data management in 'Dosis' personal dosimetry

    International Nuclear Information System (INIS)

    Manzano de Armas, Jose; Diaz Bernal, Efren; Capote Ferrera, Eduardo; Molina Perez, Daniel; Lopez Bejerano, Gladys

    2001-01-01

    The storage and control of the data of a service of personal dosimetry is a task that requires specify care in data handling and manipulation. This activity becomes more annoying of making manually when the volume of users of the service is significant. The External Dosimetric Laboratory of the Center for Radiation Protection and Hygiene has developed a system of administration of data that allows the storage, control and analysis of the data generated by the Service of Personal Dosimetry in an efficient and reliable way. This paper describes the characteristics of the System for Administration of Data in Personal Dosimetry 'Dosis', as well as their design and programming. The importance of this System for the laboratory and the advantages of their application are described. The characteristics of the different modules are also described. (author)

  3. PTTL Dose Re-estimation Applied to Quality Control in TLD-100 Based Personal Dosimetry

    International Nuclear Information System (INIS)

    Muniz, J.L.; Correcher, V.; Delgado, A.

    1999-01-01

    A new method for quality control of dose performance in Personal Dosimetry using TLD-100 is presented. This method consists of the application of dose reassessment techniques based on phototransferred thermoluminescence (PTTL). Reassessment is achieved through a second TL readout of the dosemeters worn by the controlled workers, after a reproducible UV exposure. Recent refinements in the PTTL technique developed in our laboratory allow reassessing doses as low as 0.2 mSv, thus extending the reassessment capability to the entire dose range that must be monitored in personal dosimetry. After a one month exposure, even purely environmental doses can be reassessed. This method can be applied for either re-estimation of single doses or of the total dose accumulated after a number of exposures and dose measurements. Several tests to reconfirm low doses in normal working conditions for personal dosimetry have been performed. Each test consisted of several cycles of exposure and TL evaluations and a final PTTL re-estimation of the total accumulated dose in those cycles. The results obtained always showed very good agreement between the sum of the partial doses and the total reassessed dose. The simplicity of the method and the possibility of re-evaluating the doses assessed to the workers employing their own dosemeters are advantageous features to be considered in designing systems for the determination of real performance in personal dosimetry. (author)

  4. Working conditions analysis according T.L. personal dosimetry results

    International Nuclear Information System (INIS)

    Marinkovic, O.; Jovanovic, S.

    2006-01-01

    Laboratory for personal dosimetry in the Institute of Occupational and Radiological Health, Belgrade, used TLD more than twenty years. Before that, film dosimetry was main method in external monitoring. T.L. dosimetry was started with Reader Toledo 654 and crystals Mg B 4 O 7 . Finally, from 1992 laboratory has Harshaw TLD Reader Model 6600. Dosimeters are crystals LiF type 100, card packed, worn in standard filtrated holders. Personal dosimetry data are keeping 30 years for each worker according to regulations. The data from 1990 are in electronic form. Long experience enables conclusion that new technique means more advantages in practice. Recommendation from this laboratory practice refers to TLD read-out cycle. The longest period should be one month. LiF is recommended crystal. Glow curve deconvolution gives information about chronological irradiation. It is very important to conclude was dosimetry irradiated by 'one-shot' or continuously. Preparing calibration for determination the time since accident laboratory has to define adequate dose calibration methodology including low temperature peaks. Possibility to follow working conditions analyzing TLD glow curve is much more important than low decrease of dose severity. Time depend analyze is not possible if TLD would be read-out more than (approximately) six weeks after irradiation. If ionizing sources produce such low dose and has negligible probability of accidental exposure (according nowadays regulation read-out frequency could be once in three month), the recommendation is not to use external personal monitoring. Reading personal dosimeters once in three months deemed not useful. Complete and successful personal dosimetry dictates using system that enables glow curve shape representation to be sure that signal is ionizing irradiation result or not. Time depend analyze imparts information about protection permanence. In special circumstance, it is possible to estimate the time of exposure. This is extremely

  5. Trends of personal dosimetry at atomic power plants

    International Nuclear Information System (INIS)

    Yamamura, Seini

    1998-01-01

    The individual dosimetry at the atomic power station is sorted for monthly dosimetry, daily dosimetry and special job dosimetry in high dose circumstance. Film badge (passive dosimeter) can measure gamma dose, beta dose and neutron dose respectively lower than about 0.1 mSv. While workers are in the radiation controlled area, they have to wear the dosimeters and the individual dose is accumulated for every one month. Recently the Silicon semiconductors detecting beta ray and neutron have been developed. With microcircuit technology and these new sensors, new multiple function dosimeter of the card size had been put to practical use. The result of dose measurement obtained by the electronic dosimeter is consistent well with the measurement of usual film badge and new dosimeter can determine the dose as low as 0.01 mSv. The result is stored in the non-volatile memory in the electronic personal dosimeter and held for more than one year without the power supply. The function to read data directly from the memory improves the reliability of the data protection. The realization of the unified radiation control system that uses the electronic personal dosimeter for monthly dosimetry is expected. (J.P.N.)

  6. Automated personal dosimetry monitoring system for NPP

    International Nuclear Information System (INIS)

    Chanyshev, E.; Chechyotkin, N.; Kondratev, A.; Plyshevskaya, D.

    2006-01-01

    Full text: Radiation safety of personnel at nuclear power plants (NPP) is a priority aim. Degree of radiation exposure of personnel is defined by many factors: NPP design, operation of equipment, organizational management of radiation hazardous works and, certainly, safety culture of every employee. Automated Personal Dosimetry Monitoring System (A.P.D.M.S.) is applied at all nuclear power plants nowadays in Russia to eliminate the possibility of occupational radiation exposure beyond regulated level under different modes of NPP operation. A.P.D.M.S. provides individual radiation dose registration. In the paper the efforts of Design Bureau 'Promengineering' in construction of software and hardware complex of A.P.D.M.S. (S.H.W. A.P.D.M.S.) for NPP with PWR are presented. The developed complex is intended to automatize activities of radiation safety department when caring out individual dosimetry control. The complex covers all main processes concerning individual monitoring of external and internal radiation exposure as well as dose recording, management, and planning. S.H.W. A.P.D.M.S. is a multi-purpose system which software was designed on the modular approach. This approach presumes modification and extension of software using new components (modules) without changes in other components. Such structure makes the system flexible and allows modifying it in case of implementation a new radiation safety requirements and extending the scope of dosimetry monitoring. That gives the possibility to include with time new kinds of dosimetry control for Russian NPP in compliance with IAEA recommendations, for instance, control of the equivalent dose rate to the skin and the equivalent dose rate to the lens of the eye S.H.W. A.P.D.M.S. provides dosimetry control as follows: Current monitoring of external radiation exposure: - Gamma radiation dose measurement using radio-photoluminescent personal dosimeters. - Neutron radiation dose measurement using thermoluminescent

  7. Personal dosimetry at the radiation accidents

    International Nuclear Information System (INIS)

    Perevoznikov, O.N.; Klyuchnikov, A.A.; Kanchenko, V.A.

    2007-01-01

    The radiation accidents of different types and the methods of the dosimetry used at the consequences liquidation are considered. The long-term experience of the population personal instrumental dosimetric control carrying out at the ChNPP accident consequences liquidation is widely covered in details. The concepts are stated out and the results are presented on the functioning of the created system for personal dose monitoring of the population of Ukraine irradiation. The use of the person radiation counters at the internal irradiation population and personal dose assessment is considered in details

  8. Performance testing of personal dosemeters from eleven dosimetry services in Sweden

    International Nuclear Information System (INIS)

    Lund, E.; Kylloenen, J.-E.; Grindborg, J.-E.; Lindborg, L.

    2001-01-01

    The Swedish regulation, SSI FS 98:5, requires that radiological workers of category A use dosemeters from an approved personal dosimetry service. The 11 services operating in Sweden at the moment use five different types of dosemeter. All have been tested for their ability to determine H p (10) and some of them to determine H p (0.07) according to the European Commission report Radiation Protection 73, EUR 14852, of 1994. The five unique systems have been tested regarding the angular and energy dependence of the response of the dosemeters. The test points for the determination of H p (10) are all, except one, within the trumpet curve and for the unique systems it is shown that the uncertainty related to angular response at three different energies is within the required ±40% except for the lowest X ray quality 40 kV. The energy dependence dominates over the directional dependence and the choice of radiation quality for calibration is of great importance for the system performance. (author)

  9. Personal radon daughter dosimetry

    International Nuclear Information System (INIS)

    Stocker, H.

    1979-12-01

    The conventional means of radon daughter exposure estimatikn for uranium miners in Canada is by grab sampling and time weighting. Personal dosimetry is a possible alternative method with its own advantages and limitations. The author poses basic questions with regard to two methods of radon daughter detection, thermoluminescent chips and track-etch film. An historical review of previous and current research and development programs in Canada and in other countries is presented, as are brief results and conclusions of each dosimeter evaluation

  10. Electronic personal dosimeter heralds a revolution in legal dosimetry

    International Nuclear Information System (INIS)

    Fletcher, R.

    1991-01-01

    The Electronic Personal Dosimeter (EPD) developed by Siemens Plessey Controls and the UK's national Radiological Protection Board is approaching the pre-production stage. It provides ''legal'' dosimetry and all the features of a personal alarming dosimeter. The EPD uses solid state semiconductor detectors for gamma and beta radiation and has a dose threshold of about 1μ Sv, with a low energy gamma range down to 20 KeV. It has a multi function liquid crystal display for instant readout and audible and visual alarms. Two separates dose stores are maintained. Short term dose for tactical management and long term dose for approved dosimetry service record keeping. The latter can be reset only by an approved dosimetry service and is maintained on a search memory disk which can be read even if the EPD is destroyed. (UK)

  11. Gamma response characterizations of optically stimulated luminescence (OSL) affects personal dosimetry

    Science.gov (United States)

    Monthonwattana, S.; Esor, J.; Rungseesumran, T.; Intang, A.

    2017-06-01

    Optically Stimulated Luminescence (OSL) is the current technique of personal dosimetry changed by Nuclear Technology Service Center instead of Thermoluminescence dosimetry (TLD) because OSL has more advantages, such as repeat reading and elimination of heating process. In this study, OSL was used to test the gamma response characterizations. Detailed OSL investigation on personal dosimetry was carried out in the dose range of 0.2 - 3.0 mSv. The batch homogeneity was 7.66%. R2 value of the linear regression was 0.9997. The difference ratio of angular dependence at ± 60° was 8.7%. Fading of the reading was about 3%.

  12. Results of the ninth exercise of intercomparison in services of personal dosimetry in Argentina Republic in the year of 2011

    International Nuclear Information System (INIS)

    Ferrufino, G.A.; Discacciatti, P.A.; Lopez, F.O.

    2013-01-01

    In this paper we present the results of the ninth intercomparison exercise personal dosimetry services, conducted by the Nuclear Regulatory Authority in 2011. The exercise was designed to evaluate the performance of laboratories providing personal dosimetry services in Argentina , for X-rays and gamma radiation fields . This exercise was organized by the Nuclear Regulatory Authority with the Ministry of Health of the Nation and the Regional Reference Laboratory Centre for Dosimetry of the National Atomic Energy Commission . The irradiations were carried out in full accordance with ISO 4037-3 . Participates all private companies in Argentina serving all personal dosimetry laboratories and agencies, provincial and national. Furthermore, the Laboratories from Cuba, Brazil and Uruguay also participate. The performance of a laboratory is considered acceptable if it meets the criteria established in the IRAM- ISO 14146 , which states: 'It is recognized that at most, one-tenth of dosimeters irradiated to exceed the limits'. Of all of the laboratories that participated , 68% reported their results within the acceptance criteria above. The primary objective of this intercomparison exercise is to provide an objective tool to evaluate the ability of personnel dosimetry services. (author)

  13. Verification of Ca F2:Mn type of dosemeters for personal dosimetry purposes

    International Nuclear Information System (INIS)

    Misovic, M.; Boskovic, Z.; Spasic-Jokic, V.

    1995-01-01

    Verification results of CaF2:Mn type of dosemeters for personal dosimetry purposes are presented in this paper. Tree types of irradiations are proceeded due to verification of relevant features of TLD. It is concluded that mentioned type of dosemeter can be used for purpose of personal dosimetry. (author)

  14. An approved personal dosimetry service based on an electronic dosimeter

    International Nuclear Information System (INIS)

    Marshall, T.O.; Bartlett, D.T.; Burgess, P.H.; Campbell, J.I.; Hill, C.E.; Pook, E.A.; Sandford, D.J.

    1991-01-01

    At the Second Conference on Radiation Protection and Dosimetry a paper was presented which, in part, announced the development of an electronic dosimeter to be undertaken in the UK by the National Radiological Protection Board (NRPB) and Siemens Plessey Controls Ltd. This dosimeter was to be of a standard suitable for use as the basis of an approved personal dosimetry service for photon and beta radiations. The project has progressed extremely well and dosimeters and readers are about to become commercially available. The system and the specification of the dosimeter are presented. The NRPB is in the process of applying for approval by the Health and Safety Executive (HSE) to operate as personal monitoring service based on this dosimeter. As part of the approval procedure the dosimeter is being type tested and is also undergoing an HSE performance test and wearer trials. The tests and the wearer trials are described and a summary of the results to date presented. The way in which the service will be organized and operated is described and a comparison is made between the running of the service and others based on passive dosimeters at NRPB

  15. Evaluation of the efficiency of different methods of personal dosimetry in vascular interventional radiology

    International Nuclear Information System (INIS)

    Bacchim Neto, F.A.; Alves, A.F.F.; Rosa, M.E.D.; Pina, D.R.

    2017-01-01

    Interventional Radiology - IR is the area of medicine that provides the largest occupational exposures. The dose values to which interventionists are exposed are difficult to standardize. The objective of the study is to perform a complete evaluation of occupational exposures and to determine the efficiency of different personal dosimetry methods used in IR. We evaluated the efficiencies of 6 different personal dosimetry methodologies used internationally to estimate the effective dose received by interventional professionals. And, based on this analysis, determine the characteristics of each methodology. One of the methods of personal dosimetry recommended by Brazilian legislation was the most conservative, overestimating, on average, the effective dose of professionals by up to 200%, reaching maximum values close to 400%. The most accurate method was that used in North America. This method did not overestimate the effective dose of the professionals more than a few percent and their standard deviation relative to the effective reference dose were the lowest. Based on these results, the choice of methodologies employing at least two dosimeters, one under and above protective aprons is recommended. In addition, in some situations where the dose in the hands may be high, additional dosimeters for this region are also recommended

  16. Eurados trial performance test for photon dosimetry

    DEFF Research Database (Denmark)

    Stadtmann, H.; Bordy, J.M.; Ambrosi, P.

    2001-01-01

    Within the framework of the EURADOS Action entitled Harmonisation and Dosimetric Quality Assurance in Individual Monitoring for External Radiation, trial performance tests for whole-body and extremity personal dosemeters were carried out. Photon, beta and neutron dosemeters were considered....... This paper summarises the results of the whole-body photon dosemeter test. Twenty-six dosimetry services from all EU Member States and Switzerland participated. Twelve different radiation fields were used to simulate various workplace irradiation fields. Dose values from 0.4 mSv to 80 mSv were chosen. From...

  17. Personal nuclear accident dosimetry at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Ward, D.C.; Mohagheghi, A.H.; Burrows, R.

    1996-09-01

    DOE installations possessing sufficient quantities of fissile material to potentially constitute a critical mass, such that the excessive exposure of personnel to radiation from a nuclear accident is possible, are required to provide nuclear accident dosimetry services. This document describes the personal nuclear accident dosimeter (PNAD) used by SNL and prescribes methodologies to initially screen, and to process PNAD results. In addition, this report describes PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study (NAD23), held during 12-16 June 1995, at Los Alamos National Laboratories. Biases for reported neutron doses ranged from -6% to +36% with an average bias of +12%

  18. Performing personnel dosimetry investigations and records quality assurance

    International Nuclear Information System (INIS)

    Perle, S.C.

    2002-01-01

    Radiation Safety Officers (RSOs) sometimes face situations in which personnel dosimetry estimates are required after dosimeters issued to radiation workers (film or TLD badges, extremity dosimeters, etc.) are lost or damaged before processing. This article was prepared to help those involved with personnel dosimetry investigations became aquatinted with this process. A factor that contributes to the anxiety of those unfamiliar with dosimetry investigations is the lack of published guidance available in this subject. More printed resources are needed to help radiation safety professionals familiarize themselves and understand personnel dosimetry investigations. Topics discussed in this presentation include the justification of performing dosimetry investigations, recommendations on how to perform them and the advantages of performing such investigations

  19. The Neutron Personal Dosimetry Service of the Centre for Radiation, Chemical and Environmental Hazards, PHE-UK

    International Nuclear Information System (INIS)

    Campo Blanco, X.

    2015-01-01

    The Centre for Radiation, Chemical and Environmental Hazards (CRCEH), that belongs to Public Health England (PHE), hosts the official Neutron Personal Dosimetry Service of the United Kingdom. They use etched-track detectors, made of a material called PADC (poly-allyl diglycol carbonate), to determinate de neutron personal dose. A two weeks visit has been made to this center, in order to learn about the facilities, the methods employed and the legislative framework of the Neutron Personal Dosimetry Service. In this work the main results of this visits are shown, which are interesting for the future development of an official neutron personal dosimetry service in Spain.

  20. Radiation protection - Performance criteria for service laboratories performing biological dosimetry by cytogenetics

    International Nuclear Information System (INIS)

    2004-01-01

    This International Standard provides criteria for quality assurance and quality control, evaluation of the performance and the accreditation of biological dosimetry by cytogenetic service laboratories. This International Standard addresses: a) the confidentiality of personal information, for the customer and the service laboratory, b) the laboratory safety requirements, c) the calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels, d) the scoring procedure for unstable chromosome aberrations used for biological dosimetry, e) the criteria for converting a measured aberration frequency into an estimate of absorbed dose, f) the reporting of results, g) the quality assurance and quality control, h) informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations and a sample report

  1. Introduction of a new dosimetry system based on optically stimulated luminescence (OSL) in our personal monitoring service

    International Nuclear Information System (INIS)

    Hubner, S.

    2014-08-01

    appropriate dosimetric properties and perfect logistics are required. The new OSL system needs to be well established in personal dosimetry in order to ensure substantial maintenance and further development of the system. As at January 2014, already six monitoring services scattered all over the world are carrying out personal dosimetry using these OSL-Systems. According to respective national regulations both personal dose equivalents Hp(10) and Hp(0.07) can be measured. To meet that essential target to continuously increase the market share, a subsidiary company called Dosimetric s was launched in 2013 with the objective of performing the related commercial business, such as promotion and selling as well as ensuring further development and maintenance of the OSL-system. (Author)

  2. Introduction of a new dosimetry system based on optically stimulated luminescence (OSL) in our personal monitoring service

    Energy Technology Data Exchange (ETDEWEB)

    Hubner, S., E-mail: stephan.huebner@helmholtz-muenchen.de [Helmholtz Zentrum Munchen, German Research Center for Environmental Health, D-80219, Munich (Georgia)

    2014-08-15

    appropriate dosimetric properties and perfect logistics are required. The new OSL system needs to be well established in personal dosimetry in order to ensure substantial maintenance and further development of the system. As at January 2014, already six monitoring services scattered all over the world are carrying out personal dosimetry using these OSL-Systems. According to respective national regulations both personal dose equivalents Hp(10) and Hp(0.07) can be measured. To meet that essential target to continuously increase the market share, a subsidiary company called Dosimetric s was launched in 2013 with the objective of performing the related commercial business, such as promotion and selling as well as ensuring further development and maintenance of the OSL-system. (Author)

  3. Personal dosimetry and area monitoring for neutrons and radon in workplaces

    International Nuclear Information System (INIS)

    Tommasino, L.

    2001-01-01

    The first successful applications of damage track detectors in radiation protection have been made in the early 1970s in personal dosimetry of neutrons, radon and its progenies. Most of the scientists actively engaged in the solution of the complex problem of personal neutron dosimetry by damage track detectors-SSNTD, have attempted to develop individual radon monitoring for exposure in mines by using the same SSNTDs. In late 1970s and the early 1980s, new radon monitoring devices based on SSNTDs have been developed to measure radon in soil, mainly for applications in uranium prospecting or more generally in earth sciences. Most of the radon monitors, developed since then for completely different applications in mind, have been used later for large scale survey of indoor radon. With the current implementation within Europe of the European Union Directive 96/29, applications of damage track detectors will increase drastically, specially for the assessment of the exposure of the workers to natural sources of radiation. In this case, the early work on personal neutron/radon dosimetry, is highly valuable to tackle these new problems of individual monitoring

  4. The task of official personal monitoring in Germany using electronic dosimetry systems

    International Nuclear Information System (INIS)

    Huebner, Stephan; Wahl, Wolfgang; Busch, Frank; Martini, Ekkehard

    2008-01-01

    Full text: Since the establishment of the first German personal monitoring services as competent measuring bodies in the year 1952, official personal dosimetry is carried out using passive dosimeters such as film batches, RPL- and TL-dosimeters solely. On the other hand, electronic dosimeters are in use in some big institutions like Nuclear Power Plants, hospitals or industrial units for operational purposes. In most cases, these dosimeters are regulated by competent authorities. For more than 20 years electronic dosimeters proved their worth of being appropriate personal dosimeters. Since 2001 concepts to implement electronic personal dosimeters into the official individual monitoring of occupational exposed workers were developed in different research projects. The EU market of personal dosimetry changes to an open and competitive one, the number of outside workers, especially during the outages of Nuclear Power Plants increases, the landscape of customers is getting more and more heterogeneous. Being able to face these tasks of a sustainable personal monitoring requires the introduction of modern electronic dosimeters into to the official monitoring. Doing so, the needed prompt exchange of dose-data between different monitoring services as well as between the customers and the related monitoring service can be warranted. In cooperation with the industry, competent authorities and a research centre a method for official dosimetry using electronic dosimetry systems was developed, realised and tested successfully by the three big monitoring services of Germany. These investigations are supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. For this purpose a network between customers and monitoring services was built up in order to monitor people, who work in different places related to different measuring bodies in only one period of surveillance. (author)

  5. Study of the personal dosimetry service by thermoluminiscence

    International Nuclear Information System (INIS)

    Penaherrera, Patricio; Buitron, Susana; Prado, Elizabeth; Ceron Fabiola

    1992-01-01

    This paper is concerned with the personal dosimetry service given by the Ecuadorian Atomic Energy Commission to radiation exposed workers in Ecuador. The study has taken in consideration the number of professionals working in Ecuador by province and by area of work, and also the radiation doses received by them during the period 1987-1990

  6. New web interface for Personal dosimetry VF, a.s

    International Nuclear Information System (INIS)

    Studeny, J.

    2014-01-01

    The lecture will introduce new functions and graphic design WebSOD - web interface Personal dosimetry Service VF. a.s. which will be updated in November 2014. The new interface will have a new graphic design, intuitive control system and will be providing a range of new functions: - Personal doses - display of personal doses from personal, extremity and neutron dosimeters including graphs, annual and electronic listings of doses; - Collective doses - display of group doses for selected periods of time; Reference levels - setting and display of three reference levels; - Evidence - enables administration of monitored individuals - beginning, ending of monitoring, or editing the data of monitored persons and centers. (author)

  7. Characteristics and performances of electronic personal dosemeters

    International Nuclear Information System (INIS)

    Aubert, B.

    2002-01-01

    The regulations have made obligation for 2 years to measure and analyse the amounts of radiations actually received during an operation. The whole of these measurements taken uninterrupted for an immediate reading is indicated like the operational dosimetry, which is carried out with the means of personal electronic dosemeters. This study analyses the legislation relating to this type of dosimetry as well as the requirements in medical environment, and presents an assessment of the characteristics and performances of the devices available on the French market at the beginning of 2002 starting from the information provided by the various manufacturers. (author)

  8. Comparing personal alpha dosimetry with the conventional area monitoring-time weighting methods of exposure estimation: a Canadian assessment

    International Nuclear Information System (INIS)

    Balint, A.B.; Viljoen, J.

    1988-01-01

    An experimental personal alpha dosimetry program for monitoring exposures of uranium mining facility workers in Canada has been completed. All licenced operating mining facilities were participating. Dosimetry techniques, description of dosimeters used by licences, performance and problems associated with the implementation of the programme as well as technical and administrative advantages and difficulties experienced are discussed. Area monitoring-time weighting methods used and results obtained to determine individual radon and thoron daughter exposure and exposure results generated by using dosimeters are assessed and compared

  9. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  10. Performance testing of selected types of electronic personal dosimeters used in Sudan

    International Nuclear Information System (INIS)

    Suliman, I.I.; Yousif, E.H.; Beineen, A.A.; Yousif, B.E.; Hassan, M.

    2010-01-01

    Measurements were carried out for calibration and performance testing of a set of 10 electronic personal dosimeters (EPDs) at the Secondary Standard Dosimetry Laboratory of Sudan. Calibrations were carried out at three X-ray beam qualities described in ISO standard 4037 in addition to 137 Cs and 60 Co gamma ray beams. The experimental was performed with EPDs mounted on ICRU Slab phantom. X-ray and γ-ray beams were characterized in terms of air kerma free-in-air which were converted to the known delivered personal dose equivalent, H p (10) using appropriate the air kerma to personal dose equivalent conversion coefficients. Dosimeters tested showed excellent energy and angular response and relative error of indication within the recommended limit for photon energies from 65 keV to 1.25 MeV. The study showed encouraging results for using electronic dosimeters in personal dosimetry.

  11. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    International Nuclear Information System (INIS)

    Dennis, N.A.; Kinneman, J.D.; Costello, F.M.; White, J.R.; Nimitz, R.L.

    1983-01-01

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  12. Calibration of a tertiary standard in N-ISO qualities for radioprotection and personal dosimetry

    International Nuclear Information System (INIS)

    Rojas, Enrique; Seminario, Lizet

    2013-01-01

    Dosimetric calibration of radiation monitors and personal dosimeters in different radiological quantities are performed in order to obtain accurate measurements, for this reason the SSDL calculates the dosimetry calibration factor and its associated uncertainty, for each range of use. The calibration factor is performed using the known radiation field method and its uncertainty is calculated according to the ISO recommendations. The SSDL calculates the expanded uncertainty (U c ) with a coverage factor that provides a level of not less than 95 % of confidence. (authors).

  13. Software for evaluation of EPR-dosimetry performance

    International Nuclear Information System (INIS)

    Shishkina, E.A.; Timofeev, Yu.S.; Ivanov, D.V.

    2014-01-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty. (authors)

  14. Results of the ninth exercise of intercomparison in services of personal dosimetry in Argentina Republic in the year of 2011; Resultados del noveno ejercicio de intercomparacion de servicios de dosimetria personal realizado en la Republica Argentina en el ano 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ferrufino, G.A.; Discacciatti, P.A.; Lopez, F.O., E-mail: gferrufino@am.gob.ar [Autoridad Regulatoria Nuclear (ARN), Buenos Aies (Argentina)

    2013-10-01

    In this paper we present the results of the ninth intercomparison exercise personal dosimetry services, conducted by the Nuclear Regulatory Authority in 2011. The exercise was designed to evaluate the performance of laboratories providing personal dosimetry services in Argentina , for X-rays and gamma radiation fields . This exercise was organized by the Nuclear Regulatory Authority with the Ministry of Health of the Nation and the Regional Reference Laboratory Centre for Dosimetry of the National Atomic Energy Commission . The irradiations were carried out in full accordance with ISO 4037-3 . Participates all private companies in Argentina serving all personal dosimetry laboratories and agencies, provincial and national. Furthermore, the Laboratories from Cuba, Brazil and Uruguay also participate. The performance of a laboratory is considered acceptable if it meets the criteria established in the IRAM- ISO 14146 , which states: 'It is recognized that at most, one-tenth of dosimeters irradiated to exceed the limits'. Of all of the laboratories that participated , 68% reported their results within the acceptance criteria above. The primary objective of this intercomparison exercise is to provide an objective tool to evaluate the ability of personnel dosimetry services. (author)

  15. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  16. Optimization of radiation protection in nuclear medicine: from reference dosimetry to personalized dosimetry

    International Nuclear Information System (INIS)

    Hadid, Lama

    2011-01-01

    In nuclear medicine, radiopharmaceuticals are distributed in the body through biokinetic processes. Thus, each organ can become a source of radiation delivering a fraction of emitted energy in tissues. Therefore, dose calculations must be assessed accurately and realistically to ensure the patient radiation protection. Absorbed doses were until now based on mathematical standard models and electron transport approximations. The International Commission on Radiological Protection (ICRP) has recently adopted voxel phantoms as a more realistic representation of the reference adult. The main goal of this thesis was to study the influence of the use of the new reference models and Monte Carlo methods on the major dosimetric quantities. In addition, the contribution of patients? specific geometry to the absorbed dose was compared to a standard geometry, enabling the evaluation of uncertainties arising from the reference values. Particular attention was paid to the bone marrow which is characterized by a high radiosensitivity and a complex microscopic structure. An accurate alpha dosimetry was assessed for bone marrow using microscopic images of several trabecular bone sites. The results showed variations in the absorbed fractions as a function of the particles? energy, the skeletal site and the amount of fat within marrow cavities, three parameters which are not taken into account in the values published by the ICRP. Finally, the heterogeneous activity distribution of the radiopharmaceuticals was considered within the framework of the treatment of a hepato-cellular carcinoma with selective internal radiotherapy using Yttrium-90 through the analysis of dose-volume histograms. The developments made in this thesis show the importance and the feasibility of performing a personalized dosimetry for nuclear medicine patients. (author)

  17. Statistical results 1991-1993 of the Official Personal Dosimetry Service

    International Nuclear Information System (INIS)

    Boerner, E.; Drexler, G.; Wittmann, A.

    1995-01-01

    The report consists of a summary of relevant statistical data in the official personal dosimetry in 1988-1990 for the Federal States of Bavaria, Hesse, Schleswig-Holstein, and Baden-Wuerttemberg. The data are based on the survey of more than 8000 institutions with over 140000 occupational exposed persons and are derived from more than one million single measurements. The report covers informations on the institutions, on the persons as well as dosimetric values. The measuring method is described briefly with respect to dosimeters used, their range and the interpretation of values. Information on notional doses and the interpolation of values nearby the detection limits are given. (HP) [de

  18. BeOSL system for personal dosimetry : dosimetric characteristics and practical application

    International Nuclear Information System (INIS)

    Mende, E.

    2015-10-01

    Full text: BeOSL system of Dosimetric s is very easy to use, assimilate and maintain. Our dosimeter defines a milestone in the supervision of personal equivalent dose of Hp (10) and Hp (0.07) it covers the range of total energy of 16 KeV to 10 MeV. For this energy range is exceptional in its energy dependence for official personal dosimetry. The BeOSL system consists of two modules, one of them is the BeOSL reader that measures the radiation exposure using the latest technology, optically stimulated luminescence (OSL). The reading is extremely fast; it does not require consumables such as nitrogen or other. The detector material is beryllium oxide (Be O); this is an OSL material tissue equivalent and therefore is ideal for personal dosimetry. The BeOSL technology allows multiple readings of the dosimeter (re-read) to verify the dose or archive the dosimeter. One of the biggest advantages of BeOSL system is its modular concept allows the system to run as a manual solution or as a complete automated robotic system, which can be filled with up to 5,000 dosimeters as bulk cargo. (Author)

  19. An application of artificial neural intelligence for personal dose assessment using a multi-area OSL dosimetry system

    International Nuclear Information System (INIS)

    Lee, S.-Y.Sang-Yoon.; Kim, B.-H.Bong-Hwan; Lee, K.J.Kun Jai

    2001-01-01

    Significant advances have been made in recent years to improve measurement technology and performance of phosphor materials in the fields of optically stimulated luminescence (OSL) dosimetry. Pulsed and continuous wave OSL studies recently carried out on α-Al 2 O 3 : C have shown that the material seems to be the most promising for routine application of OSL for dosimetric purposes. The main objective of the study is to propose a new personal dosimetry system using α-Al 2 O 3 : C by taking advantage of its optical properties and energy dependencies. In the process of the study, a new dose assessment algorithm was developed using artificial neural networks in hopes of achieving a higher degree of accuracy and precision in personal OSL dosimetry system. The original hypothesis of this work is that the spectral information of an X- and γ-ray fields may be obtained by the analysis of the response of a multi-element system. In this study, a feedforward neural network using the error back-propagation method with Bayesian optimization was applied for the response unfolding procedure. The validation of the proposed algorithm was investigated by unfolding the 10 measured responses of α-Al 2 O 3 : C for arbitrarily mixed photon fields which range from 20 to 662 keV

  20. Digital dosimetry and personal and environmental monitoring assembly

    International Nuclear Information System (INIS)

    Cerovac, Z.; Radalj, Z.; Prlic, I.; Cerovac, H.

    1996-01-01

    Film+TLD and film or TLD Dosimetry have a certain delay in dose reporting, since the reports on occupational doses are usually available to the users within 40 days after the actual exposure. This is particularly important when the dose is received within the short-time interval or when the radiation source has some technical failures. For this reason, the additional monitoring is recommendable. The common Dosimetry service in Croatia is well established and the data available shows that over 80% of occupationally exposed persons are working in medical facilities, mainly with x-ray sources. Dosimetry services in the country are providing three types of dosemeters, film dosemeter badge, film+TLD dosemeter badge or plane TLD badge. We have decided to introduce the palette of digital pocket dosemeters to be used at different workplaces occupationally exposed to ionizing radiation. After the first experience with the ALARA 1G digital dosemeter it came out that this type of ionizing radiation measuring device is suitable for the various non-occupational purposes. After some technical improvement and with some telecommunication electronics this device is usable as a point environmental measuring station. This means that the probe of the record any change in normal environmental radiation field, send the data to the central station and to raise alarm if necessary. That is why we have made a prototype for environmental monitoring able to be connected to any kind of telecommunication net. (author)

  1. Solid-state radiation detectors for active personal dosimetry and radiations source tracking

    International Nuclear Information System (INIS)

    Talpalariu, Corneliu; Talpalariu, Jeni; Matei, Corina; Lita, Ioan; Popescu, Oana

    2010-01-01

    We report on the design of the readout electronics using PIN diode radiation detector of 5 mm thickness for nuclear safety and active personal dosimetry. Our effort consisted in designing and fabricating the electronics to reflect the needs of gamma radiations dosimetry and hybrids PIN diode arrays for charged particle detectors. We report results obtained during testing and characterizing the new devices in gamma fields, operating at room temperature. There were determined the energy spectrum resolution, radiation hardness and readout rate. Also, data recording methods and parallel acquisition problems from a transducer matrix are presented. (authors)

  2. 100 years of solid state dosimetry and radiation protection dosimetry

    International Nuclear Information System (INIS)

    Bartlett, David T.

    2008-01-01

    The use of solid state detectors in radiation dosimetry has passed its 100th anniversary. The major applications of these detectors in radiation dosimetry have been in personal dosimetry, retrospective dosimetry, dating, medical dosimetry, the characterization of radiation fields, and also in microdosimetry and radiobiology research. In this introductory paper for the 15th International Conference, I shall speak of the history of solid state dosimetry and of the radiation measurement quantities that developed at the same time, mention some landmark developments in detectors and applications, speak a bit more about dosimetry and measurement quantities, and briefly look at the past and future

  3. Measurement protocols for performance testing of dosimetry services for external radiations

    International Nuclear Information System (INIS)

    1993-01-01

    In the Health and Safety Executive's ''Requirements for the Approval of Dosimetry Services under the Ionising Radiations Regulations 1985'', it is stipulated that dosimetry services seeking approval must show that they have successfully completed a performance test. The services must arrange for the tests to be carried out on application and thereafter every 18 months, by a laboratory which has received accreditation from the National Measurement Accreditation Service (NAMAS) for the whole performance testing activity. The performance tests must be carried out to published protocols and the purpose here is to provide protocols for external, whole body film and TLD dosimetry services, and for skin and extremity dosimetry services. (Author)

  4. First intercomparison exercise in the frame of the coordinated investigation program of the IAEA on regional intercomparison of personal dosimetry

    International Nuclear Information System (INIS)

    Massera, G.; Papadopulos, S.B.; Gregori, B.N.; DaSilva, T.; Griffith, R.; )

    1998-01-01

    During the days 7 and 11 of October of 1996 took place in Buenos Aires, Argentina, the first Meeting of the Coordinated Investigation program of the IAEA on Regional Intercomparison of Personal Dosimetry for Latin American. In this meeting participated nine representatives of reference laboratories and of personal dosimetry of the region. Fundamental aspect of personal dosimetry relates with the quantity personal dose equivalent Hp application and the implementation of intercomparison exercise in order to improve the quality of the dose estimation have been discussed. Also lectures carried out by the specialist on Hp and practical aspects of it implementation; answer and calibration according to the ISO 4037; intercomparison methods: procedures and organizations. It was carried out the first intercomparison exercise where the participants collaborated in the preparations and irradiations of personal dosemeters they have brought. (author)

  5. Developments in physical dosimetry and radiation protection; Entwicklungen in der physikalischen Dosimetrie im Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Fiebich, Martin [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-07-01

    In the frame of physical dosimetry new dose units have been defined: the depth personal dose (equivalent dose in 10 mm depth) and the surface personal dose (equivalent dose in 0.07 mm depth). Physical dosimetry is applied for the determination of occupational radiation exposure, the radiation protected area control, the estimation of radiation exposure of patients during radiotherapy, for quality assurance and in research projects and optimization challenges. Developments have appeared with respect to punctual measuring chambers, eye lens dosimetry, OSL (optically stimulated luminescence) dosimetry, real-time dosimetry and Monte Carlo methods. New detection limits of about 1 micro Gy were reached.

  6. Proceedings of the specialist meeting on personal dosimetry and area monitoring suitable for radon and daughter products

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The programme of work of the OECD Nuclear Energy Agency includes topics relating to radiation and environmental protection matters in mining and milling operations. A first Specialist Meeting on Personal Dosimetry and Area Monitoring suitable for Radon and Daughter Products was organised in October 1976 at Elliot Lake, Canada. The proceedings were published by NEA some months later. Following an enquiry among interested persons, NEA decided to organise a new meeting on the same subject in Paris from 20th to 22nd November 1978. The meeting dealt with questions relating to personal dosimetry techniques, the monitoring of the atmosphere in mines and their neighbourhood, as well as in buildings

  7. The implementation of the operational dose quantities into radiation protection dosimetry (NRPB Association)

    International Nuclear Information System (INIS)

    O'Riordan, M.C.; Chartier, J.L.

    1993-01-01

    The main objectives of this project are to improve the measurement of spectral and angular distributions of external radiations in the workplace and to examine the implications of these measurements for personal dosimetry. They include measurement techniques for X-ray, γ-radiation and neutron radiation, performance testing of personal dosemeters, the implications of spectral and spatial distributions measurements on personal dosimetry. (R.P.)

  8. Whole-body voxel-based personalized dosimetry: Multiple voxel S-value approach for heterogeneous media with non-uniform activity distributions.

    Science.gov (United States)

    Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung

    2017-12-14

    Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and

  9. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  10. PeDaB - the personal dosimetry database at the research centre Juelich

    International Nuclear Information System (INIS)

    Geisse, C.; Hill, P.; Paschke, M.; Hille, R.; Schlaeger, M.

    1998-01-01

    In May, 1997 the mainframe based registration, processing and archiving of personal monitoring data at the research centre Juelich (FZJ) was transferred to a client server system. A complex database application was developed. The client user interface is a Windows based Microsoft ACCESS application which is connected to an ORACLE database via ODBC and TCP/IP. The conversion covered all areas of personal dosimetry including internal and external exposition as well as administrative areas. A higher degree of flexibility, data security and integrity was achieved. (orig.) [de

  11. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  12. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  13. Occupational dosimetry commissioning of a PET-CT: learning curve and staff participation; Dosimetria ocupacional en la puesta en funcionamiento de un PET-TC curva de aprendizaje y participacion del personal

    Energy Technology Data Exchange (ETDEWEB)

    Sierra Diaz, F.; Hurtado Sanchez, A.; Gomez Cortes, M. S.; Gonzalez Ruiz, C.; Gago Gomez, P.; Ruiz Galan, G.; Lopez Bote, M. A.

    2011-07-01

    The Nuclear Medicine Department, Hospital General Universitario Gregorio Maranon has been in clinical use PET-CT equipment at the end of 2009. The Dosimetry and Radiation Protection Service has been conducting surveillance at the facility and individual environmental dosimetry. Following the obligations contained in the performance specifications of the authorization granted by the Nuclear Safety Council (CSN), during the first year of the PET-CT has been tracking personal dosimetry of the professionals involved. As a novelty, had to take the ring dosimetry to control the dose equivalent in the hands instead of the normal wrist.

  14. Personal dosimetry TLD 100 in orthopedic surgeons exposed to ionizing radiation in Bogota - Colombia

    International Nuclear Information System (INIS)

    Sierra C, B. Y.; Jimenez, Y.; Plazas, M. C.; Eslava S, J.; Groot R, H.

    2014-08-01

    Orthopedic surgeons should be considered as professionals occupationally exposed to ionizing radiation, for using C arc (fluoroscope) an equipment of X type radiation emission, during surgical procedures for imaging generation. Some health institutes, use of C arc under uncontrolled circumstances, such a lack of dosimetry control, incomplete or absence of personnel protective elements and protective measures, which in turn, lead to a high exposition to the personnel. Materials and methods. Study of double match cohort by age and gender, was conducted, in four health institutions of second and third level of attention in Bogota city. Personal dosimetry measurements with TLD-100 dosimetry crystals in both cohorts and environmental dosimetry in each of operation rooms used for orthopedic procedures, were carry out during six months of follow up. Dosimetry crystals were read in a Harshaw 4500 - Bicron equipment, in the Medical Physics Laboratory of National University of Colombia. Results. Dosimetry measurements are compatibles with those of occupationally exposed personnel 3.44 mSv/6 m CI 95% (1.66-3.99), even does not overpass ICRP recommendations, are higher as were expect at the beginning of the study. The median of effective accumulative dose in thorax is 3,4 mSv CI 95% (1,66-3,99), higher in comparison with neck value 2,7 mSv CI 95% (1,73-3,80) and hand dosimetry 1,42 mSv CI 95% (0,96-2,34). Conclusions: Orthopedic surgeons should be considered occupational exposed to ionizing radiation, who has to accomplish to the radiological protection measures, dosimetric follow up and maintenance of the used X ray equipment. It was confirm throughout this study that dosimetry shows higher levels as expected at the beginning of the study, compatible with occupationally exposed personnel. (Author)

  15. Dosimetry optimization at COGEMA-La Hague

    International Nuclear Information System (INIS)

    Kalimbadjian, J.

    2000-01-01

    At the present time, the la Hague site strives to apply international recommendations together with national regulations concerning radiation protection, and especially the respect of limitation and optimization principles. The application of these principles is based on the implementation of a passive dosimetry and an active dosimetry. The monthly passive dosimetry is monitored by means of a photographic dosimetry film, completed with lithium fluorine thermoluminescent film badges. This personal dosimetry common to X, β, γ and neutron radiations is carried out in close relationship between the Radiation Protection Department, the Occupational Medical Department and the staff running the Plant. The application or ALARA's principle as well as that of radiation protection optimization implies to implement a complementary active dosimetry enabling to gain in real time, the personal dosimetry of each intervening person, either they be COGEMA's workers or external companies'. This active dosimetry provides with following information: This preventive dosimetry is based on the knowledge of doses integration in real time and is fitted with alarm thresholds according to the total amount of doses and dose rates. Thresholds on the dose rate are also set relatively to the radiological environment. This knowledge of doses and dose rates allows a stricter management of the works, while analyzing them according to the nature of the work, to the location and to the skills of the intervening people. This dosimetry allows to analyze and optimize doses integration according to the works nature for the whole intervening staff. The la Hague Site has developed an active personal dosimetry system, common to every intervening person, COGEMA or external companies. The DOSICARD was thus elaborated, shaped as an electronic dosimeter fitted with an alarm and a smart card. The access to controlled areas is conditioned to information given by the DOSICARD concerning medical aptitudes and

  16. Personal and environmental dosimetry of neutrons in a storage facility and humidity probes soil density; Dosimetria personal y ambiental de neutrones en una instalacion de almacenamiento de sondas de densidad y humedad de suelos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fuste, M. J.; Amgarou, K.; Dan Pedro, M. de; Garcia-Orellana, J.; Domingo, C.

    2011-07-01

    The equipment operators are professionally exposed to radiation and the premises where stored are considered controlled areas. Although control of the personal doses of gamma radiation received by the operators during the operation, maintenance and storage of the probes is required and is performed by dosimetry services officially approved, the control of personal and environmental doses due to neutrons generally omitted, since they are small in comparison to the gamma dose.

  17. PorTL - a compact, portable TLD reader for environmental and personal dosimetry

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; Bodnar, L.; Csoke, A.; Feher, I.; Pazmandi, T.

    2005-01-01

    Thermoluminescent dosimeters (TLDs) are commonly used for environmental monitoring, for personal and medical dosimetry, for dosimetry in nuclear facilities, etc. Major advantages are their independence of the power supply, small dimension, sensitivity, good stability, wide measuring range, resistance to environmental changes and relatively low cost. The disadvantage is that the detector must be transported for evaluation to a laboratory equipped with a large, heavy and expensive TLD Reader operated by qualified personnel, which considerably increases the costs and delays results. To overcome this disadvantage, the KFKI Atomic Energy Research Institute (KFKI AEKI), in co-operation with BL Electronics (Hungary), has developed a new and unique TLD system containing a small, portable, battery powered and moderate-price reader for commercial use. This paper gives a detailed description and parameters of this system.(author)

  18. Personal Dosimetry Enhancement for Underground Workplaces

    Directory of Open Access Journals (Sweden)

    L. Thinová

    2005-01-01

    Full Text Available Personal dosimetry for underground workers mainly concerns measurement of the concentration of radon (and its daughters and the correct application of the data in dose calculation, using a biokinetic model for lung dosimetry. A conservative approach for estimating the potential dose in caves (or underground is based on solid state alpha track detector measurements. The obtained dataset is converted into an annual effective dose in agreement with the ICRP recommendations using the “cave factor”, the value of which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached and the attached fraction and on the equilibrium factor. The main difference between apartments and caves is the absence of aerosol sources, high humidity, low ventilation rate and the uneven surface in caves. A more precisely determined dose value would have a significant impact on radon remedies or on restricting the time workers stay underground. In order to determine  how the effective dose is calculated, it is necessary to divide these areas into distinct categories by the following measuring procedures: continual radon measurement (to capture the differences in EERC between working hours and night-time, and also between daily and seasonal radon concentration variations; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoils and in water inside/outside, a study of the radon sources in the cave; aerosol particle-size spectrum measurements to determine the free fraction; monitoring the behaviour of guides and workers to record the actual time spent in the cave, in relation to the continuously monitored levels of Rn concentration. 

  19. Skin dosimetry - radiological protection aspects of skin dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1991-01-01

    Following a Workshop in Skin Dosimetry, a summary of the radiological protection aspects is given. Aspects discussed include routine skin monitoring and dose limits, the need for careful skin dosimetry in high accidental exposures, techniques for assessing skin dose at all relevant depths and the specification of dose quantities to be measured by personal dosemeters and the appropriate methods to be used in their calibration. (UK)

  20. Luminescence dosimetry using building materials and personal objects

    International Nuclear Information System (INIS)

    Goeksu, H. Y.; Bailiff, I. K.

    2006-01-01

    There is a growing public awareness of the risk of accidental radiation exposure due to ageing nuclear power installations, illegal dumping of nuclear waste and terrorist activities, and of the consequential health risks to populations in addition to social and economic disturbance extending beyond national boundaries. In the event of catastrophic incidents where no direct radiation monitoring data are available, the application of retrospective dosimetry techniques such as luminescence may be employed with materials from the immediate environment to confirm values of cumulative gamma dose to compare with or augment computational modeling calculations. Application of the method to post-Chernobyl studies has resulted in the development of new procedures using fired building materials with the capability to measure cumulative doses owing to artificial sources of gamma radiation as low as 20 mGy. Combined with Monte Carlo simulations of photon transport, values of cumulative dose in brick can be presented in a form suitable for use in dose-reconstruction efforts. Recent investigations have also shown that certain types of cementitious building material, including concrete, mortar and plaster, and personal objects in the form of telephone cards containing microchips and dental ceramics have the potential to be used for retrospective dosimetry. Examples of the most recent research concerning new materials and examples of application to sites in the Former Soviet Union are discussed. (authors)

  1. A microcomputer controlled thermoluminescence dosimetry system

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Kicken, P.J.H.

    1980-01-01

    Using a microcomputer, an automatic thermoluminescence dosimetry system for personal dosimetry and thermoluminescence detector (TLD) research was developed. Process automation, statistical computation and dose calculation are provided by this microcomputer. Recording of measurement data, as well as dose record keeping for radiological workers is carried out with floppy disk. The microcomputer also provides a human/system interface by means of a video display and a printer. The main features of this dosimetry system are its low cost, high degree of flexibility, high degree of automation and the feasibility for use in routine dosimetry as well as in TLD research. The system is in use for personal dosimetry, environmental dosimetry and for TL-research work. Because of its modular set-up several components of the system are in use for other applications, too. The system seems suited for medium sized health physics groups. (author)

  2. Dosimetric quality assurance interpreted for ISO 17025 in public health England's personal dosimetry service

    International Nuclear Information System (INIS)

    Gilvin, P.J.; Gibbens, N.J.; Baker, S.T.

    2016-01-01

    Many individual monitoring services (IMSs) have long experience in delivering high-quality dosimetry, and many follow rigorous quality assurance (QA) procedures. Typically, these procedures have been developed through experience and are highly effective in maintaining high-quality dose measurements. However, it is not always clear how the range of QA procedures normally followed by IMSs maps on to the various requirements of ISO 17025. The Personal Dosimetry Service of Public Health England has interpreted its QA procedures both in operating existing services and in developing a new one. (authors)

  3. The Neutron Personal Dosimetry Service of the Centre for Radiation, Chemical and Environmental Hazards, PHE-UK; Servicio de Dosimetría Personal Neutrónica del Centro para Emergencias Radiológicas, Químicas y Medioambientales, PHE-UK

    Energy Technology Data Exchange (ETDEWEB)

    Campo Blanco, X.

    2015-07-01

    The Centre for Radiation, Chemical and Environmental Hazards (CRCEH), that belongs to Public Health England (PHE), hosts the official Neutron Personal Dosimetry Service of the United Kingdom. They use etched-track detectors, made of a material called PADC (poly-allyl diglycol carbonate), to determinate de neutron personal dose. A two weeks visit has been made to this center, in order to learn about the facilities, the methods employed and the legislative framework of the Neutron Personal Dosimetry Service. In this work the main results of this visits are shown, which are interesting for the future development of an official neutron personal dosimetry service in Spain.

  4. ALGORITHM VERIFICATION FOR A TLD PERSONAL DOSIMETRY SYSTEM

    International Nuclear Information System (INIS)

    SHAHEIN, A.; SOLIMAN, H.A.; MAGHRABY, A.

    2008-01-01

    Dose algorithms are used in thermoluminescence personnel dosimetry for the interpretation of the dosimeter response in terms of equivalent dose. In the present study, an automated Harshaw 6600 reader was vigorously tested prior to the use for dose calculation algorithm according to the standard established by the US Department of Energy Laboratory Accreditation Program (DOELAP). Also, manual Harshaw 4500 reader was used along with the ICRU slab phantom and the RANDO phantom in experimentally determining the photon personal doses in terms of deep dose; Hp(10), shallow dose; Hp(0.07), and eye lens dose; Hp(3). Also, a Monte Carlo simulation program (VMC-dc) free code was used to simulate RANDO phantom irradiation process. The accuracy of the automated system lies well within DOELAP tolerance limits in all test categories

  5. Internal dosimetry technical basis manual

    International Nuclear Information System (INIS)

    1990-01-01

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs

  6. Internal dosimetry technical basis manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  7. Occupational dosimetry commissioning of a PET-CT: learning curve and staff participation

    International Nuclear Information System (INIS)

    Sierra Diaz, F.; Hurtado Sanchez, A.; Gomez Cortes, M. S.; Gonzalez Ruiz, C.; Gago Gomez, P.; Ruiz Galan, G.; Lopez Bote, M. A.

    2011-01-01

    The Nuclear Medicine Department, Hospital General Universitario Gregorio Maranon has been in clinical use PET-CT equipment at the end of 2009. The Dosimetry and Radiation Protection Service has been conducting surveillance at the facility and individual environmental dosimetry. Following the obligations contained in the performance specifications of the authorization granted by the Nuclear Safety Council (CSN), during the first year of the PET-CT has been tracking personal dosimetry of the professionals involved. As a novelty, had to take the ring dosimetry to control the dose equivalent in the hands instead of the normal wrist.

  8. Database to manage personal dosimetry Hospital Universitario de La Ribera

    International Nuclear Information System (INIS)

    Melchor, M.; Martinez, D.; Asensio, M.; Candela, F.; Camara, A.

    2011-01-01

    For the management of professionally exposed personnel dosimetry, da La are required for the use and return of dosimeters. in the Department of Radio Physics and Radiation Protection have designed and implemented a database management staff dosimetry Hospital and Area Health Centers. The specific objectives were easily import data from the National Center dosimetric dosimetry, consulting records in a simple dosimetry, dosimeters allow rotary handle, and also get reports from different periods of time to know the return data for users, services, etc.

  9. Retrospective dosimetry with alumina substrate from electronic components

    International Nuclear Information System (INIS)

    Ekendahl, D.; Judas, L.

    2012-01-01

    Alumina substrate can be found in electronic components used in portable electronic devices. The material is radiation sensitive and can be applied in dosimetry using thermally or optically stimulated luminescence. Electronic portable devices such as mobile phones, USB flash discs, mp3 players, etc., which are worn close to the body, can represent personal dosemeters for members of the general public in situations of large-scale radiation accidents or malevolent acts with radioactive materials. This study investigated dosimetric properties of alumina substrates and aspects of using mobile phones as personal dosemeters. The alumina substrates exhibited favourable dosimetry characteristics. However, anomalous fading had to be properly corrected in order to achieve sufficient precision in dose estimate. Trial dose reconstruction performed by means of two mobile phones proved that mobile phones can be used for reconstruction of personal doses. (authors)

  10. Effective dose to staff from interventional procedures: Estimations from single and double dosimetry

    International Nuclear Information System (INIS)

    Kuipers, G.; Velders, X. L.

    2009-01-01

    The exposure of 11 physicians performing interventional procedures was measured by means of two personal dosemeters. One personal dosemeter was worn outside the lead apron and an additional under the lead apron. The study was set up in order to determine the added value of a dosemeter worn under the lead apron. With the doses measured, the effective doses of the physicians were estimated using an algorithm for single dosimetry and two algorithms for double dosimetry. The effective doses calculated with the single dosimetry algorithm ranged from 0.11 to 0.85 mSv in 4 weeks. With the double dosimetry algorithms, the effective doses ranged from 0.02 mSv to 0.47 mSv. The statistical analysis revealed no significant differences in the accuracy of the effective doses calculated with single or double dosimetry algorithms. It was concluded that the effective dose cannot be considered a more accurate estimate when two dosemeters are used instead of one. (authors)

  11. BeOSL system for personal dosimetry : dosimetric characteristics and practical application; Sistema BeOSL para dosimetria personal : caracteristicas dosimetricas y la aplicacion practica

    Energy Technology Data Exchange (ETDEWEB)

    Mende, E. [Helmholtz Zentrum Munchen, German Research Center for Environmental Health, Working Group Engineering, D-85764 Neuherberg (Germany)

    2015-10-15

    Full text: BeOSL system of Dosimetric s is very easy to use, assimilate and maintain. Our dosimeter defines a milestone in the supervision of personal equivalent dose of Hp (10) and Hp (0.07) it covers the range of total energy of 16 KeV to 10 MeV. For this energy range is exceptional in its energy dependence for official personal dosimetry. The BeOSL system consists of two modules, one of them is the BeOSL reader that measures the radiation exposure using the latest technology, optically stimulated luminescence (OSL). The reading is extremely fast; it does not require consumables such as nitrogen or other. The detector material is beryllium oxide (Be O); this is an OSL material tissue equivalent and therefore is ideal for personal dosimetry. The BeOSL technology allows multiple readings of the dosimeter (re-read) to verify the dose or archive the dosimeter. One of the biggest advantages of BeOSL system is its modular concept allows the system to run as a manual solution or as a complete automated robotic system, which can be filled with up to 5,000 dosimeters as bulk cargo. (Author)

  12. Some practical and theoretical considerations of personal alpha-particle dosimetry. Joint panel on occupational and environmental research for uranium production in Canada (JP-2)

    Energy Technology Data Exchange (ETDEWEB)

    Bigu, J [Department of Energy, Mines and Resources, Elliot Lake, ON (Canada). Elliot Lake Lab.; Duport, P [Atomic Energy Control Board, Ottawa, ON (Canada)

    1990-12-31

    The status of personal {alpha}-particle dosimetry in the uranium industry is presented. A brief description of personal dosimeters and prototypes is followed by some theoretical considerations regarding their practical use under steady-state and time-dependent field conditions. It is suggested that, at present, more effort should be placed on the evaluation of dosimeters than in the development of new ones. Also, more information should be gathered from countries which use personal {alpha}-particle dosimeters routinely. Furthermore, emphasis is recommended on comparison of personal dosimetry data with experimental data by area monitoring, using continuous monitoring systems, as well as with data by grab-sampling techniques. (author). 44 refs., 1 tab.

  13. Some practical and theoretical considerations of personal alpha-particle dosimetry. Joint panel on occupational and environmental research for uranium production in Canada (JP-2)

    International Nuclear Information System (INIS)

    Bigu, J.

    1989-01-01

    The status of personal α-particle dosimetry in the uranium industry is presented. A brief description of personal dosimeters and prototypes is followed by some theoretical considerations regarding their practical use under steady-state and time-dependent field conditions. It is suggested that, at present, more effort should be placed on the evaluation of dosimeters than in the development of new ones. Also, more information should be gathered from countries which use personal α-particle dosimeters routinely. Furthermore, emphasis is recommended on comparison of personal dosimetry data with experimental data by area monitoring, using continuous monitoring systems, as well as with data by grab-sampling techniques. (author). 44 refs., 1 tab

  14. Results of the dosimetry intercomparison

    International Nuclear Information System (INIS)

    Dure, Elsa S.

    2000-07-01

    The appropriate way to verify the accuracy of the results of dose reported by the laboratories that offer lend personal dosimetry service is in the periodic participation of round of intercomparison dosimetry, undertaken by laboratories whose standards are trace (Secondary Laboratory). The Laboratory of External Personal Dosimetry of the CNEA-PY has participated in three rounds of intercomparison. The first two were organized in the framework of the Model Project RLA/9/030 RADIOLOGICAL WASTE SECURITY, and the irradiations were carried out in the Laboratory of Regional Calibration of the Center of Nuclear Technology Development, Belo Horizonte-Brazil (1998) and in the National Laboratory of Metrology of the ionizing radiations of the Institute of Radioprotection and Dosimetry, Rio de Janeiro-Brazil (1999). The third was organized by the IAEA and the irradiations were made in the Physikalisch-Technische Bundesanstalt PTB, Braunschweig - Federal Republic of Germany (1999-2000) [es

  15. Research and innovation in radiation dosimetry

    International Nuclear Information System (INIS)

    Delgado, A.

    1999-01-01

    In this article some relevant lines of research in radiation dosimetry are presented. In some of them innovative approaches have been recently proposed in recent years. In others innovation is still to come as it is necessary in view of the insufficiency of the actual methods and techniques. mention is made to Thermoluminescence Dosimetry an to the improvement produced by new computational methods for the analysis of the usually complex TL signals. A solid state dosimetric technique recently proposed, Optically Stimulated Luminescence, OSL, is briefly presented. This technique promises advantages over TLD for personal and environmental dosimetry. The necessity of improving the measurement characteristics of neutron personal dosemeters is commented, making reference to some very recent developments. The situation of the dosimetry in connection with radiobiology research is overviewed, commenting the controversy on the adequacy and utility of the quality absorbed dose for these activities. Finally the special problematic of internal dosimetry is discussed. (Author) 25 refs

  16. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1998-01-01

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  17. Eurados trial performance test for personal dosemeters for external beta radiation

    DEFF Research Database (Denmark)

    Christensen, P.; Bordy, J.M.; Ambrosi, P.

    2001-01-01

    On the initiative of the European Dosimetry Group (EURADOS) action group 'Harmonisation and Dosimetric Quality Assurance in Individual Monitoring for External Radiation' a trial performance test for whole-body and extremity personal dosemeters broadly representative of those in use in the EU...... the results obtained from the exercise. In particular, based on the replies to a questionnaire issued to each participant, the results are analysed in relation to important design characteristics of the dosemeters taking part in the test....

  18. Establishing personal dosimetry procedure using optically stimulated luminescence dosimeters in photon and mixed photon-neutron radiation fields

    International Nuclear Information System (INIS)

    Le Ngoc Thiem; Bui Duc Ky; Trinh Van Giap; Nguyen Huu Quyet; Ho Quang Tuan; Vu Manh Khoi; Chu Vu Long

    2017-01-01

    According to Vietnamese Law on Atomic Energy, personal dosimetry (PD) for radiation workers is required periodically in order to fulfil the national legal requirements on occupational radiation dose management. Since the radiation applications have become popular in Vietnamese society, the thermal luminescence dosimeters (TLDs) have been used as passive dosimeters for occupational monitoring in the nation. Together with the quick increase in radiation applications and the number of personnel working in radiation fields, the Optically Stimulated Luminescence Dosimeters (OSLDs) have been first introduced since 2015. This work presents the establishment of PD measuring procedure using OSLDs which are used for measuring photons and betas known as Inlight model 2 OSL (OSLDs-p,e) and for measuring mixed radiations of neutrons, photons and betas known as Inlight LDR model 2 (OSLDs-n,p,e). Such following features of OSLDs are investigated: detection limit, energy response, linearity, reproducibility, angular dependency and fading with both types of OSLDs-p,e and OSLDs-n,p,e. The result of an intercomparison in PD using OSLDs is also presented in the work. The research work also indicates that OSL dosimetry can be an alternative method applied in PD and possibly become one of the most popular personal dosimetry method in the future. (author)

  19. Thermoluminescence in medical dosimetry

    International Nuclear Information System (INIS)

    Rivera, T.

    2011-10-01

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  20. Statistical results 1988-1990 of the Official Personal Dosimetry Service and data compilation 1980-1990

    International Nuclear Information System (INIS)

    Boerner, E.; Drexler, G.; Scheibe, D.; Schraube, H.

    1994-01-01

    The report consists of a summary of relevant statistical data in the official personal dosimetry in 1988-1990 for the Federal States of Bavaria, Hesse, Schleswig-Holstein, and since 1989, Baden-Wuerttemberg. The data are based on the survey of more than 8000 institutions with over 100000 occupational exposed persons and are derived from more than one million single measurements. The report covers informations on the institutions, on the persons as well as dosimetric values. The measuring method is described briefly with respect to dosimeters used, their range and the interpretation of values. Information on notional doses and the interpolation of values nearby the detection limits are given. (HP) [de

  1. Practice for characterization and performance of a high-dose radiation dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    2003-01-01

    This practice addresses the specific requirements for laboratories engaged in dosimetry calibrations involving ionizing radiation, namely, gamma-radiation, electron beams or X-radiation (bremsstrahlung) beams. It specifically describes the requirements for the characterization and performance criteria to be met by a high-dose radiation dosimetry calibration laboratory. The absorbed-dose range is typically between 10 and 10 5 Gy. This practice addresses criteria for laboratories seeking accreditation for performing high-dose dosimetry calibrations, and is a supplement to the general requirements described in ISO/IEC 17025. By meeting these criteria and those in ISO/IEC 17025, the laboratory may be accredited by a recognized accreditation organization. Adherence to these criteria will help to ensure high standards of performance and instill confidence regarding the competency of the accredited laboratory with respect to the services it offers

  2. Computerized dosimetry management systems within EDF

    International Nuclear Information System (INIS)

    Daubert, G.

    1996-01-01

    EDF, using the ALARA approach, has embarked an ambitious project of optimising the doses received in its power plants. In directing its choice of actions and the effectiveness of such actions, the French operator is using a computerized personal and collective dosimetry management system. This system provides for ongoing monitoring of dosimetry at personal, site and unit level or indeed for the entire population of EDF nuclear power plants. (author)

  3. The experience from operation of electronic personal dosimetry system at Dukovany, Temelin and Mochovce NPPs after repair of Siemens dosemeters eliminating false doses

    International Nuclear Information System (INIS)

    Malysak, J.; Kocvara, S.; Jurochova, B.; Zelenka, Z.; Schacherl, M.; Zrubec, M.; Kaiser, H.

    2003-01-01

    This presentation summarizes the operational experience of the Electronic Personal Dosimetry Systems installed at Dukovany, Temelin and Mochovce NPPs. The system consists of three basic parts: Electronic personal dosemeters (EPD); Physical layer (HW); Logical layer (SW). Number of false doses before and after correction is presented. This presentation has demonstrated the possibilities of SEOD system and the possibility of easy dose comparison between the individual NPPs after introducing this electronic dosimetry system. Basically, the results of film and electronic dosimetry systems are according to our findings nearly identical. Electronic dosemeter sensitivity to interfering electromagnetic fields is a problem which is easily re-movable. In addition, if we know this problem, these false doses in the SEOD system can be easily revealed (e.g. by investigation of histograms) and repaired

  4. Thermoluminescent dosimetry in veterinary diagnostic radiology

    International Nuclear Information System (INIS)

    Hernández-Ruiz, L.; Jimenez-Flores, Y.; Rivera-Montalvo, T.; Arias-Cisneros, L.; Méndez-Aguilar, R.E.; Uribe-Izquierdo, P.

    2012-01-01

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. - Highlights: ► Personnel dosimetry in laboratory veterinary diagnostic was determined. ► Student workplaces are safe against radiation. ► Efficiency value of apron lead was determined. ► X-ray beams distribution into veterinarian laboratory was measured.

  5. Statistics of official personal dosimetry and monitoring activities of the period 1994-1995

    International Nuclear Information System (INIS)

    Boerner, E.; Wittmann, A.; Wahl, W.

    1998-01-01

    The measuring laboratory of the GSF in Neuherberg is the largest of the six official supervisory laboratories in Germany. It distributes the officially approved personal dosemeters and is responsible for personal dosimetry monitoring of about 140,000 persons in the German federal states of Bavaria, Hesse, Schleswig-Holstein, and, since 1989, Baden-Wuerttmeberg. Dosemeter readouts are recorded here in a database together with personal data and data describing activities, so that the information collected can be used as a source of reference for establishing general surveys of occupational exposure to external irradiation with ionizing radiation. The report first describes the dosemeter designs and the methods applied by the GSF lab for quality assurance, then explains results of the statistical evaluation of the recent data from 1994-1995, and concludes with explaining tendencies shown by long-term curves of the collective and average annual doses recorded in the years from 1986 until 1995. (orig./CB) [de

  6. Statistical analysis of personal dosimetry of exposed workers

    International Nuclear Information System (INIS)

    Sanchez Munoz, F. J.; Alejo Luque, L.; Mas Munoz, I.; Serrada Hierro, A.

    2013-01-01

    The dosimetry centers accredited by the Nuclear Safety Council (CSN) normally report overcoming legal limits, or some fraction thereof, but do not provide comparative dosimetric criteria indicating if assigned to a given dose is large TPE or small relative to that of their peers. In order to help to resolve the difficulties mentioned ds, it has developed an application that statistically processes the dosimetric data provided by the National Dosimetry Center. (Author)

  7. Miniature semiconductor detectors for in vivo dosimetry

    International Nuclear Information System (INIS)

    Rosenfeld, A. B.; Cutajar, D.; Lerch, M. L. F.; Takacs, G.; Cornelius, I. M.; Yudelev, M.; Zaider, M.

    2006-01-01

    Silicon mini-semiconductor detectors are found in wide applications for in vivo personal dosimetry and dosimetry and Micro-dosimetry of different radiation oncology modalities. These applications are based on integral and spectroscopy modes of metal oxide semiconductor field effect transistor and silicon p-n junction detectors. The advantages and limitations of each are discussed. (authors)

  8. Thermoluminescence dosimetry of electronic components from personal objects

    International Nuclear Information System (INIS)

    Beerten, Koen; Woda, Clemens; Vanhavere, Filip

    2009-01-01

    Owing to the existence of ceramic materials inside common personal objects such as cellular phones and USB flash drives, these objects may be very useful in emergency (accident) dosimetry. Here we will present initial results regarding the dosimetric properties as determined by thermoluminescence (TL) from two alumina-rich electronic components from a USB flash drive. The TL method was applied in order to investigate the potential of conventional TL equipment for such purposes. For comparison, the optically stimulated luminescence (OSL) of the components was investigated as well. The studied components are ceramic resonators and alumina-based substrates from electrical resistors. The results show that various TL-related properties such as fading, optical stability and zero-dose response are different for the two investigated components. On the basis of these properties, the ceramic resonator was selected for dose recovery tests using TL and OSL. The given dose could reliably be determined using both methods, assuming that prompt measurement and/or fading correction is possible.

  9. Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms

    International Nuclear Information System (INIS)

    Papadimitroulas, P; Kagadis, G C; Ploussi, A; Kordolaimi, S; Papamichail, D; Karavasilis, E; Syrgiamiotis, V; Loudos, G

    2015-01-01

    The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ∼10 10 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition. (paper)

  10. Uncertainties in personal dosimetry for external radiation: A Monte Carlo approach

    International Nuclear Information System (INIS)

    Van Dijk, J. W. E.

    2006-01-01

    This paper explores the possibilities of numerical methods for uncertainty analysis of personal dosimetry systems. Using a numerical method based on Monte Carlo sampling the probability density function (PDF) of the dose measured using a personal dosemeter can be calculated using type-test measurements. From this PDF the combined standard uncertainty in the measurements with the dosemeter and the confidence interval can be calculated. The method calculates the output PDF directly from the PDFs of the inputs of the system such as the spectral distribution of the radiation and distributions of detector parameters like sensitivity and zero signal. The method can be used not only in its own right but also for validating other methods because it is not limited by restrictions that apply to using the Law of Propagation of Uncertainty and the Central Limit Theorem. The use of the method is demonstrated using the type-test data of the NRG-TLD. (authors)

  11. Electronic personal dosemeters

    International Nuclear Information System (INIS)

    Marshall, T.O.; Bartlett, D.T.; Burgess, P.H.; Cranston, C.S.; Higginbottom, D.J.; Sutton, K.W.

    1990-01-01

    Personal dosimetry services approved by their national authorities for category A workers, invariably use passive dosemeters incorporating photographic film or thermoluminescent detectors. However, the performance characteristics of electronic dosemeters has improved substantially over the past decade to such an extent that in the opening lecture of the Solid State Dosimetry Conference at Oxford in 1986 the development of an electronic 'smart card' based on a silicon detector was briefly discussed. This idea has been taken up and at least one development programme is in progress aimed at the production of an electronic dosemeter suitable for use as a legal device. The more important performance requirements of personal dosemeters for this purpose are discussed and the earlier electronic dosemeter designs and the latest devices under development to meet this specification are compared. (author)

  12. The U.S. Department of Energy Laboratory Accreditation Program for testing the performance of extremity dosimetry systems: a summary of the program status

    International Nuclear Information System (INIS)

    Cummings, F.M.; Carlson, R.D.; Gesell, T.F.; Loesch, R.M.

    1992-01-01

    In 1986, The U.S. Department of Energy (DOE) implemented a program to test the performance of its personnel whole-body dosimetry systems. This program was the DOE Laboratory Accreditation Program (DOELAP). The program parallels the performance testing program specified in the American National Standard for Dosimetry - Personnel Dosimetry Performance -Criteria for Testing (ANSI N13.11-1983), but also addresses the additional dosimetry needs of DOE facilities. As an extension of the whole-body performance testing program, the DOE is now developing a program to test the performance of personnel extremity dosimetry systems. The draft DOE standard for testing extremity dosimetry systems is much less complex than the whole-body dosimetry standard and reflects the limitations imposed on extremity dosimetry by dosimeter design and irradiation geometry. A pilot performance test session has been conducted to evaluate the proposed performance-testing standard. (author)

  13. Advantages and disadvantages of luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olko, Pawel, E-mail: Pawel.Olko@ifj.edu.p [Institute of Nuclear Physics Polish Academy of Science (IFJ PAN), Krakow (Poland)

    2010-03-15

    Owing to their excellent dosimetric properties, luminescence detectors of ionizing radiation are now extensively applied in individual dosimetry services. The most frequently used personal dosemeters are based on Optically Stimulated Luminescence (OSL), radiophotoluminescence (RPL) or thermoluminescence (TL). Luminescence detectors have also found several applications in clinical dosimetry, especially around new radiation modalities in radiotherapy, such as Intensity Modulated Radiotherapy (IMRT) or ion beam radiotherapy. Requirements of luminescence detectors applied in individual and clinical dosimetry and some recent developments in luminescence of detectors and techniques leading to significant improvements of the functionality and accuracy of dosimetry systems are reviewed and discussed.

  14. Dosimetry service participation of CIEMAT in intercomparisons 2008-2010 for personal dosimeters EURADOS; Participacion del servicio de dosimetria del CIEMAT en las intercomparaciones EURADOS 2008-2010 para dosimetros personales

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jimenez, R.; Romero Gutierrez, A. M.; Lopez Moyano, J. L.

    2011-07-01

    Individual monitoring of workers exposed to ionizing radiation requires the use of personal dosimeters. EURADOS (European Radiation Dosimetry Group) recently organized three intercomparison exercises External Personal Dosimetry Services (EPDS): two for body dosimeters in 2008 and 2010 and one for extremity dosimeters in the year 2009.El paper shows and analyzes the results obtained by CIEMAT SDPE participation in all exercises.

  15. Dosimetry in nuclear power plants

    International Nuclear Information System (INIS)

    Lastra B, J. A.

    2008-12-01

    To control the occupationally exposed personnel dose working at the Laguna Verde nuclear power plant, two types of dosemeters are used, the thermoluminescent (TLD) which is processed monthly, and the direct reading dosemeter that is electronic and works as daily control of personal dose. In the case of the electronic dosemeters of direct reading conventional, the readings and dose automatic registers and the user identity to which he was assigned to each dosemeter was to carry out the restricted area exit. In activities where the ionizing radiation sources are not fully characterized, it is necessary to relocate the personal dosemeter or assigned auxiliary dosemeters (TLDs and electronics) to determine the dose received by the user to both whole body and in any specific area of it. In jobs more complicated are used a tele dosimetry system where the radiation protection technician can be monitoring the user dose to remote control, the data transmission is by radio. The dosimetry activities are documented in procedures that include dosemeter inventories realization, the equipment and dosemeters calibration, the dosimetry quality control and the discrepancies investigation between the direct reading and TLD systems. TLD dosimetry to have technical expertise in direct and indirect dosimetry and two technicians in TLD dosimetry; electronic dosimetry to have 4 calibration technicians. For the electronic dosemeters are based on a calibrator source of Cesium-137. TLD dosemeters to have an automatic radiator, an automatic reader which can read up to 100 TLD dosemeters per hour and a semiautomatic reader. To keep the equipment under a quality process was development a process of initial entry into service and carried out a periodic verification of the heating cycles. It also has a maintenance contract for the equipment directly with the manufacturer to ensure their proper functioning. The vision in perspective of the dosimetry services of Laguna Verde nuclear power plant

  16. NOTE FROM THE DOSIMETRY SERVICE

    CERN Multimedia

    2002-01-01

    During March, the Dosimetry Service will be opened from 8h30 to 12h in the morning and closed every afternoon.   We have established that many people, who are provided regularly with a personal dosimeter (film badge), have changed their activity and do not need it anymore, because they do not, or only exceptionally, enter controlled areas. If you are one of these persons, please contact the Personal Dosimeter Service (tel: 72155). There is a simplified procedure for obtaining a dosimeter if you have an immediate need for short-term visits in controlled areas. A reduction of the number of persons on the regular distribution list of dosimeters would decrease our and the distributors workload. It would also contribute to significant savings in the dosimetry, and thus CERN, budget. We thank you in advance for your understanding and for your collaboration.

  17. Parallel analysis of film and TLD application in personal dosimetry of medical staff during application of invasive radiological procedures

    International Nuclear Information System (INIS)

    Misovic, M.; Boskovic, Z.; Spasic-Jokic, V.

    1997-01-01

    Although both types of dosimeters showed similar results for mentioned category of health care workers we wished to emphasize some advantages in use of TLD and film dosemeters in personal dosimetry. The main advantageous of film for dosimetric purposes are that it can provide visual representation of the radiation field and they are cheap, but there are lot of disadvantages. Advantages of TLD are based on: possibility for re-use, practically for whole users working life, small dimensions suitable for results, high precision and specially wide dose range. They are sensitive on low dose, practically for ten times more than film is. Disadvantages of TLD are based on their previous thermal and radiation history and on the fact that information about dose disappears after reading procedure. Considering advantages and disadvantages of both types of dosemeters we decided to propose TLD for routine hospital practice in personal dosimetry. (author)

  18. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  19. Personal dosimetry TLD 100 in orthopedic surgeons exposed to ionizing radiation in Bogota - Colombia; Dosimetria personal TLD 110 en medicos ortopedistas expuestos a radiacion ionizante en Bogota - Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Sierra C, B. Y.; Jimenez, Y. [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Fisica Medica, Carrera 45 No. 26-85, Bogota (Colombia); Plazas, M. C. [Hospital Universitario Fundacion Santa Fe de Bogota, Instituto de Oncologia Carlos Ardila Lulle, Calle 119, No. 7-90, 220246 Bogota (Colombia); Eslava S, J. [Universidad Nacional de Colombia, Instituto de Investigaciones Clinicas, Grupo Equidad en Salud, Carrera 45 No. 26-85, Bogota (Colombia); Groot R, H., E-mail: brigith.sierra@gmail.com [Universidad de los Andes, Laboratorio de Genetica Humana, Carrera 1 No. 18A -12, Bogota (Colombia)

    2014-08-15

    Orthopedic surgeons should be considered as professionals occupationally exposed to ionizing radiation, for using C arc (fluoroscope) an equipment of X type radiation emission, during surgical procedures for imaging generation. Some health institutes, use of C arc under uncontrolled circumstances, such a lack of dosimetry control, incomplete or absence of personnel protective elements and protective measures, which in turn, lead to a high exposition to the personnel. Materials and methods. Study of double match cohort by age and gender, was conducted, in four health institutions of second and third level of attention in Bogota city. Personal dosimetry measurements with TLD-100 dosimetry crystals in both cohorts and environmental dosimetry in each of operation rooms used for orthopedic procedures, were carry out during six months of follow up. Dosimetry crystals were read in a Harshaw 4500 - Bicron equipment, in the Medical Physics Laboratory of National University of Colombia. Results. Dosimetry measurements are compatibles with those of occupationally exposed personnel 3.44 mSv/6 m CI 95% (1.66-3.99), even does not overpass ICRP recommendations, are higher as were expect at the beginning of the study. The median of effective accumulative dose in thorax is 3,4 mSv CI 95% (1,66-3,99), higher in comparison with neck value 2,7 mSv CI 95% (1,73-3,80) and hand dosimetry 1,42 mSv CI 95% (0,96-2,34). Conclusions: Orthopedic surgeons should be considered occupational exposed to ionizing radiation, who has to accomplish to the radiological protection measures, dosimetric follow up and maintenance of the used X ray equipment. It was confirm throughout this study that dosimetry shows higher levels as expected at the beginning of the study, compatible with occupationally exposed personnel. (Author)

  20. Variations of influence quantities in industrial irradiators and their effect on dosimetry performance

    International Nuclear Information System (INIS)

    Chu, R.D.H.

    1999-01-01

    Many environmental factors, including irradiation temperature, post-irradiation storage temperature, dose rate, relative humidity, oxygen content and the energy spectrum may affect the response of dosimetry systems used in industrial radiation processing. Although the effects of individual influence quantities have been extensively studied, the variations of these influence quantities in production irradiators and the complex relationships between the effects of different influence quantities make it difficult to assess the overall effect on the measurement uncertainty. In the development of new dosimetry systems it is important to know the effect of each influence quantity and developers of new dosimetry systems should perform studies over a wide range of irradiation conditions. Analysis parameters and manufacturing specifications should be chosen to minimize the effect of influence quantities in the environments where the dosimeters will be used. Because of possible relationships between different influence quantities, care must be taken to ensure that the response function determined in the calibration of the dosimetry system is applicable for the conditions in which the dosimeters will be used. Reference standard dosimetry systems which have been thoroughly studied and have known relationships between dose response and influence quantities should be used to verify the calibration of routine dosimetry systems under the actual conditions of use. Better understanding of the variations in influence quantities in industrial irradiators may be obtained by modeling or direct measurements and may provide improvements in the calibration of routine dosimetry system and reduction of the overall measurement uncertainty. (author)

  1. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    International Nuclear Information System (INIS)

    Antonio, Patricia L.; Caldas, Linda V.E.

    2011-01-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  2. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  3. Evaluation of the efficiency of different methods of personal dosimetry in vascular interventional radiology; Avaliação da eficiência de diferentes métodos de dosimetria pessoal em radiologia intervencionista vascular

    Energy Technology Data Exchange (ETDEWEB)

    Bacchim Neto, F.A., E-mail: fernando.bacchim@lnls.br [Laboratório Nacional de Luz Síncrotron (LNLS), Campinas-SP (Brazil). Centro Nacional de Pesquisa em Energia e Materiais; Alves, A.F.F.; Rosa, M.E.D. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Instituto de Biociências; Pina, D.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Departamento de Doenças Tropicais e Diagnóstico por Imagem

    2017-07-01

    Interventional Radiology - IR is the area of medicine that provides the largest occupational exposures. The dose values to which interventionists are exposed are difficult to standardize. The objective of the study is to perform a complete evaluation of occupational exposures and to determine the efficiency of different personal dosimetry methods used in IR. We evaluated the efficiencies of 6 different personal dosimetry methodologies used internationally to estimate the effective dose received by interventional professionals. And, based on this analysis, determine the characteristics of each methodology. One of the methods of personal dosimetry recommended by Brazilian legislation was the most conservative, overestimating, on average, the effective dose of professionals by up to 200%, reaching maximum values close to 400%. The most accurate method was that used in North America. This method did not overestimate the effective dose of the professionals more than a few percent and their standard deviation relative to the effective reference dose were the lowest. Based on these results, the choice of methodologies employing at least two dosimeters, one under and above protective aprons is recommended. In addition, in some situations where the dose in the hands may be high, additional dosimeters for this region are also recommended.

  4. Teledosimetry: Personal and Area Dosimetry Control in order to evaluate the risk in real time

    International Nuclear Information System (INIS)

    Galan Montenegro, P.; Macias Jaen, J.; Bodineau Gil, C.; Sanchez Hidalgo, M.

    2004-01-01

    Telemedicine is now an essential part of Health care and so, in addition to the scientific programme in the Carlos Haya Hospital in Malaga, Physics Department is involved into a process of change about the vision as a new Health Centre of XXI Century: Knowledge Hospital, by digital architecture and digitally integrated in its world. The Integrating the Health care Enterprise is the model used in order to get a big grade of relationship between medical images and information system. This change must be done in colaboration between some Departments of our centre, because it is a multidisciplinary task. It is understood that Teledosimetry can be considered as an important part of Telemedicine in the Radiological Protection field for workers and general public. In order to get this objective, the first step since 2000 it has been to prepare the internal hospital network with personal dosimetry information. From here workers in our hospital can obtain their dosimetry information data in more than 300 computers and since 2003, from home too. For access, each one of all have got an user identification and a password and so it can be guaranteed the privacy. We transform dose data reported by CND (Dosimetry National Center) in a big and visible database in PHP4 and Javascript format. This process is marked of problems about all due to the big manipulated information. Our intention is to make a better and friendly control, customisable and in real-time of the information dosimetry by a modular monitoring system of electronic dosimeters by the web. These radiation detectors would be located in representatives places. (Author)

  5. Teledosimetry: Personal and Area Dosimetry Control in order to evaluate the risk in real time

    Energy Technology Data Exchange (ETDEWEB)

    Galan Montenegro, P.; Macias Jaen, J.; Bodineau Gil, C.; Sanchez Hidalgo, M.

    2004-07-01

    Telemedicine is now an essential part of Health care and so, in addition to the scientific programme in the Carlos Haya Hospital in Malaga, Physics Department is involved into a process of change about the vision as a new Health Centre of XXI Century: Knowledge Hospital, by digital architecture and digitally integrated in its world. The Integrating the Health care Enterprise is the model used in order to get a big grade of relationship between medical images and information system. This change must be done in colaboration between some Departments of our centre, because it is a multidisciplinary task. It is understood that Teledosimetry can be considered as an important part of Telemedicine in the Radiological Protection field for workers and general public. In order to get this objective, the first step since 2000 it has been to prepare the internal hospital network with personal dosimetry information. From here workers in our hospital can obtain their dosimetry information data in more than 300 computers and since 2003, from home too. For access, each one of all have got an user identification and a password and so it can be guaranteed the privacy. We transform dose data reported by CND (Dosimetry National Center) in a big and visible database in PHP4 and Javascript format. This process is marked of problems about all due to the big manipulated information. Our intention is to make a better and friendly control, customisable and in real-time of the information dosimetry by a modular monitoring system of electronic dosimeters by the web. These radiation detectors would be located in representatives places. (Author)

  6. A study on the development of personal radiation dosimetry system based on the pulsed optically stimulated luminescence of α-Al2O3:C

    International Nuclear Information System (INIS)

    Lee, Sang Yoon

    2000-02-01

    High quality radiation dosimetry is for workers who rely upon personal dosimeters to record the amount of radiation to which they are exposed. Radiation physicists have been exploring thermoluminescence dosimeter (TLD) for personal monitoring since the mid 1960s, although, widespread use has only occurred in the last 20 years as automated analytical systems and high quality TLD crystals became commercially available. nowadays, multiple TLD (thermoluminescence dosimeter) chips with appropriate physical filters are generally used for measurements of the personal dose equivalent quantities, H p (d). Though the TLD offers several advantages not possessed by radiological film, it does not offer the some type of advantages as films: re-analysis of an exposure situation is prohibited because the analysis process clears all of the useful dosimetric traps and a record of the luminescence intensity in the form of a glow curve is all that is available after analysis. In addition, the high heating temperatures restrict packaging methods and prevent competitively priced thin films of TLD crystal powders. Optically stimulated luminescence (OSL) technology avoids many engineering limitations imposed by the high heating temperatures used for TLD technology. OSL crystalline powders can be dispersed in various plastics unable to withstand the TLD heating regimen. With uniform dispersion in the plastic, mass-manufacturing techniques can produce large quantities of identically performing detectors. The first proposal conducted by Markey et al. for applications and potentials of α-AI 2 O 3 :C for OSL dosimetry opened a new era for this phosphor. Pulsed and continuous wave OSL studies carried out on α-AI 2 O 3 :C have shown that the material seems to be the most promising for routine application of OSL for dosimetric purposes. The main objective of this study is to develop a multi-area personal OSL dosimetry system using α-AI 2 O 3 :C by taking advantage of its optical properties and

  7. Direct biological dosimetry in Chernobyl clear-up workers

    International Nuclear Information System (INIS)

    Maznik, N.A.; Vinnikov, V.A.; Rozdil'ski, S.I.

    1999-01-01

    Full text: In cases of large-scale radiological accidents like Chernobyl (1986) the estimation of somatic risk to exposed populations became a problem due to lack of direct physical dosimetry data. In such conditions the necessarily information can be obtained from biological dosimetry, firstly by chromosomal aberrations analysis in human peripheral blood lymphocytes. Conventional cytogenetic assay have been carried out in 130 persons recruited as clean-up workers ('liquidators') to the Chernobyl zone in 1986-87 yrs. Blood sampling was performed during 1 year post-irradiation, in 100 persons p to 0.5 year. The aberrations of choice for biological dosimetry were unstable chromosome exchanges (dicentrics and centric rings with accompanying acentric fragments). The dose calculations have been done using the linear term of the dose-response curve built with acute gamma-irradiation of blood in dose range up to 1 Gy. The distributions of biological doses were investigated in groups of liquidators with doses in documents ranging 17-140, 175-230, 250, 260-365, 440-1030 mSv and in the group of non-monitored persons. The weak correlation between monitored individual doses and biological doses was shown; the biological and physical dose distribution peculiarity in monitored groups is discussed. The distribution of individual aberration frequencies and the average yield of chromosomal exchanges in monitored and non-monitored liquidators were identical. The common cohort analysis (monitored and non-monitored persons) showed that the individual aberration yields distribution among liquidators was strictly randomised in accordance with Poissonian statistics. The cytogenetic dose estimations obtained can be of great value for somatic effects risk assessment in post-Chernobyl cohorts

  8. Personalized Monte Carlo dosimetry for the planning and evaluation of internal radiotherapy treatments: development and application to selective internal radiotherapy (SIRT)

    International Nuclear Information System (INIS)

    Petitguillaume, Alice

    2014-01-01

    Medical techniques in full expansion arousing high therapeutic expectations, targeted radionuclide therapies (TRT) consist of administering a radiopharmaceutical to selectively treat tumors. Nowadays, the activity injected to the patient is generally standardized. However, in order to establish robust dose-effect relationships and to optimize treatments while sparing healthy tissues at best, a personalized dosimetry must be performed, just like actual clinical practice in external beam radiotherapy. In that context, this PhD main objective was to develop, using the OEDIPE software, a methodology for personalized dosimetry based on direct Monte Carlo calculations. The developed method enables to calculate the tridimensional distribution of absorbed doses depending on the patient anatomy, defined from CT or MRI data, and on the patient-specific activity biodistribution, defined from SPECT or PET data. Radiobiological aspects, such as differences in radiosensitivities and repair time constants between tumoral and healthy tissues, have also been integrated through the linear-quadratic model. This methodology has been applied to the selective internal radiation therapy (SIRT) which consists in the injection of 90 Y-microspheres to selectively treat unresectable hepatic cancers. Distributions of absorbed doses and biologically effective doses (BED) along with the equivalent uniform biologically effective doses (EUD) to hepatic lesions have been calculated from 99m Tc-MAA activity distributions obtained during the evaluation step for 18 patients treated at Hopital Europeen Georges Pompidou. Those results have been compared to classical methods used in clinics and the interest of accurate and personalized dosimetry for treatment planning has been investigated. On the one hand, the possibility to increase the activity in a personalized way has been highlighted with the calculation of the maximal activity that could be injected to the patient while meeting tolerance criteria

  9. Intercomparison of dispersed radiation readings among film dosimetry, electronic and OSL with X-rays for low dose

    International Nuclear Information System (INIS)

    Andisco, D.; Blanco, S.; Bourel, V.; Schmidt, L.; Di Risio, C.

    2014-08-01

    One of the personal dosimetry methods more used for several decades is the dosimetry type film, characterized to possess readings with certain margin of trust. Today other methods exist that many times are presupposed more reliable due to the nature of the detection like the electronic dosimeters or the OSL (Optically Stimulated Luminescence) dosimetry. With the purpose of comparing different methods and to can determining the existent differences among each method has been carried out an intercomparison assay. The different dosimeters have been exposed to dispersed radiation generated by a Hemodynamics equipment of the type -arch in C- and a dispersing system of the primary beam. Film dosimeters have been used; OSL (In Light), OSL (Nano Dots) and Electronic with the purpose of knowing and to valorize the existent differences among its readings. Always, the intercomparison exercises have demonstrated to be an useful tool when establishing the measurement capacity and the quality of the results emitted by the laboratories of personal dosimetry services. Also, this type of assays allows obtaining quality indicators of the laboratory performance and they are habitual part of the procedures for accreditation of the same ones. The Optically Stimulated Luminescence is a technology that has grown in Argentina so much in the area of personal dosimetry as in dosimetry in vivo (radiotherapy area). In this intercomparison study, the answers corresponding to each technology were looked for oneself irradiation of the disperse type, that is to say, of very low energy. (Author)

  10. Quality control and quality assurance philosophy introduced in national personnel dosimetry service

    International Nuclear Information System (INIS)

    Trousil, J.; Zelenka, Z.; Kvasnicka, O.

    2008-01-01

    There in National Personnel Dosimetry Service (NPDS) the implementation of the control system to guarantee the credibility of the measured personal dose equivalents results was given on the basis of the international recommendations published by the European Commission and the IAEA and in particular of the decree of the SUJB No. 132/2008 Coll. The quality control and the quality assurance are carried out in all three personal dosimetry services introduced in NPDS: in the film badge, thermoluminescent (TL) and neutron dosimetry. (authors)

  11. Dosimetry of the patient and occupational in interventional procedures

    International Nuclear Information System (INIS)

    Andisco, D.; Bourel, V.; Schmidt, L.; Fernandez, N.

    2014-08-01

    The big necessity to estimate the entrance doses in skin that the patients receive when are exposed to interventional procedures and the personal dosimetry of the professionals that work in these procedures in operating room, has taken to the analysis of different possibilities that allow to carry out these estimates. The objective of this work was to analyze the possibility of using Optically Stimulated Luminescence dosimeters; comparing the results with ionizing cameras and electronic personal dosimeters. To carry out these estimates, we work with a X-ray equipment Phillips Allure, acrylic phantoms, a dosimetry system formed by ionization camera and dosimeter UNIDOS E, OSL (Nano dots) dosimeters and electronic lavalieres Aloka brand, PDM 117 models. To estimate the doses that the patients receive, entrance dose was measured in skin and in personal dosimetry inside places where the medical professionals are habitually located in different situations among 5 and 60 irradiation min. In the case of direct radiation, the OSL (Nano dots) present reliable readings and only were dispersed values for the measurements of secondary radiation. The measured values and the linking among them were also analyzed. The OSL (Nano dot) dosimetry behaves reliable way when is located in the ranges of more dose to 0,1 mGy, according to the maker indications and fundamentally for direct beams of the hemodynamics equipment being ideal for the measurement of entrance dose in skin. For the Nano dots use in personal dosimetry the results should be read carefully for values major to 0,1 mGy and being completely inappropriate for minor values. (Author)

  12. Analysis of Personal Dosimetry for Nuclear Medicine Staff in Ten-Year Period

    International Nuclear Information System (INIS)

    Poropat, M.; Dodig, D.; Ciglar, M.; Tezak, S.

    2011-01-01

    The aim of this study was to assess the value of personal dosimetry for nuclear medicine personnel in our department in a ten-year period. We have analyzed personal doses for 80 employees in nuclear medicine in a ten year period that we divided into two five year periods (from 2000 to 2004 and from 2005 to 2009). The personnel was dived into 8 groups according to their working assignments due to different radiation exposure from various radioisotopes in different wards in nuclear medicine: nuclear medicine specialists, technologists in scintigraphy ward, personnel of physics ward, ward for radiochemistry and radioimmunology, clinical ward and ultrasound ward, cleaning personnel, administrative personnel. We have compared average dose per person in particular ward in two five year periods. All doses for all personnel were in the permissible limits prescribed by the authorities. Higher average dose per person in a first five year period was detected in two wards, scintigraphy ward and ward for radiochemistry and radioimmunology due to the nature of their working assignments (preparation and application of radiopharmaceuticals, contact with patients who have received radiopharmaceutical). The decrease in the average dose per person was noticed in a second five-year period, especially in the wards with personnel that had no prior education in ionizing radiation protection. The decrease of dose was from 7.5 % to 84.2 %. We think that the decrease of average dose per person in a second five-year period was not only the result of the increased personal protection measures but also the result of continuing education of nuclear medicine personnel that is obligatory by the Law for ionizing radiation protection from year 1999, and the results from a ten-year period show its positive effect on radiation protection. (author)

  13. Personal dosimetry service of TECNATOM: measurement system and methodology of calibration

    International Nuclear Information System (INIS)

    Marchena, Paloma; Bravo, Borja

    2008-01-01

    Full text: The implementation of a new integrated and practical working tool called ALEDIN within the Personal Dosimetry Service (PDS) of TECNATOM, have harmonized the methodology for the counting acquisition, detector calibration and data analysis using a friendly Windows (registered mark) environment. The knowledge of this methodology, due to the fact that is the final product of a R and D project, will help the users and the Regulatory Body for a better understanding of the internal activity measurement in individuals, allowing a more precise error identification and correction, and improving the whole process of the internal dosimetry. The development and implementation of a new calibration system of the whole body counters using NaI (Tl) detectors and the utilization of a new humanoid anthropometric phantom, BOMAB type, with a uniform radioactive source distributions, allow a better energy and activity calibration for different counting geometries covering a wide range of gamma spectra from low energies, less than 100 keV to about 2000 keV for the high energies spectra. This new calibration methodology implied the development of an improved system for the determination of the isotopic activity. This new system has been integrated in a Windows (registered mark) environment, applicable for counting acquisition and data analysis in the whole body counters WBC in cross connection with the INDAC software, which allow the interpretation of the measured activity as committed effective dose following all the new ICRP recommendations and dosimetric models for internal dose and bioassay measurements. (author)

  14. Type tests performed on a personnel dosimetry system according to IEC 61066

    International Nuclear Information System (INIS)

    Castillo, Romel; Huamanlazo, Paula; Rojas, Enrique

    2015-01-01

    In this study, the verification of the Harshaw 6600 Plus TLD personal dosimetry system was made using the method of the IEC-61066 type tests and the recommendations of the ISO 4037 standards. For this purpose, five dosimeters were irradiated over a water phantom using an irradiator with a 137 Cs source; five dosimeters as control were also used. The evaluated parameters were homogeneity, detection limit, residual reading, linearity, reproducibility, droppings and temperature and humidity variations. The obtained results show that the Harshaw 6600 TLD dosimetric system fulfills the IEC 61066 criteria. (author)

  15. Personal Doses Recorded by Service of Personal Dosimetry

    International Nuclear Information System (INIS)

    Mihai, F.; Gheorghiu, A.; Stochioiu, A.; Udup, E.

    2009-01-01

    In this work we present occupational exposure statistics on: number of workers on different dose ranges; average of the mean annual doses (MAD) over the period 2000 - 2007 on all monitored workers as well as on those who have been received doses over the minimum detection limit (MDL). The statistic is made on different types of nuclear laboratories. The data are obtained on almost 1000 workers occupational exposure to different sources of radiations (gamma and X-ray) and monitored by Photo dosimetry Survey Unit, IFIN - HH. These results point out the evolution of the individual doses received during eight years and can be used to analyse the need of radiation protection in different nuclear facilities from Romania

  16. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  17. Biological dosimetry in cases gives occupational high exposition to ionizing radiations

    International Nuclear Information System (INIS)

    Ramalho, Adriana T.; Costa, Maria Lucia P.; Oliveira, Monica S.; Silva, Francisco Cesar A.

    1998-01-01

    From 1983 the cytogenetics dosimetry method it has been used as routine in the IRD laboratory in the period 1983 at 1997 but a high exposition occupational case the physical dosimeters happened in Brazil they were investigated through the cytogenetics dosimetry technique. This technique is employ when the dosimetry personal marks a high dose to 100 mSv (0,1 Gy) that is the cut-off minimum detected in the dosimetry cytogenetics

  18. Performance of dichromate dosimetry systems in calibration and dose intercomparison

    International Nuclear Information System (INIS)

    Bof, E.S.; Smolko, E.

    1999-01-01

    This report presents the results of the High Dose Dosimetry Laboratory of Argentina during ten years of international intercomparisons for high dose with the International Dose Assurance Service (IDAS) of the IAEA, using the standard high dose dichromate dosimetry system, and the results of a high dose intercomparison regional exercise in which our Laboratory acted as a reference laboratory, using the standard high dose and low dose dichromate dosimetry system. (author)

  19. Thermoluminescence in medical dosimetry; Termoluminiscencia en dosimetria medica

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2011-10-15

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  20. Uncertainties associated with the use of optically stimulated luminescence in personal dosimetry

    International Nuclear Information System (INIS)

    Benevides, L.; Romanyukha, A.; Hull, F.; Duffy, M.; Voss, S.; Moscovitch, M.

    2011-01-01

    This study investigates several sources of uncertainty associated with the application of optically stimulated luminescence (OSL) to personal dosimetry. A commercial OSL system based on Al 2 O 3 :C was used for this study. First, it is demonstrated that the concept of repeated evaluation (readout) of the same dosemeter, often referred to as 're-analysis', can introduce uncertainty in the re-estimated dose. This uncertainty is associated with the fact that the re-analysis process depletes some of the populated traps, resulting in a continuous decrease of the OSL signal with each repeated reading. Furthermore, the rate of depletion may be dose-dependent. Second, it is shown that the previously reported light-induced fading in this system is the result of light leaks through miniature openings in the dosemeter badge. (authors)

  1. Semiconductor dosimetry system for gamma and neutron radiation

    International Nuclear Information System (INIS)

    Savic, Z.; Pavlovic, Z.

    1995-01-01

    The semiconductor dosimetry system for gamma and neutron radiation based on pMOS transistor and PIN diode is described. It is intended for tactical or accidental personal dosimetry. The production steps are given. The temperature, dose and time (fading) response are reported. Hardware and software requirements which are needed for obtaining the desired measurement error are pointed. (author)

  2. A solution for neutron personal dosimetry in the absence of workplace spectrometry

    International Nuclear Information System (INIS)

    Hajek, M.; Cruz Suarez, R.

    2016-01-01

    In view of the widely varying energy spectra encountered in practical situations, accuracy of neutron dose assessment requires detailed knowledge of detector responses and workplace conditions to achieve an adequate level of protection. If the neutron spectrum should be a priori unknown and no measurement of the workplace spectrum is available, the 'Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes' published in the International Atomic Energy Agency Technical Report Series offers a broad range of reference spectra that may be appropriate for many applications. The proposed approach applies a correction factor based on the ratio of 'personal dose equivalent indices' for a particular workplace spectrum and a reference field used for calibration of the dosemeter response. Amendments in the definition of operational quantities as well as introduction of new modalities that, for example, may be expected to give increased importance to high-energy neutrons necessitate frequent revision of the Compendium. Results from the European Radiation Dosimetry Group Intercomparison 2012 for neutron personal dosemeters provide evidence that workplace fields are insufficiently reflected. This is proposed to be considered as an improvement opportunity. (authors)

  3. Pilot test of ANSI draft standard N13.29 environmental dosimetry -- Performance criteria for testing

    International Nuclear Information System (INIS)

    Klemic, G.; Shebell, P.; Monetti, M.; Raccah, F.; Sengupta, S.

    1998-09-01

    American National Standards Institute Draft N13.29 describes performance tests for environmental radiation dosimetry providers. If approved it would be the first step toward applying the types of performance testing now required in personnel dosimetry to environmental radiation monitoring. The objective of this study was to pilot test the draft standard, before it undergoes final balloting, on a small group of dosimetry providers that were selected to provide a mix of facility types, thermoluminescent dosimeter designs and monitoring program applications. The first phase of the pilot test involved exposing dosimeters to laboratory photon, beta, and x-ray sources at routine and accident dose levels. In the second phase, dosimeters were subjected to ninety days of simulated environmental conditions in an environmental chamber that cycled through extremes of temperature and humidity. Two out of seven participants passed all categories of the laboratory testing phase, and all seven passed the environmental test phase. While some relatively minor deficiencies were uncovered in the course of the pilot test, the results show that draft N13.29 describes useful tests that could be appropriate for environmental dosimetry providers. An appendix to this report contains recommendations that should be addressed by the N13.29 working group before draft N13.29 is submitted for balloting

  4. Performance comparisons of selected personnel-dosimetry systems in use at Department of Energy facilities

    International Nuclear Information System (INIS)

    Roberson, P.L; Holbrook, K.L.; Yoder, R.C.; Fox, R.A.; Hadley, R.T.; Hogan, B.T.; Hooker, C.D.

    1983-10-01

    Dosimeter performance data were collected to help develop a uniform approach to the calibration and use of personnel dosimetry systems for Department of Energy (DOE) laboratories. Eleven DOE laboratories participated in six months of testing using the American National Draft Standard, Criteria for Testing Personnel Dosimetry Performance, ANSI N13.11, and additional testing categories. The tests described in ANSI N13.11 used a pass/fail system to determine compliance with the draft standard. Recalculation to PNL irradiations showed that the 137 Cs, 90 Sr/ 90 Y, and 252 Cf categories can be recalibrated to have acceptable performance for nearly all participant systems. Deficient dosimeter design or handling techniques caused poor performance in the x-ray category for nearly half of the participants. Too little filtration for the deep-dose element caused poor performance in the beta/photon mixture category for one participant. Two participants had excessively high standard deviations in the neutron category due to dosimeter design or handling deficiencies. The participating dosimetry systems were separated into three categories on their dose evaluation procedure for low-energy photons. These were film dosimeters, fixed-calibration thermoluminescent (TL) dosimeters, and variable-calibration TL dosimeters. The performance of the variable-calibration design was best while the film dosimeters performed considerably worse than either TL dosimeter design. Beta energy dependence studies confirmed a strong correlation between sensitive element thickness, shallow element filtration and low-energy beta response. Studies of neutron calibration conditions for each participant suggested a relationship between response and calibration facility design

  5. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry II: dosimetric performance

    Science.gov (United States)

    Ramm, Daniel

    2018-02-01

    New clinical radiotherapy dosimetry systems need comprehensive demonstration of measurement quality. Practicality and reliability are other important aspects for clinical dosimeters. In this work the performance of an optical CT scanner for true 3D dosimetry is assessed using a radiochromic gel dosimeter. The fluid-less scanner utilised dual lasers to avoid the necessity for pre-irradiation scans and give greater robustness of image quality, enhancing practicality. Calibration methods using both cuvettes and reconstructed volumes were developed. Dosimetric accuracy was similar for dual and single wavelength measurements, except that cuvette calibration reliability was reduced for dual wavelength without pre-irradiation scanning. Detailed performance parameters were specified for the dosimetry system indicating the suitability for clinical use. The most significant limitations of the system were due to the gel dosimeter rather than the optical CT scanner. Quality assurance guidelines were developed to maintain dosimetry system performance in routine use.

  6. Accuracy and precision in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Marshall, T.O.

    1984-01-01

    The question of accuracy and precision in thermoluminescent dosimetry, particularly in relation to lithium fluoride phosphor, is discussed. The more important sources of error, including those due to the detectors, the reader, annealing and dosemeter design, are identified and methods of reducing their effects on accuracy and precision to a minimum are given. Finally, the accuracy and precision achievable for three quite different applications are discussed, namely, for personal dosimetry, environmental monitoring and for the measurement of photon dose distributions in phantoms. (U.K.)

  7. An experience in the management of personal dosimetry and Information and Communication Technologies; Una experiencia en la gestión de la dosimetría personal y las Tecnologías de la Información y las Comunicaciones

    Energy Technology Data Exchange (ETDEWEB)

    Galán Montenegro, P.; Sánchez Hidalgo, M.; Bodineau, C.; Oliveros Fernández, B.

    2015-07-01

    One of the most frequently issues raised within the management of hospital personnel dosimetry service is the high incidence of the rate evidencing the lack of dosimeter badges replacement in personnel dosimetry on monthly basis. In this respect and following the enforcement of the dispositions ordered by the CSN (Spanish Nuclear Safety Council as Regulatory Agency) concerning the assignment of “administrative dose”, such rate turns currently into a high number of these doses assigned, thus leading to an inefficient monitoring of the personnel dosimetry. In order to achieve a more suitable dosimetry monitoring it is required a more direct and tailored management of personnel dosimetry in every occupationally exposed workers as well as providing with personal and fluent information. The total number of occupationally exposed workers and the diversity and geographical dispersion of the centers under dosimetry monitoring make impossible a customized management without involving substantial resources. With the aim of achieving a more tailored management in an scenario as the one described above as well as reducing the lack of replacement of dosimeter badges in personnel dosimetry on monthly basis and the administrative doses assigned, some measures were implemented in 2009 by applying Communications and Information Technology platforms and further employees management giving as a result a 75% reduction in the rate of non replacement of dosimeter badges in personnel dosimetry. [Spanish] Una de las cuestiones habitualmente planteada en la gestión de la dosimetría personal hospitalaria es la alta incidencia en la tasa de no recambio mensual de los dosímetros personales y desde la aplicación de la instrucción del Consejo de Seguridad Nuclear (CSN) sobre la asignación de la dosis administrativa, esto supone en la actualidad un alto número de las mencionadas asignaciones; lo que conlleva un deficiente control de la dosimetría personal. Para un mejor control dosim

  8. The reliability of the systems of personal dosimetry

    International Nuclear Information System (INIS)

    Gullberg, O.; Lindborg, L.

    1982-01-01

    The dosimeters of companies and institutions have been irradiated at various energy and dose equivalent levels. Systematic and coincident errors in measurement are presented. The results show that relatively large systematic errors can be made by both the thermoluminescent and film systems. Various techniques to judging the quality of the dosimetry are discussed. (G.B.)

  9. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  10. Whole-body biodistribution, dosimetry and metabolite correction of [11C]palmitate: A PET tracer for imaging of fatty acid metabolism

    DEFF Research Database (Denmark)

    Christensen, Nana Louise; Jakobsen, Steen; Schacht, Anna Christina

    2017-01-01

    INTRODUCTION: Despite the decades long use of [11C]palmitate positron emission tomography (PET)/computed tomography in basic metabolism studies, only personal communications regarding dosimetry and biodistribution data have been published. METHODS: Dosimetry and biodistribution studies were...... performed in 2 pigs and 2 healthy volunteers by whole-body [11C]palmitate PET scans. Metabolite studies were performed in 40 participants (healthy and with type 2 diabetes) under basal and hyperinsulinemic conditions. Metabolites were estimated using 2 approaches and subsequently compared: Indirect [11C]CO2...

  11. Calibration of individual dosemeters by using external beams of photon radiation. A nationwide survey among Personal Dosimetry Services, authorized by CSN

    International Nuclear Information System (INIS)

    Brosed, A.; Ginjaume, M.

    1995-12-01

    A nationwide survey in 1995 among Personal Dosimetry Services, authorized by the Spanish Nuclear Safety Council (CSN), has led the Spanish Dosimetry Laboratories to review and update the dosimetric conversion coefficients and correction factors in use in Spain since 1987. The recommendations of the ICRU Report 47(1992) are discussed and adopted. In addition differences in back-scattering form IRCU tissue and PMMA phantoms are analysed. Analytical functions used to calculate conversion coefficients and back-scattering correction factors due to the use of different phantom materials are presented, together with the adopted final values. Firstly, the above mentioned parameters are applied to ISO narrow spectra series, which are discribed in this report. Secondly, differences between 1995 and 1987 values are also shown. (Author)

  12. Statistical analysis of personal dosimetry of exposed workers; Analisis estadistico de la dosimetria personal de trabajadores expuestos

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Munoz, F. J.; Alejo Luque, L.; Mas Munoz, I.; Serrada Hierro, A.

    2013-07-01

    The dosimetry centers accredited by the Nuclear Safety Council (CSN) normally report overcoming legal limits, or some fraction thereof, but do not provide comparative dosimetric criteria indicating if assigned to a given dose is large TPE or small relative to that of their peers. In order to help to resolve the difficulties mentioned ds, it has developed an application that statistically processes the dosimetric data provided by the National Dosimetry Center. (Author)

  13. Quality assurance of the treatments performed with a linear accelerator by means of in vivo dosimetry

    International Nuclear Information System (INIS)

    Jornet, N.; Ribas, M.; Eudaldo, T.; Carrasco, P.

    2001-01-01

    In vivo dosimetry by means of diode detectors has been used routinely in our hospital since 1996 to guarantee the dose administrated to patients undergoing a radiotherapy treatment. The aim of this work is to present how in vivo dosimetry was implemented in our centre and which kind of errors have been discovered and corrected. Before the implementation it has to be clear which kind of errors want to be traced, the tolerance and action level, who will perform the measurements and who will evaluate them. Once all these things are clear, the first thing to do is to choose the more appropriate type of diodes and to calibrate them. The lower the tolerance level, the more accurate the calibration has to be. At this point the training and motivation of people who will be involved is very important to succeed in implementing routine use of in vivo dosimetry. Choosing one treatment unit and one easy and frequent treatment technique is a good way of starting implementation. We started with prostate treatments. In vivo entrance and exit doses were measured and dose to the ICRU point was calculated. Nowadays in vivo dosimetry is performed in the second session of all treatments (X-rays and electrons). (author)

  14. Biological dosimetry of irradiation accidents

    International Nuclear Information System (INIS)

    Durand, V.; Chambrette, V.; Le Roy, A.; Paillole, N.; Sorokine, I.; Voisin, P.

    1994-01-01

    The biological dosimetry in radiation protection allows to evaluate the received dose by a potentially irradiated person from biological markers such chromosomal abnormalities. The technologies of Hybridization In Situ by Fluorescence (F.I.S.H) allow the detection of steady chromosomal aberrations of translocation type

  15. JENDL Dosimetry File

    International Nuclear Information System (INIS)

    Nakazawa, Masaharu; Iguchi, Tetsuo; Kobayashi, Katsuhei; Iwasaki, Shin; Sakurai, Kiyoshi; Ikeda, Yujiro; Nakagawa, Tsuneo.

    1992-03-01

    The JENDL Dosimetry File based on JENDL-3 was compiled and integral tests of cross section data were performed by the Dosimetry Integral Test Working Group of the Japanese Nuclear Data Committee. Data stored in the JENDL Dosimetry File are the cross sections and their covariance data for 61 reactions. The cross sections were mainly taken from JENDL-3 and the covariances from IRDF-85. For some reactions, data were adopted from other evaluated data files. The data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-5 format. In order to confirm reliability of the data, several integral tests were carried out; comparison with the data in IRDF-85 and average cross sections measured in fission neutron fields, fast reactor spectra, DT neutron fields and Li(d, n) neutron fields. As a result, it has been found that the JENDL Dosimetry File gives better results than IRDF-85 but there are some problems to be improved in future. The contents of the JENDL Dosimetry File and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form. (author) 76 refs

  16. JENDL Dosimetry File

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Masaharu; Iguchi, Tetsuo [Tokyo Univ. (Japan). Faculty of Engineering; Kobayashi, Katsuhei [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Iwasaki, Shin [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Sakurai, Kiyoshi; Ikeda, Yujior; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1992-03-15

    The JENDL Dosimetry File based on JENDL-3 was compiled and integral tests of cross section data were performed by the Dosimetry Integral Test Working Group of the Japanese Nuclear Data Committee. Data stored in the JENDL Dosimetry File are the cross sections and their covariance data for 61 reactions. The cross sections were mainly taken from JENDL-3 and the covariances from IRDF-85. For some reactions, data were adopted from other evaluated data files. The data are given in the neutron energy region below 20 MeV in both of point-wise and group-wise files in the ENDF-5 format. In order to confirm reliability of the data, several integral tests were carried out; comparison with the data in IRDF-85 and average cross sections measured in fission neutron fields, fast reactor spectra, DT neutron fields and Li(d,n) neutron fields. As a result, it has been found that the JENDL Dosimetry File gives better results than IRDF-85 but there are some problems to be improved in future. The contents of the JENDL Dosimetry File and the results of the integral tests are described in this report. All of the dosimetry cross sections are shown in a graphical form.

  17. Computational methods in several fields of radiation dosimetry

    International Nuclear Information System (INIS)

    Paretzke, Herwig G.

    2010-01-01

    Full text: Radiation dosimetry has to cope with a wide spectrum of applications and requirements in time and size. The ubiquitous presence of various radiation fields or radionuclides in the human home, working, urban or agricultural environment can lead to various dosimetric tasks starting from radioecology, retrospective and predictive dosimetry, personal dosimetry, up to measurements of radionuclide concentrations in environmental and food product and, finally in persons and their excreta. In all these fields measurements and computational models for the interpretation or understanding of observations are employed explicitly or implicitly. In this lecture some examples of own computational models will be given from the various dosimetric fields, including a) Radioecology (e.g. with the code systems based on ECOSYS, which was developed far before the Chernobyl reactor accident, and tested thoroughly afterwards), b) Internal dosimetry (improved metabolism models based on our own data), c) External dosimetry (with the new ICRU-ICRP-Voxelphantom developed by our lab), d) Radiation therapy (with GEANT IV as applied to mixed reactor radiation incident on individualized voxel phantoms), e) Some aspects of nanodosimetric track structure computations (not dealt with in the other presentation of this author). Finally, some general remarks will be made on the high explicit or implicit importance of computational models in radiation protection and other research field dealing with large systems, as well as on good scientific practices which should generally be followed when developing and applying such computational models

  18. Development of new methodology for dose calculation in photographic dosimetry

    International Nuclear Information System (INIS)

    Daltro, T.F.L.; Campos, L.L.; Perez, H.E.B.

    1996-01-01

    The personal dosemeter system of IPEN is based on film dosimetry. Personal doses at IPEN are mainly due to X or gamma radiation. The use of personal photographic dosemeters involves two steps: firstly, data acquisition including their evaluation with respect to the calibration quantity and secondly, the interpretation of the data in terms of effective dose. The effective dose was calculated using artificial intelligence techniques by means of neural network. The learning of the neural network was performed by taking the readings of optical density as a function of incident energy and exposure from the calibration curve. The obtained output in the daily grind is the mean effective energy and the effective dose. (author)

  19. UK guidance on the management of personal dosimetry systems for healthcare staff working at multiple organizations.

    Science.gov (United States)

    Rogers, Andy; Chapple, Claire-Louise; Murray, Maria; Platton, David; Saunderson, John

    2017-11-01

    There has been concern expressed by the UK regulator, the Health & Safety Executive, regarding the management of occupation dose for healthcare radiation workers who work across multiple organizations. In response to this concern, the British Institute of Radiology led a working group of relevant professional bodies to develop guidance in this area. The guidance addresses issues of general system management that would apply to all personal dosimetry systems, regardless of whether or not the workers within that system work across organizational boundaries, along with exploring efficient strategies to comply with legislation where those workers do indeed work across organizational boundaries. For those specific instances, the guidance discusses both system requirements to enable organizations to co-operate (Ionising Radiation Regulations 1999 Regulation 15), as well as specific instances of staff exposure. This is broken down into three categories-low, medium and high risk. A suggested approach to each is given to guide employers and their radiation advisers in adopting sensible strategies for the monitoring of their staff and the subsequent sharing of dosimetry data to ensure overall compliance with both dose limits and optimization requirements.

  20. Performance of thermoluminescent materials for high dose dosimetry

    International Nuclear Information System (INIS)

    Texeira, Maria I.; Cecatti, Sonia G.P.; Caldas, Linda V.E.

    2008-01-01

    Cases involving high-doses of ionizing radiation are becoming increasingly common.The objective of this work was to characterize thermoluminescent materials for the dosimetry of workers exposed to high doses. Samples of TLD-200, TLD-400 and TLD-800 pellets from Thermo Electron Corporation were studied in gamma high-doses. Dose-response curves were obtained for doses between 100 mGy and 100 Gy. The reproducibility, the lower detection limits and dose-response curves were obtained for all three materials. The different kinds of detectors show usefulness for dosimetry of workers exposed accidentally to high doses. (author)

  1. Dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Desrosiers, M.F.

    1995-01-01

    Dosimetry serves important functions in radiation processing, where large absorbed doses and dose rates from photon and electron sources have to be measured with reasonable accuracy. Proven dosimetry systems are widely used to perform radiation measurements in development of new processes, validation, qualification and verification (quality control) of established processes and archival documentation of day-to-day and plant-to-plant processing uniformity. Proper calibration and traceability of routine dosimetry systems to standards are crucial to the success of many large-volume radiation processes. Recent innovations and advances in performance of systems that enhance radiation measurement assurance and process diagnostics include dose-mapping media (new radiochromic film and solutions), optical waveguide systems for food irradiation, solid-state devices for real-time and passive dosimetry over wide dose-rate and dose ranges, and improved analytical instruments and data acquisition. (author)

  2. Tenth DOE workshop on personnel neutron dosimetry

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of this workshop is to promote the international exchange of information on neutron dosimetry. The development of an accurate real-time dosemeter is an immediate need which must be met. Assessment of the neutron dose equivalent at low doses with a reasonable degree of accuracy must be accomplished to provide validity to exposure records. These and other aspects of personal neutron dosimetry are discussed. Separate abstracts have been prepared for each paper for inclusion in the Energy Data Base

  3. Nuclear accident dosimetry measurements at third IAEA intercomparison Vinca, Yugoslavia, May 1973

    International Nuclear Information System (INIS)

    Palfalvi, J.; Makra, S.

    1974-09-01

    Nuclear accident dosimeters from several countries were compared in Vinca, Yugoslavia at an IAEA meeting. The Hungarian Central Research Institute for Physics team performed measurements for the dosimetry of a heavy water assembly which has an escape spectrum significantly differing from the escape spectra of the fast reactors used in previous intercomparisons or from the light water systems used in the Institute. Another problem investigated was the influence of minor spectral differences on the dose determined by activation measurement and spectrum fitting. The importance of sophisticated spectrum calculations was proved. The Vinca irradiations were used for the calibration of the albedo dosimeters of the institute, which are currently applied for personal dosimetry. (K.A.)

  4. Optically stimulated luminescence in electronic components for emergency dosimetry

    International Nuclear Information System (INIS)

    Geber-Bergstrand, T.; Bernhardsson, C.; Mattsson, S.; Raeaef, C.L.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Accidents and, luckily more rarely, attacks involving nuclear or radiological material do occur from time to time. A very possible consequence of an accident or attack of this kind is that nearby people might be exposed to ionising radiation. Since these types of exposure situations, unlike the ones occurring in medicine, are unplanned, there are no radiation-monitoring data available. For several reasons, it is nevertheless of value to find out the dose that these people have received. The first and most urgent reason is after-the-event triage, to be able to carry out proper medical treatments and also to focus the available medical assets to the persons needing it the most. This is where different retrospective dosimetry techniques, such as luminescence, can be employed. Various electronic components from mobile phones and other portable devices have been studied using optically stimulated luminescence for their potential use in retrospective dosimetry. Previous investigations have been performed in laboratory conditions and have showed very promising properties for emergency dosimetry. In this study, the more practical parts of using electronic components in retrospective dosimetry have been considered. In a triage situation, one of the key parameters to consider is time; thus, effort has been made to speed up the readout procedure, yet without the loss of too much accuracy. (authors)

  5. Exposure to mobile telecommunication networks assessed using personal dosimetry and well-being in children and adolescents: the German MobilEe-study.

    Science.gov (United States)

    Thomas, Silke; Kühnlein, Anja; Heinrich, Sabine; Praml, Georg; von Kries, Rüdiger; Radon, Katja

    2008-11-04

    Despite the increase of mobile phone use in the last decade and the growing concern whether mobile telecommunication networks adversely affect health and well-being, only few studies have been published that focussed on children and adolescents. Especially children and adolescents are important in the discussion of adverse health effects because of their possibly higher vulnerability to radio frequency electromagnetic fields. We investigated a possible association between exposure to mobile telecommunication networks and well-being in children and adolescents using personal dosimetry. A population-based sample of 1.498 children and 1.524 adolescents was assembled for the study (response 52%). Participants were randomly selected from the population registries of four Bavarian (South of Germany) cities and towns with different population sizes. During a Computer Assisted Personal Interview data on participants' well-being, socio-demographic characteristics and potential confounder were collected. Acute symptoms were assessed three times during the study day (morning, noon, evening).Using a dosimeter (ESM-140 Maschek Electronics), we obtained an exposure profile over 24 hours for three mobile phone frequency ranges (measurement interval 1 second, limit of determination 0.05 V/m) for each of the participants. Exposure levels over waking hours were summed up and expressed as mean percentage of the ICNIRP (International Commission on Non-Ionizing Radiation Protection) reference level. In comparison to non-participants, parents and adolescents with a higher level of education who possessed a mobile phone and were interested in the topic of possible adverse health effects caused by mobile telecommunication network frequencies were more willing to participate in the study. The median exposure to radio frequency electromagnetic fields of children and adolescents was 0.18% and 0.19% of the ICNIRP reference level respectively. In comparison to previous studies this is one of

  6. Exposure to mobile telecommunication networks assessed using personal dosimetry and well-being in children and adolescents: the German MobilEe-study

    Directory of Open Access Journals (Sweden)

    von Kries Rüdiger

    2008-11-01

    Full Text Available Abstract Background Despite the increase of mobile phone use in the last decade and the growing concern whether mobile telecommunication networks adversely affect health and well-being, only few studies have been published that focussed on children and adolescents. Especially children and adolescents are important in the discussion of adverse health effects because of their possibly higher vulnerability to radio frequency electromagnetic fields. Methods We investigated a possible association between exposure to mobile telecommunication networks and well-being in children and adolescents using personal dosimetry. A population-based sample of 1.498 children and 1.524 adolescents was assembled for the study (response 52%. Participants were randomly selected from the population registries of four Bavarian (South of Germany cities and towns with different population sizes. During a Computer Assisted Personal Interview data on participants' well-being, socio-demographic characteristics and potential confounder were collected. Acute symptoms were assessed three times during the study day (morning, noon, evening. Using a dosimeter (ESM-140 Maschek Electronics, we obtained an exposure profile over 24 hours for three mobile phone frequency ranges (measurement interval 1 second, limit of determination 0.05 V/m for each of the participants. Exposure levels over waking hours were summed up and expressed as mean percentage of the ICNIRP (International Commission on Non-Ionizing Radiation Protection reference level. Results In comparison to non-participants, parents and adolescents with a higher level of education who possessed a mobile phone and were interested in the topic of possible adverse health effects caused by mobile telecommunication network frequencies were more willing to participate in the study. The median exposure to radio frequency electromagnetic fields of children and adolescents was 0.18% and 0.19% of the ICNIRP reference level respectively

  7. SU-F-J-100: Standardized Biodistribution Template for Nuclear Medicine Dosimetry Collection and Reporting

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, A [University of Colorado, Anschutz Medical Campus, Aurora, Colorado (United States); Poli, G [International Atomic Energy Agency, Vienna, Vienna (Austria); Beykan, S; Lassman, M [University of Wuerzburg, Wuerzberg, Wuerzberg (Germany)

    2016-06-15

    Purpose: As the field of Nuclear Medicine moves forward with efforts to integrate radiation dosimetry into clinical practice we can identify the challenge posed by the lack of standardized dose calculation methods and protocols. All personalized internal dosimetry is derived by projecting biodistribution measurements into dosimetry calculations. In an effort to standardize organization of data and its reporting, we have developed, as a sequel to the EANM recommendation of “Good Dosimetry Reporting”, a freely available biodistribution template, which can be used to create a common point of reference for dosimetry data. It can be disseminated, interpreted, and used for method development widely across the field. Methods: A generalized biodistribution template was built in a comma delineated format (.csv) to be completed by users performing biodistribution measurements. The template is available for free download. The download site includes instructions and other usage details on the template. Results: This is a new resource developed for the community. It is our hope that users will consider integrating it into their dosimetry operations. Having biodistribution data available and easily accessible for all patients processed is a strategy for organizing large amounts of information. It may enable users to create their own databases that can be analyzed for multiple aspects of dosimetry operations. Furthermore, it enables population data to easily be reprocessed using different dosimetry methodologies. With respect to dosimetry-related research and publications, the biodistribution template can be included as supplementary material, and will allow others in the community to better compare calculations and results achieved. Conclusion: As dosimetry in nuclear medicine become more routinely applied in clinical applications, we, as a field, need to develop the infrastructure for handling large amounts of data. Our organ level biodistribution template can be used as a

  8. The EURADOS/CONRAD activities on radiation protection dosimetry in medicine

    International Nuclear Information System (INIS)

    Vanhavere, F.; Struelens, L.; Bordy, J.M.; Daures, J.; Denozieres, M.; Buls, N.; Clerinx, P.; Carinou, E.; Clairand, I.; Debroas, J.; Donadille, L.; Itie, C.; Ginjaume, M.; Jansen, J.; Jaervinen, H.; Miljanic, S.; Ranogajec-Komor, M.; Nikodemova, D.; Rimpler, A.; Sans Merce, M.; D'Errico, F.

    2008-01-01

    Full text: This presentation gives an overview on the research activities that EURADOS coordinates in the field of radiation protection dosimetry in medicine. EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. EURADOS operates by setting up Working Groups dealing with particular topics. Currently funded through the CONRAD project of the 6th EU Framework Programme, EURADOS has working groups on Computational Dosimetry, Internal Dosimetry, Complex mixed radiation fields at workplaces, and Radiation protection dosimetry of medical staff. The latter working group coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated by sub-groups covering three specific areas: 1: Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2: Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons, especially to determine personal doses to cardiologists during cardiac catheterisation, but also in CT-fluoroscopy and some nuclear medicine developments (e.g. use of Re-188); and 3: Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (author)

  9. PNNL Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Stite (IER-148)

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.; Morley, Shannon M.; Stephens, John A.

    2017-05-01

    The Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimetry intercomparison exercise held at the Nevada National Security Site (NNSS) May 24-27, 2016. The exercise was administered by Lawrence Livermore National Laboratory (LLNL) and consisted of three exposures performed using the Godiva-IV critical assembly housed in the Device Assembly Facility (DAF) located on the NNSS site. The exercise allowed participants to test the ability of their nuclear accident dosimeters to meet the performance criteria in ANSI/HPS N13.3-2013, Dosimetry for Criticality Accidents and to obtain new measurement data for use in revising dose calculation methods and quick sort screening methods where appropriate. PNNL participated with new prototype Personal Nuclear Accident Dosimeter (PNAD) and Fixed Nuclear Accident Dosimeter (FNAD) designs as well as the existing historical PNAD design. The new prototype designs incorporate optically stimulated luminescence (OSL) dosimeters in place of thermoluminescence dosimeters (TLDs), among other design changes, while retaining the same set of activation foils historically used. The default dose calculation methodology established decades ago for use with activation foils in PNNL PNADs and FNADs was used to calculate neutron dose results for both the existing and prototype dosimeters tested in the exercise. The results indicate that the effective cross sections and/or dose conversion factors used historically need to be updated to accurately measure the operational quantities recommended for nuclear accident dosimetry in ANSI/HPS N13.3-2013 and to ensure PNAD and FNAD performance meets the ANSI/HPS N13.3-2013 performance criteria. The operational quantities recommended for nuclear accident dosimetry are personal absorbed dose, Dp(10), and ambient absorbed dose, D*(10).

  10. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684; Dosimetrie pour la radioprotection en milieu medical - rapport du groupe de travail n. 9 du European radiation dosimetry group (EURADOS) - coordinated netword for radiation dosimetry (CONRAD - contrat CE fp6-12684)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  11. In vivo dosimetry in radiation therapy in Sweden; In vivo-dosimetri inom straalbehandling i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Jacob; Blomquist, Michael (Norrlands universitetssjukhus, Umeaa (Sweden))

    2010-07-15

    A prerequisite for achieving high radiation safety for patients receiving external beam radiation therapy is that the hospitals have a quality assurance program. The program should include include monitoring of the radiation dose given to the patient. Control measurements are performed both at the system level and at the individual level. Control measurement is normally performed using in vivo dosimetry, e.g. a method to measure the radiation dose at the individual level during the actual radiation treatment time. In vivo dosimetry has proven to be an important tool to detect and prevent serious errors in patient treatment. The purpose of this research project was to identify the extent to which vivo dosimetry is used and the methods available for this at Swedish radiation therapy clinics. The authority also wanted to get an overall picture of how hospitals manage results of in vivo dosimetry, and how clinics control radiation dose when using modern treatment techniques. The report reflects the situation in Swedish radiotherapy clinics 2007. The report shows that all hospitals use some form of in vivo dosimetry. The instruments used are mainly diodes and termoluminiscence dosimeters

  12. Individual dosimetry of workers and patients: implementation and perspectives; La dosimetrie individuelle des travailleurs et de patients: mise en oeuvre et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E

    2008-07-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  13. Dosimetry of external radiation: Recent developments. Advanced training course

    International Nuclear Information System (INIS)

    Ambrosi, P.; Boehm, J.; Doerschel, B.

    1999-02-01

    Between February 24 and 26, 1999, the Fachverband fuer Strahlenschutz e.V. held an advanced training course in Tabarz/Thuringia on the subject 'Dosimetry of external radiation: Recent developments'. The following subject matters were dealt with: New concepts and measurands; Present national and international rules; Measurement of the body dose; Exposure conditions at workplaces; and Present state of dosimetric metrology. In correspondence with the subject, the course was organized by the working group 'Dosimetry of external radiation'. Target groups of the course were persons bearing responsibility in the radiation protection sector and interested persons with basic knowledge of this field. The present report comprises the written versions of lectures delivered at the meeting. (orig.) [de

  14. Individual dosimetry of workers and patients: implementation and perspectives

    International Nuclear Information System (INIS)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E.

    2008-01-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  15. Reconstructive dosimetry for cutaneous radiation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Da Silva, F.C.A., E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Valverde, N.J. [Fundacao Eletronuclear de Assistencia Medica, Rio de Janeiro, RJ (Brazil)

    2015-10-15

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. (author)

  16. How to perform dosimetry with Optical CT

    International Nuclear Information System (INIS)

    Wuu, Cheng-Shie; Xu, Y

    2010-01-01

    Both polymer gels and PRESAGE radiochromic solid dosimeter, in conjunction with optical CT scanning system, have been employed to measure 3-D dose distribution. The 3-D dose maps obtained from these systems can provide a useful tool for dose verification on complex treatments such as IMRT, radiosurgery, and RapidArc. These complex treatments present high dose gradient regions in the boundaries between the target and the surrounding critical organs. Dose accuracy in these areas can be critical, and may affect the treatment. There is a pressing need for a dosimeter that allows for accurate determination of 3-D dose distribution with high spatial resolution. In this paper, performance of polymer gels and PRESAGE dosimeter with optical CT scanning is reviewed and evaluated in terms of their sensitivity calibration, irradiation, optimization of scanning procedures, precision, and accuracy. Clinical applications of optical-CT dosimetry are presented.

  17. Chemical dosimetry principles in high dose dosimetry

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.

    2016-01-01

    In radiation processing, activities of principal concern are process validation and process control. The objective of such formalized procedures is to establish documentary evidence that the irradiation process has achieved the desired results. The key element of such activities is inevitably a well characterized reliable dosimetry system that is traceable to recognized national and international dosimetry standards. Only such dosimetry systems can help establish the required documentary evidence. In addition, industrial radiation processing such as irradiation of foodstuffs and sterilization of health careproducts are both highly regulated, in particular with regard to dose. Besides, dosimetry is necessary for scaling up processes from the research level to the industrial level. Thus, accurate dosimetry is indispensable

  18. Type tests to the automatic thermoluminescent dosimetry system acquired by the CPHR for personal dosimetry

    International Nuclear Information System (INIS)

    Molina P, D.; Pernas S, R.; Martinez G, A.

    2006-01-01

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF:Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  19. Czech results at criticality dosimetry intercomparison 2002.

    Science.gov (United States)

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  20. Thermoluminescent dosimetry and assessment of personal dose

    International Nuclear Information System (INIS)

    Boas, J.F.; Martin, L.J.; Young, J.G.

    1982-01-01

    Thermoluminescence is discussed in terms of the energy band structure of a crystalline solid and the trapping of charge carriers by point defects. Some general properties of thermoluminescent materials used for dosimetry are outlined, with thermoluminescence of CaSO 4 :Dy being described in detail. The energy response function and the modification of the energy response of a dosimeter by shielding are discussed. The final section covers the connection between exposure, as recorded by a TLD badge, and the absorbed dose to various organs from gamma radiation in a uranium mine; the conversion from absorbed dose to dose equivalent; and uncertainties in assessment of dose equivalent

  1. State of art: Optically stimulated luminescence dosimetry – Frontiers of future research

    International Nuclear Information System (INIS)

    Yukihara, Eduardo G.; McKeever, Stephen W.S.; Akselrod, Mark S.

    2014-01-01

    Since the commercial adoption of the optically stimulated luminescence (OSL) technique in dosimetry, almost 20 years ago, we have seen major advances in the deployment of OSL dosimeters in different areas, including personal, medical, and space dosimetry. The objective of this paper is to provide a critical overlook at the OSL technique from three different points of view: strengths, challenges and opportunities. We discuss factors that made the OSL technique successful: its simplicity, accuracy, wide dynamic range of measured dose, ease for automation, re-read capability, ability to perform imaging, and the availability of diverse instruments and materials. We look into problems that were overcome and others that remain in several areas of new applications into which OSL has expanded in the past 10 years, such as medical, space, neutron and accident dosimetry. Finally, we discuss unexplored possibilities, new driving forces, and open questions. We hope the broad overview presented here will encourage more discussion and stimulate the research that will advance our fundamental understanding of the OSL process. - Highlights: • Critical overlook of the OSL technique is presented. • Factors that made the OSL technique successful are discussed. • New applications in medical, space and accident dosimetry are discussed. • Unexplored possibilities, new driving forces, and open questions are presented

  2. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684

    International Nuclear Information System (INIS)

    2009-01-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  3. Individual monitoring of medical staff working in interventional radiology in Switzerland using double dosimetry

    International Nuclear Information System (INIS)

    Damet, J.; Bailat, C.; Bize, P.; Buchillier, Th.; Tosic, M.; Verdun, F.R.; Baechler, S.

    2011-01-01

    Physicians who frequently perform fluoroscopic examinations are exposed to high intensity radiation fields. The exposure monitoring is performed with a regular personal dosimeter under the apron in order to estimate the effective dose. However, large parts of the body are not protected by the apron (e.g. arms, head). Therefore, it is recommended to wear a supplemental dosimeter over the apron to obtain a better representative estimate of the effective dose. The over-apron dosimeter can also be used to estimate the eye lens dose. The goal of this study was to investigate the relevance of double dosimetry in interventional radiology. First the calibration procedure of the dosimeters placed over the apron was tested. Then, results of double dosimetry during the last five years were analyzed. We found that the personal dose equivalent measured over a lead apron was underestimated by ∼20% to ∼40% for X-ray beam qualities used in radiology. Measurements made over five-year period confirm that the use of a single under-apron dosimeter is inadequate for personnel monitoring. Relatively high skin dose (>10 mSv/month) would have remained undetected without a second dosimeter placed on the apron.

  4. Personal exposure to mobile phone frequencies and well-being in adults: a cross-sectional study based on dosimetry.

    Science.gov (United States)

    Thomas, Silke; Kühnlein, Anja; Heinrich, Sabine; Praml, Georg; Nowak, Dennis; von Kries, Rüdiger; Radon, Katja

    2008-09-01

    The use of mobile phone telecommunication has increased in recent years. In parallel, there is growing concern about possible adverse health effects of cellular phone networks. We used personal dosimetry to investigate the association between exposure to mobile phone frequencies and well-being in adults. A random population-based sample of 329 adults living in four different Bavarian towns was assembled for the study. Using a dosimeter (ESM-140 Maschek Electronics), we obtained an exposure profile over 24 h for three mobile phone frequency ranges (measurement interval 1 s, limit of determination 0.05 V/m). Exposure levels over waking hours were totalled and expressed as mean percentage of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference level. Each participant reported acute symptoms in a day-long diary. Data on five groups of chronic symptoms and potential confounders were assessed during an interview. The overall exposure to high-frequency electromagnetic fields was markedly below the ICNIRP reference level. We did not find any statistically significant association between the exposure and chronic symptoms or between the exposure and acute symptoms. Larger studies using mobile phone dosimetry are warranted to confirm these findings. Copyright 2008 Wiley-Liss, Inc.

  5. INTERCOMPARISON ON THE MEASUREMENT OF THE QUANTITY PERSONAL DOSE EQUIVALENT HP(10) IN PHOTON FIELDS. LINEARITY DEPENDENCE, LOWER LIMIT OF DETECTION AND UNCERTAINTY IN MEASUREMENT OF DOSIMETRY SYSTEMS OF INDIVIDUAL MONITORING SERVICES IN GABON AND GHANA.

    Science.gov (United States)

    Ondo Meye, P; Schandorf, C; Amoako, J K; Manteaw, P O; Amoatey, E A; Adjei, D N

    2017-12-01

    An inter-comparison study was conducted to assess the capability of dosimetry systems of individual monitoring services (IMSs) in Gabon and Ghana to measure personal dose equivalent Hp(10) in photon fields. The performance indicators assessed were the lower limit of detection, linearity and uncertainty in measurement. Monthly and quarterly recording levels were proposed with corresponding values of 0.08 and 0.025 mSv, and 0.05 and 0.15 mSv for the TLD and OSL systems, respectively. The linearity dependence of the dosimetry systems was performed following the requirement given in the Standard IEC 62387 of the International Electrotechnical Commission (IEC). The results obtained for the two systems were satisfactory. The procedure followed for the uncertainty assessment is the one given in the IEC technical report TR62461. The maximum relative overall uncertainties, in absolute value, expressed in terms of Hp(10), for the TL dosimetry system Harshaw 6600, are 44. 35% for true doses below 0.40 mSv and 36.33% for true doses ≥0.40 mSv. For the OSL dosimetry system microStar, the maximum relative overall uncertainties, in absolute value, are 52.17% for true doses below 0.40 mSv and 37.43% for true doses ≥0.40 mSv. These results are in good agreement with the requirements for accuracy of the International Commission on Radiological protection. When expressing the uncertainties in terms of response, comparison with the IAEA requirements for overall accuracy showed that the uncertainty results were also acceptable. The values of Hp(10) directly measured by the two dosimetry systems showed a significant underestimation for the Harshaw 6600 system, and a slight overestimation for the microStar system. After correction for linearity of the measured doses, the two dosimetry systems gave better and comparable results. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  7. Internal dosimetry hazard and risk assessments: methods and applications

    International Nuclear Information System (INIS)

    Roberts, G.A.

    2006-01-01

    Routine internal dose exposures are typically (in the UK nuclear industry) less than external dose exposures: however, the costs of internal dosimetry monitoring programmes can be significantly greater than those for external dosimetry. For this reason decisions on when to apply routine monitoring programmes, and the nature of these programmes, can be more critical than for external dosimetry programmes. This paper describes various methods for performing hazard and risk assessments which are being developed by RWE NUKEM Limited Approved Dosimetry Services to provide an indication when routine internal dosimetry monitoring should be considered. (author)

  8. Recent progress in application of JAERI alanine/ESR dosimetry system

    International Nuclear Information System (INIS)

    Kojima, T.

    1995-01-01

    Feasibility studies of application of JAERI alanine/ESR dosimetry system were performed on radiotherapy level dosimetry, low dose-rate dosimetry for residual life estimation of cable insulators used in nuclear power facilities, and dose monitoring for electron processing. (author)

  9. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  10. Development and current state of dosimetry in Cuba

    International Nuclear Information System (INIS)

    Prieto Miranda, E.F.; Cuesta Fuente, G.; Chavez Ardanza, A.

    1999-01-01

    In Cuba, the application of the radiation technologies has been growing in the last years, and at present there are several dosimetry systems with different ranges of absorbed dose. Diverse researches were carried out on high dose dosimetry with the following dosimetry systems: Fricke, ceric-cerous sulfate, ethanol-chlorobenzene, cupric sulfate and Perspex (Red 4034 AE and Clear HX). In this paper the development achieved during the last 15 years in the high dose dosimetry for radiation processing in Cuba is presented, as well as, the current state of different dosimetry systems employed for standardization and for process control. The paper also reports the results of dosimetry intercomparison studies that were performed with the Ezeiza Atomic Center of Argentine and the International Dose Assurance Service (IDAS) of IAEA. (author)

  11. An instrument to perform automated quality assurance and patient dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Chapple, C.-L.; Faulkner, K.

    1992-01-01

    A computerised method of automatically monitoring tube and generator parameters to perform on-line quality assurance and patient dosimetry has been developed. A microcomputer has been interfaced to a microprocessor controlled X ray generator and dose-area product meter. The instrument prompts the operator to enter details of the examination and projection before an examination is made. The field size and dose-area product are monitored by the instrument. These data, together with information on the tube potential are used to deduce the patient entrance dose and energy imparted. Organ doses are estimated using normalised organ dose data. The accuracy and reproducibility of the instrument were investigated. Doses measured in a Rando phantom were compared with calculations made by the instrument. The instrument will compare various measured quality assurance parameters against their nominal values. The implications of this instrument for both patient dosimetry studies and effective continuous quality assurance are discussed. (author)

  12. 12''th International Conference on Solid State Dosimetry Casa del Cordon. Conference Center (Caja de Burgos), July 5''th-10''th, 1998, Burgos Spain: Programme and Abstracts

    International Nuclear Information System (INIS)

    1998-01-01

    The 12 International Conference on Solid State Dosimetry celebrate in Burgos (Spain) during July on 1998. 1.- Basic Physical Processes 2.- Materials characteristics 3.- Instrumentation 4.- Personal Dosimetry 5.- Clinical Dosimetry 6.- Environmental Dosimetry 7.- Dating retrospective dosimetry 8.- Miscellaneous

  13. International cooperation within the IRCP using the example of internal dosimetry; Internationale Zusammenarbeit innerhalb der ICRP am Beispiel der internen Dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Nosske, Dietmar

    2017-10-01

    IRCP is working since decades in the field of internal dosimetry and defines limiting values for occupational exposed persons, individuals in the population and patients in the diagnostic nuclear medicine that are worldwide included in the national and international radiation protection regulations. The effort to be as realistic as possible is producing continuously more complex models. This fact is delaying the respective values and aggravates the application of the models. In order to facilitate the application other institutions like EURADOS (European radiation dosimetry group) generate appropriate guidelines. Cooperation is taking place between ISRP and the respective institutions.

  14. Dosimetry system 1986

    International Nuclear Information System (INIS)

    Woolson, William A.; Egbert, Stephen D.; Gritzner, Michael L.

    1987-01-01

    In May 1983, the authors proposed a dosimetry system for use by the Radiation Effects Research Foundation (RERF) that would incorporate the new findings and calculations of the joint United States - Japan working groups on the reassessment of A-bomb dosimetry. The proposed dosimetry system evolved from extensive discussions with RERF personnel, numerous meetings of the scientists from Japan and the United States involved in the dosimetry reassessment research, and requirements expressed by epidemiologists and radiobiologists on the various review panels. The dosimetry system proposed was based on considerations of the dosimetry requirements for the normal work of RERF and for future research in radiobiology, the computerized input data on A-bomb survivors available in the RERF data base, the level of detail, precision, and accuracy of various components of the dosimetric estimates, and the computer resources available at RERF in Hiroshima. These discussions and our own experience indicated that, in light of the expansion of computer and radiation technologies and the desire for more detail in the dosimetry, an entirely new approach to the dosimetry system was appropriate. This resulted in a complete replacement of the T65D system as distinguished from a simpler approach involving a renormalization of T65D parameters to reflect the new dosimetry. The proposed dosimetry system for RERF and the plan for implementation was accepted by the Department of Energy (DOE) Working Group on A-bomb Dosimetry chaired by Dr. R.F. Christy. The dosimetry system plan was also presented to the binational A-bomb dosimetry review groups for critical comment and was discussed at joint US-Japan workshop. A prototype dosimetry system incorporating preliminary dosimetry estimates and applicable to only a limited set of A-bomb survivors was installed on the RERF computer system in the fall of 1984. This system was successfully operated at RERF and provided an initial look at the impact of

  15. Phantom positioning variation in the Gamma Knife® Perfexion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Nathalia Almeida; Potiens, Maria da Penha Albuquerque [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Saraiva, Crystian [Hospital do Coracao, Sao Paulo, SP (Brazil)

    2015-07-01

    The use of small volume ionization chamber has become required for the dosimetry of equipment that use small radiation fields. A pinpoint ionization chamber is ideal for the dosimetry of a Gamma Knife® Perfexion (GKP) unit. In this work, this chamber was inserted into the phantom, and measurements were performed with the phantom in different positions, in order to verify if the change in the phantom positioning affects the dosimetry of the GKP. Three different phantom positions were performed. The variation in the result is within the range allowed for the dosimetry of a GKP equipment. (author)

  16. Department of Energy standard for the performance testing of personnel dosimetry systems

    International Nuclear Information System (INIS)

    1986-12-01

    This standard is intended to be used in the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems. It is based on the American National Standards Institute's (ANSI) ''Criteria for Testing Personnel Dosimetry Performance,'' ANSI N13.11-1983, recommendations made to DOE in ''Guidelines for the Calibration of Personnel Dosimeters,'' Pacific Northwest Laboratory (PNL)-4515 and comments received during peer review by DOE and DOE contractor personnel. The recommendations contained in PNL-4515 were based on an evaluation of ANSI N13.11 conducted for the Office of Nuclear Safety, DOE, by PNL. Parts of ANSI N13.11 that did not require modification were used essentially intact in this standard to maintain consistency with nationally recognized standards. Modifications to this standard have resulted from several DOE/DOE contractor reviews and a pilot testing session. An initial peer review by selected DOE and DOE contractor representatives on technical content was conducted in 1983. A review by DOE field offices, program offices, and contractors was conducted in mid-1984. A pilot performance testing session sponsored by the Office of Nuclear Safety was conducted in early 1985 by the Radiological and Environmental Sciences Laboratory, Idaho Falls. Results of the pilot test were reviewed in late 1985 by a DOE and DOE contractor committee. 11 refs., 4 tabs

  17. EVIDOS: Individual dosimetry in mixed neutron and photon radiation fields

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2006-01-01

    The EVIDOS project (partly funded by the European Commission RTD Programme: Nuclear Energy, Euratom Framework Programme V, 1998-2002, Contract No FIKR-CT-2001-00175) aimed at improving individual monitoring in mixed neutron-photon radiation fields by evaluating the performance of routine and novel personal dosimeters for mixed radiation, and by giving guidelines for deriving sufficiently accurate values of personal dose equivalent from the readings of area survey instruments and dosimeters. The main objective of EVIDOS was to evaluate different methods for individual dosimetry in mixed neutron-photon work-places in nuclear industry. This implied a determination of the capabilities and limitations of personal dosimeters and the establishment of methods to enable sufficiently accurate values of personal dose equivalent from spectrometers, area survey instruments and routine personal dosimeters. Also novel electronic personal dosimeters were investigated. To this end spectrometric and dosimetric investigations in selected representative workplaces in nuclear industry where workers can receive significant neutron doses were performed. As part of this project, a number of tasks were executed, in particular: (1) the determination of the energy and direction distribution of the neutron fluence; (2) the derivation of the (conventionally true) values of radiation protection quantities; (3) the determination of the readings of routine and innovative personal dosimeters and of area monitors; and (4) the comparison between dosimeter readings and values of the radiation protection quantities

  18. Review of present beta dosimetry problems in radiation protection; to day's answers and future trends

    International Nuclear Information System (INIS)

    Fracas, P.

    1986-01-01

    The large use of pure beta radionuclides needs to be develop beta dosimetry methods for radiation protection. The different types of present dosimetry assessments are reviewed. In all the cases the quantity to take into account is the absorbed dose rate in human tissus and more particularly in skin. In the case of point sources of known nature and activity this quantity can be worked out. This calculation is achieved either by incident beta spectrum analysis or theoretical considerations based on Kernel point. The absorbed dose rate can also be measured by extrapolation ionization chamber which characteristics and working are detailed here. All present survey meter were not initially planned for such a beta dosimetry, as this performed with the extrapolation ionization chamber which is taken here as a reference. So responses of usual dosimeters compared to this reference need to be estimated. Responses of personal film badges used in CEA, portable ionization chambers as babyline, pocket dosimeters SEQ7 and the thermoluminescent dosimeters TLD700 are exposed here. Results show that all these survey meters are not completely suitable for routine beta dosimetry. Consequently other operational dosimetry techniques have to be pursued. In particular some thermoluminescence dosimeters for instance boron diffused in surface layer and multi-elements, and furthermore Thermally Stimulated Exoelectron Emission (TSEE) and surface barrier detectors are described [fr

  19. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent 103 Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm 3 , respectively, much lower than the 159 Gy and 0.65 cm 3 obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry or

  20. Dosimetry as an integral part of radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1999-01-01

    Different connections between high-dose dosimetry and radiation processing are discussed. Radiation processing cannot be performed without proper dosimetry. Accurate high dose and high dose rate dosimetry exhibits several aspects: first of all it is the preservation of the quality of the product, then fulfillment of legal aspects and last but not the least the safety of processing. Further, seldom discussed topics are as follow: dosimetric problems occurring with double-side EB irradiations, discussed in connection with the deposition of electric charge during electron beam irradiation. Although dosimetry for basic research and for medical purposes are treated here only shortly, some conclusions reached from these fields are considered in dosimetry for radiation processing. High-dose dosimetry of radiation has become a separate field, with many papers published every year, but applied dosimetric projects are usually initiated by a necessity of particular application. (author)

  1. Performance of neutron and gamma personnel dosimetry in mixed radiation fields

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.

    1981-01-01

    From 1974 to 1980, six personnel dosimetry intercomparison studies (PDIS) were conducted at the Oak Ridge National Laboratory (ORNL) to evaluate the performance of personnel dosimeters in a variety of neutron and gamma fields produced by operating the Health Physics Research Reactor (HPRR) in the steady state mode with and without spectral modifying shields. A total of 58 different organizations participated in these studies which produced approximately 2000 measurements of neutron and gamma dose equivalents on anthropomorphic phantoms for five different reactor spectra. Based on these data, the relative performance of three basic types of neutron dosimeters [nuclear emulsion film, thermoluminescent (TLD), and track-etch] and two basic types of gamma dosimeters (film and TLD) in mixed radiation fields was assessed

  2. OSL and TL of Resistors of Mobile Phones for Retrospective Accident Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Pradhan, A. S.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Optically stimulated luminescence (OSL) and thermoluminescence (TL) of ubiquitous materials continue to draw wider attention for individual dosimetry in nuclear and radiation accidents. Use of ubiquitous objects for radiation dosimetry is preferred because the affected persons in such unexpected events are usually not covered by personal dosimetry services and do not carry personal dosimeters. Often accident sites do not have area monitoring system in place. As the main concern of the dosimetry is health effects, a quick distinction of level of exposures of the affected persons for the required medical care becomes important in all accidents involving radiation. Both in large scale nuclear accidents such Fukushima, Chernobyl or Hiroshima and Nagasaki where large population around the accident site get exposed to radiation (evacuation is based on doses) and in smaller but panicky events, such as misuse of radiological exposure device (RED), radiological dispersive device (RDD: 'Dirty Bomb'), improvised nuclear device (IND) and deliberate dispersal of radioactive contaminants, a need for an ubiquitous personal dosimeter is well recognized. As biological dosimetry systems are yet to become viable for measurements of doses with required accuracy and speed, use of physical dosimeters is often explored. Among the various types of physical dosimetry systems, use of TL and OSL by processing common material such as bricks or tiles and measuring the doses cumulated for long periods of time has already become an accepted tool for large scale nuclear accidents such as Hiroshima and Nagasaki or Chernobyl involving higher doses. In the other potential cases of unexpected situations where the doses encountered could be much lower (even to escape the range of remotely installed area monitors), the need to measure even the low doses in shortest possible time becomes important. It is often realized that in such situations, the main problem could become the panic at the

  3. OSL and TL of Resistors of Mobile Phones for Retrospective Accident Dosimetry

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, J. L.; Pradhan, A. S.; Chang, I.; Kim, B. H.

    2012-01-01

    Optically stimulated luminescence (OSL) and thermoluminescence (TL) of ubiquitous materials continue to draw wider attention for individual dosimetry in nuclear and radiation accidents. Use of ubiquitous objects for radiation dosimetry is preferred because the affected persons in such unexpected events are usually not covered by personal dosimetry services and do not carry personal dosimeters. Often accident sites do not have area monitoring system in place. As the main concern of the dosimetry is health effects, a quick distinction of level of exposures of the affected persons for the required medical care becomes important in all accidents involving radiation. Both in large scale nuclear accidents such Fukushima, Chernobyl or Hiroshima and Nagasaki where large population around the accident site get exposed to radiation (evacuation is based on doses) and in smaller but panicky events, such as misuse of radiological exposure device (RED), radiological dispersive device (RDD: 'Dirty Bomb'), improvised nuclear device (IND) and deliberate dispersal of radioactive contaminants, a need for an ubiquitous personal dosimeter is well recognized. As biological dosimetry systems are yet to become viable for measurements of doses with required accuracy and speed, use of physical dosimeters is often explored. Among the various types of physical dosimetry systems, use of TL and OSL by processing common material such as bricks or tiles and measuring the doses cumulated for long periods of time has already become an accepted tool for large scale nuclear accidents such as Hiroshima and Nagasaki or Chernobyl involving higher doses. In the other potential cases of unexpected situations where the doses encountered could be much lower (even to escape the range of remotely installed area monitors), the need to measure even the low doses in shortest possible time becomes important. It is often realized that in such situations, the main problem could become the panic at the work place

  4. Personal dosimetry statistics and specifics of low dose evaluation

    International Nuclear Information System (INIS)

    Avila, R.E.; Gómez Salinas, R.A.; Oyarzún Cortés, C.H.

    2015-01-01

    The dose statistics of a personal dosimetry service, considering 35,000+ readings, display a sharp peak at low dose (below 0.5 mSv) with skewness to higher values. A measure of the dispersion is that approximately 65% of the doses fall below the average plus 2 standard deviations, an observation which may prove helpful to radiation protection agencies. Categorizing the doses by the concomitant use of a finger ring dosimeter, that skewness is larger in the whole body, and ring dosimeters. The use of Harshaw 5500 readers at high gain leads to frequent values of the glow curve that are judged to be spurious, i.e. values not belonging to the roughly normal noise over the curve. A statistical criterion is shown for identifying those anomalous values, and replacing them with the local behavior, as fit by a cubic polynomial. As a result, the doses above 0.05 mSv which are affected by more than 2% comprise over 10% of the data base. The low dose peak of the statistics, above, has focused our attention on the evaluation of LiF(Mg,Ti) dosimeters exposed at low dose, and read with Harshaw 5500 readers. The standard linear procedure, via an overall reader calibration factor, is observed to fail at low dose, in detailed calibrations from 0.02 mSv to 1 Sv. A significant improvement is achieved by a piecewise polynomials calibration curve. A cubic, at low dose is matched, at ∼10 mSv, in value and first derivative, to a linear dependence at higher doses. This improvement is particularly noticeable below 2 mSv, where over 60% of the evaluated dosimeters are found. (author)

  5. State of the art of solid state dosimetry

    International Nuclear Information System (INIS)

    Souza, Susana O.; Yamamoto, Takayoshi; D'Errico, Francesco

    2014-01-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed

  6. Developing a high performance superoxide dismutase based electrochemical biosensor for radiation dosimetry of thallium 201

    International Nuclear Information System (INIS)

    Salem, Fatemeh; Tavakoli, Hassan; Sadeghi, Mahdi; Riazi, Abbas

    2014-01-01

    To develop a new biosensor for measurement of superoxide free radical generated in radiolysis reaction, three combinations of SOD-based biosensors including Au/Cys/SOD, Au/GNP/Cys/SOD and Au/GNP/Cys/SOD/Chit were fabricated. In these biosensors Au, GNP, Cys, SOD and Chit represent gold electrode, gold nano-particles, cysteine, superoxide dismutase and chitosan, respectively. For biosensors fabrication, SOD, GNP, Cys and Chit were immobilized at the surface of gold electrode. Cyclic voltametry and chronoamperometry were utilized for evaluation of biosensors performances. The results showed that Au/GNP/Cys/SOD/Chit has significantly better responses compared to Au/Cys/SOD and Au/GNP/Cys/SOD. As a result, this biosensor was selected for dosimetry of ionizing radiation. For this purpose, thallium 201 at different volumes was added to buffer phosphate solution in electrochemical cell. To obtain analytical parameters of Au/GNP/Cys/SOD/Chit, calibration curve was sketched. The results showed that this biosensor has a linear response in the range from 0.5 to 4 Gy, detection limit 0.03 μM. It also has a proper sensitivity (0.6038 nA/Gy), suitable long term stability and cost effective as well as high function for radiation dosimetry. - highlights: • Our biosensor is able to measure produced superoxide radical during water radiolysis. • It has suitable linearity range, good detection limit and long term stability. • It also has proper sensitivity and high performance for low LET ionizing radiation. • The electrochemical method is as good as traditional methods for radiation dosimetry

  7. Dosimetry of the patient and occupational in interventional procedures; Dosimetria del paciente y ocupacional en procedimientos intervencionistas

    Energy Technology Data Exchange (ETDEWEB)

    Andisco, D. [Universidad de Buenos Aires, Facultad de Medicina, Paraguay 2155, C1121AAA Buenos Aires (Argentina); Bourel, V.; Schmidt, L.; Fernandez, N., E-mail: dandisco@fmed.uba.ar [Universidad Favaloro, Facultad de Ciencias e Ingenieria, Solis 453, C1078AAI, Buenos Aires (Argentina)

    2014-08-15

    The big necessity to estimate the entrance doses in skin that the patients receive when are exposed to interventional procedures and the personal dosimetry of the professionals that work in these procedures in operating room, has taken to the analysis of different possibilities that allow to carry out these estimates. The objective of this work was to analyze the possibility of using Optically Stimulated Luminescence dosimeters; comparing the results with ionizing cameras and electronic personal dosimeters. To carry out these estimates, we work with a X-ray equipment Phillips Allure, acrylic phantoms, a dosimetry system formed by ionization camera and dosimeter UNIDOS E, OSL (Nano dots) dosimeters and electronic lavalieres Aloka brand, PDM 117 models. To estimate the doses that the patients receive, entrance dose was measured in skin and in personal dosimetry inside places where the medical professionals are habitually located in different situations among 5 and 60 irradiation min. In the case of direct radiation, the OSL (Nano dots) present reliable readings and only were dispersed values for the measurements of secondary radiation. The measured values and the linking among them were also analyzed. The OSL (Nano dot) dosimetry behaves reliable way when is located in the ranges of more dose to 0,1 mGy, according to the maker indications and fundamentally for direct beams of the hemodynamics equipment being ideal for the measurement of entrance dose in skin. For the Nano dots use in personal dosimetry the results should be read carefully for values major to 0,1 mGy and being completely inappropriate for minor values. (Author)

  8. Accreditation of the Personal Dosimetry internal Service Tecnatom by the National Entity (ENAC); Acreditacion del Servicio de Dosimetria Personal Interna de Tecnatom por la Entidad Nacional de Acreditacion (ENAC)

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, B.; Marchena, P.

    2014-07-01

    The service of personal Dosimetry internal Tecnatom has made the process of adapting its methodology and quality assurance, requirements technical and management will be required to obtain accreditation from the National Accreditation Entity according to ISO / IEC 170251 standard {sup G}eneral Requirements competence of testing and calibration laboratories. To carry out this process, the laboratory has defined quality criteria set out in their test procedures, based on ISO Standards 27048: 2011; ISO 20553: 2005 and ISO 28218: 2010. This paper describes what has been the methodology used to implement the requirements of different ISO test methods of SDPI Tecnatom. (Author)

  9. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1981-01-01

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  10. Report on high energy neutron dosimetry workshop

    International Nuclear Information System (INIS)

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  11. Dosimetry. Standard practice for dosimetry in gamma irradiation facilities for food and non-food processing

    International Nuclear Information System (INIS)

    2008-01-01

    This Ghana Standard outlines the installation qualification program for an irradiator and the dosimetry procedures to be followed during operational qualification, performance qualification and routine processing in facilities that process food and non-food with gamma rays. This is to ensure that the product has been treated with predetermined range of absorbed dose. It is not intended for use in X-ray and electron beam facilities and therefore dosimetry systems in such facilities are not covered

  12. Management system of personnel dosimetry based on ISO 9001:2008 for medical diagnostic

    International Nuclear Information System (INIS)

    Queiroz, Carlos E.B.; Gerber Junior, Walmoli; Jahn, Tiago R.; Hahn, Tiago T.; Fontana, Thiago S.; Bolzan, Vagner

    2013-01-01

    MDose is a computer management system of personal dosimetry in diagnostic radiology services physician based on ISO 9001:9008 management system. According to Brazilian law all service radiology should implement a control of personal dosimetry in addition to radiation doses greater than 1.5 mSv/year service should do research of high dose, which is to identify the causes the resulting dose increase professional. This work is based on the use of the PDCA cycle in a JAVA software developed as a management method in the analysis of high doses in order to promote systematic and continuous improvement within the organization of radiological protection of workers

  13. Update Dosimetry Service internal staff Tecnatom; Actualizacion del servicio de dosimetria personal interna de TECNATOM

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, B.; Marchena, P.; Alonso, A.; Navarro, E.; Serrano, E.

    2010-07-01

    The beginning of decommissioning of nuclear facilities and other industrial national context conditions have been a very significant increase in the need for such services, which have been almost overwhelmed by the demand. To provide a solution to this situation, Tecnatom decided to run as a new internal dosimetry service indirect measures to complement its renowned capabilities of direct measures. To perform this task, Tecnatom has signed a collaboration agreement with the Laboratory of Radiochemistry of Geocisa, all with the objective of characterizing contamination by alpha emitters or beta different analytical techniques.

  14. DRDC Ottawa working standard for biological dosimetry

    International Nuclear Information System (INIS)

    Segura, T.M.; Prud'homme-Lalonde, L.; Thorleifson, E.; Lachapelle, S.; Mullins, D.; Qutob, S.; Wilkinson, D.

    2005-07-01

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  15. DRDC Ottawa working standard for biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Segura, T M; Prud' homme-Lalonde, L [Defence Research and Development Canada, Ottawa, Ontario (Canada); Thorleifson, E [Health Canada, Gatineau, Quebec (Canada); Lachapelle, S; Mullins, D [JERA Consulting (Canada); Qutob, S [Health Canada, Gatineau, Quebec (Canada); Wilkinson, D

    2005-07-15

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  16. Report on external occupational dosimetry in Canada

    International Nuclear Information System (INIS)

    1995-12-01

    In light of the new recommendations of the ICRP in Report 60 on dose quantities and dose limits, this working group was set up to examine the implications for external dosimetry in Canada. The operational quantities proposed by the ICRU are discussed in detail with regard to their applicability in Canada. The current occupational dosimetry services available in Canada are described as well as the several performance intercomparisons that have been carried out within the country as well as internationally. Recommendations are given with respect to standards for dosimetry, including accuracy and precision. More practical advice is given on the choice of dosimeter to use for external dosimetry, frequency of monitoring, and who should be monitored. Specific advice is given on the monitoring of pregnant workers and problem of non-uniform irradiation. Accident and emergency dosimetry are dealt with briefly. Suggestions are given regarding record keeping both for employers and for the national dose registry. 48 refs., 6 tabs., 1 fig

  17. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  18. In vivo dosimetry in radiation therapy in Sweden

    International Nuclear Information System (INIS)

    Eriksson, Jacob; Blomquist, Michael

    2010-07-01

    A prerequisite for achieving high radiation safety for patients receiving external beam radiation therapy is that the hospitals have a quality assurance program. The program should include include monitoring of the radiation dose given to the patient. Control measurements are performed both at the system level and at the individual level. Control measurement is normally performed using in vivo dosimetry, e.g. a method to measure the radiation dose at the individual level during the actual radiation treatment time. In vivo dosimetry has proven to be an important tool to detect and prevent serious errors in patient treatment. The purpose of this research project was to identify the extent to which vivo dosimetry is used and the methods available for this at Swedish radiation therapy clinics. The authority also wanted to get an overall picture of how hospitals manage results of in vivo dosimetry, and how clinics control radiation dose when using modern treatment techniques. The report reflects the situation in Swedish radiotherapy clinics 2007. The report shows that all hospitals use some form of in vivo dosimetry. The instruments used are mainly diodes and termoluminiscence dosimeters

  19. Experiences and performance of the Harshaw dosimetry system at two major processing centres

    International Nuclear Information System (INIS)

    Tawil, R.A.; Olhalber, T.; Rathbone, B.

    1996-01-01

    The installations, operating practice, dose algorithms and results and maintenance experience at two major dosimetry processing centres are described. System selection considerations and a comprehensive quality programme are described in the light of the publication of testing requirements by various dosimetry regulatory organisations. Reported information from Siemens Dosimetry Services comprises their selection of dosemeters and processing equipment including service history, a description of their dose computation algorithm, and detailed results of their testing against DOELAP standards. Battelle Pacific Northwest Laboratories (PNL) provides a description of their dosemeters and equipment with service history; in addition, a discussion of their new neural network approach to a dose computation algorithm and test results from that algorithm are presented. (Author)

  20. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  1. Intercomparison of dispersed radiation readings among film dosimetry, electronic and OSL with X-rays for low dose; Intercomparacion de lecturas de radiacion dispersa entre dosimetria film, electronica y OSL con rayos X para dosis bajas

    Energy Technology Data Exchange (ETDEWEB)

    Andisco, D. [Universidad de Buenos Aires, Facultad de Medicina, Paraguay 2155, C1121AAA Buenos Aires (Argentina); Blanco, S. [CONICET, Saavedra 15, C1083ACA Buenos Aires (Argentina); Bourel, V.; Schmidt, L. [Universidad Favaloro, Facultad de Ciencias e Ingenieria, Solis 453, C1078AAI, Buenos Aires (Argentina); Di Risio, C., E-mail: dandisco@fmed.uba.ar [Universidad de Belgrano, Facultad de Ingenieria, Zabala 1837, C1426DQG, Buenos Aires (Argentina)

    2014-08-15

    One of the personal dosimetry methods more used for several decades is the dosimetry type film, characterized to possess readings with certain margin of trust. Today other methods exist that many times are presupposed more reliable due to the nature of the detection like the electronic dosimeters or the OSL (Optically Stimulated Luminescence) dosimetry. With the purpose of comparing different methods and to can determining the existent differences among each method has been carried out an intercomparison assay. The different dosimeters have been exposed to dispersed radiation generated by a Hemodynamics equipment of the type -arch in C- and a dispersing system of the primary beam. Film dosimeters have been used; OSL (In Light), OSL (Nano Dots) and Electronic with the purpose of knowing and to valorize the existent differences among its readings. Always, the intercomparison exercises have demonstrated to be an useful tool when establishing the measurement capacity and the quality of the results emitted by the laboratories of personal dosimetry services. Also, this type of assays allows obtaining quality indicators of the laboratory performance and they are habitual part of the procedures for accreditation of the same ones. The Optically Stimulated Luminescence is a technology that has grown in Argentina so much in the area of personal dosimetry as in dosimetry in vivo (radiotherapy area). In this intercomparison study, the answers corresponding to each technology were looked for oneself irradiation of the disperse type, that is to say, of very low energy. (Author)

  2. Assessment of performance parameters for EPR dosimetry with tooth enamel

    International Nuclear Information System (INIS)

    Wieser, A.; Fattibene, P.; Shishkina, E.A.; Ivanov, D.V.; De Coste, V.; Guettler, A.; Onori, S.

    2008-01-01

    In the framework of a comparison between three laboratories, electron paramagnetic resonance (EPR) signal-to-dose response curves were measured for sets of 30 tooth enamel samples and the variance of EPR measurements in dependence on absorbed dose was evaluated, in nine combinations of laboratory of sample preparation and EPR evaluation, respectively. As a test for benchmarking of EPR evaluation, the parameters 'critical dose' and 'limit of detection' were proposed as performance parameters following definitions from chemical-metrology, and a model function was suggested for analytical formulation of the dependence of the variance of EPR measurement on absorbed dose. First estimates of limits of detection by weighted and unweighted fitting resulted in the range 101-552 and 67-561 mGy, respectively, and were generally larger with weighted than with unweighted fitting. Indication was found for the influence of methodology of sample preparation and applied EPR measurement parameters on performance of EPR dosimetry with tooth enamel

  3. Is intraoperative real-time dosimetry in prostate seed brachytherapy predictive of biochemical outcome?

    Directory of Open Access Journals (Sweden)

    Daniel Taussky

    2017-06-01

    Full Text Available Purpose : To analyze intraoperative (IO dosimetry using transrectal ultrasound (TRUS, performed before and after prostate low-dose-rate brachytherapy (LDR-BT, and compare it to dosimetry performed 30 days following the LDR-BT implant (Day 30. Material and methods : A total of 236 patients underwent prostate LDR-BT using 125 I that was performed with a three-dimensional TRUS-guided interactive inverse preplanning system (preimplant dosimetry. After the implant procedure, the TRUS was repeated in the operating room, and the dosimetry was recalculated (postimplant dosimetry and compared to dosimetry on Day 30 computed tomography (CT scans. Area under curve (AUC statistics was used for models predictive of dosimetric parameters at Day 30. Results : The median follow-up for patients without BF was 96 months, the 5-year and 8-year biochemical recurrence (BR-free rate was 96% and 90%, respectively. The postimplant median D 90 was 3.8 Gy lower (interquartile range [IQR], 12.4-0.9, and the V 100 only 1% less (IQR, 2.9-0.2% than the preimplant dosimetry. When comparing the postimplant and the Day 30 dosimetries, the postimplant median D 90 was 9.6 Gy higher (IQR [–] 9.5-30.3 Gy, and the V 100 was 3.2% greater (0.2-8.9% than Day 30 postimplant dosimetry. The variables that best predicted the D 90 of Day 30 was the postimplant D 90 (AUC = 0.62, p = 0.038. None of the analyzed values for IO or Day 30 dosimetry showed any predictive value for BR. Conclusions : Although improving the IO preimplant and postimplant dosimetry improved dosimetry on Day 30, the BR-free rate was not dependent on any dosimetric parameter. Unpredictable factors such as intraprostatic seed migration and IO factors, prevented the accurate prediction of Day 30 dosimetry.

  4. Calibration of individual dosemeters by using external beams of photon radiation. A nationwide survey among Personal Dosimetry Services, authorized by CSN; Calibracion de dosimetros personales usando haces externos de fotones. Control de los Servicios de Dosimetria Personal autorizados por el CSN

    Energy Technology Data Exchange (ETDEWEB)

    Brosed, A; Ginjaume, M

    1995-12-01

    A nationwide survey in 1995 among Personal Dosimetry Services, authorized by the Spanish Nuclear Safety Council (CSN), has led the Spanish Dosimetry Laboratories to review and update the dosimetric conversion coefficients and correction factors in use in Spain since 1987. The recommendations of the ICRU Report 47(1992) are discussed and adopted. In addition differences in back-scattering form IRCU tissue and PMMA phantoms are analysed. Analytical functions used to calculate conversion coefficients and back-scattering correction factors due to the use of different phantom materials are presented, together with the adopted final values. Firstly, the above mentioned parameters are applied to ISO narrow spectra series, which are discribed in this report. Secondly, differences between 1995 and 1987 values are also shown. (Author)

  5. Sizewell B Power Station control dosimetry system

    International Nuclear Information System (INIS)

    Renn, G.

    1995-01-01

    Sizewell B Power Station is the first Pressurized Water Reactor (PWR) built in the UK for commercial electricity production. An effective control dosimetry system is a crucial tool, in allowing the station to assess its radiological performance against targets. This paper gives an overview of the control dosimetry system at Sizewell B and describes early operating experience with the system. (UK)

  6. The calibration method for personal dosimetry system in photon and neutron radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Trousil, J; Plichta, J [CSOD, Prague (Czech Republic); Nikodemova, D [SOD, Bratislava (Slovakia)

    1996-12-31

    The type testing of dosimetry system was performed with standard photon radiation fields within the energy range 15 keV to 1.25 MeV and electron radiation fields within the range 0.2 MeV to 3 MeV. For type testing of neutron dosimeters {sup 252}Cf and {sup 241}Am-Be radionuclide neutron sources was used, as well as a 14 MeV neutron generator. The neutron sources moderated by various moderating and absorbing materials was also used. The routine calibration of individual photon dosemeters was carried out using a {sup 137}Cs calibration source in the air kerma quality in the dose range 0.2 mGy to 6 Gy. The type testing of neutron dosemeters was performed in collaboration with Nueherberg laboratory on neutron generator with neutron energies -.57; 1.0;; 5.3 and 15.1 MeV. The fading and angular dependence testing was also included in the tests of both dosemeter systems. (J.K.).

  7. Bio-dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Kristova, R.; Stainova, A.; Deleva, S.; Popova, L.; Georgieva, D.

    2013-01-01

    Full text: Introduction: The impact of ionizing radiation in medical, occupational and accidental human exposure leads to adverse side effects such as increased mortality and carcinogenesis. Information about the level of absorbed dose is important for risk assessment and for implementation of appropriate therapy. In most cases of actual or suspected exposure to ionizing radiation biological dosimetry is the only way to assess the absorbed dose. What you will learn: In this work we discuss the methods for biodosimetry and technological developments in their application in various emergency situations. The application of biological dosimetry and assessment of the influence of external factors in the conduct of epidemiological studies of radiation effects in protracted low-dose ionizing radiation on humans is presented. Discussion: The results of cytogenetic analysis and biological evaluation of absorbed dose based on the analysis of dicentrics in peripheral blood lymphocytes of five people injured in a severe radiation accident in Bulgaria in 2011 are presented. The assessed individual doses of the injured persons are in the range of 1.2 to 5,2 Gy acute homogeneous irradiation and are in line with the estimates of international experts. Conclusion: An algorithm to conduct a biological assessment of the dose in limited radiation accidents and in large scale radiation accidents with large number irradiated or suspected for exposure persons is proposed

  8. RENEB - Running the European Network of biological dosimetry and physical retrospective dosimetry.

    Science.gov (United States)

    Kulka, Ulrike; Abend, Michael; Ainsbury, Elizabeth; Badie, Christophe; Barquinero, Joan Francesc; Barrios, Lleonard; Beinke, Christina; Bortolin, Emanuela; Cucu, Alexandra; De Amicis, Andrea; Domínguez, Inmaculada; Fattibene, Paola; Frøvig, Anne Marie; Gregoire, Eric; Guogyte, Kamile; Hadjidekova, Valeria; Jaworska, Alicja; Kriehuber, Ralf; Lindholm, Carita; Lloyd, David; Lumniczky, Katalin; Lyng, Fiona; Meschini, Roberta; Mörtl, Simone; Della Monaca, Sara; Monteiro Gil, Octávia; Montoro, Alegria; Moquet, Jayne; Moreno, Mercedes; Oestreicher, Ursula; Palitti, Fabrizio; Pantelias, Gabriel; Patrono, Clarice; Piqueret-Stephan, Laure; Port, Matthias; Prieto, María Jesus; Quintens, Roel; Ricoul, Michelle; Romm, Horst; Roy, Laurence; Sáfrány, Géza; Sabatier, Laure; Sebastià, Natividad; Sommer, Sylwester; Terzoudi, Georgia; Testa, Antonella; Thierens, Hubert; Turai, Istvan; Trompier, François; Valente, Marco; Vaz, Pedro; Voisin, Philippe; Vral, Anne; Woda, Clemens; Zafiropoulos, Demetre; Wojcik, Andrzej

    2017-01-01

    A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.

  9. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...

  10. Chernobyl Experience in the Field of Retrospective Dosimetry

    International Nuclear Information System (INIS)

    Chumak, V.; Bakhanova, E.

    2011-01-01

    Chernobyl accident, which occurred on April 26, 1986 at NPP located less than 150 km north of Kiev, is the largest nuclear accident ever. Unprecedented scale of the accident was determined not only by the amount of released activity, but also by a number of population and workers involved and, therefore, exposed to enhanced doses of ionizing radiation. Population of the 30-km exclusion zone numbering about 116,000 persons of all ages and both genders was evacuated within days and weeks after the accident, emergency workers called ''liquidators of the accident'' (males age 20-50) were involved into clean-up and recovery for 5 years and their number is estimated as 600,000, about 300,000 are Ukrainian citizens. Due to unexpected and excessively large scale accident, none of residents had personal dosimeters, personal dosimetry of liquidators was not total, dosimetry techniques and practices were far from the optimum. As a result, an acute need for retrospective dose assessment was dictated by radiation protection and research considerations. This need was responded by implementation of wide scale dose reconstruction efforts, which covered main exposed cohorts and encompassed broad variety of newly developed methods: analytical (time-and-motion), modeling, biological and physical (EPR spectroscopy of teeth, TL of quartz). The presentation summarizes vast experience accumulated by RCRM in the field of retrospective dosimetry of large cohorts of exposed population and professionals. These dose reconstruction projects were implemented, in particular, in the framework of epidemiological studies, designed to follow-up medical consequences of Chernobyl accident and study health effects of ionizing radiation, in particular, Ukrainian-American studies of cataracts and leukemia among liquidators. Over 25 years passed after Chernobyl accident a broad variety of retrospective dosimetry problems was addressed by the team of Research Center for Radiation Medicine AMS Ukraine. In

  11. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  12. In vivo dosimetry with silicon diodes in total body irradiation

    International Nuclear Information System (INIS)

    Oliveira, F.F.; Amaral, L.L.; Costa, A.M.; Netto, T.G.

    2014-01-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments. - Highlights: ► Characterization of a silicon diode dosimetry system. ► Application of the diodes for in vivo dosimetry in total body irradiation treatments. ► Implementation of in vivo dosimetry as a part of a quality assurance program in radiotherapy

  13. Argentine Republic intercomparison programme for personal dosimeters

    International Nuclear Information System (INIS)

    Gregori, Beatriz N.; Papadopulos, Susana B.; Kunst, Juan J.; Cruzate, Juan A.; Saravi, Margarita C.

    2004-01-01

    In 1997 an Intercomparison Program for individual monitoring started in order to test (on a voluntary basis) the performance in absorbed dose and personal dose equivalent determinations. The aim of the program was also to gain some insight into the general aspects related to the type of the personnel dosimeter used, the calibration procedures, the phantom spectral dependence and the management of radiological quantities. The Regional Reference Center for Dosimetry (CCR), of the Argentine National Atomic Energy Commission and the Physical Dosimetry Laboratory of the Argentine National Regulatory Authority, performed the irradiations. Those were done free air and on ICRU phantom, using X-ray, quality ISO: W60, W80, W110 and W200; and 137 Cs and 60 Co gamma rays, normal and angular (0, 30, 60 degrees) incidence. In the framework of the Program, an upgraded workshop took place and the national standard, IRAM 17146, was elaborated as well. In this work, the laboratories performance and its temporal evolution is shown from 1997 up to 2002. The suggestions to improve their performance are also included. (author)

  14. Dose intercomparison studies for standardization of high-dose dosimetry in Viet Nam

    International Nuclear Information System (INIS)

    Mai Hoang Hoa; Duong Nguyen Dinh; Kojima, T.

    1999-01-01

    The Irradiation Center of the Vietnam Atomic Energy Commission (IC-VAEC) is planning to establish a traceability system for high-dose dosimetry and to provide high-dose standards as a secondary standard dosimetry laboratory (SSDL) level in Vietnam. For countries which do not have a standard dosimetry laboratory, the participation in the International Dose Assurance Service (IDAS) operated by the International Atomic Energy Agency (IAEA) is the most common means to verify own dosimetry performance with a certain uncertainty. This is, however, only one-direction dose intercomparison with evaluation by IAEA including unknown parameter at participant laboratories. The SSDL level laboratory should have traceability as well as compatibility, ability to evaluate uncertainties of its own dosimetry performance by itself In the present paper, we reviewed our dosimetry performance through two-way dose intercomparison studies and self-evaluation of uncertainty in our dosimetry procedure. The performance of silver dichromate dosimeter as reference transfer dosimeter in IC-VAEC was studied through two-way blind dose intercomparison experiments between the IC-VAEC and JAERI. As another channel of dose intercomparison with IAEA, alanine dosimeters issued by IDAS were simultaneously irradiated with the IC-VAEC dichromate dosimeters at IC-VAEC and analyzed by IAEA. Dose intercomparison between IC-VAEC and JAERI results into a good agreement (better than ±2.5%), and IDAS results also show similar agreement within ±3.0%. The uncertainty was self-estimated on the basis of the JAERI alanine dosimetry, and a preliminary value of about 1.86% at a 68% confidence level is established. The results from these intercomparisons and our estimation of the uncertainty are consistent. We hope that our experience is valuable to other countries which do not have dosimetry standard laboratories and/or are planning to establish them. (author)

  15. Implementation of a new personal dosimetry service by the French Army

    International Nuclear Information System (INIS)

    Perks, C.A.; Castagnet, X.

    2006-01-01

    This paper will describe the motivation of the Service de Protection Radiologique des Armees (S.P.R.A.) for replacing their existing dosimetry service based on photographic films with one centralized at Clamart, near Paris, and adopting dosemeters based on Optically Stimulated Luminescence (O.S.L.). The advantages of centralization and of the new technology adopted will be discussed. (authors)

  16. Dose Estimation from Daily and Weekly Dosimetry Data

    International Nuclear Information System (INIS)

    Ostrouchov, G.

    2001-01-01

    greatly between person-years. Second, the addition of pocket-meter information reduces uncertainty for some person-years, while increasing it for others. Together, these results suggest that detailed pocket-meter and film dosimetry information is required to obtain unbiased and reliable dosimetry data for use in epidemiologic studies of workers at ORNL

  17. Dose Estimation from Daily and Weekly Dosimetry Data

    Energy Technology Data Exchange (ETDEWEB)

    Ostrouchov, G.

    2001-11-16

    amount of bias also varies greatly between person-years. Second, the addition of pocket-meter information reduces uncertainty for some person-years, while increasing it for others. Together, these results suggest that detailed pocket-meter and film dosimetry information is required to obtain unbiased and reliable dosimetry data for use in epidemiologic studies of workers at ORNL.

  18. Personnel Dosimetry for Radiation Accidents. Proceedings of a Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation

    International Nuclear Information System (INIS)

    1965-01-01

    Accidents involving the exposure of persons to high levels of radiation have been few in number and meticulous precautions are taken in an effort to maintain this good record. When, however, such an accident does occur, a timely estimate of the dose received can be of considerable help to the physician in deciding whether a particular person requires medical treatment, and in selecting the most appropriate treatment. Individual dosimetry provides the physical basis for relating the observed effects to those in other accident cases, to other human data, and to data from animal experiments, thus providing an important aid to rational treatment and to the accumulation of a meaningful body of knowledge on the subject. It is most important therefore that, where there is a possibility of receiving high-level exposure, methods of personnel dosimetry should be available that would provide the dosimetric information most useful to the physician. Provision of good personnel dosimetry for accidental high-level exposure is in many cases an essential part of emergency planning because the information provided may influence emergency and rescue operations, and can lead to improved accident preparedness. Accordingly, the International Atomic Energy Agency and the World Health Organization jointly organized the Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation for the discussion of such methods and for a critical review of the procedures adopted in some of the radiation accidents that have already occurred. The meeting was attended by 179 participants from 34 countries and from five other international organizations. The papers presented and the ensuing discussions are published in these Proceedings. It is hoped that the Proceedings will be of help to those concerned with the organization and development of wide-range personnel monitoring systems, and with the interpretation of the results provided

  19. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies

    International Nuclear Information System (INIS)

    2011-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade.

  20. Future developments in etched track detectors for neutron dosimetry

    International Nuclear Information System (INIS)

    Tommasino, L.

    1987-01-01

    Many laboratories engaged in the field of personal neutron dosimetry are interested in developing better etching processes and improving the CR-39 detecting materials. To know how much effort must still be devoted to the development of etch track dosimetry, it is necessary to understand the advantages. limitations and degree of exploitation of the currently available techniques. So much has been learned about the chemical and electrochemical etching processes that an optimised combination of etching processes could make possible the elimination of many of the existing shortcomings. Limitations of etched track detectors for neutron dosimetry arise mainly because the registration occurs only on the detector surface. These damage type detectors are based on radiation induced chain scission processes in polymers, which result in hole-type tracks in solids. The converse approach, yet to be discovered, would be the development of cure-track detectors, where radiation induced cross linking between organic polymer chains could result in solid tracks in liquids. (author)

  1. MOSFET dosimetry: temperature effects in-vivo

    International Nuclear Information System (INIS)

    Yu, P.K.N.; Cheung, T.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: This note investigates temperature effects on dosimetry using a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 deg C up to 40 deg C. Thus standard irradiations performed at room temperature can be directly compared to in-vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependant on the dose history of the MOSFET dosimeter. However the variation can be accounted for in the measurement method. For accurate dosimetry the detector should be placed for approximately 60 seconds on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 seconds after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  2. Optically stimulated luminescence dosimetry performance of natural Brazilian topaz exposed to beta radiation

    International Nuclear Information System (INIS)

    Bernal, R.; Souza, D. N.; Valerio, M. E. G.; Cruz-Vazquez, C.; Barboza-Flores, M.

    2006-01-01

    Optically stimulated luminescence (OSL) has become the technique of choice in many areas of dosimetry. Natural materials like topaz are available in large quantities in Brazil and other countries. They have been studied to investigate the possibility of use its thermoluminescence (TL) properties for dosimetric applications. In this work, we investigate the possibility of utilising the OSL properties of natural Brazilian topaz in dosimetry. Bulk topaz samples were exposed to doses up to 100 Gy of beta radiation and the integrated OSL as a function of the dose showed linear behaviour. The fading occurs in the first 20 min after irradiation but it is <6% of the integrated OSL measured shortly after exposure. We conclude that natural colourless topaz is a very suitable phosphor for OSL dosimetry. (authors)

  3. Internal sources dosimetry

    International Nuclear Information System (INIS)

    Savio, Eduardo

    1994-01-01

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  4. CIEMAT external dosimetry service: ISO/IEC 17025 accreditation and 3 y of operational experience as an accredited laboratory

    International Nuclear Information System (INIS)

    Romero, A.M.; Rodriguez, R.; Lopez, J.L.; Martin, R.; Benavente, J.F.

    2016-01-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. (authors)

  5. Performance of a PADC personal neutron dosemeter at simulated and real workplace fields of the nuclear industry

    International Nuclear Information System (INIS)

    Fiechtner, A.; Boschung, M.; Wernli, C.

    2007-01-01

    In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given. In cases were the neutron dose was too low to be measured by the PADC personal neutron dosemeter, the response is estimated by convoluting the responses to monoenergetic neutrons with the dose energy distribution measured within EVIDOS. The advantages and limitations of the PADC personal neutron dosemeter are discussed. (authors)

  6. Effects of temperature variation on MOSFET dosimetry

    International Nuclear Information System (INIS)

    Cheung Tsang; Butson, Martin J; Yu, Peter K N

    2004-01-01

    This note investigates temperature effects on dosimetry using a metal oxide semiconductor field effect transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown that the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 deg. C up to 40 deg. C. Thus standard irradiations performed at room temperature can be directly compared to in vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependent on the dose history of the MOSFET dosimeter. However, the variation can be accounted for in the measurement method. For accurate dosimetry, the detector should be placed for approximately 60 s on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 s after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established. (note)

  7. Integration of external and internal dosimetry in Switzerland

    International Nuclear Information System (INIS)

    Frei, D.; Wernli, C.; Baechler, S.; Fischer, G.; Jossen, H.; Leupin, A.; Lortscher, Y.; Mini, R.; Otto, T.; Schuh, R.; Weidmann, U.

    2007-01-01

    Individual monitoring regulations in Switzerland are based on the ICRP60 recommendations. The annual limit of 20 mSv for the effective dose applies to the sum of external and internal radiation. External radiation is monitored monthly or quarterly with TLD, DIS or CR-39 dosemeters by 10 approved external dosimetry services and reported as H p (10) and H p (0.07). Internal monitoring is done in two steps. At the workplace, simple screening measurements are done frequently in order to recognise a possible incorporation. If a nuclide dependent activity threshold is exceeded then one of the seven approved dosimetry services for internal radiation does an incorporation measurement to assess the committed effective dose E 50 . The dosimetry services report all the measured or assessed dose values to the employer and to the National Dose Registry. The employer records the annually accumulated dose values into the individual dose certificate of the occupationally exposed person, both the external dose H p (10) and the internal dose E 50 as well as the total effective dose E = H p (10) + E 50 . Based on the national dose registry an annual report on the dosimetry in Switzerland is published which contains the statistics for the total effective dose, as well as separate statistics for external and internal exposure. (authors)

  8. Dosimetry of the Embalse nuclear power plant neutron/gamma mixed fields

    International Nuclear Information System (INIS)

    Salas, C.A.

    1990-01-01

    The aim of this work is to describe the method used at the Embalse nuclear power plant for carrying out personal dosimetry of the agents affected to the tasks on the Embalse nuclear power plant neutron-gamma mixed fields. (Author) [es

  9. Techniques for radiation measurements: Micro-dosimetry and dosimetry

    International Nuclear Information System (INIS)

    Waker, A. J.

    2006-01-01

    Experimental Micro-dosimetry is concerned with the determination of radiation quality and how this can be specified in terms of the distribution of energy deposition arising from the interaction of a radiation field with a particular target site. This paper discusses various techniques that have been developed to measure radiation energy deposition over the three orders of magnitude of site-size; nano-meter, micrometer and millimetre, which radiation biology suggests is required to fully account for radiation quality. Inevitably, much of the discussion will concern the use of tissue-equivalent proportional counters and variants of this device, but other technologies that have been studied, or are under development, for their potential in experimental Micro-dosimetry are also covered. Through an examination of some of the quantities used in radiation metrology and dosimetry the natural link with Micro-dosimetric techniques will be shown and the particular benefits of using Micro-dosimetric methods for dosimetry illustrated. (authors)

  10. Developing an optimum protocol for thermoluminescence dosimetry with gr-200 chips using Taguchi method

    International Nuclear Information System (INIS)

    Sadeghi, Maryam; Faghihi, Reza; Sina, Sedigheh

    2017-01-01

    Thermoluminescence dosimetry (TLD) is a powerful technique with wide applications in personal, environmental and clinical dosimetry. The optimum annealing, storage and reading protocols are very effective in accuracy of TLD response. The purpose of this study is to obtain an optimum protocol for GR-200; LiF: Mg, Cu, P, by optimizing the effective parameters, to increase the reliability of the TLD response using Taguchi method. Taguchi method has been used in this study for optimization of annealing, storage and reading protocols of the TLDs. A number of 108 GR-200 chips were divided into 27 groups, each containing four chips. The TLDs were exposed to three different doses, and stored, annealed and read out by different procedures as suggested by Taguchi Method. By comparing the signal-to-noise ratios the optimum dosimetry procedure was obtained. According to the results, the optimum values for annealing temperature (de.C), Annealing Time (s), Annealing to Exposure time (d), Exposure to Readout time (d), Pre-heat Temperature (de.C), Pre-heat Time (s), Heating Rate (de.C/s), Maximum Temperature of Readout (de.C), readout time (s) and Storage Temperature (de.C) are 240, 90, 1, 2, 50, 0, 15, 240, 13 and -20, respectively. Using the optimum protocol, an efficient glow curve with low residual signals can be achieved. Using optimum protocol obtained by Taguchi method, the dosimetry can be effectively performed with great accuracy. (authors)

  11. Tritium dosimetry and standardization

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1983-01-01

    Actual problem of radiation hygiene such as an evaluation of human irradiation hazard due to a contact with tritium compounds both in industrial and public spheres is under discussion. Sources of tritium release to environment are characterized. Methods of tritium radiation monitoring are discussed. Methods of dosimetry of internal human exposure resulted from tritium compounds are developed on the base of modern representations on metbolism and tritium radiobiological effect. A system of standardization of permissible intake of tritium compounds for personnel and persons of population is grounded. Some protection measures are proposed as applied to tritium overdosage

  12. Dental tissue as a thermoluminescence dosimetry dosimeter

    International Nuclear Information System (INIS)

    Solaimani, F.; Zahmatkesh, M.H.; Akhlaghpoor, Sh.

    2003-01-01

    Background: Thermoluminescence dosimetry is one of the dosimetry procedures used widely as routine and personal dosimeters. In order to extend this kind of dosimeters, dental tissue has been examined and was found promising as a Thermoluminescence Dosimetry dosimeter. Materials and Methods: In this study, 70 health teeth were collected. The only criterion, wich was considered for selection of the teeth, was the healthiness of them regardless of age and gender of the donors. All collected samples were washed and cleaned and milled uniformly. The final powder had a uniform grain size between 100-300 micrometer. The sample was divided into four groups. Group A and B were used for measurement of density and investigation of variation of thermoluminescent characteristics with temperature respectively. Groups C and D were used for investigation of variation of thermoluminescent intensity with dose and fading of this intensity with time. In all cases the results obtained with dental tissue were compared to a standard LiF, thermoluminescence dosimetry dosimeter. Results: It was found that, average density of the dental tissue was 1.570 g/cm 3 , which is comparable to density of LiF, which is 1.612g/cm 3 . It was also concluded that the range of 0-300 d ig C , dental tissue has a simple curve with two specific peaks at 140 and 25 d ig C respectively. The experiment also showed that, the variation of relative intensity versus dose is linear in the range of 0.04-0.1 Gy. The fading rate of dental tissue is higher than LiF but still in the acceptable range (14% per month in compare to 5.2% per month). Conclusion: Dental tissue as a natural dosimeter is comparable with Thermoluminescence Dosimetry and can be used in accidental events with a good approximation

  13. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  14. Thermoluminescence albedo-neutron dosimetry

    International Nuclear Information System (INIS)

    Strand, T.; Storruste, A.

    1986-10-01

    The report discusses neutron detection with respect to dosimetry and compares different thermoluminescent dosimetry materials for neutron dosimetry. Construction and calibration of a thermoluminescence albedo neutron dosemeter, developed by the authors, is described

  15. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  16. Survey of international personnel radiation dosimetry programs

    International Nuclear Information System (INIS)

    Swaja, R.E.

    1985-04-01

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables

  17. Criticality accident dosimetry with ESR spectroscopy.

    Science.gov (United States)

    d'Errico, F; Fattibene, P; Onori, S; Pantaloni, M

    1996-01-01

    The suitability of the ESR alanine and sugar detectors for criticality accident dosimetry was experimentally investigated during an intercomparison of dosimetry techniques. Tests were performed irradiating detectors both free-in-air and on-phantom during controlled critcality excursions at the SILENE reactor in Valduc, France. Several grays of absorbed dose were imparted in neutron gamma-ray fields of various relative intensities and spectral distributions. Analysed results confirmed the potential of these systems which can immediately provide an acute dose assessment with an average underestimate of 30%in the various fields. This performance allows for the screening of severely exposed individuals and meets the IAEA recommendations on the early estimate of accident absorbed doses.

  18. Dynamic determination of equivalent CT source models for personalized dosimetry

    Directory of Open Access Journals (Sweden)

    Rosendahl Stephan

    2017-09-01

    Full Text Available With improvements in CT technology, the need for reliable patient-specific dosimetry increased in the recent years. The accuracy of Monte-Carlo simulations for absolute dose estimation is related to scanner specific information on the X-ray spectra of the scanner as well as the form filter geometries and compositions. In this work a mobile measurement setup is developed, which allows both to determine the X-ray spectra and equivalent form filter of a specific scanner from just one helical scan in less than 2 minutes.

  19. MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA

    Energy Technology Data Exchange (ETDEWEB)

    Ibbott, G. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  20. The Third International Intercomparison on EPR Tooth Dosimetry: Part 2, final analysis

    International Nuclear Information System (INIS)

    Wieser, A.; Debuyst, R.; Fattibene, P.; Meghzifene, A.; Onori, S.; Bayankin, S. N.; Brik, A.; Bugay, A.; Chumak, V.; Ciesielski, B.; Hoshi, M.; Imata, H.; Ivannikov, A.; Ivanov, D.; Junczewska, M.; Miyazawa, C.; Penkowski, M.; Pivovarov, S.; Romanyukha, A.; Romanyukha, L.; Schauer, D.; Scherbina, O.; Schultka, K.; Sholom, S.; Skvortsov, V.; Stepanenko, V.; Thomas, J. A.; Tielewuhan, E.; Toyoda, S.; Trompier, F.

    2006-01-01

    The objective of the Third International Intercomparison on EPR Tooth Dosimetry was to evaluate laboratories performing tooth enamel dosimetry <300 mGy. Final analysis of results included a correlation analysis between features of laboratory dose reconstruction protocols and dosimetry performance. Applicability of electron paramagnetic resonance (EPR) tooth dosimetry at low dose was shown at two applied dose levels of 79 and 176 mGy. Most (9 of 12) laboratories reported the dose to be within 50 mGy of the delivered dose of 79 mGy, and 10 of 12 laboratories reported the dose to be within 100 mGy of the delivered dose of 176 mGy. At the high-dose tested (704 mGy) agreement within 25% of the delivered dose was found in 10 laboratories. Features of EPR dose reconstruction protocols that affect dosimetry performance were found to be magnetic field modulation amplitude in EPR spectrum recording, EPR signal model in spectrum deconvolution and duration of latency period for tooth enamel samples after preparation. (authors)

  1. Review of the correlation between results of cytogenetic dosimetry from blood lymphocytes and EPR dosimetry from tooth enamel for victims of radiation accidents

    International Nuclear Information System (INIS)

    Khvostunov, I.K.; Ivannikov, A.I.; Skvortsov, V.G.; Golub, E.V.; Nugis, V. Yu.

    2015-01-01

    The goal of this study was to compare dose estimates from electron paramagnetic resonance (EPR) dosimetry with teeth and cytogenetic dosimetry with blood lymphocytes for 30 victims of radiation accidents. The whole-body exposures estimated by tooth enamel EPR dosimetry were ranging from 0.01 to 9.3 Gy. Study group comprised victims exposed to acute and prolonged irradiation at high and low dose rate in different accidents. Blood samples were taken from each of them for cytogenetic analysis. Aberrations were scored and analysed according to International Atomic Energy Agency (IAEA) guidelines for conventional and FISH analysis. Tooth samples were collected in dental clinics after they had been extracted during ordinary practice. EPR dosimetry was performed according to the IAEA protocol. EPR dosimetry showed good correlation with dosimetry based on chromosomal analysis. All estimations of cytogenetic dose below detection limit coincide with EPR dose estimates within the ranges of uncertainty. The differences between cytogenetic and EPR assays may occur in a case of previous unaccounted exposure, non-homogeneous irradiation and due to contribution to absorbed dose from neutron irradiation. (authors)

  2. The principles of radioiodine dosimetry following a nuclear accident

    International Nuclear Information System (INIS)

    Zvonova, I.A.

    1996-01-01

    Based upon the experience of radioiodine dosimetry after the Chernobyl accident main principals of radioiodine measurements and dosimetry in thyroid glands of population in case of a radiation accident are discussed in the report. For the correct dose estimation following the radioiodine measurement in the thyroid one should know the ''history'' of radionuclide intake into the body of a contaminated person. So a measurement of radioiodine thyroid content should be accompanied by asking questions of investigated persons about, their life style and feeding after a nuclear incident. These data coincidently with data of radionuclides dynamic in the air and food (especially in milk products) are used for the development of radioiodine intake model and then for thyroid dose estimation. The influence of stable iodine prophylaxis and other countermeasures on values are discussed in dependence on the time of its using. Some methods of thyroid dose reconstruction used after the Chernobyl accident in Russia for a situation of thyroid radioiodine measurements lacking in a contaminated settlement are presented in the report. (author). 16 refs, 5 figs, 3 tabs

  3. The principles of radioiodine dosimetry following a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Zvonova, I A [Institute of Radiation Hygiene, St. Petersburg (Russian Federation)

    1996-08-01

    Based upon the experience of radioiodine dosimetry after the Chernobyl accident main principals of radioiodine measurements and dosimetry in thyroid glands of population in case of a radiation accident are discussed in the report. For the correct dose estimation following the radioiodine measurement in the thyroid one should know the ``history`` of radionuclide intake into the body of a contaminated person. So a measurement of radioiodine thyroid content should be accompanied by asking questions of investigated persons about, their life style and feeding after a nuclear incident. These data coincidently with data of radionuclides dynamic in the air and food (especially in milk products) are used for the development of radioiodine intake model and then for thyroid dose estimation. The influence of stable iodine prophylaxis and other countermeasures on values are discussed in dependence on the time of its using. Some methods of thyroid dose reconstruction used after the Chernobyl accident in Russia for a situation of thyroid radioiodine measurements lacking in a contaminated settlement are presented in the report. (author). 16 refs, 5 figs, 3 tabs.

  4. Patient dosimetry improvements in longitudinal field MRI linear accelerators

    International Nuclear Information System (INIS)

    Oborn, B.M.; Metcalfe, P.E.; Butson, M.J.; Keall, P.

    2010-01-01

    Full text: Many studies exist of the often undesirable dosimetry changes in transverse field MRI-Linacs. Currently there are plans by different groups around the world to develop longitudinal MRT-Linac systems as dosimetry is potentially superior to transverse field sy tems. The objective of this study is to investigate via Monte Carlo simulations, the potential dosimetry improvements expected in lo gitudinal MRI-Linac designs over transverse field designs for advanced image-guided radiotherapy (IGRT). Geant4 Monte Carlo simulations have been performed of the dosimetry from a Varian 2100c 6 MV photon beam in lo gitudinal magnetic field typical of expected MRI-Linac designs. A 30 x 30 x 20 cm' phantom has been simulated in magnetic fields between 0 and 3 T. Beam profiles and skin dose calculations have been performed and compared with transverse field systems. Results The longitudinal magnetic field acts to reduce lateral dose spread in all locations within a patient. As well as this, the electron return effcct is absent. This equates to reductions in penumbral widths and reductions in skin dose. When compared with transverse field systems the dosimetry is superior. This will also allow for further reductions in trcatment margins as compared to transverse field MRI Linac designs.

  5. Factors influencing EPR dosimetry in fingernails

    International Nuclear Information System (INIS)

    Dubner, D.L.; Spinella, M.R.; Bof, E.

    2010-01-01

    The technique based on the detection of ionizing radiation induced radicals by EPR in tooth enamel is an established method for the dosimetry of exposed persons in radiological emergencies. Dosimetry based on EPR spectral analysis of fingernail clippings, currently under development, has the practical advantage of the easier sample collection. A limiting factor is that overlapping the radiation induced signal (RIS), fingernails have shown the presence of two mechanically induced signals, called MIS1 and MIS2, due to elastic and plastic deformation respectively, at the time of fingernails cutting. With a water treatment, MIS1 is eliminated while MIS2 is considerably reduced. The calibration curves needed for radiation accident dosimetry should have 'universal' characteristics, ie. Represent the variability that can be found in different individuals. Early studies were directed to the analysis of factors affecting the development of such universal calibration curves. The peak to peak amplitude of the signal before and after the water treatment as well as the effect of size and number of clippings were studied. Furthermore, the interpersonal and intrapersonal variability were analyzed. Taking into account these previous studies, the optimal conditions for measurement were determined and EPR spectra of samples irradiated at different doses were used for the developing of dose-response curves. This paper presents the analysis of the results.(authors) [es

  6. Direct internal dosimetry. A new way for routine incorporation monitoring of γ-emitting radionuclides

    International Nuclear Information System (INIS)

    Doerfel, H.

    1996-01-01

    The INDOS detector system offers the following advantages with respect to routine incorporation monitoring: The measurement is performed automatically and there is no need for trained staff. The measuring time is short and thus a relative large number of persons may be monitored with a relative high measuring frequency. First estimates of the individual effective dose equivalent rate are available immediately after the measurement. 1) The direct determination of the dose equivalent in principle is more precise than the conventional procedures for internal dosimetry, because (i) the retention of radionuclides in the body may be measured explicitly and (ii) the dependence of the dose equivalent on the body proportions is corrected implicitly. 2) The measuring procedure is comparable to the external dosimetry with respect to accuracy and lower limit of detection. Thus, the results of internal and external dosimetry can be summed up in an easy and reasonable manner. 3) The detector system can be installed in any building; it also can be installed as a mobile unit in a car or a container for long distance transportation by aircraft or train. 4) Last but not least, the cost for monitoring with INDOS is much lower than for the conventional monitoring procedures using whole body counters. (author)

  7. Determining the lower limit of detection for personnel dosimetry systems

    International Nuclear Information System (INIS)

    Roberson, P.L.; Carlson, R.D.

    1992-01-01

    A simple method for determining the lower limit of detection (LLD) for personnel dosimetry systems is described. The method relies on the definition of a critical level and a detection level. The critical level is the signal level above which a result has a small probability of being due to a fluctuation of the background. All results below the critical level should not be reported as an indication of a positive result. The detection level is the net signal level (i.e., dose received) above which there is a high confidence that a true reading will be detected and reported as a qualitatively positive result. The detection level may be identified as the LLD. A simple formula is derived to allow the calculation of the LLD under various conditions. This type of formula is being used by the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry. Participants in either the National Voluntary Laboratory Accreditation Program (NVLAP) for personnel dosimetry or DOELAP can use performance test results along with a measurement of background levels to estimate the LLDs for their dosimetry system. As long as they maintain their dosimetry system such that the LLDs are less than half the lower limit of the NVLAP or DOELAP test exposure ranges, dosimetry laboratories can avoid testing failures due to poor performance at very low exposures

  8. Neutron dosimetry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W

    1955-03-29

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  9. Calorimetric dosimetry of reactor radiation

    International Nuclear Information System (INIS)

    Radak, B.; Markovic, V.; Draganic, I.

    1961-01-01

    Calorimetric dosimetry of reactor radiation is relatively new reactor dosimetry method and the number of relevant papers is rather small. Some difficulties in applying standard methods (chemical dosemeters, ionization chambers) exist because of the complexity of radiation. In general application of calorimetric dosemeters for measuring absorbed doses is most precise. In addition to adequate choice of calorimetric bodies there is a possibility of determining the yields of each component of the radiation mixture in the total absorbed dose. This paper contains a short review of the basic calorimetry methods and some results of measurements at the RA reactor in Vinca performed by isothermal calorimeter [sr

  10. The Vinca dosimetry experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-03-15

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States.

  11. The Vinca dosimetry experiment

    International Nuclear Information System (INIS)

    1962-03-01

    On 15 October 1958 there occurred a very brief uncontrolled run of the zero-power reactor at the Boris Kidric Institute of Nuclear Science, Vinca, near Belgrade, Yugoslavia. During this run six persons received various doses of radiation. They were subsequently given medical treatment of a novel kind at the Curie Hospital, Paris. In atomic energy operations to date, very few accidents involving excessive radiation exposure to human beings have occurred. In fact, the cases of acute radiation injury are limited to about 30 known high exposures, few of which were in the lethal or near-lethal range. Since direct experiment to determine the effects of ionizing radiation on man is unacceptable, information on these effects has to be based on a consideration of data relating to accidental exposures, viewed in the light of the much more extensive data obtained from experiments on animals. Therefore, any direct information on the effects of radiation on humans is very valuable. The international dosimetry project described in this report was carried out at Vinca, Yugoslavia, under the auspices of the International Atomic Energy Agency to determine the precise amount of radiation to which the persons had been exposed during the accident. These dosimetry data, together with the record of the carefully observed clinical effects, are of importance both for the scientific study of radiation effects on man and for the development of methods of therapy. The experiment and measurements were carried out at the end of April 1960. The project formed part of the Agency's research programme in the field of health and safety. The results of the experiment are made available through this report to all Member States

  12. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  13. Alanine dosimetry for clinical applications. Proceedings

    International Nuclear Information System (INIS)

    Anton, M.

    2006-05-01

    The following topics are dealt with: Therapy level alanine dosimetry at the UK Nationational Physical Laboratory, alanine as a precision validation tool for reference dosimetry, composition of alanine pellet dosimeters, the angular dependence of the alanine ESR spectrum, the CIAE alanine dosimeter for radiotherapy level, a correction for temporal evolution effects in alanine dosimetry, next-generation services foe e-traceability to ionization radiation national standards, establishing e-traceability to HIST high-dose measurement standards, alanine dosimetry of dose delivery from clinical accelerators, the e-scan alanine dosimeter reader, alanine dosimetry at ISS, verification of the integral delivered dose for IMRT treatment in the head and neck region with ESR/alanine dosimetry, alanine dosimetry in helical tomotherapy beams, ESR dosimetry research and development at the University of Palermo, lithium formate as a low-dose EPR radiation dosimeter, sensitivity enhancement of alanine/EPR dosimetry. (HSI)

  14. Quality control through dosimetry at a contract radiation processing facility

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Roediger, A.H.A.

    1985-01-01

    Reliable dosimetry procedures constitute a very important part of process control and quality assurance at a contract gamma radiation processing facility that caters for a large variety of different radiation applications. The choice, calibration and routine intercalibration of the dosimetry systems employed form the basis of a sound dosimetry policy in radiation processing. With the dosimetric procedures established, detailed dosimetric mapping of the irradiator upon commissioning (and whenever source modifications take place) is carried out to determine the radiation processing characteristics and peformance of the plant. Having established the irradiator parameters, routine dosimetry procedures, being part of the overall quality control measures, are employed. In addition to routine dosimetry, independent monitoring of routine dosimetry is performed on a bi-monthly basis and the results indicate a variation of better than 3%. On an annaul basis the dosimetry systems are intercalibrated through at least one primary standard dosimetry laboratory and to date a variation of better than 5% has been experienced. The company also participates in the Pilot Dose Assurance Service of the International Atomic Energy Agency, using the alanine/ESR dosimetry system. Routine calibration of the instrumentation employed is carried out on a regular basis. Detailed permanent records are compiled on all dosimetric and instrumentation calibrations, and the routine dosimetry employed at the plant. Certificates indicating the measured absorbed radiation doses are issued on request and in many cases are used for the dosimetric release of sterilized medical and pharmaceutical products. These procedures, used by Iso-Ster at its industrial gamma radiation facility, as well as the experience built up over a number of years using radiation dosimetry for process control and quality assurance are discussed. (author)

  15. Developing an Optimum Protocol for Thermoluminescence Dosimetry with GR-200 Chips using Taguchi Method.

    Science.gov (United States)

    Sadeghi, Maryam; Faghihi, Reza; Sina, Sedigheh

    2017-06-15

    Thermoluminescence dosimetry (TLD) is a powerful technique with wide applications in personal, environmental and clinical dosimetry. The optimum annealing, storage and reading protocols are very effective in accuracy of TLD response. The purpose of this study is to obtain an optimum protocol for GR-200; LiF: Mg, Cu, P, by optimizing the effective parameters, to increase the reliability of the TLD response using Taguchi method. Taguchi method has been used in this study for optimization of annealing, storage and reading protocols of the TLDs. A number of 108 GR-200 chips were divided into 27 groups, each containing four chips. The TLDs were exposed to three different doses, and stored, annealed and read out by different procedures as suggested by Taguchi Method. By comparing the signal-to-noise ratios the optimum dosimetry procedure was obtained. According to the results, the optimum values for annealing temperature (°C), Annealing Time (s), Annealing to Exposure time (d), Exposure to Readout time (d), Pre-heat Temperature (°C), Pre-heat Time (s), Heating Rate (°C/s), Maximum Temperature of Readout (°C), readout time (s) and Storage Temperature (°C) are 240, 90, 1, 2, 50, 0, 15, 240, 13 and -20, respectively. Using the optimum protocol, an efficient glow curve with low residual signals can be achieved. Using optimum protocol obtained by Taguchi method, the dosimetry can be effectively performed with great accuracy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force

    Directory of Open Access Journals (Sweden)

    Caroline Stokke

    2017-11-01

    Full Text Available Abstract Background The European directive on basic safety standards (Council directive 2013/59 Euratom mandates dosimetry-based treatment planning for radiopharmaceutical therapies. The directive comes into operation February 2018, and the aim of a report produced by the Internal Dosimetry Task Force of the European Association of Nuclear Medicine is to address this aspect of the directive. A summary of the report is presented. Results A brief review of five of the most common therapy procedures is included in the current text, focused on the potential to perform patient-specific dosimetry. In the full report, 11 different therapeutic procedures are included, allowing additional considerations of effectiveness, references to specific literature on quantitative imaging and dosimetry, and existing evidence for absorbed dose-effect correlations for each treatment. Individualized treatment planning with tracer diagnostics and verification of the absorbed doses delivered following therapy is found to be scientifically feasible for almost all procedures investigated, using quantitative imaging and/or external monitoring. Translation of this directive into clinical practice will have significant implications for resource requirements. Conclusions Molecular radiotherapy is undergoing a significant expansion, and the groundwork for dosimetry-based treatment planning is already in place. The mandated individualization is likely to improve the effectiveness of the treatments, although must be adequately resourced.

  17. Research needs related to internal dosimetry. Joint panel on occupational and environmental research for uranium production in Canada (JP-1)

    Energy Technology Data Exchange (ETDEWEB)

    Duport, P; Pomroy, C [Atomic Energy Control Board, Ottawa, ON (Canada); Brown, D [Saskatchewan Human Resources, Labour and Employment, Regina (Canada)

    1990-12-31

    There are several important techniques of internal dosimetry for use with uranium mine and mill workers: personal radon daughter dosimetry, uranium content of urine, whole body counter to evaluate the uranium in lung burden, and assay of uranium in biopsy or autopsy tissue samples. There are problems with each of these techniques and further research is required in internal dosimetry (as well as the alternative of monitoring exposure levels). This research should be aimed at improved or supplementary dosimetry techniques, enhanced theoretical interpretation of dosimetry results and fundamental research not directly related to the techniques mentioned above. Proposals for research as presented by the working group in this report should be considered by funding organizations concerned with internal dosimetry as it relates to the uranium mining industry, and, since this report was first presented. AECB has proceeded with related projects. (author).

  18. Research needs related to internal dosimetry. Joint panel on occupational and environmental research for uranium production in Canada (JP-1)

    International Nuclear Information System (INIS)

    Duport, P.; Pomroy, C.; Brown, D.

    1989-01-01

    There are several important techniques of internal dosimetry for use with uranium mine and mill workers: personal radon daughter dosimetry, uranium content of urine, whole body counter to evaluate the uranium in lung burden, and assay of uranium in biopsy or autopsy tissue samples. There are problems with each of these techniques and further research is required in internal dosimetry (as well as the alternative of monitoring exposure levels). This research should be aimed at improved or supplementary dosimetry techniques, enhanced theoretical interpretation of dosimetry results and fundamental research not directly related to the techniques mentioned above. Proposals for research as presented by the working group in this report should be considered by funding organizations concerned with internal dosimetry as it relates to the uranium mining industry, and, since this report was first presented. AECB has proceeded with related projects. (author)

  19. Textbook of dosimetry. 4. ed.

    International Nuclear Information System (INIS)

    Ivanov, V.I.

    1999-01-01

    This textbook of dosimetry is devoted to the students in physics and technical physics of high education institutions, confronted with different application of atomic energy as well as with protection of population and environment against ionizing radiations. Atomic energy is highly beneficial for man but unfortunately incorporates potential dangers which manifest in accidents, the source of which is either insufficient training of the personnel, a criminal negligence or insufficient reliability of the nuclear facilities. The majority of the incident and accident events have had as origin the personnel errors. This was the case with both the 'Three Miles Island' (1979) and Chernobyl (1986) NPP accidents. The dosimetry science acquires a vital significance in accident situations since the data obtained by its procedures are essential in choosing the correct immediate actions, behaviour tactics, orientation of liquidation of accident consequences as well as in ensuring the health of population. An important accent is placed in this manual on clarification of the nature of physical processes taken place in dosimetric detectors, in establishing the relation between radiation field characteristics and the detector response as well as in defining different dosimetric quantities. The terminology and the units of physical quantities is based on the international system of units. The book contains the following 15 chapters: 1. Ionizing radiation field; 2. Radiation doses; 3. Physical bases of gamma radiation dosimetry; 4. Ionization dosimetric detectors; 5. Semiconductor dosimetric detectors; 6. Scintillation detection in the gamma radiation dosimetry; 7. Luminescent methods in dosimetry; 8. The photographic and chemical methods of gamma radiation dosimetry; 9. Neutron dosimetry; 10. Dosimetry of high intensity radiation; 11. Dosimetry of high energy Bremsstrahlung; 12. Measurement of the linear energy transfer; 13. Microdosimetry; 14. Dosimetry of incorporated

  20. Medical radiation dosimetry with radiochromic film

    International Nuclear Information System (INIS)

    Butson, M.J.; Cancer Services, NSW; Cheung, T.; Yu, P.K.N.; Metcalfe, P.

    2004-01-01

    Full text: Photon, electron and proton radiation are used extensively for medical purposes in diagnostic and therapeutic procedures. Dosimetry of these radiation sources can be performed with radiochromic films, devices that have the ability to produce a permanent visible colour change upon irradiation. Within the last ten years, the use of radiochromic films has expanded rapidly in the medical world due to commercial products becoming more readily available, higher sensitivity films and technology advances in imaging which have allowed scientists to use two-dimensional dosimetry more accurately and inexpensively. Radiochromic film dosimeters are now available in formats, which have accurate dose measurement ranges from less than 1 Gy up to many kGy. A relatively energy independent dose response combined with automatic development of radiochromic film products has made these detectors most useful in medical radiation dosimetry. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  1. Artificial neural networks in neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)

    2005-07-01

    An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  2. Artificial neural networks in neutron dosimetry

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A.; Gallego, E.; Lorente, A.

    2005-01-01

    An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the χ 2 - test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)

  3. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Spanish Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual’s working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  4. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  5. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  6. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (Chinese Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  7. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    Cytogenetic dosimetry is recognized as a valuable dose assessment method which fills a gap in dosimetric technology, particularly when there are difficulties in interpreting the data, in cases where there is reason to believe that persons not wearing dosimeters have been exposed to radiation, in cases of claims for compensation for radiation injuries that are not supported by unequivocal dosimetric evidence, or in cases of exposure over an individual's working lifetime. The IAEA has maintained a long standing involvement in biological dosimetry commencing in 1978. This association has been through a sequence of coordinated research programmes (CRPs), the running of regional and national training courses, the sponsorship of individual training fellowships, and the provision of equipment to laboratories in Member States, establishing capabilities in biological dosimetry. From this has arisen the provision to Member States of advice regarding the best focus for research and suggestions for the most suitable techniques for future practice in biological dosimetry. One CRP resulted in the publication in 1986 of a manual, entitled Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment (Technical Reports Series No. 260). This was superseded in 2001 by a revised second edition, Technical Reports Series No. 405. This present publication constitutes a third edition, with extensive updating to reflect the considerable advances that have been made in cytogenetic biological dosimetry during the past decade

  8. Review on the characteristics of radiation detectors for dosimetry and imaging

    International Nuclear Information System (INIS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-01-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  9. Personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs

  10. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  11. Organisation of a laboratory of photographic dosimetry

    International Nuclear Information System (INIS)

    Soudain, Georges

    1961-01-01

    After a recall of the main properties of photographic dosimetry, the author describes the principle of this method, and comments the issue of chromatic sensitivity of photographic emulsions. He discusses the calibration process for gamma radiation, X rays, and thermal neutrons. He describes how fast neutron dosimetry is performed. In the next part, he describes the organisation of the photometry laboratory which has to prepare and distribute dosimeters, to collect and exploit them, and to prepare a publication of results. These different missions and tasks are described

  12. Non-ionizing electromagnetic exposure assessment and dosimetry

    International Nuclear Information System (INIS)

    Paulsson, L.E.

    1992-11-01

    A comprehensive literature survey of advancements in the area 'human exposure assessment and dosimetry' for the years 1988-1992 has been performed by the author and published elsewhere. In the present report that material has been complemented with a historical background and a thorough description of the physical principles behind the methods and techniques. The report covers strategies, principles, methods, limitations and future developments for the area of human exposure assessment and dosimetry of electromagnetic fields form extremely low frequencies up to and including microwaves

  13. Dose evaluation in criticality accidents using response of panasonic TL personal dosemeters (UD-809/UD-802)

    International Nuclear Information System (INIS)

    Zeyrek, C. T.; Guenduez, H.

    2012-01-01

    This study gives the results of dosimetry measurements carried out in the Silene reactor at Valduc (France) with neutron and photon personal thermoluminescence dosemeters (TLDs) in mixed neutron and gamma radiation fields, in the frame of the international accident dosimetry intercomparison programme in 2002. The intercomparison consisted of a series of three irradiation scenarios. The scenarios took place at the Valduc site (France) by using the Silene experimental reactor. For neutron and photon dosimetry, Panasonic model UD-809 and UD-802 personal TLDs were used together. (authors)

  14. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  15. Personality, Political Skill, and Job Performance

    Science.gov (United States)

    Blickle, Gerhard; Meurs, James A.; Zettler, Ingo; Solga, Jutta; Noethen, Daniela; Kramer, Jochen; Ferris, Gerald R.

    2008-01-01

    Based on the socioanalytic perspective of performance prediction [Hogan, R. (1991). Personality and personality assessment. In M. D. Dunnette, L. Hough, (Eds.), "Handbook of industrial and organizational psychology" (2nd ed., pp. 873-919). Chicago: Rand McNally; Hogan, R., & Shelton, D. (1998). A socioanalytic perspective on job performance.…

  16. Intercomparison program of personal dosemeters in the Argentine Republic

    International Nuclear Information System (INIS)

    Gregori, B.N.; Papadopulos, S.B.; Kunst, J.J.

    1998-01-01

    During 1997, under the auspices of the Nuclear Regulatory Authority (ARN), its was held the third exercise of intercomparison of laboratories of personal dosimetry. The dosemeters were irradiated in X-ray beams ISO quality W60, W110, W200 and gamma sources cesium 137 and cobalt 60. The irradiation were performed kerma free in air and in phantom in order to study the capacity to evaluate both conditions. An extent range of doses (low-high) have been given 0.3 mSv- 20mSv in order to determine the operative performance o each laboratory. Over 19 laboratories of Argentina, participated 13 (65%) and finished the intercomparison 12 (60%) of them. The systems of dosimetry detection were based on film and TLD. During this intercomparison as inquiry about several items related with the laboratories have been made. In this work are shown the individual laboratory results of the intercomparison related with the acceptance curve criteria ICRP 60 and 55. (author)

  17. Development a high-resolution radiation dosimetry system based on Fricke solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Mattea, F. [Universidad Nacional de Cordoba, Facultad de Ciencias Quimicas, Departamento de Quimica Organica, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: josevedelago@gmail.com [Instituto de Fisica E. Gaviola, Oficina 102 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Due to the growing complexity of modern medical procedures involving the use of ionizing radiation, dosimetry by non-conventional techniques is one of the research areas in the field of greatest interest nowadays. Tissue-equivalent high-resolution dosimetry systems capable of attaining continuous dose mapping are required. In this scenario, Fricke gel dosimetry is a very promising option for in-phantom dose measurements in complex radiation techniques. Implementation of this technique requires dedicated instruments capable of measuring and performing the immediate in situ analysis of the acquired data at the radiation facility. The versatility of Fricke gel dosimetry in different applications depending on the chemical and isotopic composition of the dosimeter extends its application to different high performance conventional and non-conventional radiation procedures involving diverse types of radiation treatments and also radiation diagnosis procedures. This work presents an integral dosimetry system, based on Fricke gel solutions and their analysis by optical techniques, aiming for an increase in the precision on dose determinations. The chemical synthesis and dosimeter preparation were accomplished at LIIFAMIRx facilities, following the procedures and protocols described in previous works. Additionally, specific instrumentation for optical sample analysis was completely designed and constructed at LIIFAMIRx facilities. The main outcome of this work was the development of a methodology that improves the integral dose determination performance by the pre-irradiation of Fricke gel dosimeters. (author)

  18. Development a high-resolution radiation dosimetry system based on Fricke solutions

    International Nuclear Information System (INIS)

    Vedelago, J.; Mattea, F.; Valente, M.

    2014-08-01

    Due to the growing complexity of modern medical procedures involving the use of ionizing radiation, dosimetry by non-conventional techniques is one of the research areas in the field of greatest interest nowadays. Tissue-equivalent high-resolution dosimetry systems capable of attaining continuous dose mapping are required. In this scenario, Fricke gel dosimetry is a very promising option for in-phantom dose measurements in complex radiation techniques. Implementation of this technique requires dedicated instruments capable of measuring and performing the immediate in situ analysis of the acquired data at the radiation facility. The versatility of Fricke gel dosimetry in different applications depending on the chemical and isotopic composition of the dosimeter extends its application to different high performance conventional and non-conventional radiation procedures involving diverse types of radiation treatments and also radiation diagnosis procedures. This work presents an integral dosimetry system, based on Fricke gel solutions and their analysis by optical techniques, aiming for an increase in the precision on dose determinations. The chemical synthesis and dosimeter preparation were accomplished at LIIFAMIRx facilities, following the procedures and protocols described in previous works. Additionally, specific instrumentation for optical sample analysis was completely designed and constructed at LIIFAMIRx facilities. The main outcome of this work was the development of a methodology that improves the integral dose determination performance by the pre-irradiation of Fricke gel dosimeters. (author)

  19. Report of results of the tests of evaluation of the operation of service of personal dosimetry of the CNLV

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Tovar M, V.M.

    2005-11-01

    The ININ realized the evaluation of the service of personal dosimetry in the CNLV, in the categories: IV.- (Photons of high energy of 137 Cs) and the VA.- (Particles beta of 90 Sr/ 90 Y); in the category IV the test was satisfactory, however in the chart 1 has an underestimation a the American Standard HP over the value true conventional of a 9%; for this irregularity it is recommended to revise the procedures of evaluation of the process and the determination of the chart 1 of the HP. In the category VA, the test is also satisfactory, however the results contrasted with the chart 2 and the HP, the values were overestimated in 29% of the true conventional value, and for that problem is recommended to revise the evaluation procedures in contrast with the values determined by the standard HP. (Author)

  20. CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY.

    Science.gov (United States)

    Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F

    2016-09-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Clinical dosimetry

    International Nuclear Information System (INIS)

    Rassow, J.

    1973-01-01

    The main point of this paper on clinical dosimetry which is to be understood here as application of physical dosimetry on accelerators in medical practice, is based on dosimetric methodics. Following an explanation of the dose parameters and description of the dose distribution important for clinical practice as well as geometric irradiation parameters, the significance of a series of physical parameters such as accelerator energy, surface energy of average stopping power etc. is dealt with in detail. Following a section on field homogenization with bremsstrahlung and electron radiation, details on dosimetry in clinical practice are given. Finally, a few problems of dosemeter or monitor calibration on accelerators are described. The explanations are supplemented by a series of diagrams and tables. (ORU/LH) [de

  2. Fast neutron spectrometry and dosimetry; Spectrometrie et dosimetrie des neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Blaize, S; Ailloud, J; Mariani, J; Millot, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    We have studied fast neutron spectrometry and dosimetry through the recoil protons they produce in hydrogenated samples. In spectrometric, we used nuclear emulsions, in dosimetric, we used polyethylene coated with zinc sulphide and placed before a photomultiplier. (author)Fren. [French] Nous avons etudie la spectrometrie et la dosimetrie des neutrons rapides en utilisant les protons de recul qu'ils produisent dans une matiere hydrogenee. En spectrometrie, nous avons employe des emulsions nucleaires, en dosimetrie, du polyethylene recouvert de sulfure de zinc place devant un photomultiplicateur. (auteur)

  3. Nuclear accident dosimetry. Revision of emergency data sheets

    International Nuclear Information System (INIS)

    Delafield, H.J.

    1976-09-01

    The Emergency Data Sheets on Nuclear Accident Dosimetry have been revealed following the publication of a three part manual on this subject (Delafield, Dennis and Gibson, AERE-R 7485/6/7, 1973). This memo provides an explanation of the action levels adopted for the initial segregation of irradiated persons following a criticality accident, by monitoring the activity of indium foils contained in personnel dosimeters and the induced body sodium activity. The data sheets are given as an Appendix. They provide basic information on; the segregation of irradiated persons, the estimation of radiation exposure, and the assessment of personnel γ-ray and neutron doses. (author)

  4. Dosimetry Control: Technic and methods. Proceedings of the international workshop 'Actual problems of dosimetry'

    International Nuclear Information System (INIS)

    Lyutsko, A.M.; Nesterenko, V.B.; Chudakov, V.A.; Konoplya, E.F.; Milyutin, A.A.

    1997-10-01

    There is a number of unsolved problems of both dosimetric and radiometric control, questions of the biological dosimetry, reconstruction of dozes of irradiation of the population at radiation incidents, which require coordination of efforts of scientists in various areas of a science. The submitted materials are grouped on five units: dosimetry engineering, biological dosimetry and markers of radiation impact, dosimetry of a medical irradiation, normative and measurement assurance of the dosimetric control, monitoring and reconstruction of dozes at radiation incidents

  5. Regional inter-comparison of measurements of personal dose equivalent Hp(10) using photon beams

    International Nuclear Information System (INIS)

    Bero, M.; Zahili, M.; Kharita, M.H.

    2012-11-01

    The overall objective is to verify performance and to improve the Individual Monitoring services (IMS). This can be achieved with the following specific objectives of the intercomparison:1. To assess the capabilities of the dosimetry services to measure the quantity H p (10) in photon (gamma and x-ray) fields. 2. To help the participating Member States in achieving sufficiently accurate dosimetry service and, if necessary, 3. To provide guidelines for improvements and not simply a test of the performance of the existing dosimetric service. Actually a significant improvement has been achieved by the participants in the accuracy of evaluating personal dose equivalent from 15% in the first phase to 5% in the second phase. Some participants used the results of the inter-comparison to verify the calibration and to improve their dosimetric procedures, but from the results it was clear that some participants need to a technical support especially in calibration and using their measuring system in the field of personal monitoring. The conclusion contains advises, solutions, propositions and evaluation for all situations which noticed during the intercomparison. (authors)

  6. Small field electron beam dosimetry using MOSFET detector.

    Science.gov (United States)

    Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K

    2010-10-04

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam.

  7. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    Science.gov (United States)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  8. Instrumentation in thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Julius, H.W.

    1986-01-01

    In the performance of a thermoluminescence dosimetry (TLD) system the equipment plays an important role. Crucial parameters of instrumentation in TLD are discussed in some detail. A review is given of equipment available on the market today - with some emphasis on automation - which is partly based on information from industry and others involved in research and development. (author)

  9. Cytogenetic techniques for biological indications and dosimetry of of radiation damages in humans

    International Nuclear Information System (INIS)

    Hadjidekova, V.

    2003-01-01

    The cytogenetic methods present a proved way for bio-monitoring and bio-dosimetry for persons, submitted to ionising radiation in occupational and emergency conditions. Their application complement and assist the evaluation of the physical dosimetry and takes in account the individual radiosensitivity of the organism. A comparative assessment is made of the cytogenetic markers for radiation damage of humans applied in Bulgaria. It is discussed the sensitivity of the methods and their development in the last years, as well as the basic concept for their application - the causal relationship between the frequency of the observation of cytogenetic markers in peripheral blood lymphocytes and the risk of oncological disease. The conventional analysis of dicentrics is recognised as a 'golden standard' for the quantitative assessment of the radiation damage. The long term persisting translocations reflect properly the cumulative dose burden from chronic exposure. The micronucleus test allows a quick screening of large groups of persons, working in ionising radiation environment. The combined application with centromeric DNA probe improves the sensitivity and presents a modern alternative of the bio-monitoring and bio-dosimetry. It is discussed the advantages of the different cytogenetic techniques and their optimised application for the assessment of the radiation impact on humans

  10. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  11. Evaluation of the vidar`s VXR-12 digitizer performances for film dosimetry of beams delimited by multileaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Julia, F [Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France); Briot, E

    1995-12-01

    The development of new irradiation techniques such as conformal radiotherapy increasingly implies the use of a multileaf collimator. The measurement of dose gradients in the penumbra region, and of dose distributions at the edge of complex shaped fields defined by multileaf collimators requires a high definition dosimetric method. Nowadays film digitizers have been notably improved and allow the film dosimetry to be faster, more accurate, presenting a sensitivity and high spatial resolution. To be able to perform the study of physical and dosimetric specifications of a multileaf collimator, we have evaluated the performances of the Vidar VCR-12 digitizer, with respect to its sensitivity, linearity, optical density range and the resolution. These performances were compared with the performances of different systems already in use in our department, either manual or automatic, using specific patterns. The main limitation for dosimetric use is the detection threshold that can introduce errors in isodose calculation, especially for the lowest values. The result of the intercomparisons have allowed corrections to be added, taking into account this Vidar problem. The results obtained after correction for the dose profiles of squared fields are in good agreement with ionization chamber measurements in a water phantom. It is concluded that Vidar digitizer is suitable for the use of film dosimetry for the dose distributions in fields defined by multileaf collimator.

  12. Dose evaluation in criticality accidents using response of Panasonic TL personal dosemeters (UD-809/UD-802).

    Science.gov (United States)

    Zeyrek, C T; Gündüz, H

    2012-09-01

    This study gives the results of dosimetry measurements carried out in the Silène reactor at Valduc (France) with neutron and photon personal thermoluminescence dosemeters (TLDs) in mixed neutron and gamma radiation fields, in the frame of the international accident dosimetry intercomparison programme in 2002. The intercomparison consisted of a series of three irradiation scenarios. The scenarios took place at the Valduc site (France) by using the Silène experimental reactor. For neutron and photon dosimetry, Panasonic model UD-809 and UD-802 personal TLDs were used together.

  13. Desiccants for retrospective dosimetry using optically stimulated luminescence (OSL)

    International Nuclear Information System (INIS)

    Geber-Bergstrand, Therése; Bernhardsson, Christian; Christiansson, Maria; Mattsson, Sören; Rääf, Christopher L.

    2015-01-01

    Optically stimulated luminescence (OSL) was used to test different kinds of desiccants for their potential use in retrospective dosimetry. Desiccants are used for the purpose of absorbing liquids and can be found in a number of items which may be found in the immediate environment of a person, including hand bags, drug packages, and the vehicles of rescue service teams. Any material exhibiting OSL properties suitable for retrospective dosimetry is a useful addition to the existing dosimetry system available in emergency preparedness. Eleven kinds of desiccants were investigated in order to obtain an overview of the fundamental OSL properties necessary for retrospective dosimetry. Measurements were made using a Risø TL/OSL reader and irradiations were achieved with the 90 Sr/ 90 Y source incorporated in the reader. Several of the desiccants exhibited promising properties as retrospective dosemeters. Some of the materials exhibited a strong as-received signal, i.e. without any laboratory irradiation, but the origin of this signal has not yet been established. The minimum detectable dose ranged from 8 to 450 mGy for ten of the materials and for one material (consisting of natural clay) the minimum detectable dose was 1.8 Gy. - Highlights: • Desiccants can be used as fortuitous dosemeters using OSL. • The minimum detectable dose for processed desiccants range from 8 to 450 mGy. • The minimum detectable dose for natural clay was 1.8 Gy

  14. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  15. Application of an alanine dosimetry system for industrial irradiation and radiation protection

    International Nuclear Information System (INIS)

    Gohs, U.

    1996-01-01

    This paper reports the application of alanine dosimetry in radiation processing. Continuous checks of the EPR measuring conditions as well as using high-quality alanine dosimeters and consistent technique for dose determination guarantee an accuracy of about ± 3% intermediate dose levels. The alanine dosimetry system was applied for dose mapping measurements during irradiator qualification and performance qualification of different products, routine dosimetry, and special radiation protection applications within the gamma irradiator. (author)

  16. Interlaboratory niobium dosimetry comparison

    International Nuclear Information System (INIS)

    Wille, P.

    1980-01-01

    For an interlaboratory comparison of neutron dosimetry using niobium the 93 sup(m)Nb activities of irradiated niobium monitors were measured. This work was performed to compare the applied techniques of dosimetry with Nb in different laboratories. The niobium monitors were irradiated in the fast breeder EBRII, USA and the BR2, Belgium. The monitors were dissolved and several samples were prepared. Their niobium contents were determined by the 94 Nb-count rates. since the original specific count rate was known. The KX radiations of the 93 sup(m)Nb of the samples and of a calibrated Nb-foil were compared. This foil was measured by PTB, Braunschweig and CBNM, Geel, which we additionally compared with the KX radiation of 88 Sr produced by a thin 88 Y source from a 88 Y-standard solution (PTB). (orig.) [de

  17. The Martin Marietta Energy Systems personnel neutron dosimetry program

    International Nuclear Information System (INIS)

    McMahan, K.L.

    1991-01-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages five sites for the US Department of Energy. Personnel dosimetry for four of the five sites is coordinated through a Centralized External Dosimetry System (CEDS). These four sites are the Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant (Y-12), the Oak Ridge K-25 Site (K-25), and the Paducah Gaseous Diffusion Plant (PGDP). The fifth Energy Systems site, Portsmouth Gaseous Diffusion Plant, has an independent personnel dosimetry program. The current CEDS personnel neutron dosimeter was first issued in January 1989, after an evaluation and characterization of the dosimeters' response in the workplaces was performed. For the workplace characterization, Energy Systems contracted with Pacific Northwest Laboratory (PNL) to perform neutron measurements at selected locations at ORNL and Y-12. K-25 and PGDP were not included because their neutron radiation fields were similar to others already planned for characterization at ORNL and Y-12. Since the initial characterization, PNL has returned to Oak Ridge twice to perform follow up measurements, and another visit is planned in the near future

  18. Nevada test site neutron dosimetry-problems/solutions

    International Nuclear Information System (INIS)

    Sygitowicz, L.S.; Bastian, C.T.; Wells, I.J.; Koch, P.N.

    1991-01-01

    Historically, neutron dosimetry at the NTS was done using NTA film and albedo LiF TLD's. In 1987 the dosimeter type was changed from the albedo TLD based system to a CR-39 track etch based system modeled after the program developed by D. Hankins at LLNL. Routine issue and return is performed quarterly for selected personnel using bar-code readers at permanent locations. The capability exists for work site issue as-needed. Issue data are transmitted by telephone to a central computer where it is stored until the dosimeter is returned, processed and read, and the dose calculation is performed. Dose equivalent calculations are performed using LOTUS 123 and the results are printed as a hard copy record. The issue and dose information are hand-entered into the Dosimetry database. An application is currently being developed to automate this sequence

  19. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    Verhavere, Ph.

    2007-01-01

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  20. Update of computer applications associated to measuring equipment of the services of internal dosimetry of NPPS and Tecnatom

    International Nuclear Information System (INIS)

    Bravo, B.; Sollet, E.; Serrano, E.

    2014-01-01

    Within the continuous improvement processes that take place in all the activities taking place in the Spanish nuclear power plants, and as a result of implementation of ISO Standards for Internal Dosimetry, has undertaken a review, improvement and updating INDAC ALEDIN and applications associated with measuring equipment and DIYs Quicky kind Personal Internal Dosimetry Services of the Spanish nuclear power plants and Tecnatom This paper presents updates capacities both tools. (Author)

  1. Quantitative performance evaluation of 124I PET/MRI lesion dosimetry in differentiated thyroid cancer

    Science.gov (United States)

    Wierts, R.; Jentzen, W.; Quick, H. H.; Wisselink, H. J.; Pooters, I. N. A.; Wildberger, J. E.; Herrmann, K.; Kemerink, G. J.; Backes, W. H.; Mottaghy, F. M.

    2018-01-01

    The aim was to investigate the quantitative performance of 124I PET/MRI for pre-therapy lesion dosimetry in differentiated thyroid cancer (DTC). Phantom measurements were performed on a PET/MRI system (Biograph mMR, Siemens Healthcare) using 124I and 18F. The PET calibration factor and the influence of radiofrequency coil attenuation were determined using a cylindrical phantom homogeneously filled with radioactivity. The calibration factor was 1.00  ±  0.02 for 18F and 0.88  ±  0.02 for 124I. Near the radiofrequency surface coil an underestimation of less than 5% in radioactivity concentration was observed. Soft-tissue sphere recovery coefficients were determined using the NEMA IEC body phantom. Recovery coefficients were systematically higher for 18F than for 124I. In addition, the six spheres of the phantom were segmented using a PET-based iterative segmentation algorithm. For all 124I measurements, the deviations in segmented lesion volume and mean radioactivity concentration relative to the actual values were smaller than 15% and 25%, respectively. The effect of MR-based attenuation correction (three- and four-segment µ-maps) on bone lesion quantification was assessed using radioactive spheres filled with a K2HPO4 solution mimicking bone lesions. The four-segment µ-map resulted in an underestimation of the imaged radioactivity concentration of up to 15%, whereas the three-segment µ-map resulted in an overestimation of up to 10%. For twenty lesions identified in six patients, a comparison of 124I PET/MRI to PET/CT was performed with respect to segmented lesion volume and radioactivity concentration. The interclass correlation coefficients showed excellent agreement in segmented lesion volume and radioactivity concentration (0.999 and 0.95, respectively). In conclusion, it is feasible that accurate quantitative 124I PET/MRI could be used to perform radioiodine pre-therapy lesion dosimetry in DTC.

  2. Individual monitoring dosimetry in Europe

    International Nuclear Information System (INIS)

    Menzel, H.G.

    1991-01-01

    This report discusses the various types of individual monitoring systems presently in use within the European community and neutron dosimetry research being coordinated by the EURADOS working group. Research is currently being conducted on nuclear track dosimeters, primarily with CR-39 (TM), and TLD-albedo dosimeters. Studies are being conducted on the energy and angular response of each type of dosimeter. Because the response of dosimeters depends on the energy of the neutrons, it is necessary to have spectral information to accurately assess the dose. Neutron energy spectrum measurements are being performed in typical work place environments. Work is also progressing on development of calibration sources which will be representative of the neutron energy spectrum found in typical neutron exposure situations. This work utilizes 14 MeV neutrons incident on a uranium block with various other filters. Research is also continuing on neutron dosimetry using tissue equivalent proportional counters and microdosimetric techniques. The results of intercomparisons between several different instruments are discussed. In addition to personnel dosimetry, these systems are being used to record the dose to passengers and flight crews aboard commercial aircraft

  3. Fundamentals of x-ray dosimetry

    International Nuclear Information System (INIS)

    Roesch, W.C.

    1976-01-01

    Fundamental information about x-ray dosimetry is presented. Definitions are given and expanded on for dose, absorbed dose including microdosimetry, radiation physics (properties of the radiation that are important to dosimetry), and dosimetry (how the properties are dealt with in determining dose). 5 figs, 12 refs

  4. Development of 3D Slicer based film dosimetry analysis

    International Nuclear Information System (INIS)

    Alexander, K M; Schreiner, L J; Robinson, A; Pinter, C; Fichtinger, G

    2017-01-01

    Radiochromic film dosimetry has been widely adopted in the clinic as it is a convenient option for dose measurement and verification. Film dosimetry analysis is typically performed using expensive commercial software, or custom made scripts in Matlab. However, common clinical film analysis software is not transparent regarding what corrections/optimizations are running behind the scenes. In this work, an extension to the open-source medical imaging platform 3D Slicer was developed and implemented in our centre for film dosimetry analysis. This extension streamlines importing treatment planning system dose and film imaging data, film calibration, registration, and comparison of 2D dose distributions, enabling greater accessibility to film analysis and higher reliability. (paper)

  5. Bayesian Methods for Radiation Detection and Dosimetry

    CERN Document Server

    Groer, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  6. Applied internal dosimetry staff exposed to Uranium

    International Nuclear Information System (INIS)

    Trotta, Marisa V.; Arguelles, Maria G.

    2009-01-01

    Dosimetric calculations are performed in order to estimate the quantity of a radionuclide that is incorporated by a worker. Urine determinations of activity and mass of uranium are made in the laboratory of Personal and Area Dosimetry. The paper presents reference values concerning the activity excreted in urine due to the incorporation of uranium compounds. The compounds analyzed are natural uranium and uranium enriched to 20 %, both soluble and insoluble. According to the limits allowed for the incorporation of uranium compounds of Type F and M, we verify that the times of monitoring and the detection limits of the equipment used to determine the activity are appropriate. On the other hand, the S-type compounds determination in urine is useful in cases of accidental incorporations (above the ALI) as a first and quick estimate; MDA (0.017 Bq / L) does not allow detection in routine monitoring; measurement in lungs, and faeces should be included. (author)

  7. Sixth symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    1987-01-01

    This booklet contains all abstracts of papers presented in 13 sessions. Main topics: Cross sections and Kerma factors; analytical radiobiology; detectors for personnel monitoring; secondary charged particles and microdosimetric basis of q-value for neutrons; personnel dosimetry; concepts for radiation protection; ambient monitoring; TEPC and ion chambers in radiation protection; beam dosimetry; track detectors (CR-39); dosimetry at biomedical irradiation facilities; health physics at therapy facilities; calibration for radiation protection; devices for beam dosimetry (TLD and miscellaneous); therapy and biomedical irradiation facilities; treatment planning. (HP)

  8. Environmental dosimetry

    International Nuclear Information System (INIS)

    Gold, R.

    1977-01-01

    For more than 60 years, natural radiation has offered broad opportunities for basic research as evidenced by many fundamental discoveries. Within the last decade, however, dramatic changes have occurred in the motivation and direction of this research. The urgent need for economical energy sources entailing acceptably low levels of environmental impact has compelled the applied aspects of our radiation environment to become overriding considerations. It is within this general framework that state-of-the-art environmental dosimetry techniques are reviewed. Although applied motivation and relevance underscores the current milieu for both reactor and environmental dosimetry, a perhaps even more unifying force is the broad similarity of reactor and environmental radiation fields. In this review, a comparison of these two mixed radiation fields is presented stressing the underlying similarities that exist. On this basis, the evolution of a strong inner bond between dosimetry methods for both reactor and environmental radiation fields is described. The existence of this bond will be illustrated using representative examples of observed spectra. Dosimetry methods of particularly high applicability for both of these fields are described. Special emphasis is placed on techniques of high sensitivity and absolute accuracy which are capable of resolving the components of these mixed radiation fields

  9. Nuclear accident dosimetry

    International Nuclear Information System (INIS)

    1982-01-01

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  10. Nuclear accident dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  11. Performance of an improved first generation optical CT scanner for 3D dosimetry

    International Nuclear Information System (INIS)

    Qian, Xin; Wuu, Cheng-Shie; Adamovics, John

    2013-01-01

    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE™ dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans. (note)

  12. Overview of double dosimetry procedures for the determination of the effective dose to the interventional radiology staff

    International Nuclear Information System (INIS)

    Jaervinen, H.; Buls, N.; Clerinx, P.; Jansen, J.; Miljanic, S.; Nikodemova, D.; Ranogajec-Komor, M.; D'Errico, F.

    2008-01-01

    In interventional radiology, for an accurate determination of effective dose to the staff, measurements with two dosemeters have been recommended, one located above and one under the protective apron. Such 'double dosimetry' practices and the algorithms used for the determination of effective dose were reviewed in this study by circulating a questionnaire and by an extensive literature search. The results indicated that regulations for double dosimetry almost do not exist and there is no firm consensus on the most suitable calculation algorithms. The calculation of effective dose is mainly based on the single dosemeter measurements, in which either personal dose equivalent, directly, (dosemeter below the apron) or a fraction of personal dose equivalent (dosemeter above the apron) is taken as an assessment of effective dose. The most recent studies suggest that there might not be just one double dosimetry algorithm that would be optimum for all interventional radiology procedures. Further investigations in several critical configurations of interventional radiology procedures are needed to assess the suitability of the proposed algorithms. (authors)

  13. Type tests to the automatic thermoluminescent dosimetry system acquired by the CPHR for personal dosimetry; Pruebas tipo al sistema de dosimetria termoluminiscente automatico adquirido por el CPHR para dosimetria personal

    Energy Technology Data Exchange (ETDEWEB)

    Molina P, D.; Pernas S, R.; Martinez G, A. [Centro de Proteccion e Higiene de las Radiaciones (CPHR), Calle 20 No. 4113 e/41 y 47. Playa, C.P. 11300, A.P. 6195, C.P. 10600 La Habana (Cuba)

    2006-07-01

    The CPHR individual monitoring service acquired an automatic RADOS TLD system to improve its capacities to satisfy the increasing needs of their national customers. The TLD system consists of: two automatic TLD reader, model DOSACUS, a TLD irradiator and personal dosimeters card including slide and holders. The dosimeters were composed by this personal dosimeters card and LiF:Mg,Cu,P (model GR-200) detectors. These readers provide to detectors a constant temperature readout cycle using hot nitrogen gas. In order to evaluate the performance characteristics of the system, different performance tests recommended by the IEC 1066 standard were carried out. Important dosimetric characteristics evaluated were batch homogeneity, reproducibility, detection threshold, energy dependence, residual signal and fading. The results of the tests showed good performance characteristics of the system. (Author)

  14. Automation of radiation dosimetry using PTW dosemeter and LabVIEWTM

    International Nuclear Information System (INIS)

    Weiss, C.; Al-Frouh, K.; Anjak, O.

    2011-01-01

    Automation of UNIDOS 'Dosemeter' using personal computer (PC) is discussed in this paper. In order to save time and eliminate human operation errors during the radiation dosimetry, suitable software, using LabVIEW TM graphical programming language, was written to automate and facilitate the processes of measurements, analysis and data storage. The software calculates the calibration factor of the ionization chamber in terms of air kerma or absorbed dose to water according to IAEA dosimetry protocols. It also has the ability to print a calibration certificate. The obtained results using this software are found to be more reliable and flexible than those obtained by manual methods previously employed. Using LabVIEW TM as a development tool is extremely convenient to make things easier when software modifications and improvements are needed.

  15. Characterization and evaluation studies on some JAERI dosimetry systems

    International Nuclear Information System (INIS)

    Kojima, T.; Sunaga, H.; Tachibana, H.; Takizawa, H.; Tanaka, R.

    2000-01-01

    Characterization and evaluation studies were carried out on some JAERI dosimetry systems, mainly alanine-ESR, in terms of the influence on the dose response of parameters such as orientation at ESR analysis, and the temperature during irradiation and analysis. Feasibility study for application of these dosimetry systems to electrons with energies lower than 4 MeV and bremsstrahlung (X rays) was also performed parallel to their reliability check through international dose intercomparison. (author)

  16. Quantitative imaging for clinical dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bardies, Manuel [INSERM U601, 9 Quai Moncousu, 44093 Nantes (France)]. E-mail: manu@nantes.inserm.fr; Flux, Glenn [Department of Physics, Royal Marsden NHS Trust, Sutton (United Kingdom); Lassmann, Michael [Department of Nuclear Medicine, Julis-Maximilians University, Wuerzburg (Germany); Monsieurs, Myriam [Department of Health Physics, University of Ghent, 9000 Ghent (Belgium); Savolainen, Sauli [Department of Physical Sciences, University of Helsinki and HUS, Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland); Strand, Sven-Erik [Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University (Sweden)

    2006-12-20

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  17. The PADE dosimetry system at the Brokdorf nuclear power station

    International Nuclear Information System (INIS)

    Poetter, Karl-Friedrich; Eckelmann, Joerg; Kuegow, Mario; Spahn, Werner; Franz, Manfred

    2002-01-01

    The PADE program system is used in nuclear power plants for personnel and workplace dosimetry and for managing access to the controlled area. On-line interfaces with existing dose determination systems allow collection, surveillance and evaluation functions to be achieved for person-related and workplace-related dose data. This is managed by means of open, non-proprietary communication of PADE with the computer system coupled via interfaces. In systems communication, PADE is limited to main interventions into outside systems, thus ensuring flexible adaptation to existing systems. As a client-server solution, PADE has been developed on the basis of an ORACLE-8 database; the version presented here runs on a Windows NT server. The system described has been used at the Brokdorf Nuclear Power Station since early 2000 and has so far reliably managed more than one million individual access movements of more than 6 000 persons. It is currently being integrated into a comprehensive plant operations management system. Among other things, PADE offers a considerable development potential for a tentatively planned future standardization of parts of the dosimetry systems in German nuclear power plants and for the joint management of in-plant and official dose data. (orig.) [de

  18. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    Science.gov (United States)

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.

    Science.gov (United States)

    Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah

    2016-01-01

    The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery.

  20. Personal dosimetric monitoring in Ukraine: current status and further development

    International Nuclear Information System (INIS)

    Chumak, V. V.; Musijachenkom, A. V.; Boguslavskaya, A. I.

    2003-01-01

    Presently Ukraine has mixed system for dosimetric monitoring. Nuclear power plants and some major nuclear facilities have their own dosimetry services, which are responsible for regular dosimetric monitoring of workers. Rest of occupationally exposed persons is monitored by dosimetry laboratories affiliated to the territorial authorities for sanitary and epidemiology supervision. In 2002-2003 Ukrainian Ministry of Health performed survey of the status of dosimetric monitoring and inventory of critical groups requiring such monitoring. Dosimetry services in Ukraine cover about 38,000 occupationally exposed workers, including 9,100 medical professionals, 16,400 employees of 5 nuclear power plants and ca.12,400 workers dealing with other sources of occupational exposure (industry, research). Territorial dosimetry services operate in 13 of 24 regions of Ukraine, using DTU-01 manual TLD readers produced with one exception in 1988-1990. The coverage of critical groups by dosimetric monitoring is variable and ranges from 38% to 100% depending on the region. Personnel of nuclear power plants (about 16,400 workers) is monitored by their own dosimetry services achieving absolute coverage of the main staff and temporary workers. Current inadequate status of dosimetric monitoring infrastructure in Ukraine demands an urgent elaboration of the united state system for monitoring and recording of individual doses. The proposed plan would allows to bring dosimetry infrastructure in Ukraine to the modern state which would be compatible with existing and future European and international radiation protection networks. Unitary structure of Ukraine, strong administrative command and good communications between regions of the country are positive factors in favour of efficient implementation of the proposed plan. Deficiencies are associated with limited funding of this effort. (authors)

  1. Relative dosimetry by Ebt-3

    International Nuclear Information System (INIS)

    De Leon A, M. A.; Rivera M, T.; Hernandez O, J. O.

    2015-10-01

    In the present work relative dosimetry in two linear accelerator for radiation therapy was studied. Both Varian Oncology systems named Varian Clinac 2100-Cd and MLC Varian Clinac i X were used. Gaf Chromic Ebt-3 film was used. Measurements have been performed in a water equivalent phantom, using 6 MV and 18 MV photon beams on both Linacs. Both calibration and Electron irradiations were carried out with the ionization chamber placed at the isocenter, below a stack of solid water slabs, at the depth of dose maximum (D max), with a Source-to-Surface Distance (SSD) of 100 cm and a field size of 10 cm x 10 cm. Calibration and dosimetric measurements photons were carried out under IAEA-TRS 398 protocol. Results of relative dosimetry in the present work are discussed. (Author)

  2. Study of a new glass matrix by thermoluminescent technique for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pamela Z.; Carvalho, Gabriel S. Marchiori de; Cunha, Diego M. da; Dantas, Noelio O.; Silva, Anielle C.A.; Neves, Lucio P.; Perini, Ana P., E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Fisica; Linda, V.E. Caldas [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carrera, Betzabel N.S.; Watanabe, Shigueo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-07-01

    The thermoluminescence technique is widely used for both personal and for high-dose dosimetry. In this work, the thermoluminescence technique was utilized to study a new glass matrix, with nominal composition of 20Li{sub 2}CO{sub 3}.10Al{sub 2}O{sub 3}.30BaO.40B{sub 2}O{sub 3} (mol%), irradiated with different doses in a {sup 60}Co source. The glow curves and the dose-response curve were obtained for radiation doses of 10, 50, 100, 200 e 700 Gy. The results showed that this new glass matrix has potential use in high-dose dosimetry. (author)

  3. Individual Dosimetry for High Energy Radiation Fields

    International Nuclear Information System (INIS)

    Spurny, F.

    1999-01-01

    The exposure of individuals on board aircraft increased interest in individual dosimetry in high energy radiation fields. These fields, both in the case of cosmic rays as primary radiation and at high energy particle accelerators are complex, with a large diversity of particle types, their energies, and linear energy transfer (LET). Several already existing individual dosemeters have been tested in such fields. For the component with high LET (mostly neutrons) etched track detectors were tested with and without fissile radiators, nuclear emulsions, bubble detectors for both types available and an albedo dosemeter. Individual dosimetry for the low LET component has been performed with thermoluminescent detectors (TLDs), photographic film dosemeters and two types of electronic individual dosemeters. It was found that individual dosimetry for the low LET component was satisfactory with the dosemeters tested. As far as the high LET component is concerned, there are problems with both the sensitivity and the energy response. (author)

  4. Alanine EPR dosimetry of therapeutic irradiators

    International Nuclear Information System (INIS)

    Bugay, O.; Bartchuk, V.; Kolesnik, S.; Mazin, M.; Gaponenko, H.

    1999-01-01

    The high-dose alanine EPR dosimetry is a very precise method in the dose range 1-100 kGy. The system is used generally as the standard high-dose transfer dosimetry in many laboratories. This is comparatively expensive technique so it is important to use it as a more universal dosimetry system also in the middle and low dose ranges. The problems of the middle-dose alanine dosimetry are discussed and the solution of several problems is proposed. The alanine EPR dosimetry has been applied to the dose measurements of medical irradiators in the Kiev City Oncology Center. (author)

  5. Personal radiation monitoring with thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Miano, S.C.

    1987-01-01

    The technique of personal dosimetry used by SAPRA (Servico de Assessoria e Protecao Radiologica S/C Ltda., Brazil) is presented. Thermoluminescent monitors and CaSO 4 : Dy are used in pastilles united by teflon. Characteristics of the dosemeters are briefly reported. The system of thermoluminescent measurement, designed and constructed by SAPRA, and the system of personal monitoring are described. (M.A.C.) [pt

  6. Investigations of CR39 dosimeters for neutron routine dosimetry

    International Nuclear Information System (INIS)

    Weinstein, M.; Abraham, A.; Tshuva, A.; German, U.

    2004-01-01

    CR-39 is a polymeric nuclear track detector which is widely used for neutron dosimetry. CR-39 detector development was conducted at a number of laboratories throughout the world(1,2) , and was accepted also for routine dosimetry. However, there are shortcomings which must be taken into consideration the lack of a dosimetry grade material which causes batch variations, significant angular dependence and a moderate sensitivity. CR-39 also under-responds for certain classes of neutron spectra (lower energy neutrons from reactors or high energy accelerator-produced neutrons).In order to introduce CR-39 as a routine dosimeter at NRCN, a series of checks were performed. The present work describes the results of some of our checks, to characterize the main properties of CR-39 dosimeters

  7. Exploring Relationships between Personality and Anatomy Performance

    Science.gov (United States)

    Finn, Gabrielle M.; Walker, Simon J.; Carter, Madeline; Cox, David R.; Hewitson, Ruth; Smith, Claire F.

    2015-01-01

    There is increasing recognition in medicine of the importance of noncognitive factors, including personality, for performance, and for good medical practice. The personality domain of conscientiousness is a well-established predictor of performance in workplace and academic settings. This study investigates the relationships between the "Big…

  8. Research about reactor operator's personality characteristics and performance

    International Nuclear Information System (INIS)

    Wei Li; He Xuhong; Zhao Bingquan

    2003-01-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  9. A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films and microdensitometry

    International Nuclear Information System (INIS)

    Crosbie, J. C.; Svalbe, I. D.; Lewis, R. A.

    2007-01-01

    Full text: Normal tissue displays an exceptional tolerance to high doses of radiation (hundreds of Gy) when delivered as a microplanar array of synchrotron-generated x-rays. Furthermore, MRT has been shown to cause significant tumour growth delay and in some case complete ablation. The biological effects of MRT on tissue are not fully understood. This is further complicated by difficulties in performing accurate dosimetry. The majority of dosimetry performed for MRT has been Monte Carlo simulations. The aim of this work was to utilise film dosimetry and microdensitometry to measure the peak-to-valley dose ratios (PVDRs) for synchrotron microbeam radiation therapy.

  10. Facilities and procedures used for the performance testing of DOE personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, P.L.; Fox, R.A.; Hogan, R.T.; Holbrook, K.L.; Hooker, C.D.; Yoder, R.C.

    1983-04-01

    Radiological calibration facilities for personnel dosimeter testing were developed at the Pacific Northwest Laboratory (PNL) for the Department of Energy (DOE) to provide a capability for evaluating the performance of DOE personnel dosimetry systems. This report includes the testing methodology used. The informational presented here meets requirements specified in draft ANSI N13.11 for the testing laboratory. The capabilities of these facilities include sealed source irradiations for /sup 137/Cs, several beta-particle emitters, /sup 252/Cf, and machine-generated x-ray beams. The x-ray beam capabilities include filtered techniques maintained by the National Bureau of Standards (NBS) and K-fluorescent techniques. The calibration techniques, dosimeter irradiation procedures, and dose-equivalent calculation methods follow techniques specified by draft ANSI N13.11 where appropriate.

  11. Facilities and procedures used for the performance testing of DOE personnel-dosimetry systems

    International Nuclear Information System (INIS)

    Roberson, P.L.; Fox, R.A.; Hogan, R.T.; Holbrook, K.L.; Hooker, C.D.; Yoder, R.C.

    1983-04-01

    Radiological calibration facilities for personnel dosimeter testing were developed at the Pacific Northwest Laboratory (PNL) for the Department of Energy (DOE) to provide a capability for evaluating the performance of DOE personnel dosimetry systems. This report includes the testing methodology used. The informational presented here meets requirements specified in draft ANSI N13.11 for the testing laboratory. The capabilities of these facilities include sealed source irradiations for 137 Cs, several beta-particle emitters, 252 Cf, and machine-generated x-ray beams. The x-ray beam capabilities include filtered techniques maintained by the National Bureau of Standards (NBS) and K-fluorescent techniques. The calibration techniques, dosimeter irradiation procedures, and dose-equivalent calculation methods follow techniques specified by draft ANSI N13.11 where appropriate

  12. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  13. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Xu Zhiyong

    2002-01-01

    Radiochromic film dosimetry was developed to measure ionization irradiation dose for industry and medicine. At this time, there are no comprehensive guideline on the medical application, calibration method and densitometer system for medicine. The review gives update on Radiochromic film dosimetry used for medicine, including principles, film model and material, characteristics, calibration method, scanning densitometer system and medical application

  14. 11. International conference on solid radiation dosimetry

    International Nuclear Information System (INIS)

    Krylova, I.V.

    1996-01-01

    The main problems discussed during the international conference on solid radiation dosimetry which took place in June 1995 in Budapest are briefly considered. These are the basic physical processes, materials applied for dosimetry, special techniques, personnel monitoring, monitoring of environmental effects, large-dose dosimetry, clinic dosimetry, track detector used for dosimetry, dosimetry in archaeology and geology, equipment and technique for dosimetric measurements. The special attention was paid to superlinearity in the TLD-100 (LiF, Mg, Ti) response function when determining doses of gamma radiation, heavy charged particles, low-energy particle fluxes in particular. New theoretical models were considered

  15. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers

    International Nuclear Information System (INIS)

    Hourdakis, Constantine J.; Boziari, A.

    2008-01-01

    Background and purpose: Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002 - 2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. Materials and Methods: The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. Results: The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside ±3% and 31% outside ±5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and

  16. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers.

    Science.gov (United States)

    Hourdakis, Constantine J; Boziari, A

    2008-04-01

    Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. This quality audit proved to be a

  17. Predicting sales performance: Strengthening the personality – job performance linkage

    NARCIS (Netherlands)

    T.B. Sitser (Thomas)

    2014-01-01

    markdownabstract__Abstract__ Many organizations worldwide use personality measures to select applicants for sales jobs or to assess incumbent sales employees. In the present dissertation, consisting of four independent studies, five approaches to strengthen the personality-sales performance

  18. Characterising an aluminium oxide dosimetry system.

    Science.gov (United States)

    Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor

    2015-09-01

    In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time.

  19. Thermoluminescence dosimetry environmental monitoring system

    International Nuclear Information System (INIS)

    Bortoluzzi, S.

    1989-01-01

    In this report, characteristics and performances of an environmental monitoring system with thermoluminescence dosimetry are presented. Most of the work deals with the main physical parameters necessary for measurements of ambiental dose. At the end of this report some of level doses in the environment around the site of the ENEA Center of Energy Research Salluggia (Italy) are illustrated

  20. Internal dosimetry performing dose assessments via bioassay measurements

    International Nuclear Information System (INIS)

    Bailey, K.M.

    1993-01-01

    The Internal Dosimetry Department at the Y-12 Plant maintains a state-of-the-art bioassay program managed under the guidance and regulations of the Department of Energy. The two major bioassay techniques currently used at Y-12 are the in vitro (urinalysis) and in vivo (lung counting) programs. Fecal analysis (as part of the in vitro program) is another alternative; however, since both urine and fecal analysis provide essentially the same capabilities for detecting exposures to uranium, the urinalysis is the main choice primarily for aesthetic reasons. The bioassay frequency is based on meeting NCRP 87 objectives which are to monitor the accumulation of radioactive material in exposed individuals, and to ensure that significant depositions are detected

  1. How can bio dosimetry measurements be used to improve radiation epidemiologic studies?

    International Nuclear Information System (INIS)

    Simon, Steven L.; Bouville, Andre; Kleinerman, Ruth

    2008-01-01

    Full text: Bio dosimetry measurements can be used potentially to improve radiation epidemiologic studies by providing a means to corroborate analytical or model-based dose estimates, to assess bias in models and their dose estimates, and reduce uncertainty in individual or group-average doses. Radiation epidemiologic studies typically rely on accurate estimation of doses to the whole body or to specific organs for numerous individuals in order to derive reliable estimates of risk of cancer or other medical conditions. However, dose estimates whether based on analytical dose reconstruction (i.e., models) or personnel monitoring measurements, e.g., film-badges, are associated with considerable and varying degrees of uncertainty. Uncertainty is a product of many factors; persons were exposed many years or decades earlier and usually only inadequate data or measurements are available. While bio dosimetry has begun to play a more significant role in long-term health risk studies, its use is still limited in that context, primarily due sometimes to inadequate limits of detection, inter-individual variability of the signal measured, and high per-sample cost. Presently, the most suitable bio dosimetry methods for epidemiologic studies are chromosome aberration frequencies from fluorescence in situ hybridization (FISH) of peripheral blood lymphocytes and electron paramagnetic resonance (EPR) measurements made on tooth enamel, with detection limits of approximately 0.3 to 0.5 Gy, and as low as 0.03 Gy for FISH and EPR, respectively. Presently, both methods are invasive and require obtaining either blood or teeth. Though both FISH and EPR have been used in a variety of large long-term health risk studies including those of a-bomb survivors and various occupational and environmental exposures, only recently has considerable thought been given to how these data can be used in epidemiologic studies in any but rudimentary ways. Key issues to consider are the representativeness of

  2. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  3. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    Md Saion bin Salikin.

    1983-01-01

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  4. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB.

    Science.gov (United States)

    Trompier, François; Burbidge, Christopher; Bassinet, Céline; Baumann, Marion; Bortolin, Emanuela; De Angelis, Cinzia; Eakins, Jonathan; Della Monaca, Sara; Fattibene, Paola; Quattrini, Maria Cristina; Tanner, Rick; Wieser, Albrecht; Woda, Clemens

    2017-01-01

    In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.

  5. Report on the Personnel Dosimetry at AB Atomenergi during 1968

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J; Wahlberg, T

    1969-08-15

    This report presents the results of personnel dosimetry at AB Atomenergi during 1968. 25600 gamma films and 3900 neutron films were evaluated. 1737 urine analyses and 1066 measurements of body activity were made. The external total body gamma dose for all employees (quarterly doses {<=} 100 mrem are not reported) corresponds to 136 manrem. The highest external total body gamma dose during 1968 to one person was 4,500 mrem.

  6. Report on the Personnel Dosimetry at AB Atomenergi during 1967

    International Nuclear Information System (INIS)

    Carlsson, J.; Wahlberg, T.

    1968-12-01

    This report presents the results of personnel dosimetry at AB Atomenergi during 1967. The external total body gamma dose for all employees (quarterly doses ≤ 100 mrem are not reported) corresponds to 140 manrem. The highest external total body gamma dose during 1967 to one person was 5700 mrem. 24700 gamma films and 3900 neutron films were evaluated. 1988 urine analyses and 989 measurements of body activity were made

  7. Report on the Personnel Dosimetry at AB Atomenergi during 1967

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J; Wahlberg, T

    1968-12-15

    This report presents the results of personnel dosimetry at AB Atomenergi during 1967. The external total body gamma dose for all employees (quarterly doses {<=} 100 mrem are not reported) corresponds to 140 manrem. The highest external total body gamma dose during 1967 to one person was 5700 mrem. 24700 gamma films and 3900 neutron films were evaluated. 1988 urine analyses and 989 measurements of body activity were made.

  8. Modern methods of personnel dosimetry

    International Nuclear Information System (INIS)

    Kraus, W.; Herrmann, D.; Kiesewetter, W.

    The physical properties of radiation detectors for personnel dosimetry are described and compared. The suitability of different types of dosimeters for operational and central monitoring of normal occupational exposure, for accident and catastrophe dosimetry and for background and space-flight dosimetry is discussed. The difficulties in interpreting the dosimeter reading with respect to the dose in individual body organs are discussed briefly. 430 literature citations (up to Spring 1966) are given

  9. Personnel radiation monitoring by thermoluminescence dosimetry (1995-96)

    International Nuclear Information System (INIS)

    Daw Mi Cho Cho; Daw Yi Yi Khin; Daw San San; U Maung Maung Tin; Daw Hla Hla Win

    2001-01-01

    Personnel radiation monitoring which is the dose assessment of individual doses from external radiation received by radiation workers has been carried out by Thermoluminescence Dosimetry system consisting of a Vinten Toledo TLD reader, LiF dosimeters and associated equipment. The exposed TLD dosimeters were measured by TLD reader and the dose evaluation and dose registration were done on personal computer. Due to the records of 1995-96, most of the radiation workers complied with the permissible dose recommended by IAEA and ICRP 60. (author)

  10. Performance of a coumarin-based liquid dosimeter for phantom evaluations of internal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Ae [Department of Radiology, Brigham and Women' s Hospital, Boston, MA 02115 (United States): Harvard Medical School, Boston, MA 02115 (United States)]. E-mail: miaepark@bwh.Harvard.edu; Moore, Stephen C. [Department of Radiology, Brigham and Women' s Hospital, Boston, MA 02115 (United States): Harvard Medical School, Boston, MA 02115 (United States); Limpa-Amara, Naengnoi [Department of Radiology, Brigham and Women' s Hospital, Boston, MA 02115 (United States): Harvard Medical School, Boston, MA 02115 (United States); Kang Zhuang [Department of Physics, University of Massachusettes at Lowell, Lowell, MA 01854 (United States); Makrigiorgos, G. Mike [Dana Faber-Brigham and Women' s Cancer Center, Boston, MA 01225 (United States): Harvard Medical School, Boston, MA 02115 (United States)

    2006-12-20

    Targeted radionuclide therapy (TRT) requires accurate absorbed dose estimation in individual patients. It has been shown that a coumarin-based liquid dosimeter is useful for various phantom geometries of relevance to patient-specific internal dosimetry. The purpose of this study was to refine the performance limits of the coumarin-3-carboxylic acid (CCA) dosimeter using the high-energy {beta}-emitter, Y-90, by measuring the dosimeter's dependence on dose rate, by finding the maximum dose limit, and by comparing measured dose values to those from Monte Carlo (MC) simulation. Non-fluorescent CCA is converted to highly fluorescent 7-hydroxyl-coumarin-3-carboxylic acid (7-OH-CCA) upon irradiation. We measured the Y-90-induced fluorescence from 7-OH-CCA under different conditions. Fluorescence was measured using activity concentrations from 1.1 to 181 MBq/cc, providing initial dose rates from 0.7 to 117 cGy/min. To determine the maximum dose limit, fluorescence was measured for different elapsed times from 4 to 150 h, using a fixed activity concentration, 3.7 MBq/cc. A Cs-137 irradiator was used for calibration, to convert fluorescence measurements to absorbed dose. We calculated absorbed dose using the DOSXYZnrc MC program. We modeled the geometry of cuvettes realistically, including plastic walls, surrounding air, and Y-90 in liquid. S-values of Y-90 in water were calculated using 1-mm cubic voxels. A linear dependence of fluorescence on dose rate was observed up to 80 cGy/min, and the dependence on total dose was linear up to {approx}20 Gy The average difference between calculated and measured dose values over 9 samples was 3.6{+-}2%. For our geometry, the dose based on voxel S-values was within 1% of that calculated using MC simulation of the phantom. We refined the performance limits of a CCA-based dosimeter for phantom studies of TRT using Y-90, and confirmed a close agreement between measured and calculated dose values. CCA dosimetry is a promising technique

  11. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.

    Science.gov (United States)

    Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2015-05-08

    The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.

  12. Dosimetry through the Secondary Laboratory of Dosimetric Calibration of Mexico

    International Nuclear Information System (INIS)

    Tovar M, V.M.; Alvarez R, J.T.; Medina O, V.P.; Vergara M, F.; Anaya M, R.; Cejudo A, J.; Salinas L, B.

    2004-01-01

    In the beginnings of the sixty years an urgent necessity is presented mainly in the developing countries, of improving in important form the accuracy in the dosimetry of external faces in therapy of radiations (radiotherapy centers), mainly in the calibration of c linical dosemeters . In 1976 the International Atomic Energy Agency, (IAEA), and the World Health Organization, (WHO), they carried out a mutual agreement with regard to the establishment and operation of a net of Secondary Patron Laboratories of Dosimetry, (LSCD). The necessity to establish measure patterns in the field of the dosimetry of the ionizing radiations, is necessary, to have an accuracy but high in the dosimetry of the radiation beams in therapy which is highly dependent of the dose given to the tumor of those patient with cancer. Similar levels of accuracy are required in protection measures to the radiation with an acceptable smaller accuracy, however, when the personal dosemeters are used to determine the doses received by the individuals under work conditions, such mensurations in therapy of radiations and radiological protection will have traceability through a chain of comparisons to primary or national patterns. The traceability is necessary to assure the accuracy and acceptability of the dosimetric measures, as well as, the legal and economic implications. The traceability is also necessary in the dosimetry of high dose like in the sterilization of different products. The main function of the LSCD is to provide a service in metrology of ionizing radiations, maintaining the secondary or national patterns, which have a traceability to the International System of measures, which is based for if same in the comparison of patterns in the Primary Laboratories of Dosimetry (LPD) under the auspice of the International Office of Weights and Measure (BIPM). The secondary and national patterns in the LSCD constitute in Mexico, the national patterns of the magnitudes in the dosimetry of the

  13. Theoretical basis for dosimetry

    International Nuclear Information System (INIS)

    Carlsson, G.A.

    1985-01-01

    Radiation dosimetry is fundamental to all fields of science dealing with radiation effects and is concerned with problems which are often intricate as hinted above. A firm scientific basis is needed to face increasing demands on accurate dosimetry. This chapter is an attempt to review and to elucidate the elements for such a basis. Quantities suitable for radiation dosimetry have been defined in the unique work to coordinate radiation terminology and usage by the International Commission on Radiation Units and Measurements, ICRU. Basic definitions and terminology used in this chapter conform with the recent ''Radiation Quantities and Units, Report 33'' of the ICRU

  14. Neutron spectrometry and dosimetry with ANNs

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Gallego, E.; Lorente, A.

    2009-10-01

    Artificial neural networks technology has been applied to unfold the neutron spectra and to calculate the effective dose, the ambient equivalent dose, and the personal dose equivalent for 252 Cf and 241 AmBe neutron sources. A Bonner sphere spectrometry with a 6 LiI(Eu) scintillator was utilized to measure the count rates of the spheres that were utilized as input in two artificial neural networks, one for spectrometry and another for dosimetry. Spectra and the ambient dose equivalent were also obtained with BUNKIUT code and the UTA4 response matrix. With both procedures spectra and ambient dose equivalent agrees in less than 10%. (author)

  15. The impact of exposure to radio frequency electromagnetic fields on chronic well-being in young people--a cross-sectional study based on personal dosimetry.

    Science.gov (United States)

    Heinrich, Sabine; Thomas, Silke; Heumann, Christian; von Kries, Rüdiger; Radon, Katja

    2011-01-01

    A possible influence of radio frequency electromagnetic field (RF EMF) exposure on health outcomes was investigated in various studies. The main problem of previous studies was exposure assessment. The aim of our study was the investigation of a possible association between RF EMF and chronic well-being in young persons using personal dosimetry. 3022 children and adolescents were randomly selected from the population registries of four Bavarian cities in Germany (participation 52%). Personal interview data on chronic symptoms, socio-demographic characteristics and potential confounders were collected. A 24-h radio frequency exposure profile was generated using a personal dosimeter. Exposure levels over waking hours were expressed as mean percentage of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference level. Half of the children and nearly every adolescent owned a mobile phone which was used only for short durations per day. Measured exposure was far below the current ICNIRP reference levels. The most reported chronic symptom in children and adolescents was fatigue. No statistically significant association between measured exposure and chronic symptoms was observed. Our results do not indicate an association between measured exposure to RF EMF and chronic well-being in children and adolescents. Prospective studies investigating potential long-term effects of RF EMF are necessary to confirm our results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Calibration of a TLD system to estimate personal doses in fields of gamma-neutrons radiation

    International Nuclear Information System (INIS)

    Villegas, E.N.; Somarriba, S.I.

    2016-01-01

    Currently Nicaragua has no personal neutron dosimetry system. The calibration of a batch of albedo neutron dosimeters consisting of two pairs of "6LiF and "7LiF (Mg, Ti) detectors was done. The dosimeter and reader sensitivities were obtained using a "1"3"7Cs source, and a neutron calibration factor was found with a "2"4"1AmBe source. Reproducibility and homogeneity tests were performed, and the detection limit of the system was determined. This calibration will allow the beginning of neutron personal monitoring in the country. (author)

  17. Thermoluminescence dosimetry and its applications in medicine. Part 2: history and applications

    International Nuclear Information System (INIS)

    Kron, T.

    1995-01-01

    Thermoluminescence dosimetry (TLD) has been available for dosimetry of ionising radiation for nearly 100 years. The variety of materials and their different physical forms allow the determination of different radiation qualities over a wide range of absorbed dose. This makes TL dosimeters useful in radiation protection where dose levels of μ Gy are monitored as well as in radiotherapy where doses up to several Gray are to be measured. The major advantages of TL detectors are their small physical size and that no cables or auxiliary equipment is required during the dose assessment. TLD is considered to be a good method for point dose measurements in phantoms as well as for in vivo dosimetry on patients during radiotherapy treatment. As an integrative dosimetric technique, it can be applied to personal dosimetry and it lends itself to the determination of dose distributions due to multiple or moving radiation sources (e.g. conformal and dynamic radiotherapy, computed tomography). In addition, TL dosimeters are easy to transport, and they can be mailed. This makes them well suited for intercomparison of doses delivered in different institutions. The present article aims at describing the various applications TLD has found in medicine by taking into consideration the physics and practice of TLD measurements which have been discussed in the first part of this review. 198 refs., 4 tabs., 2 figs

  18. Radiation protection of medical staff: a coordinated action by EURADOS on extremely dosimetry and the use of active personnel dosemeters (CONRAD)

    International Nuclear Information System (INIS)

    Struelens, L.; Vanhavere, F.

    2009-01-01

    Monitoring of workers constitutes an integral part of any radiological protection program. However, unresolved issues in radiation protection of medical staff still remain. Research and establishment of guidelines are necessary on a variety of issues such as extremity dosimetry (fingers, eye lenses, etc), the use of double dosimetry above and below lead aprons, or the use of electronic personal dosimeters in interventional procedures. Medical practices are also evolving fast, and new techniques with ionising radiation emerge very regularly, thus implying the need of radiation protection measures for medical staff, and the implementation of new monitoring programs. In some medical applications of radiation there is an increased risk of high local exposures because of direct handling of sources or the use of beta-emitters. However, despite the large number of workers that are exposed in the medical field worldwide, only few measurements of extremity doses have been reported in the literature. Some activities of EURADOS Working Group 9 (WG9) were sponsored by the European Commission in the CONRAD project. This CONRAD project was aiming at the coordination of research on radiation protection at the workplace. Working group 9 has been involved in the coordination and promotion of European research in the field of Radiation Protection Dosimetry for Medical Staff. One of the objectives of this working group was to formulate the state of the art and to identify areas in which improvements were needed. For some of these medical applications the skin of the fingers is the limiting organ from the point of view of individual monitoring of external radiation. The wide variety of radiation field characteristics in a medical environment, and the difficulty of measuring a local dose that is representative for the maximum skin dose (usually with one single detector), makes it difficult to perform extremity dosimetry with an accuracy similar to whole-body dosimetry. Therefore a

  19. Internal dosimetry for occupationally exposed personnel in nuclear medicine

    International Nuclear Information System (INIS)

    Garcia, M.T.; Alfaro, L.M.M.; Angeles, C.A.

    2013-01-01

    Internal dosimetry plays an important role in nuclear medicine dosimetry control of personnel occupationally exposed, and that in recent years there has been a large increase in the use of radionuclides both in medical diagnosis as radiotherapy. But currently, in Mexico and in many parts of the world, this internal dosimetry control is not performed. The Instituto Nacional de lnvestigaciones Nucleares de Mexico (ININ) together with the Centro Oncologico de Toluca (ISEMMYM) have developed a simple and feasible methodology for monitoring of personnel working in these facilities. It was aimed to carry out the dosimetry of the personnel, due to the incorporation of I-131, using the spectrometric devices that the hospital has, a gamma camera. The first step in this methodology was to make a thyroid phantom to meet the specifications of the ninth ANSI. This phantom is compared under controlled conditions with RMC- II phantom used for system calibration of the ININ internal dosimetry (ACCUSCAN - Ll), and with another phantom developed in Brazil with ANSI specifications, in order to determine the variations in measurements due to the density of the material of each of the phantoms and adjust to the system ACCUSCAN, already certificate. Furthermore, necessary counts were performed with the gamma camera of the phantom developed at ININ, with a standard source of 133 Ba which simulates the energy of 131 I. With these data, were determined the counting efficiencies for a distance of 15 to 20 cm between the surface of the phantom and the the plate of the detectors. Another important aspect was to determine the lower limit of detection (LLD). In this paper we present the results obtained from the detectors calibration of the gamma camera of the hospital.

  20. Hanford Internal Dosimetry Project manual. Revision 1

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program

  1. Clinical dosimetry in diagnostic and interventional radiology

    International Nuclear Information System (INIS)

    Dimcheva, M.; Sergieva, S.; Jovanovska, A.

    2012-01-01

    Full text: Introduction: Diagnostic and interventional procedures involving x-rays are the most significant contributor to total population dose form man made sources of ionizing radiation. Purpose and aim: X-ray imaging generally covers a diverse range of examination types, many of which are increasing in frequency and technical complexity. Materials and methods: The European Directives 96/29 and 97/43 EURATOM stress the importance of accurate dosimetry and require calibration of all measuring equipment related to application of ionizing radiation in medicine. Results: The paper gives and overview of current system of dosimetry of ionizing radiations that is relevant for metrology and clinical applications. It also reflects recently achieved international harmonization in the field promoted by International Atomic Energy Agency (IAEA). Discussion: Objectives of clinical dose measurements in diagnostic and interventional radiology are multiple, as assessment of equipment performance, or assessment of risk emerging from use of ionizing radiation Conclusion: Therefore, from the clinical point of view, the requirements for dosimeters and procedures to assess dose to standard dosimetry phantoms and patients in clinical diverse modalities, as computed tomography are presented

  2. Quality assurance in radiotherapy dosimetry in China

    International Nuclear Information System (INIS)

    Li Kaibao; Luo Suming; Cheng Jinsheng; He Zhijian; An Jinggang; Hu Yimin; Feng Ningyuan

    2002-01-01

    In 1995, the SSDL in the Laboratory of Industrial Hygiene cooperated with Beijing Cancer Hospital, Chinese Academy of Medical science joined the IAEA Co-ordinated Research Programme (NO.8769/RO). According to the requirements of the project, an External Audit Group (EAG) in China was established in 1996 with the responsibilities of operating TLD-based quality audit for radiotherapy dosimetry. Since then. The national TLD dose quality audit services have been carried out in 7 provinces in China. Besides this, the national programmes for brachytherapy and stereostatic radiosurgery (SRS) treatment dosimetry were initiated in 2001. The activity measurement intercomparison between the SSDL and some hospitals for Ir-192 HDR brachytherapy sources has been performed using a HDR well-type ionization chamber (Model HDR 1000 plus) and CDX-2000A Charge Digitizer, which were calibrated in Accredited Dosimetry Calibration Laboratory, University of Wisconsin, USA. The preliminary results indicated that the agreement between SSDL measured activity and hospital stated activity was within ±5% for more than 80% of total participants

  3. Dosimetry and biological effects of fast neutrons

    International Nuclear Information System (INIS)

    Zoetelief, J.

    1981-01-01

    This thesis contains studies on two types of cellular damage: cell reproductive death and chromosome aberrations induced by irradiation with X rays, gamma rays and fast neutrons of different energies. A prerequisite for the performance of radiobiological experiments is the determination of the absorbed dose with a sufficient degree of accuracy and precision. Basic concepts of energy deposition by ionizing radiation and practical aspects of neutron dosimetry for biomedical purposes are discussed. Information on the relative neutron sensitivity of GM counters and on the effective point of measurement of ionization chambers for dosimetry of neutron and photon beams under free-in-air conditions and inside phantoms which are used to simulate the biological objects is presented. Different methods for neutron dosimetry are compared and the experimental techniques used for the investigations of cell reproductive death and chromosome aberrations induced by ionizing radiation of different qualities are presented. Dose-effect relations for induction cell inactivation and chromsome aberrations in three cultured cell lines for different radiation qualities are presented. (Auth.)

  4. Electron paramagnetic resonance dosimetry using synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwon; Kim, Hwi Young; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of); Hirata, Hiroshi [Hokkaido University, Sapporo (Japan); Park, Jong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    The victims exposed doses under 3.5-4.0 Gy have chance to survive if treated urgently. To determine the priority of treatment among a large number of victims, the triage – distinguishing patients who need an urgent treatment from who may not be urgent – is necessary based on radiation biodosimetry. A current gold standard for radiation biodosimetry is the chromosomal assay using human lymphocytes. But this method requires too much time and skilled labors to cover the mass victims in radiation emergencies. Electron paramagnetic resonance (EPR) has been known for its capability of quantifying radicals in matters. EPR dosimetry is based on the measurement of stable radiation-induced radicals in tooth enamel. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) contained in tooth enamel is a major probe for radiation dose reconstruction. This HAP dosimetry study was performed using a novel EPR spectrometer in Hokkaido University, Japan. The EPR dose-response curve was made using HAP samples. The blind test using 250 cGy samples showed the feasibility of EPR dosimetry for the triage purpose.

  5. Hanford Internal Dosimetry Project manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  6. A practical three-dimensional dosimetry system for radiation therapy

    International Nuclear Information System (INIS)

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-01-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of ≤1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R 2 value of 0.9979 and a standard error of estimation of ∼1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full agreement in

  7. Hybrid GPU-CPU adaptive precision ray-triangle intersection tests for robust high-performance GPU dosimetry computations

    International Nuclear Information System (INIS)

    Perrotte, Lancelot; Bodin, Bruno; Chodorge, Laurent

    2011-01-01

    Before an intervention on a nuclear site, it is essential to study different scenarios to identify the less dangerous one for the operator. Therefore, it is mandatory to dispose of an efficient dosimetry simulation code with accurate results. One classical method in radiation protection is the straight-line attenuation method with build-up factors. In the case of 3D industrial scenes composed of meshes, the computation cost resides in the fast computation of all of the intersections between the rays and the triangles of the scene. Efficient GPU algorithms have already been proposed, that enable dosimetry calculation for a huge scene (800000 rays, 800000 triangles) in a fraction of second. But these algorithms are not robust: because of the rounding caused by floating-point arithmetic, the numerical results of the ray-triangle intersection tests can differ from the expected mathematical results. In worst case scenario, this can lead to a computed dose rate dramatically inferior to the real dose rate to which the operator is exposed. In this paper, we present a hybrid GPU-CPU algorithm to manage adaptive precision floating-point arithmetic. This algorithm allows robust ray-triangle intersection tests, with very small loss of performance (less than 5 % overhead), and without any need for scene-dependent tuning. (author)

  8. Report on the Personnel Dosimetry at AB Atomenergi during 1969

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J; Wahlberg, T

    1971-05-15

    This report presents the results of personnel dosimetry at AB Atomenergi during 1969. 24,200 gamma films and 3,300 neutron films were evaluated. 770 urine analyses and 1,150 measurements of body activity were made. The external total body gamma dose for all employees (quarterly doses < 100 mrem are not reported) corresponds to 136 manrem. The highest external total body gamma dose during 1969 to one person was 4,800 mrem

  9. Status of neutron dosimetry cross sections

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1992-01-01

    Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes

  10. Dosimetry in radioiodine therapy of benign thyroid diseases. Background and practice; Dosimetrie bei Radioiodtherapie benigner Schilddruesenerkrankungen. Hintergrund und Durchfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Bockisch, A.; Sonnenschein, W.; Jentzen, W.; Hartung, V.; Goerges, R. [Universitaetsklinikum Essen (Germany). Klinik fuer Nuklearmedizin

    2008-09-15

    Radioiodine therapy of benign thyroid diseases (focal = [toxic adenoma], multifocal, disseminated autonomy, Grave's disease or clinical relevant goitre) needs to be and can be performed individually for each patient. Most frequently a radioiodine test is performed applying a small activity of iodine-131 ({sup 131}I). The paper discusses some protocols for pre- or posttherapeutic dosimetry and discusses their advantages and disadvantages. All are based on the volumetry of the target tissue as well as the radioiodine kinetics in the target volume what may be represented by maximum uptake and half life of iodine retention in the thyroid. Possible disturbances and measuring uncertainties of these parameters are presented and discussed. In spite of the discussed uncertainties in dosimetry, due to its high therapeutic width radioiodine therapy is a very successful procedure to cure hyperthyroidism or to reduce goitre volume with only little side effects. (orig.)

  11. Neutron dosimetry using optically stimulated luminescence

    International Nuclear Information System (INIS)

    Miller, S.D.; Eschbach, P.A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron-induced proton recoils for radiation dosimetry is a well-known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years at Pacific Northwest laboratories (PNL) has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one-year period, and the capability of analyzing single grains within a hydrogenous matrix. 4 refs., 10 figs

  12. MO-B-BRB-00: Three Dimensional Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  13. In-house quality audit and benefits of some quality control procedures in the quality assurance of TL dosimetry system at NRPB

    International Nuclear Information System (INIS)

    Dutt, J.C.

    1993-01-01

    A number of Quality Control (QC) procedures have been introduced into the running and operation of the NRPB personal monitoring services. Those described here apply to the whole-body TL dosimetry system. These QC procedures comprise Quality Assurance (QA) of incoming raw materials and equipment, reader stabilisation, daily, routine and periodic QA checks on all phases of the service. In-house quality audit, periodic internal and external 'blind QA checks' on the dosimetry system as a whole have assured the continuing high quality and reliability of the NRPB TL dosimetry service for assessing body and skin doses of radiation workers from external photon and beta radiations. (author)

  14. Reference dosimetry and small-field dosimetry in external beam radiotherapy: Results from a Danish intercomparison study

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Behrens, Claus F.; Sibolt, Patrik

    methods was performed by DTU Nutech at six Danish clinics. The first part of the intercompa-rison regarded the consistency of reference dosimetry. Absorbed dose to water under reference conditions was measured using a Farmer ionization chamber, and was found to agree within 1 % with the daily dose checks......-specific correction factors for non-reference fields....

  15. Dosimetry and shielding

    International Nuclear Information System (INIS)

    Farinelli, U.

    1977-01-01

    Today, reactor dosimetry and shielding have wide areas of overlap as concerns both problems and methods. Increased interchange of results and know-how would benefit both. The areas of common interest include calculational methods, sensitivity studies, theoretical and experimental benchmarks, cross sections and other nuclear data, multigroup libraries and procedures for their adjustment, experimental techniques and damage functions. This paper reviews the state-of-the-art and the latest development in each of these areas as far as shielding is concerned, and suggests a number of interactions that could be profitable for reactor dosimetry. Among them, re-evaluation of the potentialities of calculational methods (in view of the recent developments) in predicting radiation environments of interest; the application of sensitivity analysis to dosimetry problems; a common effort in the field of theoretical benchmarks; the use of the shielding one-material propagation experiments as reference spectra for detector cross sections; common standardization of the detector nuclear data used in both fields; the setting up of a common (or compatible) multigroup structure and library applicable to shielding, dosimetry and core physics; the exchange of information and experience in the fields of cross section errors, correlations and adjustment; and the intercomparison of experimental techniques

  16. The Latin American Biological Dosimetry Network (LBDNet)

    International Nuclear Information System (INIS)

    Garcia, O.; Lamadrid, A.I.; Gonzalez, J.E.; Romero, I.; Mandina, T.; Di Giorgio, M.; Radl, A.; Taja, M.R.; Sapienza, C.E.; Deminge, M.M.; Fernandez Rearte, J.; Stuck Oliveira, M.; Valdivia, P.; Guerrero-Carbajal, C.; Arceo Maldonado, C.; Cortina Ramirez, G.E.; Espinoza, M.; Martinez-Lopez, W.; Di Tomasso, M.

    2016-01-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. (authors)

  17. Internal dosimetry, past and future

    International Nuclear Information System (INIS)

    Johnson, J.R.

    1989-03-01

    This paper is a review of the progress in the dosimetry of internally deposited radionuclides (internal dosimetry) since World War II. Previous to that, only naturally occurring radionuclides were available and only a limited number of studies of biokinetics and dosimetry were done. The main radionuclides studied were 226 Ra, 228 Ra, and 224 Ra but natural uranium was also studied mainly because of its toxic effect as a heavy metal, and not because it was radioactive. The effects of 226 Ra in bone, mainly from the radium dial painters, also formed the only bases for the radiotoxicity of radionuclides in bone for many years, and it is still, along with 224 Ra, the main source of information on the effects of alpha emitters in bone. The publications of the International Commission on Radiological Protection that have an impact on internal dosimetry are used as mileposts for this review. These series of publications, more than any other, represent a broad consensus of opinion within the radiation protection community at the time of their publication, and have formed the bases for radiation protection practice throughout the world. This review is not meant to be exhaustive; it is meant to be a personnel view of the evolution of internal dosimetry, and to present the author's opinion of what the future directions in internal dosimetry will be. 39 refs., 2 tabs

  18. Dosimetry of hands and human factor

    International Nuclear Information System (INIS)

    Harr, R.

    2008-12-01

    The human factor in facilities where open radioactive sources are managed it can be controlled through the use of the ring dosimetry, however, that these devices only provide qualitative information that is not extrapolated to legislative limits. lt is present the case analysis of hands dosimetry of female person with responsibility for professional standards and a very high profile with ratings that allow her to have a high level of knowledge of the basic standards, and because with an attitude and a culture rooted of radiation protection, among other qualities. Their records reveal a trend in which monthly doses are below the 7 mSv, and only occasionally are between 7 and 12 mSv per month and hand. The other case correspond to a technician, trained in radiological techniques, also with a high profile, with two courses for occupationally exposed personnel more than 10 annual retraining, and work experience of over 10 years as occupationally exposed personnel, in which knowledge of standards and because of the entrenched culture of radiation protection and their interest degree in the care of their exposure is still in a phase half, in this case also shows a trend in the monthly dose where found registers between 7 and 11 mSv per month and hand. The third case is of a second technician with less experience and most basic knowledge, his dose register not show a real trend, sometimes be found reads of irregular values as if the dosimeter is not used and some other times as if misused by exposing to purpose (was observed at least one reading above the monthly 30 mSv). By way of conclusion, it is noted that the hands dosimetry is a useful tool to monitor transactions through the data compilation susceptible to analysis with variations which can be placed in the context of the human factor. (Author)

  19. Performance tests on the NRPB thermoluminescent dosemeter

    CERN Document Server

    Shaw, K B

    1977-01-01

    Performance tests on the thermoluminescent dosemeter, designed at NRPB for use in the automated personal dosimetry system, are described. An ultra-thin lithium borate dosemeter has been developed for skin absorbed dose measurement. The X-ray, gamma-ray and beta-ray energy response of the dosemeter has been investigated and the angular response for the dosemeter has been examined. The annealing, read-out and stabilisation procedures for the dosemeter are described.

  20. Individual neutron dosimetry

    International Nuclear Information System (INIS)

    Mauricio, C.L.P.

    1987-01-01

    The most important concepts and development in individual neutron dosimetry are presented, especially the dosimetric properties of the albedo technique. The main problem in albedo dosimetry is to calibrate the dosemeter in the environs of each neutron source. Some of the most used calibration techniques are discussed. The IRD albedo dosemeter used in the routine neutron individual monitoring is described in detail. Its dosimetric properties and calibration methods are discussed. (Author) [pt

  1. Personality, academic majors and performance

    DEFF Research Database (Denmark)

    Vedel, Anna; Thomsen, Dorthe Kirkegaard; Larsen, Lars

    2015-01-01

    Personality–performance research typically uses samples of psychology students without questioning their representativeness. The present article reports two studies challenging this practice. Study 1: group differences in the Big Five personality traits were explored between students (N = 1067......) in different academic majors (medicine, psychology, law, economics, political science, science, and arts/humanities), who were tested immediately after university enrolment. Study 2: six and a half years later the students’ academic records were obtained, and predictive validity of the Big Five personality...... traits and their subordinate facets was examined in the various academic majors in relation to Grade Point Average (GPA). Significant group differences in all Big Five personality traits were found between students in different academic majors. Also, variability in predictive validity of the Big Five...

  2. The use of active personal dosemeters as a personal monitoring device: Comparison with TL dosimetry

    International Nuclear Information System (INIS)

    Boziari, A.; Koukorava, C.; Carinou, E.; Hourdakis, C. J.; Kamenopoulou, V.

    2011-01-01

    The use of active personal dosemeters (APDs) not only as a warning device but also, in some cases, as an official and hence stand-alone dosemeter is rapidly increasing. A comparison in terms of dose, energy and angle dependence, among different types of APD and a routinely used whole-body thermoluminescence dosemeter (TLD) has been performed. Significant differences were found between the TLD readings and mainly some not commonly used APDs. The importance of choosing the best adapted APD according to the radiation field characteristics is pointed out. (authors)

  3. Type testing of the Siemens Plessey electronic personal dosemeter.

    Science.gov (United States)

    Hirning, C R; Yuen, P S

    1995-07-01

    This paper presents the results of a laboratory assessment of the performance of a new type of personal dosimeter, the Electronic Personal Dosemeter made by Siemens Plessey Controls Limited. Twenty pre-production dosimeters and a reader were purchased by Ontario Hydro for the assessment. Tests were performed on radiological performance, including reproducibility, accuracy, linearity, detection threshold, energy response, angular response, neutron response, and response time. There were also tests on the effects of a variety of environmental factors, such as temperature, humidity, pulsed magnetic and electric fields, low- and high-frequency electromagnetic fields, light exposure, drop impact, vibration, and splashing. Other characteristics that were tested were alarm volume, clip force, and battery life. The test results were compared with the relevant requirements of three standards: an Ontario Hydro standard for personal alarming dosimeters, an International Electrotechnical Commission draft standard for direct reading personal dose monitors, and an International Electrotechnical Commission standard for thermoluminescence dosimetry systems for personal monitoring. In general, the performance of the Electronic Personal Dosemeter was found to be quite acceptable: it met most of the relevant requirements of the three standards. However, the following deficiencies were found: slow response time; sensitivity to high-frequency electromagnetic fields; poor resistance to dropping; and an alarm that was not loud enough. In addition, the response of the electronic personal dosimeter to low-energy beta rays may be too low for some applications. Problems were experienced with the reliability of operation of the pre-production dosimeters used in these tests.

  4. Accidental and retrospective dosimetry using TL method

    International Nuclear Information System (INIS)

    Mesterházy, D.; Osvay, M.; Kovács, A.; Kelemen, A.

    2012-01-01

    Retrospective dosimetry is one of the most important tools of accidental dosimetry for dose estimation when dose measurement was not planned. In the affected area many objects can be applied as natural dosimeters. The paper discusses our recent investigations on various electronic components and common salt (NaCl) having useful thermoluminescence (TL) properties. Among materials investigated the electronic components of cell phones seem promising for retrospective dosimetry purposes, having high TL responses, proper glow curve peaks and the intensity of TL peaks vs. gamma dose received provided nearly linear response in the dose range of 10 mGy–1.5 Gy. - Highlights: ► Electronic components and common salt were investigated for accidental and retrospective dosimetry. ► SMD resistors seem promising for retrospective dosimetry purposes. ► Table salt can be used effectively for accidental dosimetry purposes, as well.

  5. Characterization of a thermoluminiscence personnel dosimetry system

    International Nuclear Information System (INIS)

    Vazquez Lopez, C.; Saez, J.C.; Labarta, T.

    1989-01-01

    Various tests carried out to characterize a Thermoluminiscence Personnel Dosimetry Automatic System, based on the optical heating of a multielement dosemeter are presented. The dosemeter consists of Lithium Borate (Copper) and Calcium Sulphate (Thallium) phosphors. The Dosimetric System shows some outstanding features, such as its simplicity (no aditional annealing procedures are required), its short reading cycle (160 TLD per hour and its data handling capabilities (RS-232C and Parallel Printer digital ports and four analigic outputs for Glow Curve Adquisition). The tests performed have been designed to conform with the different existing international Standards and Recommendations (ANSI: N13.11-1983; IEC:Draft 45B-1987, ISO:DP 8034-1984) The new radiological quantities (I.C.R.U.-19855) have been used for calibration. The results obtained (linearity, repeatibility, detection threshold, residue, stability of stored information, etc) show the optimum performance of this dosimetric system in its aplication to routine personnel dose monitoring. Based on the dosemeter energy discriminating response, an algorithm for dose assesment has been developed. The method allows personal dose calculations within 10% and gives valuable information on the quality and energy of incident radiation, for photons from 30 to 2000 keV and for Beta penetrating radiation (Sr/Y, U). (Author)

  6. Participation of the regional reference center for dosimetry of Argentina in the personnel dosimetry intercomparison for Latin America

    International Nuclear Information System (INIS)

    Alvarez, P.; Lindner, C.; Montano, R.G.; Saravi, M.

    1998-01-01

    Full text: A Regional Personnel Dosimetry Intercomparison was organized in the Regional Reference Center for Dosimetry (CRRD), in agreement with the International Atomic Energy Agency (IAEA) and the Nuclear Regulatory Authority (ARN), with the participation of 9 countries of Latin America. For dosimeter irradiations, X-ray, 60 Co γ-ray and 137 Cs γ-ray beams were used during the intercomparison. The air kerma rate was measured with the Secondary Standard NE 2560 and NE 2561 ionisation chamber. In compliance with ISO 4037 guideline, the wide spectrum series W60, W110 and W200 for the X-ray irradiations were chosen, determining their quality by the HVL method. Prior to the intercomparison, these beams were checked by the Physikalish Technische Bundesanstalt (PTB) using thermoluminescence dosimeters 'pill box', which were irradiated in air and in ICRU phantom. As result of this check, only one 'X ray beam got a deviation of 7%, while the rest of them were less than 3%. Periodic checks of the beams by a Primary Standard Dosimetry Laboratory such as PTB give reliability to the irradiations performed by this CRRD. (author) [es

  7. The implementation of in vivo dosimetry in a small radiotherapy department

    International Nuclear Information System (INIS)

    Voordeckers, M.; Goosens, H.; Rutten, J.

    1998-01-01

    In vivo dosimetry has been shown in a number of evaluation studies, generally carried out in larger academic centres, to be a reliable method of checking the overall treatment accuracy. The object of this study was to investigate whether it was possible and useful to perform in vivo dosimetry in a small radiotherapy department and to detect if there were any systematic errors in the overall treatment set-up. All patients were treated on a cobalt-60 unit equipped with a verification system. Six hundred fifty entrance dose measurements were performed with silicon diodes. The analysis showed a mean deviation of -1.3%. This negative deviation was mainly due to the mean deviation obtained in the treatment of head and neck (-1.6%) or breast (-2.5%) cancer patients. The results for pelvic or lung irradiation showed almost no deviation. Further investigation showed that the negative values for head and neck or breast irradiation were due to the irradiation technique, the lack of scattering material causes a reduction of the dose at the reference point, which is not taken into consideration by the treatment planning system. By performing in vivo dosimetry, we were also able to detect two large errors in 650 measurements and could prevent erroneous treatment. Even when the overall treatment set-up is very accurate, in vivo dosimetry is very useful in a small department since only a small effort can detect and prevent errors. (author)

  8. Converting a major dosimetry service from film to optically stimulated luminescence dosemeters including revision of the 'back-office' software

    International Nuclear Information System (INIS)

    Perks, Christopher A.; Faugoin, Stephane; Serise, Bertrand; Prugnaud, Brice; Million, Marc

    2008-01-01

    Full text: In our offices at Fontenay-aux-Roses we provide personal dosimetry for over 100,000 participants. During 2005/6 we transformed our operations from film dosemeters to those using Optically Stimulated Luminescence (InLight (Trade Mark)). The opportunity was taken to fully overhaul our operational procedures and we are currently completely reworking our 'back-office' software support. The change from film to InLight dosimetry has involved: 1) The installation of new readers at our offices in Fontenay-aux Roses; 2) The installation of a physical badge archiving system; 3) Complete revision of the operational flow to optimise the benefits of the new service; 4) Maintenance of our approval to operate a personal dosimetry service in France; 5) Considerable liaison between our office in Fontenay-aux-Roses and our Glenwood, USA, parent company to enable complete integration of the processes; and 6) Maintaining the service throughout the changeover and keeping client satisfaction high. Having changed the physical environment we are now completely renewing the back office software and systems in support of the dosimetry service. This ranges in scope from entering new clients, client support, all aspects of the dosimetry operations and chain of custody of the dosemeters and participants records and reports. This system is being rolled out in sections and it is envisaged that it will be fully implemented at the start of 2008. A key feature is that continuing improvement and the possibility of future developments of our services is in-built into the philosophy of the new back-office system. The nature of the new system, its benefits to our own operations and, in particular, clients will be discussed. (author)

  9. Clinical application of in vivo dosimetry for external telecobalt machine

    International Nuclear Information System (INIS)

    Mohammed, H. H. M.

    2011-01-01

    In external beam radiotherapy quality assurance is carried out on the individual components of treatment chain. The patient simulating device, planning system and treatment machine are tested regularly according to set protocols developed by national and international organizations. Even thought these individual systems are not tested for errors which can be made in the transfer between the systems. The best quality assurance for the treatment planning chain. In vivo dosimetry is used as a quality assurance tool for verifying dosimetry as either the entrance or exit surface of the patient undergoing external beam radiotherapy. It is a proven reliable method of checking overall treatment accuracy, allowing verification of dosimetry and dose calculation as well as patient treatment setup. Accurate in vivo dosimetry is carried out if diodes and thermoluminescence dosimeters (TLDs). the main detector types in use for in vivo dosimetry, are carefully calibrated and the factors influencing their sensitivity are taken into account. The aim of this study was to verify the response of TLDs type (LiF: Mg, Cu, p) use in radiotherapy, to establish calibration procedure for TLDs and to evaluate entrance dose obtained by the treatment planning system with measured dose using thermoluminescence detectors. Calibration of TLDs was done using Cobalt-60 teletherapy machine, linearity and calibration factors were determined. Measurements were performed in random phantom for breast irradiation (for the breast irradiation ( For the breast irradiation technique considered, wedge field was used). All TLDs were processed and analyzed at RICK. In vivo dosimetry represents a technique that has been widely employed to evaluate the dose to the patient mainly in radiotherapy. Thermoluminescent dosimeters are considered the gold stander for in vivo dosimetry and do not require cables for measurements which makes them ideal for mail based studies and have no dose rate or temperature dependence

  10. Dosimetry applications in GATE Monte Carlo toolkit.

    Science.gov (United States)

    Papadimitroulas, Panagiotis

    2017-09-01

    Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Personality Factors Affecting Pilot Combat Performance: A Preliminary Investigation

    National Research Council Canada - National Science Library

    Siem, Frederick M; Murray, Michael W

    1997-01-01

    .... The present research was designed to examine the relationship between personality and combat performance using the "Big Five" model of personality and a multicomponent model of pilot combat performance...

  12. Holland Type as a Moderator of Personality-Performance Predictions.

    Science.gov (United States)

    Fritzsche, Barbara A.; McIntire, Sandra A.; Yost, Amy Powell

    2002-01-01

    Data from 559 undergraduates provided modest evidence that Holland's taxonomy of work environments moderated the relationship between personality and performance. The traits of agreeableness and conscientiousness were better predictors of performance in certain environments. The important relationship between personality and performance may be…

  13. A Computerized QC Analysis of TLD Glow Curves for Personal Dosimetry Measurements Using Tag QC Program

    International Nuclear Information System (INIS)

    Primo, S.; Datz, H.; Dar, A.

    2014-01-01

    The External Dosimetry Lab (EDL) at the Radiation Safety Division at Soreq Nuclear Research Center (SNRC) is ISO 17025 certified and provides its services to approximately 13,000 users throughout the country from various sectors such as medical, industrial and academic. About 95% of the users are monitored monthly for X-rays, radiation using Thermoluminescence Dosimeter (TLD) cards that contain three LiF:Mg,Ti elements and the other users, who work also with thermal neutrons, use TLD cards that contain four LiF:Mg,Ti elements. All TLD cards are measured with the Thermo 8800pc reader. Suspicious TLD glow curve (GC) can cause wrong dose estimation so the EDL makes great efforts to ensure that each GC undergoes a careful QC procedure. The current QC procedure is performed manually and through a few steps using different softwares and databases in a long and complicated procedure: EDL staff needs to export all the results/GCs to be checked to an Excel file, followed by finding the suspicious GCs, which is done in a different program (WinREMS), According to the GC shapes (Figure 1 illustrates suitable and suspicious GC shapes) and the ratio between the elements result values, the inspecting technician corrects the data. The motivation for developing the new program is the complicated and time consuming process of our the manual procedure to the large amount of TLDs each month (13,000), similarly to other Dosimetry services that use computerized QC GC analysis. it is important to note that only ~25% of the results are above the EDL recorded level (0.10 mSv) and need to be inspected. Thus, the purpose of this paper is to describe a new program, TagQC, which allows a computerized QC GC analysis that identifies automatically, swiftly, and accurately suspicious TLD GC

  14. Internal Dosimetry for Nuclear Power Program

    International Nuclear Information System (INIS)

    Wo, Y.M.

    2011-01-01

    Internal dosimetry which refers to dosage estimation from internal part of an individual body is an important and compulsory component in order to ensure the safety of the personnel involved in operational of a Nuclear Power Program. Radionuclides particle may deposit in the human being through several pathways and release wave and/or particle radiation to irradiate that person and give dose to body until it been excreted or completely decayed from the body. Type of radionuclides of concerning, monitoring program, equipment's and technique used to measure the concentration level of such radionuclides and dose calculation will be discussed in this article along with the role and capability of Malaysian Nuclear Agency. (author)

  15. Longitudinal Associations of Subjective Memory with Memory Performance and Depressive Symptoms: Between-Person and Within-Person Perspectives

    Science.gov (United States)

    Hülür, Gizem; Hertzog, Christopher; Pearman, Ann; Ram, Nilam; Gerstorf, Denis

    2015-01-01

    Clinical diagnostic criteria for memory loss in adults typically assume that subjective memory ratings accurately reflect compromised memory functioning. Research has documented small positive between-person associations between subjective memory and memory performance in older adults. Less is known, however, about whether within-person fluctuations in subjective memory covary with within-person variance in memory performance and depressive symptoms. The present study applied multilevel models of change to nine waves of data from 27,395 participants of the Health and Retirement Study (HRS; mean age at baseline = 63.78; SD = 10.30; 58% women) to examine whether subjective memory is associated with both between-person differences and within-person variability in memory performance and depressive symptoms and explored the moderating role of known correlates (age, gender, education, and functional limitations). Results revealed that across persons, level of subjective memory indeed covaried with level of memory performance and depressive symptoms, with small-to-moderate between-person standardized effect sizes (0.19 for memory performance and 0.21 for depressive symptoms). Within individuals, occasions when participants scored higher than usual on a test of episodic memory or reported fewer-than-average depressive symptoms generated above-average subjective memory. At the within-person level, subjective memory ratings became more sensitive to within-person alterations in memory performance over time and those suffering from functional limitations were more sensitive to within-person alterations in memory performance and depressive symptoms. We take our results to suggest that within-person changes in subjective memory in part reflect monitoring flux in one’s own memory functioning, but are also influenced by flux in depressive symptoms. PMID:25244464

  16. Longitudinal associations of subjective memory with memory performance and depressive symptoms: between-person and within-person perspectives.

    Science.gov (United States)

    Hülür, Gizem; Hertzog, Christopher; Pearman, Ann; Ram, Nilam; Gerstorf, Denis

    2014-12-01

    Clinical diagnostic criteria for memory loss in adults typically assume that subjective memory ratings accurately reflect compromised memory functioning. Research has documented small positive between-person associations between subjective memory and memory performance in older adults. Less is known, however, about whether within-person fluctuations in subjective memory covary with within-person variance in memory performance and depressive symptoms. The present study applied multilevel models of change to 9 waves of data from 27,395 participants of the Health and Retirement Study (HRS; mean age at baseline = 63.78; SD = 10.30; 58% women) to examine whether subjective memory is associated with both between-person differences and within-person variability in memory performance and depressive symptoms and explored the moderating role of known correlates (age, gender, education, and functional limitations). Results revealed that across persons, level of subjective memory indeed covaried with level of memory performance and depressive symptoms, with small-to-moderate between-person standardized effect sizes (0.19 for memory performance and -0.21 for depressive symptoms). Within individuals, occasions when participants scored higher than usual on a test of episodic memory or reported fewer-than-average depressive symptoms generated above-average subjective memory. At the within-person level, subjective memory ratings became more sensitive to within-person alterations in memory performance over time and those suffering from functional limitations were more sensitive to within-person alterations in memory performance and depressive symptoms. We take our results to suggest that within-person changes in subjective memory in part reflect monitoring flux in one's own memory functioning, but are also influenced by flux in depressive symptoms. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  17. External quality audit programmes for radiotherapy dosimetry and equipment

    International Nuclear Information System (INIS)

    Thwaites, D.I.

    1997-01-01

    It is widely accepted that individual radiotherapy centres should have in place a comprehensive quality assurance programme on all the necessary steps for the delivery of safe accurate treatment. As regards the performance of radiotherapy equipment and dosimetry, the most widely used process of external checking has been dosimetry intercomparison, comparing independently measured doses to locally stated doses in a variety of conditions. These have been at a number of different levels: from basic beam calibration; up to and including exercises employing anatomic or pseudo-anatomic phantoms and incorporating tests of treatment planning equipment and procedures. Some of these have been one-off exercises, whilst others are continuing, or have given rise to on-going quality audit programmes on a national (or wider) basis. A number of these have evolved, or are evolving, into audits which include external checking of the achievement of standards in performance of treatment equipment, as well as in the dosimetry in each institution involved. The principles and methodologies of the various types of external checking programmes for treatment equipment and dosimetry are reviewed, covering the experimental approaches and the tolerances applied. What is included in a given programme will, of necessity, depend on the resources available and the purpose of the exercise. Methods and tolerances must be matched to endpoint. Tolerance levels must take into account the experimental uncertainties of the measurement methods employed. Finally, external audit can only be used to complement, and in conjunction with, institutional quality assurance programmes and not as a substitute for them

  18. Information from the Dosimetry Service

    CERN Multimedia

    2006-01-01

    Please note the following opening hours of the Service: From 31st July onwards: Every morning from 8:30 to 12:00 The Service is closed in the afternoons. We should like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCTs) must always be returned to the Service after use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel 72155 Bldg. 24 E 011 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  19. Whole-body biodistribution, dosimetry and metabolite correction of [11C]palmitate: A PET tracer for imaging of fatty acid metabolism

    DEFF Research Database (Denmark)

    Christensen, Nana Louise; Jakobsen, Steen; Schacht, Anna Christina

    2017-01-01

    release and parent [11C]palmitate measured by a solid-phase extraction (SPE) method. Finally, myocardial fatty acid uptake was calculated in a patient cohort using input functions derived from individual metabolite correction compared with population-based metabolite correction. RESULTS: In humans, mean......INTRODUCTION: Despite the decades long use of [11C]palmitate positron emission tomography (PET)/computed tomography in basic metabolism studies, only personal communications regarding dosimetry and biodistribution data have been published. METHODS: Dosimetry and biodistribution studies were...

  20. Performance-approach and performance-avoidance classroom goals and the adoption of personal achievement goals.

    Science.gov (United States)

    Schwinger, Malte; Stiensmeier-Pelster, Joachim

    2011-12-01

    Students' perceptions of classroom goals influence their adoption of personal goals. To assess different forms of classroom goals, recent studies have favoured an overall measure of performance classroom goals, compared to a two-dimensional assessment of performance-approach and performance-avoidance classroom goals (PAVCG). This paper considered the relationship between students' perceptions of classroom goals and their endorsement of personal achievement goals. We proposed that three (instead of only two) classroom goals need to be distinguished. We aimed to provide evidence for this hypothesis by confirmatory factor analysis (CFA) and also by divergent associations between the respective classroom goal and students' personal goal endorsement. A total of 871 (474 female) 10th grade students from several German high schools participated in this study. Students responded to items assessing their perception of mastery, performance-approach, and performance-avoidance goals in the classroom. Additionally, the students reported how much they personally pursue mastery, performance-approach, and performance-avoidance goals. All items referred to German as a specific school subject. RESULTS.A CFA yielded empirical support for the proposed distinction of three (instead of only two) different kinds of classroom goals. Moreover, in hierarchical linear modelling (HLM) analyses all three classroom goals showed unique associations with students' personal goal adoption. The findings emphasized the need to distinguish performance-approach and PAVCG. Furthermore, our results suggest that multiple classroom goals have interactive effects on students' personal achievement strivings. ©2010 The British Psychological Society.

  1. Perofrmance testing of personnel dosimetry services. Final report of a two-year pilot study, October 1977-September 1979

    International Nuclear Information System (INIS)

    Plato, P.; Hudson, G.

    1980-01-01

    A two-year pilot study was conducted of the Health Physics Society Standards Committee (HPSSC) Standard titled, Criteria for Testing Personnel Dosimetry Performance. The objectives of the pilot study were: to give processors an opportunity to correct any problems that are uncovered; to develop operational and administrative prodedures to be used later by a permanent testing laboratory; and to determine whether the proposed HPSSC Standard provides an adequate and practical test of dosimetry performance. Fifty-nine dosimetry processors volunteered to submit dosimeters for test irradiations according to the requirements of the HPSSC Standard. The feasibility of using the HPSSC Standard for a future mandatory testing program for personnel dosimetry processors is discussed. This report shows the results of the pilot study and contains recommendations for revisions in the Standard that will make a mandatory testing program useful to regulatory agencies, dosimetry processors, and radiation workers that use personnel dosimeters

  2. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    nuclides - 2008 / T. Golashvili -- Oral session 6: Test reactors, accelerators and advanced systems. Neutronic analyses in support of the HFIR beamline modifications and lifetime extension / I. Remec and E. D. Blakeman. Characterization of neutron test facilities at Sandia National Laboratories / D. W. Vehar ... [et al.]. LYRA irradiation experiments: neutron metrology and dosimetry / B. Acosta and L. Debarberis. Calculated neutron and gamma-ray spectra across the prismatic very high temperature reactor core / J. W. Sterbentz. Enhancement of irradiation capability of the experimental fast reactor joyo / S. Maeda ... [et al.]. Neutron spectrum analyses by foil activation method for high-energy proton beams / C. H. Pyeon ... [et al.] -- Oral session 7: Cross sections, nuclear data, damage correlations. Investigation of new reaction cross-section evaluations in order to update and extend the IRDF-2002 reactor dosimetry library / É. M. Zsolnay, H. J. Nolthenius and A. L. Nichols. A novel approach towards DPA calculations / A. Hogenbirk and D. F. Da Cruz. A new ENDFIB-VII.O based multigroup cross-section library for reactor dosimetry / F. A. Alpan and S. L. Anderson. Activities at the NEA for dosimetry applications / H. Henriksson and I. Kodeli. Validation and verification of covariance data from dosimetry reaction cross-section evaluations / S. Badikov. Status of the neutron cross section standards / A. D. Carlson -- Oral session 8: transport calculations. A dosimetry assessment for the core restraint of an advanced gas cooled reactor / D. A. Thornton ... [et al.]. Neutron dosimetry study in the region of the support structure of a VVER-1000 type reactor / G. Borodkin ... [et al.]. SNS moderator poison design and experiment validation of the moderator performance / W. Lu ... [et al.]. Analysis of OSIRIS in-core surveillance dosimetry for GONDOLE steel irradiation program by using TRIPOLI-4 Monte Carlo code / Y. K. Lee and F. Malouch.Reactor dosimetry applications using RAPTOR

  3. Patient specific quality assurance of IMRT: quantitative approach using film dosimetry and optimization

    International Nuclear Information System (INIS)

    Shin, Kyung Hwan; Park, Sung Yong; Park, Dong Hyun

    2005-01-01

    Film dosimetry an a part of patient specific intensity modulated radiation therapy quality assurance (IMRT QA) was performed to develop a new optimization method of film isocenter offset and to then suggest new quantitative criteria for film dosimetry. Film dosimetry was performed on 14 IMRT patients with head and neck cancers. An optimization method for obtaining the local minimum was developed to adjust for the error in the film isocenter offset, which is the largest part of the systemic errors. The adjust value of the film isocenter offset under optimization was 1 mm in 12 patients, while only two patients showed 2 mm translation. The means of absolute average dose difference before and after optimization were 2.36 and 1.56%, respectively, and the mean radios over a 5% tolerance were 9.67 and 2.88%. After optimization, the differences in the dose decreased dramatically. A low dose range cutoff (L-Cutoff) had been suggested for clinical application. New quantitative criteria of a ratio of over a 5%, but less than 10% tolerance, and for an absolute average dose difference less than 3% have been suggested for the verification of film dosimetry. The new optimization method was effective in adjusting for the film dosimetry error, and the newly quantitative criteria suggested in this research are believed to be sufficiently accurate and clinically useful

  4. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Sholom, S.; McKeever, S.W.S.

    2016-01-01

    This paper reviews recent research on the application of the physical dosimetry techniques of electron paramagnetic resonance (EPR) and luminescence (optically stimulated luminescence, OSL, and thermoluminescence, TL) to determine radiation dose following catastrophic, large-scale radiological events. Such data are used in dose reconstruction to obtain estimates of dose due to the exposure to external sources of radiation, primarily gamma radiation, by individual members of the public and by populations. The EPR and luminescence techniques have been applied to a wide range of radiological studies, including nuclear bomb detonation (e.g., Hiroshima and Nagasaki), nuclear power plant accidents (e.g., Chernobyl), radioactive pollution (e.g., Mayak plutonium facility), and in the future could include terrorist events involving the dispersal of radioactive materials. In this review we examine the application of these techniques in ‘emergency’ and ‘retrospective’ modes of operation that are conducted on two distinct timescales. For emergency dosimetry immediate action to evaluate dose to individuals following radiation exposure is required to assess deterministic biological effects and to enable rapid medical triage. Retrospective dosimetry, on the other hand, contributes to the reconstruction of doses to populations and individuals following external exposure, and contributes to the long-term study of stochastic processes and the consequential epidemiological effects. Although internal exposure, via ingestion of radionuclides for example, can be a potentially significant contributor to dose, this review is confined to those dose components arising from exposure to external radiation, which in most studies is gamma radiation. The nascent emergency dosimetry measurement techniques aim to perform direct dose evaluations for individuals who, as members of the public, are most unlikely to be carrying a dosimeter issued for radiation monitoring purposes in the event

  5. Dose measurements in dental radiology using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Chiara, Ana Claudia M. de; Costa, Alessandro M.; Pardini, Luiz Carlos

    2009-01-01

    The aim of this work was the implementation of a code of practice for dosimetry in dental radiology using the technique of thermoluminescent dosimetry. General principles for the use of thermoluminescent dosimeters were followed. The irradiations were performed using ten X-ray equipment for intra-oral radiography and an X-ray equipment for panoramic radiography. The incident air kerma was evaluated for five different exposure times used in clinical practice for intra-oral radiographs. Using a backscatter factor of 1.2, it was observed that approximately 40% of the entrance skin dose values found for intra-oral radiographs are above the diagnostic reference level recommended in national regulation. Different configurations of voltage and current were used representing the exposure as a child, woman and man for panoramic radiographs. The results obtained for the air kerma area product were respectively 53.3 +- 5.2 mGy.cm 2 , 101.5 +- 9.5 mGy.cm 2 and 116.8 +- 10.4 mGy.cm 2 . The use of thermoluminescent dosimetry requires several procedures before a result is recorded. The use of dosimeters with ionization chambers or semiconductors provides a simple and robust method for routine measurements. However, the use of thermoluminescent dosimetry can be of great value to large-scale surveys to establish diagnostic reference levels. (author)

  6. Radiophotoluminescence light scope for high-dose dosimetry

    International Nuclear Information System (INIS)

    Sato, Fuminobu; Zushi, Naoki; Sakiyama, Tomoki; Kato, Yushi; Murata, Isao; Shimizu, Kikuo; Yamamoto, Takayoshi; Iida, Toshiyuki

    2015-01-01

    A radiophotoluminescence (RPL) light scope is a remote-sensing technique for measuring in situ the radiation dose in an RPL detector placed at a distance. The RPL light scope is mainly composed of an ultraviolet (UV) pulse laser, telescopic lenses, a photomultiplier tube, and camera modules. In a performance test, some RPL detectors were placed at distances up to 30 m and were illuminated with a pulsed UV laser beam. The photoluminescence responses of the RPL detectors were analyzed using this scope. Their radiation doses were determined from the amplitude of the given component of the photoluminescence responses. The RPL readout could be repeated without fading, and its amplitude exhibited good linearity at a dose ranging from 0.1 to 60 Gy. Furthermore, a two-dimensional distribution of radiation dose was obtained by laser scanning on an RPL detector. It was confirmed that the RPL light scope was a useful remote-sensing tool for high-dose dosimetry. - Highlights: • A radiophotoluminescence (RPL) light scope was developed for high-dose dosimetry. • The RPL light scope has high sensitivity and accuracy in high-dose dosimetry. • Two-dimensional radiation dose distribution was obtained by the RPL light scope.

  7. Bayesian Methods for Radiation Detection and Dosimetry

    International Nuclear Information System (INIS)

    Peter G. Groer

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model

  8. Radiation dosimetry for residents of the Chernobyl region: a comparison of cytogenetic and electron spin resonance methods

    Energy Technology Data Exchange (ETDEWEB)

    Serezhenkov, V A; Mordvintcev, P I; Vanin, A F; Voevodskaya, N V [AN SSSR, Moscow (Russian Federation). Inst. Fizicheskoj Khimii; Domracheva, E V; Kulikov, S M; Kuznetsov, S A; Schklovsky-Kordi, N E; Vorobiev, A I [National Center for Haematology, Moscow (Russian Federation); Klevezal, G A; Sukhovskaya, L I [Russian Academy of Science, Moscow (Russian Federation). Inst. of Developmental Biology

    1992-01-01

    Persons from the Gomel region of Byelorussia who were irradiated by the Chernobyl reactor accident have been studied. Estimations of their radiation doses using electron spin resonance spectrometry of dental enamel showed good agreement with dosimetry by chromosomal analysis of blood lymphocytes. (author).

  9. Reviewing three dimensional dosimetry: basics and utilization as presented over 17 Years of DosGel and IC3Ddose

    International Nuclear Information System (INIS)

    Schreiner, L J

    2017-01-01

    For seventeen years a community of basic and clinical scientists and researchers has been meeting bi-annually to promote the clinical advance of techniques to measure radiation dose in three dimensions. The interest in this dosimetry was motivated by its promise as an effective methodology for 3D measurement of the complex conformal dose distributions achieved by modern techniques such as Intensity Modulated and Volumetric Arc Radiation Therapy. Each of the International Conferences on 3D Radiation Dosimetry resulted in the publication of informative proceedings [1-8], the majority openly available on the internet. The proceedings included papers that: i) reviewed the basic science of the radiation sensitive materials used to accumulate the dose information, ii) introduced the science and engineering of the imaging systems required to read the information out, iii) described the work flows and systems required for efficient dosimetry, iv) reported the protocols required for reproducible dosimetry, and v) showed examples of clinical use illustrating advantage and limitations of the dosimetry. This paper is intended to use the framework provided by these proceedings to review the current 3D chemical dosimeters available and to discuss the requirements for their use. The paper describes how 3D dosimetry can complement other dose delivery validation approaches available in the clinic. It closes with some personal reflections of how the motivation for, and practice of, 3D dosimetry have changed (or not) over the years. (paper)

  10. Reviewing three dimensional dosimetry: basics and utilization as presented over 17 Years of DosGel and IC3Ddose

    Science.gov (United States)

    Schreiner, L. J.

    2017-05-01

    For seventeen years a community of basic and clinical scientists and researchers has been meeting bi-annually to promote the clinical advance of techniques to measure radiation dose in three dimensions. The interest in this dosimetry was motivated by its promise as an effective methodology for 3D measurement of the complex conformal dose distributions achieved by modern techniques such as Intensity Modulated and Volumetric Arc Radiation Therapy. Each of the International Conferences on 3D Radiation Dosimetry resulted in the publication of informative proceedings [1-8], the majority openly available on the internet. The proceedings included papers that: i) reviewed the basic science of the radiation sensitive materials used to accumulate the dose information, ii) introduced the science and engineering of the imaging systems required to read the information out, iii) described the work flows and systems required for efficient dosimetry, iv) reported the protocols required for reproducible dosimetry, and v) showed examples of clinical use illustrating advantage and limitations of the dosimetry. This paper is intended to use the framework provided by these proceedings to review the current 3D chemical dosimeters available and to discuss the requirements for their use. The paper describes how 3D dosimetry can complement other dose delivery validation approaches available in the clinic. It closes with some personal reflections of how the motivation for, and practice of, 3D dosimetry have changed (or not) over the years.

  11. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Eberhardt, H.-J.; Gohs, U.

    1996-01-01

    the mucosal surface. The dose measurements as well were performed in each single radiation therapy session as cumulatively during the whole course. Measurements of absorbed brachytherapy doses were made on 5 patients. The good agreement between the dosages determined by alanine/ESR dosimetry and those predicted by treatment planning indicate that this technique can be used for quality assurance in brachytherapy

  12. State of the art of solid state dosimetry; Estado da arte em dosimetria do estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Susana O., E-mail: sosouza@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Yamamoto, Takayoshi [Radioisotope Research Center, Osaka University (Japan); D' Errico, Francesco, E-mail: francesco.derrico@yale.edu [Yale University, School of Medicine, CT (United States)

    2014-07-01

    Passive solid-state detectors still dominate the personal dosimetry field. This article provides state of the art in this field and summarizes the most recent works presented on TL, OSL and RPL during the 17th International Conference on Solid State Dosimetry held in Recife in September 2013. The Article contains in particular the techniques Thermoluminescence (TL), Optically Stimulated Luminescence (OSL), radio photoluminescence (RPL). Thermoluminescence has the biggest advantage of the wide availability of commercial materials for dosimetry, and the nature tissue-equivalent of several of these materials. The limitation of the TL dosimetry presents fading luminance signal and the need for high temperatures to obtain the signal. The Optically Stimulated Luminescence has the advantages of high sensitivity, the possibility of multiple reading, while its limit is the need to use response compensating filters in addition to the high cost of equipment and dosimeters still restricted very few options trading . The radio photoluminescence has a reading that is completely non-destructive, but their dosimeters present lack of tissue-equivalent and a high cost. Presents the details of the techniques and the advantages and limitations of each of these will be discussed.

  13. Second meeting of competent persons in radiation protection

    International Nuclear Information System (INIS)

    2000-01-01

    This conference treats the subjects interesting the competent persons in radiation protection. It is divided in four sessions. The first one concerns the regulatory bases for the action of competent persons and includes three articles, the second one is about the operational dosimetry and includes six articles, the third session is devoted to the sources and waste management and represents two texts, the last and fourth session concerns the competent person in radiation protection and gives evidence. (N.C.)

  14. The Latin American Biological Dosimetry Network (LBDNet).

    Science.gov (United States)

    García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M

    2016-09-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Enhanced visual performance in obsessive compulsive personality disorder.

    Science.gov (United States)

    Ansari, Zohreh; Fadardi, Javad Salehi

    2016-12-01

    Visual performance is considered as commanding modality in human perception. We tested whether Obsessive-compulsive personality disorder (OCPD) people do differently in visual performance tasks than people without OCPD. One hundred ten students of Ferdowsi University of Mashhad and non-student participants were tested by Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II), among whom 18 (mean age = 29.55; SD = 5.26; 84% female) met the criteria for OCPD classification; controls were 20 persons (mean age = 27.85; SD = 5.26; female = 84%), who did not met the OCPD criteria. Both groups were tested on a modified Flicker task for two dimensions of visual performance (i.e., visual acuity: detecting the location of change, complexity, and size; and visual contrast sensitivity). The OCPD group had responded more accurately on pairs related to size, complexity, and contrast, but spent more time to detect a change on pairs related to complexity and contrast. The OCPD individuals seem to have more accurate visual performance than non-OCPD controls. The findings support the relationship between personality characteristics and visual performance within the framework of top-down processing model. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  16. Dosimetry control for radiation processing - basic requirements and standards

    International Nuclear Information System (INIS)

    Ivanova, M.; Tsrunchev, Ts.

    2004-01-01

    A brief review of the basic international codes and standards for dosimetry control for radiation processing (high doses dosimetry), setting up a dosimetry control for radiation processing and metrology control of the dosimetry system is made. The present state of dosimetry control for food processing and the Bulgarian long experience in food irradiation (three irradiation facilities are operational at these moment) are presented. The absence of neither national standard for high doses nor accredited laboratory for calibration and audit of radiation processing dosimetry systems is also discussed

  17. Dosimetry in dentistry.

    Science.gov (United States)

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  18. Technical requirements for implementation of an individual monitoring service for evaluation of operational quantity HP(10) using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Francisco, Adelaide Benedita Armando

    2016-01-01

    This work aims to establish technical requirements for the development of a TLDs system for the assessment of operational quantity H P (10), in order to implement an external individual monitoring service in countries who do not have. This allows a better understanding of the technic and the thermoluminescent dosimetry system, thus contributing to identify the technical criteria to be followed by a dosimetry laboratory and evaluation of the dosimetric system performance. For this, the review of the specific literature of the dosimetry field was conducted and later the type and performance tests that must be followed by a dosimetric system were reproduced in practice. In additional was made a analysis of internationals standards norms and the technical regulation used in Brazil, to define the essentials type testes to a dosimetric system. To check the performance of a dosimetry system, a performance analysis of the Brazilian TLDs system was carried out over the past 6 years using the trumpet curve, where it was observed that most of TLDs system, in this review period, were approved and have excellent performance. The technical requirements for the development of a thermoluminescent dosimetry system ensure that the system provides technically reliable results and allow demonstration of compliance with the standard criteria established by national and international standards, and the implementation of the dosimetry system, is verified the compliance of the annual doses limits set for occupationally exposed. (author)

  19. SU-E-T-606: Performance of MR-Based 3D FXG Dosimetry for Preclinical Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Jaffray, D [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON (Canada); Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada); TECHNA Institute for the Advancement of Technology for Health, Toronto, ON (Canada)

    2015-06-15

    Purpose: Technological advances have revolutionized preclinical radiation research to enable precise radiation delivery in preclinical models. Kilovoltage x-rays and complex geometries in preclinical radiation studies challenge conventional dosimetry methods. Previously developed gel-based dosimetry provides a viable means of accommodating complex geometries and accurately reporting dose at kV energies. This paper will describe the development and evaluation of gel-based ferrous xylenol-orange (FXG) dosimetry using a 7T preclinical imaging system. Methods: To confirm water equivalence, Zeff values were calculated for the FXG material, water and ICRU defined soft tissue. Proton T1 relaxivity response in FXG was measured using a preclinical 7T MR and a small animal irradiator for a dose range of 1–22 Gy. FXG was contained in 50 ml centrifuge tubes and irradiated with a 225 kVp x-ray beam at a nominal dose rate of 2.3 Gy/min. Pre and post irradiation maps of the T1 relaxivity were collected using variable TR spin-echo imaging (TE 6.65 ms; TR 500, 750, 1000, 1500, 2000, 3000 and 5000 ms) with 2 mm thick slices, 0.325 mm/pixel, 3 averages and an acquisition time of 26 minutes. A linear fit to the change in relaxation rate (1/T1) for the delivered doses reported the gel sensitivity in units of ms{sup -1}Gy{sup -1}. Irradiation and imaging studies were repeated using three batches of gel over 72 hrs. Results: FXG has a Zeff of 3.8 for the 225 kVp spectrum used; differing from water and ICRU defined soft tissue by 0.5% and 2.5%, respectively. The average sensitivity for the FXG dosimeter was 31.5 ± 0.7 ms{sup -1}Gy{sup -1} (R{sup 2} = 0.9957) with a y-intercept of −29.4 ± 9.0 ms{sup -1}. Conclusion: Preliminary results for the FXG dosimeter properties, sensitivity, and dose linearity at preclinical energies is promising. Future work will explore anatomically relevant tissue inclusions to test MR performance. Student funding provided by The Terry Fox Foundation

  20. The big five personality dimensions and job performance

    Directory of Open Access Journals (Sweden)

    S. Rothmann

    2003-10-01

    Full Text Available The objective of this research was to determine the relationship between personality dimensions and job performance. A cross-sectional survey design was used. The study population consisted of 159 employees of a pharmaceutical company. The NEO-Personality Inventory – Revised and Performance Appraisal Questionnaire were used as measuring instruments. The results showed that Emotional Stability, Extraversion, Openness to Experience and Conscientiousness were related to task performance and creativity. Three personality dimensions, namely Emotional Stability, Openness to Experience and Agreeableness, explained 28% of the variance in participants’ management performance. Opsomming Die doelstelling van hierdie navorsing was om die verband tussen persoonlikheidsdimensies en werksprestasie te bepaal. ‘n Eenmalige dwarsdeursnee-ontwerp is gebruik. Die ondersoekgroep het bestaan uit 159 werknemers binne ‘n farmaseutiese organisasie. Die NEO-Personality Inventory – Revised en die Prestasiebeoordelingsvraelys is as meetinstrumente gebruik. Die resultate het aangetoon dat Emosionele Stabiliteit, Ekstroversie en Konsensieusheid met taakverrigting en kreatiwiteit verband hou. Drie persoonlikheidsdimensies, naamlik Emosionele Stabiliteit, Openheid vir Ervaring en Inskiklikheid, het 28% van die variansie in bestuursprestasie (soos beoordeel deur toesighouers voorspel.

  1. SU-F-T-50: Evaluation of Monte Carlo Simulations Performance for Pediatric Brachytherapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chatzipapas, C; Kagadis, G [University Patras, Rion, Ahaia (Greece); Papadimitroulas, P [BET Solutions, Athens, Attiki (Greece); Loudos, G [Technological Educational Institute of Athens, Egaleo, Attiki (Greece); Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States)

    2016-06-15

    Purpose: Pediatric tumors are generally treated with multi-modal procedures. Brachytherapy can be used with pediatric tumors, especially given that in this patient population low toxicity on normal tissues is critical as is the suppression of the probability for late malignancies. Our goal is to validate the GATE toolkit on realistic brachytherapy applications, and evaluate brachytherapy plans on pediatrics for accurate dosimetry on sensitive and critical organs of interest. Methods: The GATE Monte Carlo (MC) toolkit was used. Two High Dose Rate (HDR) 192Ir brachytherapy sources were simulated (Nucletron mHDR-v1 and Varian VS2000), and fully validated using the AAPM and ESTRO protocols. A realistic brachytherapy plan was also simulated using the XCAT anthropomorphic computational model .The simulated data were compared to the clinical dose points. Finally, a 14 years old girl with vaginal rhabdomyosarcoma was modelled based on clinical procedures for the calculation of the absorbed dose per organ. Results: The MC simulations resulted in accurate dosimetry in terms of dose rate constant (Λ), radial dose gL(r) and anisotropy function F(r,θ) for both sources.The simulations were executed using ∼1010 number of primaries resulting in statistical uncertainties lower than 2%.The differences between the theoretical values and the simulated ones ranged from 0.01% up to 3.3%, with the largest discrepancy (6%) being observed in the dose rate constant calculation.The simulated DVH using an adult female XCAT model was also compared to a clinical one resulting in differences smaller than 5%. Finally, a realistic pediatric brachytherapy simulation was performed to evaluate the absorbed dose per organ and to calculate DVH with respect to heterogeneities of the human anatomy. Conclusion: GATE is a reliable tool for brachytherapy simulations both for source modeling and for dosimetry in anthropomorphic voxelized models. Our project aims to evaluate a variety of pediatric

  2. In vivo dosimetry with semiconductors in medium dose rate (MDR) brachytherapy for cervical cancer.

    Science.gov (United States)

    Allahverdi, Mahmoud; Jaberi, Ramin; Aghili, Mehdi; Ghahremani, Fatemeh; Geraily, Ghazale

    2013-03-01

    This study was performed to evaluate the role of in vivo dosimetry with semiconductor detectors in gynaecological medium dose rate brachytherapy, and to compare the actual doses delivered to organs at risk (as measured using in vivo dosimetry) with those calculated during treatment planning. Doses to the rectum and bladder were measured in a group of patients with cervical carcinoma using semiconductor detectors and compared to the doses calculated using a treatment planning system. 36 applications of brachytherapy at dose rates of 1.8-2.3 Gy/h were performed in the patients. The mean differences between the measured and calculated doses were 3 % for the rectum and 11 % for the bladder. The main reason for the differences between the measured and calculated doses was patient movement. To reduce the risk of large errors in the dose delivered, in vivo dosimetry should be performed in addition to treatment planning system computations.

  3. Fifteenth nuclear accident dosimetry intercomparison study: August 14--22, 1978

    International Nuclear Information System (INIS)

    Sims, C.S.

    1979-05-01

    The fifteenth in the continuing series of Nuclear Accident Dosimetry Intercomparison Studies was held August 14--22, 1978 at the Oak Ridge National Laboratory. The Health Physics Research Reactor, operated in the pulse mode, served as the radiation source. Using different shielding configurations, nuclear accidents with three different neutron and gamma spectra were simulated. Participants from 19 organizations, the most in the history of the studies, exposed dosimeters set up as area monitors as well as dosimeters mounted on phantoms for personnel monitoring. Although many participants performed accurate measurements, the composite dose results, in the majority of cases, failed to meet established nuclear criticality accident dosimetry guidelines which suggest accuracies of +- 25% for neutron dose and +- 20% for gamma dose. This indicates that many participants need to improve their dosimetry systems, their analytical techniques, or both

  4. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  5. Biological Dosimetry of In Vitro Irradiation with Radionuclides : Comparison of Whole Blood, Lymphocyte and Buffy Coat Culture

    International Nuclear Information System (INIS)

    Kim, Jong Ho; Lee, Dong Soo; Choi, Chang Woon; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Kim, Chong Soon; Kim, Hee Geun; Kang, Duck Won; Song, Myung Jae

    1995-01-01

    The purpose of this study was to establish mononuclear cell cultures such as lymphocytes or buffy coat for the biological dosimetry of in vitro irradiation of the radionuclide Tc-99m in order to exclude the effect of residual doses seen in the cultures of whole blood. Biological dosimetry of Tc-99m on cultured mononuclear cells at doses ranging from 0.05 to 6.00 Gy, by scoring unstable chromosomal aberrations(Ydr) observed in cultured lymphocytes, were performed using peripheral venous blood of healthy normal person. The results showed that; (1) In vitro irradiation of radioisotope in separated lymphocyte or buffy coat showed trace amount af residual doses of isotope after washing. Residual doses of isotopes are increased in proportion tn exposed time and irradiated dose without difference between I-131 anct Tc-99m. (2) We obtained these linear-quadratic dose response equations in lymphocyte and buffy coat culture after in vitro irradiation of Tc-99m, respectively (Ydr = 0,001949 D 2 +0,006279D+ 0.000185; Ydr= 0.002531 D 2 -0.003274 D+0.003488). In conclusion, the linear quadrstic dose response equation from in vitro irradiation of Tc-99m with lymphocyte and buffy coat culture was thought to be useful for assessing Tc-99m indueed biological effects. And mononuclear cell cultures seem to be the most appropriate experimental model for the assessment of biological dosimetry of internal irradiation of radionuclides.

  6. Accidental-radiation dosimetry by using the lyoluminescence of ordinary sugar

    International Nuclear Information System (INIS)

    Pitt, E.; Scharmann, A.

    1987-01-01

    This investigation had the purpose to develop a simple and reliable method permitting, in the event of a nuclear catastrophe, to establish within short, for a large number of persons in representative places, doses of γ-radiation that might serve as decision aids for therapeutic measures to be taken. A suitable method seems to be by radiation-induced luminescence and subsequent solution (Lyoluminescence, LL) of sugar, a product available in any office, canteen, or household. Such lyoluminescence dosimetry was investigated. (orig./DG) [de

  7. The dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    1987-01-01

    Describes the activities of the IAEA's Dosimetry Laboratory which provides calibration and comparison services for secondary standard dosimetry laboratories (SSDLs) of Member States. In addition, a joint IAEA/WHO postal dosimetry service has been established for radiotherapy centers. The International Measurement System and the calibration ''chain'' from measurement standard instruments of the International Bureau of Weights and Measurements (BIPM) through the primary and secondary standards to the dosimeters of the users are presented as well

  8. Retrospective dosimetry of Chernobyl liquidators

    International Nuclear Information System (INIS)

    Chumak, V.V.; Bakhanova, E.V.; Sholom, S.V.; Pasalskaya, L.F.; Bouville, A.; Krjuchkov, V.P.

    2000-01-01

    The numerous cohort of Chernobyl liquidators is a very attractive subject for epidemiological follow up due to high levels of exposure, age-gender distribution and availability of patients for medical examination. However, dosimetric information related to this population is incomplete, in many cases the quality of available dose records is doubtful and uncertainties of all dose values are not determined. Naive attempts to evaluate average doses on the basis of such factors as 'distance from the reactor' obviously fail due to large variation of tasks and workplace contamination. Therefore, prior to any sensible consideration of liquidators as a subject of epidemiological study, their doses should be evaluated (reevaluated) using the methods of retrospective dosimetry. Retrospective dosimetry in general got significant development over the last decade. However, most of the retrospective dosimetry techniques are time consuming, expensive and possess sensitivity threshold. Therefore, application of retrospective dosimetry for the needs of epidemiological follow up studies requires development of certain strategy. This strategy depends, of coarse, on the epidemiological design of the study, availability of resources and dosimetric information related to the time of clean up. One of the strategies of application of retrospective dosimetry may be demonstrated on the example of a cohort study with occasional nested case control consideration. In this case, the tools are needed for validation of existing dose records (of not always known quality), screening of the study cohort with express dosimetric method called to determine possible dose ranges, and 'state-of-the-art' assessment of individual doses for selected subjects (cases and controls). Verification of dose records involves analysis of the statistical regularities of dose distributions and detection of possible extraneous admixtures (presumably falsified dose records). This work is performed on impersonified data

  9. Pulse monitor for upper extremities dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Cledison de Jesus, Cunha; Divanizia do Nascimento, Souza

    2006-01-01

    In the manipulation of radioactive materials in Nuclear Medicine service the body parts of workers that are more displayed to the ionizing radiation are hands, underarm and arm. Therefore is necessary to developing personal dosimeters to monitoring of easy reproduction and low cost with purpose to determine the doses level radiation received by the worker in these extremities. However thermoluminescent dosimeters do not provide an instantaneous exposure reading, they are suitable for personal dosimetry because of their following advantages: wide useful dose range, small physical size and no need for high voltage or cables, i.e. stand alone character. The aim of this work is to investigation of a new pulse monitor, that has been developing with thermoluminescent detectors of CaSO 4 :Dy (TLD) using a small plate of acrylic, perforated cardboard to deposit the TLD. This set was involved in plastic to protect from humidity and other harmful ambient factors; moreover, a bracelet was inserted, adaptable for any worker. During the preparation of the personal dosimeters to monitor exposure it was necessary to verify their effectiveness to use by workers in a nuclear medicine service. The monitors have been submitted to procedures of performance evaluations by several tests: badges homogeneity, reproducibility, linearity, low detection limit, auto-irradiation, dosimeters stability, verification of the residual T.L. signal, visible light effect on dosimeters, energetic and angular dependence and TLD answer by influence of a simulator during radiation. Was possible to verify the efficiency of such upper extremities dosimeters and were obtained satisfactory results within of the limits demanded in the described tests above to this type of personal dosimeters. (authors)

  10. Hematological dosimetry

    International Nuclear Information System (INIS)

    Fluery-Herard, A.

    1991-01-01

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues [fr

  11. Personality, personnel selection, and job performance

    NARCIS (Netherlands)

    D. van der Linden (Dimitri); D.H.M. Pelt (Dirk); C.S. Dunkel (Curtis); M.Ph. Born (Marise)

    2017-01-01

    markdownabstractJob Performance: The term job performance can either refer to the objective or subjective outcomes one achieves in a specific job (e.g., the profit of a sales persons, the number of publications of a scientist, the number of successful operations of a surgeon) or to work-related

  12. Achievements in workplace neutron dosimetry in the last decade: Lessons learned from the EVIDOS project

    International Nuclear Information System (INIS)

    Tanner, R. J.; Bolognese-Milsztajn, T.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Lillhoek, J. E.; Lacoste, V.; Lindborg, L.; Luszik-Bhadra, M.; Reginatto, M.; Schuhmacher, H.; Vanhavere, F.

    2007-01-01

    The availability of active neutron personal dosemeters has made real time monitoring of neutron doses possible. This has obvious benefits, but is only of any real assistance if the dose assessments made are of sufficient accuracy and reliability. Preliminary assessments of the performance of active neutron dosemeters can be made in calibration facilities, but these can never replicate the conditions under which the dosemeter is used in the workplace. Consequently, it is necessary to assess their performance in the workplace, which requires the field in the workplace to be fully characterised in terms of the energy and direction dependence of the fluence. This paper presents an overview of developments in workplace neutron dosimetry but concentrates on the outcomes of the EVIDOS project, which has made significant advances in the characterisation of workplace fields and the analysis of dosemeter responses in those fields. (authors)

  13. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  14. Results of the IAEA/RCA personal dosemeter intercomparison in the Asian and Pacific region

    International Nuclear Information System (INIS)

    Murakami, H.; Minami, K.; Griffith, R.V.

    1994-01-01

    In 1988, the International Atomic Energy Agency started the Regional Co-operative Agreement project for strengthening the radiation protection infrastructure in the Asian and Pacific region. One component of the initial programme was a regional personal dosimetry intercomparison, which was subsequently conducted in three phases over three years during the period 1990 to 1992. Seventeen organisations of all 14 member states participated in the programmes. Irradiations and data compilation were conducted by the Japan Atomic Energy Research Institute. This paper describes the results of the intercomparison programmes and discusses some features and personal dosimetry problems in the RCA member states. (author)

  15. Performance assessment of patient dosimetry services and X-ray quality assurance instruments used in diagnostic radiology

    International Nuclear Information System (INIS)

    Green, S.; Palethrope, J.E.; Peach, D.; Bradley, D.A.

    1999-01-01

    Experiences of the Regional Radiation Physics and Protection Service (RRPPS) in performance assessment of diagnostic X-ray QA instrumentation and on-patient dosemeters are recounted. Issues relating to the provision of realistic and reproducible reference conditions for calibrated X-irradiations are considered and summary statistics from test measurements of dose and kVp meters are provided. For both dose and kVp meters it is indicated that as many as 25% of instruments used in routine use in the U.K. may require some adjustment before they can truly be said to be performing as the manufacturer intended. Results from intercomparison exercises for patient dosimetry services are also discussed. It is apparent that, for those centres participating in the exercise, dose assessments are generally being obtained to within a bias and a relative standard deviation of less then 10%

  16. EPR TOOTH DOSIMETRY OF SNTS AREA INHABITANTS.

    Science.gov (United States)

    Sholom, Sergey; Desrosiers, Marc; Bouville, André; Luckyanov, Nicholas; Chumak, Vadim; Simon, Steven L

    2007-07-01

    The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed "accident doses", were found to lie in the range from zero to approximately 2 Gy, with one exception, a dose for one person from Semipalatinsk city was approximately 9 Gy. The variability of reconstructed doses within each of the settlements demonstrated heterogeneity of the deposited fallout as well as variations in lifestyle. The village mean external gamma doses for residents of nine[ settlements were in the range from a few tens of mGy to approximately 100 mGy.

  17. EPR tooth dosimetry of SNTS area inhabitants

    Energy Technology Data Exchange (ETDEWEB)

    Sholom, Sergey [Scientific Center for Radiation Medicine, Melnikova str., 53, Kiev (Ukraine); Desrosiers, Marc [Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Bouville, Andre; Luckyanov, Nicholas [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 6120 Executive Boulevard, Bethesda, MD (United States); Chumak, Vadim [Scientific Center for Radiation Medicine, Melnikova str., 53, Kiev (Ukraine); Simon, Steven L. [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 6120 Executive Boulevard, Bethesda, MD (United States)], E-mail: ssimon@mail.nih.gov

    2007-07-15

    The determination of external dose to teeth of inhabitants of settlements near the Semipalatinsk Nuclear Test Site (SNTS) was conducted using the EPR dosimetry technique to assess radiation doses associated with exposure to radioactive fallout from the test site. In this study, tooth doses have been reconstructed for 103 persons with all studied teeth having been formed before the first nuclear test in 1949. Doses above those received from natural background radiation, termed 'accident doses', were found to lie in the range from zero to approximately 2 Gy, with one exception, a dose for one person from Semipalatinsk city was approximately 9 Gy. The variability of reconstructed doses within each of the settlements demonstrated heterogeneity of the deposited fallout as well as variations in lifestyle. The village mean external gamma doses for residents of nine settlements were in the range from a few tens of mGy to approximately 100 mGy.

  18. MOSFET dosimetry on modern radiation oncology modalities

    International Nuclear Information System (INIS)

    Rosenfeld, A.B.

    2002-01-01

    The development of MOSFET dosimetry is presented with an emphasis on the development of a scanning MOSFET dosimetry system for modern radiation oncology modalities. Fundamental aspects of MOSFETs in relation to their use as dosemeters are briefly discussed. The performance of MOSFET dosemeters in conformal radiotherapy, hadron therapy, intensity-modulated radiotherapy and microbeam radiation therapy is compared with other dosimetric techniques. In particular the application of MOSFET dosemeters in the characterisation and quality assurance of the steep dose gradients associated with the penumbra of some modern radiation oncology modalities is investigated. A new in vivo, on-line, scanning MOSFET read out system is also presented. The system has the ability to read out multiple MOSFET dosemeters with excellent spatial resolution and temperature stability and minimal slow border trapping effects. (author)

  19. Absolute and relative dosimetry for ELIMED

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Leonora, E.; Randazzo, N. [INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Presti, D. Lo [INFN-Sezione di Catania, Via Santa Sofia 64, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Raffaele, L. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Cirio, R.; Sacchi, R.; Monaco, V. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino, Italy and Università di Torino, Dipartimento di Fisica, Via P.Giuria, 1 10125 Torino (Italy); Marchetto, F.; Giordanengo, S. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy)

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  20. Borderline personality symptoms and work performance: a population-based survey.

    Science.gov (United States)

    Juurlink, Trees T; Ten Have, Margreet; Lamers, Femke; van Marle, Hein J F; Anema, Johannes R; de Graaf, Ron; Beekman, Aartjan T F

    2018-06-19

    This study aims to elucidate the interplay between borderline personality symptoms and working conditions as a pathway for impaired work performance among workers in the general population. Cross-sectional data from the Netherlands Mental Health Survey and Incidence Study-2 (NEMESIS-2) were used, including 3672 workers. Borderline personality symptoms were measured with the International Personality Disorder Examination (IPDE) questionnaire. Working conditions (decision latitude, psychological job demands, job security and co-worker support) were assessed with the Job Content Questionnaire (JCQ). Impaired work performance was assessed as total work loss days per month, defined as the sum of days of three types of impaired work performance (inability to work, cut-down to work, and diminished quality at work). These were assessed with the WHO Disability Assessment Schedule (WHO-DAS). Common mental disorders (CMD) were assessed with the Composite International Diagnostic Interview (CIDI). Number of borderline personality symptoms was consistently associated with impaired work performance, even after controlling for type or number of adverse working conditions and co-occurrence of CMD. Borderline personality symptoms were associated with low decision latitude, job insecurity and low co-worker support. The relationship between borderline personality symptoms and work performance diminished slightly after controlling for type or number of working conditions. The current study shows that having borderline personality symptoms is a unique determinant of work performance. This association seems partially explained through the impact of borderline personality symptoms on working conditions. Future studies are warranted to study causality and should aim at diminishing borderline personality symptoms and coping with working conditions.

  1. US Department of Energy Laboratory Accreditation Program for personnel dosimetry systems (DOELAP)

    International Nuclear Information System (INIS)

    Carlson, R.D.; Gesell, T.F.; Kalbeitzer, F.L.; Roberson, P.L.; Jones, K.L.; MacDonald, J.C.; Vallario, E.J.; Pacific Northwest Lab., Richland, WA; USDOE Assistant Secretary for Nuclear Energy, Washington, DC

    1988-01-01

    The US Department of Energy (DOE) Office of Nuclear Safety has developed and initiated the DOE Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems to assure and improve the quality of personnel dosimetry at DOE and DOE contractor facilities. It consists of a performance evaluation program that measures current performance and an applied research program that evaluates and recommends additional or improved test and performance criteria. It also provides guidance to DOE, identifying areas where technological improvements are needed. The two performance evaluation elements in the accreditation process are performance testing and onsite assessment by technical experts. Performance testing evaluates the participant's ability to accurately and reproducibly measure dose equivalent. Tests are conducted in accident level categories for low- and high-energy photons as well as protection level categories for low- and high-energy photons, beta particles, neutrons and mixtures of these

  2. Software tool for portal dosimetry research.

    Science.gov (United States)

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.

  3. Calibration of personal dosemeters in terms of the ICRU operational quantities

    International Nuclear Information System (INIS)

    McDonald, J.C.; Hertel, N.E.

    1992-01-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined several new operational quantities for radiation protection purposes. The quantities to be used for personal monitoring are defined at depths in the human body. Because these quantities are impossible to measure directly, the ICRU has recommended that personal dosimeters should be calibrated under simplified conditions on an appropriate phantom, such as the ICRU sphere. The U.S. personal dosimetry accreditation programs make use of a 30 x 30 x 15 cm polymethylmethacrylate (PMMA) phantom; therefore it is necessary to relate the response of dosimeters calibrated on this phantom to the ICRU operational quantities. Calculations of the conversion factors to compute dosimeter response in terms of the operational quantities have been performed using the code MCNP. These calculations have also been compared to experimental measurements using thermoluminescent (TLD) detectors. (author)

  4. Calibration of personal dosemeters in terms of the ICRU operational quantities

    International Nuclear Information System (INIS)

    McDonald, J.C.; Hertel, N.E.

    1992-05-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined several new operational quantities for radiation protection purposes. The quantities to be used for personal monitoring are defined at depths in the human body. Because these quantities are impossible to measure directly, the ICRU has recommended that personal dosemeters should be calibrated under simplified conditions on an appropriate phantom, such as the ICRU sphere. The US personal dosimetry accreditation programs make use of a 30 x 30 x 15 cm polymethymethacrylate (PMMA) phantom, therefore it is necessary to relate the response of dosemeters calibrated on this phantom to the ICRU operational quantities. Calculations of the conversion factors to compute dosemeter response in terms of the operational quantities have been performed using the code MCNP. These calculations have also been compared to experimental measurements using thermoluminescent (TLD) detectors

  5. Chemical dosimetry system for criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  6. Assessment of CaSO4:Dy and LiF:Mg,Ti thermoluminescent dosimeters performance in the dosimetry of clinical electron beams

    International Nuclear Information System (INIS)

    Nunes, Maira Goes

    2008-01-01

    The assessment of the performance of CaS0 4 :Dy thermoluminescent detectors produced by IPEN in the dosimetry of clinical electron beams aims to propose an alternative to the LiF:Mg,Ti commercial dosimeters (TLD-100) largely applied in radiation therapy. The two types of thermoluminescent dosimeters were characterised with the use of PMMA, RMI-457 type solid water and water phantoms in radiation fields of 4, 6, 9, 12 and 16 MeV electrons of nominal energies in which the dose-response curves were obtained and the surface and depth doses were determined. The thermoluminescent response dependency with the electron nominal energies and the applied phantom were studied. The CaS0 4 :Dy presented the same behaviour than the LiF:Mg,Ti in such a way that its application as an alternative to the TLD-100 pellets in the radiation therapy dosimetry of electron beams is viable and presents the significantly higher sensitivity to the electron radiation as its main advantage. (author)

  7. Chemical dosimetry of Gammacell with ferrous sulfate

    International Nuclear Information System (INIS)

    Austerlitz, Carlos; Campos, Diana; Ferreira, Maria Clara; Benhabib, Sidi; Panettieri, Vanesa; Lopes Filho, Alfredo

    2009-01-01

    The influence of Compton scatter radiation from a Gammacell-220 on the ferric-ion yield [G(Fe +3 )] was determined for the Fricke dosimetry. Monte Carlo simulations were performed using the PENELOPE code to obtain the photon spectrum of a 60 Co Nordion teletherapy unit at a depth of 2 cm in a 50x50x50 cm 3 cubic water tank. Published values of G(Fe +3 ) were fitted by a third order polynomial and the resulting equation was used to determine a mean chemical yield of such unit. The same procedure was performed over the spectrum of a Gammacell-220 published by the ASTM. The mass-energy absorption coefficient for the Fricke solution was weighted over the Gammacell-220 spectrum and compared against the Nordion spectrum. The ratio between the mean chemical yields was used to determine the influence of the Compton scatter radiation on the value of G(Fe +3 ). The ratio of the mass-energy absorption coefficient of water to Fricke solution was used to convert the absorbed dose in the Fricke solution to absorbed dose to water. From the results obtained it was concluded that the dosimetry of a Gammacell-220 with the Fricke dosimeter may overestimate the measured absorbed dose to water by a factor of 1.01 due to changes in the G(Fe +3 ) value. Differences in the mean energy of the spectra can lead to large errors in the isodoses curves of samples irradiated with both equipment. To establish evidence that the radiation process will provide the desired results, the knowledge of the radiation spectrum is needed. Alternatively, whenever it is possible, the dosimetry should be performed by positioning the capsule with the Fricke solution inside of dummy samples (author)

  8. The work programme of EURADOS on internal and external dosimetry.

    Science.gov (United States)

    Rühm, W; Bottollier-Depois, J F; Gilvin, P; Harrison, R; Knežević, Ž; Lopez, M A; Tanner, R; Vargas, A; Woda, C

    2018-01-01

    Since the early 1980s, the European Radiation Dosimetry Group (EURADOS) has been maintaining a network of institutions interested in the dosimetry of ionising radiation. As of 2017, this network includes more than 70 institutions (research centres, dosimetry services, university institutes, etc.), and the EURADOS database lists more than 500 scientists who contribute to the EURADOS mission, which is to promote research and technical development in dosimetry and its implementation into practice, and to contribute to harmonisation of dosimetry in Europe and its conformance with international practices. The EURADOS working programme is organised into eight working groups dealing with environmental, computational, internal, and retrospective dosimetry; dosimetry in medical imaging; dosimetry in radiotherapy; dosimetry in high-energy radiation fields; and harmonisation of individual monitoring. Results are published as freely available EURADOS reports and in the peer-reviewed scientific literature. Moreover, EURADOS organises winter schools and training courses on various aspects relevant for radiation dosimetry, and formulates the strategic research needs in dosimetry important for Europe. This paper gives an overview on the most important EURADOS activities. More details can be found at www.eurados.org .

  9. Dosimetry and operation of irradiation facilities

    International Nuclear Information System (INIS)

    Vidal, P.E.

    1985-01-01

    The industrial use of ionizing radiation has required, from the very first, the measurement of delivered and absorbed doses; hence the necessity of providing dosimetric systems. Laboratories, scientists, industries and potential equipment manufacturers have all collaborated in this new field of activity. Dosimetric intercomparisons have been made by each industry at their own facilities and in collaboration with specialists, national organizations and the IAEA. Dosimetry has become a way of ensuring that treatment by irradiation has been carried out in accordance with the rules. It has become in effect assurance of quality. Routine dosimetry should determine a maximum and minimum dose. Numerous factors play a part in dosimetry. Industry is currently in possession of routine dosimetric systems that are sufficiently accurate, fairly easy to handle and reasonable in cost, thereby satisfying all the requirements of industry and the need for control. Dosimetry is important in the process of marketing irradiated products. The operator of an industrial irradiation facility bases his dosimetry on comparison with reference systems. Research aimed at simplifying the practice of routine dosimetry should be continued. New physical and chemical techniques will be incorporated into systems already in use. The introduction of microcomputers into the operation of radiation facilities has increased the value of dosimetry and made the conditions of treatment more widespread. Stress should be placed on research in several areas apart from reference systems, for example: dosimetric systems at temperatures from +8 deg. C to -45 deg. C, over the dose range 100 krad to a little more than 1 Mrad, liquids and fluidized solids carried at high speed through ducts, thin-film liquids circulating at a high flow rate, and various other problems. (author)

  10. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  11. Personality and organizational influences on aerospace human performance

    Science.gov (United States)

    Helmreich, Robert L.

    1989-01-01

    Individual and organizational influences on performance in aerospace environments are discussed. A model of personality with demonstrated validity is described along with reasons why personality's effects on performance have been underestimated. Organizational forces including intergroup conflict and coercive pressures are also described. It is suggested that basic and applied research in analog situations is needed to provide necessary guidance for planning future space missions.

  12. Technical guidelines for personnel dosimetry calibrations

    International Nuclear Information System (INIS)

    Roberson, P.L.; Fox, R.A.; Hadley, R.T.; Holbrook, K.L.; Hooker, C.D.; McDonald, J.C.

    1983-01-01

    A base of technical information has been acquire and used to evaluate the calibration, design, and performance of selected personnel systems in use at Department of Energy (DOE) facilites. A technical document was prepared to guide DOE and DOE contractors in selecting and evaluating personnel dosimetry systems and calibration. A parallel effort was initiated to intercompare the adiological calibrations standards used to calibrate DOE personnel dosimeters

  13. A Chinese Visible Human-based computational female pelvic phantom for radiation dosimetry simulation

    International Nuclear Information System (INIS)

    Nan, H.; Jinlu, S.; Shaoxiang, Z.; Qing, H.; Li-wen, T.; Chengjun, G.; Tang, X.; Jiang, S. B.; Xiano-lin, Z.

    2010-01-01

    Accurate voxel phantom is needed for dosimetric simulation in radiation therapy for malignant tumors in female pelvic region. However, most of the existing voxel phantoms are constructed on the basis of Caucasian or non-Chinese population. Materials and Methods: A computational framework for constructing female pelvic voxel phantom for radiation dosimetry was performed based on Chinese Visible Human datasets. First, several organs within pelvic region were segmented from Chinese Visible Human datasets. Then, polygonization and voxelization were performed based on the segmented organs and a 3D computational phantom is built in the form of a set of voxel arrays. Results: The generated phantom can be converted and loaded into treatment planning system for radiation dosimetry calculation. From the observed dosimetric results of those organs and structures, we can evaluate their absorbed dose and implement some simulation studies. Conclusion: A voxel female pelvic phantom was developed from Chinese Visible Human datasets. It can be utilized for dosimetry evaluation and planning simulation, which would be very helpful to improve the clinical performance and reduce the radiation toxicity on organ at risk.

  14. Organization of the internal dosimetry in the Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Manchena, P.; Soliet, E.

    1998-01-01

    From the beginning of the exploitation of the nuclear energy of Espanna, the nuclear facilities have had Services of Personal Dosimetry with the appropriate means to determine the dose. so much internal as external, of the personnel that mentioned facilities works. All the nuclear power stations use advanced systems of teams with object of detecting the radionuclides incorporation in the organism and calculation programs based on the recent recommendations of the International Commission of Radiological Protection (ICRP) for the determination of the derived doses

  15. How conservative is routine personal dosimetry monitoring in diagnostic radiology?

    International Nuclear Information System (INIS)

    Boetticher, H. von; Lachmund, J.; Hoffmann, W.

    2007-01-01

    Purpose: Dose values obtained by official personal radiation exposure monitoring are often considered equivalent to the effective dose of a person. This paper provides estimates of the extent of deviation between the two dose concepts under various conditions. Materials and Methods: Doses for patients and personnel were measured using thermoluminescence dosimeters for five different geometries at three work settings in a radiology department. Patients and personnel were simulated with anthropomorphic phantoms. Different types of protective clothing as well as permanent protection shields were considered in the calculations. Results: Dose values obtained by official personal dose monitoring are conservative only for specific radiation protection situations. With state-of-the-art personal protective equipment (wrap-around style lead apron with thyroid shield), the ratio between effective dose and personal dose varies between 0.6 and 1.25. Without thyroid protection the official personal dose systematically underestimates the effective dose: for protective clothing with 0.5 mm lead equivalent without thyroid shielding, the effective dose exceeds the personal dose by factors between 1.7 and 3.1. If protective clothing with lead equivalent 0.35 mm is used, this factor varies between 1.1 and 1.82. (orig.)

  16. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2006-01-01

    The object of this paper is to give a new user some practical information on the use of radiochromic films for medical applications. While various aspects of radiochromic film dosimetry for medical applications have been covered in some detail in several other excellent review articles which have appeared in the last few years [Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E., Soares, C.G., 1998. Radiochromic dosimetry: recommendations of the AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25, 2093-2115; Dempsey, J.F., Low, D.A., Mutic, S., Markman, J., Kirov, A.S., Nussbaum, G.H., Williamson, J.F., 2000. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 27, 2462-2475; Butson, M.J., Yu, P.K.N., Cheung, T., Metcalfe, P., 2003. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R41, 61-120], it is the intent of the present author to present material from a more user-oriented and practical standpoint. That is, how the films work will be stressed much less than how to make the films work well. The strength of radiochromic films is most evident in applications where there is a very high dose gradient and relatively high absorbed dose rates. These conditions are associated with brachytherapy applications, measurement of small fields, and at the edges (penumbra regions) of larger fields

  17. Report of the Intercomparison program by thermoluminescent dosimetry for Secondary Standard Dosimetry Laboratories

    International Nuclear Information System (INIS)

    Papadopulos, Susana

    2000-01-01

    In this report the results of an intercomparison program within a research coordinated program are presented. This is a third phase of the study that consisted in to evaluate the implementation of the new ICRU quantities for individual monitoring by the SSDLs, their capabilities to perform irradiations in different angles and the interpretation of the standard ISO 4370-3. This phase as well the first one was coordinated by Argentina through the Autoridad Regulatoria Nuclear that verified the performance of the participant laboratories. The SSDL of Argentina calibrated the dosimetric system to be used, and sent a set of tld dosimeters for irradiation at the SSDL or dosimetry laboratories of nine countries of latin america

  18. SU-E-T-87: A TG-100 Approach for Quality Improvement of Associated Dosimetry Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Manger, R; Pawlicki, T; Kim, G [UCSD Medical Center, La Jolla, CA (United States)

    2015-06-15

    Purpose: Dosimetry protocols devote so much time to the discussion of ionization chamber choice, use and performance that is easy to forget about the importance of the associated dosimetry equipment (ADE) in radiation dosimetry - barometer, thermometer, electrometer, phantoms, triaxial cables, etc. Improper use and inaccuracy of these devices may significantly affect the accuracy of radiation dosimetry. The purpose of this study is to evaluate the risk factors in the monthly output dosimetry procedure and recommend corrective actions using a TG-100 approach. Methods: A failure mode and effects analysis (FMEA) of the monthly linac output check procedure was performed to determine which steps and failure modes carried the greatest risk. In addition, a fault tree analysis (FTA) was performed to expand the initial list of failure modes making sure that none were overlooked. After determining the failure modes with the highest risk priority numbers (RPNs), 11 physicists were asked to score corrective actions based on their ease of implementation and potential impact. The results were aggregated into an impact map to determine the implementable corrective actions. Results: Three of the top five failure modes were related to the thermometer and barometer. The two highest RPN-ranked failure modes were related to barometric pressure inaccuracy due to their high lack-of-detectability scores. Six corrective actions were proposed to address barometric pressure inaccuracy, and the survey results found the following two corrective actions to be implementable: 1) send the barometer for recalibration at a calibration laboratory and 2) check the barometer accuracy against the local airport and correct for elevation. Conclusion: An FMEA on monthly output measurements displayed the importance of ADE for accurate radiation dosimetry. When brainstorming for corrective actions, an impact map is helpful for visualizing the overall impact versus the ease of implementation.

  19. Dosimetry and Shielding of X and Gamma Radiation

    International Nuclear Information System (INIS)

    Oncescu, M.; Panaitescu, I.

    1992-01-01

    This book covers the following problems: 1. X and Gamma radiations, 2. Interaction of X-ray and gamma radiations with matter, 3. Interaction of electrons with matter, 4. Principles and basic concepts of dosimetry, 5. Ionization dosimetry, 6. Calorimetric chemical and photographic dosimetry, 7. Solid state dosimetry, 8. Computation of dosimetric quantities, 9. Dosimetry in radiation protection, 10. Shielding of X and gamma radiations. The authors, well-known Romanian experts in Radiation Physics and Engineering, gave an up-dated, complete and readable account of this subject matter. The analyses of physical principles and concepts, of materials and instruments and of computational methods and applications are all well balanced to meat the needs of a broad readership

  20. Retrospective accident dosimetry using trapped charges

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dicentric chromosome aberrations technique scoring of aberrations in metaphases prepared from human lymphocytes is most commonly used. This is considered as a reliable technique because the sample is extracted from the individual human body itself. There are other techniques in biological dosimetry such as Fluorescence In Situ Hybridization (FISH) using translocations, premature chromosome condensation (PCC) and micronucleus assay. However the minimum detectable doses (MDD) are relatively high and sample preparation time is also relatively longer. Therefore, there is limitation in use of these techniques for the purpose of triage in a short time in case of emergency situation relating large number of persons. Electronic paramagnetic resonance (EPR) technique is based on the signal from unpaired electrons such as free radicals in irradiated materials especially tooth enamel, however it has also limitation for the purpose of triage because of difficulty of sample taking and its high MDD. Recently as physical methods, thermoluminescence (TL) and optically stimulated luminescence (OSL) technique have been attracted due to its lower MDD and simplicity of sample preparation. Density of the trapped charges is generally proportional to the radiation dose absorbed and the intensity of emitting light is also proportional to the density of trapped charges, thus it can be applied to measure radiation dose retrospectively. In this presentation, TL and OSL techniques are going to introduced and discussed as physical methods for retrospective accident dosimetry using trapped charges especially in electronic component materials. As a tool for dose reconstruction for emergency situation, thermoluminescece and optically stimulated luminescence techniques which are based on trapped charges during exposure of material are introduced. These techniques have several advantages such as high sensitivity, fast evaluation and ease to sample collection over common biological dosimetry and EPR

  1. Radiotherapy Based On α Emitting Radionuclides: Geant4 For Dosimetry And Micro-/Nano-Dosimetry

    International Nuclear Information System (INIS)

    Guatelli, Susanna

    2013-01-01

    Possible physics approaches to evaluate the efficacy of TAT are dosimetry, microdosimetry and nanodosimetry. Dosimetry is adequate when mean absorbed dose to a macroscopic target volume is important to understand the biological effect of radiation. General purpose Monte Carlo (MC) codes, based on condensed history approach, are a very useful, cost effective tool to solve dosimetric problems. The condensed history approach is based on the use of multiple scattering theories to calculate the energy losses and angular changes in the direction of the particle. The short α particle range and high LET make the microdosimetric approach more suitable than dosimetry to study TAT from first physics principles, as this approach takes into account the stochastic nature of energy deposition at cellular level

  2. Updating the INDAC computer application of internal dosimetry

    International Nuclear Information System (INIS)

    Bravo Perez-Tinao, B.; Marchena Gonzalez, P.; Sollet Sanudo, E.; Serrano Calvo, E.

    2013-01-01

    The initial objective of this project is to expand the application INDAC currently used in internal dosimetry services of the Spanish nuclear power plants and Tecnatom for estimating the effective doses of internal dosimetry of workers in direct action. or in-vivo dosimetry. (Author)

  3. Personal dosimetry in a mixed field of high energy muons and neutrons

    International Nuclear Information System (INIS)

    Cossairt, J.D.; Elwyn, A.J.

    1986-11-01

    High energy accelerators quite often emit muons. These particles behave in matter as would heavy electrons and are thus difficult to attenuate with shielding in many situations. Hence, these muons can be a source of radiation exposure to personnel and suitable methods of measuring the absorbed dose received to these people is obviously required. In practical situations, such muon radiation fields are often mixed with neutrons, well-known to be an even more troublesome particle species with respect to dosimetry. In this paper, we report on fluence measurements made in such a mixed radiation field and a comparison of dosimeter responses. We conclude that commercial self-reading dosimeters and film badges provided an adequate measure of the absorbed dose due to muons

  4. MOSFET Dosimetry for Evaluation of Gonad Shielding during Radiotherapy

    International Nuclear Information System (INIS)

    Kim, Hwi Young; Choi, Yun Seok; Park, So Yeon; Park, Yang Kyun; Ye, Sung Joon

    2011-01-01

    In order to confirm feasibility of MOSFET modality in use of in vivo dosimetry, evaluation of gonad shielding in order to minimize gonadal dose of patients undergoing radiotherapy by using MOSFET modality was performed. Gonadal dose of patients undergoing radiotherapy for rectal cancer in the department of radiation oncology of Seoul National University Hospital since 2009 was measured. 6 MV and 15 MV photon beams emitted from Varian 21EX LINAC were used for radiotherapy. In order to minimize exposed dose caused by the scattered ray not only from collimator of LINAC but also from treatment region inside radiation field, we used box.shaped lead shielding material. The shielding material was made of the lead block and consists of 7.5 cm x 9.5 cm x 5.5 cm sized case and 9 cm x 9.5 cm x 1 cm sized cover. Dosimetry for evaluation of gonad shielding was done with MOSFET modality. By protecting with gonad shielding material, average gonadal dose of patients was decreased by 23.07% compared with reference dose outside of the shielding material. Average delivered gonadal dose inside the shielding material was 0.01 Gy. By the result of MOSFET dosimetry, we verified that gonadal dose was decreased by using gonad shielding material. In compare with TLD dosimetry, we could measure the exposed dose easily and precisely with MOSFET modality

  5. MOSFET Dosimetry for Evaluation of Gonad Shielding during Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwi Young; Choi, Yun Seok; Park, So Yeon; Park, Yang Kyun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of)

    2011-03-15

    In order to confirm feasibility of MOSFET modality in use of in vivo dosimetry, evaluation of gonad shielding in order to minimize gonadal dose of patients undergoing radiotherapy by using MOSFET modality was performed. Gonadal dose of patients undergoing radiotherapy for rectal cancer in the department of radiation oncology of Seoul National University Hospital since 2009 was measured. 6 MV and 15 MV photon beams emitted from Varian 21EX LINAC were used for radiotherapy. In order to minimize exposed dose caused by the scattered ray not only from collimator of LINAC but also from treatment region inside radiation field, we used box.shaped lead shielding material. The shielding material was made of the lead block and consists of 7.5 cm x 9.5 cm x 5.5 cm sized case and 9 cm x 9.5 cm x 1 cm sized cover. Dosimetry for evaluation of gonad shielding was done with MOSFET modality. By protecting with gonad shielding material, average gonadal dose of patients was decreased by 23.07% compared with reference dose outside of the shielding material. Average delivered gonadal dose inside the shielding material was 0.01 Gy. By the result of MOSFET dosimetry, we verified that gonadal dose was decreased by using gonad shielding material. In compare with TLD dosimetry, we could measure the exposed dose easily and precisely with MOSFET modality.

  6. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  7. The spatial resolution in dosimetry with normoxic polymer-gels investigated with the dose modulation transfer approach

    International Nuclear Information System (INIS)

    Bayreder, Christian; Schoen, Robert; Wieland, M.; Georg, Dietmar; Moser, Ewald; Berg, Andreas

    2008-01-01

    The verification of dose distributions with high dose gradients as appearing in brachytherapy or stereotactic radiotherapy for example, calls for dosimetric methods with sufficiently high spatial resolution. Polymer gels in combination with a MR or optical scanner as a readout device have the potential of performing the verification of a three-dimensional dose distribution within a single measurement. The purpose of this work is to investigate the spatial resolution achievable in MR-based polymer gel dosimetry. The authors show that dosimetry on a very small spatial scale (voxel size: 94x94x1000 μm 3 ) can be performed with normoxic polymer gels using parameter selective T2 imaging. In order to prove the spatial resolution obtained we are relying on the dose-modulation transfer function (DMTF) concept based on very fine dose modulations at half periods of 200 μm. Very fine periodic dose modulations of a 60 Co photon field were achieved by means of an absorption grid made of tungsten-carbide, specifically designed for quality control. The dose modulation in the polymer gel is compared with that of film dosimetry in one plane via the DMTF concept for general access to the spatial resolution of a dose imaging system. Additionally Monte Carlo simulations were performed and used for the calculation of the DMTF of both, the polymer gel and film dosimetry. The results obtained by film dosimetry agree well with those of Monte Carlo simulations, whereas polymer gel dosimetry overestimates the amplitude value of the fine dose modulations. The authors discuss possible reasons. The in-plane resolution achieved in this work competes with the spatial resolution of standard clinical film-scanner systems

  8. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  9. An IAEA Survey of Dosimetry Audit Networks for Radiotherapy

    International Nuclear Information System (INIS)

    Grochowska, Paulina; Izewska, Joanna

    2013-01-01

    A Survey: In 2010, the IAEA undertook a task to investigate and review the coverage and operations of national and international dosimetry audit programmes for radiotherapy. The aim was to organize the global database describing the activities of dosimetry audit networks in radiotherapy. A dosimetry audit questionnaire has been designed at an IAEA consultants' meeting held in 2010 for organizations conducting various levels of dosimetry audits for radiotherapy. Using this questionnaire, a survey was conducted for the first time in 2010 and repeated in 2011. Request for information on different aspects of the dosimetry audit was included, such as the audit framework and resources, its coverage and scope, the dosimetry system used and the modes of audit operation, i.e. remotely and through on-site visits. The IAEA questionnaire was sent to over 80 organizations, members of the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories (SSDLs) and other organizations known for having operated dosimetry audits for radiotherapy in their countries or internationally. Survey results and discussion: In response to the IAEA survey, 53 organizations in 45 countries confirmed that they operate dosimetry audit services for radiotherapy. Mostly, audits are conducted nationally, however there are five organizations offering audits abroad, with two of them operating in various parts of the world and three of them at the regional level, auditing radiotherapy centres in neighbouring countries. The distribution of dosimetry audit services in the world is given. (author)

  10. Personnel neutron dosimetry at Department of Energy facilities

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered

  11. Results of the argentinian intercomparison on internal dosimetry 2014. Measurement of thyroid burden

    International Nuclear Information System (INIS)

    Rojo, A.M.; Puerta, N.; Gossio, S.; Gómez Parada, I.

    2015-01-01

    Internal dosimetry intercomparisons are essential for the verification of the capability to perform direct measurements of “1”3”1I thyroid burden and the expertise in the interpretation of these data for dose assessment. To that aim, in 2014 the National Intercomparison Exercise was organized and coordinated by the Internal Dosimetry Laboratory of the Autoridad Regulatoria Nuclear (ARN) of Argentina. The exercise counted with the participation of six internal dosimetry services: nuclear power plants (NA-SA CNA and NA-SA CNE), CNEA Atomic Centres: Bariloche (CAB) and Ezeiza (CAE), Roffo Institute (UBA – CNEA) and ARN. This report shows a complete analysis of the participant’s results in this exercise. (authors) [es

  12. Clinical electron beam dosimetry: transition from AAPM TG-25 to AAPM TG-70

    International Nuclear Information System (INIS)

    Mihailidis, Dimitris

    2017-01-01

    The absolute calibration of clinical electron beams is increasingly based on TG-51 protocol. In addition, recently published dosimetry data on electrons beams bring up the question of how would one need to modify the widely used TG-25 that originally was based on TG-21 calibration protocol? The answer to the question is given by the recently published TG-70. This new protocol operates as supplement and update to TG-25 on issues that need to be modified because of TG-51 approach to electron dosimetry and because of newer data on clinical electron beams. It describes in detail the procedure of converting measured depth-ionization curves with ion chambers into depth-dose curves, making use of recently published stopping-power ratios and other conversion factors. It also describes the use of water equivalent phantoms to perform relative electron dosimetry based on recently published conversions factors. The report discusses small and irregularly shaped electron field dosimetry using the concept of lateral buildup ratio (LBR) as an avenue to evaluate electronic equilibrium and compute dose per MU for those fields. Finally, it gives some common clinical examples where electron beam dosimetry are applied

  13. PERSONALITY TYPE AND TRANSLATION PERFORMANCE OF PERSIAN TRANSLATOR TRAINEES

    Directory of Open Access Journals (Sweden)

    Reza Shaki

    2017-09-01

    Full Text Available The study investigated the relationship between the personality typology of a sample of Iranian translation students and their translation quality in terms of expressive, appellative, and informative text types. The study also attempted to identify the personality types that can perform better in English to Persian translation of the three text types. For that purpose, the personality type and the translation quality of the participants was assessed using Myers-Briggs Type Indicator (MBTI personality test and translation quality assessment (TQA, respectively. The analysis of the data revealed that the personality type of the participants seemed relevant to the translation quality of all the text types. The translation quality of the participants with intuitive and thinking types was significantly better than the sensing type counterparts in translating expressive texts. The participants with intuitive and feeling types also performed better than their counterparts with sensing type in translation of the informative text. Moreover, the participants with intuitive, feeling, and thinking personality types performed more successfully than the participants with sensing type in translation of the appellative text. The findings of the study are discussed in light of the existing research literature.

  14. Neutron personnel dosimetry considerations for fusion reactors

    International Nuclear Information System (INIS)

    Barton, T.P.; Easterly, C.E.

    1979-07-01

    The increasing development of fusion reactor technology warrants an evaluation of personnel neutron dosimetry systems to aid in the concurrent development of a radiation protection program. For this reason, current state of knowledge neutron dosimeters have been reviewed with emphasis placed on practical utilization and the problems inherent in each type of dosimetry system. Evaluations of salient parameters such as energy response, latent image instability, and minimum detectable dose equivalent are presented for nuclear emulsion films, track etch techniques, albedo and other thermoluminescent dosimetry techniques, electrical conductivity damage effects, lyoluminescence, thermocurrent, and thermally stimulated exoelectron emission. Brief summaries of dosimetry regulatory requirements and intercomparison study results help to establish compliance and recent trends, respectively. Spectrum modeling data generated by the Neutron Physics Division of Oak Ridge National Laboratory for the Princeton Tokamak Fusion Test Reactor (TFTR) Facility have been analyzed by both International Commission on Radiological Protection fluence to dose conversion factors and an adjoint technique of radiation dosimetry, in an attempt to determine the applicability of current neutron dosimetry systems to deuterium and tritium fusion reactor leakage spectra. Based on the modeling data, a wide range of neutron energies will probably be present in the leakage spectra of the TFTR facility, and no appreciable risk of somatic injury to occupationally exposed workers is expected. The relative dose contributions due to high energy and thermal neutrons indicate that neutron dosimetry will probably not be a serious limitation in the development of fusion power

  15. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  16. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  17. Accuracy Requirements in Medical Radiation Dosimetry

    International Nuclear Information System (INIS)

    Andreo, P.

    2011-01-01

    The need for adopting unambiguous terminology on 'accuracy in medical radiation dosimetry' which is consistent with international recommendations for metrology is emphasized. Uncertainties attainable, or the need for improving their estimates, are analysed for the fields of radiotherapy, diagnostic radiology and nuclear medicine dosimetry. This review centres on uncertainties related to the first step of the dosimetry chain in the three fields, which in all cases involves the use of a detector calibrated by a standards laboratory to determine absorbed dose, air kerma or activity under reference conditions in a clinical environment. (author)

  18. Characterization of commercial MOSFETS electron dosimetry

    International Nuclear Information System (INIS)

    Carvajal, M. A.; Simancas, F.; Guirado, D.; Banqueri, J.; Vilches, M.; Lallena, A. M.; Palma, A. J.

    2011-01-01

    In recent years there have been commercial dosimetry devices based on transistors Metal-Oxide-Semiconductor (MOSFET) having a number of advantages over traditional systems for dosimetry in medical applications. These include the portability of the sensor element and a reading process quick and relatively simple dose, linearity, and so on. The use of electron beams is important in modern radiotherapy include its use in intra-operative radiotherapy (RIO). This paper presents an initial characterization of different business models MOSFET, not specific for radiation detection, to demonstrate their potential as sensors for electron beam dosimetry. (Author)

  19. Radiographic film orientation in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Suchowerska, N.; Davison, A.; Drew, J.; Metcalfe, P.

    1996-01-01

    Since the discovery of x-rays, film has been used as a detection medium for radiation. More recently radiographic film has become established as a practical tool for the measurement of dose distribution in radiotherapy. The accuracy and reproducibility of film dosimetry depends on photon energy, processing conditions and film plane orientation. The relationship between photon energy, processing conditions and film dosimetry accuracy has been studied. The role of film plane orientation is still controversial. The current work aims to clarify the effects film plane orientation has on film dosimetry. Poster 205. (author)

  20. Proposal of Ex-Vessel dosimetry for pressure vessel Atucha II

    International Nuclear Information System (INIS)

    Chiaraviglio, N.; Bazzana, S.

    2013-01-01

    Nuclear reactor dosimetry has the purpose of guarantee that changes in material mechanical properties of critical materials do not compromise the reactor safety. In PWR in which the top of the reactor vessel is open once a year, is possible to use Charpy specimens to measure the change in mechanical properties. Atucha II nuclear power plant is a reactor with on-line refueling so there is no access to the inside of the pressure vessel. Because of this, ex-vessel dosimetry must be performed and mechanical properties changes must be inferred from radiation damage estimations. This damage can be calculated using displacement per atom cross sections and a transport code such as MCNP. To increase results reliability it is proposed to make a neutron spectrum unfolding using activation dosimeters irradiated during one operation cycle of the power plant. In this work we present a dosimetry proposal for such end, made in base of unfolding procedures and experimental background. (author) [es