WorldWideScience

Sample records for persistently impairs n-methyl-d-aspartate

  1. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia.

    Science.gov (United States)

    Nakashima, Masato; Imada, Haruka; Shiraishi, Eri; Ito, Yuki; Suzuki, Noriko; Miyamoto, Maki; Taniguchi, Takahiko; Iwashita, Hiroki

    2018-04-01

    The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N -methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, ( N -{(1 S )-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3- b ]pyrazine-4(1 H )-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α -amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Postoperative pain impairs subsequent performance on a spatial memory task via effects on N-methyl-D-aspartate receptor in aged rats.

    Science.gov (United States)

    Chi, Haidong; Kawano, Takashi; Tamura, Takahiko; Iwata, Hideki; Takahashi, Yasuhiro; Eguchi, Satoru; Yamazaki, Fumimoto; Kumagai, Naoko; Yokoyama, Masataka

    2013-12-18

    Pain may be associated with postoperative cognitive dysfunction (POCD); however, this relationship remains under investigated. Therefore, we examined the impact of postoperative pain on cognitive functions in aged animals. Rats were allocated to the following groups: control (C), 1.2 % isoflurane for 2 hours alone (I), I with laparotomy (IL), IL with analgesia using local ropivacaine (IL+R), and IL with analgesia using systemic morphine (IL+M). Pain was assessed by rat grimace scale (RGS). Spatial memory was evaluated using a radial maze from postoperative days (POD) 3 to 14. NMDA receptor (NR) 2 subunits in hippocampus were measured by ELISA. Finally, effects of memantine, a low-affinity uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, on postoperative cognitive performance were tested. Postoperative RGS was increased in Group IL, but not in other groups. The number of memory errors in Group I were comparable to that in Group C, whereas errors in Group IL were increased. Importantly, in Group IL+R and IL+M, cognitive impairment was not found. The memory errors were positively correlated with the levels of NMDA receptor 2 subunits in hippocampus. Prophylactic treatment with memantine could prevent the development of memory deficits observed in Group IL without an analgesic effect. Postoperative pain contributes to the development of memory deficits after anesthesia and surgery via up-regulation of hippocampal NMDA receptors. Our findings suggest that postoperative pain management may be important for the prevention of POCD in elderly patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Blockade of N-methyl-D-aspartate induced convulsions by 1-aminocyclopropanecarboxylates

    International Nuclear Information System (INIS)

    Skolnick, P.; Marvizon, J.C.G.; Jackson, B.W.; Monn, J.A.; Rice, K.C.; Lewin, A.H.

    1989-01-01

    1-Aminocyclopropanecarboxylic acid is a potent and selective ligand for the glycine modulatory site on the N-methyl-D-aspartate receptor complex. This compound blocks the convulsions and deaths produced by N-methyl-D-aspartate in a dose dependent fashion. In contrast, 1-aminocyclopropanecarboxylic acid does not protect mice against convulsions induced by pentylenetetrazole, strychnine, bicuculline, or maximal electroshock, and does not impair motor performance on either a rotarod or horizontal wire at doses of up to 2 g/kg. The methyl- and ethyl- esters of 1-aminocyclopropanecarboxylic acid are 5- and 2.3-fold more potent, respectively, than the parent compound in blocking the convulsant and lethal effects of N-methyl-D-aspartate. However, these esters are several orders of magnitude less potent than 1-aminocyclopropanecarboxylic acid as inhibitors of strychnine-insensitive [ 3 H]glycine binding, indicating that conversion to the parent compound may be required to elicit an anticonvulsant action

  4. N-methyl-D-aspartate receptor antagonist MK-801 impairs learning but not memory fixation or expression of classical fear conditioning in goldfish (Carassius auratus).

    Science.gov (United States)

    Xu, X; Davis, R E

    1992-04-01

    The amnestic effects of the noncompetitive antagonist MK-801 on visually mediated, classic fear conditioning in goldfish (Carassius auratus) was examined in 5 experiments. MK-801 was administered 30 min before the training session on Day 1 to look for anterograde amnestic effects, immediately after training to look for retrograde amnestic effects, and before the training or test session, or both, to look for state-dependence effects. The results showed that MK-801 produced anterograde amnesia at doses that did not produce retrograde amnesia or state dependency and did not impair the expression of conditioned or unconditioned branchial suppression responses (BSRs) to the conditioned stimulus. The results indicate that MK-801 disrupts the mechanism of learning of the conditioned stimulus-unconditioned stimulus relation. Evidence is also presented that the learning processes that are disrupted by MK-801 occur during the initial stage of BSR conditioning.

  5. Comparison of the neuropsychological mechanisms of 2,6-diisopropylphenol and N-methyl-D-aspartate receptor antagonist against electroconvulsive therapy-induced learning and memory impairment in depressed rats.

    Science.gov (United States)

    Liu, Gang; Liu, Chao; Zhang, Xue-Ning

    2015-09-01

    The present study aimed to examine the neurophysiological mechanisms of the 2,6-diisopropylphenol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning and memory impairment, induced by electroconvulsive therapy (ECT). A total of 48 adult depressed rats without olfactory bulbs were randomly divided into six experimental groups: i) saline; ii) 10 mg/kg MK‑801; iii) 10 mg/kg MK‑801 and a course of ECT; iv) 200 mg/kg 2,6‑diisopropylphenol; v) 200 mg/kg 2,6‑diisopropylphenol and a course of ECT; and vi) saline and a course of ECT. The learning and memory abilities of the rats were assessed using a Morris water maze 1 day after a course of ECT. The hippocampus was removed 1 day after assessment using the Morris water maze assessment. The content of glutamate in the hippocampus was detected using high‑performance liquid chromatography. The expression levels of p‑AT8Ser202 and GSK‑3β1H8 in the hippocampus were determined using immunohistochemical staining and western blot analysis. The results demonstrated that the 2,6‑diisopropylphenol NMDA receptor antagonist, MK‑801 and ECT induced learning and memory impairment in the depressed rats. The glutamate content was significantly upregulated by ECT, reduced by 2,6‑diisopropylphenol, and was unaffected by the NMDA receptor antagonist in the hippocampus of the depressed rats. Tau protein hyperphosphorylation in the hippocampus was upregulated by ECT, but was reduced by 2,6‑diisopropylphenol and the MK‑801 NMDA receptor antagonist. It was also demonstrated that 2,6‑diisopropylphenol prevented learning and memory impairment and reduced the hyperphosphorylation of the Tau protein, which was induced by eECT. GSK‑3β was found to be the key protein involved in this signaling pathway. The ECT reduced the learning and memory impairment, caused by hyperphosphorylation of the Tau protein, in the depressed rats by upregulating the glutamate content.

  6. Atypical presentation of anti-N-methyl-D-aspartate receptor encephalitis: two case reports.

    Science.gov (United States)

    Maggio, Maria Cristina; Mastrangelo, Greta; Skabar, Aldo; Ventura, Alessandro; Carrozzi, Marco; Santangelo, Giuseppe; Vanadia, Francesca; Corsello, Giovanni; Cimaz, Rolando

    2017-08-16

    Anti-N-methyl-D-aspartate receptor encephalitis is a rare autoimmune disease characterized by severe neurological and psychiatric symptoms and a difficult diagnosis. The disease is often secondary to a neoplastic lesion, seldom diagnosed years later. Psychiatric symptoms are prevalent in adults; neurologic symptoms are more evident in children, who typically present primarily with neurological symptoms. To the best of our knowledge, the association with juvenile idiopathic arthritis has not been described. We report the cases of two caucasian girls with an atypical presentation. The first patient was an 8-year-old girl with normal psychomotor development. Over a 4-month period she developed behavioral problems, speech impairment, and deterioration in academic skills. Within 8 months from the onset of symptoms, choreic movements gradually appeared. Hematological, neuroradiological, and neurophysiological examinations were negative; however, her symptoms worsened and treatment with prednisone was started. Although her choreic movements improved within 1 month, her neuropsychological and behavioral symptoms continued. Anti-N-methyl-D-aspartate receptor antibodies in cerebrospinal fluid and in blood were detected. Therapy with intravenously administered immunoglobulins was administered, without improvement of symptoms. After 2 months of steroid treatment, she suddenly started to pronounce some words with a progressive improvement in language and behavior. The second patient was a 14-year-old girl with classic anti-N-methyl-D-aspartate receptor encephalitis, treated successfully with intravenously administered immunoglobulins and methylprednisolone, followed by orally administered prednisone, who developed chronic arthritis of the hip. The arthritis was confirmed by magnetic resonance imaging and associated to antinuclear antigen antibody positivity. One year after the encephalitis presentation, an ovarian cystic mass was identified as a teratoma. The surgical resection

  7. N-methyl-D-aspartic acid receptor agonists

    DEFF Research Database (Denmark)

    Madsen, U; Frydenvang, Karla Andrea; Ebert, B

    1996-01-01

    (R,S)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid [(R,S)-AMAA, 4] is a potent and selective agonist at the N-methyl-D-aspartic acid (NMDA) subtype of excitatory amino acid receptors. Using the Ugi "four-component condensation" method, the two diastereomers (2R)- and (2S)-2-[3-(benzyloxy......) showed peak affinity for [3H]AMPA receptor sites (IC50 = 72 +/- 13 microM) and was shown to be a more potent inhibitor of [3H]CPP binding (IC50 = 3.7 +/- 1.5 microM) than (S)-AMAA (9) (IC50 = 61 +/- 6.4 microM). Neither enantiomer of AMAA affected [3H]kainic acid receptor binding significantly...

  8. Pediatric Opsoclonus-Myoclonus-Ataxia Syndrome Associated With Anti-N-methyl-D-aspartate Receptor Encephalitis.

    Science.gov (United States)

    Player, Brittany; Harmelink, Matthew; Bordini, Brett; Weisgerber, Michael; Girolami, Michael; Croix, Michael

    2015-11-01

    The full clinical spectrum of anti-N-methyl-D-aspartate receptor encephalitis is unknown in the pediatric population. We describe a previously healthy 4-year-old girl presenting with opsoclonus-myoclonus together with ataxia who had NR1-specific, anti-N-methyl-D-aspartate receptor antibodies in the cerebral spinal fluid. The presence of NR1-specific, anti-N-methyl-D-aspartate receptor antibodies in the setting of opsoclonus-myoclonus and ataxia syndrome may represent an expansion of the clinical presentations of anti-N-methyl-D-aspartate receptor encephalitis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Anti-N-methyl-D-aspartate receptor-mediated encephalitis in infants and toddlers: case report and review of the literature.

    Science.gov (United States)

    Goldberg, Ethan M; Titulaer, Maarten; de Blank, Peter M; Sievert, Angela; Ryan, Nicole

    2014-02-01

    Anti-N-methyl-D-aspartate receptor encephalitis is an increasingly well-recognized inflammatory encephalitis in children and adults. We report a previously healthy 21-month-old girl who presented with behavioral change, self-mutilatory behavior, and echolalia. Over the ensuing weeks, symptoms progressed to include unilateral upper extremity dystonia, gait impairment, dysphagia, and mutism. Magnetic resonance imaging of the brain showed a tiny area of signal abnormality in the subcortical white matter, but was otherwise normal. Continuous video electroencephalography showed slowing of the background rhythm, but was without epileptiform discharges. Lumbar puncture showed a mild pleocytosis of mixed cellularity; bacterial culture and testing for various viral encephalitides were negative. Serum and cerebrospinal fluid was positive for autoantibodies directed against the N-methyl-D-aspartate receptor, and she was diagnosed with anti-N-methyl-D-aspartate receptor encephalitis. The patient was successfully treated with a regimen of immunotherapy that included dexamethasone, intravenous immunoglobulin, and rituximab. One year after initial presentation, the patient remained symptom-free. We further review the clinical characteristics, results of diagnostic studies, treatment, and outcome of infants and toddlers diagnosed with anti-N-methyl-D-aspartate receptor encephalitis that have been previously reported in the literature. Anti-N-methyl-D-aspartate receptor encephalitis is relatively common among infants and toddlers and often presents with a pattern of defining characteristics in this age group, particularly the absence of associated tumor. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Postpartum Anti-N-methyl-D-aspartate Receptor Encephalitis: A Case Report and Literature Review.

    Science.gov (United States)

    Doden, Tadashi; Sekijima, Yoshiki; Ikeda, Junji; Ozawa, Kazuki; Ohashi, Nobuhiko; Kodaira, Minori; Hineno, Akiyo; Tachibana, Naoko; Ikeda, Shu-Ichi

    2017-01-01

    We describe a 24-year-old woman with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis that developed 3 weeks after normal delivery. She was treated with methylprednisolone, intravenous immunoglobulin, and plasmapheresis, in addition to teratoma excision. However, her recovery was slow, and dysmnesia and mental juvenility persisted even two years after onset. To date, five patients with postpartum anti-NMDAR encephalitis have been reported. All of those patients showed psychotic symptoms and were suspected of having postpartum psychosis in the early period of the encephalitis. Changes in hormonal factors, modification of immune tolerance, or retrograde infection of the ovary may be contributing factors for postpartum anti-NMDAR encephalitis.

  11. Anti-N-methyl-d-aspartate receptor encephalitis in a patient with neuromyelitis optica spectrum disorders.

    Science.gov (United States)

    Luo, Jing-Jing; Lv, He; Sun, Wei; Zhao, Juan; Hao, Hong-Jun; Gao, Feng; Huang, Yi-Ning

    2016-07-01

    We described a female patient with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis occurring sequentially with neuromyelitis optica spectrum disorders (NMOSD). The 19-year-old patient initially presented a diencephalic syndrome with aquaporin-4 immunoglobulin G antibodies (AQP4-IgG) and brain lesions which involving bilateral medial temporal lobes and periependymal surfaces of the third ventricle on magnetic resonance imaging (MRI). Ten months later, the patient developed cognitive impairment, psychiatric symptoms and dyskinesia with left basal ganglia lesions on brain MRI. Meanwhile, the anti-NMDAR antibodies were positive in the patient's serum and cerebrospinal fluid, while the screening tests for an ovarian teratoma and other tumors were all negative. Hence, the patient was diagnosed NMOSD and anti-NMDAR encephalitis followed by low-dose rituximab treatment with a good response. This case was another evidence for demyelinating syndromes overlapping anti-NMDAR encephalitis in Chinese patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Review and Neuropsychological Case Study.

    Science.gov (United States)

    Loughan, Ashlee R; Allen, Aislyn; Perna, Robert; Malkin, Mark G

    2016-01-01

    Anti-N-Methyl-d-Aspartate Receptor (NMDAR) Encephalitis is an autoimmune-mediated encephalitis, which may be associated with a tumor, which occurs when antibodies bind central NMDA receptors. Although typically diagnosed in women, approximately 20% of cases have been males. Due to the challenges with identification, imaging, and diverse symptom presentation, this syndrome is often misdiagnosed. Accurate diagnosis may provide an opportunity for introduction of disease-modifying therapies, which may alter disease trajectory. Moreover, neuropsychology has yet to fully clarify the pattern of impairments expected with this disorder. This manuscript reviews a single case study of a 42-year-old male diagnosed with NMDAR encephalitis. Neuropsychological evaluation was completed subsequent to diagnosis, treatment, and rehabilitation. Ongoing patient complaints, approximately six months post diagnosis, included reduced sustained attention, poor word retrieval, and daily forgetfulness. Adaptive skills were improved following rehabilitation. Direct testing revealed mildly impaired sustained attention, processing speed, oral word fluency, and executive functioning. All other cognitive domains were within estimated premorbid range, low average to average. Neuropsychological deficits were consistent with mild frontal brain dysfunction and continued recovery. This case illustrates the need for medical and psychological practitioners to understand NMDAR encephalitis, its symptom presentation, and related neuropsychological impact; particularly with the potential for misdiagnosis.

  13. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  14. Nonparaneoplastic anti-N-methyl-D-aspartate receptor encephalitis: a case series of four children.

    Science.gov (United States)

    Raha, Sarbani; Gadgil, Pradnya; Sankhla, Charulata; Udani, Vrajesh

    2012-04-01

    A rare, severe form of immune-mediated encephalitis recently has been described, associated with antibodies against N-methyl-D-aspartate receptors. It is reported mostly in women with ovarian tumors. Nonparaneoplastic presentations are less common. We describe four children with a neuropsychiatric and extrapyramidal syndrome associated with the presence of anti-N-methyl-D-aspartate receptor antibodies in cerebrospinal fluid and serum, without evidence of neoplasia. Three children recovered completely after immunomodulatory therapy, i.e., intravenous immunoglobulin and/or steroids, methylprednisolone, and/or adrenocorticotrophic hormone. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1989-01-01

    The survival of cerebellar granule cells in culture is promoted by chronic exposure to N-methyl-D-aspartate (NMDA). The effect is due to the stimulation of 'conventional' NMDA receptor-ionophore complex: it is concentration dependent, voltage dependent and blocked by the selective antagonists D-2...

  16. N-methyl-D-aspartate prevented memory deficits induced by MK-801 in mice

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2003-01-01

    Roč. 52, č. 6 (2003), s. 809-812 ISSN 0862-8408 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : N-methyl-D-aspartate * MK-801 * spatial memory Subject RIV: FH - Neurology Impact factor: 0.939, year: 2003

  17. Searsia species with affinity to the N-methyl-d-aspartic acid (NMDA) receptor

    DEFF Research Database (Denmark)

    Jäger, Anna; Knap, D.M.; Nielsen, Birgitte

    2012-01-01

    Species of Searsia are used in traditional medicine to treat epilepsy. Previous studies on S. dentata and S. pyroides have shown that this is likely mediated via the N-methyl-d-aspartic acid (NMDA) receptor. Ethanolic extracts of leaves of six Searsia species were tested in a binding assay...

  18. Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis

    DEFF Research Database (Denmark)

    Hansen, Kasper B; Clausen, Rasmus P; Bjerrum, Esben J

    2005-01-01

    The structural basis for partial agonism at N-methyl-D-aspartate (NMDA) receptors is currently unresolved. We have characterized several partial agonists at the NR1/NR2B receptor and investigated the mechanisms underlying their reduced efficacy by introducing mutations in the glutamate binding site...

  19. Contribution of N-methyl-D-aspartate receptors to attention and episodic spatial memory during senescence.

    Science.gov (United States)

    Guidi, Michael; Rani, Asha; Karic, Semir; Severance, Barrett; Kumar, Ashok; Foster, Thomas C

    2015-11-01

    A decrease in N-methyl-D-aspartate receptor (NMDAR) function is associated with age-related cognitive impairments. However, NMDAR antagonists are prescribed for cognitive decline associated with age-related neurodegenerative disease, raising questions as to the role of NMDAR activity in cognitive function during aging. The current studies examined effects of NMDAR blockade on cognitive task that are sensitive to aging. Young and middle-age rats were trained on the five-choice serial reaction time task (5-CSRTT) and challenged with MK-801 (0.025, 0.05, and 0.1mg/kg or vehicle). Attention deficits were apparent in middle-age and performance of young and middle-age rats was enhanced for low doses of MK-801 (0.025 and 0.05). The beneficial effects on attention were reversed by the highest dose of MK-801. Older animals exhibited a delay-dependent impairment of episodic spatial memory examined on a delayed-matching to place water maze task. Similarly, a low dose of MK-801 (0.05mg/kg) impaired performance with increasing delay and aged animals were more susceptible to disruption by NMDAR blockade. Despite MK-801 impairment of episodic spatial memory, MK-801 had minimal effects on spatial reference memory. Our results confirm that NMDARs contribute to rapidly acquired and flexible spatial memory and support the idea that a decline in NMDAR function contributes to the age-related impairments in cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Cognitive outcomes following anti-N-methyl-D-aspartate receptor encephalitis: A systematic review.

    Science.gov (United States)

    McKeon, Gemma L; Robinson, Gail A; Ryan, Alexander E; Blum, Stefan; Gillis, David; Finke, Carsten; Scott, James G

    2018-04-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an immune-mediated neurological disorder that (among other severe neuropsychiatric symptoms) affects cognition. This study aimed to summarize current knowledge regarding the rates, nature, and predictors of neuropsychological dysfunction in patients recovering from anti-NMDAR encephalitis. A systematic review of studies describing neuropsychological outcomes following anti-NMDAR encephalitis was conducted. Electronic databases Medline, PsycINFO, EMBASE, and CINAHL were searched from inception to September 2016. Results were summarized using descriptive statistics and a series of chi-square analyses. Of 4030 identified studies, 44 were included. These reported neuropsychological outcomes for 109 treated patients (83.5% female, M age  = 22.5 years, range = 2-67) recovering from anti-NMDAR encephalitis. High rates of neuropsychological dysfunction were identified, with diverse impairments of variable severity documented in >75% of patients at assessments conducted during acute, subacute, and longer term recovery periods. Despite this, cognitive outcomes were ultimately considered favorable in most cases (74.3%). This estimate does not account for the potential impact of relapses. The frequency of impairments in overall intellectual functioning, language, attention, working memory, and visuospatial functions were significantly higher within the acute recovery period than in later phases of convalescence. However, rates of impaired processing speed, episodic memory, and aspects of executive functioning were consistent across time points. Adverse neuropsychological outcomes occurred at significantly higher frequency in patients where immunotherapy was delayed, χ 2 (1, N = 66) = 10.84, p anti-NMDAR encephalitis, although improvement in cognitive outcomes can be expected as patients recover. Some cognitive deficits may be less likely than others to resolve. Close neuropsychological monitoring is warranted

  1. Anti-N-methyl-D-aspartate receptor encephalitis with serum anti-thyroid antibodies and IgM antibodies against Epstein-Barr virus viral capsid antigen: a case report and one year follow-up

    Directory of Open Access Journals (Sweden)

    Xu Chun-Ling

    2011-11-01

    Full Text Available Abstract Background Anti-N-methyl-D-aspartate receptor encephalitis is an increasingly common autoimmune disorder mediated by antibodies to certain subunit of the N-methyl-D-aspartate receptor. Recent literatures have described anti-thyroid and infectious serology in this encephalitis but without follow-up. Case presentation A 17-year-old Chinese female patient presented with psychiatric symptoms, memory deficits, behavioral problems and seizures. She then progressed through unresponsiveness, dyskinesias, autonomic instability and central hypoventilation during treatment. Her conventional blood work on admission showed high titers of IgG antibodies to thyroglobulin, thyroid peroxidase and IgM antibodies to Epstein-Barr virus viral capsid antigen. An immature ovarian teratoma was found and removal of the tumor resulted in a full recovery. The final diagnosis of anti-N-methyl-D-aspartate receptor encephalitis was made by the identification of anti-N-methyl-D-aspartate receptor antibodies in her cerebral spinal fluid. Pathology studies of the teratoma revealed N-methyl-D-aspartate receptor subunit 1 positive ectopic immature nervous tissue and Epstein-Barr virus latent infection. She was discharged with symptoms free, but titers of anti-thyroid peroxidase and anti-thyroglobulin antibodies remained elevated. One year after discharge, her serum remained positive for anti-thyroid peroxidase and anti-N-methyl-D-aspartate receptor antibodies, but negative for anti-thyroglobulin antibodies and IgM against Epstein-Barr virus viral capsid antigen. Conclusions Persistent high titers of anti-thyroid peroxidase antibodies from admission to discharge and until one year later in this patient may suggest a propensity to autoimmunity in anti- N-methyl-D-aspartate receptor encephalitis and support the idea that neuronal and thyroid autoimmunities represent a pathogenic spectrum. Enduring anti-N-methyl-D-aspartate receptor antibodies from admission to one year

  2. Initial clinical presentation of young children with N-methyl-d-aspartate receptor encephalitis.

    Science.gov (United States)

    Favier, Marion; Joubert, Bastien; Picard, Géraldine; Rogemond, Véronique; Thomas, Laure; Rheims, Sylvain; Bailhache, Marion; Villega, Frédéric; Pédespan, Jean-Michel; Berzero, Giulia; Psimaras, Dimitri; Antoine, Jean-Christophe; Desestret, Virginie; Honnorat, Jérôme

    2018-05-01

    Autoimmune encephalitis with anti-N-methyl-d-aspartate receptor autoantibodies (NMDA-R-Abs) is a recently described disease affecting adult and pediatric patients. Symptoms of the disease are now perfectly described in the adult population but the clinical presentation is less known in young children. The aim of the present study was to describe the clinical presentation and the specificities of symptoms presented by young children with NMDA-R-Abs encephalitis to improve diagnosis of this disease, and to compare these to a series of previously published female adult patients. Fifty cases of children younger than twelve years of age diagnosed with NMDA-R-Abs encephalitis between January 1, 2007 and December 31, 2016 (27 females and 23 males) were retrospectively studied. The first neurological symptoms observed in young children with NMDA-R-Abs encephalitis were characterized by seizure (72%), especially focal seizure (42%), within a median of 15 days before other encephalitis symptoms; other patients mostly had behavioral disorders (26%). The seizures were frequently difficult to diagnose because of the transient unilateral dystonic or tonic posturing presentation or sudden unilateral pain in the absence of clonic movements. A post-ictal motor deficit was also frequently observed. This clinical presentation is different from that observed in adult females with NMDA-R-Abs encephalitis who initially present mainly psychiatric disorders (67%) or cognitive impairment (19%), and less frequently seizures (14%). The diagnosis of NMDA-R-Abs encephalitis should be systematically considered in young children of both sexes who present neurological symptoms suggesting recent seizures (focal or generalized) without obvious other etiology. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  3. Integration of contextual cues into memory depends on "prefrontal" N-methyl-D-aspartate receptors.

    Science.gov (United States)

    Starosta, Sarah; Bartetzko, Isabelle; Stüttgen, Maik C; Güntürkün, Onur

    2017-10-01

    Every learning event is embedded in a context, but not always does the context become an integral part of the memory; however, for extinction learning it usually does, resulting in context-specific conditioned responding. The neuronal mechanisms underlying contextual control have been mainly investigated for Pavlovian fear extinction with a focus on hippocampal structures. However, the initial acquisition of novel responses can be subject to contextual control as well, although the neuronal mechanisms are mostly unknown. Here, we tested the hypothesis that contextual control of acquisition depends on glutamatergic transmission underlying executive functions in forebrain areas, e.g. by shifting attention to critical cues. Thus, we antagonized N-methyl-D-aspartate (NMDA) receptors with 2-amino-5-phosphonovaleric acid (AP5) in the pigeon nidopallium caudolaterale, the functional analogue of mammalian prefrontal cortex, during the concomitant acquisition and extinction of conditioned responding to two different stimuli. This paradigm has previously been shown to lead to contextual control over extinguished as well as non-extinguished responding. NMDA receptor blockade resulted in an impairment of extinction learning, but left the acquisition of responses to a novel stimulus unaffected. Critically, when responses were tested in a different context in the retrieval phase, we observed that NMDA receptor blockade led to the abolishment of contextual control over acquisition performance. This result is predicted by a model describing response inclination as the product of associative strength and contextual gain. In this model, learning under AP5 leads to a change in the contextual gain on the learned association, possibly via the modulation of attentional mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis.

    Science.gov (United States)

    Kreye, Jakob; Wenke, Nina K; Chayka, Mariya; Leubner, Jonas; Murugan, Rajagopal; Maier, Nikolaus; Jurek, Betty; Ly, Lam-Thanh; Brandl, Doreen; Rost, Benjamin R; Stumpf, Alexander; Schulz, Paulina; Radbruch, Helena; Hauser, Anja E; Pache, Florence; Meisel, Andreas; Harms, Lutz; Paul, Friedemann; Dirnagl, Ulrich; Garner, Craig; Schmitz, Dietmar; Wardemann, Hedda; Prüss, Harald

    2016-10-01

    SEE ZEKERIDOU AND LENNON DOI101093/AWW213 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a recently discovered autoimmune syndrome associated with psychosis, dyskinesias, and seizures. Little is known about the cerebrospinal fluid autoantibody repertoire. Antibodies against the NR1 subunit of the NMDAR are thought to be pathogenic; however, direct proof is lacking as previous experiments could not distinguish the contribution of further anti-neuronal antibodies. Using single cell cloning of full-length immunoglobulin heavy and light chain genes, we generated a panel of recombinant monoclonal NR1 antibodies from cerebrospinal fluid memory B cells and antibody secreting cells of NMDAR encephalitis patients. Cells typically carried somatically mutated immunoglobulin genes and had undergone class-switching to immunoglobulin G, clonally expanded cells carried identical somatic hypermutation patterns. A fraction of NR1 antibodies were non-mutated, thus resembling 'naturally occurring antibodies' and indicating that tolerance induction against NMDAR was incomplete and somatic hypermutation not essential for functional antibodies. However, only a small percentage of cerebrospinal fluid-derived antibodies reacted against NR1. Instead, nearly all further antibodies bound specifically to diverse brain-expressed epitopes including neuronal surfaces, suggesting that a broad repertoire of antibody-secreting cells enrich in the central nervous system during encephalitis. Our functional data using primary hippocampal neurons indicate that human cerebrospinal fluid-derived monoclonal NR1 antibodies alone are sufficient to cause neuronal surface receptor downregulation and subsequent impairment of NMDAR-mediated currents, thus providing ultimate proof of antibody pathogenicity. The observed formation of immunological memory might be relevant for clinical relapses. © The Author (2016). Published by Oxford University Press on

  5. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat.

    Science.gov (United States)

    Haley, Jane E; Dickenson, Anthony H

    2016-08-15

    We used in vivo electrophysiology and a model of more persistent nociceptive inputs to monitor spinal cord neuronal activity in anaesthetised rats to reveal the pharmacology of enhanced pain signalling. The study showed that all responses were blocked by non-selective antagonism of glutamate receptors but a selective and preferential role of the N-methyl-d-aspartate (NMDA) receptor in the prolonged plastic responses was clearly seen. The work lead to many publications, initially preclinical but increasingly from patient studies, showing the importance of the NMDA receptor in central sensitisation within the spinal cord and how this could relate to persistent pain states. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Adolescent with acute psychosis due to anti-N-methyl-D-aspartate receptor encephalitis: successful recovery

    OpenAIRE

    Jonuskaite, Dovile; Kalibatas, Paulius; Praninskiene, Ruta; Zalubiene, Asta; Jucaite, Aurelija; Cerkauskiene, Rimante

    2017-01-01

    Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a relatively new autoimmune disorder of the central nervous system. We report the first case of anti-NMDAR autoimmune encephalitis combined with anti-voltage-gated potassium channel (anti-VGKC) antibodies in Lithuania in a 16-year-old girl. The patient was admitted to psychiatry unit because of an acute psychotic episode. She was unsuccessfully treated with antipsychotics, and electroconvulsive therapy was initiated because of he...

  7. Anesthesia in anti-N-methyl-D-aspartate receptor encephalitis - is general anesthesia a requisite? A case report

    Directory of Open Access Journals (Sweden)

    Sook Hui Chaw

    Full Text Available Abstract Anti-N-methyl-D-aspartate receptor encephalitis is a recently described neurological disorder and an increasingly recognized cause of psychosis, movement disorders and autonomic dysfunction. We report 20-year-old Chinese female who presented with generalized tonic-clonic seizures, recent memory loss, visual hallucinations and abnormal behavior. Anti-N-methyl-D-aspartate receptor encephalitis was diagnosed and a computed tomography scan of abdomen reviewed a left adnexal tumor. We describe the first such case report of a patient with anti-N-methyl-D-aspartate receptor encephalitis who was given a bilateral transversus abdominis plane block as the sole anesthetic for removal of ovarian tumor. We also discuss the anesthetic issues associated with anti-N-methyl-D-aspartate receptor encephalitis. As discovery of tumor and its removal is the focus of initial treatment in this group of patients, anesthetists will encounter more such cases in the near future.

  8. Anti-N-Methyl-D-Aspartate Receptor Encephalitis, an Underappreciated Disease in the Emergency Department

    Directory of Open Access Journals (Sweden)

    Daniel R. Lasoff

    2016-05-01

    Full Text Available Anti-N-Methyl-D-Aspartate Receptor (NMDAR Encephalitis is a novel disease discovered within the past 10 years. Antibodies directed at the NMDAR cause the patient to develop a characteristic syndrome of neuropsychiatric symptoms. Patients go on to develop autonomic dysregulation and often have prolonged hospitalizations and intensive care unit stays. There is little literature in the emergency medicine community regarding this disease process, so we report on a case we encountered in our emergency department to help raise awareness of this disease process.

  9. Opioid analgesics as noncompetitive N-methyl-D-aspartate (NMDA) antagonists

    DEFF Research Database (Denmark)

    Ebert, B; Thorkildsen, C; Andersen, S

    1998-01-01

    Much evidence points to the involvement of N-methyl-D-aspartate (NMDA) receptors in the development and maintainance of neuropathic pain. In neuropathic pain, there is generally involved a presumed opioid-insensitive component, which apparently can be blocked by NMDA receptor antagonists. However...... for the NMDA receptor antagonism of these compounds and its relevance for clinical pain treatment; an overview of structure-activity relationships for the relevant opioids as noncompetitive NMDA receptor antagonists also is given. It is concluded that although the finding that some opioids are weak...

  10. [N-methyl-D-aspartate receptor antibody encephalitis: value of immunomodulatory therapy].

    Science.gov (United States)

    Le Moigno, L; Ternant, D; Paintaud, G; Thibault, G; Cloarec, S; Tardieu, M; Lagrue, E; Castelnau, P

    2014-06-01

    Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is little known to pediatricians and likely underdiagnosed. The child's vital and cognitive prognosis is at stake. The use of immunomodulatory drugs, such as rituximab has led to spectacular results, but many questions remain about its mode of action in this type of pathology. We report the case of a 6-year-old girl with no medical history, admitted for status epilepticus preceded by behavior symptoms and sleep disorders. Gradually, the child became bedridden, mute, and animated by predominantly orofacial dyskinesia. Examinations were normal (cerebrospinal fluid [CSF] analysis, brain MRI). The diagnosis was established by the presence of NMDA-R antibodies in the CSF. After exclusion of a tumor-associated syndrome, treatment was started initially by intravenous immunoglobulins, then by plasma exchange, and finally rituximab. The patient was cured with rituximab despite an unusually early recovery of the B-cell pool. Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a severe but potentially reversible neurologic disorder only recently described, even in childhood. It may be reversible without sequelae if diagnosed and treated early. The use of immunomodulatory therapy, such as rituximab seemingly improves the outcome. Immunological monitoring is needed to better understand its mechanism of action in autoimmune diseases of the nervous system in childhood. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Anti-N-methyl-D-aspartate receptor encephalitis with an imaging-invisible ovarian teratoma: a case report.

    Science.gov (United States)

    Abdul-Rahman, Zainab M; Panegyres, Peter K; Roeck, Margareta; Hawkins, David; Bharath, Jude; Grolman, Paul; Neppe, Cliffe; Palmer, David

    2016-10-24

    Anti-N-methyl-D-aspartate receptor encephalitis is a recently discovered disease entity of paraneoplastic limbic encephalitis. It largely affects young women and is often associated with an ovarian teratoma. It is a serious yet treatable condition if diagnosed early. Its remedy involves immunotherapy and surgical removal of the teratoma of the ovaries. This case of anti-N-methyl-D-aspartate receptor encephalitis involves an early surgical intervention with bilateral oophorectomy, despite negative imaging evidence of a teratoma. A 25-year-old white woman with anti-N-methyl-D-aspartate receptor encephalitis presented with behavioral changes and seizures that were confirmed to be secondary to anti-N-methyl-D-aspartate receptor encephalitis. She required an admission to our intensive care unit for ventilator support and received a number of immunological therapies. Multiple imaging investigations showed no evidence of an ovarian teratoma; she had a bilateral oophorectomy 29 days after admission. Ovarian histology confirmed the presence of a teratoma with neuronal cells. A few days after the operation she began to show signs of improvement and, apart from mild short-term memory loss, she returned to normal function. Our patient is an example of teratoma-associated anti-N-methyl-D-aspartate receptor encephalitis, in which the teratoma was identified only microscopically. Her case highlights that even with negative imaging evidence of a teratoma, ovarian pathology should still be considered and explored.

  12. Influence of Genetic Variants of the N-Methyl-D-Aspartate Receptor on Emotion and Social Behavior in Adolescents.

    Science.gov (United States)

    Lee, Li-Ching; Cho, Ying-Chun; Lin, Pei-Jung; Yeh, Ting-Chi; Chang, Chun-Yen; Yeh, Ting-Kuang

    2016-01-01

    Considerable evidence has suggested that the epigenetic regulation of N-methyl-D-aspartate (NMDA) glutamate receptors plays a crucial role in neuropsychiatric disorders. Previous exploratory studies have been primarily based on evidence from patients and have rarely sampled the general population. This exploratory study examined the relationship of single-nucleotide polymorphism (SNP) variations in the genes encoding the NMDA receptor (i.e., GRIN1, GRIN2A, GRIN2B, GRIN2C, and GRIN2D) with emotion and social behavior in adolescents. For this study, 832 tenth-grade Taiwanese volunteers were recruited, and their scores from the Beck Youth Inventories were used to evaluate their emotional and social impairments. Based on these scores, GRIN1 (rs4880213) was significantly associated with depression and disruptive behavior. In addition, GRIN2B (rs7301328) was significantly associated with disruptive behavior. Because emotional and social impairment greatly influence learning ability, the findings of this study provide important information for clinical treatment and the development of promising prevention and treatment strategies, especially in the area of psychological adjustment.

  13. Influence of Genetic Variants of the N-Methyl-D-Aspartate Receptor on Emotion and Social Behavior in Adolescents

    Directory of Open Access Journals (Sweden)

    Li-Ching Lee

    2016-01-01

    Full Text Available Considerable evidence has suggested that the epigenetic regulation of N-methyl-D-aspartate (NMDA glutamate receptors plays a crucial role in neuropsychiatric disorders. Previous exploratory studies have been primarily based on evidence from patients and have rarely sampled the general population. This exploratory study examined the relationship of single-nucleotide polymorphism (SNP variations in the genes encoding the NMDA receptor (i.e., GRIN1, GRIN2A, GRIN2B, GRIN2C, and GRIN2D with emotion and social behavior in adolescents. For this study, 832 tenth-grade Taiwanese volunteers were recruited, and their scores from the Beck Youth Inventories were used to evaluate their emotional and social impairments. Based on these scores, GRIN1 (rs4880213 was significantly associated with depression and disruptive behavior. In addition, GRIN2B (rs7301328 was significantly associated with disruptive behavior. Because emotional and social impairment greatly influence learning ability, the findings of this study provide important information for clinical treatment and the development of promising prevention and treatment strategies, especially in the area of psychological adjustment.

  14. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A

    DEFF Research Database (Denmark)

    Eriksson, Maria; Nilsson, Anna; Froelich-Fabre, Susanne

    2002-01-01

    Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development......, seems to function by reducing the NMDA receptor response. The human homologue to the rat NR3A, however, had not been cloned. In order to study the functions of the human NR3A (hNR3A), we have cloned and sequenced the hNR3A. It was found to share 88% of the DNA sequence with the rat gene, corresponding...

  15. Serum uric acid and anti-N-methyl-d-aspartate receptor encephalitis.

    Science.gov (United States)

    Shu, Yaqing; Wang, Yuge; Lu, Tingting; Li, Rui; Sun, Xiaobo; Li, Jing; Chang, Yanyu; Hu, Xueqiang; Lu, Zhengqi; Qiu, Wei

    2017-09-01

    Uric acid (UA) levels are associated with autoimmune and neurodegenerative disorders, but their relationship with anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis is unknown. UA levels were evaluated in 58 patients with anti-NMDAR encephalitis, and 58 age- and sex-matched healthy controls (CTLs). Follow-up evaluations of 30 out of the 58 patients with anti-NMDAR encephalitis were conducted 3 months after admission. Modified Rankin scale (mRS) scores and clinical and cerebrospinal fluid parameters were evaluated in all anti-NMDAR encephalitis patients. Serum UA levels were significantly lower in patients with anti-NMDAR encephalitis than those in CTLs (p anti-NMDAR encephalitis are reduced during attacks compared with those in CTLs, are normalized after treatment, and are associated with disease severity. Copyright © 2017. Published by Elsevier Ltd.

  16. Anti-N-Methyl-D-aspartate Receptor Encephalitis: A Severe, Potentially Reversible Autoimmune Encephalitis

    Science.gov (United States)

    Liu, Cai-yun; Zheng, Xiang-Yu; Ma, Chi

    2017-01-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is potentially lethal, but it is also a treatable autoimmune disorder characterized by prominent psychiatric and neurologic symptoms. It is often accompanied with teratoma or other neoplasm, especially in female patients. Anti-NMDAR antibodies in cerebrospinal fluid (CSF) and serum are characteristic features of the disease, thereby suggesting a pathogenic role in the disease. Here, we summarize recent studies that have clearly documented that both clinical manifestations and the antibodies may contribute to early diagnosis and multidisciplinary care. The clinical course of the disorder is reversible and the relapse could occur in some patients. Anti-NMDAR encephalitis coexisting with demyelinating disorders makes the diagnosis more complex; thus, clinicians should be aware of the overlapping diseases. PMID:28698711

  17. Anti-N-methyl-D-aspartate receptor encephalitis: a common cause of encephalitis in the intensive care unit.

    Science.gov (United States)

    Chen, Xueping; Li, Jin-Mei; Liu, Fan; Wang, Qiong; Zhou, Dong; Lai, Xiaohui

    2016-12-01

    Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDAR encephalitis) is the most common type of immune-mediated encephalitis. This study aimed to assess the incidence and mortality of anti-NMDAR encephalitis in intensive care unit (ICU) to evaluate the clinical manifestations, laboratory findings, managements and outcomes, and to compare these characteristics with patients with non-anti-NMDAR encephalitis admitted to ICU. Patients admitted to the neurological ICU with suspected encephalitis were included between January 1, 2012 and July 31, 2015. Cerebrospinal fluid (CSF) of enrolled patients was screened for anti-NMDAR antibodies using a cell-based assay. 72 critically ill patients with encephalitis of uncertain etiology were investigated, and 16 patients were positive for anti-NMDAR antibodies in CSF. Compared to patients with non-anti-NMDAR encephalitis, patients with anti-NMDAR encephalitis were younger, more likely to present with the psychiatric symptoms, dyskinesia, and autonomic dysfunction, and had longer ICU stays. The abnormal movements were so difficult to control that complicated the management. The outcome was favorable in ten patients 1 year after the disease onset, and the mortality was as high as 25 % overall. The incidence of anti-NMDAR encephalitis is high among critically ill patients with encephalitis of uncertain etiology. Controlling dyskinesia proved to be a challenge. Persistent dysautonomias were additional difficult to manage confounders. Same points being highlighted in this study may aid clinicians in the management of patients with anti-NMDAR encephalitis in intensive care practice.

  18. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  19. Low serum vitamin D levels and anti-N-methyl-d-aspartate receptor encephalitis: A case-control study.

    Science.gov (United States)

    Shu, Yaqing; Su, Qingmei; Liao, Siyuan; Lu, Tingting; Li, Rui; Sun, Xiaobo; Qiu, Wei; Yang, Yu; Hu, Xueqiang; Lu, Zhengqi

    2017-01-01

    Low vitamin D levels are associated with autoimmunity, but the relationship with anti-N-Methyl-d-aspartate receptor (anti-NMDAR) encephalitis is unknown. 25(OH) D levels and clinical and cerebrospinal fluid parameters were evaluated in 30 patients with anti-NMDAR encephalitis and compared with 90 age-, sex-, and season-matched healthy controls. 25(OH)D levels were lower in patients with anti-NMDAR encephalitis compared to controls (43.89 ± 17.91 vs 64.24 ± 24.38 nmol/L, p  30 years, p = 0.002), severe impairment (mRS ≥ 5) (vs mRS D levels were associated with age (r = 0.393, p = 0.032), and mRS (r = -0.417, p = 0.022). Our data showed that serum 25(OH)D levels were reduced in patients with anti-NMDAR encephalitis. Copyright © 2016. Published by Elsevier Ltd.

  20. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1988-01-01

    N-methyl-D-aspartate (NMDA) supplementation of cerebellar cultures enriched in granule neurones (about 90%) prevented the extensive cell loss which occurs when cultivation takes place, in serum containing media, in the presence of 'low' K+ (5-15 mM). Estimation of tetanus toxin receptors and N-CA...

  1. Anti-N-methyl-D-aspartate receptor encephalitis in Taiwan--a comparison between children and adults.

    Science.gov (United States)

    Lin, Jainn-Jim; Lin, Kuang-Lin; Hsia, Shao-Hsuan; Chou, Min-Liang; Hung, Po-Cheng; Hsieh, Meng-Ying; Chou, I-Jun; Wang, Huei-Shyong

    2014-06-01

    Since the discovery of antibodies against the N-methyl-D-aspartate receptor in 2007, anti-N-methyl-D-aspartate receptor encephalitis is increasingly recognized worldwide. We compare the clinical features of adults and children with this disorder in Taiwan. Patients admitted to Chang Gung Memorial Hospital and Chang Gung Children's Hospital and those who were referred from other institutions because of unknown encephalitis from 2009 to 2013 were enrolled, and their clinical features were analyzed. Data on cases from a review of the literature were also included in the analysis. Twelve patients (10 females) aged between 7 years and 28 years with anti-N-methyl-D-aspartate receptor encephalitis were identified. Six patients (50%) were Anti-N-methyl-D-aspartate receptor encephalitis is increasingly recognized in Taiwan. It is characterized by its clinical features, predominantly affects females with and/or without an ovarian tumor, and it is a potentially treatable disorder. It is important for neurologists to be familiar with the clinical presentations of the disease in children and young adults. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. [Anesthesia in anti-N-methyl-d-aspartate receptor encephalitis - is general anesthesia a requisite? A case report].

    Science.gov (United States)

    Chaw, Sook Hui; Foo, Li Lian; Chan, Lucy; Wong, Kang Kwong; Abdullah, Suhailah; Lim, Boon Kiong

    Anti-N-methyl-d-aspartate receptor encephalitis is a recently described neurological disorder and an increasingly recognized cause of psychosis, movement disorders and autonomic dysfunction. We report 20-year-old Chinese female who presented with generalized tonic-clonic seizures, recent memory loss, visual hallucinations and abnormal behavior. Anti-N-methyl-d-aspartate receptor encephalitis was diagnosed and a computed tomography scan of abdomen reviewed a left adnexal tumor. We describe the first such case report of a patient with anti-N-methyl-d-aspartate receptor encephalitis who was given a bilateral transversus abdominis plane block as the sole anesthetic for removal of ovarian tumor. We also discuss the anesthetic issues associated with anti-N-methyl-d-aspartate receptor encephalitis. As discovery of tumor and its removal is the focus of initial treatment in this group of patients, anesthetists will encounter more such cases in the near future. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  3. The N-Methyl d-Aspartate Glutamate Receptor Antagonist Ketamine Disrupts the Functional State of the Corticothalamic Pathway

    NARCIS (Netherlands)

    Anderson, P.M.; Jones, N.C.; O'Brien, T.J.; Pinault, D.

    2017-01-01

    The non-competitive N-methyl d-aspartate glutamate receptor (NMDAR) antagonist ketamine elicits a brain state resembling high-risk states for developing psychosis and early stages of schizophrenia characterized by sensory and cognitive deficits and aberrant ongoing gamma (30-80 Hz) oscillations in

  4. Memantine (a N-Methyl-D-aspartate receptor antagonist) in the treatment of neuropathic pain after amputation or surgery: A randomised, double-blinded, crossover study

    DEFF Research Database (Denmark)

    Nikolajsen, Lone; Gottrup, Hanne; Kristensen, Anders Due

    2000-01-01

    Evidence has accumulated that the N:-methyl-D-aspartate receptor system plays a role in continuous and particularly, in stimulus-evoked pain after nerve injury. We examined, in a randomized, double-blinded, cross-over fashion, the analgesic effect of memantine (a N:-methyl-D-aspartate receptor an...

  5. Anti-N-methyl-D-aspartate receptor encephalitis: three cases report and review of literature

    Directory of Open Access Journals (Sweden)

    Guan-en ZHOU

    2014-07-01

    Full Text Available Objective To study the clinical and laboratory features and diagnosis of the patient with anti-N-methyl-D-aspartate receptor (NMDAR encephalitis.  Methods The data of clinical features, laboratory findings, and radiological manifestations of 3 patients with anti-NMDAR encephalitis were reviewed and analyzed. Results Of the 3 patients, 2 were male and one was female. The age was from 33 to 34 years (33.30 years on average. Main symptoms included headache in 2 cases, psychiatric symptoms and speech disorder in 3 cases, different levels of movement disorder in one case and hallucinations in one case. The results of MRI examination revealed gyri swelling, abnormal signal and demyelination of temporal lobe. The EEG showed focal or diffuse slow waves. All cases were confirmed to have the disease by detection of anti-NMDAR antibodies. Both the white blood cell count (3 cases and protein quantification (2 cases elevated. No tumor was detected in any of the patients. All patients were coued after receiving immunotherapy with methylprednisolone and human immunoglobulin.  Conclusions Anti-NMDAR encephalitis is a severe but treatable disorder. The syndrome is highly recognizable clinically and can be confirmed with the demonstration of anti-NMDAR antibodies. Timely diagnosis and treatment may yield a favorable prognosis. doi: 10.3969/j.issn.1672-6731.2014.07.005

  6. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

    Science.gov (United States)

    Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M

    2017-04-25

    Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.

  7. Anti-N-Methyl-D-Aspartate Receptor Encephalitis and Rasmussen-like Syndrome: An Association?

    Science.gov (United States)

    Gurcharran, Kevin; Karkare, Shefali

    2017-01-01

    N-methyl-D-aspartate (NMDA) receptor encephalitis is an immune-mediated condition that has a broad spectrum of manifestations, including seizures, coma, psychosis, and focal neurological deficits. Although usually a diffuse process, unihemispheric involvement mimicking early stages of Rasmussen encephalitis can occur. Rasmussen's encephalitis is a unique syndrome characterized by progressive hemiplegia, drug-resistant focal epilepsy, cognitive decline, and hemispheric brain atrophy contralateral to the hemiplegia. We describe a two-year-old girl with progressive right weakness and epilepsia partialis continua, concerning for early Rasmussen's encephalitis, who tested positive for anti-NMDA receptor antibodies. She experienced complete clinical recovery after immunotherapy. Anti-NMDA receptor antibodies were absent at three weeks and again at one year after the first treatment of intravenous immunoglobulin. There are few reports of Rasmussen-like encephalitis in individuals with anti-NMDA receptor antibody positivity. Thus the clinical significance of this association is yet to be determined. In addition, several other antibodies have been documented in individuals with Rasmussen encephalitis. The lack of a consistently reported antibody in Rasmussen encephalitis patients and the temporary nature of the anti-NMDA receptor antibody in our patient raise the following question: Is the presence of anti-NMDA receptor antibodies the cause of the symptoms or secondary to the pathogenic process? Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Anti-N-Methyl-D-Aspartate Receptor Encephalitis in Children and Adolescents.

    Science.gov (United States)

    Scheer, Shelly; John, Rita Marie

    2016-01-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune disease that is becoming increasingly recognized in the pediatric population. It may be the most common cause of treatable autoimmune encephalitis. The majority of cases of anti-NMDAR encephalitis are idiopathic in etiology, but a significant minority can be attributed to a paraneoplastic origin. Children with anti-NMDAR encephalitis initially present with a prodrome of neuropsychiatric symptoms, often with orofacial dyskinesias followed by progressively worsening seizures, agitation, and spasticity, which may result in severe neurologic deficits and even death. Definitive diagnosis requires detection of NMDAR antibodies in the cerebrospinal fluid. Optimal outcomes are associated with prompt removal of the tumor in paraneoplastic cases, as well as aggressive immunosuppressive therapy. Early detection is essential for increasing the chances for a good outcome. Close follow-up is required to screen for relapse and later onset tumor presentation. The nurse practitioner plays a major role in the research, screening, diagnosis, treatment, follow-up, and rehabilitation of a child or adolescent with anti-NMDAR encephalitis. Copyright © 2016 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  9. Japanese encephalitis can trigger anti-N-methyl-D-aspartate receptor encephalitis.

    Science.gov (United States)

    Ma, Jiannan; Zhang, Ting; Jiang, Li

    2017-06-01

    Japanese encephalitis (JE) is usually a monophasic disease; however, in rare cases, patients with JE may have an early relapse after a partial recovery, giving rise to a biphasic pattern for the disease. In this study, we report three pediatric cases in which post-JE relapse was characterized by movement disorder and/or behavioral problems, and was related to anti-N-methyl-D-aspartate receptor (NMDAR) immunoglobulin G (IgG). Serum and cerebrospinal fluid were examined for anti-NMDAR IgG in three patients who had confirmed JE and then developed relapsing symptoms which were similar to those of anti-NMDAR encephalitis. The main symptoms of the two young children were choreoathetosis, irritability, and sleep disorder; while for the teenager, agitation, mutism, rigidity, and sleep disorder were the main symptoms. Samples of cerebrospinal fluid from all patients were positive for anti-NMDAR IgG, and all patients gradually improved with immunotherapy. Testing for NMDAR antibodies is highly recommend in patients with JE, especially those with a relapsing syndrome involving movement disorder and/or behavioral problems, as these patients may benefit from immunotherapy.

  10. Anti-N-methyl-D-aspartate receptor encephalitis associated with hepatic neuroendocrine carcinoma: A case report.

    Science.gov (United States)

    Lim, Ee Wei; Yip, Chun Wai

    2017-07-01

    Anti-N-methyl-D-aspartate receptor (Anti-NMDAR) encephalitis can present with and without tumor. Tumor associations are less common in older patients. We report a 65-year-old gentleman who presented with one week history of cough, chills, rigor and altered behavior, followed by florid visual and auditory hallucinations. Mini mental status examination score was 16/30. Both cerebrospinal fluid and plasma anti-NMDA receptor antibodies were detected. A course of intravenous methylprednisolone was given with partial symptom improvement. A hepatic neuroendocrine carcinoma was detected and confirmed on biopsy. Unfortunately, he developed several medical complications: non-ST elevation myocardial infarction, infected foot gangrene and peripheral vascular disease, which made him unsuitable for both surgery and chemotherapy. He passed away 6months later due to the progression of the malignancy. This case illustrated that NMDAR encephalitis may be associated with an uncommon hepatic neuroendocrine carcinoma in an older person, which is responsive to early treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Serum cystatin C and anti-N-methyl-D-aspartate receptor encephalitis.

    Science.gov (United States)

    Shu, Y; Chang, Y; Wu, H; Li, J; Cao, B; Sun, X; Wang, J; Peng, L; Hu, X; Yu, X; Qiu, W

    2018-05-01

    Cystatin C (CysC) is associated with many neurodegenerative disorders and autoimmune diseases, but its relationship with anti-N-Methyl-D-aspartate receptor (anti-NMDAR) encephalitis is unknown. Serum levels of CysC were determined in 66 patients with anti-NMDAR encephalitis and 115 healthy controls. Of the 66 patients, 30 had a follow-up evaluation at 3 months after admission. Association of CysC with anti-NMDAR encephalitis and its clinical parameters were evaluated in the patients. The serum levels of CysC were significantly lower in patients with anti-NMDAR encephalitis than in controls (0.70 ± 0.13 vs 0.83 ± 0.17 mg/mL, P anti-NMDAR encephalitis patients had significantly increased serum CysC levels (P anti-NMDAR encephalitis and its clinical parameters and that the changes in CysC levels correlate with therapeutic effect. Therefore, our findings provide new insights into the association between serum CysC and anti-NMDAR encephalitis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. N-Methyl-d-Aspartate (NMDA Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Vivian V. Costa

    2017-04-01

    Full Text Available Zika virus (ZIKV infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801, agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.

  13. N-Methyl-D-aspartic Acid (NMDA in the nervous system of the amphioxus Branchiostoma lanceolatum

    Directory of Open Access Journals (Sweden)

    Garcia-Fernàndez Jordi

    2007-12-01

    Full Text Available Abstract Background NMDA (N-methyl-D-aspartic acid is a widely known agonist for a class of glutamate receptors, the NMDA type. Synthetic NMDA elicits very strong activity for the induction of hypothalamic factors and hypophyseal hormones in mammals. Moreover, endogenous NMDA has been found in rat, where it has a role in the induction of GnRH (Gonadotropin Releasing Hormone in the hypothalamus, and of LH (Luteinizing Hormone and PRL (Prolactin in the pituitary gland. Results In this study we show evidence for the occurrence of endogenous NMDA in the amphioxus Branchiostoma lanceolatum. A relatively high concentration of NMDA occurs in the nervous system of this species (3.08 ± 0.37 nmol/g tissue in the nerve cord and 10.52 ± 1.41 nmol/g tissue in the cephalic vesicle. As in rat, in amphioxus NMDA is also biosynthesized from D-aspartic acid (D-Asp by a NMDA synthase (also called D-aspartate methyl transferase. Conclusion Given the simplicity of the amphioxus nervous and endocrine systems compared to mammalian, the discovery of NMDA in this protochordate is important to gain insights into the role of endogenous NMDA in the nervous and endocrine systems of metazoans and particularly in the chordate lineage.

  14. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents.

    Science.gov (United States)

    Florance, Nicole R; Davis, Rebecca L; Lam, Christopher; Szperka, Christina; Zhou, Lei; Ahmad, Saba; Campen, Cynthia J; Moss, Heather; Peter, Nadja; Gleichman, Amy J; Glaser, Carol A; Lynch, David R; Rosenfeld, Myrna R; Dalmau, Josep

    2009-07-01

    To report the clinical features of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in patients ELISA) using HEK293 cells ectopically expressing NR1. Over an 8-month period, 81 patients (12 male) with anti-NMDAR encephalitis were identified. Thirty-two (40%) were 18 years old, 31% in girls < or =18 years old (p = 0.05), and 9% in girls < or =14 years old (p = 0.008). None of the male patients had tumors. Of 32 patients < or =18 years old, 87.5% presented with behavioral or personality change, sometimes associated with seizures and frequent sleep dysfunction; 9.5% with dyskinesias or dystonia; and 3% with speech reduction. On admission, 53% had severe speech deficits. Eventually, 77% developed seizures, 84% stereotyped movements, 86% autonomic instability, and 23% hypoventilation. Responses to immunotherapy were slow and variable. Overall, 74% had full or substantial recovery after immunotherapy or tumor removal. Neurological relapses occurred in 25%. At the last follow-up, full recovery occurred more frequently in patients who had a teratoma that was removed (5/8) than in those without a teratoma (4/23; p = 0.03). Anti-NMDAR encephalitis is increasingly recognized in children, comprising 40% of all cases. Younger patients are less likely to have tumors. Behavioral and speech problems, seizures, and abnormal movements are common early symptoms. The phenotype resembles that of the adults, although dysautonomia and hypoventilation are less frequent or severe in children. Ann Neurol 2009;66:11-18.

  15. Anti-N-methyl-D-aspartate receptor encephalitis: analysis of three cases

    Directory of Open Access Journals (Sweden)

    Hui SU

    2015-07-01

    Full Text Available Objective To study clinical features, diagnosis, therapy response and prognosis of anti-N-methyl-D-aspartate receptor (anti-NMDAR encephalitis.  Methods Three cases with anti-NMDAR encephalitis were reported. The clinical features, laboratory examinations, imaging, EEG and therapy response of 3 cases were retrospectively analyzed, and also related literatures were reviewed.  Results Two patients were young male and one patient was old female. Main symptoms included psychiatric symptoms in 3 cases (mania in 2 male patients and stupor in the female patient, epilepsy in 2 cases and respiratory failure in one case. The results of MRI examination revealed normal, while EEG examination showed abnormal in all cases. No tumor was detected in any of these patients. Lumbar puncture revealed normal cerebrospinal fluid (CSF pressure (3 cases, elevated white blood cell (WBC, 3 cases and protein quantification (one case. All cases were confirmed to have the disease by detection of anti-NMDAR antibodies in serum and CSF. One male patient got better after receiving immunotherapy with methylprednisolone and intravenous immunoglobulin (IVIg, but psychiatric symptoms were left over. Another male patient had no response to the above treatment. But the female patient was improved without immunotherapy. All 3 cases were followed up for one year after being discharged. One male patient died by accident because of mental disorders. Another male patient showed no sign of relief. The female patient got mild personality and memory change.  Conclusions Anti-NMDAR encephalitis is a new type of autoimmune encephalitis. It is characterized by fever, memory deficits, seizures, disturbance of consciousness, and autonomic dysfunction in males and females of all ages. This type of encephalitis is often associated with teratoma, and has a good response to immunotherapy. There is a certain correlation between progression and prognosis. DOI: 10.3969/j.issn.1672-6731.2015.07.013

  16. [Anti-N-methyl-D aspartate receptor encephalitis - guideline to the challenges of diagnosis and therapy].

    Science.gov (United States)

    Hau, Lídia; Csábi, Györgyi; Tényi, Tamás

    2015-01-01

    Anti-N-methyl-D-Aspartate encephalitis is a recently diagnosed autoimmune disorder with increasing significance. During this disease antibodies are produced against the subunit of the NMDA receptor, which cause different symptoms, both psychiatric and neurological. The aim of this publication is to introduce this disease, to facilitate the diagnosis and to recommend therapeutical guideline. In this review we summarized the relevant literature published between 2007 and 2015 giving emphasis on etiopathogenesis, diagnosis, differential diagnosis, treatment and prognosis. In the etiology an underlying tumor or a viral agent should be considered. During the disease we can discern 3 periods: first prodromal viral infections-like symptoms can be seen, 1-2 weeks later psychiatric symptoms, such as aggression, sleep and behavior disturbances appear. After that neurological symptoms (tonic-clonic convulsions, aphasia, catatonia, orofacial dyskinesia, autonom lability, altered mental state) are typical, and the patient's condition deteriorates. For the correct diagnosis it is necessary to detect antibodies against the NMDA receptor from the serum and the liquor. Steroids, immunoglobulins and plasmaheresis are the first-line therapies. If the disease is unresponsive, then as a second-line therapy anti-CD 20 (Rituximab) and cyclophosphamid can be useful. Most of the patients are improving without any neurological sequale with prompt detection and appropriate therapy. It is important to be familiar with the symptoms, diagnosis and therapy of this disease as a practicing clinician, especially as a psychiatrist or neurologist. 75 percentage of the patients are admitted to psychiatric departments first because of the leading symptoms. Autoimmune NMDA encephalitis is a reversible disease after early diagnosis and treatment.

  17. Anti-N-Methyl-d-Aspartate Receptor Encephalitis in Adult Patients Requiring Intensive Care.

    Science.gov (United States)

    de Montmollin, Etienne; Demeret, Sophie; Brulé, Noëlle; Conrad, Marie; Dailler, Frédéric; Lerolle, Nicolas; Navellou, Jean-Christophe; Schwebel, Carole; Alves, Mikaël; Cour, Martin; Engrand, Nicolas; Tonnelier, Jean-Marie; Maury, Eric; Ruckly, Stéphane; Picard, Géraldine; Rogemond, Véronique; Magalhaes, Éric; Sharshar, Tarek; Timsit, Jean-François; Honnorat, Jérôme; Sonneville, Romain

    2017-02-15

    Encephalitis caused by anti-N-methyl-d-aspartate receptor (NMDAR) antibodies is the leading cause of immune-mediated encephalitis. There are limited data on intensive care unit (ICU) management of these patients. To identify prognostic factors of good neurologic outcome in patients admitted to an ICU with anti-NMDAR encephalitis. This was an observational multicenter study of all consecutive adult patients diagnosed with anti-NMDAR encephalitis at the French National Reference Centre, admitted to an ICU between 2008 and 2014. The primary outcome was a good neurologic outcome at 6 months after ICU admission, defined by a modified Rankin Scale score of 0-2. Seventy-seven patients were included from 52 ICUs. First-line immunotherapy consisted of steroids (n = 61/74; 82%), intravenous immunoglobulins (n = 71/74; 96%), and plasmapheresis (n = 17/74; 23%). Forty-five (61%) patients received second-line immunotherapy (cyclophosphamide, rituximab, or both). At 6 months, 57% of patients had a good neurologic outcome. Independent factors of good neurologic outcome were early (≤8 d after ICU admission) immunotherapy (odds ratio, 16.16; 95% confidence interval, 3.32-78.64; for combined first-line immunotherapy with steroids and intravenous immunoglobulins vs. late immunotherapy), and a low white blood cell count on the first cerebrospinal examination (odds ratio, 9.83 for 50 cells/mm 3 ; 95% confidence interval, 1.07-90.65). Presence of nonneurologic organ failures at ICU admission and occurrence of status epilepticus during ICU stay were not associated with neurologic outcome. The prognosis of adult patients with anti-NMDAR encephalitis requiring intensive care is good, especially when immunotherapy is initiated early, advocating for prompt diagnosis and early aggressive treatment.

  18. Allergy in patients with anti-N-methyl-d-aspartate receptor encephalitis.

    Science.gov (United States)

    Jiang, Xin-Yue; Zhang, Le; Jiang, Xian; Abdulaziz, Ammar Taha Abdullah; Wang, Yun-Hui; Li, Jin-Mei; Zhou, Dong

    2018-02-01

    Allergy is a potential outcome of dysregulated immune system. Previous studies have shown the association of allergy and autoimmune diseases, however, there is few study to investigate the relationship between allergy and anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis. Thus, we investigate the rate of allergy in patients with anti-NMDAR encephalitis and analyze the risk factors. The rate of allergy was investigated in patients with anti-NMDAR encephalitis and was compared with patients with virus encephalitis. The clinical cutaneous characters were described in details. All patients with anti-NMDAR encephalitis were divided into allergic and nonallergic group. Clinical factors were compared in the two groups, and logistic regression model was also used to analyze possible risk factors of allergy. Patients with anti-NMDAR encephalitis had a higher rate of allergy than those with viral encephalitis (22.1% vs 9.2%, odds ratio (OR)=3.23, confidence interval (CI)=1.40-7.42, P=0.006). In patients with anti-NMDAR encephalitis, allergic patients exhibited longer days in hospital (30days vs 22days, P=0.005) and higher occurrence of decreased consciousness (81.5% vs 58.9%, P=0.031), higher rate of complications (77.8% vs 57.9%, P=0.046) and abnormal electroencephalography (EEG) (100% vs 78.6%, P=0.021) than patients without allergy. Cerebrospinal fluid (CSF) antibody titers of allergic patients during the disease course were also higher than nonallergic patients (P=0.004). However, further logistic regression analysis did not reveal independent predictors of allergy. Patients with anti-NMDAR encephalitis show higher allergic rate than those with virus encephalitis. Patients with allergy show higher CSF antibody titers and greater illness severity. However, the final outcome of anti-NMDAR encephalitis was not influenced. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Anti-N-Methyl-d-Aspartate receptor (NMDAR) encephalitis during pregnancy: Clinical analysis of reported cases.

    Science.gov (United States)

    Shi, Yan-Chao; Chen, Xiu-Ju; Zhang, Hong-Mei; Wang, Zhen; Du, Da-Yong

    2017-06-01

    To analyze the clinical features of 13 pregnant patients with anti-N-Methyl-d-Aspartate receptor (NMDAR) encephalitis. Retrospective review of thirteen reported cases was conducted for anti-NMDAR encephalitis patients during pregnancy. The clinical data were collected from papers published in PubMed prior to 16 February 2016. Statistical analysis of the data was performed, which encompasses the patients' age, past medical history, onset of symptoms, concomitant with ovarian teratomas, immunotherapy, outcomes of mothers and newborns. Thirteen cases were reported in 11 articles with a median age of 23 (interquartile range, 19-27) years old. There were eight cases in which the onset periods of gestation happened in the first trimester and five cases in the second trimester. Among 13 cases, five patients had a past medical history, one concomitant with autoimmune Graves' hyperthyroidism, one with bilateral ovarian teratomas removed history, one with anti-NMDAR encephalitis five years before pregnancy and two with psychiatric symptoms. Five patients were found with ovarian teratomas. Seven patients responded to first-line immunotherapy whereas all of two patients responded to second-line immunotherapy when the first-line immunotherapy failed. Following up all the 13 patients, most experienced a substantial recovery, except one had spasticity and dystonia in one hand, and one died of a superimposed infection. Three fetuses were miscarried or aborted in total. Most newborns were healthy, except two cases (2/10) with abnormal neurologic signs. Clinical analysis of the data indicates that most patients respond to first-line immunotherapy. A second-line immunotherapy is effective when first-line immunotherapy fails. It has also been found that most mothers and newborns can have good outcomes. Copyright © 2017. Published by Elsevier B.V.

  20. Arcaine uncovers dual interactions of polyamines with the N-methyl-D-aspartate receptor

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, I.J. (Univ. of Pittsburgh, PA (USA))

    1990-12-01

    This study investigated the interaction between the polyamines spermine and spermidine and the N-methyl-D-aspartate (NMDA) receptor by using (+)-(3H)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-im ine maleate ((3H)MK801) binding to well washed rat brain membranes. The actions of arcaine, agmatine, diethylenetriamine and 1,8-octanediamine as polyamine antagonists were compared to use as tools in this study. Arcaine was found to be the antagonist of choice due to its greater potency. Several divalent cations, including Ba++, Ca++ and Sr++, but not Zn++, decreased the apparent potency of arcaine. These cations enhance (3H)MK801 binding in a similar fashion to spermidine and spermine suggesting that they may share a common site and mechanism of action. Moreover, arcaine competitively reduced the enhancement of (3H)MK801 binding produced by Sr++ did not alter the inhibition produced by higher concentrations of this cation, a phenomenon that also occurs with spermidine. The distinct arcaine sensitivity of the two separate phases of the concentration-response curves of both spermidine and Sr++ suggests two separate mechanisms underlying the action of spermidine-like drugs on the NMDA receptor. Further investigation of the increase in (3H)MK801 binding produced by spermidine revealed that spermidine increased the equilibrium affinity of this ligand by 2-fold without significantly altering the density of binding sites. In contrast, polyamine induced increases in the dissociation of (3H)MK801 required higher polyamine concentrations than necessary to increase ligand binding and were relatively insensitive to arcaine. These findings suggest that polyamines do not activate or promote the activation of the NMDA receptor, but instead enhance (3H)MK801 binding by allosterically increasing ligand affinity.

  1. Arcaine uncovers dual interactions of polyamines with the N-methyl-D-aspartate receptor

    International Nuclear Information System (INIS)

    Reynolds, I.J.

    1990-01-01

    This study investigated the interaction between the polyamines spermine and spermidine and the N-methyl-D-aspartate (NMDA) receptor by using (+)-[3H]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-im ine maleate ([3H]MK801) binding to well washed rat brain membranes. The actions of arcaine, agmatine, diethylenetriamine and 1,8-octanediamine as polyamine antagonists were compared to use as tools in this study. Arcaine was found to be the antagonist of choice due to its greater potency. Several divalent cations, including Ba++, Ca++ and Sr++, but not Zn++, decreased the apparent potency of arcaine. These cations enhance [3H]MK801 binding in a similar fashion to spermidine and spermine suggesting that they may share a common site and mechanism of action. Moreover, arcaine competitively reduced the enhancement of [3H]MK801 binding produced by Sr++ did not alter the inhibition produced by higher concentrations of this cation, a phenomenon that also occurs with spermidine. The distinct arcaine sensitivity of the two separate phases of the concentration-response curves of both spermidine and Sr++ suggests two separate mechanisms underlying the action of spermidine-like drugs on the NMDA receptor. Further investigation of the increase in [3H]MK801 binding produced by spermidine revealed that spermidine increased the equilibrium affinity of this ligand by 2-fold without significantly altering the density of binding sites. In contrast, polyamine induced increases in the dissociation of [3H]MK801 required higher polyamine concentrations than necessary to increase ligand binding and were relatively insensitive to arcaine. These findings suggest that polyamines do not activate or promote the activation of the NMDA receptor, but instead enhance [3H]MK801 binding by allosterically increasing ligand affinity

  2. Anti-N-methyl-D-aspartate-receptor encephalitis: diagnosis, optimal management, and challenges

    Directory of Open Access Journals (Sweden)

    Mann AP

    2014-07-01

    Full Text Available Andrea P Mann,1 Elena Grebenciucova,2 Rimas V Lukas21Department of Psychiatry and Behavioral Neuroscience, 2Department of Neurology, University of Chicago, Chicago, IL, USAObjective: Anti-N-methyl-D-aspartate-receptor (NMDA-R encephalitis is a new autoimmune disorder, often paraneoplastic in nature, presenting with complex neuropsychiatric symptoms. Diagnosed serologically, this disorder is often responsive to immunosuppressant treatment. The objective of this review is to educate clinicians on the challenges of diagnosis and management of this disorder.Materials and methods: A review of the relevant literature on clinical presentation, pathophysiology, and recommended management was conducted using a PubMed search. Examination of the results identified articles published between 2007 and 2014.Results: The literature highlights the importance of recognizing early common signs and symptoms, which include hallucinations, seizures, altered mental status, and movement disorders, often in the absence of fever. Although the presence of blood and/or cerebrospinal fluid autoantibodies confirms diagnosis, approximately 15% of patients have only positive cerebrospinal fluid titers. Antibody detection should prompt a search for an underlying teratoma or other underlying neoplasm and the initiation of first-line immunosuppressant therapy: intravenous methylprednisolone, intravenous immunoglobulin, or plasmapheresis, or a combination thereof. Second-line treatment with rituximab or cyclophosphamide should be implemented if no improvement is noted after 10 days. Complications can include behavioral problems (eg, aggression and insomnia, hypoventilation, catatonia, and autonomic instability. Those patients who can be managed outside an intensive care unit and whose tumors are identified and removed typically have better rates of remission and functional outcomes.Conclusion: There is an increasing need for clinicians of different specialties, including

  3. N-Methyl D-Aspartic Acid (NMDA Receptors and Depression

    Directory of Open Access Journals (Sweden)

    Enver Yusuf Sivrioglu

    2009-06-01

    Full Text Available The monoaminergic hypothesis of depression has provided the basis for extensive research into the pathophysiology of mood disorders and has been of great significance for the development of effective antidepressants. Current antidepressant treatments not only increase serotonin and/or noradrenaline bioavailability but also originate adaptive changes increasing synaptic plasticity. Novel approaches to depression and to antidepressant therapy are now focused on intracellular targets that regulate neuroplasticity and cell survival. Accumulating evidence indicates that there is an anatomical substrate for such a devastating neuropsychiatric disease as major depression. Loss of synaptic plasticity and hippocampal atrophy appear to be prominent features of this highly prevalent disorder. A combination of genetic susceptibility and environmental factors make hippocampal neurons more vulnerable to stress. Abundant experimental evidence indicates that stress causes neuronal damage in brain regions, notably in hippocampal subfields. Stress-induced activation of glutamatergic transmission may induce neuronal cell death through excessive stimulation of N-methyl-D-aspartic acid (NMDA receptors. Recent studies mention that the increase of nitric oxide synthesis and inflammation in major depression may contribute to neurotoxicity through NMDA receptor. Both standard antidepressants and NMDA receptor antagonists are able to prevent stress-induced neuronal damage. NMDA antagonists are effective in widely used animal models of depression and some of them appear to be effective also in the few clinical trials performed to date. We are still far from understanding the complex cellular and molecular events involved in mood disorders. There appears to be an emerging role for glutamate neurotransmission in the search for the pathogenesis of major depression. Attenuation of NMDA receptor function mechanism appears to be a promising target in the search for a more

  4. Anti–N-Methyl-D-Aspartate Receptor (NMDAR) Encephalitis in Children and Adolescents

    Science.gov (United States)

    Florance, Nicole R.; Davis, Rebecca L.; Lam, Christopher; Szperka, Christina; Zhou, Lei; Ahmad, Saba; Campen, Cynthia J.; Moss, Heather; Peter, Nadja; Gleichman, Amy J.; Glaser, Carol A.; Lynch, David R.; Rosenfeld, Myrna R.; Dalmau, Josep

    2010-01-01

    Objective To report the clinical features of anti–N-methyl-D-aspartate receptor (NMDAR) encephalitis in patients ≤ 18 years old. Methods Information was obtained by the authors or referring physicians. Antibodies were determined by immunocytochemistry and enzyme-linked immunosorbent assay (ELISA) using HEK293 cells ectopically expressing NR1. Results Over an 8-month period, 81 patients (12 male) with anti-NMDAR encephalitis were identified. Thirty-two (40%) were ≤18 years old (youngest 23 months, median 14 years); 6 were male. The frequency of ovarian teratomas was 56% in women >18 years old, 31% in girls ≤18 years old (p = 0.05), and 9% in girls ≤14 years old ( p = 0.008). None of the male patients had tumors. Of 32 patients ≤18 years old, 87.5% presented with behavioral or personality change, sometimes associated with seizures and frequent sleep dysfunction; 9.5% with dyskinesias or dystonia; and 3% with speech reduction. On admission, 53% had severe speech deficits. Eventually, 77% developed seizures, 84% stereotyped movements, 86% autonomic instability, and 23% hypoventilation. Responses to immunotherapy were slow and variable. Overall, 74% had full or substantial recovery after immunotherapy or tumor removal. Neurological relapses occurred in 25%. At the last follow-up, full recovery occurred more frequently in patients who had a teratoma that was removed (5/8) than in those without a teratoma (4/23; p = 0.03). Interpretation Anti-NMDAR encephalitis is increasingly recognized in children, comprising 40% of all cases. Younger patients are less likely to have tumors. Behavioral and speech problems, seizures, and abnormal movements are common early symptoms. The phenotype resembles that of the adults, although dysautonomia and hypoventilation are less frequent or severe in children. PMID:19670433

  5. Anti-N-methyl-D-aspartate receptor encephalitis associated with intracranial Angiostrongylus cantonensis infection: a case report.

    Science.gov (United States)

    Peng, Yu; Liu, Xiaojia; Pan, Suyue; Xie, Zuoshan; Wang, Honghao

    2017-04-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a recently described paraneoplastic syndrome with prominent neuropsychiatric symptoms. Many of these cases are associated with neoplasma especially teratoma. In addition, a few of cases with anti-NMDAR antibodies triggered by viral infection have been reported, but never by parasitic infection. Here, we report a novel case of NMDA receptor encephalitis in a 51-year-old male related to the development of anti-NMDAR antibodies triggered by Angiostrongylus cantonensis infection.

  6. Costimulation of N-methyl-d-aspartate and muscarinic neuronal receptors modulates gap junctional communication in striatal astrocytes

    OpenAIRE

    Rouach, N.; Tencé, M.; Glowinski, J.; Giaume, C.

    2002-01-01

    Cocultures of neurons and astrocytes from the rat striatum were used to determine whether the stimulation of neuronal receptors could affect the level of intercellular communication mediated by gap junctions in astrocytes. The costimulation of N-methyl-D-asparte (NMDA) and muscarinic receptors led to a prominent reduction of astrocyte gap junctional communication (GJC) in coculture. This treatment was not effective in astrocyte cultures, these cells being devoid of NMDA receptors. Both types ...

  7. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    International Nuclear Information System (INIS)

    Ly, A.M.; Michaelis, E.K.

    1991-01-01

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. [ 14 C]Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of [ 14 C]methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA + led to a transient increase in the influx of the lipid-permeable anion probe S 14 CN - . These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the ∼69-kDa protein in the function of these ion channels

  8. Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus

    DEFF Research Database (Denmark)

    Bendová, Z; Sumová, A; Mikkelsen, Jens D.

    2009-01-01

    The circadian rhythms of mammals are generated by the circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Its intrinsic period is entrained to a 24 h cycle by external cues, mainly by light. Light impinging on the SCN at night causes either advancing or delaying phase...... shifts of the circadian clock. N-methyl-d-aspartate receptors (NMDAR) are the main glutamate receptors mediating the effect of light on the molecular clockwork in the SCN. They are composed of multiple subunits, each with specific characteristics whose mutual interactions strongly determine properties...

  9. Extended Clinical Spectrum of Anti-N-Methyl-d-Aspartate Receptor Encephalitis in Children: A Case Series.

    Science.gov (United States)

    Goenka, Ajay; Jain, Vivek; Nariai, Hiroki; Spiro, Alfred; Steinschneider, Mitchell

    2017-07-01

    There is a wide spectrum of clinical manifestations in children with anti-N-methyl-d-aspartate (NMDA) receptor antibody encephalitis from two different health care settings. We describe our experience with 13 patients (median age, 7 years; range, 5 months to 19 years) presenting to tertiary referral centers in India and the United States. Initial manifestations were neurological (seizures or movement disorders) in eight patients, and psychiatric (e.g., emotional lability and hallucination) in five patients. Symptoms during the clinical course included seizures in ten patients, movement disorders (dyskinesia and choreiform movements) in 11 patients, and behavioral changes (aggressiveness and insomnia) in ten patients. Concomitant infections (herpes simplex virus 1, tuberculous meningitis, and influenza A) were present in three patients. Analysis of the cerebrospinal fluid in all except two cases preceded by infection (herpes simplex virus encephalitis and tuberculous meningitis) was unremarkable. Treatment included intravenous immunoglobulin/methylprednisolone (11 patients), rituximab (eight patients), plasmapheresis (two patients), and cyclophosphamide (two patients). Six patients recovered completely. Two patients had mild residual neurological deficits, whereas four had severe residual neurological deficits. Two patients had profound autonomic instability, which was the cause of death for one of them. Two patients relapsed at two and six months after the initial recovery. We describe the differences and similarities of clinical presentation, test results, and response to treatment of children with anti-N-methyl-d-aspartate receptor encephalitis from India and the United States. Included is a description of one of the youngest patients with anti-N-methyl-d-aspartate receptor encephalitis (five months) and the first patient to be reported in association with tuberculous meningitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effects of pilocarpine and kainate-induced seizures on N-methyl-d-aspartate receptor gene expression in the rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Przewlocka, B.; Labuz, D.; Machelska, H.; Przewlocki, R.; Turchan, J.; Lason, W. [Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow (Poland)

    1997-04-14

    The effects of pilocarpine- and kainate-induced seizures on N-methyl-d-aspartate receptor subunit-1 messenger RNA and [{sup 3}H]dizocilpine maleate binding were studied in the rat hippocampal formation. Pilocarpine- but not kainate-induced seizures decreased N-methyl-d-aspartate receptor subunit-1 messenger RNA level in dentate gyrus at 24 and 72 h after drug injection. Both convulsants decreased the messenger RNA level in CA1 pyramidal cells at 24 and 72 h, the effects of kainate being more profound. Kainate also decreased the N-methyl-d-aspartate receptor subunit-1 messenger RNA level in CA3 region after 24 and 72 h, whereas pilocarpine decreased the messenger RNA level at 72 h only. At 3 h after kainate, but not pilocarpine, an increased binding of [{sup 3}H]dizocilpine maleate in several apical dendritic fields of pyramidal cells was found. Pilocarpine reduced the [{sup 3}H]dizocilpine maleate binding in stratum lucidum only at 3 and 24 h after the drug injection. Pilocarpine but not kainate induced prolonged decrease in N-methyl-d-aspartate receptor subunit-1 gene expression in dentate gyrus. However, at the latest time measured, kainate had the stronger effect in decreasing both messenger RNA N-methyl-d-aspartate receptor subunit-1 and [{sup 3}H]dizocilpine maleate binding in CA1 and CA3 hippocampal pyramidal cells. The latter changes corresponded, however, to neuronal loss and may reflect higher neurotoxic potency of kainate.These data point to some differences in hippocampal N-methyl-d-aspartate receptor regulation in pilocarpine and kainate models of limbic seizures. Moreover, our results suggest that the N-methyl-d-aspartate receptor subunit-1 messenger RNA level is more susceptible to limbic seizures than is [{sup 3}H]dizocilpine maleate binding in the rat hippocampal formation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Effects of pilocarpine and kainate-induced seizures on N-methyl-d-aspartate receptor gene expression in the rat hippocampus

    International Nuclear Information System (INIS)

    Przewlocka, B.; Labuz, D.; Machelska, H.; Przewlocki, R.; Turchan, J.; Lason, W.

    1997-01-01

    The effects of pilocarpine- and kainate-induced seizures on N-methyl-d-aspartate receptor subunit-1 messenger RNA and [ 3 H]dizocilpine maleate binding were studied in the rat hippocampal formation. Pilocarpine- but not kainate-induced seizures decreased N-methyl-d-aspartate receptor subunit-1 messenger RNA level in dentate gyrus at 24 and 72 h after drug injection. Both convulsants decreased the messenger RNA level in CA1 pyramidal cells at 24 and 72 h, the effects of kainate being more profound. Kainate also decreased the N-methyl-d-aspartate receptor subunit-1 messenger RNA level in CA3 region after 24 and 72 h, whereas pilocarpine decreased the messenger RNA level at 72 h only. At 3 h after kainate, but not pilocarpine, an increased binding of [ 3 H]dizocilpine maleate in several apical dendritic fields of pyramidal cells was found. Pilocarpine reduced the [ 3 H]dizocilpine maleate binding in stratum lucidum only at 3 and 24 h after the drug injection. Pilocarpine but not kainate induced prolonged decrease in N-methyl-d-aspartate receptor subunit-1 gene expression in dentate gyrus. However, at the latest time measured, kainate had the stronger effect in decreasing both messenger RNA N-methyl-d-aspartate receptor subunit-1 and [ 3 H]dizocilpine maleate binding in CA1 and CA3 hippocampal pyramidal cells. The latter changes corresponded, however, to neuronal loss and may reflect higher neurotoxic potency of kainate.These data point to some differences in hippocampal N-methyl-d-aspartate receptor regulation in pilocarpine and kainate models of limbic seizures. Moreover, our results suggest that the N-methyl-d-aspartate receptor subunit-1 messenger RNA level is more susceptible to limbic seizures than is [ 3 H]dizocilpine maleate binding in the rat hippocampal formation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Glufosinate ammonium stimulates nitric oxide production through N-methyl D-aspartate receptors in rat cerebellum.

    Science.gov (United States)

    Nakaki, T; Mishima, A; Suzuki, E; Shintani, F; Fujii, T

    2000-09-01

    Glufosinate ammonium, a structural analogue of glutamate, is an active herbicidal ingredient. The neuronal activities of this compound were investigated by use of a microdialysis system that allowed us to measure nitric oxide production in the rat cerebellum in vivo. Kainate (0.3-30 nmol/10 microliter), N-methyl-D-aspartate (NMDA) (3-300 nmol/10 microliter) and glufosinate ammonium (30-3000 nmol/10 microliter), which were administered through the microdialysis probe at a rate of 1 microliter/min for 10 min, stimulated nitric oxide production. The glufosinate ammonium-elicited increase in nitric oxide production was suppressed by an inhibitor of nitric oxide synthase and was antagonized by NMDA receptor antagonists, but not by a kainate/(+/-)-alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. These results suggest that glufosinate ammonium stimulates nitric oxide production through NMDA receptors.

  13. Alkaloid fraction of Uncaria rhynchophylla protects against N-methyl-D-aspartate-induced apoptosis in rat hippocampal slices.

    Science.gov (United States)

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Sun-Yeou; Kim, Hocheol; Kim, Chang-Ju; Lim, Eunhee

    2003-09-04

    Uncaria rhynchophylla is a medicinal herb which has sedative and anticonvulsive effects and has been applied in the treatment of epilepsy in Oriental medicine. In this study, the effect of alkaloid fraction of U. rhynchophylla against N-methyl-D-aspartate (NMDA)-induced neuronal cell death was investigated. Pretreatment with an alkaloid fraction of U. rhynchophylla for 1 h decreased the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices and also inhibited NMDA-induced enhanced expressions of apoptosis-related genes such as c-jun, p53, and bax. In the present study, the alkaloid fraction of U. rhynchophylla was shown to have a protective property against NMDA-induced cytotoxicity by suppressing the NMDA-induced apoptosis in rat hippocampal slices.

  14. Protective effect of methanol extract of Uncaria rhynchophylla against excitotoxicity induced by N-methyl-D-aspartate in rat hippocampus.

    Science.gov (United States)

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Dae-Keun; Shin, Min-Chul; Jang, Mi-Hyeon; Kim, Chang-Ju; Kim, Yong-Sik; Kim, Sun-Yeou; Kim, Hocheol

    2003-05-01

    Uncaria rhynchophylla is a medicinal herb used for convulsive disorders in Oriental medicine. In this study, the effect of the methanol extract of Uncaria rhynchophylla against N-methyl-D-aspartate (NMDA)-induced excitotoxicity was investigated. Pretreatment with the extract of Uncaria rhynchopylla reduced the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices. In the patch clamp study, Uncaria rhynchophylla significantly inhibited NMDA receptor-activated ion current in acutely dissociated hippocampal CA1 neurons. These results indicate that Uncaria rhynchophylla offers protection against NMDA-induced neuronal injury and inhibitory action on NMDA receptor-mediated ion current may be a mechanism behind the neuroprotective effect of Uncaria rhynchophylla.

  15. High sensitivity and specificity in proposed clinical diagnostic criteria for anti-N-methyl-D-aspartate receptor encephalitis.

    Science.gov (United States)

    Ho, Alvin C C; Mohammad, Shekeeb S; Pillai, Sekhar C; Tantsis, Esther; Jones, Hannah; Ho, Reena; Lim, Ming; Hacohen, Yael; Vincent, Angela; Dale, Russell C

    2017-12-01

    To determine the validity of the proposed clinical diagnostic criteria for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis in paediatric patients. The diagnostic criteria for anti-NMDAR encephalitis proposed by Graus et al. (2016) use clinical features and conventional investigations to facilitate early immunotherapy before antibody status is available. The criteria are satisfied if patients develop four out of six symptom groups within 3 months, together with at least one abnormal investigation (electroencephalography/cerebrospinal fluid) and reasonable exclusion of other disorders. We evaluated the validity of the criteria using a retrospective cohort of paediatric patients with encephalitis. Twenty-nine patients with anti-NMDAR encephalitis and 74 comparison children with encephalitis were included. As expected, the percentage of patients with anti-NMDAR encephalitis who fulfilled the clinical criteria increased over time. During the hospital inpatient admission, most patients (26/29, 90%) with anti-NMDAR encephalitis fulfilled the criteria, significantly more than the comparison group (3/74, 4%) (panti-NMDAR encephalitis was 2 weeks from first symptom onset (range 1-6). The sensitivity of the criteria was 90% (95% confidence interval 73-98) and the specificity was 96% (95% confidence interval 89-99). The proposed diagnostic criteria for anti-NMDAR encephalitis have good sensitivity and specificity. Incomplete criteria do not exclude the diagnosis. The proposed clinical diagnostic criteria for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis by Graus et al. (2016) have high sensitivity and specificity in paediatric patients. The median time of fulfilling the criteria in patients with anti-NMDAR was 2 weeks from first symptom onset. © 2017 Mac Keith Press.

  16. Repeated ketamine administration alters N-methyl-d-aspartic acid receptor subunit gene expression: Implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans

    Science.gov (United States)

    Lipsky, Robert H

    2015-01-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-d-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072

  17. Repeated ketamine administration alters N-methyl-D-aspartic acid receptor subunit gene expression: implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans.

    Science.gov (United States)

    Xu, Ke; Lipsky, Robert H

    2015-02-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. © 2014 by the Society for Experimental Biology and Medicine.

  18. Clinically significant response to zolpidem in disorders of consciousness secondary to anti-N-methyl-D-aspartate receptor encephalitis in a teenager: a case report.

    Science.gov (United States)

    Appu, Merveen; Noetzel, Michael

    2014-03-01

    Anti-N-methyl-d-aspartate receptor encephalitis has been associated with a prolonged neuropsychiatric phase that may last for months to years. We report the case of a 16-year-old girl who was diagnosed with anti-N-methyl-d-aspartate receptor encephalitis resulting from left ovarian mature teratoma 2 weeks after presentation with psychosis. Following tumor removal and immunotherapy, recovery from a minimally conscious state was accelerated significantly by zolpidem that was used for her sleep disturbance. Our patient was discharged home 8 weeks after admission with marked improvement in her neurological function. Zolpidem has been reported to improve arousal in disorders of consciousness but there are no previous reports of its benefit among patients with anti-N-methyl-d-aspartate receptor encephalitis. Zolpidem would be a reasonable consideration as an adjunctive treatment in anti-N-methyl-d-aspartate receptor encephalitis after tumor removal and immunotherapy to accelerate recovery and rehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Anti-N-methyl-D-aspartate receptor encephalitis concomitant with multifocal subcortical white matter lesions on magnetic resonance imaging: a case report and review of the literature.

    Science.gov (United States)

    Wang, Rui-Jin; Chen, Bu-Dong; Qi, Dong

    2015-07-08

    Anti-N-methyl-D-aspartate receptor encephalitis is a severe autoimmune disorder characterized by severe psychiatric symptoms, seizures, decreased consciousness, autonomic dysregulation, and dyskinesias. Multifocal subcortical white matter lesions on fluid-attenuated inversion recovery and diffuse weighted images have rarely been reported in previous literature, and serial magnetic resonance imaging changes after plasma exchange have not been presented before. A previously healthy 24-year-old Chinese woman presented with acute psychiatric symptoms characterized by fear and agitation followed by decreased consciousness, dyskinesias, and seizures. Magnetic resonance imaging revealed hyperintense lesions on fluid-attenuated inversion recovery and diffuse weighted images in bilateral subcortical white matter. Cerebrospinal fluid analysis revealed a mild pleocytosis with lymphocytic predominance. Protein and glucose levels were normal. Aquaporin-4 antibodies in serum and cerebrospinal fluid were negative. Identification of anti-N-methyl-D-aspartate receptor antibodies in serum and cerebrospinal fluid confirmed the diagnosis of anti-N-methyl-D-aspartate receptor encephalitis. She was initially treated with combined intravenous immunoglobulin and methylprednisolone without improvement. Plasma exchange was then initiated with good response; the patient made a full recovery after several cycles of plasma exchange. Repeat magnetic resonance imaging performed 1 month after plasma exchange showed partial resolution of the hyperintense lesions in bilateral subcortical white matter, and follow-up magnetic resonance imaging 2 months after plasma exchange showed complete resolution. Anti-N-methyl-D-aspartate receptor encephalitis may be concomitant with multifocal subcortical white matter lesions. Such lesions may resolve after appropriate immunotherapy.

  20. Effect of the low-affinity, noncompetitive N-methyl-D-aspartate receptor antagonist dextromethorphan on visceral perception in healthy volunteers

    NARCIS (Netherlands)

    Kuiken, S. D.; Lei, A.; Tytgat, G. N. J.; Holman, R.; Boeckxstaens, G. E. E.

    2002-01-01

    Background: The use of N-methyl-d-aspartate (NMDA) receptor antagonists may hold promise for the treatment of pain of visceral origin, in particular in conditions characterized by visceral hypersensitivity. Aim: To study the effect of dextromethorphan, a low affinity, non-competitive NMDA receptor

  1. Propofol effectively inhibits lithium-pilocarpine- induced status epilepticus in rats via downregulation of N-methyl-D-aspartate receptor 2B subunit expression

    Science.gov (United States)

    Wang, Henglin; Wang, Zhuoqiang; Mi, Weidong; Zhao, Cong; Liu, Yanqin; Wang, Yongan; Sun, Haipeng

    2012-01-01

    Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine. The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior, electroencephalography and 24-hour survival rate. Propofol (12.5–100 mg/kg) improved status epilepticus in a dose-dependent manner, and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection. Western blot results showed that, 24 hours after induction of status epilepticus, the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus. Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels, but not the increase in N-methyl-D-aspartate receptor 2A subunit levels. The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine. This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures. PMID:25737709

  2. Auto-immune anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis: three case reports.

    Science.gov (United States)

    Bashiri, Fahad A; Al-Rasheed, Abdulrahman A; Hassan, Saeed M; Hamad, Muddathir H A; El Khashab, Heba Y; Kentab, Amal Y; AlBadr, Fahad B; Salih, Mustafa A

    2017-08-01

    Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a recently identified auto-immune disorder characterised by severe memory deficit, a decreased level of consciousness, seizures, autonomic dysfunction and movement disorders. Three girls with the disorder are reported; they were aged 4 years, 5 years and 10 months. The 10-month-old infant who is one of the youngest patients reported with anti-NMDAR encephalitis worldwide, had MRI features suggestive of herpes simplex encephalitis (known to trigger anti-NMDAR encephalitis), but CSF PCR for herpes simplex was negative. All the patients presented with seizures, behavioural change, regression of speech, dystonia and choreo-athetosis. Anti-NMDAR antibodies were detected in all patients' sera and cerebrospinal fluid (CSF). Intravenous immunoglobulin, corticosteroids and rituximab were administered at different intervals. Cases 1 and 2 made a full recovery, but case 3 has mild motor and speech delay. Patients who present with encephalopathy, seizures and movement disorders should be tested for anti-NMDAR antibodies in serum and CSF in addition to being screened for herpes simplex encephalitis.

  3. Anti-N-Methyl-d-Aspartate Receptor Encephalitis as an Unusual Cause of Altered Mental Status in the Emergency Department.

    Science.gov (United States)

    Weaver, Michael; Griffey, Richard T

    2016-08-01

    Anti-N-methyl-d-aspartate (NMDA) receptor autoimmune encephalitis is a newly identified form of encephalitis whose incidence is on the rise. Awareness of this condition and symptom recognition are key to early diagnosis and prompt treatment, which may alter the course of the disease. A 35-year-old woman presented to our Emergency Department (ED) with lethargy, bizarre behavior, agitation, confusion, memory deficits, and word-finding difficulties. Her symptoms and evaluation were potentially consistent with a primary psychiatric disorder, but the absence of frank psychosis and presence of neurologic features related to memory and cognition prompted other considerations. In the ED we performed a lumbar puncture, and in addition to routine studies, ordered anti-NMDAR antibody screening. The screening studies returned positive, leading to treatment with glucocorticoids and intravenous immune globulin and resulting in improvement to near baseline function. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Although anti-NMDAR encephalitis is relatively uncommon, reports of this previously unrecognized condition are increasing, with an unclear true incidence of disease. Emergency providers should consider this diagnosis in their differential for patients presenting with new neuropsychiatric symptoms, particularly in young women. Prompt treatment leads to near complete neurologic recovery in 75% of patients, whereas delays in diagnosis and treatment may be associated with worse outcomes including death. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Anti-N-methyl-D-aspartate receptor encephalitis associated with an ovarian teratoma: two cases report and anesthesia considerations.

    Science.gov (United States)

    Liu, Haiyang; Jian, Minyu; Liang, Fa; Yue, Hongli; Han, Ruquan

    2015-10-16

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an immune-mediated syndrome caused by the production of anti-NMDAR receptor antibodies. The syndrome characterised by psychosis, seizures, sleep disorders, hallucinations and short-term memory loss. Ovarian teratoma is the confirmed tumour associated with anti-NMDAR antibodies. The patients with anti-NMDAR encephalitis complicated by ovarian teratoma require surgical treatment under general anesthesia. NMDARs are important targets of many anesthetic drugs. The perioperative management and complications of anti-NMDAR encephalitis, including hypoventilation, paroxysmal sympathetic hyperactivity (PSH) and epilepsy, are challenging for ansthesiologists. This report described two female patients who presented for resection of the ovarian teratoma, they had confirmed anti-NMDAR encephalitis accompanied by ovarian teratoma. Two patients received gamma globulin treatments and the resection of the ovarian teratoma under total intravenous anesthesia. They were recovered and discharged on the 20(th) and 46(th) postoperative day respectively. There is insufficient evidence about the perioperative management, monitoring and anesthesia management of anti-NMDAR encephalitis. This report was based on the consideration that controversial anesthetics that likely act on NMDARs should be avoided. Additionally, BIS monitoring should to be prudently applied in anti-NMDAR encephalitis because of abnormal electric encephalography (EEG). Anesthesiologists must be careful with regard to central ventilation dysfunctions and PSH due to anti-NMDAR encephalitis.

  5. Clinical characteristics and outcomes between children and adults with anti-N-Methyl-D-Aspartate receptor encephalitis.

    Science.gov (United States)

    Huang, Qi; Wu, Yuan; Qin, Rongfa; Wei, Xing; Ma, Meigang

    2016-12-01

    Anti-N-Methyl-D-Aspartate receptor (NMDAR) encephalitis is an acute neurological disorder affecting children and adults. We aimed to compare the clinical characteristics, treatments, and outcomes between children and adults with anti-NMDAR encephalitis and to assess the probable risk factors. In this observational study, patients who tested positive for anti-NMDAR antibody in the cerebrospinal fluid were enrolled. The patients were divided into children and adults group on the basis of age (whether <16 or not). Clinical outcomes were assessed at onset, 1, 3, 6, 9, and 12 months after the patients received treatment and were scored based on whether they required hospitalization and intensive care. A total of 15 children and 14 adults were examined. The adults more likely manifested status epilepticus, central hypoventilation, and pneumonia but less likely exhibited movement disorder than the children did. All of the patients were subjected to corticosteroid treatment, 11 children and 9 adults were treated with intravenous immunoglobulin, and only the adults received plasma exchange or cyclophosphamide. The children recovered faster than the adults, especially in the first 6 months. Risk factors included age, status epilepticus, changes in consciousness, central hypoventilation, and pneumonia. Adults exhibit worse outcomes than children mostly because of status epilepticus.

  6. Anti-N-methyl-D-aspartate receptor encephalitis associated with acute Toxoplasma gondii infection: A case report.

    Science.gov (United States)

    Cai, Xiaotang; Zhou, Hui; Xie, Yongmei; Yu, Dan; Wang, Zhiling; Ren, Haitao

    2018-02-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis has been recognized as the most frequent autoimmune encephalitis in children. Several infectious agents have been implicated in anti-NMDA encephalitis. A previously healthy immunocompetent 9-year-old girl first presented with seizures, headaches and vomiting. Cerebrospinal fluid and brain magnetic resonance imaging were normal. After one week onset, the patient gradually developed unexplained personality and behavior changes, accompanied by fever and seizures again. Repeated CSF analysis revealed a slightly lymphocytic predominant pleocytosis and positive anti-NMDAR antibody. A variety of pathogenic examinations were negative, except for positive toxoplasma IgM and IgG. The patient was diagnoses for anti-NMDA encephalitis associated with acute acquired toxoplasma gondii infection. The patient received 10 days azithromycin for treatment of acquired toxoplasma infection. The parents refuse immunotherapy because substantial recovery from clinical symptoms. The patient was substantially recovered with residual mild agitation after therapy for acquired toxoplasma gondii infection. Two months later, the patient was completely devoid of symptoms, and the levels of serum IgM and IgG of toxoplasma gondii were decreased. Acquired toxoplasma gondii infection may trigger anti-NMDAR encephalitis in children, which has not been reported previously. Clinicians should assess the possibility of toxoplasma gondii infection when evaluating a patient with anti-NMDA encephalitis.

  7. Electroconvulsive Therapy in Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Case Report and Review of the Literature.

    Science.gov (United States)

    Coffey, M Justin; Cooper, Joseph J

    2016-12-01

    There is a growing scientific literature describing the neuropsychiatric symptoms of anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, including the use of electroconvulsive therapy (ECT) to treat those symptoms. We sought to consolidate this literature into a review that highlights its relevance to ECT practitioners. We performed a PubMed search using the terms electroconvulsive therapy and encephalitis, autoimmune encephalitis, or anti-NMDA receptor encephalitis. We reviewed all relevant studies in detail, cross-referenced all bibliographies, and collected key clinical information related to the practice of ECT. We identified 6 studies offering patient-level descriptions of the use of ECT in patients with anti-NMDA receptor encephalitis. In all cases ECT was used to target symptoms of catatonia. Electroconvulsive therapy was delivered safely and effectively irrespective of the timing of diagnosis, tumor removal, or immunotherapy. There are no controlled data on the use of ECT in anti-NMDA receptor encephalitis. Further investigation is needed to determine whether ECT has a disease-modifying effect on this form of autoimmune encephalitis.

  8. Rehabilitation for a child with recalcitrant anti-N-methyl-d-aspartate receptor encephalitis: case report and literature review

    Science.gov (United States)

    Guo, Yao-Hong; Kuan, Ta-Shen; Hsieh, Pei-Chun; Lien, Wei-Chih; Chang, Chun-Kai; Lin, Yu-Ching

    2014-01-01

    Anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis is a newly recognized, potentially fatal, but treatable autoimmune disease. Good outcome predictors include milder severity of symptoms, no need for intensive care unit admission, early aggressive immunotherapy, and prompt tumor removal. We report a case of a young girl aged 3 years 2 months and diagnosed as recalcitrant anti-NMDA receptor encephalitis without any underlying neoplasm. The patient had initial symptoms of behavioral changes that progressed to generalized choreoathetosis and orofacial dyskinesia, which resulted in 6 months of hospitalization in the pediatric intensive care unit. One year after initial onset of the disease, she had only achieved the developmental age of an infant aged 6–8 months in terms of gross and fine motor skills, but she resumed total independence in activities of daily living after receiving extensive immunotherapy and 28 months of rehabilitation. Our brief review will help clinical practitioners become more familiar with this disease and the unique rehabilitation programs. PMID:25473290

  9. N-Methyl-D-aspartate Receptor Excessive Activation Inhibited Fetal Rat Lung Development In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Zhengchang Liao

    2016-01-01

    Full Text Available Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR’s expression and role in fetal lung development. Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801’s influence on intrauterine hypoxia-induced retardation of fetal lung development was tested in vivo, and NMDA’s direct effect on fetal lung development was observed using fetal lung organ culture in vitro. Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damage in vivo. In vitro experiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression. Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development.

  10. sigma receptor ligands attenuate N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of mesencephalic slice cultures.

    Science.gov (United States)

    Shimazu, S; Katsuki, H; Takenaka, C; Tomita, M; Kume, T; Kaneko, S; Akaike, A

    2000-01-28

    We investigated the potential neuroprotective effects of several sigma receptor ligands in organotypic midbrain slice cultures as an excitotoxicity model system. When challenged with 100-microM N-methyl-D-aspartate (NMDA) for 24 h, dopaminergic neurons in midbrain slice cultures degenerated, and this was prevented by (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5, 10-imine (MK-801; 1-10 microM). Concomitant application of ifenprodil (1-10 microM) or haloperidol (1-10 microM), both of which are high-affinity sigma receptor ligands, significantly attenuated the neurotoxicity of 100 microM NMDA. The sigma(1) receptor-selective ligand (+)-N-allylnormetazocine ((+)-SKF 10047; 1-10 microM) was also effective in attenuating the toxicity of NMDA. The effect of R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane hydrochloride ((-)-PPAP), a sigma receptor ligand with negligible affinity for the phencyclidine site of NMDA receptors, was also examined. (-)-PPAP (3-100 microM) caused a concentration-dependent reduction of NMDA cytotoxicity, with significant protection at concentrations of 30 and 100 microM. In contrast, (+)-SKF 10047 (10 microM) and (-)-PPAP (100 microM) showed no protective effects against cell death induced by the Ca(2+) ionophore ionomycin (1-3 microM). These results indicate that sigma receptor ligands attenuate the cytotoxic effects of NMDA on midbrain dopaminergic neurons, possibly via inhibition of NMDA receptor functions.

  11. Management of Refractory Orofacial Dyskinesia Caused by Anti-N-methyl-d-aspartate Receptor Encephalitis Using Botulinum Toxin

    Directory of Open Access Journals (Sweden)

    Feixia Zheng

    2018-02-01

    Full Text Available The use of botulinum neurotoxin serotype A (BoNT-A injections for the treatment of orofacial dyskinesia secondary to anti-N-methyl-d-aspartate receptor (NMDAR encephalitis is rarely reported. Here, we report a case of an urgent, successful management of severe orofacial dyskinesia in an 8-year-old girl with anti-NMDAR encephalitis using BoNT-A injection. The patient presented with de novo unilateral paroxysmal movement disorder progressing to generalized dystonia and repetitive orofacial dyskinesia. Diagnosis was confirmed by the presence of NMDAR antibodies in serum and cerebrospinal fluid. The orofacial dyskinesia worsened despite the aggressive use of first-line immunotherapy and second-line immunotherapy (rituximab, and resulted in a potentially fatal self-inflicted oral injury. We urgently attempted symptomatic management using BoNT-A injections in the masseter, and induced muscle paralysis using vecuronium. The patient’s severe orofacial dyskinesia was controlled. We observed the effects of the BoNT-A injections and a tapering off of the effects of vecuronium 10 days after the treatment. The movement disorder had improved significantly 4 weeks after the first administration of rituximab. The injection of BoNT-A into the masseter may be an effective treatment for medically refractory orofacial dyskinesia in pediatric patients with anti-NMDAR encephalitis. We propose that the use of BoNT-A injections should be considered early to avoid self-inflicted oral injury due to severe refractory orofacial dyskinesia in patients with anti-NMDAR encephalitis.

  12. Competitive and noncompetitive antagonists at N-methyl-D-aspartate receptors protect against methamphetamine-induced dopaminergic damage in mice.

    Science.gov (United States)

    Sonsalla, P K; Riordan, D E; Heikkila, R E

    1991-02-01

    The administration of methamphetamine (METH) to experimental animals results in damage to nigrostriatal dopaminergic neurons. We have demonstrated previously that the excitatory amino acids may be involved in this neurotoxicity. For example, several compounds which bind to the phenyclidine site within the ion channel linked to the N-methyl-D-aspartate (NMDA) receptor protected mice from the METH-induced loss of neostriatal tyrosine hydroxylase activity and dopamine content. The present study was conducted to characterize further the role of the excitatory amino acids in mediating the neurotoxic effects of METH. The administration of three or four injections of METH (10 mg/kg) every 2 hr to mice produced large decrements in neostriatal dopamine content (80-84%) and in tyrosine hydroxylase activity (65-74%). A dose-dependent protection against these METH-induced decreases was seen with two noncompetitive NMDA antagonists, ifenprodil and SL 82.0715 (25-50 mg/kg/injection), both of which are thought to bind to a polyamine or sigma site associated with the NMDA receptor complex, and with two competitive NMDA antagonists, CGS 19755 (25-50 mg/kg/injection) and NPC 12626 (150-300 mg/kg/injection). Moreover, an intrastriatal infusion of NMDA (0.1 mumol) produced a slight but significant loss of neostriatal dopamine which was potentiated in mice that also received a systemic injection of METH. The results of these studies strengthen the hypothesis that the excitatory amino acids play a critical role in the nigrostriatal dopaminergic damage induced by METH.

  13. Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review

    Directory of Open Access Journals (Sweden)

    Júlia Niehues da Cruz

    2017-04-01

    Full Text Available ABSTRACT Membrane/lipid rafts (MLRs are plasmalemmal microdomains that are essential for neuronal signaling and synaptic development/stabilization. Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (statins can disable the N-methyl-D-aspartate (NMDA receptor through disruption of MLRs and, in turn, decrease NMDA-mediated anxiety. This hypothesis will contribute to understanding the critical roles of simvastatin in treating anxiety via the NMDA receptor.

  14. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  15. Hippocampal N-methyl-d-aspartate and kainate binding in response to entorhinal cortex aspiration or 192 IgG-saporin lesions of the basal forebrain

    International Nuclear Information System (INIS)

    Gallagher, M.; Gill, T.M.; Shivers, A.; Nicolle, M.M.

    1997-01-01

    Lesion models in the rat were used to examine the effects of removing innervation of the hippocampal formation on glutamate receptor binding in that system. Bilateral aspiration of the entorhinal cortex was used to remove the cortical innervation of the hippocampal formation and the dentate gyrus. The subcortical input to the hippocampus from cholinergic neurons of the basal forebrain was lesioned by microinjection of the immunotoxin 192 IgG-saporin into the medial septum and vertical limb of diagonal band. After a 30-day postlesion survival, the effects of these lesions on N-methyl-d-aspartate-displaceable [ 3 H]glutamate and [ 3 H]kainate binding in the hippocampus were quantified using in vitro autoradiography. The bilateral entorhinal lesion induced a sprouting response in the dentate gyrus, measured by an increase in the width of [ 3 H]kainate binding. It also induced an increase in the density of [ 3 H]kainate binding in CA3 stratum lucidum and an increase in N-methyl-d-aspartate binding throughout the hippocampus proper and the dentate gyrus. The selective lesion of cholinergic septal input did not have any effect on hippocampal [ 3 H]kainate binding and induced only a moderate decrease in N-methyl-d-aspartate binding that was not statistically reliable.The entorhinal and cholinergic lesions were used as in vivo models of the degeneration of hippocampal input that occurs in normal aging and Alzheimer's disease. The results from the present lesion study suggest that some, but not all, of the effects on hippocampal [ 3 H]kainate and N-methyl-d-aspartate binding induced by the lesions are consistent with the status of binding to these receptors in aging and Alzheimer's disease. Consistent with the effects of aging and Alzheimer's disease is an altered topography of [ 3 H]kainate binding after entorhinal cortex lesion and a modest decline in N-methyl-d-aspartate binding after lesions of the cholinergic septal input to the hippocampus. (Copyright (c) 1997

  16. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  17. Anti-N-methyl-D-aspartate receptor(NMDAR) antibody encephalitis presents in atypical types and coexists with neuromyelitis optica spectrum disorder or neurosyphilis.

    Science.gov (United States)

    Qin, Kaiyu; Wu, Wenqing; Huang, Yuming; Xu, Dongmei; Zhang, Lei; Zheng, Bowen; Jiang, Meijuan; Kou, Cheng; Gao, Junhua; Li, Wurong; Zhang, Jinglin; Wang, Sumei; Luan, Yanfei; Yan, Chaoling; Xu, Dan; Zheng, Xinmei

    2017-01-05

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a clinically heterogeneous disorder characterized by epileptic seizures, psychosis, dyskinesia, consciousness impairments, and autonomic instability. Symptoms are always various. Sometimes it presents in milder or incomplete forms. We report 4 cases of anti-NMDAR encephalitis with incomplete forms, 3 cases of which were accompanied by neuromyelitis optica spectrum disorder or neurosyphilis respectively. A 33-year-old man presented with dysarthria, movement disorder and occasional seizures. He had 6 relapses in 28 years. When suffered from upper respiratory tract syndrome, he developed behavioral and consciousness impairment. Cranial MRI was normal. Viral PCR studies and oncologic work-up were negative. Anti-NMDAR antibody was detected in CSF and serum. A 21-year-old female manifested dizziness and diplopia ten months and six months before, respectively. Both responded to steroid therapy and improved completely. This time she presented with progressive left limb and facial anesthesia, walking and holding unsteadily. Spinal cord MRI follow-up showed abnormality of medulla oblongata and cervical cord(C1). Anti-AQP4 and anti-NMDAR were positive in CSF. Steroid-pulse therapy ameliorated her symptoms. A 37-year-old male experienced worsening vision. He was confirmed neurosyphilis since the CSF tests for syphilis were positive. Protein was elevated and the oligoclonal IgG bands(OB) and anti-NMDAR was positive in CSF. Anti-aquaporin 4(AQP4) antibodies and NMO-IgG were negative. Cranial MRI showed high FLAIR signal on frontal lobe and low T2 signal adjacent to the right cornu posterious ventriculi lateralis. Treatment for neurosyphlis was commenced with gradual improvement. A 39-year-old male, developed serious behavioral and psychiatric symptoms. Examination showed abnormal pupils and unsteady gait. He was confirmed neurosyphilis according to the CSF tests for syphilis. Anti-NMDAR was positive in CSF and serum

  18. Pharmacological characterization of LY233053: A structurally novel tetrazole-substituted competitive N-methyl-D-aspartic acid antagonist with a short duration of action

    International Nuclear Information System (INIS)

    Schoepp, D.D.; Ornstein, P.L.; Leander, J.D.; Lodge, D.; Salhoff, C.R.; Zeman, S.; Zimmerman, D.M.

    1990-01-01

    This study reports the activity of a structurally novel excitatory amino acid receptor antagonist, LY233053 [cis-(+-)-4-[(2H-tetrazol-5-yl)methyl]piperidine-2-carboxylic acid], the first tetrazole-containing competitive N-methyl-D-aspartic acid (NMDA) antagonist. LY233053 potently inhibited NMDA receptor binding to rat brain membranes as shown by the in vitro displacement of [3H] CGS19755 (IC50 = 107 +/- 7 nM). No appreciable affinity in [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) or [3H]kainate binding assays was observed (IC50 values greater than 10,000 nM). In vitro NMDA receptor antagonist activity was further demonstrated by selective inhibition of NMDA-induced depolarization in cortical wedges (IC50 = 4.2 +/- 0.4 microM vs. 40 microM NMDA). LY233053 was effective after in vivo systemic administration in a number of animal models. In neonatal rats, LY233053 selectively blocked NMDA-induced convulsions (ED50 = 14.5 mg/kg i.p.) with a relatively short duration of action (2-4 hr). In pigeons, LY233053 potently antagonized (ED50 = 1.3 mg/kg i.m.) the behavioral suppressant effects of 10 mg/kg of NMDA. However, a dose of 160 mg/kg, i.m., was required to produce phencyclidine-like catalepsy in pigeons. In mice, LY233053 protected against maximal electroshock-induced seizures at lower doses (ED50 = 19.9 mg/kg i.p.) than those that impaired horizontal screen performance (ED50 = 40.9 mg/kg i.p.). Cholinergic and GABAergic neuronal degenerations after striatal infusion of NMDA were prevented by single or multiple i.p. doses of LY233053. In summary, the antagonist activity of LY233053 after systemic administration demonstrates potential therapeutic value in conditions of neuronal cell loss due to NMDA receptor excitotoxicity

  19. Small Interfering RNA Specific for N-Methyl-D-Aspartate Receptor 2B Offers Neuroprotection to Dopamine Neurons through Activation of MAP Kinase

    Directory of Open Access Journals (Sweden)

    Olivia T.W. Ng

    2012-02-01

    Full Text Available In the present study, N-methyl-D-aspartate receptor 2B (NR2B-specific siRNA was applied in parkinsonian models. Our previous results showed that reduction in expression of N-methyl-D-aspartate receptor 1 (NR1, the key subunit of N-methyl-D-aspartate receptors, by antisense oligos amelio-rated the motor symptoms in the 6-hydroxydopamine (6-OHDA-lesioned rat, an animal model of Parkinson's disease (PD [Lai et al.: Neurochem Int 2004;45:11-22]. To further the investigation on the efficacy of gene silencing, small interference RNA (siRNA specific for the NR2B subunit was designed and administered in the striatum of 6-OHDA-lesioned rats. The present results show that administration of NR2B-specific siRNA decreased the number of apomorphine-induced rotations in the lesioned rats and that there was a significant reduction in NR2B proteins levels after NR2B-specific siRNA administration. Furthermore, attenuation of the loss of dopaminergic neurons was found in both the striatal and substantia nigra regions of the 6-OHDA-lesioned rats that had been continuously infused with siRNA for 7 days. In addition, a significant upregulation of p-p44/42 MAPK (ERK1/2; Thr202/Tyr204 and p-CREB (Ser133 in striatal neurons was found. These results suggest that application of the gene silencing targeting NR2B could be a potential treatment of PD, and they also revealed the possibility of NR2B-specific siRNA being involved in the prosurvival pathway.

  20. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Mullasseril, Praseeda; Dawit, Sara

    2010-01-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe...... a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal...

  1. Relationship between structure, conformational flexibility, and biological activity of agonists and antagonists at the N-methyl-D-aspartic acid subtype of excitatory amino acid receptors

    DEFF Research Database (Denmark)

    Madsen, U; Brehm, L; Schaumburg, Kjeld

    1990-01-01

    The relationship between conformational flexibility and agonist or antagonist actions at the N-Methyl-D-aspartic acid (NMDA) subtype of central L-glutamic acid (GLU) receptors of a series of racemic piperidinedicarboxylic acids (PDAs) was studied. The conformational analyses were based on 1H NMR...... receptors. Each of the three cyclic acidic amino acids showing NMDA agonist activities was found to exist as an equilibrium mixture of two conformers in aqueous solution. In contrast, the NMDA antagonists cis-2,3-PDA and cis-2,4-PDA as well as the inactive compounds trans-2,5-PDA and cis-2,6-PDA were shown...

  2. Identification of AICP as a GluN2C-Selective N-Methyl-d-Aspartate Receptor Superagonist at the GluN1 Glycine Site

    DEFF Research Database (Denmark)

    Jessen, Maja; Frederiksen, Kristen; Yi, Feng

    2017-01-01

    N-methyl-d-aspartate (NMDA)-type ionotropic glutamate receptors mediate excitatory neurotransmission in the central nervous system and are critically involved in brain function. NMDA receptors are also implicated in psychiatric and neurological disorders and have received considerable attention....../2A-D), in which DCS is a superagonist at GluN2C-containing receptors compared with glycine and a partial agonist at GluN2B-containing receptors. Here, we identify (R)-2-amino-3-(4-(2-ethylphenyl)-1H-indole-2-carboxamido)propanoic acid (AICP) as a glycine site agonist with unique GluN2-dependent...

  3. Extrasynaptic N-methyl-D-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation.

    Science.gov (United States)

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-10-21

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-D-aspartate receptors and suggest regulation of CDKL5 by cell death pathways.

  4. Extrasynaptic N-Methyl-d-aspartate (NMDA) Receptor Stimulation Induces Cytoplasmic Translocation of the CDKL5 Kinase and Its Proteasomal Degradation*

    Science.gov (United States)

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-01-01

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-d-aspartate receptors and suggest regulation of CDKL5 by cell death pathways. PMID:21832092

  5. Fulminant course in a patient with anti-N-methyl-D-aspartate receptor encephalitis with bilateral ovarian teratomas: A case report and literature review.

    Science.gov (United States)

    Lee, Kuo-Wei; Liou, Li-Min; Wu, Meng-Ni

    2018-04-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is an autoimmune disorder that can be controlled and reversed by immunotherapy. The presentation of NMDA receptor encephalitis varies, but NMDA receptor encephalitis is seldom reported in patients with both bilateral teratomas and preexisting brain injury. A 28-year-old female with a history of traumatic intracranial hemorrhage presented acute psychosis, seizure, involuntary movement, and conscious disturbance with a fulminant course. Anti-NMDA receptor antibody was identified in both serum and cerebrospinal fluid, confirming the diagnosis of anti-NMDA receptor encephalitis. Bilateral teratomas were also identified during tumor survey. DIAGNOSES:: anti-N-methyl-D-aspartate receptor encephalitis. Tumor resection and immunotherapy were performed early during the course. The patient responded well to tumor resection and immunotherapy. Compared with other reports in the literature, her symptoms rapidly improved without further relapse. This case report demonstrates that bilateral teratomas may be related to high anybody titers and that the preexisting head injury may be responsible for lowering the threshold of neurological deficits. Early diagnosis and therapy are crucial for a good prognosis in such patients.

  6. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography.

    Science.gov (United States)

    Wegner, Florian; Wilke, Florian; Raab, Peter; Tayeb, Said Ben; Boeck, Anna-Lena; Haense, Cathleen; Trebst, Corinna; Voss, Elke; Schrader, Christoph; Logemann, Frank; Ahrens, Jörg; Leffler, Andreas; Rodriguez-Raecke, Rea; Dengler, Reinhard; Geworski, Lilli; Bengel, Frank M; Berding, Georg; Stangel, Martin; Nabavi, Elham

    2014-06-20

    Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis.

  7. Synthesis and characterization of a series of diarylguanidines that are noncompetitive N-methyl-D-aspartate receptor antagonists with neuroprotective properties

    International Nuclear Information System (INIS)

    Keana, J.F.W.; McBurney, R.N.; Scherz, M.W.

    1989-01-01

    Four diarylguanidine derivatives were synthesized. These compounds were found to displace, at submicromolar concentrations, 3 H-labeled 1-[1-(2-thienyl)cyclohexyl]piperidine and (+)-[ 3 H]MK-801 from phencyclidine receptors in brain membrane preparations. In electrophysiological experiments the diarylguanidines blocked N-methyl-D-aspartate (NMDA)-activated ion channels. These dairylguanidines also protected rat hippocampal neurons in vitro from glutamate-induced cell death. The results show that some diarylguanidines are noncompetitive antagonists of NMDA receptor-mediated responses and have the neuroprotective property that is commonly associated with blockers of the NMDA receptor-gated cation channel. Diarylguanidines are structurally unrelated to known blockers of NMDA channels and, therefore, represent a new compound series for the development of neuroprotective agents with therapeutic value in patients suffering from stroke, from brain or spinal cord trauma, from hypoglycemia, and possibly from brain ischemia due to heart attack

  8. The relaxing effect of perivascular tissue on porcine retinal arterioles in vitro is mimicked by N-methyl-D-aspartate and is blocked by prostaglandin synthesis inhibition

    DEFF Research Database (Denmark)

    Jensen, Kim Holmgaard; Aalkjær, Christian; Lambert, John D. C.

    2008-01-01

    . However, previous in vitro studies of the influence of perivascular retinal tissue on retinal tone regulation have been hampered by the release of an endogenous relaxing factor that renders the arteriole insensitive to vasoconstrictors. The purpose of the present study was to test whether N-methyl-D-aspartate...... (NMDA) and gamma-amino butyric acid (GABA) receptors, and a cyclooxygenase (COX) product influence this effect of perivascular retinal tissue in vitro. METHODS: Porcine retinal arterioles were mounted in a wire myograph for isometric force measurements. The contractile effect of the prostaglandin...... analogue U46619 was studied on vessels with preserved perivascular retinal tissue and after this tissue had been removed. The influence of the perivascular tissue was studied after addition of NMDA (a specific agonist for a subtype of the glutamate receptor), DL-amino-5-phosphonovaleric acid (DL...

  9. Synthesis and characterization of a radiolabeled derivative of the phencyclidine/N-methyl-D-aspartate receptor ligand (+)MK-801 with high specific radioactivity

    International Nuclear Information System (INIS)

    Keana, J.F.W.; Scherz, M.W.; Quarum, M.; Sonders, M.S.; Weber, E.

    1988-01-01

    A [ 3 H]-labelled derivative of the drug (+)MK-801 with a high specific radioactivity was synthesized by first preparing a tribromo derivative of (+)MK-801 followed by catalytic reduction in the presence of [ 3 H]-gas and subsequent purification of the radioactive product by reversed-phase high performance liquid chromatography (RP-HPLC). This resulted in pure (+) [ 3 H]MK-801 with a specific radioactivity of 97 Ci/mmol. The (+) [ 3 H]MK-801 was shown to interact with high affinity and selectivity with the phencyclidine (PCP) receptor in guinea pig brain membrane suspensions. The PCP receptor is associated with a cation channel that is chemically gated by glutamate and N-methyl-D-aspartate (NMDA). Drugs that interact with the PCP receptor block this channel. The (+) [ 3 H]MK-801 described here will be useful to investigate the biochemistry of PCP/NMDA receptors in experiments where a high specific radioactivity is essential

  10. Anti-N-methyl-D-aspartate receptor encephalitis after Herpes simplex virus-associated encephalitis: an emerging disease with diagnosis and therapeutic challenges.

    Science.gov (United States)

    Schein, Flora; Gagneux-Brunon, Amandine; Antoine, Jean-Christophe; Lavernhe, Sylvie; Pillet, Sylvie; Paul, Stéphane; Frésard, Anne; Boutet, Claire; Grange, Rémi; Cazorla, Céline; Lucht, Frédéric; Botelho-Nevers, Elisabeth

    2017-08-01

    Morbidity and mortality of Herpes simplex virus encephalitis (HSE) remain high. Relapses of neurological signs may occur after initial clinical improvement under acyclovir treatment. We report here a case of post-HSE anti-N-methyl-d-aspartate receptor-mediated encephalitis in an adult and perform a systematic search on PubMed to identify other cases in adults. We identified 11 previously published cases, to discuss diagnostic and therapeutic management. Symptoms in adults are often inappropriate behaviors, confusion and agitation. Diagnosis of anti-NMDA-R encephalitis after HSE is often delayed. Treatment consists in steroids, plasma exchange, and rituximab. Prognosis is often favorable. Anti-NMDA-R antibodies should be searched in cerebrospinal fluid of patients with unexpected evolution of HSE. This emerging entity reopens the hot debate about steroids in HSE.

  11. Mnemonic Discrimination Deficits in First-Episode Psychosis and a Ketamine Model Suggests Dentate Gyrus Pathology Linked to N-Methyl-D-Aspartate Receptor Hypofunction.

    Science.gov (United States)

    Kraguljac, Nina Vanessa; Carle, Matthew; Frölich, Michael A; Tran, Steve; Yassa, Michael A; White, David Matthew; Reddy, Abhishek; Lahti, Adrienne Carol

    2018-03-01

    Converging evidence from neuroimaging and postmortem studies suggests that hippocampal subfields are differentially affected in schizophrenia. Recent studies report dentate gyrus dysfunction in chronic schizophrenia, but the underlying mechanisms remain to be elucidated. Here we sought to examine if this deficit is already present in first-episode psychosis, and if N-methyl-D-aspartate receptor hypofunction, a putative central pathophysiological mechanism in schizophrenia, experimentally induced by ketamine, would result in a similar abnormality. We applied a mnemonic discrimination task selectively taxing pattern separation in two experiments: 1) a group of 23 first-episode psychosis patients and 23 matched healthy volunteers and 2) a group of 19 healthy volunteers before and during a ketamine challenge (0.27 mg/kg over 10 minutes, then 0.25 mg/kg/hour for 50 minutes, 0.01 mL/s). We calculated response bias-corrected pattern separation and recognition scores. We also examined the relationships between task performance and symptom severity as well as ketamine levels. We report a deficit in pattern separation but not recognition performance in first-episode psychosis patients compared with healthy volunteers (p = .04) and in volunteers during the ketamine challenge compared with baseline (p = .003). Exploratory analyses revealed no correlation between task performance and Repeatable Battery for the Assessment of Neuropsychological Status total scores or positive symptoms in first-episode psychosis patients, or with ketamine serum levels. We observed a mnemonic discrimination deficit but intact recognition in both datasets. Our findings suggest a tentative mechanistic link between dentate gyrus dysfunction in first-episode psychosis and N-methyl-D-aspartate receptor hypofunction. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Binding of the ligand [3H]MK-801 to the MK-801 binding site of the N-methyl-D-aspartate receptor during experimental encephalopathy from acute liver failure and from acute hyperammonemia in the rabbit

    NARCIS (Netherlands)

    R.J. de Knegt (Robert); J. Kornhuber (Johannes); S.W. Schalm (Solko); K. Rusche (K.); P.F. Riederer (Peter); J. Tan (J.)

    1993-01-01

    textabstractBinding of the ligand [3H]MK-801 to the MK-801 binding site of the N-methyl-D-aspartate (NMDA) receptor population on brain homogenates in rabbits was studied during experimental encephalopathy from acute liver failure and from acute hyperammonemia in the rabbit. Homogenates were

  13. Cholinergic cells in the nucleus basalis of mice express the N-methyl-D-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels

    NARCIS (Netherlands)

    De Souza Silva, M. A.; Dolga, Amalia; Pieri, I.; Marchetti, L.; Eisel, U. L. M.; Huston, J. P.; Dere, E.

    2006-01-01

    It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-D-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the

  14. N-methyl-d-aspartate receptors, learning and memory: chronic intraventricular infusion of the NMDA receptor antagonist d-AP5 interacts directly with the neural mechanisms of spatial learning.

    Science.gov (United States)

    Morris, R G M; Steele, R J; Bell, J E; Martin, S J

    2013-03-01

    Three experiments were conducted to contrast the hypothesis that hippocampal N-methyl-d-aspartate (NMDA) receptors participate directly in the mechanisms of hippocampus-dependent learning with an alternative view that apparent impairments of learning induced by NMDA receptor antagonists arise because of drug-induced neuropathological and/or sensorimotor disturbances. In experiment 1, rats given a chronic i.c.v. infusion of d-AP5 (30 mm) at 0.5 μL/h were selectively impaired, relative to aCSF-infused animals, in place but not cued navigation learning when they were trained during the 14-day drug infusion period, but were unimpaired on both tasks if trained 11 days after the minipumps were exhausted. d-AP5 caused sensorimotor disturbances in the spatial task, but these gradually worsened as the animals failed to learn. Histological assessment of potential neuropathological changes revealed no abnormalities in d-AP5-treated rats whether killed during or after chronic drug infusion. In experiment 2, a deficit in spatial learning was also apparent in d-AP5-treated rats trained on a spatial reference memory task involving two identical but visible platforms, a task chosen and shown to minimise sensorimotor disturbances. HPLC was used to identify the presence of d-AP5 in selected brain areas. In Experiment 3, rats treated with d-AP5 showed a delay-dependent deficit in spatial memory in the delayed matching-to-place protocol for the water maze. These data are discussed with respect to the learning mechanism and sensorimotor accounts of the impact of NMDA receptor antagonists on brain function. We argue that NMDA receptor mechanisms participate directly in spatial learning. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. The effects of N-methyl D-aspartate and B-adrenergic receptor antagonists on the reconsolidation of reward memory: a meta-analysis.

    Science.gov (United States)

    Das, Ravi K; Freeman, Tom P; Kamboj, Sunjeev K

    2013-03-01

    Pharmacological memory reconsolidation blockade provides a potential mechanism for ameliorating the maladaptive reward memories underlying relapse in addiction. Two of the most promising classes of drug that interfere with reconsolidation and have translational potential for human use are N-methyl-D-aspartate receptor (NMDAR) and B-Adrenergic receptor (B-AR) antagonists. We used meta-analysis and meta-regression to assess the effects of these drugs on the reconsolidation of reward memory in preclinical models of addiction. Pharmacokinetic, mnemonic and methodological factors were assessed for their moderating impact on effect sizes. An analysis of 52 independent effect sizes (NMDAR=30, B-AR=22) found robust effects of both classes of drug on memory reconsolidation, but a far greater overall effect of NMDAR antagonism than B-AR antagonism. Significant moderating effects of drug dose, relapse process and primary reinforcer were found. The findings suggest that reward memory reconsolidation can be robustly targeted by NMDAR antagonists and to a lesser extent, by B-AR antagonists. Implications for future clinical work are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Ostadhadi, Sattar; Amiri, Shayan; Haj-Mirzaian, Arvin; Dehpour, AhmadReza

    2016-06-01

    Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.

  17. Changes in cortical N-methyl-D-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide.

    Science.gov (United States)

    Dean, Brian; Gibbons, Andrew S; Boer, Simone; Uezato, Akihito; Meador-Woodruff, James; Scarr, Elizabeth; McCullumsmith, Robert E

    2016-03-01

    In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p disorders, levels of GRIN2D mRNA were higher in frontal pole (+22%, p suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p disorders and suicide completion and may contribute to different responses to ketamine. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  18. Role of Autoantibodies to N-Methyl-d-Aspartate (NMDA) Receptor in Relapsing Herpes Simplex Encephalitis: A Retrospective, One-Center Experience.

    Science.gov (United States)

    Sutcu, Murat; Akturk, Hacer; Somer, Ayper; Tatli, Burak; Torun, Selda Hancerli; Yıldız, Edibe Pembegul; Şık, Guntulu; Citak, Agop; Agacfidan, Ali; Salman, Nuran

    2016-03-01

    Post-herpes simplex virus encephalitis relapses have been recently associated with autoimmunity driven by autoantibodies against N-methyl-d-aspartate (NMDA) receptors. Because it offers different treatment options, determination of this condition is important. Between 2011 and 2014, 7 children with proven diagnosis of herpes simplex virus encephalitis were identified in a university hospital of Istanbul. Two patients had neurologic relapse characterized mainly by movement disorders 2 to 3 weeks after initial encephalitis. The first patient received a second 14 days of acyclovir treatment together with antiepileptic drugs and left with severe neurologic sequelae. The second patient was found to be NMDA receptors antibody positive in the cerebrospinal fluid. She was treated with intravenous immunoglobulin and prednisolone. She showed substantial improvement, gradually regaining lost neurologic abilities. Post-herpes simplex virus encephalitis relapses may frequently be immune-mediated rather than a viral reactivation, particularly in children displaying movement disorders like choreoathetosis. Immunotherapy may provide benefit for this potentially devastating condition, like the case described in this report. © The Author(s) 2015.

  19. Anti-N-methyl-d-aspartate receptor encephalitis in children of Central South China: Clinical features, treatment, influencing factors, and outcomes.

    Science.gov (United States)

    Wang, Ying; Zhang, Weixi; Yin, Jinghua; Lu, Qianjin; Yin, Fei; He, Fang; Peng, Jing

    2017-11-15

    We analyzed the clinical manifestations of children with anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis in Central South China and the factors influencing the effectiveness of treatment. A retrospective study of children (0-14years old) with anti-NMDAR encephalitis in Central South China was carried out from March 2014 to November 2016. Demographics, clinical features, treatment, outcome, and the factors influencing the effectiveness of treatment were reviewed. Fifty-one patients with anti-NMDAR encephalitis were enrolled (age from 4months to 14years old; median age, 8years; 30 females). Forty-five patients (88%) presented with psychiatric symptoms, 40 (78%) with dyskinesia and movement disorders, 39 (77%) with sleep disturbances, 34 (67%) with seizures, 30 (59%) with a decreased level of consciousness (Glasgow scoreanti-NMDAR encephalitis in Central South China. Patients with decreased consciousness, PICU stay and autonomic instability were more likely to have no or limited response to first-line immunotherapy and to require second-line or even more aggressive immunotherapy. Children with anti-NMDAR encephalitis in China have a much lower incidence of tumors, lower mortality rates, and a lower proportion of lethal autonomic instability than adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    Science.gov (United States)

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats. © The Author(s) 2015.

  1. Case report of anti-N-methyl-D-aspartate receptor encephalitis in a middle-aged woman with a long history of major depressive disorder.

    Science.gov (United States)

    Rong, Xia; Xiong, Zhenzhen; Cao, Bingrong; Chen, Juan; Li, Mingli; Li, Zhe

    2017-08-31

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune disease involving antibodies against the NR1 subunits of NMDARs. The disease shows variable clinical presentation, and involves new-onset acute psychotic symptoms, making it difficult to differentiate from major depressive disorder with psychotic symptoms. Potential associations between this autoimmune disorder and onset or progression of major depressive disorder remains unclear. We present a rare case of a patient who had both major depressive disorder and anti-NMDAR encephalitis and in whom the encephalitis initially went undetected. The patient had been suffering from depressive disorder for more than 6 years without any treatment, when she was hospitalized for new-onset psychotic symptoms. She was initially diagnosed only with major depressive disorder with psychotic symptoms, but antipsychotics did not alleviate symptoms and the patient's psychiatric course began to fluctuate rapidly. Anti-NR1 IgG autoantibodies were detected in cerebrospinal fluid, and the combination of immunotherapy and antipsychotics proved more effective than antipsychotics alone. The patient was then also diagnosed with anti-NMDAR encephalitis. Our case suggests that clinicians should consider anti-NMDAR encephalitis when a patient with depressive disorder shows sudden fluctuations in psychiatric symptoms. It also highlights the need for research into possible relationships between anti-NMDAR encephalitis and major depressive disorder.

  2. Spinal Tolerance and Dependence: Some Observations on the Role of Spinal N-Methyl-D-Aspartate Receptors and Phosphorylation in the Loss of Opioid Analgesic Responses

    Directory of Open Access Journals (Sweden)

    Tony L Yaksh

    2000-01-01

    Full Text Available The continuous delivery of opiates can lead to a reduction in analgesic effects. In humans, as in other animals, some component of this change in sensitivity seems likely to have a strong pharmacodynamic component. Such loss of effect, deemed to be tolerance in the present article, can be readily demonstrated in animals with repeated bolus and continuous intrathecal infusion of mu and delta opioids and alpha-2 adrenergic agonists. Research has shown that this loss of effect can be diminished by concurrent treatment with N-methyl-D-aspartate (NMDA receptor antagonists and by the suppression of the activity of spinal protein kinase C (PKC. This suggests in part the probable role of PKC-mediated phosphorylation in the right shift in the dose-effect curves observed with continuous opiate or adrenergic exposure. Importantly, this right shift is seen to occur in parallel with an increase in the phosphorylating activity in the dorsal horn and in the expression of several PKC isozymes. The target of this phosphorylation is not certain. Phosphorylation of the NMDA receptor enhances its functionality, while phosphorylation of the opioid receptor or associated channels seems to diminish their activity or to enhance internalization. While the focus is on several specific components, the accumulating data emphasize the biological complexity of these changes in spinal drug reactivity.

  3. Roles of N-methyl-d-aspartate receptors during the sensory stimulation-evoked field potential responses in mouse cerebellar cortical molecular layer.

    Science.gov (United States)

    Xu, Yin-Hua; Zhang, Guang-Jian; Zhao, Jing-Tong; Chu, Chun-Ping; Li, Yu-Zi; Qiu, De-Lai

    2017-11-01

    The functions of N-methyl-d-aspartate receptors (NMDARs) in cerebellar cortex have been widely studied under in vitro condition, but their roles during the sensory stimulation-evoked responses in the cerebellar cortical molecular layer in living animals are currently unclear. We here investigated the roles of NMDARs during the air-puff stimulation on ipsilateral whisker pad-evoked field potential responses in cerebellar cortical molecular layer in urethane-anesthetized mice by electrophysiological recording and pharmacological methods. Our results showed that cerebellar surface administration of NMDA induced a dose-dependent decrease in amplitude of the facial stimulation-evoked inhibitory responses (P1) in the molecular layer, accompanied with decreases in decay time, half-width and area under curve (AUC) of P1. The IC 50 of NMDA induced inhibition in amplitude of P1 was 46.5μM. In addition, application of NMDA induced significant increases in the decay time, half-width and AUC values of the facial stimulation-evoked excitatory responses (N1) in the molecular layer. Application of an NMDAR blocker, D-APV (250μM) abolished the facial stimulation-evoked P1 in the molecular layer. These results suggested that NMDARs play a critical role during the sensory information processing in cerebellar cortical molecular layer in vivo in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A novel photoaffinity ligand for the phencyclidine site of the N-methyl-D-aspartate receptor labels a Mr 120,000 polypeptide

    International Nuclear Information System (INIS)

    Sonders, M.S.; Barmettler, P.; Lee, J.A.; Kitahara, Y.; Keana, J.F.; Weber, E.

    1990-01-01

    A radiolabeled photoaffinity ligand has been developed for the N-methyl-D-aspartate (NMDA)-preferring excitatory amino acid receptor complex. [3H]3-Azido-(5S, 10R)(+)-5-methyl-10,11-dihydro-5H- dibenzo[a,d]cyclohepten-5,10-imine [3H]3-azido-MK-801 demonstrated nearly identical affinity, density of binding sites, selectivity, pH sensitivity, and pharmacological profile in reversible binding assays with guinea pig brain homogenates to those displayed by its parent compound, MK-801. When employed in a photo-labeling protocol designed to optimize specific incorporation, [3H]3-azido-MK-801 labeled a single protein band which migrated in sodium dodecyl sulfate-polyacrylamide gels with Mr = 120,000. Incorporation of tritium into this band was completely inhibited when homogenates and [3H]3-azido-MK-801 were coincubated with 10 microM phencyclidine. These data suggest that the phencyclidine site of the NMDA receptor complex is at least in part comprised of a Mr = 120,000 polypeptide

  5. Effects of the noncompetitive N-methyl-d-aspartate receptor antagonists ketamine and MK-801 on pain-stimulated and pain-depressed behaviour in rats.

    Science.gov (United States)

    Hillhouse, T M; Negus, S S

    2016-09-01

    Pain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N-methyl-d-aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing. This study compared effects of the NMDA receptor antagonists ketamine and MK-801 in assays of pain-stimulated and pain-depressed behaviour in rats. The nonsteroidal anti-inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self-stimulation (ICSS) in male Sprague-Dawley rats. Ketamine (1.0-10.0 mg/kg) blocked acid-stimulated stretching but failed to block acid-induced depression of ICSS, whereas MK-801 (0.01-0.1 mg/kg) blocked both acid-stimulated stretching and acid-induced depression of ICSS. These doses of ketamine and MK-801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK-801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid-induced stimulation of stretching and depression of ICSS without altering control ICSS. These results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain-depressed behaviours. NMDA receptor antagonists produce dissociable effects on pain-depressed behaviour. Provides evidence that pain-depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists. © 2016 European Pain Federation - EFIC®

  6. Evidence for a causative role of N-methyl-D-aspartate receptors in an in vitro model of alcohol withdrawal hyperexcitability.

    Science.gov (United States)

    Thomas, M P; Monaghan, D T; Morrisett, R A

    1998-10-01

    Synaptic mechanisms underlying hyperexcitability due to withdrawal from chronic ethanol exposure were investigated in a hippocampal explant model system using electrophysiological techniques. Whole-cell voltage clamp recordings from CA1 pyramidal cells demonstrated that acute ethanol exposure inhibited N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents by over 40%. Chronic ethanol exposure for 6 to 11 days at 35 or 75 mM induced no differences from control explants in the fast component of the population synaptic response (non-NMDAR-mediated). Prolonged field potential recordings (to 10 hr) were used to monitor the withdrawal process in vitro. Ethanol-exposed explants from both 35 and 75 mM groups displayed an increase (60% and 89%, respectively) in the NMDAR-mediated component of synaptic transmission on withdrawal from chronic exposure. Prolonged tonic-clonic electrographic seizure activity was consistently observed after ethanol withdrawal only after the increase in NMDAR function. This hyperexcitability was inhibited by the NMDAR antagonist D-2-amino-5-phosphonovaleric acid and returned once the NMDAR component was reestablished after antagonist washout. In situ hybridization studies suggest that expression of NR2B subunit mRNA may be enhanced in explants after chronic ethanol exposure. No lasting differences were observed in the NMDAR component after acute in vitro ethanol exposure and withdrawal. These data suggest that the occurance of ethanol withdrawal hyperexcitability in this system may be directly dependent on alterations in NMDAR function after chronic exposure. Since this region and others that contain ethanol sensitive NMDARs may serve as epileptic foci, long term alterations in NMDAR function may be expected to generate paroxysmal depolarizing shifts underlying ictal events after withdrawal from ethanol exposure.

  7. Induced expression of hepatic N-methyl-D-aspartate receptor 2C subunit gene during liver enlargement induced by lead nitrate, a hepatocellular mitogen.

    Science.gov (United States)

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Hikida, Tokihiro; Kojima, Misaki; Degawa, Masakuni

    2013-02-01

    We previously demonstrated the super-induced expression of the Grin2c gene encoding the N-methyl-D-aspartate receptor 2C subunit during the development of liver enlargement with hepatocellular hypertrophy induced by phenobarbital, clofibrate, or piperonyl butoxide. In the present study, we assessed whether or not Grin2c gene expression was induced during the development of chemically induced liver enlargement with hyperplasia. Male Sprague-Dawley (SD) rats, stroke-prone spontaneously hypertensive rats (SHRSPs), and SHRSP's normotensive control, Wistar-Kyoto (WKY) rats, were administered lead nitrate (LN) (0.1 mmol/kg, single i.v.), a direct inducer of liver hyperplasia, and changes in the level of Grin2c mRNA in the liver were assessed by real-time RT-PCR. The level of hepatic Grin2c mRNA was significantly higher 6-48 hr after the injection in SD rats (about 30~40- and 70-fold over the control at 6~24 hr and 48 hr, respectively) and in WKY rats (about 20-fold over the control only at 12 hr), but was not significantly higher in SHRSPs. Such differences in LN-induced levels of Grin2c mRNA among SD rats, WKY rats, and SHRSPs were closely correlated with those in the previously reported increase in liver weight 48 hr after LN administration. The present findings suggest that the increase in the level of hepatic Grin2c mRNA relates to development of chemically induced liver enlargement with hyperplasia.

  8. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium.

    Science.gov (United States)

    Wang, Hongbo; Wang, Xiaolong; Li, Yan; Yu, Hao; Wang, Changliang; Feng, Chunmei; Xu, Guohui; Chen, Jiajun; You, Jiabin; Wang, Pengfei; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2018-04-01

    It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.

  9. Sex differences in hippocampal estradiol-induced N-methyl-D-aspartic acid binding and ultrastructural localization of estrogen receptor-alpha.

    Science.gov (United States)

    Romeo, Russell D; McCarthy, J Brian; Wang, Athena; Milner, Teresa A; McEwen, Bruce S

    2005-01-01

    Estradiol increases dendritic spine density and synaptogenesis in the CA1 region of the female hippocampus. This effect is specific to females, as estradiol-treated males fail to show increases in hippocampal spine density. Estradiol-induced spinogenesis in the female is dependent upon upregulation of the N-methyl-D-aspartic acid (NMDA) receptor as well as on non-nuclear estrogen receptors (ER), including those found in dendrites. Thus, in the male, the inability of estradiol to induce spinogenesis may be related to a failure of estradiol to increase hippocampal NMDA receptors as well as a paucity of dendritic ER. In the first experiment, we sought to investigate this possibility by assessing NMDA receptor binding, using [(3)H]-glutamate autoradiography, in estradiol-treated males and females. We found that while estradiol increases NMDA binding in gonadectomized females, estradiol fails to modulate NMDA binding in gonadectomized males. To further investigate sex differences in the hippocampus, we conducted a second separate, but related, ultrastructural study in which we quantified ERalpha-immunoreactivity (ERalpha-ir) in neuronal profiles in the CA1 region of the hippocampus in intact males and females in diestrus and proestrus. Consistent with previous reports in the female, we found ERalpha-ir in several extranuclear sites including dendrites, spines, terminals and axons. Statistical analyses revealed that females in proestrus had a 114.3% increase in ERalpha-labeled dendritic spines compared to females in diestrus and intact males. Taken together, these studies suggest that both the ability of estrogen to increase NMDA binding in the hippocampus and the presence of ERalpha in dendritic spines may contribute to the observed sex difference in estradiol-induced hippocampal spinogenesis. Copyright (c) 2005 S. Karger AG, Basel.

  10. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme.

    Science.gov (United States)

    Leong, Max K; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-06

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r 2  = 0.928-0.988,  = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pK i values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r 2  = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q 2  = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  11. The Blockade of Glutamate N-methyl-D-aspartate Receptors into the Prelimbic of Prefrontal Cortex Decreases Morphine-induced Conditioned Place Preference in Rat

    Directory of Open Access Journals (Sweden)

    Samad Javadi

    2017-12-01

    Full Text Available BACKGROUND: The prelimbic area (PL of the prefrontal cortex is susceptible to abnormal developmental stimuli that raises the risk of addiction. Glutamate receptors play a key role in opiate reinforcement and reward functions in this area. Therefore, we examined the effect of the DL-2-amino-5-phosphonopentanoic acid (AP5, as N-methyl-D-aspartate (NMDA receptor antagonist into the PL on the phases of conditioned place preference (CPP induced by morphine. METHODS: Male Wistar rats were divided into 12 groups (3 surgical groups for each dose of morphine in any phase of CPP and anaesthetized with chloral hydrate. Cannula was implanted into the PL and the AP5 was injected into this area and morphine-induced CPP was investigated. Data were processed with the commercially available SPSS 22 software using one-way ANOVA and Tukey's test. p<0.05 were considered statistically significant. RESULTS: Our findings indicated, morphine in doses of 2.5 to 10 mg/kg induced CPP. Microinjection of various doses of the AP5 into the PL before the administration of the effective dose of morphine significantly reduced place preference in the acquisition and the expression phases of the CPP test compared to the sham group (p<0.001. In another set of our experiments was seen that, different doses of the AP5 with the ineffective dose of morphine only reduced the expression phase of the CPP (p<0.001 while, produced neither preference nor aversion effect on the acquisition phase (p=0.147. CONCLUSION: It seems that the glutamate NMDA receptors in the PL through memory formation and morphine-related reward signals play a critical role in addiction process during morphine-induced CPP. KEYWORDS: N-methyl-aspartate, morphine, glutamate receptor, prefrontal cortex, reward

  12. Modulation of the activity of N-methyl-D-aspartate receptors as a novel treatment option for depression: current clinical evidence and therapeutic potential of rapastinel (GLYX-13

    Directory of Open Access Journals (Sweden)

    Vasilescu AN

    2017-03-01

    Full Text Available Andrei-Nicolae Vasilescu,1,* Nina Schweinfurth,2,* Stefan Borgwardt,2,* Peter Gass,1 Undine E Lang,2,* Dragos Inta,1,2,* Sarah Eckart2,* 1Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; 2Department of Psychiatry (Universitäre Psychiatrische Kliniken, University of Basel, Basel, Switzerland *These authors contributed equally to this work Abstract: Classical monoaminergic antidepressants show several disadvantages, such as protracted onset of therapeutic action. Conversely, the fast and sustained antidepressant effect of the N-methyl-d-aspartate receptor (NMDAR antagonist ketamine raises vast interest in understanding the role of the glutamate system in mood disorders. Indeed, numerous data support the existence of glutamatergic dysfunction in major depressive disorder (MDD. Drawback to this short-latency therapy is its side effect profile, especially the psychotomimetic action, which seriously hampers the common and widespread clinical use of ketamine. Therefore, there is a substantial need for alternative glutamatergic antidepressants with milder side effects. In this article, we review evidence that implicates NMDARs in the prospective treatment of MDD with focus on rapastinel (formerly known as GLYX-13, a novel synthetic NMDAR modulator with fast antidepressant effect, which acts by enhancing NMDAR function as opposed to blocking it. We summarize and discuss current clinical and animal studies regarding the therapeutic potential of rapastinel not only in MDD but also in other psychiatric disorders, such as obsessive–compulsive disorder and posttraumatic stress disorder. Additionally, we discuss current data concerning the molecular mechanisms underlying the antidepressant effect of rapastinel, highlighting common aspects as well as differences to ketamine. In 2016, rapastinel received the Breakthrough Therapy designation for the treatment

  13. Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test.

    Science.gov (United States)

    Owolabi, Rotimi Adegbenga; Akanmu, Moses Atanda; Adeyemi, Oluwole Isaac

    2014-04-30

    This study investigated the effects of ketamine on fluoxetine-induced antidepressant behavior using the forced swimming test (FST) in mice. In order to understand the possible role of N-methyl-d-aspartate (NMDA) neurotransmission in the antidepressant effect of fluoxetine, different groups of mice (n=10) were administered with acute ketamine (3mg/kg, i.p.), acute NMDA (75mg/kg and 150mg/kg, i.p.) and a 21-day chronic ketamine (15mg/kg, i.p./day) were administered prior to the administration of fluoxetine (20mg/kg, i.p.) in the mice. Antidepressant related behavior (immobility score) was measured using the forced swimming test. The results showed that the acute ketamine and fluoxetine alone treatments elicited a significant (pfluoxetine-induced decrease in immobility score. In contrast, pre-treatment with NMDA (150mg/kg) significantly (pfluoxetine-induced decrease in immobility score. On the other hand, chronic administration of ketamine significantly elicited an increase in immobility score as well as reversed the reduction induced by fluoxetine. Similarly, NMDA administration at both 75mg/kg and 150mg/kg increased immobility score in chronically administered ketamine groups. Furthermore, chronic administration of ketamine, followed by NMDA (75mg/kg) and fluoxetine significantly elevated the immobility score when compared with the group that received NMDA and fluoxetine but not chronically treated with ketamine. It can be suggested) that facilitation of NMDA transmission blocked fluoxetine-induced reduction in immobility score, while down-regulation of NMDA transmission is associated with increase in fluoxetine-induced antidepressant-related behavior in mice. Down-regulation of the NMDA transmission is proposed as an essential component of mechanism of suppression of depression related behaviors by fluoxetine. Modulation of NMDA transmission is suggested to be relevant in the mechanism of action of fluoxetine. Copyright © 2014 Elsevier Ireland Ltd. All rights

  14. Clinical characteristics, treatments, and outcomes of patients with anti-N-methyl-d-aspartate receptor encephalitis: A systematic review of reported cases.

    Science.gov (United States)

    Zhang, Le; Wu, Meng-Qian; Hao, Zi-Long; Chiang, Siew Mun Vance; Shuang, Kun; Lin, Min-Tao; Chi, Xiao-Sa; Fang, Jia-Jia; Zhou, Dong; Li, Jin-Mei

    2017-03-01

    Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a recently recognized autoimmune disorder which is responsive to immunotherapy. However, the outcomes of different immunotherapies have not been defined and there have been few studies that carried out a comparison among them. To provide an overview of the clinical characteristics, treatments, and outcomes of anti-NMDAR encephalitis, we systematically reviewed the literature in the PubMed, Medline, Embase, Cochrane Library, BioMedical Literature Database (CBM), China National Knowledge Infrastructure (CNKI), and Wan-fang databases. Eighty-three studies with a total of 432 patients were included. The median age was 22years. Two hundred ninety-three (68%) patients were female, 87 (21%) of 412 patients had a tumor, including 68 (78%) patients with ovarian teratoma. Pediatric patients had a higher ratio of seizures to psychiatric symptoms as the initial manifestation (p=0.0012), a lower proportion with a tumor (p<0.0001) and CSF pleocytosis (p=0.0163), and a better outcome (p=0.0064) than adults. Patients who died had a higher proportion of CSF pleocytosis than the patients who survived (p=0.0021). There were no significant differences among three first-line immunotherapy used alone (p=0.9172) or among combinations of every two of them (p=0.3059). With regard to the use of corticosteroid and IVIG, there were no significant differences between the outcomes of early combined treatment and sequential treatment (p=0.7277), or between using corticosteroid first and IVIG first (p=0.5422). Our findings suggest that the clinical characteristics and outcomes for pediatric patients were different from adult patients, and no significant differences were found among different immunotherapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Cerebral (18)FluoroDeoxy-Glucose Positron Emission Tomography in paediatric anti N-methyl-D-aspartate receptor encephalitis: A case series.

    Science.gov (United States)

    Lagarde, Stanislas; Lepine, Anne; Caietta, Emilie; Pelletier, Florence; Boucraut, José; Chabrol, Brigitte; Milh, Mathieu; Guedj, Eric

    2016-05-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a frequent and severe cause of encephalitis in children with potential efficient treatment (immunotherapy). Suggestive clinical features are behavioural troubles, seizures and movement disorders. Prompt diagnosis and treatment initiation are needed to guarantee favourable outcome. Nevertheless, diagnosis may be challenging because of the classical ancillary test (magnetic resonance imaging (MRI), electroencephalogram, standard cerebro-spinal fluid analysis) have limited sensitivity. Currently, immunological analyses are needed for the diagnostic confirmation. In adult patients, some studies suggested a potential role of cerebral (18)FluoroDeoxy-Glucose Positron Emission Tomography (FDG-PET) in the evaluation of anti-NMDAR encephalitis. Nevertheless, almost no data exist in paediatric population. We report retrospectively clinical, ancillary tests and cerebral FDG-PET data in 6 young patients (median age=10.5 years, 4 girls) with immunologically confirmed anti-NMDAR encephalitis. Our patients presented classical clinical features of anti-NMDAR encephalitis with severe course (notably four patients had normal MRI). Our series shows the feasibility and the good sensitivity of cerebral FDG-PET (6/6 patients with brain metabolism alteration) in paediatric population. We report some particular features in this population: extensive, symmetric cortical hypometabolism especially in posterior areas; asymmetric anterior focus of hypermetabolism; and basal ganglia hypermetabolism. We found also a good correlation between the clinical severity and the cerebral metabolism changes. Moreover, serial cerebral FDG-PET showed parallel brain metabolism and clinical improvement. Our study reveals the existence of specific patterns of brain metabolism alteration in anti-NMDAR encephalitis in paediatric population. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. Prevalence of elevated serum anti-N-methyl-D-aspartate receptor antibody titers in patients presenting exclusively with psychiatric symptoms: a comparative follow-up study.

    Science.gov (United States)

    Ando, Yoshihito; Shimazaki, Haruo; Shiota, Katsutoshi; Tetsuka, Syuichi; Nakao, Koichi; Shimada, Tatsuhiro; Kurata, Kazumi; Kuroda, Jinichi; Yamashita, Akihiro; Sato, Hayato; Sato, Mamoru; Eto, Shinkichi; Onishi, Yasunori; Tanaka, Keiko; Kato, Satoshi

    2016-07-08

    Increasing numbers of patients with elevated anti-N-methyl-D-aspartate (NMDA) receptor antibody titers presenting exclusively with psychiatric symptoms have been reported. The aim of the present study was to clarify the prevalence of elevated serum anti-NMDA receptor antibody titers in patients with new-onset or acute exacerbations of psychiatric symptoms. In addition, the present study aimed to investigate the association between elevated anti-NMDA receptor titers and psychiatric symptoms. The present collaborative study included 59 inpatients (23 male, 36 female) presenting with new-onset or exacerbations of schizophrenia-like symptoms at involved institutions from June 2012 to March 2014. Patient information was collected using questionnaires. Anti-NMDA receptor antibody titers were measured using NMDAR NR1 and NR2B co-transfected human embryonic kidney (HEK) 293 cells as an antigen (cell-based assay). Statistical analyses were performed for each questionnaire item. The mean age of participants was 42.0 ± 13.7 years. Six cases had elevated serum anti-NMDA antibody titers (10.2 %), four cases were first onset, and two cases with disease duration >10 years presented with third and fifth recurrences. No statistically significant difference in vital signs or major symptoms was observed between antibody-positive and antibody-negative groups. However, a trend toward an increased frequency of schizophrenia-like symptoms was observed in the antibody-positive group. Serum anti-NMDA receptor antibody titers may be associated with psychiatric conditions. However, an association with specific psychiatric symptoms was not observed in the present study. Further studies are required to validate the utility of serum anti-NMDA receptor antibody titer measurements at the time of symptom onset.

  17. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    Science.gov (United States)

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy.

  18. Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test.

    Science.gov (United States)

    Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Ostadhadi, Sattar; Amini-Khoei, Hossein; Dehpour, Ahmad Reza

    2016-02-01

    Recent evidence indicates that 5-hydroxytryptamine 3 (5-HT3) antagonists such as ondansetron and tropisetron exert positive behavioral effects in animal models of depression. Due to the ionotropic nature of 5-HT3 and N-methyl-d-aspartate (NMDA) receptors, plus their contribution to the pathophysiology of depression, we investigated the possible role of NMDA receptors in the antidepressant-like effect of 5-HT3 receptor antagonists in male mice. In order to evaluate the animals' behavior in response to different treatments, we performed open-field test (OFT), forced swimming test (FST), and tail-suspension test (TST), which are considered as valid tasks for measuring locomotor activity and depressive-like behaviors in mice. Our data revealed that intraperitoneal (i.p.) administration of tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01, and 0.1μg/kg) significantly decreased the immobility time in FST and TST. Also, co-administration of subeffective doses of tropisetron (1mg/kg, i.p.) or ondansetron (0.001μg/kg, i.p.) with subeffective doses of NMDA receptor antagonists, ketamine (1mg/kg, i.p.), MK-801 (0.05mg/kg, i.p.) and magnesium sulfate (10mg/kg, i.p.) resulted in a reduced immobility time both in FST and TST. The subeffective dose of NMDA (NMDA receptor agonist, 75mg/kg, i.p.) abolished the effects of 5-HT3 antagonists in FST and TST, further supporting the presumed interaction between 5-HT3 and NMDA receptors. These treatments did not affect the locomotor behavior of animals in OFT. Finally, the results of our study suggest that the positive effects of 5-HT3 antagonists on the coping behavior of mice in FST and TST are at least partly mediated through NMDA receptors participation. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Proteomic analysis of adrenocorticotropic hormone treatment of an infantile spasm model induced by N-methyl-D-aspartic acid and prenatal stress.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available Infantile spasms is an age-specific epileptic syndrome associated with poor developmental outcomes and poor response to nearly all traditional antiepileptic drugs except adrenocorticotropic hormone (ACTH. We investigated the protective mechanism of ACTH against brain damage. An infantile spasm rat model induced by N-methyl-D-aspartate (NMDA in neonate rats was used. Pregnant rats were randomly divided into the stress-exposed and the non-stress exposed groups, and their offspring were randomly divided into ACTH-treated spasm model, untreated spasm model, and control groups. A proteomics-based approach was used to detect the proteome differences between ACTH-treated and untreated groups. Gel image analysis was followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric protein identification and bioinformatics analysis. Prenatal stress exposure resulted in more severe seizures, and ACTH treatment reduced and delayed the onset of seizures. The most significantly up-regulated proteins included isoform 1 of tubulin β-5 chain, cofilin-1 (CFL1, synaptosomal-associated protein 25, malate dehydrogenase, N(G,N(G-dimethylarginine dimethylaminohydrolase 1, annexin A3 (ANXA3, and rho GDP-dissociation inhibitor 1 (ARHGDIA. In contrast, tubulin α-1A chain was down-regulated. Three of the identified proteins, ARHGDIA, ANXA3, and CFL1, were validated using western blot analysis. ARHGDIA expression was assayed in the brain samples of five infantile spasm patients. These proteins are involved in the cytoskeleton, synapses, energy metabolism, vascular regulation, signal transduction, and acetylation. The mechanism underlying the effects of ACTH involves the molecular events affected by these proteins, and protein acetylation is the mechanism of action of the drug treatment.

  20. (/sup 3/H)MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, E H; Knight, A R; Woodruff, G N

    1988-01-01

    The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist (/sup 3/H)MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of (/sup 3/H)MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. (/sup 3/H)MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated (/sup 3/H)MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by (/sup 3/H)TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-(/sup 3/H)SKF 10,047. (/sup 3/H)MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that (/sup 3/H)MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.

  1. Rehabilitation for a child with recalcitrant anti-N-methyl-D-aspartate receptor encephalitis: case report and literature review

    Directory of Open Access Journals (Sweden)

    Guo YH

    2014-11-01

    Full Text Available Yao-Hong Guo,1 Ta-Shen Kuan,1,2 Pei-Chun Hsieh,1 Wei-Chih Lien,1 Chun-Kai Chang,1 Yu-Ching Lin1–3 1Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; 2Department of Physical Medicine and Rehabilitation, College of Medicine, National Cheng Kung University, Tainan, Taiwan; 3Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan Abstract: Anti-N-methyl-d-aspartate (anti-NMDA receptor encephalitis is a newly recognized, potentially fatal, but treatable autoimmune disease. Good outcome predictors include milder severity of symptoms, no need for intensive care unit admission, early aggressive immunotherapy, and prompt tumor removal. We report a case of a young girl aged 3 years 2 months and diagnosed as recalcitrant anti-NMDA receptor encephalitis without any underlying neoplasm. The patient had initial symptoms of behavioral changes that progressed to generalized choreoathetosis and orofacial dyskinesia, which resulted in 6 months of hospitalization in the pediatric intensive care unit. One year after initial onset of the disease, she had only achieved the developmental age of an infant aged 6–8 months in terms of gross and fine motor skills, but she resumed total independence in activities of daily living after receiving extensive immunotherapy and 28 months of rehabilitation. Our brief review will help clinical practitioners become more familiar with this disease and the unique rehabilitation programs. Keywords: anti-NMDA receptor encephalitis, autoimmune encephalitis, rehabilitation, cognition deficits

  2. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    Science.gov (United States)

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  3. Clinical presentation of anti-N-methyl-d-aspartate receptor and anti-voltage-gated potassium channel complex antibodies in children: A series of 24 cases.

    Science.gov (United States)

    Konuskan, Bahadir; Yildirim, Mirac; Topaloglu, Haluk; Erol, Ilknur; Oztoprak, Ulkuhan; Tan, Huseyin; Gocmen, Rahsan; Anlar, Banu

    2018-01-01

    The symptomatology and paraclinical findings of antibody-mediated encephalitis, a relatively novel disorder, are still being characterized in adults and children. A high index of suspicion is needed in order to identify these cases among children presenting with various neurological symptoms. The aim of this study is to examine the clinical, demographic and laboratory findings and outcome of children with anti-NMDAR and anti-VGKC encephalitis for any typical or distinctive features. Cases diagnosed with anti-N-Methyl d-aspartate receptor (NMDAR) and anti-voltage gated potassium channel (VGKC) antibody-mediated encephalopathy in four major child neurology centers are described. In four years, 16 children with NMDAR and 8 children with VGKC antibody-associated disease were identified in the participating centers. The most frequent initial manifestation consisted of generalized seizures and cognitive symptoms in both groups. Movement abnormalities were frequent in anti-NMDAR patients and autonomic symptoms, in anti-VGKC patients. Cerebrospinal fluid (CSF) protein, cell count and IgG index were normal in 9/15 anti-NMDAR and 5/8 anti-VGKC patients tested. EEG and MRI findings were usually nonspecific and non-contributory. The rate and time of recovery was not related to age, sex, acute or subacute onset, antibody type, MRI, EEG or CSF results. Treatment within 3 months of onset was associated with normal neurological outcome. Our results suggest anti-NMDAR and VGKC encephalopathies mostly present with non-focal neurological symptoms longer than 3 weeks. In contrast with adult cases, routine CSF testing, MRI and EEG did not contribute to the diagnosis in this series. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. N-methyl-D-aspartate receptor antibody-mediated neurological disease: results of a UK-based surveillance study in children.

    Science.gov (United States)

    Wright, Sukhvir; Hacohen, Yael; Jacobson, Leslie; Agrawal, Shakti; Gupta, Rajat; Philip, Sunny; Smith, Martin; Lim, Ming; Wassmer, Evangeline; Vincent, Angela

    2015-06-01

    N-methyl-D-aspartate receptor antibody (NMDAR-Ab) encephalitis is a well-recognised clinico-immunological syndrome that presents with neuropsychiatric symptoms cognitive decline, movement disorder and seizures. This study reports the clinical features, management and neurological outcomes of paediatric NMDAR-Ab-mediated neurological disease in the UK. A prospective surveillance study. Children with NMDAR-Ab-mediated neurological diseases were voluntarily reported to the British Neurological Surveillance Unit (BPNSU) from November 2010 to December 2011. Initial and follow-up questionnaires were sent out to physicians. Thirty-one children fulfilled the criteria for the study. Eight presented during the study period giving an incidence of 0.85 per million children per year (95% CI 0.64 to 1.06); 23 cases were historical. Behavioural change and neuropsychiatric features were present in 90% of patients, and seizures and movement disorders both in 67%. Typical NMDAR-Ab encephalitis was reported in 24 children and partial phenotype without encephalopathy in seven, including predominantly psychiatric (four) and movement disorder (three). All patients received steroids, 22 (71%) received intravenous immunoglobulin, 9 (29%) received plasma exchange,and 10 (32%) received second-line immunotherapy. Of the 23 patients who were diagnosed early, 18 (78%) made a full recovery compared with only 1 of 8 (13%) of the late diagnosed patients (p=0.002, Fisher's exact test). Seven patients relapsed, with four needing additional second-line immunotherapy. Paediatric NMDAR-Ab-mediated neurological disease appears to be similar to adult NMDAR-Ab encephalitis, but some presented with a partial phenotype. Early treatment was associated with a quick and often full recovery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.

    Science.gov (United States)

    Thomson, L M; Zeng, J; Terman, G W

    2006-09-01

    Examples of spontaneous oscillating neural activity contributing to both pathological and physiological states are abundant throughout the CNS. Here we report a spontaneous oscillating intermittent synaptic current located in lamina I of the neonatal rat spinal cord dorsal horn. The spontaneous oscillating intermittent synaptic current is characterized by its large amplitude, slow decay time, and low-frequency. We demonstrate that post-synaptic N-methyl-D-aspartate receptors (NMDARs) mediate the spontaneous oscillating intermittent synaptic current, as it is inhibited by magnesium, bath-applied d-2-amino-5-phosphonovalerate (APV), or intracellular MK-801. The NR2B subunit of the NMDAR appears important to this phenomenon, as the NR2B subunit selective NMDAR antagonist, alpha-(4-hydroxphenyl)-beta-methyl-4-benzyl-1-piperidineethanol tartrate (ifenprodil), also partially inhibited the spontaneous oscillating intermittent synaptic current. Inhibition of spontaneous glutamate release by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5] enkephalin-ol (DAMGO) inhibited the spontaneous oscillating intermittent synaptic current frequency. Marked inhibition of spontaneous oscillating intermittent synaptic current frequency by tetrodotoxin (TTX), but not post-synaptic N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314), suggests that the glutamate release important to the spontaneous oscillating intermittent synaptic current is dependent on active neural processes. Conversely, increasing dorsal horn synaptic glutamate release by GABAA or glycine inhibition increased spontaneous oscillating intermittent synaptic current frequency. Moreover, inhibiting glutamate transporters with threo-beta-benzyloxyaspartic acid (DL-TBOA) increased spontaneous oscillating intermittent synaptic current frequency and decay time. A possible functional role of this spontaneous NMDAR

  6. Inhibition by sigma receptor ligand, MS-377, of N-methyl- D-aspartate-induced currents in dopamine neurons of the rat ventral tegmental area.

    Science.gov (United States)

    Yamazaki, Yuu; Ishioka, Miwa; Matsubayashi, Hiroaki; Amano, Taku; Sasa, Masashi

    2002-04-01

    MS-377 [( R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl) piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate] is a novel anti-psychotic drug candidate with high affinity for sigma receptors but devoid of binding affinity for PCP binding site of NMDA receptor/ion channel complex. The effects of MS-377 on NMDA receptor and/or its ion channel complex were examined to elucidate the antipsychotic properties of MS-377. We examined the effect of MS-377 on NMDA ( N-methyl- D-aspartate)-induced current in acutely dissociated dopamine neurons of rat ventral tegmental area (VTA) using patch clamp whole cell recording. MS-377 applied in a bath inhibited the peak current evoked by NMDA applied via the U-tube method for 2 s in a concentration-dependent manner. Other sigma receptor ligands, BD-1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine), NE-100 ( N, N-dipropyl-2-[4-methoxy-3-(2-phenylenoxy)-phenyl]-ethylamine monohydrochloride) and haloperidol also inhibited NMDA-induced current in a concentration-dependent manner. Interestingly, concomitant application of MS-377 with BD-1063, NE-100 or haloperidol at concentrations that had no effects on NMDA-induced current, potentiated the MS-377-induced inhibition. The results suggest that MS-377, as well as other sigma receptor ligands, indirectly acts on the sigma receptor to inhibit glutaminergic transmission mediated by NMDA receptor/ion channel complex in VTA dopamine neurons, thereby inhibiting dopamine release in target VTA areas.

  7. Prion protein is a key determinant of alcohol sensitivity through the modulation of N-methyl-D-aspartate receptor (NMDAR activity.

    Directory of Open Access Journals (Sweden)

    Agnès Petit-Paitel

    Full Text Available The prion protein (PrP is absolutely required for the development of prion diseases; nevertheless, its physiological functions in the central nervous system remain elusive. Using a combination of behavioral, electrophysiological and biochemical approaches in transgenic mouse models, we provide strong evidence for a crucial role of PrP in alcohol sensitivity. Indeed, PrP knock out (PrP(-/- mice presented a greater sensitivity to the sedative effects of EtOH compared to wild-type (wt control mice. Conversely, compared to wt mice, those over-expressing mouse, human or hamster PrP genes presented a relative insensitivity to ethanol-induced sedation. An acute tolerance (i.e. reversion to ethanol inhibition of N-methyl-D-aspartate (NMDA receptor-mediated excitatory post-synaptic potentials in hippocampal slices developed slower in PrP(-/- mice than in wt mice. We show that PrP is required to induce acute tolerance to ethanol by activating a Src-protein tyrosine kinase-dependent intracellular signaling pathway. In an attempt to decipher the molecular mechanisms underlying PrP-dependent ethanol effect, we looked for changes in lipid raft features in hippocampus of ethanol-treated wt mice compared to PrP(-/- mice. Ethanol induced rapid and transient changes of buoyancy of lipid raft-associated proteins in hippocampus of wt but not PrP(-/- mice suggesting a possible mechanistic link for PrP-dependent signal transduction. Together, our results reveal a hitherto unknown physiological role of PrP on the regulation of NMDAR activity and highlight its crucial role in synaptic functions.

  8. A comparison of N-methyl-D-aspartate-evoked release of adenosine and [3H]norepinephrine from rat cortical slices

    International Nuclear Information System (INIS)

    Hoehn, K.; Craig, C.G.; White, T.D.

    1990-01-01

    Tetrodotoxin reduced N-methyl-D-aspartate (NMDA)-evoked release of adenosine by 35% but virtually abolished [3H]norepinephrine release. Although [3H]norepinephrine release from rat cortical slices evoked by 500 microM NMDA was abolished by 1.2 mM Mg++, which produces a voltage-sensitive, uncompetitive block of NMDA-channels, adenosine release was increased in the presence of Mg++. Partial depolarization with 12 mM K+ relieved the Mg++ block of 500 microM NMDA-evoked [3H]norepinephrine release but did not affect adenosine release, indicating that a Mg++ requirement for the adenosine release process per se cannot account for this discrepancy. NMDA was 33 times more potent in releasing adenosine than [3H]norepinephrine. At submaximal concentrations of NMDA (10 and 20 microM), adenosine release was augmented in Mg+(+)-free medium. Although a high concentration of the uncompetitive NMDA antagonist MK-801 [(+)-5-methyl-10,11,dihydro-5H-dibenzo[a,d]cyclohepten-5-10-imine maleate] (3 microM) blocked NMDA-evoked release of [3H]norepinephrine and adenosine, a lower concentration (300 nM) decreased NMDA-evoked [3H]norepinephrine release by 66% without affecting adenosine release. These findings suggest that maximal adenosine release occurs when relatively few NMDA receptors are activated, raising the possibility that spare receptors exist for NMDA-evoked adenosine release. Rather than acting as a protectant against excessive NMDA excitation, released adenosine might provide an inhibitory threshold which must be overcome for NMDA-mediated neurotransmission to proceed

  9. Electrophysiological evidence for the presence of NR2C subunits of N-methyl-D-aspartate receptors in rat neurons of the nucleus tractus solitarius

    Directory of Open Access Journals (Sweden)

    V. Baptista

    2005-01-01

    Full Text Available The nucleus tractus solitarius (NTS plays an important role in the control of autonomic reflex functions. Glutamate, acting on N-methyl-D-aspartate (NMDA and non-NMDA ionotropic receptors, is the major neurotransmitter in this nucleus, and the relative contribution of each receptor to signal transmission is unclear. We have examined NMDA excitatory postsynaptic currents (NMDA-EPSCs in the subpostremal NTS using the whole cell patch clamp technique on a transverse brainstem slice preparation. The NMDA-EPSCs were evoked by stimulation of the solitary tract over a range of membrane potentials. The NMDA-EPSCs, isolated pharmacologically, presented the characteristic outward rectification and were completely blocked by 50 µM DL-2-amino-5-phosphonopentanoic acid. The I-V relationship of the NMDA response shows that current, with a mean (± SEM amplitude of -41.2 ± 5.5 pA, is present even at a holding potential of -60 mV, suggesting that the NMDA receptors are weakly blocked by extracellular Mg2+ at near resting membrane potentials. This weak block can also be inferred from the value of 0.67 ± 0.17 for parameter delta obtained from a fit of the Woodhull equation to the I-V relationship. The maximal inward current measured on the I-V relationship was at -38.7 ± 4.2 mV. The decay phase of the NMDA currents was fitted with one exponential function with a decay time constant of 239 ± 51 and 418 ± 80 ms at a holding potential of -60 and +50 mV, respectively, which became slower with depolarization (e-fold per 145 mV. The biophysical properties of the NMDA receptors observed in the present study suggest that these receptors in the NTS contain NR2C subunits and may contribute to the synaptic signal integration.

  10. Control of βAR- and N-methyl-D-aspartate (NMDA Receptor-Dependent cAMP Dynamics in Hippocampal Neurons.

    Directory of Open Access Journals (Sweden)

    Andrew Chay

    2016-02-01

    Full Text Available Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs, facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs. To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA, and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory.

  11. Targeting the D1-N-methyl-D-aspartate receptor complex reduces L-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson’s rats

    Directory of Open Access Journals (Sweden)

    Song L

    2016-02-01

    Full Text Available Lu Song,1,* Zhanzhao Zhang,2,* Rongguo Hu,1 Jie Cheng,1 Lin Li,1 Qinyi Fan,1 Na Wu,1 Jing Gan,1 Mingzhu Zhou,1 Zhenguo Liu11Department of Neurology, Xinhua Hospital, 2Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China*These authors contributed equally to this workAbstract: L-3,4-dihydroxyphenylalanine (L-dopa remains the most effective therapy for Parkinson’s disease (PD, but its long-term administration is associated with the development of debilitating motor complications known as L-dopa-induced dyskinesia (LID. Enhanced function of dopamine D1 receptor (D1R and N-methyl-d-aspartate receptor (NMDAR is believed to participate in the pathogenesis of LID. Given the existence of physical and functional interactions between D1R and NMDAR, we explored the effects of uncoupling D1R and NMDA GluN1 (GluN1 interaction on LID by using the Tat-conjugated interfering peptide (Tat-D1-t2. In this study, we demonstrated in 6-hydroxydopamine (6-OHDA-lesioned PD rat model that intrastriatal injection of Tat-D1-t2 alleviated dyskinetic behaviors and downregulated the phosphorylation of DARPP-32 at Thr34 induced by levodopa. Moreover, we also showed intrastriatal administration of Tat-D1-t2 elicited alterations in membranous GluN1 and D1R expression. These findings indicate that D1R/GluN1 complexes may be a molecular target with therapeutic potential for the treatment of dyskinesia in Parkinson’s patients.Keywords: 6-hydroxydopamine, Parkinson’s disease, dyskinesia, L-dopa, D1 receptor, NMDA, protein–protein interaction

  12. N-Methyl-D aspartate receptor-mediated effect on glucose transporter-3 levels of high glucose exposed-SH-SY5Y dopaminergic neurons.

    Science.gov (United States)

    Engin, Ayse Basak; Engin, Evren Doruk; Karakus, Resul; Aral, Arzu; Gulbahar, Ozlem; Engin, Atilla

    2017-11-01

    High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Association of Progressive Cerebellar Atrophy With Long-term Outcome in Patients With Anti-N-Methyl-d-Aspartate Receptor Encephalitis.

    Science.gov (United States)

    Iizuka, Takahiro; Kaneko, Juntaro; Tominaga, Naomi; Someko, Hidehiro; Nakamura, Masaaki; Ishima, Daisuke; Kitamura, Eiji; Masuda, Ray; Oguni, Eiichi; Yanagisawa, Toshiyuki; Kanazawa, Naomi; Dalmau, Josep; Nishiyama, Kazutoshi

    2016-06-01

    Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is an immune-mediated disorder that occurs with IgG antibodies against the GluN1 subunit of NMDAR. Some patients develop reversible diffuse cerebral atrophy (DCA), but the long-term clinical significance of progressive brain and cerebellar atrophy is unknown. To report the long-term clinical implications of DCA and cerebellar atrophy in anti-NMDAR encephalitis. A retrospective observational study and long-term imaging investigation was conducted in the Department of Neurology at Kitasato University. Fifteen patients with anti-NMDAR encephalitis admitted to Kitasato University Hospital between January 1, 1999, and December 31, 2014, were included; data analysis was conducted between July 15, 2015, and January 18, 2016. Neurologic examination, immunotherapy, and magnetic resonance imaging (MRI) studies were performed. Long-term MRI changes in association with disease severity, serious complications (eg, pulmonary embolism, septic shock, and rhabdomyolysis), treatment, and outcome. The clinical outcome of 15 patients (median age, 21 years, [range, 14-46 years]; 10 [67%] female) was evaluated after a median follow-up of 68 months (range, 10-179 months). Thirteen patients (87%) received first-line immunotherapy (intravenous high-dose methylprednisolone, intravenous immunoglobulin, and plasma exchange alone or combined), and 4 individuals (27%) also received cyclophosphamide; 2 patients (13%) did not receive immunotherapy. In 5 patients (33%), ovarian teratoma was found and removed. Serious complications developed in 4 patients (27%). Follow-up MRI revealed DCA in 5 patients (33%) that, in 2 individuals (13%), was associated with progressive cerebellar atrophy. Long-term outcome was good in 13 patients (87%) and poor in the other 2 individuals (13%). Although cerebellar atrophy was associated with poor long-term outcome (2 of 2 vs 0 of 13 patients; P = .01), other features, such as DCA without cerebellar atrophy

  14. Herpes simplex virus-induced anti-N-methyl-d-aspartate receptor encephalitis: a systematic literature review with analysis of 43 cases.

    Science.gov (United States)

    Nosadini, Margherita; Mohammad, Shekeeb S; Corazza, Francesco; Ruga, Ezia Maria; Kothur, Kavitha; Perilongo, Giorgio; Frigo, Anna Chiara; Toldo, Irene; Dale, Russell C; Sartori, Stefano

    2017-08-01

    To conduct a systematic literature review on patients with biphasic disease with herpes simplex virus (HSV) encephalitis followed by anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. We conducted a case report and systematic literature review (up to 10 December 2016), focused on differences between herpes simplex encephalitis (HSE) and anti-NMDAR encephalitis phases, age-related characteristics of HSV-induced anti-NMDAR encephalitis, and therapy. For statistical analyses, McNemar's test, Fisher's test, and Wilcoxon rank sum test were used (two-tailed significance level set at 5%). Forty-three patients with biphasic disease were identified (31 children). Latency between HSE and anti-NMDAR encephalitis was significantly shorter in children than adults (median 24 vs 40.5d; p=0.006). Compared with HSE, anti-NMDAR encephalitis was characterized by significantly higher frequency of movement disorder (2.5% vs 75% respectively; panti-NMDAR encephalitis children had significantly more movement disorders (86.7% children vs 40% adults; p=0.006), fewer psychiatric symptoms (41.9% children vs 90.0% adults; p=0.025), and a slightly higher median modified Rankin Scale score (5 in children vs 4 in adults; p=0.015). During anti-NMDAR encephalitis, 84.6 per cent of patients received aciclovir (for ≤7d in 22.7%; long-term antivirals in 18.0% only), and 92.7 per cent immune therapy, but none had recurrence of HSE clinically or using cerebrospinal fluid HSV polymerase chain reaction (median follow-up 7mo). Our review suggests that movement disorder may help differentiate clinically an episode of HSV-induced anti-NMDAR encephalitis from HSE relapse. Compared with adults, children have shorter latency between HSE and anti-NMDAR encephalitis and, during anti-NMDAR encephalitis, more movement disorder, fewer psychiatric symptoms, and slightly more severe disease. According to our results, immune therapy given for HSV-induced anti-NMDAR encephalitis does not predispose patients to

  15. High and low nightly running behavior associates with nucleus accumbens N-Methyl-d-aspartate receptor (NMDAR) NR1 subunit expression and NMDAR functional differences.

    Science.gov (United States)

    Grigsby, Kolter B; Kovarik, Cathleen M; Rottinghaus, George E; Booth, Frank W

    2018-04-03

    The extent to which N-Methyl-d-aspartate (NMDA) receptors facilitate the motivation to voluntarily wheel-run in rodents has yet to be determined. In so, we utilized female Wistar rats selectively bred to voluntarily run high (HVR) and low (LVR) nightly distances in order to examine if endogenous differences in nucleus accumbens (NAc) NMDA receptor expression and function underlies the propensity for high or low motivation to voluntarily wheel-run. 12-14 week old HVR and LVR females were used to examine: 1.) NAc mRNA and protein expression of NMDA subunits NR1, NR2A and NR2B; 2.) NMDA current responses in isolated medium spiny neurons (MSNs) and 3.) NMDA-evoked dopamine release in an ex vivo preparation of NAc punches. Expectedly, there was a large divergence in nightly running distance and time between HVR and LVR rats. We saw a significantly higher mRNA and protein expression of NR1 in HVR compared to LVR rats, while seeing no difference in the expression of NR2A or NR2B. There was a greater current response to a 500 ms application of 300 μM of NMDA in medium-spiny neurons isolated from the NAc HVR compared to LVR animals. On average, NMDA-evoked punches (50 μM of NMDA for 10 min) taken from HVR rats retained ∼54% of the dopamine content compared to their bilateral non-evoked sides, while evoked punches from LVR animals showed no statistical decrease in dopamine content compared to their non-evoked sides. Collectively, these data suggest a potential link between NAc NR1 subunit expression as well as NMDA function and the predisposition for nightly voluntary running behavior in rats. In light of the epidemic rise in physical inactivity, these findings have the potential to explain a neuro-molecular mechanism that regulates the motivation to be physically active. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Protein S blocks the extrinsic apoptotic cascade in tissue plasminogen activator/N-methyl D-aspartate-treated neurons via Tyro3-Akt-FKHRL1 signaling pathway

    Directory of Open Access Journals (Sweden)

    Freeman Robert S

    2011-02-01

    Full Text Available Abstract Background Thrombolytic therapy with tissue plasminogen activator (tPA benefits patients with acute ischemic stroke. However, tPA increases the risk for intracerebral bleeding and enhances post-ischemic neuronal injury if administered 3-4 hours after stroke. Therefore, combination therapies with tPA and neuroprotective agents have been considered to increase tPA's therapeutic window and reduce toxicity. The anticoagulant factor protein S (PS protects neurons from hypoxic/ischemic injury. PS also inhibits N-methyl-D-aspartate (NMDA excitotoxicity by phosphorylating Bad and Mdm2 which blocks the downstream steps in the intrinsic apoptotic cascade. To test whether PS can protect neurons from tPA toxicity we studied its effects on tPA/NMDA combined injury which in contrast to NMDA alone kills neurons by activating the extrinsic apoptotic pathway. Neither Bad nor Mdm2 which are PS's targets and control the intrinsic apoptotic pathway can influence the extrinsic cascade. Thus, based on published data one cannot predict whether PS can protect neurons from tPA/NMDA injury by blocking the extrinsic pathway. Neurons express all three TAM (Tyro3, Axl, Mer receptors that can potentially interact with PS. Therefore, we studied whether PS can activate TAM receptors during a tPA/NMDA insult. Results We show that PS protects neurons from tPA/NMDA-induced apoptosis by suppressing Fas-ligand (FasL production and FasL-dependent caspase-8 activation within the extrinsic apoptotic pathway. By transducing neurons with adenoviral vectors expressing the kinase-deficient Akt mutant AktK179A and a triple FKHRL1 Akt phosphorylation site mutant (FKHRL1-TM, we show that Akt activation and Akt-mediated phosphorylation of FKHRL1, a member of the Forkhead family of transcription factors, are critical for FasL down-regulation and caspase-8 inhibition. Using cultured neurons from Tyro3, Axl and Mer mutants, we show that Tyro3, but not Axl and Mer, mediates

  17. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus.

    Science.gov (United States)

    Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P

    2003-01-01

    Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA

  18. KB-R7943, an inhibitor of the reverse Na+/Ca2+ exchanger, blocks N-methyl-D-aspartate receptor and inhibits mitochondrial complex I

    Science.gov (United States)

    Brustovetsky, Tatiana; Brittain, Matthew K; Sheets, Patrick L; Cummins, Theodore R; Pinelis, Vsevolod; Brustovetsky, Nickolay

    2011-01-01

    BACKGROUND AND PURPOSE An isothiourea derivative (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methane sulfonate (KB-R7943), a widely used inhibitor of the reverse Na+/Ca2+ exchanger (NCXrev), was instrumental in establishing the role of NCXrev in glutamate-induced Ca2+ deregulation in neurons. Here, the effects of KB-R7943 on N-methyl-D-aspartate (NMDA) receptors and mitochondrial complex I were tested. EXPERIMENTAL APPROACH Fluorescence microscopy, electrophysiological patch-clamp techniques and cellular respirometry with Seahorse XF24 analyzer were used with cultured hippocampal neurons; membrane potential imaging, respirometry and Ca2+ flux measurements were made in isolated rat brain mitochondria. KEY RESULTS KB-R7943 inhibited NCXrev with IC50= 5.7 ± 2.1 µM, blocked NMDAR-mediated ion currents, and inhibited NMDA-induced increase in cytosolic Ca2+ with IC50= 13.4 ± 3.6 µM but accelerated calcium deregulation and mitochondrial depolarization in glutamate-treated neurons. KB-R7943 depolarized mitochondria in a Ca2+-independent manner. Stimulation of NMDA receptors caused NAD(P)H oxidation that was coupled or uncoupled from ATP synthesis depending on the presence of Ca2+ in the bath solution. KB-R7943, or rotenone, increased NAD(P)H autofluorescence under resting conditions and suppressed NAD(P)H oxidation following glutamate application. KB-R7943 inhibited 2,4-dinitrophenol-stimulated respiration of cultured neurons with IC50= 11.4 ± 2.4 µM. With isolated brain mitochondria, KB-R7943 inhibited respiration, depolarized organelles and suppressed Ca2+ uptake when mitochondria oxidized complex I substrates but was ineffective when mitochondria were supplied with succinate, a complex II substrate. CONCLUSIONS AND IMPLICATIONS KB-R7943, in addition to NCXrev, blocked NMDA receptors in cultured hippocampal neurons and inhibited complex I in the mitochondrial respiratory chain. These findings are critical for the correct interpretation of experimental

  19. Involvement of N-methyl-D-aspartate receptor subunits in zinc-mediated modification of CA1 long-term potentiation in the developing hippocampus.

    Science.gov (United States)

    Takeda, Atsushi; Itagaki, Kosuke; Ando, Masaki; Oku, Naoto

    2012-03-01

    Zinc is an endogenous N-methyl-D-aspartate (NMDA) receptor blocker. It is possible that zinc-mediated modification of hippocampal CA1 long-term potentiation (LTP) is linked to the expression of NMDA receptor subunits, which varies with postnatal development. In the present study, the effect of ZnCl(2) and CaEDTA, a membrane-impermeable zinc chelator, on CA1 LTP induction was examined in hippocampal slices from immature (3-week-old) and young (6-week-old) rats. Tetanus (10-100 Hz, 1 sec)-induced CA1 LTP was more greatly enhanced in 3-week-old rats. CA1 LTP was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and CaEDTA in 3-week-old rats, as in the case of 6-week-old rats reported previously. In 3-week-old rats, on the other hand, 5 μM ZnCl(2) attenuated NMDA receptor-mediated EPSPs more than in 6-week-old rats and significantly attenuated CA1 LTP. Moreover, 5 μM ZnCl(2) significantly attenuated CA1 LTP in the presence of (2R,4S)-4-(3-phosphonopropyl)-2-piperidinecarboxylic acid (PPPA), an NR2A antagonist, in 3-week-old rats, but not that in the presence of ifenprodil, an NR2B antagonist, suggesting that zinc-mediated attenuation of CA1 LTP is associated with the preferential expression of NR2B subunit in 3-week-old rats. In 6-week-old rats, however, 5 μM ZnCl(2) significantly potentiated CA1 LTP and also CA1 LTP in the presence of PPPA. The present study demonstrates that endogenous zinc may participate in the induction of CA1 LTP. It is likely that the changes in expression of NMDA receptor subunits are involved in the zinc-mediated modification of CA1 LTP in the developing hippocampus. Copyright © 2011 Wiley Periodicals, Inc.

  20. Meta-analysis of the association between N-methyl-d-aspartate receptor antibodies and schizophrenia, schizoaffective disorder, bipolar disorder, and major depressive disorder.

    Science.gov (United States)

    Pearlman, Daniel M; Najjar, Souhel

    2014-08-01

    N-methyl-d-aspartate receptor (NMDAR) antibodies have been documented in the serum of individuals with primary psychiatric disorders from several independent cohorts, but these findings have not been systematically assessed in aggregate or in relation to methodological covariates. We searched MEDLINE, EMBASE, and PsycINFO for studies in any language that provided data on NMDAR antibody seropositivity or absolute serum titers in schizophrenia or schizoaffective, bipolar, or major depressive disorders. We used a random effects model to pool estimates across studies. Nine studies met the eligibility criteria. Five studies (3387 participants) provided data on NMDAR antibody seropositivity in psychiatric versus control groups based on high-specificity seropositivity thresholds (cell-based assays [CBAs]: 1:320 dilution, 1:200 dilution, visual score>1; enzyme-linked immunosorbent assay [ELISA]: 90(th) percentile of control titers). Meta-analysis showed significantly higher odds of NMDAR antibody seropositivity among those with schizophrenia or schizoaffective, bipolar, or major depressive disorders compared with healthy controls (odds ratio [OR], 3.10; 95% confidence interval [CI], 1.04-9.27; P=.043; I(2)=68%). Four studies (3194 participants) provided outcome data for these groups based on low-specificity seropositivity thresholds (CBAs 1:10 dilution; ELISA: 75(th) percentile of control titers). Meta-analysis showed greater heterogeneity and no significant between-group difference (OR, 2.31; 95% CI, 0.55-9.73; P=.25; I(2)=90%). Seropositive participants in psychiatric groups had various combinations of IgG, IgM, and IgA class antibodies against NR1, NR1/NR2B, and NR2A/NR2B subunits. Subgroup analysis revealed significantly higher odds of seropositivity among all participants based on 1:10 versus 1:320 dilution seropositivity thresholds (OR, 4.56; 95% CI, 2.41-8.62; Pschizoaffective disorder (OR, 1.15; 95% CI, 0.19-7.24; P=.88, I(2)=43%, studies=2, n=1108). Average NR2A

  1. Subchronic Treatment With Phencyclidine in Adolescence Leads to Impaired Exploratory Behavior in Adult Rats Without Altering Social Interaction or N-Methyl-D-Aspartate Receptor Binding Levels

    NARCIS (Netherlands)

    Metaxas, A.; Willems, R.; Kooijman, E.J.M.; Renjaan, V.A.; Klein, P.J.; Windhorst, A.D.; Donck, L.V.; Leysen, J.E.; van Berckel, B.N.M.

    2014-01-01

    Although both the onset of schizophrenia and human phencyclidine (PCP) abuse typically present within the interval from adolescence to early adulthood, the majority of preclinical research employing the PCP model of schizophrenia has been conducted on neonatal or adult animals. The present study was

  2. Analysis of variations in the glutamate receptor, N-methyl D-aspartate 2A (GRIN2A gene reveals their relative importance as genetic susceptibility factors for heroin addiction.

    Directory of Open Access Journals (Sweden)

    Bin Zhao

    Full Text Available The glutamate receptor, N-methyl D-aspartate 2A (GRIN2A gene that encodes the 2A subunit of the N-methyl D-aspartate (NMDA receptor was recently shown to be involved in the development of opiate addiction. Genetic polymorphisms in GRIN2A have a plausible role in modulating the risk of heroin addiction. An association of GRIN2A single-nucleotide polymorphisms (SNPs with heroin addiction was found earlier in African Americans. To identify markers that contribute to the genetic susceptibility to heroin addiction, we examined the potential association between heroin addiction and forty polymorphisms of the GRIN2A gene using the MassARRAY system and GeneScan in this study. The frequency of the (GT26 repeats (rs3219790 in the heroin addiction group was significantly higher than that in the control group (χ(2 = 5.360, P = 0.021. The allele frequencies of three polymorphisms (rs1102972, rs1650420, and rs3104703 in intron 3 were strongly associated with heroin addiction (P<0.001, 0.0002, and <0.001, after Bonferroni correction. Three additional SNPs from the same intron (rs1071502, rs6497730, and rs1070487 had nominally significant P values for association (P<0.05, but did not pass the threshold value. Haplotype analysis revealed that the G-C-T-C-C-T-A (block 6 and T-T (block 10 haplotypes of the GRIN2A gene displayed a protective effect (P = <0.001 and 0.003. These findings point to a role for GRIN2A polymorphisms in heroin addiction among the Han Chinese from Shaanxi province, and may be informative for future genetic or neurobiological studies on heroin addiction.

  3. Enantiomers of HA-966 (3-amino-1-hydroxypyrrolid-2-one) exhibit distinct central nervous system effects: (+)-HA-966 is a selective glycine/N-methyl-D-aspartate receptor antagonist, but (-)-HA-966 is a potent gamma-butyrolactone-like sedative

    International Nuclear Information System (INIS)

    Singh, L.; Donald, A.E.; Foster, A.C.; Hutson, P.H.; Iversen, L.L.; Iversen, S.D.; Kemp, J.A.; Leeson, P.D.; Marshall, G.R.; Oles, R.J.; Priestley, T.; Thorn, L.; Tricklebank, M.D.; Vass, C.A.; Williams, B.J.

    1990-01-01

    The antagonist effect of ±-3-amino-1-hydroxypyrrolid-2-one (HA-966) at the N-methyl-D-aspartate (NMDA) receptor occurs through a selective interaction with the glycine modulatory site within the receptor complex. When the enantiomers of ±-HA-966 were resolved, the (R)-(+)-enantiomer was found to be a selective glycine/NMDA receptor antagonist, a property that accounts for its anticonvulsant activity in vivo. In contrast, the (S)-(-)-enantiomer was only weakly active as an NMDA-receptor antagonist, but nevertheless it possessed a marked sedative and muscle relaxant action in vivo. In radioligand binding experiments, (+)-HA-966 inhibited strychnine-insensitive [ 3 H]glycine binding to rat cerebral cortex synaptic membranes with an IC 50 of 12.5 μM, whereas (-)-HA-966 had an IC 50 value of 339 μM. In mice, (+)-HA-966 antagonized sound and N-methyl-DL-aspartic acid (NMDLA)-induced seizures. The coadministration of D-serine dose-dependently antagonized the anticonvulsant effect of a submaximal dose of (+)-HA-966 against NMDLA-induced seizures. The sedative/ataxic effect of racemic HA-966 was mainly attributable to the (-)-enantiomer. It is suggested that, as in the case of the sedative γ-butyrolactone, disruption of striatal dopaminergic mechanisms may be responsible for this action

  4. On the mechanism of aluminum ion-induced neurotoxicity: The effects of aluminum species on G-protein-mediated processes and on drug interactions with the N-methyl-D-aspartate modulated ionophore

    International Nuclear Information System (INIS)

    Hubbard, C.M.

    1989-01-01

    To establish what effects Al 3+ may have on G-protein mediate signal transduction, the effects of Al 3+ on the signal-coupling G-protein from retinal rod outer segments (G t or transducin) have been investigated as a model for the effects of Al 3+ on signal transduction by G-proteins in general. In this investigation, we have studied the effects of Al 3+ on the isolated, light-dependent rhodopsin catalyzed GTP-GDP exchange on G t ; the light-dependent GTPase activity of G t ; the light-independent cGMP hydrolysis by PDE; and the light activated, rhodopsin catalyzed, cGMP hydrolysis by PDE in vitro. To determine the effects of two defined species of aluminum on N-methyl-D-aspartic acid (NMDA) receptor-channel modulation we utilized a specific radioligand binding assay. This allowed us to compare the effects of aluminum to other metal ions on specific [ 3 H]MK-801 binding to the NMDA receptor-channel complex. This complex is involved in long-term potentiation, which is currently being investigated as the mechanism by which learning and memory occur and has been implicated in the pathology of Alzheimer's disease. We have investigated the effects of two different species of aluminum, as well as Ca 2+ , Zn 2+ , Mg 2+ , and Li + on the specific binding of [ 3 H]MK-801 to the NMDA receptor-channel complex under depolarized conditions

  5. Investigation of antidepressant-like and anxiolytic-like actions and cognitive and motor side effects of four N-methyl-D-aspartate receptor antagonists in mice

    DEFF Research Database (Denmark)

    Refsgaard, Louise Konradsen; Pickering, Darryl S; Andreasen T., Jesper

    2017-01-01

    antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity...... test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty......-induced hypophagia test, citalopram and MK-801 showed anxiogenic-like action. All NMDAR antagonists induced hyperactivity. The high doses of ketamine and MK-801 impaired performance in the modified Y-maze test, whereas S-ketamine and RO 25-6891 showed no effects in this test. Only MK-801 impaired rotarod performance...

  6. Prolonged ketamine exposure induces increased activity of the GluN2B-containing N-methyl-d-aspartate receptor in the anterior cingulate cortex of neonatal rats.

    Science.gov (United States)

    Kokane, Saurabh S; Gong, Kerui; Jin, Jianhui; Lin, Qing

    2017-09-01

    Ketamine is a commonly used anesthetic among pediatric patients due to its high efficacy. However, it has been demonstrated by several preclinical studies that, widespread accelerated programmed death of neurons (neuroapoptosis) occurs due to prolonged or repeated exposure to ketamine specifically in the neonatal brain. Therefore, an emphasis on understanding the molecular mechanisms underlying this selective vulnerability of the neonatal brain to ketamine-induced neuroapoptosis becomes important in order to identify potential therapeutic targets, which would help prevent or at least ameliorate this neuroapoptosis. In this study, we demonstrated that repeated ketamine administration (6 injections of 20mg/kg dose given over 12h time period) in neonatal (postnatal day 7; PND 7) Sprague-Dawley rats induced a progressive increase in N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs) in the neurons of the anterior cingulate cortex (ACC) for up to 6h after the last ketamine dose. Specifically, we observed that the increased EPSCs were largely mediated by GluN2B-containing NMDARs in the neurons of the ACC. Along with increased synaptic transmission, there was also a significant increase in the expression of the GluN2B-containing NMDARs as well. Taken together, these results showed that after repeated exposure to ketamine, the synaptic transmission mediated by GluN2B-containing NMDARs was significantly increased in the neonatal brain. This was significant as it showed for the first time that ketamine had subunit-specific effects on GluN2B-containing NMDARs, potentially implicating the involvement of these subunits in the increased vulnerability of immature neurons of the neonatal brain to ketamine-induced neuroapoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The effects of an intraperitoneal single low dose of ketamine in attenuating the postoperative skin/muscle incision and retraction-induced pain related to the inhibition of N-methyl-D-aspartate receptors in the spinal cord.

    Science.gov (United States)

    Shen, Yu; Xu, Li; Liu, Ming; Lei, Yishan; Gu, Xiaoping; Ma, Zhengliang

    2016-03-11

    Chronic postoperative pain (CPOP) is a common clinical problem which might be related to central sensitization. It has been widely accepted that NMDA (N-methyl-D-aspartate) receptors are among the triggers of central sensitization. Ketamine is a non-competitive NMDA receptor antagonist that is widely used in alleviating postoperative pain, but its effect on CPOP has been rarely reported. In the present study, the skin/muscle incision and retraction (SMIR) model was used to investigate the role of NMDARs in chronic postoperative pain and the effect of an intraperitoneal single low dose ketamine (10mg/kg) of attenuating SMIR-induced CPOP. We assessed pain behaviours after a SMIR operation by paw withdrawal threshold (PWMT) and paw withdrawal latency (PWMTL). Western blotting were performed to examine the role of NMDARs in SMIR-induced CPOP and the effect of ketamine on the expression and phosphorylation of NMDARs. The SMIR operation induced long-lasting mechanical hyperalgesia, and the up-regulation of phosphorylated NMDARs and total NMDARs at the spinal level. A single intraperitoneal administration of low dose ketamine (10mg/kg) during surgery alleviated pain behaviors and inhibited the up-regulation of phosphorylated NMDARs and total NMDARs. Our datas suggested that NMDARs play important roles in SMIR-induced CPOP. A single intraperitoneal low dose of ketamine could attenuate SMIR-induced CPOP, which might be associated with the inhibition of NMDARs. Our finding might provide a new, simple method of addressing CPOP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Dissociation of thirst and sodium appetite in the furo/cap model of extracellular dehydration and a role for N-methyl-D-aspartate receptors in the sensitization of sodium appetite

    Science.gov (United States)

    Hurley, Seth. W.; Johnson, Alan Kim

    2015-01-01

    Depletion of extracellular fluids motivates many animals to seek out and ingest water and sodium. Animals with a history of extracellular dehydration display enhanced sodium appetite and in some cases thirst. The progressive increase in sodium intake induced by repeated sodium depletions is known as sensitization of sodium appetite. Administration of the diuretic and natriuretic drug, furosemide, along with a low dose of captopril (furo/cap), elicits thirst and a rapid onset of sodium appetite. In the present studies the furo/cap model was used to explore the physiological mechanisms of sensitization of sodium appetite. However, when thirst and sodium appetite were measured concurrently in the furo/cap model, individual rats exhibited sensitization of either thirst or sodium appetite. In subsequent studies, thirst and sodium appetite were dissociated by offering either water prior to sodium or sodium before water. When water and sodium intake were dissociated in time, the furo/cap model reliably produced sensitization of sodium appetite. It is likely that neuroplasticity mediates this sensitization. Glutamatergic N-methyl-d-aspartate receptor (NMDA-R) activation is critical for the development of most forms of neuroplasticity. Therefore, we hypothesized that integrity of NMDA-R function is necessary for the sensitization of sodium appetite. Pharmacological blockade of NMDA-Rs with systemic administration of MK-801 (0.15mg/kg) prevented the sensitization of fluid intake in general when water and sodium were offered concurrently, and prevented sensitization of sodium intake specifically when water and sodium intake were dissociated. The involvement of NMDA-Rs provides support for the possibility that sensitization of sodium appetite is mediated by neuroplasticity. PMID:24341713

  9. MS-377, a selective sigma receptor ligand, indirectly blocks the action of PCP in the N-methyl-D-aspartate receptor ion-channel complex in primary cultured rat neuronal cells.

    Science.gov (United States)

    Karasawa, Jun-ichi; Yamamoto, Hideko; Yamamoto, Toshifumi; Sagi, Naoki; Horikomi, Kazutoshi; Sora, Ichiro

    2002-02-22

    MS-377 ((R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate) is a antipsychotic agent that binds to sigma-1 receptor. MS-377 showed anti-dopaminergic and anti-serotonergic activities and antagonistic action against phencyclidine (PCP)-induced behaviors in an animal model. These anti-psychotic activities of MS-377 are attributable to association with sigma-1 receptor. However, the mechanism by which the sigma-1 receptor ligands exact those numerous effects remains to be elucidated. In the present study, we evaluated the effect of MS-377 on N-methyl-D-aspartate (NMDA) receptor ion-channel complex in primary cultured rat neuronal cells. First, we examined the effect of MS-377 on NMDA-induced Ca2+ influx with fura-2/ AM loaded cells. MS-377 showed no effects on the basal Ca2+ concentration and NMDA-induced Ca2+ influx by itself PCP and SKF-10047 reduced the NMDA-induced increase in intracellular Ca2+ concentration. Pre-incubation of 1 microM MS-377 was found to significantly block the reduction by PCP or SKF-10047 of the NMDA-induced Ca2+ influx. Second, the effect of MS-377 on [3H]MK-801 intact cell binding was examined. PCP, haloperidol and (+)-pentazocine inhibited [3H]MK-801 binding, although MS-377 showed no effect by itself Pre-treatment of MS-377 markedly reversed the inhibition of [3H]MK-801 binding by PCP in a dose-dependent manner. These effects of MS-377 may depend on its affinity for the sigma-1 receptor, because MS-377 is a selective sigma-1 receptor ligand without any affinity for NMDA receptor ion-channel complex. These observations suggest that the MS-377 indirectly modulated the NMDA receptor ion-channel complex, and the anti-psychotic activities of MS-377, in part, are attributable to such on action via sigma-1 receptor.

  10. Clinical utility of circulating anti-N-methyl-d-aspartate receptor subunits NR2A/B antibody for the diagnosis of neuropsychiatric syndromes in systemic lupus erythematosus and Sjögren's syndrome: An updated meta-analysis.

    Science.gov (United States)

    Tay, Sen Hee; Fairhurst, Anna-Marie; Mak, Anselm

    2017-02-01

    Neuropsychiatric (NP) events are found in patients with rheumatic diseases, commonly in systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). The standard nomenclature and case definitions for 19 NPSLE syndromes by the American College of Rheumatology (ACR) Committee on Research cover a wide range of NP events seen in both SLE and SS. Despite advances in the understanding of SLE and SS, NP syndromes continue to pose diagnostic challenges. Correct attribution of NP events is critical in determining the correct treatment and prognosis. Anti-N-methyl- d -aspartate receptor subunits NR2A/B (anti-NR2A/B) antibodies have been demonstrated in the sera of SLE and SS patients and have been associated with collective or specific NP syndromes, though not consistently. Interpretation of anti-NR2A/B antibody data in the medical literature is rendered difficult by small sample size of patient groups. By combining different studies to generate a pooled effect size, a meta-analysis can increase the power to detect differences in the presence or absence of NP syndromes. Hence, we set out to perform a meta-analysis to assess the association between anti-NR2A/B antibodies and NP syndromes in SLE and SS. A literature search was conducted using PubMed and other databases from inception to June 2016. We abstracted data relating to anti-NR2A/B antibodies from the identified studies. The random effects model was used to calculate overall combined odds ratio (OD) with its corresponding 95% confidence interval (CI) to evaluate the relationship between anti-NR2A/B antibodies and NP syndromes in SLE and SS patients with and without NP events. We also included our own cohort of 57 SLE patients fulfilling the ACR 1997 revised classification criteria and 58 healthy controls (HCs). In total, 17 studies with data on anti-NR2A/B antibodies in 2212 SLE patients, 66 SS patients, 99 disease controls (DCs) (e.g. antiphospholipid syndrome, myasthenia gravis and autoimmune polyendocrine

  11. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    Science.gov (United States)

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  12. Temperature dependence of N-methyl-d-aspartate receptor channels and N-methyl-d-aspartate receptor excitatory postsynaptic currents

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Miroslav; Sedláček, Miloslav; Cais, Ondřej; Dittert, Ivan; Vyklický ml., Ladislav

    2010-01-01

    Roč. 165, č. 3 (2010), s. 736-748 ISSN 0306-4522 R&D Projects: GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554; GA ČR(CZ) GA309/07/0271 Grant - others:EC(XE) LSHM-CT-2007-037765 Institutional research plan: CEZ:AV0Z50110509 Keywords : hypothermia * patch-clamp recording Subject RIV: ED - Physiology Impact factor: 3.215, year: 2010

  13. Controversial Effects of D-Amino Acid Oxidase Activator (DAOA)/G72 on D-Amino Acid Oxidase (DAO) Activity in Human Neuronal, Astrocyte and Kidney Cell Lines: The N-methyl D-aspartate (NMDA) Receptor Hypofunction Point of View.

    Science.gov (United States)

    Jagannath, Vinita; Brotzakis, Zacharias Faidon; Parrinello, Michele; Walitza, Susanne; Grünblatt, Edna

    2017-01-01

    Dysfunction of D-amino acid oxidase ( DAO ) and DAO activator ( DAOA )/ G72 genes have been linked to neuropsychiatric disorders. The glutamate hypothesis of schizophrenia has proposed that increased DAO activity leads to decreased D-serine, which subsequently may lead to N-methyl-D-aspartate (NMDA) receptor hypofunction. It has been shown that DAOA binds to DAO and increases its activity. However, there are also studies showing DAOA decreases DAO activity. Thus, the effect of DAOA on DAO is controversial. We aimed to understand the effect of DAOA on DAO activity in neuron-like (SH-SY5Y), astrocyte-like (1321N1) and kidney-like (HEK293) human cell lines. DAO activity was measured based on the release of hydrogen peroxide and its interaction with Amplex Red reagent. We found that DAOA increases DAO activity only in HEK293 cells, but has no effect on DAO activity in SH-SY5Y and 1321N1 cells. This might be because of different signaling pathways, or due to lower DAO and DAOA expression in SH-SY5Y and 1321N1 cells compared to HEK293 cells, but also due to different compartmentalization of the proteins. The lower DAO and DAOA expression in neuron-like SH-SY5Y and astrocyte-like 1321N1 cells might be due to tightly regulated expression, as previously reported in the human post-mortem brain. Our simulation experiments to demonstrate the interaction between DAOA and human DAO (hDAO) showed that hDAO holoenzyme [hDAO with flavine adenine dinucleotide (FAD)] becomes more flexible and misfolded in the presence of DAOA, whereas DAOA had no effect on hDAO apoprotein (hDAO without FAD), which indicate that DAOA inactivates hDAO holoenzyme. Furthermore, patch-clamp analysis demonstrated no effect of DAOA on NMDA receptor activity in NR1/NR2A HEK293 cells. In summary, the interaction between DAO and DAOA seems to be cell type and its biochemical characteristics dependent which still needs to be elucidated.

  14. Controversial Effects of D-Amino Acid Oxidase Activator (DAOA/G72 on D-Amino Acid Oxidase (DAO Activity in Human Neuronal, Astrocyte and Kidney Cell Lines: The N-methyl D-aspartate (NMDA Receptor Hypofunction Point of View

    Directory of Open Access Journals (Sweden)

    Vinita Jagannath

    2017-10-01

    Full Text Available Dysfunction of D-amino acid oxidase (DAO and DAO activator (DAOA/G72 genes have been linked to neuropsychiatric disorders. The glutamate hypothesis of schizophrenia has proposed that increased DAO activity leads to decreased D-serine, which subsequently may lead to N-methyl-D-aspartate (NMDA receptor hypofunction. It has been shown that DAOA binds to DAO and increases its activity. However, there are also studies showing DAOA decreases DAO activity. Thus, the effect of DAOA on DAO is controversial. We aimed to understand the effect of DAOA on DAO activity in neuron-like (SH-SY5Y, astrocyte-like (1321N1 and kidney-like (HEK293 human cell lines. DAO activity was measured based on the release of hydrogen peroxide and its interaction with Amplex Red reagent. We found that DAOA increases DAO activity only in HEK293 cells, but has no effect on DAO activity in SH-SY5Y and 1321N1 cells. This might be because of different signaling pathways, or due to lower DAO and DAOA expression in SH-SY5Y and 1321N1 cells compared to HEK293 cells, but also due to different compartmentalization of the proteins. The lower DAO and DAOA expression in neuron-like SH-SY5Y and astrocyte-like 1321N1 cells might be due to tightly regulated expression, as previously reported in the human post-mortem brain. Our simulation experiments to demonstrate the interaction between DAOA and human DAO (hDAO showed that hDAO holoenzyme [hDAO with flavine adenine dinucleotide (FAD] becomes more flexible and misfolded in the presence of DAOA, whereas DAOA had no effect on hDAO apoprotein (hDAO without FAD, which indicate that DAOA inactivates hDAO holoenzyme. Furthermore, patch-clamp analysis demonstrated no effect of DAOA on NMDA receptor activity in NR1/NR2A HEK293 cells. In summary, the interaction between DAO and DAOA seems to be cell type and its biochemical characteristics dependent which still needs to be elucidated.

  15. Impaired GABAergic Inhibition in the Prefrontal Cortex of Early Postnatal Phencyclidine (PCP)-Treated Rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Broberg, Brian V; Kristiansen, Uffe

    2014-01-01

    A compromised ¿-aminobutyric acid (GABA)ergic system is hypothesized to be part of the underlying pathophysiology of schizophrenia. N-methyl-d-aspartate (NMDA) receptor hypofunction during neurodevelopment is proposed to disrupt maturation of interneurons causing an impaired GABAergic transmissio...... postnatal PCP-treated rats and support the hypothesis that PCP administration during neurodevelopment affects the functionality of interneurons in later life....

  16. Persistent deficits in hippocampal synaptic plasticity accompany losses of hippocampus-dependent memory in a rodent model of psychosis

    Directory of Open Access Journals (Sweden)

    Valentina eWiescholleck

    2013-03-01

    Full Text Available Irreversible N-methyl-D-aspartate receptor (NMDAR antagonism is known to provoke symptoms of psychosis and schizophrenia in healthy humans. NMDAR hypofunction is believed to play a central role in the pathophysiology of both disorders and in an animal model of psychosis, that is based on irreversible antagonism of NMDARs, pronounced deficits in hippocampal synaptic plasticity have been reported shortly after antagonist treatment. Here, we examined the long-term consequences for long-term potentiation (LTP of a single acute treatment with an irreversible antagonist and investigated whether deficits are associated with memory impairments.The ability to express long-term potentiation (LTP at the perforant pathway – dentate gyrus synapse, as well as object recognition memory was assessed 1, 2, 3 and 4 weeks after a single -treatment of the antagonist, MK801. Here, LTP in freely behaving rats was significantly impaired at all time-points compared to control LTP before treatment. Object recognition memory was also significantly poorer in MK801-treated compared to vehicle-treated animals for several weeks after treatment. Histological analysis revealed no changes in brain tissue.Taken together, these data support that acute treatment with an irreversible NMDAR antagonist persistently impairs hippocampal functioning on behavioral, as well as synaptic levels. The long-term deficits in synaptic plasticity may underlie the cognitive impairments that are associated with schizophrenia-spectrum disorders.

  17. The differential role of cortical protein synthesis in taste memory formation and persistence

    Science.gov (United States)

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-05-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n⩾5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P=8.9E-5), but had no effect on LTM persistence when infused 3 days post acquisition (P=0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P=0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-D-aspartate receptor antagonist (P=0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

  18. Glufosinate ammonium induces convulsion through N-methyl-D-aspartate receptors in mice.

    Science.gov (United States)

    Matsumura, N; Takeuchi, C; Hishikawa, K; Fujii, T; Nakaki, T

    2001-05-18

    Glufosinate ammonium, a broad-spectrum herbicide, causes convulsion in rodents and humans. Because of the structural similarities between glufosinate and glutamate, the convulsion induced by glufosinate ammonium may be ascribed to glutamate receptor activation. Three N-methyl-D-asparate (NMDA) receptor antagonists, dizocilpine, LY235959, and Compound 40, and an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptor antagonist, NBQX, were coadministrated with glufosinate ammonium (80 mg/kg, intraperitoneally) in mice. Statistical analyses showed that the NMDA receptor antagonists markedly inhibited the convulsions, while the AMPA/kainate receptor antagonist had no effect on the convulsion. These results suggest that the convulsion caused by glufosinate ammonium is mediated through NMDA receptors.

  19. The pharmacology of tacrine at N-methyl-D-aspartate receptors

    Czech Academy of Sciences Publication Activity Database

    Horák, Martin; Holubová, K.; Nepovímová, E.; Krůšek, Jan; Kaniaková, Martina; Korábečný, J.; Vyklický ml., Ladislav; Kuča, K.; Stuchlík, Aleš; Říčný, J.; Valeš, K.; Soukup, O.

    2017-01-01

    Roč. 75, Apr 3 (2017), s. 54-62 ISSN 0278-5846 R&D Projects: GA ČR(CZ) GA16-08554S Institutional support: RVO:67985823 Keywords : tacrine * NMDA receptors * long term potentiation * cognition * M1 activation * multi-target directed ligands Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.187, year: 2016

  20. N-methyl-D-aspartate improved social recognition potency in rats

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2002-01-01

    Roč. 330, č. 3 (2002), s. 227-230 ISSN 0304-3940 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : N-Metyl-D-aspartate * olfactory stimuly * short-term memory Subject RIV: FH - Neurology Impact factor: 2.100, year: 2002

  1. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Jørgensen, Ole Steen; Hack, N

    1988-01-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in t...

  2. Neurosteroid modulation of N-methyl-d-aspartate receptors: Molecular mechanism and behavioral effects

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Miloslav; Kapras, Vojtěch; Vyklický, Vojtěch; Adamusová, Eva; Borovská, Jiřina; Valeš, Karel; Stuchlík, Aleš; Horák, Martin; Chodounská, Hana; Vyklický ml., Ladislav

    2011-01-01

    Roč. 76, č. 13 (2011), s. 1409-1418 ISSN 0039-128X R&D Projects: GA ČR(CZ) GA309/07/0271; GA ČR(CZ) GAP303/11/0075; GA MŠk(CZ) LC554; GA MŠk(CZ) 1M0517; GA MZd(CZ) NS10365; GA ČR(CZ) GPP303/11/P391 Grant - others:GA ČR(CZ) GD309/08/H079 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40550506 Keywords : neurosteroid * glutamate receptor * ion channel Subject RIV: ED - Physiology Impact factor: 2.829, year: 2011

  3. CSF findings in patients with anti-N-methyl-D-aspartate receptor-encephalitis.

    Science.gov (United States)

    Wang, Rui; Guan, Hong-Zhi; Ren, Hai-Tao; Wang, Wei; Hong, Zhen; Zhou, Dong

    2015-07-01

    Anti-NMDAR-encephalitis is a recently described form of autoimmune encephalitis. Here, we characterize CSF changes in Chinese patients with anti-NMDAR encephalitis, and explore the relationship between CSF findings and disease outcome. The presence of NMDAR antibodies in serum or CSF samples was evaluated in patients diagnosed with encephalitis between October 1, 2010 and August 1, 2014 at the West China Hospital. All patients fulfilling our diagnostic criteria were included and CSF findings were analyzed. Patient outcome was assessed after 4, 8, 12, 16, 20, and 24 months using the modified Rankin scale (mRS). Out of 3000 people with encephalitis screened, 43 patients were anti-NMDAR antibody positive in CSF or serum and included in this study. 62.8% of the patients identified with positive CSFs had positive serum anti-NMDAR samples, while 100% patients with positive serum had positive CSF samples. In the CSF white cell counts were elevated in 58.1% of cases; protein was increased in 18.6%; QAlb>Qlim(Alb) of the blood-CSF barrier was found in 29.3%; intrathecal immunoglobulin synthesis was detected in 17.1%, and 39.5% patients exhibited increased CSF pressures. A longer follow-up period was associated with better outcomes. There was no relationship between changes in CSF findings and outcome. The sensitivity of NMDA receptor antibody testing is higher in CSF compared to serum. Other CSF abnormalities are present in some patients with Anti-NMDAR-encephalitis, however these changes do not appear to affect prognosis. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. Pregnenolone sulfate modulation of N-methyl-d-aspartate receptors is phosphorylation dependent

    Czech Academy of Sciences Publication Activity Database

    Petrovič, Miloš; Sedláček, Miloslav; Cais, Ondřej; Horák, Martin; Chodounská, Hana; Vyklický ml., Ladislav

    2009-01-01

    Roč. 160, č. 3 (2009), s. 616-628 ISSN 0306-4522 R&D Projects: GA ČR(CZ) GA309/07/0271; GA ČR(CZ) GA203/08/1498; GA MŠk(CZ) LC554; GA MŠk(CZ) 1M0517 Grant - others:EC(XE) LSHM-CT-2007-037765 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40550506 Keywords : NMDA * patch-clamp * phosphorylation Subject RIV: ED - Physiology Impact factor: 3.292, year: 2009

  5. Anti-N-Methyl-d-Aspartate receptor (NMDAR encephalitis during pregnancy: Clinical analysis of reported cases

    Directory of Open Access Journals (Sweden)

    Yan-Chao Shi

    2017-06-01

    Conclusions: Clinical analysis of the data indicates that most patients respond to first-line immunotherapy. A second-line immunotherapy is effective when first-line immunotherapy fails. It has also been found that most mothers and newborns can have good outcomes.

  6. Effects of the N-methyl-D-Aspartate receptor antagonist dextromethorphan on vibrotactile adaptation

    Directory of Open Access Journals (Sweden)

    Folger Stephen E

    2008-09-01

    Full Text Available Abstract Background Previous reports have demonstrated that short durations of vibrotactile stimuli (less than or equal to 2 sec effectively and consistently modify both the perceptual response in humans as well as the neurophysiological response in somatosensory cortex. The change in cortical response with adaptation has been well established by a number of studies, and other reports have extended those findings in determining that both GABA- and NMDAR-mediated neurotransmission play a significant role in the dynamic response of somatosensory cortical neurons. In this study, we evaluated the impact that dextromethorphan (DXM, an NMDAR antagonist, had on two distinct vibrotactile adaptation tasks. Results All subjects, both those that ingested 60 mg DXM and those that ingested placebo, were evaluated for their amplitude discriminative capacity between two simultaneously delivered vibrotactile stimuli both with and without 3 conditions of pre-exposure to adapting stimulation. The results demonstrated that the perceptual metrics of subjects who ingested 60 mg DXM were significantly altered from that of controls when the amplitude discrimination task followed one of the conditions of adapting stimulation. Without the condition of pre-exposure to an adapting stimulus (or stimuli, there was little difference between the observations obtained from the subjects that ingested DXM and controls. Peak impact on subject response occurred at 60 min post-ingestion, whereas the scores of controls who ingested placebo were not impacted. Conclusion The results – that DXM blocks vibrotactile adaptation – is consistent with the suggestion that NMDAR-mediated neurotransmission plays a significant role in the perceptual adaptive response. This finding is also consistent with neurophysiological findings that report observations of the effects of NMDAR block on the SI cortical response to repetitive vibrotactile stimulation.

  7. N-Hydroxypyrazolyl glycine derivatives as selective N-methyl-D-aspartic acid receptor ligands

    DEFF Research Database (Denmark)

    Clausen, Rasmus Prætorius; Christensen, Caspar; Hansen, Kasper Bø

    2008-01-01

    A series of analogues based on N-hydroxypyrazole as a bioisostere for the distal carboxylate group of aspartate have been designed, synthesized, and pharmacologically characterized. Affinity studies on the major glutamate receptor subgroups show that these 4-substituted N-hydroxypyrazol-5-yl glyc...

  8. The Role of Brain-Reactive Autoantibodies in Brain Pathology and Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Simone Mader

    2017-09-01

    Full Text Available Antibodies to different brain proteins have been recently found to be associated with an increasing number of different autoimmune diseases. They need to penetrate the blood–brain barrier (BBB in order to bind antigens within the central nervous system (CNS. They can target either neuronal or non-neuronal antigen and result in damage either by themselves or in synergy with other inflammatory mediators. Antibodies can lead to acute brain pathology, which may be reversible; alternatively, they may trigger irreversible damage that persists even though the antibodies are no longer present. In this review, we will describe two different autoimmune conditions and the role of their antibodies in causing brain pathology. In systemic lupus erythematosus (SLE, patients can have double stranded DNA antibodies that cross react with the neuronal N-methyl-d-aspartate receptor (NMDAR, which have been recently linked to neurocognitive dysfunction. In neuromyelitis optica (NMO, antibodies to astrocytic aquaporin-4 (AQP4 are diagnostic of disease. There is emerging evidence that pathogenic T cells also play an important role for the disease pathogenesis in NMO since they infiltrate in the CNS. In order to enable appropriate and less invasive treatment for antibody-mediated diseases, we need to understand the mechanisms of antibody-mediated pathology, the acute and chronic effects of antibody exposure, if the antibodies are produced intrathecally or systemically, their target antigen, and what triggers their production. Emerging data also show that in utero exposure to some brain-reactive antibodies, such as those found in SLE, can cause neurodevelopmental impairment since they can penetrate the embryonic BBB. If the antibody exposure occurs at a critical time of development, this can result in irreversible damage of the offspring that persists throughout adulthood.

  9. Mechanisms of Acupuncture-Electroacupuncture on Persistent Pain

    Science.gov (United States)

    Zhang, Ruixin; Lao, Lixing; Ren, Ke; Berman, Brian M.

    2014-01-01

    In the last decade, preclinical investigations of electroacupuncture mechanisms on persistent tissue-injury (inflammatory), nerve-injury (neuropathic), cancer, and visceral pain have increased. These studies show that electroacupuncture activates the nervous system differently in health than in pain conditions, alleviates both sensory and affective inflammatory pain, and inhibits inflammatory and neuropathic pain more effectively at 2–10 Hz than at 100 Hz. Electroacupuncture blocks pain by activating a variety of bioactive chemicals through peripheral, spinal, and supraspinal mechanisms. These include opioids, which desensitize peripheral nociceptors and reduce pro-inflammatory cytokines peripherally and in the spinal cord, and serotonin and norepinephrine, which decrease spinal n-methyl-d-aspartate receptor subunit GluN1 phosphorylation. Additional studies suggest that electroacupuncture, when combined with low dosages of conventional analgesics, provides effective pain management that can forestall the side effects of often-debilitating pharmaceuticals. PMID:24322588

  10. Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus

    Czech Academy of Sciences Publication Activity Database

    Bendová, Zdeňka; Sumová, Alena; Mikkelsen, J. D.

    2009-01-01

    Roč. 159, č. 2 (2009), s. 599-609 ISSN 0306-4522 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA309/08/0503 Grant - others:EC(XE) LSH-2004-115-4-018741 Institutional research plan: CEZ:AV0Z50110509 Keywords : circadian clock * ontogenesis * photic entrainment Subject RIV: FH - Neuro logy Impact factor: 3.292, year: 2009

  11. Addiction-like Synaptic Impairments in Diet-Induced Obesity.

    Science.gov (United States)

    Brown, Robyn Mary; Kupchik, Yonatan Michael; Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2017-05-01

    There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction. Sprague Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed ratio 1, 3, and 5 and progressive ratio schedules. Subsequently, nucleus accumbens brain slices were prepared, and we tested for changes in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate currents and the ability to exhibit long-term depression. We found that propensity to develop DIO is linked to deficits in the ability to induce long-term depression in the nucleus accumbens, as well as increased potentiation at these synapses as measured by AMPA/N-methyl-D-aspartate currents. Consistent with these impairments, we observed addictive-like behavior in DIO-prone rats, including 1) heightened motivation for palatable food; 2) excessive intake; and 3) increased food seeking when food was unavailable. Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  12. Neurosteroid-like Inhibitors of N-Methyl-D-aspartate Receptor: Substituted 2-Sulfates and 2-Hemisuccinates of Perhydrophenanthrene

    Czech Academy of Sciences Publication Activity Database

    Slavíková, Barbora; Chodounská, Hana; Nekardová, Michaela; Vyklický, Vojtěch; Ladislav, Marek; Hubálková, Pavla; Krausová, Barbora; Vyklický ml., Ladislav; Kudová, Eva

    2016-01-01

    Roč. 59, č. 10 (2016), s. 4724-4739 ISSN 0022-2623 R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GAP303/12/1464; GA MŠk(CZ) LQ1604; GA ČR(CZ) GBP208/12/G016; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : NMDA receptor * 3 alpha 5 beta-pregnanolone glutamate * noncovalent complexes Subject RIV: CC - Organic Chemistry ; ED - Physiology (FGU-C) Impact factor: 6.259, year: 2016

  13. Effect of N-Methyl-D-Aspartate Receptor Antagonist Dextromethorphan on Opioid Analgesia in Pediatric Intensive Care Unit.

    Science.gov (United States)

    Naeem, Mohammed; Al Alem, Hala; Al Shehri, Ali; Al-Jeraisy, Majed

    2016-01-01

    Objective . Pain control is an essential goal in the management of critical children. Narcotics are the mainstay for pain control. Patients frequently need escalating doses of narcotics. In such cases an adjunctive therapy may be beneficial. Dextromethorphan (DM) is NMDA receptor antagonist and may prevent tolerance to narcotics; however, its definitive role is still unclear. We sought whether dextromethorphan addition could decrease the requirements of fentanyl to control pain in critical children. Design . Double-blind, randomized control trial (RCT). Setting . Pediatric multidisciplinary ICU in tertiary care center. Patients . Thirty-six pediatric patients 2-14 years of age in a multidisciplinary PICU requiring analgesia were randomized into dextromethorphan and placebo. The subjects in both groups showed similarity in most of the characteristics. Interventions . Subjects while receiving fentanyl for pain control received dextromethorphan or placebo through nasogastric/orogastric tubes for 96 hours. Pain was assessed using FLACC and faces scales. Measurements and Main Results . This study found no statistical significant difference in fentanyl requirements between subjects receiving dextromethorphan and those receiving placebo ( p = 0.127). Conclusions . Dextromethorphan has no effect on opioid requirement for control of acute pain in children admitted with acute critical care illness in PICU. The registration number for this trial is NCT01553435.

  14. Effect of N-Methyl-D-Aspartate Receptor Antagonist Dextromethorphan on Opioid Analgesia in Pediatric Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Mohammed Naeem

    2016-01-01

    Full Text Available Objective. Pain control is an essential goal in the management of critical children. Narcotics are the mainstay for pain control. Patients frequently need escalating doses of narcotics. In such cases an adjunctive therapy may be beneficial. Dextromethorphan (DM is NMDA receptor antagonist and may prevent tolerance to narcotics; however, its definitive role is still unclear. We sought whether dextromethorphan addition could decrease the requirements of fentanyl to control pain in critical children. Design. Double-blind, randomized control trial (RCT. Setting. Pediatric multidisciplinary ICU in tertiary care center. Patients. Thirty-six pediatric patients 2–14 years of age in a multidisciplinary PICU requiring analgesia were randomized into dextromethorphan and placebo. The subjects in both groups showed similarity in most of the characteristics. Interventions. Subjects while receiving fentanyl for pain control received dextromethorphan or placebo through nasogastric/orogastric tubes for 96 hours. Pain was assessed using FLACC and faces scales. Measurements and Main Results. This study found no statistical significant difference in fentanyl requirements between subjects receiving dextromethorphan and those receiving placebo (p=0.127. Conclusions. Dextromethorphan has no effect on opioid requirement for control of acute pain in children admitted with acute critical care illness in PICU. The registration number for this trial is NCT01553435.

  15. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors

    DEFF Research Database (Denmark)

    Kvist, Trine; Greenwood, Jeremy R; Hansen, Kasper B

    2013-01-01

    . In the subsequent pharmacological evaluation of 99 selected compounds, we identified 6-hydroxy-[1,2,5]oxadiazolo[3,4-b]pyrazin-5(4H)-one (TK80) a novel competitive antagonist with preference for the GluN3B subunit. Serendipitously, we also identified [2-hydroxy-5-((4-(pyridin-3-yl)thiazol-2-yl)amino]benzoic acid...... (TK13) and 4-(2,4-dichlorobenzoyl)-1H-pyrrole-2-carboxylic acid (TK30), two novel non-competitive GluN3 antagonists. These findings demonstrate that structural differences between the orthosteric binding site of GluN3 and GluN1 can be exploited to generate selective ligands....

  16. Modified peptides as potent inhibitors of the postsynaptic density-95/N-methyl-D-aspartate receptor interaction

    DEFF Research Database (Denmark)

    Bach, Anders; Chi, Celestine N.; Olsen, Thomas B.

    2008-01-01

    and unnatural amino acids, which disclosed a tripeptide with micromolar affinity and N-methylated tetrapeptides with improved affinities. Molecular modeling studies guided further N-terminal modifications and introduction of a range of N-terminal substitutions dramatically improved affinity. The best compound...

  17. Afferent input selects NMDA receptor subtype to determine the persistency of hippocampal LTP in freely behaving mice

    Directory of Open Access Journals (Sweden)

    Jesús Javier Ballesteros

    2016-10-01

    Full Text Available The glutamatergic N-methyl-D-aspartate receptor (NMDAR is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2 mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory performance. Furthermore, studies of synaptic plasticity, in genetically modified mice in vitro, suggest that GluN2A and GluN2B may contribute in different ways to the induction and longevity of synaptic plasticity. In contrast to the hippocampal slice preparation, in behaving mice, the afferent frequencies that induce synaptic plasticity are very restricted and specific. In fact, it is the stimulus pattern, and not variations in afferent frequency that determine the longevity of long-term potentiation (LTP. Here, we explored the contribution of GluN2A and GluN2B to LTP of differing magnitudes and persistencies in freely behaving mice. We applied differing high-frequency stimulation (HFS patterns at 100 Hz to the hippocampal CA1 region, to induce NMDAR-dependent LTP in wild-type (WT mice, that endured for 24h (late (L-LTP. In GluN2A-KO mice, E-LTP (HFS, 50 pulses was significantly reduced in magnitude and duration, whereas LTP (HFS, 2 x 50 pulses and L-LTP (HFS, 4 x 50 pulses were unaffected compared to responses in WT animals. By contrast, pharmacological antagonism of GluN2B in WT had no effect on E-LTP but significantly prevented LTP. E- LTP and LTP were significantly impaired by GluN2B antagonism in GluN2A-KO mice. These data indicate that the pattern of afferent stimulation is decisive for the recruitment of distinct GluN2A and GluN2B signaling pathways that in turn determine the persistency of hippocampal LTP. Whereas brief bursts of patterned stimulation preferentially recruit GluN2A and lead to weak and short-lived forms of LTP, prolonged, more intense, afferent activation recruits GluN2B

  18. The Effect of an NCAM Mimetic on Learning and Memory Impairment in an Animal Model of Schizophrenia

    DEFF Research Database (Denmark)

    Secher, Thomas

    2009-01-01

    by immunohistochemical investigation of neurodegeneration and NMDA receptor activation in relevant brain regions. The results show that neonatal PCP treatment induces long-term impairment in spatial learning and memory. The higher PCP dose produced more robust deficits in all three tasks of the water maze, whereas...... for schizophrenia. Neonatal treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP) on postnatal days 7, 9, and 11 has been shown to induce acute neurodegeneration and long-term cognitive deficits and other behavioral abnormalities relevant to schizophrenia. To evaluate the effect...... results indicated that FGL treatment was able to reduce apoptotic cell death in the frontal cortex in pups and to increase NMDA receptor activation in the hippocampus in adults In the present project, further evidence was obtained that neonatal PCP treatment induces long-term impairment in spatial...

  19. A methoxydiphenidine-impaired driver.

    Science.gov (United States)

    Stachel, Nicole; Jacobsen-Bauer, Andrea; Skopp, Gisela

    2016-03-01

    Methoxydiphenidine (MXP) was first reported in 1989 as a dissociative anesthetic but did not enter the market for pharmaceuticals. The substance re-appeared in 2013 as a new psychoactive substance. A case of driving under the influence of MXP is reported. The concentration of MXP has been determined from a serum sample (57 ng/mL) by liquid chromatography tandem mass spectrometry following liquid-liquid extraction. In addition, amphetamine, methylenedioxymethamphetamine, and its major metabolite were present in concentrations of 111, 28, and 3 ng/mL, respectively. The subject presented with amnesia, out-of-body experiences, bizarre behavior, and decreased motor abilities. At present, information on human toxicity of MXP is not available. MXP is comparable in structure as well as in action at the N-methyl-D-aspartate (NMDA) receptor to phencyclidine or ketamine. Therefore, it is likely that MXP exerts similar severe psychotropic action in man. However, there is no information on the duration and intensity of MXP's impairing effects, the interpretation of a particular concentration in the blood or serum, and its detectability in routine drug screenings. Confirmation analysis may be confined to cases where the police has specific intelligence that points to MXP use.

  20. Selective cognitive impairments associated with NMDA receptor blockade in humans.

    Science.gov (United States)

    Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A

    2005-03-01

    Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.

  1. Persistent G. lamblia impairs growth in a murine malnutrition model.

    Science.gov (United States)

    Bartelt, Luther A; Roche, James; Kolling, Glynis; Bolick, David; Noronha, Francisco; Naylor, Caitlin; Hoffman, Paul; Warren, Cirle; Singer, Steven; Guerrant, Richard

    2013-06-01

    Giardia lamblia infections are nearly universal among children in low-income countries and are syndemic with the triumvirate of malnutrition, diarrhea, and developmental growth delays. Amidst the morass of early childhood enteropathogen exposures in these populations, G. lamblia–specific associations with persistent diarrhea, cognitive deficits, stunting, and nutrient deficiencies have demonstrated conflicting results, placing endemic pediatric giardiasis in a state of equipoise. Many infections in endemic settings appear to be asymptomatic/ subclinical, further contributing to uncertainty regarding a causal link between G. lamblia infection and developmental delay. We used G. lamblia H3 cyst infection in a weaned mouse model of malnutrition to demonstrate that persistent giardiasis leads to epithelial cell apoptosis and crypt hyperplasia. Infection was associated with a Th2-biased inflammatory response and impaired growth. Malnutrition accentuated the severity of these growth decrements. Faltering malnourished mice exhibited impaired compensatory responses following infection and demonstrated an absence of crypt hyperplasia and subsequently blunted villus architecture. Concomitantly, severe malnutrition prevented increases in B220+ cells in the lamina propria as well as mucosal Il4 and Il5 mRNA in response to infection. These findings add insight into the potential role of G. lamblia as a "stunting" pathogen and suggest that, similarly, malnourished children may be at increased risk of G. lamblia– potentiated growth decrements.

  2. Occurrence and predictors of persistent impaired glucose tolerance after acute ischemic stroke or transient ischemic attack

    OpenAIRE

    Fonville, Susanne; Hertog, Heleen; Zandbergen, Adrienne; Koudstaal, Peter Jan; Lingsma, Hester

    2014-01-01

    textabstractBackground Impaired glucose tolerance is often present in patients with a transient ischemic attack (TIA) or ischemic stroke and doubles the risk of recurrent stroke. This impaired glucose tolerance can be transient, reflecting an acute stress response, or persistent, representing undiagnosed impaired glucose metabolism possibly requiring treatment. We aimed to assess the occurrence of persistent impaired glucose tolerance after a stroke or TIA and to develop a prediction model to...

  3. Including persistency of impairment in mild cognitive impairment classification enhances prediction of 5-year decline.

    Science.gov (United States)

    Vandermorris, Susan; Hultsch, David F; Hunter, Michael A; MacDonald, Stuart W S; Strauss, Esther

    2011-02-01

    Although older adults with Mild Cognitive Impairment (MCI) show elevated rates of conversion to dementia as a group, heterogeneity of outcomes is common at the individual level. Using data from a prospective 5-year longitudinal investigation of cognitive change in healthy older adults (N = 262, aged 64-92 years), this study addressed limitations in contemporary MCI identification procedures which rely on single occasion assessment ("Single-Assessment [SA] MCI") by evaluating an alternate operational definition of MCI requiring evidence of persistent cognitive impairment over multiple-testing sessions ("Multiple-Assessment [MA] MCI"). As hypothesized, prevalence of SA-MCI exceeded that of MA-MCI. Further, the MA-MCI groups showed lower baseline cognitive and functional performance and steeper cognitive decline compared with Control and SA-MCI group. Results are discussed with reference to retest effects and clinical implications.

  4. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    Science.gov (United States)

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  5. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    Directory of Open Access Journals (Sweden)

    Julia D I Meuwese

    Full Text Available Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  6. Kynurenine pathway and cognitive impairments in schizophrenia: Pharmacogenetics of galantamine and memantine

    Directory of Open Access Journals (Sweden)

    Maju Mathew Koola

    2016-06-01

    Full Text Available The Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS project designed to facilitate the development of new drugs for the treatment of cognitive impairments in people with schizophrenia, identified three drug mechanisms of particular interest: dopaminergic, cholinergic, and glutamatergic. Galantamine is an acetylcholinesterase inhibitor and a positive allosteric modulator of the α7 nicotinic receptors. Memantine is an N-methyl-D-aspartate (NMDA receptor antagonist. There is evidence to suggest that the combination of galantamine and memantine may be effective in the treatment of cognitive impairments in schizophrenia. There is a growing body of evidence that excess kynurenic acid (KYNA is associated with cognitive impairments in schizophrenia. The α-7 nicotinic and the NMDA receptors may counteract the effects of kynurenic acid (KYNA resulting in cognitive enhancement. Galantamine and memantine through its α-7 nicotinic and NMDA receptors respectively may counteract the effects of KYNA thereby improving cognitive impairments. The Single Nucleotide Polymorphisms in the Cholinergic Receptor, Nicotinic, Alpha 7 gene (CHRNA7, Glutamate (NMDA Receptor, Metabotropic 1 (GRM1 gene, Dystrobrevin Binding Protein 1 (DTNBP1 and kynurenine 3-monooxygenase (KMO gene may predict treatment response to galantamine and memantine combination for cognitive impairments in schizophrenia in the kynurenine pathway.

  7. Vigabatrin but not valproate prevents development of age-specific flexion seizures induced by N-methyl-d-aspartate (NMDA) in immature rats

    Czech Academy of Sciences Publication Activity Database

    Kubová, Hana; Mareš, Pavel

    2010-01-01

    Roč. 51, č. 3 (2010), s. 469-472 ISSN 0013-9580 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA305/06/0713 Institutional research plan: CEZ:AV0Z50110509 Keywords : epileptic seizures * ontogeny * antiepileptic drugs Subject RIV: FH - Neurology Impact factor: 3.955, year: 2010

  8. The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-gamma.

    Science.gov (United States)

    Gurd, J W; Bissoon, N

    1997-08-01

    The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-gamma (PLC-gamma). A glutathione S-transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-gamma was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-gamma and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.

  9. FBXO22 Protein Is Required for Optimal Synthesis of the N-Methyl-d-Aspartate (NMDA) Receptor Coagonist d-Serine

    DEFF Research Database (Denmark)

    Dikopoltsev, Elena; Foltyn, Veronika N; Zehl, Martin

    2014-01-01

    d-Serine is a physiological activator of NMDA receptors (NMDARs) in the nervous system that mediates several NMDAR-mediated processes ranging from normal neurotransmission to neurodegeneration. d-Serine is synthesized from l-serine by serine racemase (SR), a brain-enriched enzyme. However, little......, SR interacts preferentially with free FBXO22 species. In vivo ubiquitination and SR half-life determination indicate that FBXO22 does not target SR to the proteasome system. FBXO22 primarily affects SR subcellular localization and seems to increase d-serine synthesis by preventing the association...... is known about the regulation of d-serine synthesis. We now demonstrate that the F-box only protein 22 (FBXO22) interacts with SR and is required for optimal d-serine synthesis in cells. Although FBXO22 is classically associated with the ubiquitin system and is recruited to the Skip1-Cul1-F-box E3 complex...

  10. Anticonvulsant effect of minocycline on pentylenetetrazole-induced seizure in mice: involvement of nitric oxide and N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Amini-Khoei, Hossein; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Haj-Mirzaian, Arvin; Shirzadian, Armin; Hasanvand, Amin; Balali-Dehkordi, Shima; Hassanipoor, Mahsa; Dehpour, Ahmad Reza

    2018-03-20

    Anticonvulsant effects of minocycline have been explored recently. This study was designed to examine the anticonvulsant effect of acute administration of minocycline on pentylenetetrazole (PTZ)-induced seizures in mouse considering the possible role of nitric oxide (NO)/NMDA pathway. We induced seizure using intravenous administration of PTZ. Our results showed that acute administration of minocycline increased the seizure threshold. Furthermore, co-administration of sub-effective doses of the non-selective nitric oxide synthase (NOS) inhibitor, L-NAME (10 mg/kg) and the neuronal NOS inhibitor, 7-nitroindazole (40 mg/kg) enhanced the anticonvulsant effect of sub-effective dose of minocycline (40 mg/kg). We found that inducible NOS inhibitor, aminoguanidine (100 mg/kg), had no effect on the anti-seizure effect of minocycline. Moreover, L-arginine (60 mg/kg), as a NOS substrate, reduced the anticonvulsant effect of minocycline. We also demonstrated that pretreatment with NMDA receptor antagonists, ketamine (0.5 mg/kg) and MK-801 (0.05 mg/kg) increased the anticonvulsant effect of sub-effective dose of minocycline. Results showed that minocycline significantly decreased the hippocampal nitrite level. Furthermore, co-administration of nNOS inhibitor like NMDA receptor antagonists augmented the effect of minocycline on the hippocampal nitrite level. In conclusion, we revealed that anticonvulsant effect of minocycline might be, at least in part, due to decline in constitutive hippocampal nitric oxide activity as well as inhibition of NMDA receptors.

  11. A New Class of Potent N-Methyl-D-Aspartate Receptor Inhibitors: Sulfated Neuroactive Steroids with Lipophilic D-Ring Modifications

    Czech Academy of Sciences Publication Activity Database

    Kudová, Eva; Chodounská, Hana; Slavíková, Barbora; Buděšínský, Miloš; Nekardová, Michaela; Vyklický, Vojtěch; Krausová, Barbora; Švehla, Pavel; Vyklický ml., Ladislav

    2015-01-01

    Roč. 58, č. 15 (2015), s. 5950-5966 ISSN 0022-2623 R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GAP303/12/1464; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : NMDA receptor * noncovalent complexes * neurosteroids Subject RIV: CC - Organic Chemistry Impact factor: 5.589, year: 2015

  12. N-methyl-d-aspartate receptor – nitric oxide synthase pathway in the cortex of Nogo-A-deficient rats in relation to brain laterality and schizophrenia

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Vrajová, M.; Šírová, J.; Valeš, Karel; Petrásek, Tomáš; Schönig, K.; Tews, B.; Schwab, M.; Bartsch, D.; Stuchlík, Aleš; Řípová, D.

    2013-01-01

    Roč. 7, Aug 12 (2013), s. 90 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : Nogo-A * biochemic markers * rat Subject RIV: FH - Neurology Impact factor: 4.160, year: 2013

  13. Augmentation of Anticancer Drug Efficacy in Murine Hepatocellular Carcinoma Cells by a Peripherally Acting Competitive N-Methyl-d-aspartate (NMDA) Receptor Antagonist

    DEFF Research Database (Denmark)

    Gynther, Mikko; Proietti Silvestri, Ilaria; Hansen, Jacob C

    2017-01-01

    -acting ionotropic glutamate receptor antagonist 1a. Subsequently, we demonstrate that 1l augments the cytotoxic action of sorafenib in murine hepatocellular carcinoma cells. The underlying biological mechanism was shown to be interference with the lipid signaling pathway, leading to reduced expression of MDR...

  14. Different effects of two N-methyl-d-aspartate receptor antagonists on seizures, spontaneous behavior, and motor performance in immature rats

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel; Mikulecká, Anna

    2009-01-01

    Roč. 14, č. 1 (2009), s. 32-39 ISSN 1525-5050 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA305/06/1188; GA MŠk(CZ) LN00B122 Institutional research plan: CEZ:AV0Z50110509 Keywords : NMDA receptors * antagonists * developing rat Subject RIV: FH - Neuro logy Impact factor: 2.610, year: 2009

  15. Effects of Electroacupuncture on N-Methyl-D-aspartate Receptor-Related Signaling Pathway in the Spinal Cord of Normal Rats

    Directory of Open Access Journals (Sweden)

    Ha-Neui Kim

    2012-01-01

    rats. Bilateral 2 Hz EA stimulations (1-2-3.0 mA were delivered at acupoints corresponding to Zusanli (ST36 and Sanyinjiao (SP6 in men for 30 min. Thermal sensitization was strongly inhibited by EA, but this analgesia was reduced by preintrathecal injection of the NMDAR antagonist, MK801. Phosphorylation of the NMDAR NR2B subunit, cAMP response element-binding protein (CREB, and especially phosphatidylinositol 3-kinase (PI3K were significantly induced by EA. However, these marked phosphorylations were not observed in MK801-pretreated rats. EA analgesia was reduced by preintrathecal injection with the calcium chelators Quin2 and TMB8, similar to the results evident using MK801. Phosphorylation of PI3K and CREB induced by EA was also inhibited by TMB8. Calcium influx by NMDAR activation may play an important role in EA analgesia of normal rats through the modulation of the phosphorylation of spinal PI3K and CREB.

  16. Two N-glycosylation Sites in the GluN1 Subunit Are Essential for Releasing N-methyl-D-aspartate (NMDA) Receptors from the Endoplasmic Reticulum

    Czech Academy of Sciences Publication Activity Database

    Lichnerová, Katarina; Kaniaková, Martina; Park, S. P.; Skřenková, Kristýna; Wang, Y.- X.; Petralia, R. S.; Suh, Y. H.; Horák, Martin

    2015-01-01

    Roč. 290, č. 30 (2015), s. 18379-18390 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-02219S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : peptide-N-glycosidase * NMDAR * NMDA receptor * endoplasmic reticulum Subject RIV: FH - Neurology Impact factor: 4.258, year: 2015

  17. Crystal structure and pharmacological characterization of a novel N-methyl-D-aspartate (NMDA) receptor antagonist at the GluN1 glycine binding site

    DEFF Research Database (Denmark)

    Kvist, Trine; Steffensen, Thomas Bielefeldt; Greenwood, Jeremy R

    2013-01-01

    NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission in the brain. They are tetrameric complexes composed of glycine-binding GluN1 and GluN3 subunits together with glutamate-binding GluN2 subunits. Subunit-selective antagonists that discriminate between the glyci...... screening. Furthermore, the structure reveals that the imino acetamido group of TK40 acts as an α-amino acid bioisostere, which could be of importance in bioisosteric replacement strategies for future ligand design....

  18. Cell-permeable and plasma-stable peptidomimetic inhibitors of the postsynaptic density-95/N-methyl-D-aspartate receptor interaction

    DEFF Research Database (Denmark)

    Bach, Anders*; Eildal, Jonas Nii Nortey*; Stuhr-Hansen, Nicolai

    2011-01-01

    of this interaction, and here, this template is exploited for the development of blood plasma-stable and cell-permeable inhibitors. Initially, we explored both the amino acid sequence of the tetrapeptide and the nature of the N-alkyl groups, which consolidated N-cyclohexylethyl-ETAV (1) as the most potent...

  19. Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-d-aspartate receptor 3α5β-pregnanolone glutamate

    Czech Academy of Sciences Publication Activity Database

    Rambousek, Lukáš; Bubeníková-Valešová, V.; Kačer, P.; Syslová, K.; Kenney, Jana; Holubová, Kristína; Najmanová, V.; Zach, P.; Svoboda, Jan; Stuchlík, Aleš; Chodounská, Hana; Kapras, Vojtěch; Adamusová, Eva; Borovská, Jiřina; Vyklický ml., Ladislav; Valeš, Karel

    2011-01-01

    Roč. 61, 1-2 (2011), s. 61-68 ISSN 0028-3908 R&D Projects: GA MZd(CZ) NS10365; GA MZd(CZ) NR9180; GA ČR(CZ) GA309/07/0271; GA ČR(CZ) GA203/08/1498; GA ČR(CZ) GA309/09/0286; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Grant - others:EC(XE) LSMH-CT-2007-037765 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40550506 Keywords : neuroactive steroid * NMDA * neuroprotectivity Subject RIV: FH - Neurology Impact factor: 4.814, year: 2011

  20. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD.

    Science.gov (United States)

    Han, Jing; Kesner, Philip; Metna-Laurent, Mathilde; Duan, Tingting; Xu, Lin; Georges, Francois; Koehl, Muriel; Abrous, Djoher Nora; Mendizabal-Zubiaga, Juan; Grandes, Pedro; Liu, Qingsong; Bai, Guang; Wang, Wei; Xiong, Lize; Ren, Wei; Marsicano, Giovanni; Zhang, Xia

    2012-03-02

    Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Impaired GABAergic inhibition in the prefrontal cortex of early postnatal phencyclidine (PCP)-treated rats.

    Science.gov (United States)

    Kjaerby, Celia; Broberg, Brian V; Kristiansen, Uffe; Dalby, Nils Ole

    2014-09-01

    A compromised γ-aminobutyric acid (GABA)ergic system is hypothesized to be part of the underlying pathophysiology of schizophrenia. N-methyl-D-aspartate (NMDA) receptor hypofunction during neurodevelopment is proposed to disrupt maturation of interneurons causing an impaired GABAergic transmission in adulthood. The present study examines prefrontal GABAergic transmission in adult rats administered with the NMDA receptor channel blocker, phencyclidine (PCP), for 3 days during the second postnatal week. Whole-cell patch-clamp recordings from pyramidal cells in PCP-treated rats showed a 22% reduction in the frequency of miniature inhibitory postsynaptic currents in layer II/III, but not in layer V pyramidal neurons of the prefrontal cortex. Furthermore, early postnatal PCP treatment caused insensitivity toward effects of the GABA transporter 1 (GAT-1) inhibitor, 1,2,5,6-tetrahydro-1-[2-[[(diphenyl-methylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid, and also diminished currents passed by δ-subunit-containing GABAA receptors in layer II/III pyramidal neurons. The observed impairments in GABAergic function are compatible with the alteration of GABAergic markers as well as cognitive dysfunction observed in early postnatal PCP-treated rats and support the hypothesis that PCP administration during neurodevelopment affects the functionality of interneurons in later life. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Long-term heavy ketamine use is associated with spatial memory impairment and altered hippocampal activation

    Directory of Open Access Journals (Sweden)

    Celia J A Morgan

    2014-12-01

    Full Text Available Ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist, is rising in popularity as a drug of abuse. Preliminary evidence suggests that chronic, heavy ketamine use may have profound effects on spatial memory but the mechanism of these deficits is as yet unclear. This study aimed to examine the neural mechanism by which heavy ketamine use impairs spatial memory processing. In a sample of 11 frequent ketamine users and 15 polydrug controls, matched for IQ, age and years in education. We used fMRI utilising an ROI approach to examine the neural activity of three regions known to support successful navigation; the hippocampus, parahippocampal gyrus and the caudate nucleus during a virtual reality task of spatial memory. Frequent ketamine users displayed spatial memory deficits, accompanied by and related to, reduced activation in both the right hippocampus and left parahippocampal gyrus during navigation from memory, and in the left caudate during memory updating, compared to controls. Ketamine users also exhibited schizotypal and dissociative symptoms that were related to hippocampal activation. Impairments in spatial memory observed in ketamine users are related to changes in medial temporal lobe activation. Disrupted medial temporal lobe function may be a consequence of chronic ketamine abuse and may relate to schizophrenia-like symptomatology observed in ketamine users.

  3. An Open-Label Trial of Memantine for Cognitive Impairment in Patients with Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Sriram Ramaswamy

    2015-01-01

    Full Text Available Background. Studies using standard neuropsychological instruments have demonstrated memory deficits in patients with PTSD. We evaluated the efficacy and safety of the N-methyl-D-aspartate antagonist memantine in veterans with PTSD and cognitive impairment. Methods. Twenty-six veterans with PTSD and cognitive impairment received 16 weeks of memantine in an open-label fashion. Cognition was assessed using the Spatial Span, Logical Memory I, and Letter-Number Sequencing subtests of the Wechsler Memory Scale III and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS. RBANS measures attention, language, visuospatial skills, and immediate and delayed memories. The Clinician Administered PTSD Scale (CAPS, Hamilton Depression Scale (HAM-D, Hamilton Anxiety Scale (HAM-A, Quality of Life Enjoyment and Satisfaction Questionnaire (Q-LES-Q, and Sheehan Disability Scale (SDS were secondary outcome measures. Results. There was a significant improvement in RBANS, both total and subscale scores (P<0.05, over time. There was a reduction in total CAPS scores, avoidance/numbing symptoms (CAPS-C and hyperarousal symptoms (CAPS-D, HAM-D, Q-LES-Q, and SDS scores. However, there was no reduction in reexperiencing (CAPS-B and HAM-A scores. Memantine was well tolerated. Conclusions. Memantine improved cognitive symptoms, PTSD symptoms, and mood in veterans with PTSD. Randomized double-blind studies are needed to validate these preliminary observations.

  4. Occurrence and predictors of persistent impaired glucose tolerance after acute ischemic stroke or transient ischemic attack

    NARCIS (Netherlands)

    S. Fonville (Susanne); H.M. den Hertog (Heleen); A.A.M. Zandbergen (Adrienne); P.J. Koudstaal (Peter Jan); H.F. Lingsma (Hester)

    2014-01-01

    textabstractBackground Impaired glucose tolerance is often present in patients with a transient ischemic attack (TIA) or ischemic stroke and doubles the risk of recurrent stroke. This impaired glucose tolerance can be transient, reflecting an acute stress response, or persistent, representing

  5. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia.

    Science.gov (United States)

    Sathyasaikumar, Korrapati V; Stachowski, Erin K; Wonodi, Ikwunga; Roberts, Rosalinda C; Rassoulpour, Arash; McMahon, Robert P; Schwarcz, Robert

    2011-11-01

    The levels of kynurenic acid (KYNA), an astrocyte-derived metabolite of the branched kynurenine pathway (KP) of tryptophan degradation and antagonist of α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors, are elevated in the prefrontal cortex (PFC) of individuals with schizophrenia (SZ). Because endogenous KYNA modulates extracellular glutamate and acetylcholine levels in the PFC, these increases may be pathophysiologically significant. Using brain tissue from SZ patients and matched controls, we now measured the activity of several KP enzymes (kynurenine 3-monooxygenase [KMO], kynureninase, 3-hydroxyanthranilic acid dioxygenase [3-HAO], quinolinic acid phosphoribosyltransferase [QPRT], and kynurenine aminotransferase II [KAT II]) in the PFC, ie, Brodmann areas (BA) 9 and 10. Compared with controls, the activities of KMO (in BA 9 and 10) and 3-HAO (in BA 9) were significantly reduced in SZ, though there were no significant differences between patients and controls in kynureninase, QPRT, and KAT II. In the same samples, we also confirmed the increase in the tissue levels of KYNA in SZ. As examined in rats treated chronically with the antipsychotic drug risperidone, the observed biochemical changes were not secondary to medication. A persistent reduction in KMO activity may have a particular bearing on pathology because it may signify a shift of KP metabolism toward enhanced KYNA synthesis. The present results further support the hypothesis that the normalization of cortical KP metabolism may constitute an effective new treatment strategy in SZ.

  6. Impaired fear memory specificity associated with deficient endocannabinoid-dependent long-term plasticity.

    Science.gov (United States)

    Lovelace, Jonathan W; Vieira, Philip A; Corches, Alex; Mackie, Ken; Korzus, Edward

    2014-06-01

    In addition to its central role in learning and memory, N-methyl D-aspartate receptor (NMDAR)-dependent signaling regulates central glutamatergic synapse maturation and has been implicated in schizophrenia. We have transiently induced NMDAR hypofunction in infant mice during postnatal days 7-11, followed by testing fear memory specificity and presynaptic plasticity in the prefrontal cortex (PFC) in adult mice. We show that transient NMDAR hypofunction during early brain development, coinciding with the maturation of cortical plasticity results in a loss of an endocannabinoid (eCB)-mediated form of long-term depression (eCB-LTD) at adult central glutamatergic synapses, while another form of presynaptic long-term depression mediated by the metabotropic glutamate receptor 2/3 (mGluR2/3-LTD) remains intact. Mice with this selective impairment of presynaptic plasticity also showed deficits in fear memory specificity. The observed deficit in cortical presynaptic plasticity may represent a neural maladaptation contributing to network instability and abnormal cognitive functioning.

  7. NMDA receptor antagonist ketamine impairs feature integration in visual perception

    NARCIS (Netherlands)

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground

  8. Chronic intermittent hypoxia impairs heart rate responses to AMPA and NMDA and induces loss of glutamate receptor neurons in nucleus ambiguous of F344 rats.

    Science.gov (United States)

    Yan, Binbin; Li, Lihua; Harden, Scott W; Gozal, David; Lin, Ying; Wead, William B; Wurster, Robert D; Cheng, Zixi Jack

    2009-02-01

    Chronic intermittent hypoxia (CIH), as occurs in sleep apnea, impairs baroreflex-mediated reductions in heart rate (HR) and enhances HR responses to electrical stimulation of vagal efferent. We tested the hypotheses that HR responses to activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the nucleus ambiguous (NA) are reduced in CIH-exposed rats and that this impairment is associated with degeneration of glutamate receptor (GluR)-immunoreactive NA neurons. Fischer 344 rats (3-4 mo) were exposed to room air (RA) or CIH for 35-50 days (n = 18/group). At the end of the exposures, AMPA (4 pmol, 20 nl) and NMDA (80 pmol, 20 nl) were microinjected into the same location of the left NA (-200 microm to +200 microm relative to caudal end of area postrema; n = 6/group), and HR and arterial blood pressure responses were measured. In addition, brain stem sections at the level of -800, -400, 0, +400, and +800 microm relative to obex were processed for AMPA and NMDA receptor immunohistochemistry. The number of NA neurons expressing AMPA receptors and NMDA receptors (NMDARs) was quantified. Compared with RA, we found that after CIH 1) HR responses to microinjection of AMPA into the left NA were reduced (RA -290 +/- 30 vs. CIH -227 +/- 15 beats/min, P neurons expressing GluRs contributes to impaired baroreflex control of HR in rats exposed to CIH.

  9. Chronic Swimming Exercise Ameliorates Low-Soybean-Oil Diet-Induced Spatial Memory Impairment by Enhancing BDNF-Mediated Synaptic Potentiation in Developing Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Cheng, Mei; Cong, Jiyan; Wu, Yulong; Xie, Jiacun; Wang, Siyuan; Zhao, Yue; Zang, Xiaoying

    2018-05-01

    Exercise and low-fat diets are common lifestyle modifications used for the treatment of hypertension besides drug therapy. However, unrestrained low-fat diets may result in deficiencies of low-unsaturated fatty acids and carry contingent risks of delaying neurodevelopment. While aerobic exercise shows positive neuroprotective effects, it is still unclear whether exercise could alleviate the impairment of neurodevelopment that may be induced by certain low-fat diets. In this research, developing spontaneously hypertensive rats (SHR) were treated with chronic swimming exercise and/or a low-soybean-oil diet for 6 weeks. We found that performance in the Morris water maze was reduced and long-term potentiation in the hippocampus was suppressed by the diet, while a combination treatment of exercise and diet alleviated the impairment induced by the specific low-fat diet. Moreover, the combination treatment effectively increased the expression of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartic acid receptor (NMDAR), which were both down-regulated by the low-soybean-oil diet in the hippocampus of developing SHR. These findings suggest that chronic swimming exercise can ameliorate the low-soybean-oil diet-induced learning and memory impairment in developing SHR through the up-regulation of BDNF and NMDAR expression.

  10. Repeated Blockade of NMDA Receptors during Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Jitao eLi

    2016-03-01

    Full Text Available Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg, a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV-, calbindin (CB- and calretinin (CR-positive neurons in mPFC were analyzed at either 24 hours or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease.

  11. Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer's disease.

    Science.gov (United States)

    Becerril-Ortega, Javier; Bordji, Karim; Fréret, Thomas; Rush, Travis; Buisson, Alain

    2014-10-01

    Iron dyshomeostasis is proving increasingly likely to be involved in the pathology of Alzheimer's disease (AD); yet, its mechanism is not well understood. Here, we investigated the AD-related mechanism(s) of iron-sulfate exposure in vitro and in vivo, using cultured primary cortical neurons and APP/PS1 AD-model mice, respectively. In both systems, we observed iron-induced disruptions of amyloid precursor protein (APP) processing, neuronal signaling, and cognitive behavior. Iron overload increased production of amyloidogenic KPI-APP and amyloid beta. Further, this APP misprocessing was blocked by MK-801 in vitro, suggesting the effect was N-methyl-D-aspartate receptor (NMDAR) dependent. Calcium imaging confirmed that 24 hours iron exposure led to disrupted synaptic signaling by augmenting GluN2B-containing NMDAR expression-GluN2B messenger RNA and protein levels were increased and promoting excessing extrasynaptic NMDAR signaling. The disrupted GluN2B expression was concurrent with diminished expression of the splicing factors, sc35 and hnRNPA1. In APP/PS1 mice, chronic iron treatment led to hastened progression of cognitive impairment with the novel object recognition discrimination index, revealing a deficit at the age of 4 months, concomitant with augmented GluN2B expression. Together, these data suggest iron-induced APP misprocessing and hastened cognitive decline occur through inordinate extrasynaptic NMDAR activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Language Profiles and Literacy Outcomes of Children with Resolving, Emerging, or Persisting Language Impairments

    Science.gov (United States)

    Snowling, Margaret J.; Duff, Fiona J.; Nash, Hannah M.; Hulme, Charles

    2016-01-01

    Background: Children with language impairment (LI) show heterogeneity in development. We tracked children from pre-school to middle childhood to characterize three developmental trajectories: resolving, persisting and emerging LI. Methods: We analyzed data from children identified as having preschool LI, or being at family risk of dyslexia,…

  13. Persistent grammatical difficulties in Specific Language Impairment : Deficits in knowledge or in knowledge implementation?

    NARCIS (Netherlands)

    Duinmeijer, I.

    2017-01-01

    This study examines the grammatical abilities of children and adolescents with Specific Language Impairment (SLI). There were two research goals. Firstly, the persistence of grammatical problems over time was examined by comparing a younger group of children with SLI and an older group of

  14. Risperidone reverses the spatial object recognition impairment and hippocampal BDNF-TrkB signalling system alterations induced by acute MK-801 treatment

    Science.gov (United States)

    Chen, Guangdong; Lin, Xiaodong; Li, Gongying; Jiang, Diego; Lib, Zhiruo; Jiang, Ronghuan; Zhuo, Chuanjun

    2017-01-01

    The aim of the present study was to investigate the effects of a commonly-used atypical antipsychotic, risperidone, on alterations in spatial learning and in the hippocampal brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signalling system caused by acute dizocilpine maleate (MK-801) treatment. In experiment 1, adult male Sprague-Dawley rats subjected to acute treatment of either low-dose MK801 (0.1 mg/kg) or normal saline (vehicle) were tested for spatial object recognition and hippocampal expression levels of BDNF, TrkB and the phophorylation of TrkB (p-TrkB). We found that compared to the vehicle, MK-801 treatment impaired spatial object recognition of animals and downregulated the expression levels of p-TrkB. In experiment 2, MK-801- or vehicle-treated animals were further injected with risperidone (0.1 mg/kg) or vehicle before behavioural testing and sacrifice. Of note, we found that risperidone successfully reversed the deleterious effects of MK-801 on spatial object recognition and upregulated the hippocampal BDNF-TrkB signalling system. Collectively, the findings suggest that cognitive deficits from acute N-methyl-D-aspartate receptor blockade may be associated with the hypofunction of hippocampal BDNF-TrkB signalling system and that risperidone was able to reverse these alterations. PMID:28451387

  15. The relationship between NMDA receptors and microwave-induced learning and memory impairment: a long-term observation on Wistar rats.

    Science.gov (United States)

    Wang, Hui; Peng, Ruiyun; Zhao, Li; Wang, Shuiming; Gao, Yabing; Wang, Lifeng; Zuo, Hongyan; Dong, Ji; Xu, Xinping; Zhou, Hongmei; Su, Zhentao

    2015-03-01

    Abstract Purpose: To investigate whether high power microwave could cause continuous disorders to learning and memory in Wistar rats and to explore the underlying mechanisms. Eighty Wistar rats were exposed to a 2.856 GHz pulsed microwave source at a power density of 0 mW/cm(2) and 50 mW/cm(2) microwave for 6 min. The spatial memory ability, the structure of the hippocampus, contents of amino acids neurotransmitters in hippocampus and the expression of N-methyl-D-aspartic acid receptors (NMDAR) subunit 1, 2A and 2B (NR1, NR2A and NR2B) were detected at 1, 3, 6, 9, 12 and 18 months after microwave exposure. Our results showed that the microwave-exposed rats showed consistent deficiencies in spatial learning and memory. The level of amino acid neurotransmitters also decreased after microwave radiation. The ratio of glutamate (Glu) and gammaaminobutyric acid (GABA) significantly decreased at 6 months. Besides, the hippocampus showed varying degrees of degeneration of neurons, increased postsynaptic density and blurred synaptic clefts in the exposure group. The NR1 and NR2B expression showed a significant decrease, especially the NR2B expression. This study indicated that the content of amino acids neurotransmitters, the expression of NMDAR subunits and the variation of hippocampal structure might contribute to the long-term cognitive impairment after microwave exposure.

  16. The Persistence of the Self over Time in Mild Cognitive Impairment and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Lynette J. Tippett

    2018-02-01

    Full Text Available Diachronic unity is the belief that, despite changes, we are the same person across the lifespan. We propose that diachronic unity is supported by the experience of remembering the self over time during episodic recall (i.e., phenomenological continuity. However, we also predict that diachronic unity is also possible when episodic memory is impaired, as long as the ability to construct life narratives from semantic memory (i.e., semantic continuity is intact. To examine this prediction, we investigated diachronic unity in Alzheimer's Disease (AD and amnestic mild cognitive impairment (aMCI, two conditions characterised by disrupted phenomenological continuity. If semantic continuity is also altered in these conditions, there should be an associated deterioration in diachronic unity. Participants with AD, aMCI, and healthy controls (HC completed a self-persistence interview measuring diachronic unity (beliefs about self-persistence, explanations for stability/change. Semantic continuity was assessed with a life-story interview measuring autobiographical reasoning (self-event connections, and coherence (temporal/thematic/causal of narratives. Our results highlight a complex relationship between semantic continuity and diachronic unity and revealed a divergence between two aspects of diachronic unity: AD/aMCI groups did not differ from HC in continuity beliefs, but AD explanations for self-persistence were less sophisticated. Semantic continuity was most impaired in AD: their narratives had fewer self-event connections (vs. HCs and lower temporal/thematic coherence (vs. HC/aMCI, while both AD/aMCI groups had lower causal coherence. Paradoxically AD participants who scored higher on measures of beliefs in the persistence of the core self, provided less sophisticated explanations for their self-persistence and were less able to explore persistence in their life narratives. These findings support the importance of semantic continuity to diachronic

  17. Long-term heavy ketamine use is associated with spatial memory impairment and altered hippocampal activation

    NARCIS (Netherlands)

    Morgan, C.J.A.; Dodds, C.M.; Furby, H.; Pepper, F.; Johnson, F.; Freeman, T.P.; Hughes, E.; Doeller, C.F.; King, J.; Howes, O.; Stone, J.M.

    2014-01-01

    Ketamine, a non-competitive N-methyl-d-aspartate receptor antagonist, is rising in popularity as a drug of abuse. Preliminary evidence suggests that chronic, heavy ketamine use may have profound effects on spatial memory but the mechanism of these deficits is as yet unclear. This study aimed to

  18. Acute Kynurenine Challenge Disrupts Sleep-Wake Architecture and Impairs Contextual Memory in Adult Rats.

    Science.gov (United States)

    Pocivavsek, Ana; Baratta, Annalisa M; Mong, Jessica A; Viechweg, Shaun S

    2017-11-01

    Tryptophan metabolism via the kynurenine pathway may represent a key molecular link between sleep loss and cognitive dysfunction. Modest increases in the kynurenine pathway metabolite kynurenic acid (KYNA), which acts as an antagonist at N-methyl-d-aspartate and α7 nicotinic acetylcholine receptors in the brain, result in cognitive impairments. As glutamatergic and cholinergic neurotransmissions are critically involved in modulation of sleep, our current experiments tested the hypothesis that elevated KYNA adversely impacts sleep quality. Adult male Wistar rats were treated with vehicle (saline) and kynurenine (25, 50, 100, and 250 mg/kg), the direct bioprecursor of KYNA, intraperitoneally at zeitgeber time (ZT) 0 to rapidly increase brain KYNA. Levels of KYNA in the brainstem, cortex, and hippocampus were determined at ZT 0, ZT 2, and ZT 4, respectively. Analyses of vigilance state-related parameters categorized as wake, rapid eye movement (REM), and non-REM (NREM) as well as spectra power analysis during NREM and REM were assessed during the light phase. Separate animals were tested in the passive avoidance paradigm, testing contextual memory. When KYNA levels were elevated in the brain, total REM duration was reduced and total wake duration was increased. REM and wake architecture, assessed as number of vigilance state bouts and average duration of each bout, and theta power during REM were significantly impacted. Kynurenine challenge impaired performance in the hippocampal-dependent contextual memory task. Our results introduce kynurenine pathway metabolism and formation of KYNA as a novel molecular target contributing to sleep disruptions and cognitive impairments. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  19. D-Aspartate drinking solution alleviates pain and cognitive impairment in neuropathic mice.

    Science.gov (United States)

    Palazzo, Enza; Luongo, Livio; Guida, Francesca; Marabese, Ida; Romano, Rosaria; Iannotta, Monica; Rossi, Francesca; D'Aniello, Antimo; Stella, Luigi; Marmo, Federica; Usiello, Alessandro; de Bartolomeis, Andrea; Maione, Sabatino; de Novellis, Vito

    2016-07-01

    D-Aspartate (D-Asp) is a free D-amino acid detected in multiple brain regions and putative precursor of endogenous N-methyl-D-aspartate (NMDA) acting as agonist at NMDA receptors. In this study, we investigated whether D-Asp (20 mM) in drinking solution for 1 month affects pain responses and pain-related emotional, and cognitive behaviour in a model of neuropathic pain induced by the spared nerve injury (SNI) of the sciatic nerve in mice. SNI mice developed mechanical allodynia and motor coordination impairment 30 days after SNI surgery. SNI mice showed cognitive impairment, anxiety and depression-like behaviour, reduced sociability in the three chamber sociability paradigm, increased expression of NR2B subunit of NMDA receptor and Homer 1a in the medial prefrontal cortex (mPFC). The expression of (post synaptic density) PSD-95 and Shank 1was instead unaffected in the mPFC of the SNI mice. Treatment with D-Asp drinking solution, started right after the SNI (day 0), alleviated mechanical allodynia, improved cognition and motor coordination and increased social interaction. D-Asp also restored the levels of extracellular D-Asp, Homer 1a and NR2B subunit of the NMDA receptor to physiological levels and reduced Shank1 and PSD-95 protein levels in the mPFC. Amitriptyline, a tricyclic antidepressant used also to alleviate neuropathic pain in humans, reverted mechanical allodynia and cognitive impairment, and unlike D-Asp, was effective in reducing depression and anxiety-like behaviour in the SNI mice and increased PSD protein level. Altogether these findings demonstrate that D-Asp improves sensorial, motor and cognitive-like symptoms related to chronic pain possibly through glutamate neurotransmission normalization in neuropathic mice.

  20. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    Science.gov (United States)

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D 1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D 1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D 1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D 1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D 1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  2. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    International Nuclear Information System (INIS)

    Chan, Ming-Huan; Chung, Shiang-Sheng; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien

    2012-01-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  3. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior.

    Science.gov (United States)

    Collison, Kate S; Inglis, Angela; Shibin, Sherin; Andres, Bernard; Ubungen, Rosario; Thiam, Jennifer; Mata, Princess; Al-Mohanna, Futwan A

    2016-12-01

    We have previously showed that lifetime exposure to aspartame, commencing in utero via the mother's diet, may impair insulin tolerance and cause behavioral deficits in adulthood via mechanisms which are incompletely understood. The role of the CNS in regulating glucose homeostasis has been highlighted by recent delineation of the gut-brain axis, in which N-methyl-d-aspartic acid receptors (NMDARs) are important in maintaining glucose homeostasis, in addition to regulating certain aspects of behavior. Since the gut-brain axis can be modulated by fetal programming, we hypothesized that early-life NMDAR antagonism may affect aspartame-induced glucose deregulation in adulthood, and may alter the aspartame behavioral phenotype. Accordingly, C57Bl/6J mice were chronically exposed to aspartame commencing in utero, in the presence and absence of maternal administration of the competitive NMDAR antagonist CGP 39551, from conception until weaning. Drug/diet interactions in adulthood glucocentric and behavioral parameters were assessed. Aspartame exposure elevated blood glucose and impaired insulin-induced glucose disposal during an insulin tolerance test, which could be normalized by NMDAR antagonism. The same effects were not observed in control diet mice, suggesting an early-life drug/diet interaction. Behavioral analysis of adult offspring indicated that NMDAR antagonism of control diet mice caused hyperlocomotion and impaired spatial navigation. Conversely hypolocomotion, reduced exploratory activity and increased anxiety-related behavior were apparent in aspartame diet mice with early-life NMDAR antagonism. significant drug/diet interactions in glucocentric and behavioral parameters were identified in aspartame-exposed mice with early-life NMDAR antagonism. This suggests a possible involvement of early NMDAR interactions in aspartame-impaired glucose homeostasis and behavioral deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Resveratrol Improves Cognitive Impairment by Regulating Apoptosis and Synaptic Plasticity in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Zhiyan Tian

    2016-12-01

    Full Text Available Aims: To investigate the effects of resveratrol on cognitive impairment in streptozotocin (STZ-induced diabetic rats and to explore the mechanisms of that phenomenon. Methods: Sixty healthy male Sprague Dawley rats were randomly divided into four groups: normal control group (Con group, n = 15, Res group (normal Sprague Dawley rats treated with resveratrol, n = 15, diabetes mellitus group (DM group, n = 15 and DM + Res group (diabetic rats treat with resveratrol, n = 15. Streptozotocin (STZ was injected intraperitoneally to establish the diabetic model. One week after diabetic model induction, the animals in the Res group and the DM + Res group received resveratrol intraperitoneally once a day for consecutive 4 weeks. The Morris water maze test was applied to assess the effect of resveratrol on learning and memory. To explore the mechanisms of resveratrol on cognition, we detected the protein expression levels of Caspase-3, Bcl-2, Bax, NMDAR1 (N-Methyl-d-Aspartate receptor and BDNF (Brain Derived Neurotrophic Factor via western blotting analysis. Results: Resveratrol has no obvious effect on normal SD rats. Compared to Con group, cognitive ability was significantly impaired with increased expression of Caspase-3, Bax and down-regulation of Bcl-2, NMDAR1 and BDNF in diabetic rats. By contrast, resveratrol treatment improved the cognitive decline. Evidently, resveratrol treatment reversed diabetes-induced changes of protein expression. Conclusions: Resveratrol significantly ameliorates cognitive decline in STZ-induced diabetic model rats. The potential mechanism underlying the protective effect could be attributed to the inhibition of hippocampal apoptosis through the Bcl-2, Bax and Caspase-3 signaling pathways and improvement of synaptic dysfunction. BDNF may also play an indispensable role in this mechanism.

  5. Persistent visual impairment in multiple sclerosis: prevalence, mechanisms and resulting disability.

    Science.gov (United States)

    Jasse, Laurence; Vukusic, Sandra; Durand-Dubief, Françoise; Vartin, Cristina; Piras, Carolina; Bernard, Martine; Pélisson, Denis; Confavreux, Christian; Vighetto, Alain; Tilikete, Caroline

    2013-10-01

    The objective of this article is to evaluate in multiple sclerosis (MS) patients the prevalence of persistent complaints of visual disturbances and the mechanisms and resulting functional disability of persistent visual complaints (PVCs). Firstly, the prevalence of PVCs was calculated in 303 MS patients. MS-related data of patients with or without PVCs were compared. Secondly, 70 patients with PVCs performed an extensive neuro-ophthalmologic assessment and a vision-related quality of life questionnaire, the National Eye Institute Visual Functionary Questionnaire (NEI-VFQ-25). PVCs were reported in 105 MS patients (34.6%). Patients with PVCs had more frequently primary progressive MS (30.5% vs 13.6%) and more neuro-ophthalmologic relapses (1.97 vs 1.36) than patients without PVCs. In the mechanisms/disability study, an afferent visual and an ocular-motor pathways dysfunction were respectively diagnosed in 41 and 59 patients, mostly related to bilateral optic neuropathy and bilateral internuclear ophthalmoplegia. The NEI-VFQ 25 score was poor and significantly correlated with the number of impaired neuro-ophthalmologic tests. Our study emphasizes the high prevalence of PVC in MS patients. Regarding the nature of neuro-ophthalmologic deficit, our results suggest that persistent optic neuropathy, as part of the progressive evolution of the disease, is not rare. We also demonstrate that isolated ocular motor dysfunctions induce visual disability in daily life.

  6. Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment.

    Directory of Open Access Journals (Sweden)

    Lucio A Ramos-Chávez

    2015-02-01

    Full Text Available Inorganic arsenic (iAs is an important natural pollutant. Millions of individuals worldwide drink water with high levels of iAs. Chronic exposure to iAs has been associated with lower IQ and learning disabilities as well as memory impairment. iAs is methylated in tissues such as the brain generating mono and dimethylated species. iAs methylation requires cellular glutathione (GSH, which is the main antioxidant in the central nervous system. In humans, As species cross the placenta and are found in cord blood. A CD1 mouse model was used to investigate effects of gestational iAs exposure which can lead to oxidative damage, disrupted cysteine/glutamate transport and its putative impact in learning and memory. On postnatal days (PNDs 1, 15 and 90, the expression of membrane transporters related to GSH synthesis and glutamate transport and toxicity, such as xCT, EAAC1, GLAST and GLT1, as well as LAT1, were analyzed. Also, the expression of the glutamate receptor N-methyl-D-aspartate (NMDAR subunits NR2A and B as well as the presence of As species in cortex and hippocampus were investigated. On PND 90, an object location task was performed to associate exposure with memory impairment. Gestational exposure to iAs affected the expression of cysteine/glutamate transporters in cortex and hippocampus and induced a negative modulation of NMDAR NR2B subunit in the hippocampus. Behavioral tasks showed significant spatial memory impairment in males while the effect was marginal in females.

  7. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    Science.gov (United States)

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  8. Preventive effect of theanine intake on stress-induced impairments of hippocamapal long-term potentiation and recognition memory.

    Science.gov (United States)

    Tamano, Haruna; Fukura, Kotaro; Suzuki, Miki; Sakamoto, Kazuhiro; Yokogoshi, Hidehiko; Takeda, Atsushi

    2013-06-01

    Theanine, γ-glutamylethylamide, is one of the major amino acid components in green tea. On the basis of the preventive effect of theanine intake after birth on mild stress-induced attenuation of hippocamapal CA1 long-term potentiation (LTP), the present study evaluated the effect of theanine intake after weaning on stress-induced impairments of LTP and recognition memory. Young rats were fed water containing 0.3% theanine for 3 weeks after weaning and subjected to water immersion stress for 30min, which was more severe than tail suspension stress for 30s used previously. Serum corticosterone levels were lower in theanine-administered rats than in the control rats even after exposure to stress. CA1 LTP induced by a 100-Hz tetanus for 1s was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an N-methyl-d-aspartate (NMDA) receptor antagonist, in hippocampal slices from the control rats and was attenuated by water immersion stress. In contrast, CA1 LTP was not significantly inhibited in the presence of APV in hippocampal slices from theanine-administered rats and was not attenuated by the stress. Furthermore, object recognition memory was impaired in the control rats, but not in theanine-administered rats. The present study indicates the preventive effect of theanine intake after weaning on stress-induced impairments of hippocampal LTP and recognition memory. It is likely that the modification of corticosterone secretion after theanine intake is involved in the preventive effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex.

    Science.gov (United States)

    Piilgaard, Henning; Lauritzen, Martin

    2009-09-01

    Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins. For the following 2 h, basal tpO(2) and CBF were reduced whereas basal CMRO(2) was persistently elevated by 8.1%+/-2.9%. In addition, within first hour after CSD we found impaired neurovascular coupling (LFP versus CBF), whereas neurometabolic coupling (LFP versus CMRO(2)) remained unaffected. Impaired neurovascular coupling was explained by both reduced vascular reactivity and suppressed function of cortical inhibitory interneurons. The protracted effects of CSD on basal CMRO(2) and neurovascular coupling may contribute to cellular dysfunction in patients with migraine and acutely injured cerebral cortex.

  10. Persistent non-verbal memory impairment in remitted major depression - caused by encoding deficits?

    Science.gov (United States)

    Behnken, Andreas; Schöning, Sonja; Gerss, Joachim; Konrad, Carsten; de Jong-Meyer, Renate; Zwanzger, Peter; Arolt, Volker

    2010-04-01

    While neuropsychological impairments are well described in acute phases of major depressive disorders (MDD), little is known about the neuropsychological profile in remission. There is evidence for episodic memory impairments in both acute depressed and remitted patients with MDD. Learning and memory depend on individuals' ability to organize information during learning. This study investigates non-verbal memory functions in remitted MDD and whether nonverbal memory performance is mediated by organizational strategies whilst learning. 30 well-characterized fully remitted individuals with unipolar MDD and 30 healthy controls matching in age, sex and education were investigated. Non-verbal learning and memory were measured by the Rey-Osterrieth-Complex-Figure-Test (RCFT). The RCFT provides measures of planning, organizational skills, perceptual and non-verbal memory functions. For assessing the mediating effects of organizational strategies, we used the Savage Organizational Score. Compared to healthy controls, participants with remitted MDD showed more deficits in their non-verbal memory function. Moreover, participants with remitted MDD demonstrated difficulties in organizing non-verbal information appropriately during learning. In contrast, no impairments regarding visual-spatial functions in remitted MDD were observed. Except for one patient, all the others were taking psychopharmacological medication. The neuropsychological function was solely investigated in the remitted phase of MDD. Individuals with MDD in remission showed persistent non-verbal memory impairments, modulated by a deficient use of organizational strategies during encoding. Therefore, our results strongly argue for additional therapeutic interventions in order to improve these remaining deficits in cognitive function. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior.

    Science.gov (United States)

    López-Granero, Caridad; Ruiz-Muñoz, Ana M; Nieto-Escámez, Francisco A; Colomina, María T; Aschner, Michael; Sánchez-Santed, Fernando

    2016-03-01

    Little is known about the long-term effects of chronic exposure to low-level organophosphate (OP) pesticides, and the role of neurotransmitter systems, other than the cholinergic system, in mediating OP neurotoxicity. In this study, rats were administered 5mg/kg/day of chlorpyrifos (CPF) for 6 months commencing at 3-months-of-age. The animals were examined 7 months later (at 16-months-of-age) for spatial learning and memory in the Morris water maze (MWM) and locomotor activity. In addition, we assessed the chronic effects of CPF on glutamatergic and gamma-aminobutyric acid (GABAergic) function using pharmacological challenges with dizocilpine (MK801) and diazepam. Impaired performance related to altered search patterns, including thigmotaxis and long-term spatial memory was noted in the MWM in animals exposed to CPF, pointing to dietary CPF-induced behavioral disturbances, such as anxiety. Twenty-four hours after the 31st session of repeated acquisition task, 0.1mg/kg MK801, an N-methyl-d-aspartate (NMDA) antagonist was intraperitoneally (i.p.) injected for 4 consecutive days. Decreased latencies in the MWM in the control group were noted after two sessions with MK801 treatment. Once the MWM assessment was completed, animals were administered 0.1 or 0.2mg/kg of MK801 and 1 or 3mg/kg of diazepam i.p., and tested for locomotor activity. Both groups, the CPF dietary and control, displayed analogous performance in motor activity. In conclusion, our data point to a connection between the long-term spatial memory, thigmotaxic response and CPF long after the exposure ended. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum.

    Science.gov (United States)

    Goodman, Jarid; Ressler, Reed L; Packard, Mark G

    2017-06-03

    The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. In experiment 2, immediately following the first day of extinction training, animals were given intra-DLS injections of NMDA receptor partial agonist d-cycloserine (DCS; 10 or 20µg/side) or saline. In both experiments, the number of perseverative trials (a trial in which a rat made the same previously reinforced body-turn response) and latency to reach the previously correct food well were used as measures of extinction behavior. Results indicated that post-training intra-DLS injections of AP5 impaired extinction. In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis

    Directory of Open Access Journals (Sweden)

    Thomas eGrüter

    2015-05-01

    Full Text Available Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signalling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR results in similar molecular, cellular, cognitive and behavioural changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A, and increase in GABA(B-receptor-expression in PFC, along with a significant increase of GABA(B- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.

  14. Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242.

    Science.gov (United States)

    Ranganathan, M; DeMartinis, N; Huguenel, B; Gaudreault, F; Bednar, M M; Shaffer, C L; Gupta, S; Cahill, J; Sherif, M A; Mancuso, J; Zumpano, L; D'Souza, D C

    2017-11-01

    There is a need to develop treatments for cognitive impairment associated with schizophrenia (CIAS). The significant role played by N-methyl-d-aspartate receptors (NMDARs) in both the pathophysiology of schizophrenia and in neuronal plasticity suggests that facilitation of NMDAR function might ameliorate CIAS. One strategy to correct NMDAR hypofunction is to stimulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as AMPAR and NMDAR functioning are coupled and interdependent. In rats and nonhuman primates (NHP), AMPAR potentiators reduce spatial working memory deficits caused by the nonselective NMDAR antagonist ketamine. The current study assessed whether the AMPAR potentiator PF-04958242 would attenuate ketamine-induced deficits in verbal learning and memory in humans. Healthy male subjects (n=29) participated in two randomized treatment periods of daily placebo or PF-04958242 for 5 days separated by a washout period. On day 5 of each treatment period, subjects underwent a ketamine infusion for 75 min during which the effects of PF-04958242/placebo were assessed on ketamine-induced: (1) impairments in verbal learning and recall measured by the Hopkins Verbal Learning Test; (2) impairments in working memory on a CogState battery; and (3) psychotomimetic effects measured by the Positive and Negative Syndrome Scale and Clinician-Administered Dissociative Symptoms Scale. PF-04958242 significantly reduced ketamine-induced impairments in immediate recall and the 2-Back and spatial working memory tasks (CogState Battery), without significantly attenuating ketamine-induced psychotomimetic effects. There were no pharmacokinetic interactions between PF-04958242 and ketamine. Furthermore, PF-04958242 was well tolerated. 'High-impact' AMPAR potentiators like PF-04958242 may have a role in the treatment of the cognitive symptoms, but not the positive or negative symptoms, associated with schizophrenia. The excellent concordance between the

  15. Juvenile social defeat stress exposure persistently impairs social behaviors and neurogenesis.

    Science.gov (United States)

    Mouri, Akihiro; Ukai, Mayu; Uchida, Mizuki; Hasegawa, Sho; Taniguchi, Masayuki; Ito, Takahiro; Hida, Hirotake; Yoshimi, Akira; Yamada, Kiyofumi; Kunimoto, Shohko; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2018-05-01

    Adverse juvenile experiences, including physical abuse, often have negative health consequences later in life. We investigated the influence of social defeat stress exposure as juveniles on neuropsychological behaviors, and the causal role of glucocorticoids in abnormal behaviors and impairment of neurogenesis in mice exposed to the stress. The juvenile (24-day-old) and adult (70-day-old) male C57BL/6J mice were exposed to social defeat stress induced by an aggressive ICR mouse. Social defeat stress exposure as juveniles, even for 1 day, induced persistent social avoidance to the unfamiliar ICR mouse in the social interaction test, but that was not observed in mice exposed to the stress as adults. Social avoidance by the stress exposure as juveniles for 10 consecutive days was observed, when the target mouse was not only unfamiliar ICR but also another C57BL/J mouse, but not an absent or an anesthetized ICR mouse. The stress exposure did not induce anxiety- and depression-like behaviors in spontaneous locomotor activity, elevated plus-maze test, marble-burying test, forced swimming test, or sucrose preference test. Serum corticosterone levels increased immediately after the stress exposure. The hippocampal neurogenesis was suppressed 1 day and 4 weeks after the stress exposure. Administration of mifepristone, a glucocorticoid receptor antagonist, prior to each stress exposure, blocked the persistent social avoidance and suppression of neurogenesis. In conclusion, social avoidance induced by social defeat stress exposure as juveniles are more persistent than that as adults. These social avoidances are associated with suppression of hippocampal neurogenesis via glucocorticoid receptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Persistence of addictive disorders in a first-offender driving while impaired population.

    Science.gov (United States)

    Lapham, Sandra C; Stout, Robert; Laxton, Georgia; Skipper, Betty J

    2011-11-01

    We compared the prevalence of alcohol use and other psychiatric disorders in offenders 15 years after a first conviction for driving while impaired with a general population sample. To determine whether high rates of addictive and other psychiatric disorders previously demonstrated in this sample remain disproportionately higher compared with a matched general population sample. Point-in-time cohort study. Pacific Institute for Research and Evaluation, Albuquerque, New Mexico. We interviewed convicted first offenders using the Composite International Diagnostic Interview 15 years after referral to a screening program in Bernalillo County, New Mexico. We calculated rates of diagnoses for non-Hispanic white and Hispanic women (n = 362) and men (n = 220) adjusting for missing data using multiple imputation and compared psychiatric diagnoses with findings from the National Comorbidity Survey Replication by sex and Hispanic ethnicity. Eleven percent of non-Hispanic white women and 12.8% of Hispanic women in the driving while impaired sample reported 12-month alcohol abuse or dependence, compared with 1.0% and 1.8%, respectively, in the National Comorbidity Survey Replication (comparison) sample. Almost 12% of non-Hispanic white men and 17.5% of Hispanic men in the driving while impaired sample reported 12-month alcohol abuse or dependence, compared with to 2.0% and 1.8%, respectively, in the comparison sample. These differences were statistically significant. Rates of drug use disorders and nicotine dependence were also elevated compared with the general population sample, while rates of major depressive disorder and posttraumatic stress disorder were similar. In this sample, high rates of addictive disorders persisted over 10 years among first offenders and greatly exceeded those found in a general population sample.

  17. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2.

    Science.gov (United States)

    Luo, Foquan; Hu, Yan; Zhao, Weilu; Zuo, Zhiyi; Yu, Qi; Liu, Zhiyi; Lin, Jiamei; Feng, Yunlin; Li, Binda; Wu, Liuqin; Xu, Lin

    2016-01-01

    Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring's learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition.

  18. tPA variant tPA-A296-299 Prevents impairment of cerebral autoregulation and necrosis of hippocampal neurons after stroke by inhibiting upregulation of ET-1.

    Science.gov (United States)

    Armstead, William M; Hekierski, Hugh; Yarovoi, Serge; Higazi, Abd Al-Roof; Cines, Douglas B

    2018-01-01

    Tissue-type plasminogen activator (tPA) is neurotoxic and exacerbates uncoupling of cerebral blood flow (CBF) and metabolism after stroke, yet it remains the sole FDA-approved drug for treatment of ischemic stroke. Upregulation of c-Jun-terminal kinase (JNK) after stroke contributes to tPA-mediated impairment of autoregulation, but the role of endothelin-1 (ET-1) is unknown. Based on the Glasgow Coma Scale, impaired autoregulation is linked to adverse outcomes after TBI, but correlation with hippocampal histopathology after stroke has not been established. We propose that given after stroke, tPA activates N-Methyl-D-Aspartate receptors (NMDA-Rs) and upregulates ET-1 in a JNK dependent manner, imparing autoregulation and leading to histopathology. After stroke, CBF was reduced in the hippocampus and reduced further during hypotension, which did not occur in hypotensive sham pigs, indicating impairment of autoregulation. Autoregulation and necrosis of hippocampal CA1 and CA3 neurons were further impaired by tPA, but were preserved by the ET-1 antagonist BQ 123 and tPA-A, 296-299 a variant that is fibrinolytic but does not bind to NMDA-Rs. Expression of ET-1 was increased by stroke and potentiated by tPA but returned to sham levels by tPA-A 296-299 and the JNK antagonist SP600125. Results show that JNK releases ET-1 after stroke. Tissue-type plasminogen activator -A 296-299 prevents impairment of cerebral autoregulation and histopathology after stroke by inhibiting upregulation of ET-1. © 2017 Wiley Periodicals, Inc.

  19. Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD.

    Directory of Open Access Journals (Sweden)

    Edward G Meloni

    Full Text Available Xenon (Xe is a noble gas that has been developed for use in people as an inhalational anesthestic and a diagnostic imaging agent. Xe inhibits glutamatergic N-methyl-D-aspartate (NMDA receptors involved in learning and memory and can affect synaptic plasticity in the amygdala and hippocampus, two brain areas known to play a role in fear conditioning models of post-traumatic stress disorder (PTSD. Because glutamate receptors also have been shown to play a role in fear memory reconsolidation--a state in which recalled memories become susceptible to modification--we examined whether Xe administered after fear memory reactivation could affect subsequent expression of fear-like behavior (freezing in rats. Male Sprague-Dawley rats were trained for contextual and cued fear conditioning and the effects of inhaled Xe (25%, 1 hr on fear memory reconsolidation were tested using conditioned freezing measured days or weeks after reactivation/Xe administration. Xe administration immediately after fear memory reactivation significantly reduced conditioned freezing when tested 48 h, 96 h or 18 d after reactivation/Xe administration. Xe did not affect freezing when treatment was delayed until 2 h after reactivation or when administered in the absence of fear memory reactivation. These data suggest that Xe substantially and persistently inhibits memory reconsolidation in a reactivation and time-dependent manner, that it could be used as a new research tool to characterize reconsolidation and other memory processes, and that it could be developed to treat people with PTSD and other disorders related to emotional memory.

  20. N-methyl-D-aspartate receptor independent changes in expression of polysialic acid-neural cell adhesion molecule despite blockade of homosynaptic long-term potentiation and heterosynaptic long-term depression in the awake freely behaving rat dentate gyrus

    Czech Academy of Sciences Publication Activity Database

    Rodríguez Arellano, Jose Julio; Dallerac, G. M.; Tabuchi, M.; Davies, H.A.; Colyer, F. M.; Stewart, M.G.; Doyere, V.

    2008-01-01

    Roč. 4, 03 (2008), s. 169-178 ISSN 1740-925X Institutional research plan: CEZ:AV0Z50390703 Keywords : Adhesion molecules * hippocampus * synaptic plasticity Subject RIV: FH - Neurology Impact factor: 0.937, year: 2008

  1. Alterations in synaptic curvature in the dentate gyrus following induction of long-term potentiation, long-term depression, and treatment with the N-methyl-D-aspartate receptor antagonist CPP

    Czech Academy of Sciences Publication Activity Database

    Medvedev, N. I.; Popov, V. I.; Dallerac, G.; Davies, H.A.; Laroche, S.; Kraev, I. V.; Rodríguez Arellano, Jose Julio; Doyere, V.; Stewart, M.G.

    2010-01-01

    Roč. 171, č. 2 (2010), s. 390-397 ISSN 0306-4522 Institutional research plan: CEZ:AV0Z50390703 Keywords : D synaptic ultrastructure * hippocampus * long term potentiation and depression Subject RIV: FH - Neurology Impact factor: 3.215, year: 2010

  2. Repeated forced swimming impairs prepulse inhibition and alters brain-derived neurotrophic factor and astroglial parameters in rats.

    Science.gov (United States)

    Borsoi, Milene; Antonio, Camila Boque; Müller, Liz Girardi; Viana, Alice Fialho; Hertzfeldt, Vivian; Lunardi, Paula Santana; Zanotto, Caroline; Nardin, Patrícia; Ravazzolo, Ana Paula; Rates, Stela Maris Kuze; Gonçalves, Carlos-Alberto

    2015-01-01

    Glutamate perturbations and altered neurotrophin levels have been strongly associated with the neurobiology of neuropsychiatric disorders. Environmental stress is a risk factor for mood disorders, disrupting glutamatergic activity in astrocytes in addition to cognitive behaviours. Despite the negative impact of stress-induced neuropsychiatric disorders on public health, the molecular mechanisms underlying the response of the brain to stress has yet to be fully elucidated. Exposure to repeated swimming has proven useful for evaluating the loss of cognitive function after pharmacological and behavioural interventions, but its effect on glutamate function has yet to be fully explored. In the present study, rats previously exposed to repeated forced swimming were evaluated using the novel object recognition test, object location test and prepulse inhibition (PPI) test. In addition, quantification of brain-derived neurotrophic factor (BDNF) mRNA expression and protein levels, glutamate uptake, glutathione, S100B, GluN1 subunit of N-methyl-D-aspartate receptor and calmodulin were evaluated in the frontal cortex and hippocampus after various swimming time points. We found that swimming stress selectively impaired PPI but did not affect memory recognition. Swimming stress altered the frontal cortical and hippocampal BDNF expression and the activity of hippocampal astrocytes by reducing hippocampal glutamate uptake and enhancing glutathione content in a time-dependent manner. In conclusion, these data support the assumption that astrocytes may regulate the activity of brain structures related to cognition in a manner that alters complex behaviours. Moreover, they provide new insight regarding the dynamics immediately after an aversive experience, such as after behavioural despair induction, and suggest that forced swimming can be employed to study altered glutamatergic activity and PPI disruption in rodents. Copyright © 2014. Published by Elsevier Inc.

  3. Psychotomimetic effects of different doses of MK-801 and the underlying mechanisms in a selective memory impairment model.

    Science.gov (United States)

    Liu, Weiqing; Wang, Dong; Hong, Wenjuan; Yu, Yi; Tang, Jinsong; Wang, Jicai; Liu, Fang; Xu, Xiufeng; Tan, Liwen; Chen, Xiaogang

    2017-03-01

    Although N-methyl-d-aspartate receptor antagonists-induced hypoglutamate rodent models are the most well-established models for preclinical studies of schizophrenia-related deficits, they also evoke a wide spectrum of psychotomimetic side effects. It is significant to increase the specificity of hypoglutamate rodent models. In this study, the recognition memory was evaluated in rats by object recognition test (ORT), sensorimotor gating was evaluated by prepulse inhibition of the startle reflex (PPI), and locomotor activity was measured using open field test. High-performance liquid chromatography was used to measure neurotransmitters content in the medial prefrontal cortex (mPFC) and thalamus (THA). Total Akt and phospho-Akt protein was measured by Western blots. Results showed that 0.3mg/kg of MK-801 was most effective in inducing locomotion. 0.3mg/kg of MK-801 was most effective in decreasing PPI. 0.03mg/kg of MK-801 was most effective in decreasing object memory while not affecting exploration manners in the training session. 0.03mg/kg of MK-801 significantly increased HVA and Glu content in the mPFC. 0.1mg/kg of MK-801 significantly decreased GABA content in the THA. 0.03mg/kg of MK-801 significantly decreased Akt phosphorylation in the mPFC, which was related to the ORT index. In conclusion, a dose of 0.03mg/kg MK-801 can establish a "pure" memory impairment model without contaminations of sensorimotor gating and locomotor activity. MK-801-induced cognitive deficits is associated with increased DA metabolites and glutamate content in the mPFC and decreased GABA content in the THA as well as decrease in Akt phosphorylation in the mPFC. Copyright © 2016. Published by Elsevier B.V.

  4. Selective Activation of M4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents

    Science.gov (United States)

    2015-01-01

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders. PMID:25137629

  5. Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs.

    Directory of Open Access Journals (Sweden)

    Pernille Tveden-Nyborg

    Full Text Available While having the highest vitamin C (VitC concentrations in the body, specific functions of VitC in the brain have only recently been acknowledged. We have shown that postnatal VitC deficiency in guinea pigs causes impairment of hippocampal memory function and leads to 30% less neurons. This study investigates how prenatal VitC deficiency affects postnatal hippocampal development and if any such effect can be reversed by postnatal VitC repletion. Eighty pregnant Dunkin Hartley guinea pig dams were randomized into weight stratified groups receiving High (900 mg or Low (100 mg VitC per kg diet. Newborn pups (n = 157 were randomized into a total of four postnatal feeding regimens: High/High (Control; High/Low (Depleted, Low/Low (Deficient; and Low/High (Repleted. Proliferation and migration of newborn cells in the dentate gyrus was assessed by BrdU labeling and hippocampal volumes were determined by stereology. Prenatal VitC deficiency resulted in a significant reduction in postnatal hippocampal volume (P<0.001 which was not reversed by postnatal repletion. There was no difference in postnatal cellular proliferation and survival rates in the hippocampus between dietary groups, however, migration of newborn cells into the granular layer of the hippocampus dentate gyrus was significantly reduced in prenatally deficient animals (P<0.01. We conclude that a prenatal VitC deficiency in guinea pigs leads to persistent impairment of postnatal hippocampal development which is not alleviated by postnatal repletion. Our findings place attention on a yet unrecognized consequence of marginal VitC deficiency during pregnancy.

  6. Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex.

    Science.gov (United States)

    Shao, Yu-Feng; Wang, Can; Xie, Jun-Fan; Kong, Xiang-Pan; Xin, Le; Dong, Chao-Yu; Li, Jing; Ren, Wen-Ting; Hou, Yi-Ping

    2016-07-01

    Our previous studies have demonstrated that neuropeptide S (NPS), via selective activation of the neurons bearing NPS receptor (NPSR) in the olfactory cortex, facilitates olfactory function. High level expression of NPSR mRNA in the subiculum complex of hippocampal formation suggests that NPS-NPSR system might be involved in the regulation of olfactory spatial memory. The present study was undertaken to investigate effects of NPS on the scopolamine- or MK801-induced impairment of olfactory spatial memory using computer-assisted 4-hole-board spatial memory test, and by monitoring Fos expression in the subiculum complex in mice. In addition, dual-immunofluorescence microscopy was employed to identify NPS-induced Fos-immunereactive (-ir) neurons that also bear NPSR. Intracerebroventricular administration of NPS (0.5 nmol) significantly increased the number of visits to switched odorants in recall trial in mice suffering from odor-discriminating inability induced by scopolamine, a selective muscarinic cholinergic receptor antagonist, or MK801, a N-methyl-D-aspartate receptor antagonist, after training trials. The improvement of olfactory spatial memory by NPS was abolished by the NPSR antagonist [D-Val(5)]NPS (40 nmol). Ex vivo c-Fos and NPSR immunohistochemistry revealed that, as compared with vehicle-treated mice, NPS markedly enhanced Fos expression in the subiculum complex encompassing the subiculum (S), presubiculum (PrS) and parasubiculum (PaS). The percentages of Fos-ir neurons that also express NPSR were 91.3, 86.5 and 90.0 % in the S, PrS and PaS, respectively. The present findings demonstrate that NPS, via selective activation of the neurons bearing NPSR in the subiculum complex, ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 in mice.

  7. Vorinostat ameliorates impaired fear extinction possibly via the hippocampal NMDA-CaMKII pathway in an animal model of posttraumatic stress disorder.

    Science.gov (United States)

    Matsumoto, Yasutaka; Morinobu, Shigeru; Yamamoto, Shigeto; Matsumoto, Tomoya; Takei, Shiro; Fujita, Yosuke; Yamawaki, Shigeto

    2013-09-01

    Given that impairment of fear extinction plays a pivotal role in the pathophysiology of posttraumatic stress disorder (PTSD), drugs that facilitate fear extinction may be useful as novel treatments for PTSD. Histone deacetylase (HDAC) inhibitors have recently been shown to enhance fear extinction in animal studies. Using a single prolonged stress (SPS) paradigm, an animal model of PTSD, we examined whether the HDAC inhibitor vorinostat can facilitate fear extinction in rats, and elucidated the mechanism by which vorinostat enhanced fear extinction, focusing on the N-methyl-D-aspartate (NMDA) receptor signals in the hippocampus. Seven days after SPS, rats received contextual fear conditioning, followed by 2-day extinction training. Vorinostat was intraperitoneally injected immediately after second extinction training session. Contextual fear response was assessed 24 h after vorinostat injection. Hippocampal tissues were dissected 2 h after vorinostat injection. The levels of mRNA and protein tested were measured by RT-PCR or western blotting, respectively. Systemic administration of vorinostat with extinction training significantly enhanced fear extinction in SPS rats as compared with the controls. Furthermore, vorinostat enhanced the hippocampal levels of NR2B and calcium/calmodulin kinase II (CaMKII) α and β proteins, accompanied by increases in the levels of acetylated histone H3 and H4. These findings suggest that vorinostat ameliorated the impaired fear extinction in SPS rats, and this effect was associated with an increase in histone acetylation and thereby enhancement of NR2B and CaMKII in the hippocampus. Our results may provide new insight into the molecular and therapeutic mechanisms of PTSD.

  8. Implicit mentalizing persists beyond early childhood and is profoundly impaired in children with autism spectrum conditions

    Directory of Open Access Journals (Sweden)

    Tobias Schuwerk

    2016-10-01

    Full Text Available Implicit mentalizing, a fast, unconscious and rigid way of processing other's mental states has recently received much interest in typical social cognitive development in early childhood and in adults with autism spectrum conditions (ASC. This research suggests that already infants implicitly mentalize, and that adults with ASC have a sustained implicit mentalizing deficit. Yet, we have only sparse empirical evidence on implicit mentalizing beyond early childhood, and deviations thereof in children with ASC. Here, we administered an implicit mentalizing eye tracking task to assess the sensitivity to false beliefs to a group of 8-year-old children with and without ASC, matched for chronological age, verbal and nonverbal IQ. As previous research suggested that presenting outcomes of belief-based actions leads to fast learning from experience and false belief-congruent looking behavior in adults with ASC, we were also interested in whether already children with ASC learn from such information. Our results provide support for a persistent implicit mentalizing ability in neurotypical development beyond early childhood. Further, they confirmed an implicit mentalizing deficit in children with ASC, even when they are closely matched to controls for explicit mentalizing skills. In contrast to previous findings with adults, no experience-based modulation of anticipatory looking was observed. It seems that children with ASC have not yet developed compensatory general purpose learning mechanisms. The observed intact explicit, but impaired implicit mentalizing in ASC, and correlation patterns between mentalizing tasks and executive function tasks, are in line with theories on two dissociable mentalizing systems.

  9. Prolonged Exposure of Cortical Neurons to Oligomeric Amyloid-β Impairs NMDA Receptor Function Via NADPH Oxidase-Mediated ROS Production: Protective Effect of Green Tea (--Epigallocatechin-3-Gallate

    Directory of Open Access Journals (Sweden)

    Yan He

    2011-01-01

    Full Text Available Excessive production of Aβ (amyloid β-peptide has been shown to play an important role in the pathogenesis of AD (Alzheimer's disease. Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species in neurons through an NMDA (N-methyl-D-aspartate-dependent pathway. However, whether prolonged exposure of neurons to aggregated Aβ is associated with impairment of NMDA receptor function has not been extensively investigated. In the present study, we show that prolonged exposure of primary cortical neurons to Aβ oligomers caused mitochondrial dysfunction, an attenuation of NMDA receptor-mediated Ca2+ influx and inhibition of NMDA-induced AA (arachidonic acid release. Mitochondrial dysfunction and the decrease in NMDA receptor activity due to oligomeric Aβ are associated with an increase in ROS production. Gp91ds-tat, a specific peptide inhibitor of NADPH oxidase, and Mn(III-tetrakis(4-benzoic acid-porphyrin chloride, an ROS scavenger, effectively abrogated Aβ-induced ROS production. Furthermore, Aβ-induced mitochondrial dysfunction, impairment of NMDA Ca2+ influx and ROS production were prevented by pretreatment of neurons with EGCG [(–-epigallocatechin-3-gallate], a major polyphenolic component of green tea. Taken together, these results support a role for NADPH oxidase-mediated ROS production in the cytotoxic effects of Aβ, and demonstrate the therapeutic potential of EGCG and other dietary polyphenols in delaying onset or retarding the progression of AD.

  10. GluN2C/GluN2D subunit-selective NMDA receptor potentiator CIQ reverses MK-801-induced impairment in prepulse inhibition and working memory in Y-maze test in mice

    Science.gov (United States)

    Suryavanshi, P S; Ugale, R R; Yilmazer-Hanke, D; Stairs, D J; Dravid, S M

    2014-01-01

    Background and Purpose Despite ample evidence supporting the N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia, progress in the development of effective therapeutics based on this hypothesis has been limited. Facilitation of NMDA receptor function by co-agonists (d-serine or glycine) only partially alleviates the symptoms in schizophrenia; other means to facilitate NMDA receptors are required. NMDA receptor sub-types differ in their subunit composition, with varied GluN2 subunits (GluN2A-GluN2D) imparting different physiological, biochemical and pharmacological properties. CIQ is a positive allosteric modulator that is selective for GluN2C/GluN2D-containing NMDA receptors (Mullasseril et al.). Experimental Approach The effect of systemic administration of CIQ was tested on impairment in prepulse inhibition (PPI), hyperlocomotion and stereotypy induced by i.p. administration of MK-801 and methamphetamine. The effect of CIQ was also tested on MK-801-induced impairment in working memory in Y-maze spontaneous alternation test. Key Results We found that systemic administration of CIQ (20 mg·kg−1, i.p.) in mice reversed MK-801 (0.15 mg·kg−1, i.p.)-induced, but not methamphetamine (3 mg·kg−1, i.p.)-induced, deficit in PPI. MK-801 increased the startle amplitude to pulse alone, which was not reversed by CIQ. In contrast, methamphetamine reduced the startle amplitude to pulse alone, which was reversed by CIQ. CIQ also partially attenuated MK-801- and methamphetamine-induced hyperlocomotion and stereotyped behaviours. Additionally, CIQ reversed the MK-801-induced working memory deficit in spontaneous alternation in a Y-maze. Conclusion and Implications Together, these results suggest that facilitation of GluN2C/GluN2D-containing receptors may serve as an important therapeutic strategy for treating positive and cognitive symptoms in schizophrenia. PMID:24236947

  11. Distinct expression of synaptic NR2A and NR2B in the central nervous system and impaired morphine tolerance and physical dependence in mice deficient in postsynaptic density-93 protein

    Directory of Open Access Journals (Sweden)

    Johns Roger A

    2008-10-01

    Full Text Available Abstract Postsynaptic density (PSD-93, a neuronal scaffolding protein, binds to and clusters N-methyl-D-aspartate receptor (NMDAR subunits NR2A and NR2B at cellular membranes in vitro. However, the roles of PSD-93 in synaptic NR2A and NR2B targeting in the central nervous system and NMDAR-dependent physiologic and pathologic processes are still unclear. We report here that PSD-93 deficiency significantly decreased the amount of NR2A and NR2B in the synaptosomal membrane fractions derived from spinal cord dorsal horn and forebrain cortex but did not change their levels in the total soluble fraction from either region. However, PSD-93 deficiency did not markedly change the amounts of NR2A and NR2B in either synaptosomal or total soluble fractions from cerebellum. In mice deficient in PSD-93, morphine dose-dependent curve failed to shift significantly rightward as it did in wild type (WT mice after acute and chronic morphine challenge. Unlike WT mice, PSD-93 knockout mice also showed marked losses of NMDAR-dependent morphine analgesic tolerance and associated abnormal sensitivity in response to mechanical, noxious thermal, and formalin-induced inflammatory stimuli after repeated morphine injection. In addition, PSD-93 knockout mice displayed dramatic loss of jumping activity, a typical NMDAR-mediated morphine withdrawal abstinence behavior. These findings indicate that impaired NMDAR-dependent neuronal plasticity following repeated morphine injection in PSD-93 knockout mice is attributed to PSD-93 deletion-induced alterations of synaptic NR2A and NR2B expression in dorsal horn and forebrain cortex neurons. The selective effect of PSD-93 deletion on synaptic NMDAR expression in these two major pain-related regions might provide the better strategies for the prevention and treatment of opioid tolerance and physical dependence.

  12. Persistent pain, sensory disturbances and functional impairment after adjuvant chemotherapy for breast cancer

    DEFF Research Database (Denmark)

    Andersen, Kenneth Geving; Jensen, Maj-Britt; Kehlet, Henrik

    2012-01-01

    (CEF) and cyclophosphamide and epirubicin + docetaxel (CE + T) in relation to PPBCT, sensory disturbances, peripheral sensory disturbances and functional impairment. Material and methods. A comparative nationwide cross-sectional questionnaire study on two cohorts treated with CEF respectively CE + T...

  13. DEVELOPMENTAL LEAD (PB) EXPOSURE REDUCES THE ABILITY OF THE NNDA ANTAGONIST MK801 TO SUPPRESS LONG-TERM POTENTIATION (LTP) IN THE RAT DENTATE GYRUS, IN VIVO

    Science.gov (United States)

    Chronic developmental lead (Pb) exposure increases the threshold and enhances decay of long-term potentiation (LTP) in the dentate gyrus of the hippocampal formation. MK-801 and other antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor subtype impair induction of LT...

  14. Influence of Pharmacological Manipulations of NMDA and Cholinergic Receptors on Working versus Reference Memory in a Dual Component Odor Span Task

    Science.gov (United States)

    MacQueen, David A.; Dalrymple, Savannah R.; Drobes, David J.; Diamond, David M.

    2016-01-01

    Developed as a tool to assess working memory capacity in rodents, the odor span task (OST) has significant potential to advance drug discovery in animal models of psychiatric disorders. Prior investigations indicate OST performance is impaired by systemic administration of N-methyl-D-aspartate receptor (NMDA-r) antagonists and is sensitive to…

  15. The Effects of Online Interactions on the Relationship between Learning-Related Anxiety and Intention to Persist among E-Learning Students with Visual Impairment

    Science.gov (United States)

    Oh, Yunjin; Lee, Soon Min

    2016-01-01

    This study explored whether learning-related anxiety would negatively affect intention to persist with e-learning among students with visual impairment, and examined the roles of three online interactions in the relationship between learning-related anxiety and intention to persist with e-learning. For this study, a convenience sample of…

  16. Persistent pain, sensory disturbances and functional impairment after immediate or delayed axillary lymph node dissection

    DEFF Research Database (Denmark)

    Geving Andersen, Kenneth; Jensen, Maj-Britt Raaby; Tvedskov, Tove Filtenborg

    2013-01-01

    BACKGROUND: Patients treated with 2-step axillary lymph node dissection (ALND) may be at increased risk of nerve damage due to more challenging surgery than an ALND immediately after a sentinel lymph node biopsy (SLNB), and thus more at risk for persistent pain after breast cancer treatment (PPBCT...

  17. Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille; Vogt, Lucile; Schjoldager, Janne Gram

    2012-01-01

    While having the highest vitamin C (VitC) concentrations in the body, specific functions of VitC in the brain have only recently been acknowledged. We have shown that postnatal VitC deficiency in guinea pigs causes impairment of hippocampal memory function and leads to 30% less neurons. This study...

  18. Impaired antibody response causes persistence of prototypic T cell-contained virus.

    Directory of Open Access Journals (Sweden)

    Andreas Bergthaler

    2009-04-01

    Full Text Available CD8 T cells are recognized key players in control of persistent virus infections, but increasing evidence suggests that assistance from other immune mediators is also needed. Here, we investigated whether specific antibody responses contribute to control of lymphocytic choriomeningitis virus (LCMV, a prototypic mouse model of systemic persistent infection. Mice expressing transgenic B cell receptors of LCMV-unrelated specificity, and mice unable to produce soluble immunoglobulin M (IgM exhibited protracted viremia or failed to resolve LCMV. Virus control depended on immunoglobulin class switch, but neither on complement cascades nor on Fc receptor gamma chain or Fc gamma receptor IIB. Cessation of viremia concurred with the emergence of viral envelope-specific antibodies, rather than with neutralizing serum activity, and even early nonneutralizing IgM impeded viral persistence. This important role for virus-specific antibodies may be similarly underappreciated in other primarily T cell-controlled infections such as HIV and hepatitis C virus, and we suggest this contribution of antibodies be given consideration in future strategies for vaccination and immunotherapy.

  19. Foot related impairments and disability in juvenile idiopathic arthritis persist despite modern day treatment paradigms

    OpenAIRE

    Hendry, Gordon J; Gardner-Medwin, Janet; Watt, Gordon F; Woodburn, Jim; McColl, John H; Sturrock, Roger D

    2011-01-01

    Background: Foot problems such as synovitis, growth disturbance and deformity are considered common in juvenile idiopathic arthritis (JIA) and have been previously reported in over 90% of cases. The medical management of JIA appears to have improved recently however little is known about the impact of new regimes on localised joints such as in the foot. This pilot study aimed to investigate the prevalence of foot related impairments and disability, and survey the medical and podiatric managem...

  20. Impaired insula functional connectivity associated with persistent pain perception in patients with complex regional pain syndrome

    Science.gov (United States)

    Jang, Joon Hwan; Lee, Do-Hyeong; Lee, Kyung-Jun; Lee, Won Joon; Moon, Jee Youn; Kim, Yong Chul

    2017-01-01

    Given that the insula plays a contributory role in the perception of chronic pain, we examined the resting-state functional connectivity between the insular cortex and other brain regions to investigate neural underpinnings of persisting perception of background pain in patients with complex regional pain syndrome (CRPS). A total of 25 patients with CRPS and 25 matched healthy controls underwent functional magnetic resonance imaging at rest. With the anterior and posterior insular cortices as seed regions, we compared the strength of the resting-state functional connectivity between the two groups. Functional connectivity between the anterior and posterior insular cortices and the postcentral and inferior frontal gyri, cingulate cortices was reduced in patients with CRPS compared with controls. Additionally, greater reductions in functional connectivity between the anterior insula and right postcentral gyrus were associated with more severe sensory pain in patients with CRPS (short-form McGill Pain Questionnaire sensory subscores, r = -.517, P = .023). The present results imply a possible role of the insula in aberrant processing of pain information in patients with CRPS. The findings suggest that a functional derangement of the connection between one of the somatosensory cortical functions of perception and one of the insular functions of awareness can play a significant role in the persistent experience of regional pain that is not confined to a specific nerve territory. PMID:28692702

  1. Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille; Vogt, Lucile; Schjoldager, Janne G

    2012-01-01

    While having the highest vitamin C (VitC) concentrations in the body, specific functions of VitC in the brain have only recently been acknowledged. We have shown that postnatal VitC deficiency in guinea pigs causes impairment of hippocampal memory function and leads to 30% less neurons. This study...... investigates how prenatal VitC deficiency affects postnatal hippocampal development and if any such effect can be reversed by postnatal VitC repletion. Eighty pregnant Dunkin Hartley guinea pig dams were randomized into weight stratified groups receiving High (900 mg) or Low (100 mg) VitC per kg diet. Newborn...... by stereology. Prenatal VitC deficiency resulted in a significant reduction in postnatal hippocampal volume (P...

  2. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard; Lauritzen, Martin

    2009-01-01

    trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were......Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head...... recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins...

  3. Impaired glucose-induced thermogenesis and arterial norepinephrine response persist after weight reduction in obese humans

    DEFF Research Database (Denmark)

    Astrup, A; Andersen, T; Christensen, N J

    1990-01-01

    A reduced thermic response and an impaired activation of the sympathetic nervous system (SNS) has been reported after oral glucose in human obesity. It is, however, not known whether the reduced SNS activity returns to normal along with weight reduction. The thermic effect of glucose was lower...... in eight obese patients than in matched control subjects (1.7% vs 9.2%, p less than 0.002). The increase in arterial norepinephrine after glucose was also blunted in the obese patients. After a 30-kg weight loss their glucose and lipid profiles were markedly improved but the thermic effect of glucose...... was still lower than that of the control subjects (4.2%, p less than 0.001). The glucose-induced arterial norepinephrine response remained diminished in the reduced obese patients whereas the changes in plasma epinephrine were similar in all three groups. The results suggest that a defective SNS may...

  4. Propofol can Protect Against the Impairment of Learning-memory Induced by Electroconvulsive Shock via Tau Protein Hyperphosphorylation in Depressed Rats

    Institute of Scientific and Technical Information of China (English)

    Wan-fu Liu; Chao Liu

    2015-01-01

    Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups (with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal (ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups (n=10 per group):ip injection of 5 ml saline;ip injection of 5 ml of 10 mg/kg MK-801;ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock;ip injection of 5 ml of 200 mg/kg propofol;ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock;and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. Results Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels of phosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by

  5. Persistent quality of life impairments in differentiated thyroid cancer patients: results from a monitoring programme

    Energy Technology Data Exchange (ETDEWEB)

    Gamper, Eva-Maria [Medical University Innsbruck, Department for Nuclear Medicine, Innsbruck (Austria); Medical University Innsbruck, Department for Psychiatry and Psychotherapy, Innsbruck (Austria); Wintner, Lisa M.; Holzner, Bernhard [Medical University Innsbruck, Department for Psychiatry and Psychotherapy, Innsbruck (Austria); Rodrigues, Margarida; Buxbaum, Sabine; Nilica, Bernhard; Virgolini, Irene [Medical University Innsbruck, Department for Nuclear Medicine, Innsbruck (Austria); Singer, Susanne [University of Mainz, Institute of Medical Biostatistics, Epidemiology, and Informatics, Mainz (Germany); Giesinger, Johannes M. [Netherlands Cancer Institute, Amsterdam (Netherlands)

    2015-07-15

    the favourable prognosis of DTC does not directly translate into good HRQOL in these patients. Persistent restrictions in regaining their normal daily life in terms of work and leisure highlight the importance of more detailed investigation of DTC patients' wellbeing, support needs, and disease experience. (orig.)

  6. Persistent quality of life impairments in differentiated thyroid cancer patients: results from a monitoring programme

    International Nuclear Information System (INIS)

    Gamper, Eva-Maria; Wintner, Lisa M.; Holzner, Bernhard; Rodrigues, Margarida; Buxbaum, Sabine; Nilica, Bernhard; Virgolini, Irene; Singer, Susanne; Giesinger, Johannes M.

    2015-01-01

    the favourable prognosis of DTC does not directly translate into good HRQOL in these patients. Persistent restrictions in regaining their normal daily life in terms of work and leisure highlight the importance of more detailed investigation of DTC patients' wellbeing, support needs, and disease experience. (orig.)

  7. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a Pavlovian model.

    Directory of Open Access Journals (Sweden)

    Jun-Li Liu

    Full Text Available BACKGROUND: In auditory fear conditioning, repeated presentation of the tone in the absence of shock leads to extinction of the acquired fear responses. The glutamate N-methyl-D-aspartate receptor (NMDAR is thought to be involved in the extinction of the conditioned fear responses, but its detailed role in initiating and consolidating or maintaining the fear extinction memory is unclear. Here we investigated this issue by using a NMDAR antagonist, MK-801. METHODS/MAIN FINDINGS: The effects of immediate (beginning at 10 min after the conditioning and delayed (beginning at 24 h after conditioning extinctions were first compared with the finding that delayed extinction caused a better and long-lasting (still significant on the 20(th day after extinction depression on the conditioned fear responses. In a second experiment, MK-801 was intraperitoneally (i.p. injected at 40 min before, 4 h or 12 h after the delayed extinction, corresponding to critical time points for initiating, consolidating or maintaining the fear extinction memory. i.p. injection of MK-801 at either 40 min before or 4 h after delayed extinction resulted in an impairment of initiating and consolidating fear extinction memory, which caused a long lasting increased freezing score that was still significant on the 7th day after extinction, compared with extinction group. However, MK-801 administered at 12 h after the delayed extinction, when robust consolidation has been occurred and stabilized, did not affect the established extinction memory. Furthermore, the changed freezing behaviors was not due to an alteration in general anxiety levels, since MK-801 treatment had no effect on the percentage of open-arm time or open-arm entries in an Elevated Plus Maze (EPM task. CONCLUSIONS/SIGNIFICANCE: Our data suggested that the activation of NMDARs plays important role in initiation and consolidation but not maintenance of fear extinction memory. Together with the fact that NMDA receptor is

  8. Impaired social interaction and enhanced sensitivity to phencyclidine-induced deficits in novel object recognition in rats with cortical cholinergic denervation.

    Science.gov (United States)

    Savage, S; Kehr, J; Olson, L; Mattsson, A

    2011-11-10

    Dysregulated cholinergic neurotransmission has been implicated in the pathophysiology of schizophrenia, particularly negative symptoms and cognitive deficits. The aim of the present study was to evaluate the role of neocortical cholinergic innervation and of the N-methyl-d-aspartate (NMDA) receptor antagonist phencyclidine (PCP) on social interaction and novel object recognition (NOR), a declarative memory task. The cholinergic corticopetal projection was lesioned by local infusion of the immunotoxin 192 IgG-saporin into nucleus basalis magnocellularis of adult male Lister hooded rats. Behavior was assessed 2.5 weeks later in a social interaction paradigm followed by the NOR task. We found that selective cholinergic denervation of neocortex led to a significant reduction in duration of social interaction, specifically active social interaction. Acute administration of PCP (1.0 mg/kg, s.c.) caused a marked decrease of active social interaction, such that there was no longer a difference between intact and denervated animals. Neither cholinergic denervation alone, nor PCP (1.0 mg/kg, s.c.) alone blocked the ability of rats to recognize a novel object. However, when animals lacking cortical cholinergic innervation were challenged by PCP, they were no longer able to recognize a novel object. This study indicates that rats lacking cholinergic innervation of neocortex have impaired social interaction and specifically that the duration of active contact is shortened. Animals with severe cortical cholinergic hypofunction maintain the ability to perform in a declarative memory test, although the task is carried out less intensively. However, a provocation of psychosis-like behavior by a dose of PCP that does not by itself impair performance in normal animals, will abolish the ability to recognize novel objects in animals lacking cortical cholinergic innervation. The present findings support a possible role for cortical cholinergic hypofunction in the negative and cognitive

  9. Indirect language therapy for children with persistent language impairment in mainstream primary schools: outcomes from a cohort intervention.

    Science.gov (United States)

    McCartney, Elspeth; Boyle, James; Ellis, Sue; Bannatyne, Susan; Turnbull, Mary

    2011-01-01

    A manualized language therapy developed via a randomized controlled trial had proved efficacious in the short-term in developing expressive language for mainstream primary school children with persistent language impairment. This therapy had been delivered to a predetermined schedule by speech and language therapists or speech and language therapy assistants to children individually or in groups. However, this model of service delivery is no longer the most common model in UK schools, where indirect consultancy approaches with intervention delivered by school staff are often used. A cohort study was undertaken to investigate whether the therapy was equally efficacious when delivered to comparable children by school staff, rather than speech and language therapists or speech and language therapy assistants. Children in the cohort study were selected using the same criteria as in the randomized controlled trial, and the same manualized therapy was used, but delivered by mainstream school staff using a consultancy model common in the UK. Outcomes were compared with those of randomized controlled trial participants. The gains in expressive language measured in the randomized controlled trial were not replicated in the cohort study. Less language-learning activity was recorded than had been planned, and less than was delivered in the randomized controlled trial. Implications for 'consultancy' speech and language therapist service delivery models in mainstream schools are outlined. At present, the more efficacious therapy is that delivered by speech and language therapists or speech and language therapy assistants to children individually or in groups. This may be related to more faithful adherence to the interventions schedule, and to a probably greater amount of language-learning activity undertaken. Intervention delivered via school-based 'consultancy' approaches in schools will require to be carefully monitored by schools and SLT services. © 2010 Royal College of

  10. Pre- and long-term postoperative courses of hippocampus-associated memory impairment in epilepsy patients with antibody-associated limbic encephalitis and selective amygdalohippocampectomy.

    Science.gov (United States)

    Hansen, Niels; Ernst, Leon; Rüber, Theodor; Widman, Guido; Becker, Albert J; Elger, Christian E; Helmstaedter, Christoph

    2018-02-01

    Limbic encephalitis (LE) is defined by mesiotemporal lobe structure abnormalities, seizures, memory, and psychiatric disturbances. This study aimed to identify the long-term clinical and neuropsychological outcome of selective amygdalohippocampectomy (sAH) in drug-resistant patients with temporal lobe epilepsy due to known or later diagnosed subacute LE not responding to immunotherapy associated with neuronal autoantibodies. In seven patients with temporal lobe epilepsy due to antibody positive LE (glutamic acid decarboxylase (GAD65): n=5; voltage-gated potassium channel complex (VGKC), N-methyl d-aspartate receptor (NMDAR): n=1; Ma-2/Ta: n=1) sAH (6 left, 1 right) was performed. Those patients underwent repeated electroencephalography (EEG) recordings, magnetic resonance imaging (MRI) volumetry of the amygdala and hippocampus, and neuropsychological examinations and were followed up for 6-7years on average. Verbal memory and figural memory were affected in 57% of patients at baseline and 71% at the last follow-up. At the last follow-up, 14% of the patients had declined in verbal memory and figural memory. We observed improved memory in 43% of patients regarding figural memory, but not in a single patient regarding verbal memory. Repeated evaluations across the individual courses reveal cognitive and MRI dynamics that appear to be unrelated to surgery and drug treatment. Three of the seven patients with LE with different antibodies (NMDAR: n=1, Ma-2/Ta: n=1 and GAD65: n=1) achieved persistent seizure freedom along with no accelerated memory decline after surgery. Two of the five GAD65-antibody patients positive with LE showed progressive memory decline and a long-term tendency to contralateral hippocampus atrophy. While memory demonstrated some decline in the long run, what is most important is that a progressive decline in memory is seldom found after sAH in patients with LE. Moreover, the dynamics in performance and MRI before and after surgery reveal disease

  11. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    Science.gov (United States)

    2013-01-01

    Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious

  12. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory.

    Science.gov (United States)

    Okuda, Kosuke; Takao, Keizo; Watanabe, Aya; Miyakawa, Tsuyoshi; Mizuguchi, Masashi; Tanaka, Teruyuki

    2018-01-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the

  13. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory.

    Directory of Open Access Journals (Sweden)

    Kosuke Okuda

    Full Text Available Mutations in the Cyclin-dependent kinase-like 5 (CDKL5 gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be

  14. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory

    Science.gov (United States)

    Okuda, Kosuke; Takao, Keizo; Watanabe, Aya; Miyakawa, Tsuyoshi; Mizuguchi, Masashi

    2018-01-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the

  15. Impaired reward processing in the human prefrontal cortex distinguishes between persistent and remittent attention deficit hyperactivity disorder.

    Science.gov (United States)

    Wetterling, Friedrich; McCarthy, Hazel; Tozzi, Leonardo; Skokauskas, Norbert; O'Doherty, John P; Mulligan, Aisling; Meaney, James; Fagan, Andrew J; Gill, Michael; Frodl, Thomas

    2015-11-01

    Symptoms of attention deficit hyperactivity disorder (ADHD) in children often persist into adulthood and can lead to severe antisocial behavior. However, to-date it remains unclear whether neuro-functional abnormalities cause ADHD, which in turn can then provide a marker of persistent ADHD. Using event-related functional magnetic resonance imaging (fMRI), we measured blood oxygenation level dependent (BOLD) signal changes in subjects during a reversal learning task in which choice of the correct stimulus led to a probabilistically determined 'monetary' reward or punishment. Participants were diagnosed with ADHD during their childhood (N=32) and were paired with age, gender, and education matched healthy controls (N=32). Reassessment of the ADHD group as adults resulted in a split between either persistent (persisters, N=17) or remitted ADHDs (remitters, N=15). All three groups showed significantly decreased activation in the medial prefrontal cortex (PFC) and the left striatum during punished correct responses, however only remitters and controls presented significant psycho-physiological interaction between these fronto-striatal reward and outcome valence networks. Comparing persisters to remitters and controls showed significantly inverted responses to punishment (Pdifferent areas of the PFC for remitters compared with controls, suggesting that remitters might have learned compensation strategies to overcome their ADHD symptoms. Thus, fMRI helps understanding the neuro-functional basis of ADHD related behavior differences and differentiates between persistent and remittent ADHD. © 2015 Wiley Periodicals, Inc.

  16. Altered 13C glucose metabolism in the cortico-striato-thalamo-cortical loop in the MK-801 rat model of schizophrenia

    DEFF Research Database (Denmark)

    Eyjolfsson, Elvar M; Nilsen, Linn Hege; Kondziella, Daniel

    2011-01-01

    Using a modified MK-801 (dizocilpine) N-methyl-D-aspartic acid (NMDA) receptor hypofunction model for schizophrenia, we analyzed glycolysis, as well as glutamatergic, GABAergic, and monoaminergic neurotransmitter synthesis and degradation. Rats received an injection of MK-801 daily for 6 days...... in all regions. In conclusion, neurotransmitter metabolism in the cortico-striato-thalamo-cortical loop is severely impaired in the MK-801 (dizocilpine) NMDA receptor hypofunction animal model for schizophrenia....

  17. Ketamine appears associated with better word recall than etomidate after a course of 6 electroconvulsive therapies.

    Science.gov (United States)

    McDaniel, William W; Sahota, Anupinder K; Vyas, Barin V; Laguerta, Nena; Hategan, Liana; Oswald, Jessica

    2006-06-01

    Ten patients treated with electroconvulsive therapy (ECT) for depressive illness received anesthesia with either etomidate or ketamine. Three patients received both etomidate and ketamine anesthesia for ECT during separate episodes of depression. Patients anesthetized with ketamine for ECT had significantly less impairment of short-term memory function than did patients who received ECT with etomidate anesthesia. All patients who received both anesthetics for ECT during 2 different episodes had less memory loss during ECT with ketamine than with etomidate. These results show the importance of studying the effects of all anesthetic agents used during ECT on cognitive functions. The results imply that the effect of ECT on memory may be largely caused by effects mediated by glutamate at N-methyl-d-aspartate receptors and suggest that N-methyl-d-aspartate antagonists may offer protection from memory dysfunction during ECT.

  18. Quality-of-Life Impairments Persist Six Months After Treatment of Graves' Hyperthyroidism and Toxic Nodular Goiter: A Prospective Cohort Study.

    Science.gov (United States)

    Cramon, Per; Winther, Kristian Hillert; Watt, Torquil; Bonnema, Steen Joop; Bjorner, Jakob Bue; Ekholm, Ola; Groenvold, Mogens; Hegedüs, Laszlo; Feldt-Rasmussen, Ulla; Rasmussen, Åse Krogh

    2016-08-01

    The treatment of hyperthyroidism is aimed at improving health-related quality of life (HRQoL) and reducing morbidity and mortality. However, few studies have used validated questionnaires to assess HRQoL prospectively in such patients. The purpose of this study was to assess the impact of hyperthyroidism and its treatment on HRQoL using validated disease-specific and generic questionnaires. This prospective cohort study enrolled 88 patients with Graves' hyperthyroidism and 68 with toxic nodular goiter from endocrine outpatient clinics at two Danish university hospitals. The patients were treated with antithyroid drugs, radioactive iodine, or surgery. Disease-specific and generic HRQoL were assessed using the thyroid-related patient-reported outcome (ThyPRO) and the Medical Outcomes Study 36-item Short Form (SF-36), respectively, evaluated at baseline and six-month follow-up. The scores were compared with those from two general population samples who completed ThyPRO (n = 739) and SF-36 (n = 6638). Baseline scores for patients with Graves' hyperthyroidism and toxic nodular goiter were significantly worse than those for the general population scores on all comparable ThyPRO scales and all SF-36 scales and component summaries. ThyPRO scores improved significantly with treatment on all scales in Graves' hyperthyroidism and four scales in toxic nodular goiter, while SF-36 scores improved on five scales and both component summaries in Graves' hyperthyroidism and only one scale in toxic nodular goiter. In Graves' hyperthyroidism, large treatment effects were observed on three ThyPRO scales (Hyperthyroid Symptoms, Tiredness, Overall HRQoL) and moderate effects on three scales (Anxiety, Emotional Susceptibility, Impaired Daily Life), while moderate effects were seen in two ThyPRO scales in toxic nodular goiter (Anxiety, Overall HRQoL). However, significant disease-specific and generic HRQoL deficits persisted on multiple domains across both patient groups. Graves

  19. Synthesis and evaluation of 1-[l brace]1-[5-(2'-[[sup 18]F]fluoroethyl)-2-thienyl]cyclohexyl[r brace]piperidine as a potential in vivo radioligand for the NMDA receptor-channel complex. [N-methyl-D-aspartate receptor

    Energy Technology Data Exchange (ETDEWEB)

    Orita, Kazuhiro; Sasaki, Shigeki; Maeda, Minoru [Kyushu Univ., Fukuoka (Japan). Faculty of Pharmaceutical Sciences; Hashimoto, Atsushi; Nishikawa, Toru [National Inst. of Neuroscience, Tokyo (Japan); Yugami, Tomoko; Umezu, Kohei [Mitsubishi Kasei Corp., Yokohama (Japan). Research Center

    1993-10-01

    1-[l brace]1-[5-(2'-[[sup 18]F]Fluoroethyl)-2-thienyl]cyclohexyl[r brace]piperidine ([sup 18]FE-TCP) was prepared a fluorine-substituted analogue of the potent NMDA receptor channel blocker, 1-[1-(2-thienyl)cyclohexyl]piperidine (TCP), by the mesylate displacement with [[sup 18]F]fluoride ion with isolated radiochemical yields of 6-12%, and the synthesis time including a two step HPLC purification was 120 min. The regional distribution in rat brain after i.v. injection of [sup 18]FE-TCP was heterogeneous and similar to the known distribution of phencyclidine recognition sites, with hippocampus-cerebellum, striatum-cerebellum and cerebral cortex-cerebellum concentration ratios of 2.08, 1.7 and 1.54, respectively, 15 min post-injection. Furthermore, this localized regional cerebral distribution was blocked by co-injection with the unlabelled FE-TCP or pretreatment with cis-2-hydroxymethyl-r-1-(N-piperidyl)-1-(2-thienyl)cyclohexane, with the greatest reductions seen in the hippocampus followed by the striatum and cerebral cortex. However, relatively low receptor binding affinity and high non-specific binding due to its high lipophilicity suggest that [sup 18]FE-TCP may not be a suitable radioligand for in vivo PET investigations of the NMDA receptor-channel complex. (Author).

  20. Persistent angina

    DEFF Research Database (Denmark)

    Jespersen, L.; Abildstrom, S. Z.; Hvelplund, Anders

    2013-01-01

    To evaluate persistent angina in stable angina pectoris with no obstructive coronary artery disease (CAD) compared to obstructive CAD and its relation to long-term anxiety, depression, quality of life (QOL), and physical functioning. We invited 357 patients (men = 191; women = 166; response rate 83......-obstructive CAD or normal coronary arteries than in patients with obstructive CAD. Persistent angina symptoms were associated with long-term anxiety, depression, impaired physical functioning, and QOL irrespective of the degree of CAD. Contrary to common perception, excluding obstructive CAD in stable angina does...... %) with no prior cardiovascular disease who had a first-time coronary angiography (CAG) in 2008-2009 due to suspected stable angina to participate in a questionnaire survey in 2011 with the Seattle Angina Questionnaire and the Hospital Anxiety and Depression Scale as key elements. Long-term persistent angina (i...

  1. Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx.

    Directory of Open Access Journals (Sweden)

    Michael Eschbaumer

    Full Text Available In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vaccine, 10 non-vaccinated were challenged with FMDV A24 Cruzeiro, and the gene expression profiles of nasopharyngeal tissues collected between 21 and 35 days after challenge were compared between 11 persistently infected carriers and 7 non-carriers. Carriers and non-carriers were further compared to 2 naïve animals that had been neither vaccinated nor challenged. At a controlled false-discovery rate of 10% and a minimum difference in expression of 50%, 648 genes were differentially expressed between FMDV carriers and non-carriers, and most (467 had higher expression in carriers. Among these, genes associated with cellular proliferation and the immune response-such as chemokines, cytokines and genes regulating T and B cells-were significantly overrepresented. Differential gene expression was significantly correlated between non-vaccinated and vaccinated animals (biological correlation +0.97, indicating a similar transcriptome profile across these groups. Genes related to prostaglandin E2 production and the induction of regulatory T cells were overexpressed in carriers. In contrast, tissues from non-carrier animals expressed higher levels of complement regulators and pro-apoptotic genes that could promote virus clearance. Based on these findings, we propose a working hypothesis for FMDV persistence in nasopharyngeal tissues of cattle, in which the virus may be maintained by an impairment of apoptosis and the local suppression of cell-mediated antiviral immunity by inducible regulatory T cells.

  2. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P.; Kenyon, Christopher J.; Caughey, Sarah; Walker, Brian R.; Holmes, Megan C.; Seckl, Jonathan R.; Yau, Joyce L.W.

    2015-01-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. PMID:25497454

  3. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice.

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W

    2015-04-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Persistent organochlorine pollutants and risk for skeletal fractures and impaired bone mineral density in humans. Results from the ''COMPARE'' project

    Energy Technology Data Exchange (ETDEWEB)

    Hagmar, L.; Wallin, E.; Joensson, B.A. [Department of Occupational and Environmental Medicine, Lund (Sweden)

    2004-09-15

    Persistent organochlorine pollutants (POP) have, in animal studies, impaired normal bone metabolism and resulted in increased bone fragility. Especially considering the dramatical increase in osteoporotic fractures in western societies during the last decades, it is a pertinent question whether a high dietary intake of POP might pose a risk for deteriorated bone quality in humans. This problem has been assessed as a part of the collaborative project ''COMPARE'', funded by European Commission RD Life Science Program. As a study base we have used cohorts of Swedish fishermen's families. We have earlier shown that fishermen living at the east coast of Sweden, have a high consumption of contaminated fatty fish from the Baltic Sea and consequently relatively high exposure levels for various POPs, also compared with fishermen from the Swedish west coast. Such a discrepancy was also found for fishermen's wives. The aim of the project was to assess in epidemiological studies whether a high dietary intake of POP through fatty fish from the Baltic may result in an increased incidence of osteoporotic fractures or decreased bone mineral density (BMD). We give here an overview of the results.

  5. Hypoxia-Induced neonatal seizures diminish silent synapses and long-term potentiation in hippocampal CA1 neurons

    Science.gov (United States)

    Zhou, Chengwen; Bell, Jocelyn J. Lippman; Sun, Hongyu; Jensen, Frances E.

    2012-01-01

    Neonatal seizures can lead to epilepsy and long-term cognitive deficits in adulthood. Using a rodent model of the most common form of human neonatal seizures, hypoxia-induced seizures (HS), we aimed to determine whether these seizures modify long-term potentiation (LTP) and “silent” N-methyl-D-aspartate receptor (NMDAR)-only synapses in hippocampal CA1. At 48-72 hours (hrs) post-HS, electrophysiology and immunofluorescent confocal microscopy revealed a significant decrease in the incidence of silent synapses, and an increase in amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at the synapses. Coincident with this decrease in silent synapses, there was an attenuation of LTP elicited by either tetanic stimulation of Schaffer collaterals or a pairing protocol, and persistent attenuation of LTP in slices removed in later adulthood after P10 HS. Furthermore, post-seizure treatment in vivo with the AMPAR antagonist 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline (NBQX) protected against the HS-induced depletion of silent synapses and preserved LTP. Thus, this study demonstrates a novel mechanism by which early-life seizures could impair synaptic plasticity, suggesting a potential target for therapeutic strategies to prevent long-term cognitive deficits. PMID:22171027

  6. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat

    2017-05-01

    Inhibition of Ca 2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca 2+ -permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca 2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced

  7. PERSISTENT IMPAIRMENTS IN SHORT-TERM BUT ENHANCED LONG-TERM SYNAPTIC PLASTICITY IN HIPPOCAMPAL AREA CA1 FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM.

    Science.gov (United States)

    Thyroid hormones (TH) are critical for nervous system development. Deficiency of TH during development impair performance on tasks of learning and memory that rely upon the hippocampus, but the mechanism underlying this impairment is not well understood. The present study was ...

  8. NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus.

    Science.gov (United States)

    McDonald, Robert J; Hong, Nancy S; Craig, Laura A; Holahan, Matthew R; Louis, Meira; Muller, Robert U

    2005-09-01

    Recent evidence suggests that N-methyl-D-aspartate (NMDA)-receptor mediated plasticity in hippocampus has a more subtle role in memory-based behaviours than originally thought. One idea is that NMDA-based plasticity is essential for the consolidation of post-training memory but not for the initial encoding or for short-term memory. To further test this idea we used a three-phase variant of the hidden goal water maze task. In the first phase, rats were pre-trained to an initial location. Next, intense, massed training was done in a 2-h interval to teach the rats to go to a new location after either an injection of the NMDA receptor antagonist (6)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or of vehicle. Finally, under drug-free conditions 24 h after new location training, a competition test was done between the original and new locations. We find that N-methyl-D-aspartate (NMDA)-receptor blockade has little or no effect on new location training. In contrast, when tested 24 h later, the strength of the trace for the new location learned during NMDA-receptor blockade was much weaker compared with the trace for the new location learned after saline injection. Further experiments showed similar effects when NMDA-receptors were blocked immediately after the new location training, suggesting that this is a memory consolidation effect. Our results therefore reinforce the notion that hippocampal NMDA-receptors participate in post-training memory consolidation but are not essential for the processes necessary to learn or retain navigational information in the short term.

  9. NMDA receptor activation and PKC but not PKA lead to the modification of the long-term potentiation in the insular cortex induced by conditioned taste aversion: differential role of kinases in metaplasticity.

    Science.gov (United States)

    Rodríguez-Durán, Luis F; Escobar, Martha L

    2014-06-01

    It has been reported that training in behavioral tasks modifies the ability to induce long-term potentiation (LTP) in an N-methyl-D-aspartate receptor (NMDAR)-dependent manner. This receptor leads to calcium entry into neuronal cells, promoting the activation of protein kinases as protein kinase A (PKA) and protein kinase C (PKC), which contribute significantly to the formation of different types of memories and play a pivotal role in the expression of LTP. Our previous studies involving the insular cortex (IC) have demonstrated that induction of LTP in the basolateral amygdaloid nucleus (BLA)-IC projection prior to conditioned taste aversion (CTA) training enhances the retention of this task. Recently, we showed that CTA training triggers a persistent impairment in the ability to induce subsequent synaptic plasticity on the BLA-IC pathway in a protein synthesis-dependent manner, but the underlying molecular mechanisms remain unclear. In the present study we investigated whether the blockade of NMDAR, as well as the inhibition of PKC and PKA affects the CTA-dependent impairment of the IC-LTP. Thus, CTA-trained rats received high frequency stimulation in the Bla-IC projection in order to induce LTP 48 h after the aversion test. The NMDAR antagonist CPP and the specific inhibitors for PKC (chelerythrine) and PKA (KT-5720) were intracortically administered during the acquisition session. Our results show that the blockade of NMDAR and the inhibition of PKC activity prevent the CTA memory-formation as well as the IC-LTP impairment. Nevertheless, PKA inhibition prevents the memory formation of taste aversion but produces no interference with the CTA-dependent impairment of the IC-LTP. These findings reveal the differential roles of protein kinases on CTA-dependent modification of IC-LTP enhancing our understanding of the effects of memory-related changes on synaptic function. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The interplay of BDNF-TrkB with NMDA receptor in propofol-induced cognition dysfunction : Mechanism for the effects of propofol on cognitive function.

    Science.gov (United States)

    Zhou, Junfei; Wang, Fang; Zhang, Jun; Li, Jianfeng; Ma, Li; Dong, Tieli; Zhuang, Zhigang

    2018-04-05

    The aim of the present study was to verify whether propofol impaired learning and memory through the interplay of N-methyl-D-aspartate (NMDA) receptor with brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling pathway. 120 Sprague-Dawley (SD) rats were randomly assigned into eight groups. Experimental drugs including saline, intralipid, propofol, N-methyl-D-aspartate (NMDA), 7,8-dihydroxyflavone (7,8-DHF), K252a and MK-801. Spatial learning and memory of rats were tested by the Morris water maze (MWM) test. The mRNA and protein expression were determined by immunohistochemistry, RT-PCR and western blot. Finally, hippocampus cells proliferation and apoptosis were examined by PCNA immunohistochemistry and TUNEL respectively. The memory and learning was diminished in the propofol exposure group, however, the impaired memory and learning of rats were improved with the addition of NMDA and 7,8-DHF, while the improvement of memory and learning of rats were reversed with the addition of K252a and MK-801. In addition, the mRNA and protein expression levels and hippocampus cells proliferation were the same trend with the results of the MWM test, while apoptosis in hippocampus was reversed. The propofol can impair memory and learning of rats and induce cognition dysfunction through the interplay of NMDA receptor and BDNF-TrkB-CREB signaling pathway.

  11. Bacterial persistence

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Drug indifference versus persistence. Studies on the mode of ... is a special case of drug indifference, restricted to a small ... to his model (outlined in detail in Lewis 2008), treatment .... belong to the heat and cold shock response family; many.

  12. [Persistent diarrhea

    Science.gov (United States)

    Andrade, J A; Moreira, C; Fagundes Neto, U

    2000-07-01

    INTRODUCTION: Persistent diarrhea has high impact on infantile morbidity and mortality rates in developing countries. Several studies have shown that 3 to 20% of acute diarrheal episodes in children under 5 years of age become persistent. DEFINITION: Persistent diarrhea is defined as an episode that lasts more than 14 days. ETIOLOGY: The most important agents isolated in persistent diarrhea are: Enteropathogenic E. coli (EPEC), Salmonella, Enteroaggregative E. coli (EAEC), Klebisiella and Cryptosporidium. CLINICAL ASPECTS: In general, the clinical characteristics of patients with persistent diarrhea do not change with the pathogenic agent. Persistent diarrhea seems to represent the final result of a several insults a infant suffers that predisposes to a more severe episode of diarrhea due to a combination of host factors and high rates of enviromental contamination. Therefore, efforts should be made to promptly treat all episodes of diarrhea with apropriate follow-up. THERAPY: The aim of the treatment is to restore hydroelectrolytic deficits and to replace losses until the diarrheal ceases. It is possible in the majority of the cases, using oral rehydration therapy and erly an appropriate type of diet. PREVENTION: It is imperative that management strategies also focus on preventive aspects. The most effective diarrheal prevention strategy in young infants worldwide is promotion of exclusive breast feeding.

  13. Gestational methylazoxymethanol exposure leads to NMDAR dysfunction in hippocampus during early development and lasting deficits in learning.

    Science.gov (United States)

    Snyder, Melissa A; Adelman, Alicia E; Gao, Wen-Jun

    2013-01-01

    The N-methyl-D-aspartate (NMDA) receptor has long been associated with learning and memory processes as well as diseased states, particularly in schizophrenia (SZ). Additionally, SZ is increasingly recognized as a neurodevelopmental disorder with cognitive impairments often preceding the onset of psychosis. However, the cause of these cognitive deficits and what initiates the pathological process is unknown. Growing evidence has implicated the glutamate system and, in particular, N-methyl-D-aspartate receptor (NMDAR) dysfunction in the pathophysiology of SZ. Yet, the vast majority of SZ-related research has focused on NMDAR function in adults leaving the role of NMDARs during development uncharacterized. We used the prenatal methylazoxymethanol acetate (MAM, E17) exposure model to determine the alterations of NMDAR protein levels and function, as well as associated cognitive deficits during development. We found that MAM-exposed animals have significantly altered NMDAR protein levels and function in the juvenile and adolescent hippocampus. Furthermore, these changes are associated with learning and memory deficits in the Morris Water Maze. Thus, in the prenatal MAM-exposure SZ model, NMDAR expression and function is altered during the critical period of hippocampal development. These changes may be involved in disease initiation and cognitive impairment in the early stage of SZ.

  14. Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity.

    Science.gov (United States)

    Afshar, Maryam; Birnbaum, Daniel; Golden, Carla

    2014-06-01

    The pathogenesis of methotrexate central nervous system toxicity is multifactorial, but it is likely related to central nervous system folate homeostasis. The use of folinate rescue has been described to decrease toxicity in patients who had received intrathecal methotrexate. It has also been described in previous studies that there is an elevated level of homocysteine in plasma and cerebrospinal fluid of patients who had received intrathecal methotrexate. Homocysteine is an N-methyl-D-aspartate receptor agonist. The use of dextromethorphan, noncompetitive N-methyl-D-aspartate receptor receptor antagonist, has been used in the treatment of sudden onset of neurological dysfunction associated with methotrexate toxicity. It remains unclear whether the dextromethorphan impacted the speed of recovery, and its use remains controversial. This study reviews the use of dextromethorphan in the setting of subacute methotrexate central nervous system toxicity. Charts of 18 patients who had sudden onset of neurological impairments after receiving methotrexate and were treated with dextromethorphan were reviewed. The use of dextromethorphan in most of our patients resulted in symptomatic improvement. In this patient population, earlier administration of dextromethorphan resulted in faster improvement of impairments and led to prevention of recurrence of seizure activity induced by methotrexate central nervous system toxicity. Our study provides support for the use of dextromethorphan in patients with subacute methotrexate central nervous system toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. NMDA receptor glycine modulatory site in the ventral tegmental area regulates the acquisition, retrieval, and reconsolidation of cocaine reward memory.

    Science.gov (United States)

    Zhou, Shuang-jiang; Xue, Li-fen; Wang, Xue-yi; Jiang, Wen-gao; Xue, Yan-xue; Liu, Jian-feng; He, Yin-yin; Luo, Yi-xiao; Lu, Lin

    2012-05-01

    Accumulating clinical and preclinical studies have shown that the memories of the rewarding effects of drugs and their paired cues may contribute to relapse and persistent cocaine use. Glutaminergic actions in the ventral tegmental area (VTA) have been shown to regulate the rewarding effect of drugs and conditioned responses to drug-associated cues, but the role of the VTA in the acquisition, retrieval, and reconsolidation of cocaine cues is not yet known. In the present study, we used 7-chlorothiokynurenic acid (7-CTKA), an N-methyl-D-aspartate (NMDA) receptor glycine modulatory site antagonist with no rewarding effects, to examine the role of the NMDA receptor glycine modulatory site in the acquisition, retrieval, and reconsolidation of cocaine-related reward memory using the conditioned place preference (CPP) paradigm. Separate groups of Sprague-Dawley rats were trained to acquire cocaine-induced CPP. Vehicle or 7-CTKA was microinjected into the VTA or substantia nigra (SN) (5 μg/μl) at different time points: 10 min before each CPP training session (acquisition), 10 min before the reactivation of CPP (retrieval), and immediately after the reactivation of CPP (reconsolidation). Cocaine-induced CPP was retested 24 h and 1 and 2 weeks after 7-CTKA administration. 7-CTKA microinjected into the VTA, but not SN, significantly impaired the acquisition, retrieval, and reconsolidation of cocaine-induced CPP without affecting cocaine-induced locomotion. Our findings suggest that the NMDA receptor glycine modulatory site in the VTA plays a major role in cocaine reward memory, and NMDA receptor glycine site antagonists may be potential pharmacotherapies for the management of relapse.

  16. Bidirectional modulation of taste aversion extinction by insular cortex LTP and LTD.

    Science.gov (United States)

    Rodríguez-Durán, Luis F; Martínez-Moreno, Araceli; Escobar, Martha L

    2017-07-01

    The history of activity of a given neuron has been proposed to bidirectionally influence its future response to synaptic inputs. In particular, induction of synaptic plasticity expressions such as long-term potentiation (LTP) and long-term depression (LTD) modifies the performance of several behavioral tasks. Our previous studies in the insular cortex (IC), a neocortical region that has been related to acquisition and retention of conditioned taste aversion (CTA), have demonstrated that induction of LTP in the basolateral amygdaloid nucleus (Bla)-IC pathway before CTA training enhances the retention of this task. In addition, we reported that CTA training triggers a persistent impairment in the ability to induce in vivo LTP in the IC. The aim of the present study was to investigate whether LTD can be induced in the Bla-IC projection in vivo, as well as, whether the extinction of CTA is bidirectionally modified by previous synaptic plasticity induction in this pathway. Thus, rats received 900 train pulses (five 250μs pulses at 250Hz) delivered at 1Hz in the Bla-IC projection in order to induce LTD or 10 trains of 100Hz/1s with an intertrain interval of 20s in order to induce LTP. Seven days after surgery, rats were trained in the CTA task including the extinction trials. Our results show that the Bla-IC pathway is able to express in vivo LTD in an N-Methyl-D-aspartate (NMDA) receptor-dependent manner. Induction of LTD in the Bla-IC projection previous to CTA training facilitates the extinction of this task. Conversely, LTP induction enhances CTA retention. The present results show the bidirectional modulation of CTA extinction in response to IC-LTP and LTD, providing evidence of the homeostatic adaptation of taste learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Antioxidant Treatment with N-acetyl Cysteine Prevents the Development of Cognitive and Social Behavioral Deficits that Result from Perinatal Ketamine Treatment

    Directory of Open Access Journals (Sweden)

    Aarron Phensy

    2017-06-01

    Full Text Available Alterations of the normal redox state can be found in all stages of schizophrenia, suggesting a key role for oxidative stress in the etiology and maintenance of the disease. Pharmacological blockade of N-methyl-D-aspartic acid (NMDA receptors can disrupt natural antioxidant defense systems and induce schizophrenia-like behaviors in animals and healthy human subjects. Perinatal administration of the NMDA receptor (NMDAR antagonist ketamine produces persistent behavioral deficits in adult mice which mimic a range of positive, negative, and cognitive symptoms that characterize schizophrenia. Here we tested whether antioxidant treatment with the glutathione (GSH precursor N-acetyl-cysteine (NAC can prevent the development of these behavioral deficits. On postnatal days (PND 7, 9 and 11, we treated mice with subanesthetic doses (30 mg/kg of ketamine or saline. Two groups (either ketamine or saline treated also received NAC throughout development. In adult animals (PND 70–120 we then assessed behavioral alterations in a battery of cognitive and psychomotor tasks. Ketamine-treated animals showed deficits in a task of cognitive flexibility, abnormal patterns of spontaneous alternation, deficits in novel-object recognition, as well as social interaction. Developmental ketamine treatment also induced behavioral stereotypy in response to an acute amphetamine challenge, and it impaired sensorimotor gating, measured as reduced prepulse inhibition (PPI of the startle response. All of these behavioral abnormalities were either prevented or strongly ameliorated by NAC co-treatment. These results suggest that oxidative stress is a major factor for the development of the ketamine-induced behavioral dysfunctions, and that restoring oxidative balance during the prodromal stage of schizophrenia might be able to ameliorate the development of several major symptoms of the disease.

  18. Low doses of dextromethorphan have a beneficial effect in the treatment of neuropathic pain.

    Science.gov (United States)

    Morel, Véronique; Pickering, Gisèle; Etienne, Monique; Dupuis, Amandine; Privat, Anne-Marie; Chalus, Maryse; Eschalier, Alain; Daulhac, Laurence

    2014-12-01

    N-methyl-D-aspartate receptor (NMDAR) antagonists may be given in persistent neuropathic pain, but adverse events especially with ketamine may limit their clinical use. Less central and cognitive adverse events are described with dextromethorphan and memantine. These molecules have been explored in many preclinical and clinical studies, but data are conflicting as regards neuropathic pain alleviation. Dextromethorphan and memantine have been administered to animals after spinal nerve ligation (SNL) to evaluate their antinociceptive/cognitive effects and associated molecular events, including the phosphorylation of several tyrosine (pTyr(1336), pTyr(1472)) residues in the NR2B NMDAR subunit. Spinal nerve ligation and sham animals received dextromethorphan (10 mg/kg, i.p.), memantine (20 mg/kg, i.p.) or saline (1 mL/kg, i.p.). These drugs were administered once symptoms of allodynia and hyperalgesia had developed. Tests were carried out before and after surgery. Tactile allodynia, mechanical hyperalgesia and spatial memory were, respectively, evaluated by von Frey, Randall & Selitto and Y-maze tests and molecular events by Western blot analysis. Spinal nerve-ligated animals displayed nociception and impaired spatial memory. Dextromethorphan, but not memantine, reversed neuropathic pain (NP) symptoms, restored spatial memory integrity and decreased the expression of pTyr(1336)NR2B. Following postoperative administration of dextromethorphan, this study has demonstrated for the first time a concordance between behaviour, cognitive function and molecular events via pTyr(1336)NR2B for neuropathic pain alleviation. Confirmation of these findings in patients would constitute a major step forward in the treatment of neuropathic pain and in the improvement of cognitive function and quality of life. © 2014 Société Française de Pharmacologie et de Thérapeutique.

  19. Pannexin1 stabilizes synaptic plasticity and is needed for learning.

    Directory of Open Access Journals (Sweden)

    Nora Prochnow

    Full Text Available Pannexin 1 (Panx1 represents a class of vertebrate membrane channels, bearing significant sequence homology with the invertebrate gap junction proteins, the innexins and more distant similarities in the membrane topologies and pharmacological sensitivities with gap junction proteins of the connexin family. In the nervous system, cooperation among pannexin channels, adenosine receptors, and K(ATP channels modulating neuronal excitability via ATP and adenosine has been recognized, but little is known about the significance in vivo. However, the localization of Panx1 at postsynaptic sites in hippocampal neurons and astrocytes in close proximity together with the fundamental role of ATP and adenosine for CNS metabolism and cell signaling underscore the potential relevance of this channel to synaptic plasticity and higher brain functions. Here, we report increased excitability and potently enhanced early and persistent LTP responses in the CA1 region of acute slice preparations from adult Panx1(-/- mice. Adenosine application and N-methyl-D-aspartate receptor (NMDAR-blocking normalized this phenotype, suggesting that absence of Panx1 causes chronic extracellular ATP/adenosine depletion, thus facilitating postsynaptic NMDAR activation. Compensatory transcriptional up-regulation of metabotropic glutamate receptor 4 (grm4 accompanies these adaptive changes. The physiological modification, promoted by loss of Panx1, led to distinct behavioral alterations, enhancing anxiety and impairing object recognition and spatial learning in Panx1(-/- mice. We conclude that ATP release through Panx1 channels plays a critical role in maintaining synaptic strength and plasticity in CA1 neurons of the adult hippocampus. This result provides the rationale for in-depth analysis of Panx1 function and adenosine based therapies in CNS disorders.

  20. Habit persistence

    DEFF Research Database (Denmark)

    Vinther Møller, Stig

    2009-01-01

    This paper uses an iterated GMM approach to estimate and test the consumption based habit persistence model of Campbell and Cochrane (1999) on the US stock market. The empirical evidence shows that the model is able to explain the size premium, but fails to explain the value premium. Further...

  1. Successful treatment of acute autoimmune limbic encephalitis with negative VGKC and NMDAR antibodies.

    Science.gov (United States)

    Modoni, Anna; Masciullo, Marcella; Spinelli, Pietro; Marra, Camillo; Tartaglione, Tommaso; Andreetta, Francesca; Tonali, Pietro; Silvestri, Gabriella

    2009-03-01

    To describe a case of acute nonherpetic limbic encephalitis (LE) with negative testing for antibodies directed against onconeuronal and cell membrane antigens, including voltage-gated potassium channels and N-methyl-D-aspartate receptor, that showed a dramatic response to immune therapy. A 30-year-old woman manifested generalized seizures, altered consciousness, and memory impairment shortly after a prodromal viral illness. Few days later the patient developed a drug-resistant epileptic status. Electroencephalograph showed bitemporal slowing and paroxysmal slow wave bursts. Brain magnetic resonance imaging showed bilateral swelling in the medial temporal lobes. Cerebrospinal fluid analysis ruled out viral etiologies. A diagnostic search for cancer, including serum testing for known onconeuronal antibodies proved negative. Screening for cell membrane antigen antibodies, including voltage-gated potassium channels and N-methyl-D-aspartate receptor, was also negative. Suspecting an autoimmune etiology, we started an immunomodulatory treatment with intravenous immunoglobulin followed by a short course of oral prednisone, obtaining a full clinical recovery. Our report confirms previous observations of "seronegative" autoimmune LE, suggesting the presence of other, still unknown central nervous system antigens representing a target of a postinfectious, autoimmune response in these patients. Moreover, it emphasizes the importance of early recognition and treatment of acute autoimmune LE, to reduce the risk of intensive care unit-related complications and the occurrence of permanent cognitive or behavioral defects.

  2. Curcumin Requires Tumor Necrosis Factor α Signaling to Alleviate Cognitive Impairment Elicited by Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    E.M. Kawamoto

    2012-05-01

    Full Text Available A decline in cognitive ability is a typical feature of the normal aging process, and of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Although their etiologies differ, all of these disorders involve local activation of innate immune pathways and associated inflammatory cytokines. However, clinical trials of anti-inflammatory agents in neurodegenerative disorders have been disappointing, and it is therefore necessary to better understand the complex roles of the inflammatory process in neurological dysfunction. The dietary phytochemical curcumin can exert anti-inflammatory, antioxidant and neuroprotective actions. Here we provide evidence that curcumin ameliorates cognitive deficits associated with activation of the innate immune response by mechanisms requiring functional tumor necrosis factor α receptor 2 (TNFR2 signaling. In vivo, the ability of curcumin to counteract hippocampus-dependent spatial memory deficits, to stimulate neuroprotective mechanisms such as upregulation of BDNF, to decrease glutaminase levels, and to modulate N-methyl-D-aspartate receptor levels was absent in mice lacking functional TNFRs. Curcumin treatment protected cultured neurons against glutamate-induced excitotoxicity by a mechanism requiring TNFR2 activation. Our results suggest the possibility that therapeutic approaches against cognitive decline designed to selectively enhance TNFR2 signaling are likely to be more beneficial than the use of anti-inflammatory drugs per se.

  3. Persistent Modelling

    DEFF Research Database (Denmark)

    2012-01-01

    The relationship between representation and the represented is examined here through the notion of persistent modelling. This notion is not novel to the activity of architectural design if it is considered as describing a continued active and iterative engagement with design concerns – an evident....... It also provides critical insight into the use of contemporary modelling tools and methods, together with an examination of the implications their use has within the territories of architectural design, realisation and experience....... on this subject, this book makes essential reading for anyone considering new ways of thinking about architecture. In drawing upon both historical and contemporary perspectives this book provides evidence of the ways in which relations between representation and the represented continue to be reconsidered...

  4. Persistent Modelling

    DEFF Research Database (Denmark)

    The relationship between representation and the represented is examined here through the notion of persistent modelling. This notion is not novel to the activity of architectural design if it is considered as describing a continued active and iterative engagement with design concerns – an evident....... It also provides critical insight into the use of contemporary modelling tools and methods, together with an examination of the implications their use has within the territories of architectural design, realisation and experience....... on this subject, this book makes essential reading for anyone considering new ways of thinking about architecture. In drawing upon both historical and contemporary perspectives this book provides evidence of the ways in which relations between representation and the represented continue to be reconsidered...

  5. Selective stimulation of excitatory amino acid receptor subtypes and the survival of cerebellar granule cells in culture: effect of kainic acid

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1990-01-01

    Our previous studies showed that the survival of cerebellar granule cells in culture is promoted by treatment with N-methyl-D-aspartate. Here we report on the influence of another glutamate analogue, kainic acid, which, in contrast to N-methyl-D-aspartate, is believed to stimulate transmitter rec...

  6. Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs.

    Science.gov (United States)

    Yee, Benjamin K; Singer, Philipp; Chen, Jiang-Fan; Feldon, Joram; Boison, Detlev

    2007-12-01

    The neuromodulator adenosine fulfills a unique role in the brain affecting glutamatergic neurotransmission and dopaminergic signaling via activation of adenosine A1 and A2A receptors, respectively. The adenosine system is thus ideally positioned to integrate glutamatergic and dopaminergic neurotransmission, which in turn could affect behavior and cognition. In the adult brain, adenosine levels are largely regulated by its key metabolic enzyme adenosine kinase (ADK), which may assume the role of an 'upstream regulator' of these two neurotransmitter pathways. To test this hypothesis, transgenic mice with an overexpression of ADK in brain (Adk-tg), and therefore reduced brain adenosine levels, were evaluated in a panel of behavioral and psychopharmacological assays to assess possible glutamatergic and dopaminergic dysfunction. In comparison to non-transgenic control mice, Adk-tg mice are characterized by severe learning deficits in the Morris water maze task and in Pavlovian conditioning. The Adk-tg mice also exhibited reduced locomotor reaction to systemic amphetamine, whereas their reaction to the non-competitive N-methyl-d-aspartate receptor antagonist MK-801 was enhanced. Our results confirmed that ADK overexpression could lead to functional concomitant alterations in dopaminergic and glutamatergic functions, which is in keeping with the hypothesized role of ADK in the balance and integration between glutamatergic and dopaminergic neurotransmission. The present findings are of relevance to current pathophysiological hypotheses of schizophrenia and its pharmacotherapy.

  7. Effects of entorhinal cortex lesions on memory in different tasks

    Directory of Open Access Journals (Sweden)

    G.P. Gutierrez-Figueroa

    1997-06-01

    Full Text Available Lesions of the entorhinal cortex produce retrograde memory impairment in both animals and humans. Here we report the effects of bilateral entorhinal cortex lesions caused by the stereotaxic infusion of N-methyl-D-aspartate (NMDA in rats at two different moments, before or after the training session, on memory of different tasks: two-way shuttle avoidance, inhibitory avoidance and habituation to an open field. Pre- or post-training entorhinal cortex lesions caused an impairment of performance in the shuttle avoidance task, which agrees with the previously described role of this area in the processing of memories acquired in successive sessions. In the inhibitory avoidance task, only the post-training lesions had an effect (amnesia. No effect was observed on the open field task. The findings suggest that the role of the entorhinal cortex in memory processing is task-dependent, perhaps related to the complexity of each task

  8. Drought Persistence Errors in Global Climate Models

    Science.gov (United States)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  9. HPV18 Persistence Impairs Basal and DNA Ligand-Mediated IFN-β and IFN-λ1 Production through Transcriptional Repression of Multiple Downstream Effectors of Pattern Recognition Receptor Signaling.

    Science.gov (United States)

    Albertini, Silvia; Lo Cigno, Irene; Calati, Federica; De Andrea, Marco; Borgogna, Cinzia; Dell'Oste, Valentina; Landolfo, Santo; Gariglio, Marisa

    2018-03-15

    Although it is clear that high-risk human papillomaviruses (HPVs) can selectively infect keratinocytes and persist in the host, it still remains to be unequivocally determined whether they can escape antiviral innate immunity by interfering with pattern recognition receptor (PRR) signaling. In this study, we have assessed the innate immune response in monolayer and organotypic raft cultures of NIKS cells harboring multiple copies of episomal HPV18 (NIKSmcHPV18), which fully recapitulates the persistent state of infection. We show for the first time, to our knowledge, that NIKSmcHPV18, as well as HeLa cells (a cervical carcinoma-derived cell line harboring integrated HPV18 DNA), display marked downregulation of several PRRs, as well as other PRR downstream effectors, such as the adaptor protein stimulator of IFN genes and the transcription factors IRF1 and 7. Importantly, we provide evidence that downregulation of stimulator of IFN genes, cyclic GMP-AMP synthase, and retinoic acid-inducible gene I mRNA levels occurs at the transcriptional level through a novel epigenetic silencing mechanism, as documented by the accumulation of repressive heterochromatin markers seen at the promoter region of these genes. Furthermore, stimulation of NIKSmcHPV18 cells with salmon sperm DNA or poly(deoxyadenylic-deoxythymidylic) acid, two potent inducers of PRR signaling, only partially restored PRR protein expression. Accordingly, the production of IFN-β and IFN-λ 1 was significantly reduced in comparison with the parental NIKS cells, indicating that HPV18 exerts its immunosuppressive activity through downregulation of PRR signaling. Altogether, our findings indicate that high-risk human papillomaviruses have evolved broad-spectrum mechanisms that allow simultaneous depletion of multiple effectors of the innate immunity network, thereby creating an unreactive cellular milieu suitable for viral persistence. Copyright © 2018 by The American Association of Immunologists, Inc.

  10. Ketamine for pain

    Science.gov (United States)

    Jonkman, Kelly; Dahan, Albert; van de Donk, Tine; Aarts, Leon; Niesters, Marieke; van Velzen, Monique

    2017-01-01

    The efficacy of the N-methyl-D-aspartate receptor antagonist ketamine as an analgesic agent is still under debate, especially for indications such as chronic pain. To understand the efficacy of ketamine for relief of pain, we performed a literature search for relevant narrative and systematic reviews and meta-analyses. We retrieved 189 unique articles, of which 29 were deemed appropriate for use in this review. Ketamine treatment is most effective for relief of postoperative pain, causing reduced opioid consumption. In contrast, for most other indications (that is, acute pain in the emergency department, prevention of persistent postoperative pain, cancer pain, and chronic non-cancer pain), the efficacy of ketamine is limited. Ketamine’s lack of analgesic effect was associated with an increase in side effects, including schizotypical effects. PMID:28979762

  11. Ketamine for pain [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Kelly Jonkman

    2017-09-01

    Full Text Available The efficacy of the N-methyl-D-aspartate receptor antagonist ketamine as an analgesic agent is still under debate, especially for indications such as chronic pain. To understand the efficacy of ketamine for relief of pain, we performed a literature search for relevant narrative and systematic reviews and meta-analyses. We retrieved 189 unique articles, of which 29 were deemed appropriate for use in this review. Ketamine treatment is most effective for relief of postoperative pain, causing reduced opioid consumption. In contrast, for most other indications (that is, acute pain in the emergency department, prevention of persistent postoperative pain, cancer pain, and chronic non-cancer pain, the efficacy of ketamine is limited. Ketamine’s lack of analgesic effect was associated with an increase in side effects, including schizotypical effects.

  12. Effects of alcoholic beverage treatment on spatial learning and fear memory in mice.

    Science.gov (United States)

    Hashikawa-Hobara, Narumi; Mishima, Shuta; Nagase, Shotaro; Morita, Keishi; Otsuka, Ami; Hashikawa, Naoya

    2018-04-24

    Although chronic ethanol treatment is known to impair learning and memory, humans commonly consume a range of alcoholic beverages. However, the specific effects of some alcoholic beverages on behavioral performance are largely unknown. The present study compared the effects of a range of alcoholic beverages (plain ethanol solution, red wine, sake and whiskey; with a matched alcohol concentration of 10%) on learning and memory. 6-week-old C57BL6J mice were orally administered alcohol for 7 weeks. The results revealed that red wine treatment exhibited a trend toward improvement of spatial memory and advanced extinction of fear memory. Additionally, red wine treatment significantly increased mRNA levels of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartate (NMDA) receptors in mice hippocampus. These results support previous reports that red wine has beneficial effects.

  13. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain

    DEFF Research Database (Denmark)

    Lauritzen, Knut H.; Hasan-Olive, Md Mahdi; Regnell, Christine E.

    2016-01-01

    neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes......, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABAA) receptor subunits α1. However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron...... microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial...

  14. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis.

    Directory of Open Access Journals (Sweden)

    Christina Spilker

    2016-03-01

    Full Text Available Jacob, the protein encoded by the Nsmf gene, is involved in synapto-nuclear signaling and docks an N-Methyl-D-Aspartate receptor (NMDAR-derived signalosome to nuclear target sites like the transcription factor cAMP-response-element-binding protein (CREB. Several reports indicate that mutations in NSMF are related to Kallmann syndrome (KS, a neurodevelopmental disorder characterized by idiopathic hypogonadotropic hypogonadism (IHH associated with anosmia or hyposmia. It has also been reported that a protein knockdown results in migration deficits of Gonadotropin-releasing hormone (GnRH positive neurons from the olfactory bulb to the hypothalamus during early neuronal development. Here we show that mice that are constitutively deficient for the Nsmf gene do not present phenotypic characteristics related to KS. Instead, these mice exhibit hippocampal dysplasia with a reduced number of synapses and simplification of dendrites, reduced hippocampal long-term potentiation (LTP at CA1 synapses and deficits in hippocampus-dependent learning. Brain-derived neurotrophic factor (BDNF activation of CREB-activated gene expression plays a documented role in hippocampal CA1 synapse and dendrite formation. We found that BDNF induces the nuclear translocation of Jacob in an NMDAR-dependent manner in early development, which results in increased phosphorylation of CREB and enhanced CREB-dependent Bdnf gene transcription. Nsmf knockout (ko mice show reduced hippocampal Bdnf mRNA and protein levels as well as reduced pCREB levels during dendritogenesis. Moreover, BDNF application can rescue the morphological deficits in hippocampal pyramidal neurons devoid of Jacob. Taken together, the data suggest that the absence of Jacob in early development interrupts a positive feedback loop between BDNF signaling, subsequent nuclear import of Jacob, activation of CREB and enhanced Bdnf gene transcription, ultimately leading to hippocampal dysplasia.

  15. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-01-01

    persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc

  16. Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia.

    Science.gov (United States)

    Umbricht, D; Schmid, L; Koller, R; Vollenweider, F X; Hell, D; Javitt, D C

    2000-12-01

    In patients with schizophrenia, deficient generation of mismatch negativity (MMN)-an event-related potential (ERP) indexing auditory sensory ("echoic") memory-and a selective increase of "context dependent" ("BX") errors in the "A-X" version of the Continuous Performance Test (AX-CPT) indicate an impaired ability to form and use transient memory traces. Animal and human studies implicate deficient N-methyl-D-aspartate receptor (NMDAR) functioning in such abnormalities. In this study, effects of the NMDAR antagonists ketamine on MMN generation and AX-CPT performance were investigated in healthy volunteers to test the hypothesis that NMDARs are critically involved in human MMN generation, and to assess the nature of ketamine-induced deficits in AX-CPT performance. In a single-blind placebo-controlled study, 20 healthy volunteers underwent an infusion with subanesthetic doses of ketamine. The MMN-to-pitch and MMN-to-duration deviants were obtained while subjects performed an AX-CPT. Ketamine significantly decreased the peak amplitudes of the MMN-to-pitch and MMN-to-duration deviants by 27% and 21%, respectively. It induced performance deficits in the AX-CPT characterized by decreased hit rates and specific increases of errors (BX errors), reflecting a failure to form and use transient memory traces of task relevant information. The NMDARs are critically involved in human MMN generation. Deficient MMN in schizophrenia thus suggests deficits in NMDAR-related neurotransmission. N-methyl-D-aspartate receptor dysfunction may also contribute to the impairment of patients with schizophrenia in forming and using transient memory traces in more complex tasks, such as the AX-CPT. Thus, NMDAR-related dysfunction may underlie deficits in transient memory at different levels of information processing in schizophrenia. Arch Gen Psychiatry. 2000;57:1139-1147.

  17. Visual Impairment

    Science.gov (United States)

    ... site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ...

  18. Rationale and design of a multicenter randomized clinical trial with memantine and dextromethorphan in ketamine-responder patients.

    Science.gov (United States)

    Pickering, Gisèle; Pereira, Bruno; Morel, Véronique; Tiberghien, Florence; Martin, Elodie; Marcaillou, Fabienne; Picard, Pascale; Delage, Noémie; de Montgazon, Géraldine; Sorel, Marc; Roux, Delphine; Dubray, Claude

    2014-07-01

    The N-methyl-D-aspartate receptor plays an important role in central sensitization of neuropathic pain and N-methyl-D-aspartate receptor antagonists, such as ketamine, memantine and dextromethorphan may be used for persistent pain. However, ketamine cannot be repeated too often because of its adverse events. A drug relay would be helpful in the outpatient to postpone or even cancel the next ketamine infusion. This clinical trial evaluates if memantine and/or dextromethorphan given as a relay to ketamine responders may maintain or induce a decrease of pain intensity and have a beneficial impact on cognition and quality of life. This trial is a multi-center, randomized, controlled and single-blind clinical study (NCT01602185). It includes 60 ketamine responder patients suffering from neuropathic pain. They are randomly allocated to memantine, dextromethorphan or placebo. After ketamine infusion, 60 patients received either memantine (maximal dose 20 mg/day), or dextromethorphan (maximal dose 90 mg/day), or placebo for 12 weeks. The primary endpoint is pain measured on a (0-10) Numeric Rating Scale 1 month after inclusion. Secondary outcomes include assessment of neuropathic pain, sleep, quality of life, anxiety/depression and cognitive function at 2 and 3 months. Data analysis is performed using mixed models and the tests are two-sided, with a type I error set at α=0.05. This study will explore if oral memantine and/or dextromethorphan may be a beneficial relay in ketamine responders and may diminish ketamine infusion frequency. Preservation of cognitive function and quality of life is also a central issue that will be analyzed in these vulnerable patients. Copyright © 2014. Published by Elsevier Inc.

  19. Opposite effects of ketamine and deep brain stimulation on rat thalamocortical information processing.

    Science.gov (United States)

    Kulikova, Sofya P; Tolmacheva, Elena A; Anderson, Paul; Gaudias, Julien; Adams, Brendan E; Zheng, Thomas; Pinault, Didier

    2012-11-01

    Sensory and cognitive deficits are common in schizophrenia. They are associated with abnormal brain rhythms, including disturbances in γ frequency (30-80 Hz) oscillations (GFO) in cortex-related networks. However, the underlying anatomofunctional mechanisms remain elusive. Clinical and experimental evidence suggests that these deficits result from a hyporegulation of glutamate N-methyl-D-aspartate receptors. Here we modeled these deficits in rats with ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist and a translational psychotomimetic substance at subanesthetic doses. We tested the hypothesis that ketamine-induced sensory deficits involve an impairment of the ability of the thalamocortical (TC) system to discriminate the relevant information from the baseline activity. Furthermore, we wanted to assess whether ketamine disrupts synaptic plasticity in TC systems. We conducted multisite network recordings in the rat somatosensory TC system, natural stimulation of the vibrissae and high-frequency electrical stimulation (HFS) of the thalamus. A single systemic injection of ketamine increased the amount of baseline GFO, reduced the amplitude of the sensory-evoked TC response and decreased the power of the sensory-evoked GFO. Furthermore, cortical application of ketamine elicited local and distant increases in baseline GFO. The ketamine effects were transient. Unexpectedly, HFS of the TC pathway had opposite actions. In conclusion, ketamine and thalamic HFS have opposite effects on the ability of the somatosensory TC system to discriminate the sensory-evoked response from the baseline GFO during information processing. Investigating the link between the state and function of the TC system may conceptually be a key strategy to design innovative therapies against neuropsychiatric disorders. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Impaired Driving

    Science.gov (United States)

    ... Get the Facts What Works: Strategies to Increase Car Seat and Booster Seat ... narcotics. 3 That’s one percent of the 111 million self-reported episodes of alcohol-impaired driving among U.S. ...

  1. Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity.

    Science.gov (United States)

    Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M; Jenkins, David Paul; Wulff, Heike; Pessah, Isaac N

    2014-04-01

    Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca(2+) oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca(2+) indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the frequency of SCOs by 2.7-fold (EC50 = 58 nM) and decreased SCO amplitude by 36%. Changes in SCO properties were independent of modifications in voltage-gated sodium channels since 100 nM bifenthrin had no effect on the whole-cell Na(+) current, nor did it influence neuronal resting membrane potential. The L-type Ca(2+) channel blocker nifedipine failed to ameliorate bifenthrin-triggered SCO activity. By contrast, the metabotropic glutamate receptor (mGluR)5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine] normalized bifenthrin-triggered increase in SCO frequency without altering baseline SCO activity, indicating that bifenthrin amplifies mGluR5 signaling independent of Na(+) channel modification. Competitive [AP-5; (-)-2-amino-5-phosphonopentanoic acid] and noncompetitive (dizocilpine, or MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]) N-methyl-d-aspartate antagonists partially decreased both basal and bifenthrin-triggered SCO frequency increase. Bifenthrin-modified SCO rapidly enhanced the phosphorylation of cAMP response element-binding protein (CREB). Subacute (48 hours) exposure to bifenthrin commencing 2 DIV-enhanced neurite outgrowth and persistently increased SCO frequency and reduced SCO amplitude. Bifenthrin-stimulated neurite outgrowth and CREB phosphorylation were dependent on mGluR5 activity since MPEP normalized both responses. Collectively these data identify a new mechanism by which bifenthrin potently alters Ca(2

  2. Demographics of antibiotic persistence

    DEFF Research Database (Denmark)

    Kollerova, Silvia; Jouvet, Lionel; Steiner, Ulrich

    Persister cells, cells that can survive antibiotic exposure but lack heritable antibiotic resistance, are assumed to play a crucial role for the evolution of antibiotic resistance. Persistence is a stage associated with reduced metabolic activity. Most previous studies have been done on batch...... even play a more prominent role for the evolution of resistance and failures of medical treatment by antibiotics as currently assumed....

  3. Physical Impairment

    Science.gov (United States)

    Trewin, Shari

    Many health conditions can lead to physical impairments that impact computer and Web access. Musculoskeletal conditions such as arthritis and cumulative trauma disorders can make movement stiff and painful. Movement disorders such as tremor, Parkinsonism and dystonia affect the ability to control movement, or to prevent unwanted movements. Often, the same underlying health condition also has sensory or cognitive effects. People with dexterity impairments may use a standard keyboard and mouse, or any of a wide range of alternative input mechanisms. Examples are given of the diverse ways that specific dexterity impairments and input mechanisms affect the fundamental actions of Web browsing. As the Web becomes increasingly sophisticated, and physically demanding, new access features at the Web browser and page level will be necessary.

  4. Persistent myalgia following whiplash.

    Science.gov (United States)

    Dommerholt, Jan

    2005-10-01

    Persistent myalgia following whiplash is commonly considered the result of poor psychosocial status, illness behavior, or failing coping skills. However, there is much evidence that persistent myalgia may be due to neurophysiologic mechanisms involving peripheral and central sensitization. Myofascial trigger points may play a crucial role in maintaining sensitization. Recent research suggests that the chemical environment of myofascial trigger points is an important factor. Several consequences are reviewed when central pain mechanisms and myofascial trigger points are included in the differential diagnosis and in the management of patients with persistent pain following whiplash.

  5. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury

    DEFF Research Database (Denmark)

    Sakowitz, Oliver W; Kiening, Karl L; Krajewski, Kara L

    2009-01-01

    by the noncompetitive N-methyl-d-aspartate receptor antagonist ketamine. This restored electrocorticographic activity. CONCLUSIONS: These anecdotal electrocorticographic findings suggest that ketamine has an inhibitory effect on spreading depolarizations in humans. This is of potential interest for future...

  6. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings

    NARCIS (Netherlands)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O.; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    BACKGROUND: The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate

  7. Introduction: Persistent Modelling

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This introduction to 'Persistent Modelling – an extended role for architectural representation' identifies how the book probes the relationship between representation and the represented, in an architectural context. It discusses how the book presents an examination and discussion of historical......, familiar contemporary and, perhaps, not so familiar emerging manifestations of this relation. What persists from this probing, fully intact, is that representation and the represented remain inextricably related in our contemporary and emerging practices. What comes into focus is that the nature...

  8. The relationship between separation anxiety and impairment

    Science.gov (United States)

    Foley, Debra L; Rowe, Richard; Maes, Hermine; Silberg, Judy; Eaves, Lindon; Pickles, Andrew

    2009-01-01

    The goal of this study was to characterize the contemporaneous and prognostic relationship between symptoms of separation anxiety disorder (SAD) and associated functional impairment. The sample comprised n=2067 8–16 year-old twins from a community-based registry. Juvenile subjects and their parents completed a personal interview on two occasions, separated by an average follow-up period of 18 months, about the subject’s current history of SAD and associated functional impairment. Results showed that SAD symptoms typically caused very little impairment but demonstrated significant continuity over time. Older youth had significantly more persistent symptoms than younger children. Prior symptom level independently predicted future symptom level and diagnostic symptom threshold, with and without impairment. Neither diagnostic threshold nor severity of impairment independently predicted outcomes after taking account of prior symptom levels. The results indicate that impairment may index current treatment need but symptom levels provide the best information about severity and prognosis. PMID:17658718

  9. Persistent and recurrent hyperparathyroidism.

    Science.gov (United States)

    Guerin, Carole; Paladino, Nunzia Cinzia; Lowery, Aoife; Castinetti, Fréderic; Taieb, David; Sebag, Fréderic

    2017-06-01

    Despite remarkable progress in imaging modalities and surgical management, persistence or recurrence of primary hyperparathyroidism (PHPT) still occurs in 2.5-5% of cases of PHPT. The aim of this review is to expose the management of persistent and recurrent hyperparathyroidism. A literature search was performed on MEDLINE using the search terms "recurrent" or "persistent" and "hyperparathyroidism" within the past 10 years. We also searched the reference lists of articles identified by this search strategy and selected those we judged relevant. Before considering reoperation, the surgeon must confirm the diagnosis of PHPT. Then, the patient must be evaluated with new imaging modalities. A single adenoma is found in 68% of cases, multiglandular disease in 28%, and parathyroid carcinoma in 3%. Others causes (<1%) include parathyromatosis and graft recurrence. The surgeon must balance the benefits against the risks of a reoperation (permanent hypocalcemia and recurrent laryngeal nerve palsy). If surgery is necessary, a focused approach can be considered in cases of significant imaging foci, but in the case of multiglandular disease, a bilateral neck exploration could be necessary. Patients with multiple endocrine neoplasia syndromes are at high risk of recurrence and should be managed regarding their hereditary pathology. The cure rate of persistent-PHPT or recurrent-PHPT in expert centers is estimated from 93 to 97%. After confirming the diagnosis of PHPT, patients with persistent-PHPT and recurrent-PHPT should be managed in an expert center with all dedicated competencies.

  10. Persistent luminescence nanothermometers

    Science.gov (United States)

    Martín Rodríguez, Emma; López-Peña, Gabriel; Montes, Eduardo; Lifante, Ginés; García Solé, José; Jaque, Daniel; Diaz-Torres, Luis Armando; Salas, Pedro

    2017-08-01

    Persistent phosphorescence nanoparticles emitting in the red and near-infrared spectral regions are strongly demanded as contrast nanoprobes for autofluorescence free bioimaging and biosensing. In this work, we have developed Sr4Al14O25:Eu2+, Cr3+, Nd3+ nanopowders that produce persistent red phosphorescence peaking at 694 nm generated by Cr3+ ions. This emission displays temperature sensitivity in the physiological temperature range (20-60 °C), which makes these nanoparticles potentially useful as fluorescence (contactless) nanothermometers operating without requiring optical excitation. Nd3+ ions, which act as shallow electron traps for the red Cr3+ persistent emission, also display infrared emission bands, extending the fluorescence imaging capability to the second biological window. This unique combination of properties makes these nanoparticles multifunctional luminescent probes with great potential applications in nanomedicine.

  11. Cosmic radiation exposure and persistent cognitive dysfunction

    Science.gov (United States)

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  12. Dystypia: isolated typing impairment without aphasia, apraxia or visuospatial impairment.

    Science.gov (United States)

    Otsuki, Mika; Soma, Yoshiaki; Arihiro, Shoji; Watanabe, Yoshimasa; Moriwaki, Hiroshi; Naritomi, Hiroaki

    2002-01-01

    We report a 60-year-old right-handed Japanese man who showed an isolated persistent typing impairment without aphasia, agraphia, apraxia or any other neuropsychological deficit. We coined the term 'dystypia' for this peculiar neuropsychological manifestation. The symptom was caused by an infarction in the left frontal lobe involving the foot of the second frontal convolution and the frontal operculum. The patient's typing impairment was not attributable to a disturbance of the linguistic process, since he had no aphasia or agraphia. The impairment was not attributable to the impairment of the motor execution process either, since he had no apraxia. Thus, his typing impairment was deduced to be based on a disturbance of the intermediate process where the linguistic phonological information is converted into the corresponding performance. We hypothesized that there is a specific process for typing which branches from the motor programming process presented in neurolinguistic models. The foot of the left second frontal convolution and the operculum may play an important role in the manifestation of 'dystypia'. Copyright 2002 S. Karger AG, Basel

  13. Persistent genital arousal disorder

    DEFF Research Database (Denmark)

    Eibye, Simone; Jensen, Hans Mørch

    2014-01-01

    We report a case of a woman suffering from persistent genital arousal disorder (PGAD) after paroxetine cessation. She was admitted to a psychiatric department and diagnosed with agitated depression. Physical investigation showed no gynaecological or neurological explanation; however, a pelvic MRI...

  14. Persistent organic pollutants

    NARCIS (Netherlands)

    Dungen, van den M.W.

    2016-01-01

    Wild caught fish, especially marine fish, can contain high levels of persistent organic pollutants (POPs). In the Netherlands, especially eel from the main rivers have high POP levels. This led to a ban in 2011 on eel fishing due to health concerns. Many of the marine POPs have been related to

  15. Contributions to Persistence Theory

    Directory of Open Access Journals (Sweden)

    Du Dong

    2014-12-01

    Full Text Available Persistence theory discussed in this paper is an application of algebraic topology (Morse Theory [29] to Data Analysis, precisely to qualitative understanding of point cloud data, or PCD for short. PCD can be geometrized as a filtration of simplicial complexes (Vietoris-Rips complex [25] [36] and the homology changes of these complexes provide qualitative information about the data. Bar codes describe the changes in homology with coefficients in a fixed field. When the coefficient field is ℤ2, the calculation of bar codes is done by ELZ algorithm (named after H. Edelsbrunner, D. Letscher, and A. Zomorodian [20]. When the coefficient field is ℝ, we propose an algorithm based on the Hodge decomposition [17]. With Dan Burghelea and Tamal K. Dey we developed a persistence theory which involves level sets discussed in Section 4. We introduce and discuss new computable invariants, the “relevant level persistence numbers” and the “positive and negative bar codes”, and explain how they are related to the bar codes for level persistence. We provide enhancements and modifications of ELZ algorithm to calculate such invariants and illustrate them by examples.

  16. Is corruption really persistent?

    NARCIS (Netherlands)

    Seldadyo, H.; de Haan, J.

    Theoretical and empirical research on corruption generally concludes that corruption is persistent. However, using International Country Risk Guide data for the period 1984-2008 for 101 countries, we find strong evidence that corruption changes over time. In the present study, corruption levels of

  17. Nano-Sized Secondary Organic Aerosol of Diesel Engine Exhaust Origin Impairs Olfactory-Based Spatial Learning Performance in Preweaning Mice

    Directory of Open Access Journals (Sweden)

    Tin-Tin Win-Shwe

    2015-06-01

    Full Text Available The aims of our present study were to establish a novel olfactory-based spatial learning test and to examine the effects of exposure to nano-sized diesel exhaust-origin secondary organic aerosol (SOA, a model environmental pollutant, on the learning performance in preweaning mice. Pregnant BALB/c mice were exposed to clean air, diesel exhaust (DE, or DE-origin SOA (DE-SOA from gestational day 14 to postnatal day (PND 10 in exposure chambers. On PND 11, the preweaning mice were examined by the olfactory-based spatial learning test. After completion of the spatial learning test, the hippocampus from each mouse was removed and examined for the expressions of neurological and immunological markers using real-time RT-PCR. In the test phase of the study, the mice exposed to DE or DE-SOA took a longer time to reach the target as compared to the control mice. The expression levels of neurological markers such as the N-methyl-d-aspartate (NMDA receptor subunits NR1 and NR2B, and of immunological markers such as TNF-α, COX2, and Iba1 were significantly increased in the hippocampi of the DE-SOA-exposed preweaning mice as compared to the control mice. Our results indicate that DE-SOA exposure in utero and in the neonatal period may affect the olfactory-based spatial learning behavior in preweaning mice by modulating the expressions of memory function–related pathway genes and inflammatory markers in the hippocampus.

  18. Different MK-801 administration schedules induce mild to severe learning impairments in an operant conditioning task: role of buspirone and risperidone in ameliorating these cognitive deficits.

    Science.gov (United States)

    Rapanelli, Maximiliano; Frick, Luciana Romina; Bernardez-Vidal, Micaela; Zanutto, Bonifacio Silvano

    2013-11-15

    Blockade of N-methyl-d-aspartate receptor (NMDA) by the noncompetitive NMDA receptor (NMDAR) antagonist MK-801 produces behavioral abnormalities and alterations in prefrontal cortex (PFC) functioning. Due to the critical role of the PFC in operant conditioning task learning, we evaluated the effects of acute, repeated postnatal injections of MK-801 (0.1mg/kg) on learning performance. We injected Long-Evans rats i.p. with MK-801 (0.1mg/kg) using three different administration schedules: injection 40 min before beginning the task (during) (n=12); injection twice daily for six consecutive days prior to beginning the experimental procedures (prior) (n=12); or twice daily subcutaneous injections from postnatal day 7 to 11 (postnatal) (n=12). Next, we orally administered risperidone (serotonin receptor 2A and dopamine receptor 2 antagonist, 1mg/kg) or buspirone (serotonin receptor 1A partial agonist, 10mg/kg) to animals treated with the MK-801 schedule described above. The postnatal and prior administration schedules produced severe learning deficits, whereas injection of MK-801 just before training sessions had only mild effects on acquisition of an operant conditioning. Risperidone was able to reverse the detrimental effect of MK-801 in the animals that were treated with MK-801 during and prior training sessions. In contrast, buspirone was only effective at mitigating the cognitive deficits induced by MK-801 when administered during the training procedures. The data demonstrates that NMDA antagonism disrupts basic mechanisms of learning in a simple PFC-mediated operant conditioning task, and that buspirone and risperidone failed to attenuate the learning deficits when NMDA neurotransmission was blocked in the early stages of the postnatal period. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Persistent Hiccups Following Stapedectomy

    Directory of Open Access Journals (Sweden)

    Aidonis I

    2010-10-01

    Full Text Available Objective: We report a case of a 37 year-old man who developed persistent hiccups after elective stapedectomy. Method and Results: The diagnostic approach is discussed as well as the non-pharmacologic and pharmacologic treatments and overall management. The aim is to stress that there is a variety of potential factors that can induce hiccups perioperatively and in cases like this a step by step approach must be taken. Conclusion: Persistent hiccups are very rare following stapedectomy, control of them is crucial for the successful outcome. The trigger may be more than one factors and the good response to treatment may be due to dealing successfully with more than one thing.

  20. Persistent facial pain conditions

    DEFF Research Database (Denmark)

    Forssell, Heli; Alstergren, Per; Bakke, Merete

    2016-01-01

    Persistent facial pains, especially temporomandibular disorders (TMD), are common conditions. As dentists are responsible for the treatment of most of these disorders, up-to date knowledge on the latest advances in the field is essential for successful diagnosis and management. The review covers...... TMD, and different neuropathic or putative neuropathic facial pains such as persistent idiopathic facial pain and atypical odontalgia, trigeminal neuralgia and painful posttraumatic trigeminal neuropathy. The article presents an overview of TMD pain as a biopsychosocial condition, its prevalence......, clinical features, consequences, central and peripheral mechanisms, diagnostic criteria (DC/TMD), and principles of management. For each of the neuropathic facial pain entities, the definitions, prevalence, clinical features, and diagnostics are described. The current understanding of the pathophysiology...

  1. Persistent Model #2

    DEFF Research Database (Denmark)

    2013-01-01

    Tensegrity structures and Inflatable membranes can be considered analogous. They can both be described as pressure based systems in which a coherent envelope is tensioned through compressive force in order to achieve a state of self-equilibrium. Persistent Model #2 is a full-scale speculative pro...... Modelling and a sustained critical investigation of the roles digital tools can play in extending the ways in which we think, design, realise and experience architecture....

  2. Intergenerational Top Income Persistence

    DEFF Research Database (Denmark)

    Munk, Martin D.; Bonke, Jens; Hussain, M. Azhar

    2016-01-01

    In this paper, we investigate intergenerational top earnings and top income mobility in Denmark. Access to administrative registers allowed us to look at very small fractions of the population. We find that intergenerational mobility is lower in the top when including capital income in the income...... measure— for the rich top 0.1% fathers and sons the elasticity is 0.466. Compared with Sweden, however, the intergenerational top income persistence is about half the size in Denmark....

  3. Numeric invariants from multidimensional persistence

    Energy Technology Data Exchange (ETDEWEB)

    Skryzalin, Jacek [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlsson, Gunnar [Stanford Univ., Stanford, CA (United States)

    2017-05-19

    In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data.

  4. Cognitive impairment and electroconvulsive therapy in geriatric depression, what could be the role of rivastigmine? A case series

    NARCIS (Netherlands)

    van Schaik, Audrey Monica; Rhebergen, Didi; Henstra, Marieke Jantien; Kadouch, Daniel J.; van Exel, Eric; Stek, Maximilianus Lourentius

    2015-01-01

    Electroconvulsive therapy (ECT), albeit highly effective in treating depression, is frequently associated with cognitive impairment, either temporary or more persistent. Especially in older patients, who generally respond even better, serious cognitive impairment during the course of ECT may lead to

  5. Inflation persistence and flexible prices

    OpenAIRE

    Robert Dittmar; William T. Gavin; Finn E. Kydland

    2004-01-01

    If the central bank follows an interest rate rule, then inflation is likely to be persistence, even when prices are fully flexible. Any shock, whether persistent or not, may lead to inflation persistence. In equilibrium, the dynamics of inflation are determined by the evolution of the spread between the real interest rate and the central bank’s target. Inflation persistence in U.S. data can be characterized by a vector autocorrelation function relating inflation and deviations of output from ...

  6. Reflections on Student Persistence

    Directory of Open Access Journals (Sweden)

    Vincent Tinto

    2017-07-01

    Full Text Available The Feature for this issue Reflections on Student Persistence has been prepared by Professor Vincent Tinto, Distinguished University Professor Emeritus at Syracuse University, United States of America (USA and a longtime friend and supporter of STARS. Vincent explores the case for motivation to be considered as a significant aspect of the tertiary student psyche by drawing on theoretical frameworks, research and practical experiences related to the issue. He synthesises this extensive, detailed, rich but often somewhat impenetrable data into a trilogy of clear and credible key dimensions of the motivation construct student self efficacy, sense of belonging and perceived value of the curriculum. This interpretation of the literature is a personal but informed reflection and is a timely piece which highlights the breadth and profundity of the presentations at this year's conference in Adelaide, Australia where students in all their diversity are central to our focus on enhancing the student experience. In this opening article, Vincent refers directly to the STARS papers selected for this Conference issue of the Journal which also address the importance of student persistence, self-efficacy and building the sense of belonging within their own institutional communities (Fernandes, Ford, Rayner & Pretorius; Kahu, Nelson, & Picton; McFarlane, Spes-Skrbis & Taib; Naylor; Smallhorn. Echoing his position on social justice and his advocacy for underserved students, Vincent reminds us that educational equity gaps still exist, and he encourages us to see the issue of persistence through the eyes of the students to support their perseverance and completion and thereby help reduce educational disadvantage.

  7. Persistent marine debris

    International Nuclear Information System (INIS)

    Levy, E.M.

    1992-01-01

    In this paper the distribution of persistent marine debris, adrift on world oceans and stranded on beaches globally, is reviewed and related to the known inputs and transport by the major surface currents. Since naturally occurring processes eventually degrade petroleum in the environment, international measures to reduce the inputs have been largely successful in alleviating oil pollution on a global, if not on a local, scale. Many plastics, however, are so resistant to natural degradation that merely controlling inputs will be insufficient, and more drastic and costly measures will be needed to cope with the emerging global problem posed by these materials

  8. Persistent postsurgical pain

    DEFF Research Database (Denmark)

    Werner, Mads Utke; Bischoff, Joakim Mutahi

    2014-01-01

    The prevalences of severe persistent postsurgical pain (PPP) following breast cancer surgery (BCS), groin hernia repair (GHR), and lung cancer surgery (LCS) are 13, 2, and 4-12 %, respectively. Estimates indicate that 80,000 patients each year in the U.S.A. are affected by severe pain...... duration of surgery, repeat surgery, more invasive surgical techniques, and intraoperative nerve lesion have been associated with PPP. One of the most consistent predictive factors for PPP is high intensity acute postsurgical pain, but also psychological factors including anxiety, catastrophizing trait...

  9. Term Structure Persistence

    OpenAIRE

    Abbritti, M. (Mirko); Gil-Alana, L.A. (Luis A.); Lovcha, Y. (Yuliya); Moreno, A. (Antonio)

    2012-01-01

    Stationary I(0) models employed in yield curve analysis typically imply an unrealistically low degree of volatility in long-run short-rate expectations due to fast mean reversion. In this paper we propose a novel multivariate affine term structure model with a two-fold source of persistence in the yield curve: Long-memory and short-memory. Our model, based on an I(d) specification, nests the I(0) and I(1) models as special cases and the I(0) model is decisively rejected by the data. Our model...

  10. Persistence of Salmonid Redds

    Science.gov (United States)

    Buffington, J. M.; Buxton, T.; Fremier, A. K.; Hassan, M. A.; Yager, E.

    2013-12-01

    The construction of redds by spawning salmonids modifies fluvial processes in ways that are beneficial to egg and embryo survival. Redd topography induces hyporheic flow that oxygenates embryos incubating within the streambed and creates form drag that reduces bed mobility and scour of salmonid eggs. Winnowing of fine material during redd construction also coarsens the streambed, increasing bed porosity and hyporheic flow and reducing bed mobility. In addition to the biological benefits, redds may influence channel morphology by altering channel hydraulics and bed load transport rates depending on the size and extent of redds relative to the size of the channel. A key question is how long do the physical and biological effects of redds last? Field observations indicate that in some basins redds are ephemeral, with redd topography rapidly erased by subsequent floods, while in other basins, redds can persist for years. We hypothesize that redd persistence is a function of basin hydrology, sediment supply, and characteristics of the spawning fish. Hydrology controls the frequency and magnitude of bed mobilizing flows following spawning, while bed load supply (volume and caliber) controls the degree of textural fining and consequent bed mobility after spawning, as well as the potential for burial of redd features. The effectiveness of flows in terms of their magnitude and duration depend on hydroclimate (i.e., snowmelt, rainfall, or transitional hydrographs), while bed load supply depends on basin geology, land use, and natural disturbance regimes (e.g., wildfire). Location within the stream network may also influence redd persistence. In particular, lakes effectively trap sediment and regulate downstream flow, which may promote long-lived redds in stream reaches below lakes. These geomorphic controls are modulated by biological factors: fish species (size of fish controls size of redds and magnitude of streambed coarsening); life history (timing of spawning and

  11. Persistence extends reciprocity.

    Science.gov (United States)

    Kurokawa, Shun

    2017-04-01

    One key potential explanation for the evolution of cooperation is conditional cooperation. This allows cooperation to evolve for cooperators who switch their behavior on the basis of information about the opponent's behavior or reputation. However, information about the opponent's behavior or reputation is sometimes unavailable, and previous studies have assumed that a player cooperates with some default probability when no information about the opponent's previous behavior or reputation is available. This default probability has been interpreted as the player's "optimism". Here, we make use of the fact that even if a player cannot observe the opponent's previous behavior or reputation, he may still condition his future behavior based on his own past behavior and in such a case, he can behave persistently. In this paper, we especially consider the case where information about the opponent's "behavior" is sometimes absent and the iterated prisoner's dilemma game between the same two individuals is played. Here, we examine the evolution of strategies that can refer to the own behavior in the previous round. Using evolutionarily stable strategy (ESS) analysis and analyzing replicator dynamics, we find that conditioning his future behavior based on his own past behavior is beneficial for the evolution. Persistence facilitates the evolution of cooperation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Persistence of airline accidents.

    Science.gov (United States)

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  13. Caliber-Persistent Artery

    Directory of Open Access Journals (Sweden)

    Sabrina Araújo Pinho Costa

    2015-01-01

    Full Text Available Caliber-persistent artery (CPLA of the lip is a common vascular anomaly in which a main arterial branch extends to the surface of the mucous tissue with no reduction in its diameter. It usually manifests as pulsatile papule, is easily misdiagnosed, and is observed more frequently among older people, suggesting that its development may involve a degenerative process associated with aging; CPLA is also characterized by the loss of tone of the adjacent supporting connective tissue. Although the diagnosis is clinical, high-resolution Doppler ultrasound is a useful noninvasive tool for evaluating the lesion. This report describes the case of a 58-year-old male patient who complained of a lesion of the lower lip with bleeding and recurrent ulceration. The patient was successfully treated in our hospital after a diagnosis of CPLA and is currently undergoing a clinical outpatient follow-up with no complaints.

  14. An annoying persistent cough

    Directory of Open Access Journals (Sweden)

    Francesco Cipollini

    2007-03-01

    Full Text Available Chronic cough is a stressful condition and can lead to extensive investigations. We report a case of a 48-year-old woman who had suffered from persistent chronic cough for more than 3 months. She had been treated with cough suppressant. However, her cough was not alleviated by these treatments, and the patient was referred to our hospital. She did not exhibit typical gastroesophageal reflux disease (GERD symptoms heartburn and regurgitation. Esophagoscopy did not disclose reflux esophagitis. The patient was treated with a proton-pump inhibitor, which markedly alleviated her cough. Chronic cough due to GERD was diagnosed. Although the diagnosis of chronic cough due to GERD is not easy when traditionally symptoms are not present, our case report underscores the importance of this association to the differential diagnosis of chronic cough. In these cases a relatively simple test as high dose proton pump-inhibitors trial may be useful to confirm GERD related cough.

  15. New daily persistent headache

    Directory of Open Access Journals (Sweden)

    Alok Tyagi

    2012-01-01

    Full Text Available New daily persistent headache (NDPH is a chronic headache developing in a person who does not have a past history of headaches. The headache begins acutely and reaches its peak within 3 days. It is important to exclude secondary causes, particularly headaches due to alterations in cerebrospinal fluid (CSF pressure and volume. A significant proportion of NDPH sufferers may have intractable headaches that are refractory to treatment. The condition is best viewed as a syndrome rather than a diagnosis. The headache can mimic chronic migraine and chronic tension-type headache, and it is also important to exclude secondary causes, particularly headaches due to alterations in CSF pressure and volume. A large proportion of NDPH sufferers have migrainous features to their headache and should be managed with treatments used for treating migraine. A small group of NDPH sufferers may have intractable headaches that are refractory to treatment.

  16. Persistent idiopathic facial pain

    DEFF Research Database (Denmark)

    Maarbjerg, Stine; Wolfram, Frauke; Heinskou, Tone Bruvik

    2017-01-01

    Introduction: Persistent idiopathic facial pain (PIFP) is a poorly understood chronic orofacial pain disorder and a differential diagnosis to trigeminal neuralgia. To address the lack of systematic studies in PIFP we here report clinical characteristics and neuroimaging findings in PIFP. Methods...... pain 7 (13%), hypoesthesia 23 (48%), depression 16 (30%) and other chronic pain conditions 17 (32%) and a low prevalence of stabbing pain 21 (40%), touch-evoked pain 14 (26%) and remission periods 10 (19%). The odds ratio between neurovascular contact and the painful side was 1.4 (95% Cl 0.4–4.4, p = 0.......565) and the odds ratio between neurovascular contact with displacement of the trigeminal nerve and the painful side was 0.2 (95% Cl 0.0–2.1, p = 0.195). Conclusion: PIFP is separated from trigeminal neuralgia both with respect to the clinical characteristics and neuroimaging findings, as NVC was not associated...

  17. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-04-13

    In this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by \\'handing over the camera\\' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  18. AC-3933, a benzodiazepine partial inverse agonist, improves memory performance in MK-801-induced amnesia mouse model.

    Science.gov (United States)

    Hashimoto, Takashi; Iwamura, Yoshihiro

    2016-05-01

    AC-3933, a novel benzodiazepine receptor partial inverse agonist, is a drug candidate for cognitive disorders including Alzheimer's disease. We have previously reported that AC-3933 enhances acetylcholine release in the rat hippocampus and ameliorates scopolamine-induced memory impairment and age-related cognitive decline in both rats and mice. In this study, we further evaluated the procognitive effect of AC-3933 on memory impairment induced by MK-801, an N-methyl-d-aspartate receptor antagonist, in mice. Unlike the acetylcholinesterase inhibitor donepezil and the benzodiazepine receptor inverse agonist FG-7142, oral administration of AC-3933 significantly ameliorated MK-801-induced memory impairment in the Y-maze test and in the object location test. Interestingly, the procognitive effects of AC-3933 on MK-801-induced memory impairment were not affected by the benzodiazepine receptor antagonist flumazenil, although this was not the case for the beneficial effects of AC-3933 on scopolamine-induced memory deficit. Moreover, the onset of AC-3933 ameliorating effect on scopolamine- or MK-801-induced memory impairment was different in the Y-maze test. Taken together, these results indicate that AC-3933 improves memory deficits caused by both cholinergic and glutamatergic hypofunction and suggest that the ameliorating effect of AC-3933 on MK-801-induced memory impairment is mediated by a mechanism other than inverse activation of the benzodiazepine receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Persistent homology of complex networks

    International Nuclear Information System (INIS)

    Horak, Danijela; Maletić, Slobodan; Rajković, Milan

    2009-01-01

    Long-lived topological features are distinguished from short-lived ones (considered as topological noise) in simplicial complexes constructed from complex networks. A new topological invariant, persistent homology, is determined and presented as a parameterized version of a Betti number. Complex networks with distinct degree distributions exhibit distinct persistent topological features. Persistent topological attributes, shown to be related to the robust quality of networks, also reflect the deficiency in certain connectivity properties of networks. Random networks, networks with exponential connectivity distribution and scale-free networks were considered for homological persistency analysis

  20. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  1. Rarity and persistence.

    Science.gov (United States)

    Vermeij, Geerat J; Grosberg, Richard K

    2018-01-01

    Rarity is a population characteristic that is usually associated with a high risk of extinction. We argue here, however, that chronically rare species (those with low population densities over many generations across their entire ranges) may have individual-level traits that make populations more resistant to extinction. The major obstacle to persistence at low density is successful fertilisation (union between egg and sperm), and chronically rare species are more likely to survive when (1) fertilisation occurs inside or close to an adult, (2) mate choice involves long-distance signals, (3) adults or their surrogate gamete dispersers are highly mobile, or (4) the two sexes are combined in a single individual. In contrast, external fertilisation and wind- or water-driven passive dispersal of gametes, or sluggish or sedentary adult life habits in the absence of gamete vectors, appear to be incompatible with sustained rarity. We suggest that the documented increase in frequency of these traits among marine genera over geological time could explain observed secular decreases in rates of background extinction. Unanswered questions remain about how common chronic rarity actually is, which traits are consistently associated with chronic rarity, and how chronically rare species are distributed among taxa, and among the world's ecosystems and regions. © 2017 John Wiley & Sons Ltd/CNRS.

  2. Cognitive implications of facilitating echoic persistence.

    Science.gov (United States)

    Baldwin, Carryl L

    2007-06-01

    Seventeen participants performed a tone-pattern-matching task at different presentation levels while concurrently engaged in a simulated-driving task. Presentation levels of 60, 65, and 70 dBC (SPL) were combined factorially with tone-matching delays of 2, 3, and 4 sec. Intensity had no effect on performance in single-task conditions and short-delay conditions. However, when the participants were engaged concurrently in the driving task, a significant interaction between presentation level and delay was observed. In the longest delay condition, the participants performed the tone-pattern-matching task more efficiently (more quickly and without additional errors) as presentation intensity increased. These findings demonstrate the interaction between sensory and cognitive processes and point to a direct-intensity relationship where intensity affects the persistence of echoic memory. Implications for facilitating auditory processing and improving auditory interfaces in complex systems (i.e., transportation environments), particularly for older and hearing-impaired listeners, are discussed.

  3. Predictive risk factors for persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske K; Gmaehle, Eliza; Hansen, Jeanette B

    2010-01-01

    BACKGROUND: Persistent postherniotomy pain (PPP) affects everyday activities in 5-10% of patients. Identification of predisposing factors may help to identify the risk groups and guide anesthetic or surgical procedures in reducing risk for PPP. METHODS: A prospective study was conducted in 464...... patients undergoing open or laparoscopic transabdominal preperitoneal elective groin hernia repair. Primary outcome was identification of risk factors for substantial pain-related functional impairment at 6 months postoperatively assessed by the validated Activity Assessment Scale (AAS). Data on potential...... risk factors for PPP were collected preoperatively (pain from the groin hernia, preoperative AAS score, pain from other body regions, and psychometric assessment). Pain scores were collected on days 7 and 30 postoperatively. Sensory functions including pain response to tonic heat stimulation were...

  4. The persistence of depression score

    NARCIS (Netherlands)

    Spijker, J.; de Graaf, R.; Ormel, J.; Nolen, W. A.; Grobbee, D. E.; Burger, H.

    2006-01-01

    Objective: To construct a score that allows prediction of major depressive episode (MDE) persistence in individuals with MDE using determinants of persistence identified in previous research. Method: Data were derived from 250 subjects from the general population with new MDE according to DSM-III-R.

  5. Isolated intermittent vertigo: A presenting feature of persistent trigeminal artery

    Directory of Open Access Journals (Sweden)

    Rajsrinivas Parthasarathy

    2016-01-01

    Full Text Available Embryonic carotid – basilar anastomosis when persistent in adult life can present with a variety of neurological symptoms. We present a patient with isolated intermittent vertigo attributable to the embryonic anastomosis and describe the different types of persistent trigeminal artery. A 76-year-old Caucasian man presented with isolated intermittent vertigo and symptoms suggestive of anterior and posterior circulation strokes. Impaired vasomotor reactivity was demonstrated on insonation of the anterior and posterior cerebral arteries in this patient with a persistent left trigeminal artery and 75% stenosis of the left internal carotid artery (ICA. The symptom of intermittent vertigo resolved with carotid endarterectomy. Decreased flow across the stenotic segment of the ICA which subserved the posterior circulation resulted in basilar insufficiency. Hypoperfusion to the flocculonodular lobe supplied by the anterior inferior cerebellar artery is a likely cause for the intermittent vertigo.

  6. Persistence, resistance, resonance

    Science.gov (United States)

    Tsadka, Maayan

    form of musical consumption and experience. The three pieces draw lines connecting different aspects of persistence, resistance, and resonance.

  7. Contribution of the D-Serine-dependent pathway to the cellular mechanisms underlying cognitive aging

    Directory of Open Access Journals (Sweden)

    Emilie Rouaud

    2010-02-01

    Full Text Available An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-Methyl-D-Aspartate receptors (NMDA-R by its agonist D-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous D-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of D-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of D-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the D-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly.

  8. NMDA receptor function during senescence: implication on cognitive performance

    Directory of Open Access Journals (Sweden)

    Ashok eKumar

    2015-12-01

    Full Text Available N-methyl-D-aspartate (NMDA receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function.

  9. Persistent Autobiographical Amnesia: A Case Report

    Directory of Open Access Journals (Sweden)

    C. Repetto

    2007-01-01

    Full Text Available We describe a 47-year-old man who referred to the Emergency Department for sudden global amnesia and left mild motor impairment in the setting of increased arterial blood pressure. The acute episode resolved within 24 hours. Despite general recovery and the apparent transitory nature of the event, a persistent selective impairment in recollecting events from some specific topics of his personal life became apparent. Complete neuropsychological tests one week after the acute onset and 2 months later demonstrated a clear retrograde memory deficit contrasting with the preservation of anterograde memory and learning abilities. One year later, the autobiographic memory deficit was unmodified, except for what had been re-learnt. Brain MRI was normal while H20 brain PET scans demonstrated hypometabolism in the right globus pallidus and putamen after 2 weeks from onset, which was no longer present one year later. The absence of a clear pathomechanism underlying focal amnesia lead us to consider this case as an example of functional retrograde amnesia.

  10. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It ...

  11. Adapting for Impaired Patrons.

    Science.gov (United States)

    Schuyler, Michael

    1999-01-01

    Describes how a library, with an MCI Corporation grant, approached the process of setting up computers for the visually impaired. Discusses preparations, which included hiring a visually-impaired user as a consultant and contacting the VIP (Visually Impaired Persons) group; equipment; problems with the graphical user interface; and training.…

  12. Androgen receptor gene CAG repeat length as modifier of the association between Persistent Organohalogen Pollutant exposure markers and semen characteristics

    DEFF Research Database (Denmark)

    Giwercman, Aleksander; Rylander, Lars; Rignell-Hydbom, Anna

    2007-01-01

    OBJECTIVES: Exposure to persistent organohalogen pollutants was suggested to impair male reproductive function. A gene-environment interaction has been proposed. No genes modifying the effect of persistent organohalogen pollutants on reproductive organs have yet been identified. We aimed to inves...

  13. Teriparatide Induced Delayed Persistent Hypercalcemia

    Directory of Open Access Journals (Sweden)

    Nirosshan Thiruchelvam

    2014-01-01

    Full Text Available Teriparatide, a recombinant PTH, is an anabolic treatment for osteoporosis that increases bone density. Transient hypercalcemia is a reported side effect of teriparatide that is seen few hours following administration of teriparatide and resolves usually within 16 hours of drug administration. Persistent hypercalcemia, although not observed in clinical trials, is rarely reported. The current case describes a rare complication of teriparatide induced delayed persistent hypercalcemia.

  14. Persistence in the Cryptocurrency Market

    OpenAIRE

    Caporale, Guglielmo Maria; Gil-Alaña, Luis A.; Plastun, Alex

    2017-01-01

    This paper examines persistence in the cryptocurrency market. Two different long-memory methods (R/S analysis and fractional integration) are used to analyse it in the case of the four main cryptocurrencies (BitCoin, LiteCoin, Ripple, Dash) over the sample period 2013-2017. The findings indicate that this market exhibits persistence (there is a positive correlation between its past and future values), and that its degree changes over time. Such predictability represents evidence of market ine...

  15. Possible relationship between the stress-induced synaptic response and metaplasticity in the hippocampal CA1 field of freely moving rats.

    Science.gov (United States)

    Hirata, Riki; Matsumoto, Machiko; Judo, Chika; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro; Togashi, Hiroko

    2009-07-01

    Hippocampal long-term potentiation (LTP) is suppressed not only by stress paradigms but also by low frequency stimulation (LFS) prior to LTP-inducing high frequency stimulation (HFS; tetanus), termed metaplasticity. These synaptic responses are dependent on N-methyl-D-aspartate receptors, leading to speculations about the possible relationship between metaplasticity and stress-induced LTP impairment. However, the functional significance of metaplasticity has been unclear. The present study elucidated the electrophysiological and neurochemical profiles of metaplasticity in the hippocampal CA1 field, with a focus on the synaptic response induced by the emotional stress, contextual fear conditioning (CFC). The population spike amplitude in the CA1 field was decreased during exposure to CFC, and LTP induction was suppressed after CFC in conscious rats. The synaptic response induced by CFC was mimicked by LFS, i.e., LFS impaired the synaptic transmission and subsequent LTP. Plasma corticosterone levels were increased by both CFC and LFS. Extracellular levels of gamma-aminobutyric acid (GABA), but not glutamate, in the hippocampus increased during exposure to CFC or LFS. Furthermore, electrical stimulation of the medial prefrontal cortex (mPFC), which caused decreases in freezing behavior during exposure to CFC, counteracted the LTP impairment induced by LFS. These findings suggest that metaplasticity in the rat hippocampal CA1 field is related to the neural basis of stress experience-dependent fear memory, and that hippocampal synaptic response associated stress-related processes is under mPFC regulation.

  16. Fear memory in a neurodevelopmental model of schizophrenia based on the postnatal blockade of NMDA receptors.

    Science.gov (United States)

    Latusz, Joachim; Radaszkiewicz, Aleksandra; Bator, Ewelina; Wędzony, Krzysztof; Maćkowiak, Marzena

    2017-02-01

    Epidemiological data have indicated that memory impairment is observed during adolescence in groups at high risk for schizophrenia and might precede the appearance of schizophrenia symptoms in adulthood. In the present study, we used a neurodevelopmental model of schizophrenia based on the postnatal blockade of N-methyl-d-aspartate (NMDA) receptors in rats to investigate fear memory in adolescence and adulthood. The rats were treated with increasing doses of CGP 37849 (CGP), a competitive antagonist of the NMDA receptor (1.25mg/kg on days 1, 3, 6, 9; 2.5mg/kg on days 12, 15, 18 and 5mg/kg on day 21). Fear memory was analysed in delay and trace fear conditioning. Sensorimotor gating deficit, which is another cognitive symptom of schizophrenia, was also determined in adolescent and adult CGP-treated rats. Postnatal CGP administration disrupted cue- and context-dependent fear memory in adolescent rats in both delay and trace conditioning. In contrast, CGP administration evoked impairment only in cue-dependent fear memory in rats exposed to trace but not delay fear conditioning. The postnatal blockade of NMDA receptors induced sensorimotor gating deficits in adult rats but not in adolescent rats. The postnatal blockade of NMDA receptors induced fear memory impairment in adolescent rats before the onset of neurobehavioral deficits associated with schizophrenia. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  17. Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in a rat model of chronic stress.

    Science.gov (United States)

    Yu, Mei; Zhang, Yuan; Chen, Xiaoyu; Zhang, Tao

    2016-01-01

    The aim of this study was to examine whether amantadine (AMA), as a low-affinity noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, is able to improve cognitive deficits caused by chronic stress in rats. Male Wistar rats were divided into four groups: control, control + AMA, stress and stress + AMA groups. The chronic stress model combined chronic unpredictable stress (CUS) with isolated feeding. Animals were exposed to CUS continued for 21 days. AMA (25 mg/kg) was administrated p.o. for 20 days from the 4th day of CUS to the 23rd. Weight and sucrose consumption were measured during model establishing period. Spatial memory was evaluated using the Morris water maze (MWM) test. Following MWM testing, both long-term potentiation (LTP) and depotentiation were recorded in the hippocampal CA1 region. NR2B and postsynaptic density protein 95 (PSD-95) proteins were measured by Western-blot analysis. AMA increased weight and sucrose consumption of stressed rats. Spatial memory and reversal learning in stressed rats were impaired relative to controls, whereas AMA significantly attenuated cognitive impairment. AMA also mitigated the chronic stress-induced impairment of hippocampal synaptic plasticity, in which both the LTP and depotentiation were significantly inhibited in stressed rats. Moreover, AMA enhanced the expression of hippocampal NR2B and PSD-95 in stressed rats. The data suggest that AMA may be an effective therapeutic agent for depression-like symptoms and associated cognitive disturbances.

  18. Retrograde and anterograde memory following selective damage to the dorsolateral entorhinal cortex.

    Science.gov (United States)

    Gervais, Nicole J; Barrett-Bernstein, Meagan; Sutherland, Robert J; Mumby, Dave G

    2014-12-01

    Anatomical and electrophysiological evidence suggest the dorsolateral entorhinal cortex (DLEC) is involved in processing spatial information, but there is currently no consensus on whether its functions are necessary for normal spatial learning and memory. The present study examined the effects of excitotoxic lesions of the DLEC on retrograde and anterograde memory on two tests of allocentric spatial learning: a hidden fixed-platform watermaze task, and a novelty-preference-based dry-maze test. Deficits were observed on both tests when training occurred prior to but not following n-methyl d-aspartate (NMDA) lesions of DLEC, suggesting retrograde memory impairment in the absence of anterograde impairments for the same information. The retrograde memory impairments were temporally-graded; rats that received DLEC lesions 1-3 days following training displayed deficits, while those that received lesions 7-10 days following training performed like a control group that received sham surgery. The deficits were not attenuated by co-infusion of tetrodotoxin, suggesting they are not due to disruption of neural processing in structures efferent to the DLEC, such as the hippocampus. The present findings provide evidence that the DLEC is involved in the consolidation of allocentric spatial information. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. [Pathomechanism of Autoantibody Production in the Nervous System Diseases].

    Science.gov (United States)

    Shimizu, Fumitaka; Kanda, Takashi

    2018-04-01

    Antibodies to different brain and peripheral nerve proteins have recently been found to be associated with several different autoimmune diseases. They can bind to either neuronal or non-neuronal antigens and may have a pathogenic role by themselves or in synergy with other inflammatory mediators after penetrating the blood-brain barrier or the blood-nerve barrier. In this review, we will describe the association with the impairment of immune tolerance, innate immunity, and autoantibody production of myasthenia gravis (MG), systemic lupus erythematosus (SLE), and Guillain-Barré syndrome (GBS). Impairment of central tolerance, which is characterized by the repertoire selection of immature T-lymphocytes in the thymus, is seen in patients with MG who are positive for anti-Ach R antibodies. Impairment of peripheral tolerance due to activation of autoreactive T-cells and suppression of regulatory T-cells is seen in SLE. In addition, molecular mimicry between the lipooligosaccharides of Campylobacter jejuni and gangliosides of the peripheral nerves results in the production of anti-gangliosides antibodies in GBS. Next, we will describe the antibody-mediated pathology in neuromyelitis optica and anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. The binding of anti-aquaporin-4 antibodies or anti-NMDAR antibodies to their respective targets initiates target internalization and complement- or antibody-dependent cellular cytotoxicity of the target cells. Further understanding of antibody-mediated pathology may suggest novel therapeutic strategies.

  20. Ethanol Neurotoxicity in the Developing Cerebellum: Underlying Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Ambrish Kumar

    2013-06-01

    Full Text Available Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF, insulin-like growth factor 1 (IGF-I, and basic fibroblast growth factor (bFGF. In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.

  1. Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons.

    Science.gov (United States)

    Izumi, Y; Svrakic, N; O'Dell, K; Zorumski, C F

    2013-03-13

    Neurosteroids are a class of endogenous steroids synthesized in the brain that are believed to be involved in the pathogenesis of neuropsychiatric disorders and memory impairment. Ammonia impairs long-term potentiation (LTP), a synaptic model of learning, in the hippocampus, a brain region involved in memory acquisition. Although mechanisms underlying ammonia-mediated LTP inhibition are not fully understood, we previously found that the activation of N-methyl-d-aspartate receptors (NMDARs) is important. Based on this, we hypothesize that metabolic stressors, including hyperammonemia, promote untimely NMDAR activation and result in neural adaptations that include the synthesis of allopregnanolone (alloP) and other GABA-potentiating neurosteroids that dampen neuronal activity and impair LTP and memory formation. Using an antibody against 5α-reduced neurosteroids, we found that 100 μM ammonia acutely enhanced neurosteroid immunostaining in pyramidal neurons in the CA1 region of rat hippocampal slices. The enhanced staining was blocked by finasteride, a selective inhibitor of 5α-reductase, a key enzyme required for alloP synthesis. Finasteride also overcame LTP inhibition by 100 μM ammonia, as did picrotoxin, an inhibitor of GABA-A receptors. These results indicate that GABA-enhancing neurosteroids, synthesized locally within pyramidal neurons, contribute significantly to ammonia-mediated synaptic dysfunction. These results suggest that the manipulation of neurosteroid synthesis could provide a strategy to improve cognitive function in individuals with hyperammonemia. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Memory Impairment in Children with Language Impairment

    Science.gov (United States)

    Baird, Gillian; Dworzynski, Katharina; Slonims, Vicky; Simonoff, Emily

    2010-01-01

    Aim: The aim of this study was to assess whether any memory impairment co-occurring with language impairment is global, affecting both verbal and visual domains, or domain specific. Method: Visual and verbal memory, learning, and processing speed were assessed in children aged 6 years to 16 years 11 months (mean 9y 9m, SD 2y 6mo) with current,…

  3. Effect of Jian-Pi-Zhi-Dong Decoction on striatal glutamate and γ-aminobutyric acid levels detected using microdialysis in a rat model of Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Zhang W

    2016-05-01

    RNA expression, only Tia reduced the expression of N-methyl-D-aspartate receptor 1, compared with the model group.Conclusion: JPZDD could alleviate impairments in behavior and dysfunctional signaling by downregulating GABAAR in the striatum. We suggest that this acts to maintain the balance of Glu and GABA. Keywords: amino acid neurotransmitter, cortico-striatal-thalamic-cortical, stereotypy, autonomic activity, GABAAR, NMDAR1

  4. The effects of acute stress on the calibration of persistence.

    Science.gov (United States)

    Lempert, Karolina M; McGuire, Joseph T; Hazeltine, Danielle B; Phelps, Elizabeth A; Kable, Joseph W

    2018-02-01

    People frequently fail to wait for delayed rewards after choosing them. These preference reversals are sometimes thought to reflect self-control failure. Other times, however, continuing to wait for a delayed reward may be counterproductive (e.g., when reward timing uncertainty is high). Research has demonstrated that people can calibrate how long to wait for rewards in a given environment. Thus, the role of self-control might be to integrate information about the environment to flexibly adapt behavior, not merely to promote waiting. Here we tested effects of acute stress, which has been shown to tax control processes, on persistence, and the calibration of persistence, in young adult human participants. Half the participants (n = 60) performed a task in which persistence was optimal, and the other half (n = 60) performed a task in which it was optimal to quit waiting for reward soon after each trial began. Each participant completed the task either after cold pressor stress or no stress. Stress did not influence persistence or optimal calibration of persistence. Nevertheless, an exploratory analysis revealed an "inverted-U" relationship between cortisol increase and performance in the stress groups, suggesting that choosing the adaptive waiting policy may be facilitated with some stress and impaired with severe stress.

  5. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade.

    Directory of Open Access Journals (Sweden)

    Adam C Roberts

    Full Text Available The zebrafish larva has been a valuable model system for genetic and molecular studies of development. More recently, biologists have begun to exploit the surprisingly rich behavioral repertoire of zebrafish larvae to investigate behavior. One prominent behavior exhibited by zebrafish early in development is a rapid escape reflex (the C-start. This reflex is mediated by a relatively simple neural circuit, and is therefore an attractive model behavior for neurobiological investigations of simple forms of learning and memory. Here, we describe two forms of short-lived habituation of the C-start in response to brief pulses of auditory stimuli. A rapid form, persisting for ≥1 min but <15 min, was induced by 120 pulses delivered at 0.5-2.0 Hz. A more extended form (termed "short-term habituation" here, which persisted for ≥25 min but <1 h, was induced by spaced training. The spaced training consisted of 10 blocks of auditory pulses delivered at 1 Hz (5 min interblock interval, 900 pulses per block. We found that these two temporally distinguishable forms of habituation are mediated by different cellular mechanisms. The short-term form depends on activation of N-methyl-d-aspartate receptors (NMDARs, whereas the rapid form does not.

  6. Missed diagnosis-persistent delirium

    Directory of Open Access Journals (Sweden)

    Aseem Mehra

    2014-01-01

    Full Text Available Delirium is in general considered as an acute short lasting reversible neuropsychiatric syndrome. However, there is some evidence to suggest that in a small proportion of cases delirium may be a chronic or persistent condition. However, making this diagnosis requires clinical suspicion and ruling other differential diagnosis. In this report, we present a case of a 55-year-old man who had cognitive symptoms, psychotic symptoms and depressive symptoms along with persistent hypokalemia and glucose intolerance. He was seen by 3 psychiatrists with these symptoms and was initially diagnosed as having depressive disorder and later diagnosis of bipolar affective disorder (current episode mania, and psychosis were considered by the third psychiatrist. However, despite the presence of persistent neurocognitive deficits, evening worsening of symptoms, hypokalemia and glucose intolerance diagnosis of delirium was not suspected.

  7. NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Wu, H; Wang, X; Gao, Y; Lin, F; Song, T; Zou, Y; Xu, L; Lei, H

    2016-05-13

    Animal models of N-methyl-d-aspartate receptor (NMDAR) antagonism have been widely used for schizophrenia research. Less is known whether these models are associated with macroscopic brain structural changes that resemble those in clinical schizophrenia. Magnetic resonance imaging (MRI) was used to measure brain structural changes in rats subjected to repeated administration of MK801 in a regimen (daily dose of 0.2mg/kg for 14 consecutive days) known to be able to induce schizophrenia-like cognitive impairments. Voxel-based morphometry (VBM) revealed significant gray matter (GM) atrophy in the hippocampus, ventral striatum (vStr) and cortex. Diffusion tensor imaging (DTI) demonstrated microstructural impairments in the corpus callosum (cc). Histopathological results corroborated the MRI findings. Treatment-induced behavioral abnormalities were not measured such that correlation between the brain structural changes observed and schizophrenia-like behaviors could not be established. Chronic MK801 administration induces MRI-observable brain structural changes that are comparable to those observed in schizophrenia patients, supporting the notion that NMDAR hypofunction contributes to the pathology of schizophrenia. Imaging-derived brain structural changes in animal models of NMDAR antagonism may be useful measurements for studying the effects of treatments and interventions targeting schizophrenia. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP.

    Science.gov (United States)

    Muhia, Mary; Yee, Benjamin K; Feldon, Joram; Markopoulos, Foivos; Knuesel, Irene

    2010-02-01

    The brain-specific Ras/Rap-GTPase activating protein (SynGAP) is a prime candidate linking N-methyl-d-aspartate receptors to the regulation of the ERK/MAP kinase signalling cascade, suggested to be essential for experience-dependent synaptic plasticity. Here, we evaluated the behavioural phenotype of SynGAP heterozygous knockout mice (SG(+/-)), expressing roughly half the normal levels of SynGAP. In the cognitive domain, SG(+/-) mice demonstrated severe working and reference memory deficits in the radial arm maze task, a mild impairment early in the transfer test of the water maze task, and a deficiency in spontaneous alternation in an elevated T-maze. In the non-cognitive domain, SG(+/-) mice were hyperactive in the open field and appeared less anxious in the elevated plus maze test. In contrast, object recognition memory performance was not impaired in SG(+/-) mice. The reduction in SynGAP thus resulted in multiple behavioural traits suggestive of aberrant cognitive and non-cognitive processes normally mediated by the hippocampus. Immunohistochemical evaluation further revealed a significant reduction in calbindin-positive interneurons in the hippocampus and doublecortin-positive neurons in the dentate gyrus of adult SG(+/-) mice. Heterozygous constitutive deletion of SynGAP is therefore associated with notable behavioural as well as morphological phenotypes indicative of hippocampal dysfunction. Any suggestion of a possible causal link between them however remains a matter for further investigation.

  9. Prenatal exposure to phencyclidine produces abnormal behaviour and NMDA receptor expression in postpubertal mice.

    Science.gov (United States)

    Lu, Lingling; Mamiya, Takayoshi; Lu, Ping; Toriumi, Kazuya; Mouri, Akihiro; Hiramatsu, Masayuki; Kim, Hyoung-Chun; Zou, Li-Bo; Nagai, Taku; Nabeshima, Toshitaka

    2010-08-01

    Several studies have shown the disruptive effects of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists on neurobehavioural development. Based on the neurodevelopment hypothesis of schizophrenia, there is growing interest in animal models treated with NMDA antagonists at developing stages to investigate the pathogenesis of psychological disturbances in humans. Previous studies have reported that perinatal treatment with phencyclidine (PCP) impairs the development of neuronal systems and induces schizophrenia-like behaviour. However, the adverse effects of prenatal exposure to PCP on behaviour and the function of NMDA receptors are not well understood. This study investigated the long-term effects of prenatal exposure to PCP in mice. The prenatal PCP-treated mice showed hypersensitivity to a low dose of PCP in locomotor activity and impairment of recognition memory in the novel object recognition test at age 7 wk. Meanwhile, the prenatal exposure reduced the phosphorylation of NR1, although it increased the expression of NR1 itself. Furthermore, these behavioural changes were attenuated by atypical antipsychotic treatment. Taken together, prenatal exposure to PCP produced long-lasting behavioural deficits, accompanied by the abnormal expression and dysfunction of NMDA receptors in postpubertal mice. It is worth investigating the influences of disrupted NMDA receptors during the prenatal period on behaviour in later life.

  10. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Directory of Open Access Journals (Sweden)

    Ayako Kumagai

    2014-12-01

    Full Text Available Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

  11. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    Science.gov (United States)

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  12. Energy Savings Lifetimes and Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Todd, Annika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Billingsley, Megan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-01

    This technical brief explains the concepts of energy savings lifetimes and savings persistence and discusses how program administrators use these factors to calculate savings for efficiency measures, programs and portfolios. Savings lifetime is the length of time that one or more energy efficiency measures or activities save energy, and savings persistence is the change in savings throughout the functional life of a given efficiency measure or activity. Savings lifetimes are essential for assessing the lifecycle benefits and cost effectiveness of efficiency activities and for forecasting loads in resource planning. The brief also provides estimates of savings lifetimes derived from a national collection of costs and savings for electric efficiency programs and portfolios.

  13. Persistent pulmonary hypertension of the newborn

    Science.gov (United States)

    Teng, Ru-Jeng; Wu, Tzong-Jin

    2013-01-01

    Persistent pulmonary hypertension of the newborn (PPHN) is a severe pulmonary disorder which occurs one in every 500 live births. About 10–50% of the victims will die of the problem and 7–20% of the survivors develop long term impairments such as hearing deficit, chronic lung disease, and intracranial bleed. Most of the adult survivors show evidence of augmented pulmonary vasoreactivity suggesting a phenotypical change. Several animal models have been used to study the pathophysiology and help to develop new therapeutic modality for PPHN. The etiology of PPHN can be classified into three groups: [A] abnormally constricted pulmonary vasculature due to parenchymal diseases; [B] hypoplastic pulmonary vasculature; [C] normal parenchyma with remodeled pulmonary vasculature. Impaired vasorelaxation of pulmonary artery and reduced blood vessel density in lungs are two characteristic findings in PPHN. Medical treatment includes sedation, oxygen, mechanical ventilation, vasorelaxants (inhaled nitric oxide, inhaled or intravenous prostacyclin, intravenous prostaglandin E1, magnesium sulfate), and inotropic agents. Phosphodiesterase inhibitor has recently been studied as another therapeutic agent for PPHN. Endothelin-1 (ET-1) inhibitor has been studied in animal and a case of premature infant with PPHN successfully treated with ET-I inhibitor has been reported in the literature. Surfactant has been reported as an adjunct treatment for PPHN as a complication of meconium aspiration syndrome. Even with the introduction of several new therapeutic modalities there has no significant change in survival rate. Extracorporeal membrane oxygenator is used when medical treatment fails and patient is considered to have a recoverable cause of PPHN. PMID:23537863

  14. Motor and cognitive impairment after stroke : A common bond or a simultaneous deficit?

    NARCIS (Netherlands)

    Verstraeten, S.M.M.; Mark, R.E.; Sitskoorn, M.M.

    2016-01-01

    Background: The prevalence of both motor deficit and cognitive impairment after stroke is high and persistent. Motor impairment, especially paresis, is often ore obvious to both patients and their carers while cognitive problems can also have devastating effects on quality of life. The current

  15. Persistence Mechanisms of Conjugative Plasmids

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the suc...

  16. On persistently positively expansive maps

    Directory of Open Access Journals (Sweden)

    Alexander Arbieto

    2010-06-01

    Full Text Available In this paper, we prove that any C¹-persistently positively expansive map is expanding. This improves a result due to Sakai (Sakai 2004.Neste artigo, mostramos que todo mapa C¹-persistentemente positivamente expansivo e expansor. Isto melhora um resultado devido a Sakai (Sakai 2004.

  17. Criteria for driver impairment

    NARCIS (Netherlands)

    Brookhuis, K.A.; De Waard, D.; Fairclough, S.H

    2003-01-01

    Most traffic accidents can be attributed to driver impairment, e.g. inattention, fatigue, intoxication, etc. It is now technically feasible to monitor and diagnose driver behaviour with respect to impairment with the aid of a limited number of in-vehicle sensors. However, a valid framework for the

  18. Persistence

    DEFF Research Database (Denmark)

    Hansen, Kis Boisen

    2012-01-01

    The note shows an example of an architure for buildin g stand-alone program, where the programming language is object oriented and the databas system is a relational database system. Together with the notes is an example program.......The note shows an example of an architure for buildin g stand-alone program, where the programming language is object oriented and the databas system is a relational database system. Together with the notes is an example program....

  19. Persistent post-stroke dysphagia treated with cricopharyngeal myotomy

    Directory of Open Access Journals (Sweden)

    Sruthi S Nair

    2016-01-01

    Full Text Available Post-stroke dysphagia is a common problem after stroke. About 8-13% patients have persistent dysphagia and are unable to return to pre-stroke diet even after 6 months of stroke. Use of percutaneous endoscopic gastrostomy (PEG may be required in these patients, which may be psychologically unacceptable and impair the quality of life. In those with cricopharyngeal dysfunction leading on to refractory post-stroke dysphagia, cricopharyngeal myotomy and injection of botulinum toxin are the treatment options. We present a case of vertebrobasilar stroke who had persistent dysphagia due to cricopharyngeal dysfunction with good recovery of swallowing function following cricopharyngeal myotomy 1.5 years after the stroke.

  20. The role of NMDA receptor and nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effect of dextromethorphan in mice forced swimming test and tail suspension test.

    Science.gov (United States)

    Sakhaee, Ehsan; Ostadhadi, Sattar; Khan, Muhammad Imran; Yousefi, Farbod; Norouzi-Javidan, Abbas; Akbarian, Reyhaneh; Chamanara, Mohsen; Zolfaghari, Samira; Dehpour, Ahmad-Reza

    2017-01-01

    Depression is a devastating disorder which has a high impact on the wellbeing of overall society. As such, need for innovative therapeutic agents are always there. Most of the researchers focused on N-methyl-d-aspartate receptor to explore the antidepressant like activity of new therapeutic agents. Dextromethorphan is a cough suppressant agent with potential antidepressant activity reported in mouse force swimming test. Considering N-methyl-d-aspartate as a forefront in exploring antidepressant agents, here we focused to unpin the antidepressant mechanism of dextromethorphan targeting N-methyl-d-aspartate receptor induced nitric oxide-cyclic guanosine monophosphate signaling. Dextromethorphan administered at a dose of 10 and 30mg/kg i.p significantly reduced the immobility time. Interestingly, this effect of drug (30mg/kg) was inhibited when the animals were pretreated either with N-methyl-d-aspartate (75mg/kg), or l-arginine (750mg/kg) as a nitric oxide precursor and/or sildenafil (5mg/kg) as a phosphodiesterase 5 inhibitor. However, the antidepressant effect of Dextromethorphan subeffective dose (3mg/kg) was augmented when the animals were administered with either L-NG-Nitroarginine methyl ester (10mg/kg) non-specific nitric oxide synthase inhibitor, 7-Nitroindazole (30mg/kg) specific neural nitric oxide synthase inhibitor, MK-801 (0.05mg/kg) an N-methyl-d-aspartate receptor antagonist but not aminoguanidine (50mg/kg) which is specific inducible nitric oxide synthase inhibitor as compared to the drugs when administered alone. No remarkable effect on locomotor activity was observed during open field test when the drugs were administered at the above mentioned doses. Therefore, it is evident that the antidepressant like effect of Dextromethorphan is owed due to its inhibitory effect on N-methyl-d-aspartate receptor and NO- Cyclic guanosine monophosphate pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Persistent Hyperprolactinemia and Bilateral Galactocele in a Male Infant

    Directory of Open Access Journals (Sweden)

    Casti Tiziana

    2009-02-01

    Full Text Available Galactocele is a benign breast lesion, usually occurring in nursing women. This lesion is a rare cause of breast enlargement in children. In this paper we describe the case of an infant with hyperprolactinemia (which persisted throughout 15 years of clinical observation and bilateral galactocele. We speculate that a congenital midline defect in our patient might have impaired the normal dopaminergic inhibitory tone on pituitary lactotroph cells, thus leading to an increased prolactin secretion by the pituitary gland; this, in turn, might have favored the development of the galactocele.

  2. Single treatments that have lasting effects: some thoughts on the antidepressant effects of ketamine and botulinum toxin and the anxiolytic effect of psilocybin.

    Science.gov (United States)

    Young, Simon N

    2013-03-01

    Recent clinical trials suggest that 3 single biological treatments have effects that persist. Based on research showing that the muscles involved in facial expressions can feed back to influence mood, a single trial diminishing glabella frown lines with botulinum toxin demonstrated a significant antidepressant effect for 16 weeks. Based primarily on research with animal models of depression suggesting that glutamate may be involved in depression, the N-methyl-D-aspartate antagonist ketamine has been tested in several trials. A single dose decreased depression for up to a week. The reported effects of the use of mushrooms containing psilocybin by a number of cultures around the world has stimulated several trials showing beneficial effects of a single dose of psilocybin for over a year in healthy people, and for up to 3 months in patients with anxiety disorders who have advanced cancer. This article discusses these studies, their rationale, their possible mechanisms of action, the future clinical research required to establish these therapies and the basic research required to optimize single treatments that have lasting effects.

  3. Postnatal BDNF Expression Profiles in Prefrontal Cortex and Hippocampus of a Rat Schizophrenia Model Induced by MK-801 Administration

    Directory of Open Access Journals (Sweden)

    Chunmei Guo

    2010-01-01

    Full Text Available Neonatal blockade of N-methyl-D-aspartic acid (NMDA receptors represents one of experimental animal models for schizophrenia. This study is to investigate the long-term brain-derived neurotrophic factor (BDNF expression profiles in different regions and correlation with “schizophrenia-like” behaviors in the adolescence and adult of this rat model. The NMDA receptor antagonist MK801 was administered to female Sprague-Dawley rats on postnatal days (PND 5 through 14. Open-field test was performed on PND 42, and PND 77 to examine the validity of the current model. BDNF protein levels in hippocampus and prefrontal cortex (PFC were analyzed on PND 15, PND 42, and PND 77. Results showed that neonatal challenge with MK-801 persistently elevated locomotor activity as well as BDNF expression; the alterations in BDNF expression varied at different developing stages and among brain regions. However, these findings provide neurochemical evidence that the blockade of NMDA receptors during brain development results in long-lasting alterations in BDNF expression and might contribute to neurobehavioral pathology of the present animal model for schizophrenia. Further study in the mechanisms and roles of the BDNF may lead to better understanding of the pathophysiology of schizophrenia.

  4. Association of functional variations in COMT and GCH1 genes with postherniotomy pain and related impairment

    DEFF Research Database (Denmark)

    Belfer, Inna; Dai, Feng; Kehlet, Henrik

    2015-01-01

    Persistent postoperative pain is a well-established clinical problem with potential severe personal and socioeconomic implications. The prevalence of persistent pain varies across surgery types. Severe persistent pain and related impairment occur in 5% to 10% of patients after groin hernia repair....... The substantial interindividual variability in pain-related phenotypes within each surgery type cannot be explained by environmental factors alone, suggesting that genetic variation may play a role. We investigated the contribution of COMT and GCH1 to persistent postherniotomy pain (PPP)-related functional...... moderate-to-severe pain-related activity impairment 6 months postoperatively as measured by Activity Assessment Scale (≥8.3). Patients with the G allele of COMT SNP rs6269 and C allele of COMT SNP rs4633 had less impairment (P = 0.03 and 0.01, respectively); in addition, the COMT haplotype GCG...

  5. Type 2 diabetes mellitus and exercise impairment.

    Science.gov (United States)

    Reusch, Jane E B; Bridenstine, Mark; Regensteiner, Judith G

    2013-03-01

    Limitations in physical fitness, a consistent finding in individuals with both type I and type 2 diabetes mellitus, correlate strongly with cardiovascular and all-cause mortality. These limitations may significantly contribute to the persistent excess cardiovascular mortality affecting this group. Exercise impairments in VO2 peak and VO2 kinetics manifest early on in diabetes, even with good glycemic control and in the absence of clinically apparent complications. Subclinical cardiac dysfunction is often present but does not fully explain the observed defect in exercise capacity in persons with diabetes. In part, the cardiac limitations are secondary to decreased perfusion with exercise challenge. This is a reversible defect. Similarly, in the skeletal muscle, impairments in nutritive blood flow correlate with slowed (or inefficient) exercise kinetics and decreased exercise capacity. Several correlations highlight the likelihood of endothelial-specific impairments as mediators of exercise dysfunction in diabetes, including insulin resistance, endothelial dysfunction, decreased myocardial perfusion, slowed tissue hemoglobin oxygen saturation, and impairment in mitochondrial function. Both exercise training and therapies targeted at improving insulin sensitivity and endothelial function improve physical fitness in subjects with type 2 diabetes. Optimization of exercise functions in people with diabetes has implications for diabetes prevention and reductions in mortality risk. Understanding the molecular details of endothelial dysfunction in diabetes may provide specific therapeutic targets for the remediation of this defect. Rat models to test this hypothesis are under study.

  6. Search along persistent random walks

    International Nuclear Information System (INIS)

    Friedrich, Benjamin M

    2008-01-01

    Optimal search strategies and their implementations in biological systems are a subject of active research. Here we study a search problem which is motivated by the hunt of sperm cells for the egg. We ask for the probability for an active swimmer to find a target under the condition that the swimmer starts at a certain distance from the target. We find that success probability is maximal for a certain level of fluctuations characterized by the persistence length of the swimming path of the swimmer. We derive a scaling law for the optimal persistence length as a function of the initial target distance and search time by mapping the search on a polymer physics problem

  7. Hyperphosphorylated tau in the brains of mice and monkeys with long-term administration of ketamine.

    Science.gov (United States)

    Yeung, L Y; Wai, Maria S M; Fan, Ming; Mak, Y T; Lam, W P; Li, Zhen; Lu, Gang; Yew, David T

    2010-03-15

    Ketamine, a non-competitive antagonist at the glutamatergic N-methyl-d-aspartate (NMDA) receptor, might impair memory function of the brain. Loss of memory is also a characteristic of aging and Alzheimer's disease. Hyperphosphorylation of tau is an early event in the aging process and Alzheimer's disease. Therefore, we aimed to find out whether long-term ketmaine administration is related to hyperphosphorylation of tau or not in the brains of mice and monkeys. Results showed that after 6 months' administration of ketamine, in the prefrontal and entorhinal cortical sections of mouse and monkey brains, there were significant increases of positive sites for the hyperphosphorylated tau protein as compared to the control animals receiving no ketamine administration. Furthermore, about 15% of hyperphosphorylated tau positive cells were also positively labeled by terminal dUTP nick end labeling (TUNEL) indicating there might be a relationship between hyperphosphorylation of tau and apoptosis. Therefore, the long-term ketamine toxicity might involve neurodegenerative process similar to that of aging and/or Alzheimer's disease. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Low concentrations of ketamine initiate dendritic atrophy of differentiated GABAergic neurons in culture

    International Nuclear Information System (INIS)

    Vutskits, Laszlo; Gascon, Eduardo; Potter, Gael; Tassonyi, Edomer; Kiss, Jozsef Z.

    2007-01-01

    Administration of subanesthetic concentrations of ketamine, a noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) type of glutamate receptors, is a widely accepted therapeutic modality in perioperative and chronic pain management. Although extensive clinical use has demonstrated its safety, recent human histopathological observations as well as laboratory data suggest that ketamine can exert adverse effects on central nervous system neurons. To further investigate this issue, the present study was designed to evaluate the effects of ketamine on the survival and dendritic arbor architecture of differentiated γ-aminobutyric acidergic (GABAergic) interneurons in vitro. We show that short-term exposure of cultures to ketamine at concentrations of ≥20 μg/ml leads to a significant cell loss of differentiated cells and that non-cell death-inducing concentrations of ketamine (10 μg/ml) can still initiate long-term alterations of dendritic arbor in differentiated neurons, including dendritic retraction and branching point elimination. Most importantly, we also demonstrate that chronic (>24 h) administration of ketamine at concentrations as low as 0.01 μg/ml can interfere with the maintenance of dendritic arbor architecture. These results raise the possibility that chronic exposure to low, subanesthetic concentrations of ketamine, while not affecting cell survival, could still impair neuronal morphology and thus might lead to dysfunctions of neural networks

  9. Effects of the medial or basolateral amygdala upon social anxiety and social recognition in mice.

    Science.gov (United States)

    Wang, Yu; Zhao, Shanshan; Liu, Xu; Fu, Qunying

    2014-01-01

    Though social anxiety and social recognition have been studied extensively, the roles of the medial or basolateral amygdala in the control of social anxiety and social recognition remain to be determined. This study investigated the effects of excitotoxic bilateral medial or basolateral amygdala lesions upon social anxiety and social recognition in-mice. Animals at 9 weeks of age were given bilateral medial or basolateral amygdala lesions via infusion of N-methyl- D-aspartate and then were used for behavioral tests: anxiety-related tests (including open-field test, light-dark test, and elevated-plus maze test), social behavior test in a novel environment, social recognition test, and flavor recognition test. Medial or basolateral amygdala-lesioned mice showed lower levels of anxiety and increased social behaviors in a novel environment. Destruction of the medial or basolateral amygdala neurons impaired social recognition but not flavor recognition. The medial or basolateral amygdala is involved in the control of anxiety-related behavior (social anxiety and social behaviors) in mice. Moreover, both the medial and the basolateral amygdala are essential for social recognition but not flavor recognition in mice.

  10. Ketamine-snorting associated cystitis.

    Science.gov (United States)

    Chen, Chung-Hsien; Lee, Ming-Huei; Chen, Yi-Chang; Lin, Ming-Fong

    2011-12-01

    Ketamine hydrochloride, commonly used as a pediatric anesthetic agent, is an N-methyl-D-aspartic (NMDA) acid receptor antagonist with rapid onset and short duration of action. It produces a cataleptic-like state where the patient is dissociated from the surrounding environment by direct action on the cortex and limbic system. It has emerged as an increasingly popular choice among young drug users, especially within dance club venues. Cases of bladder dysfunction among recreational ketamine users were reported since Shahani et al first reported nine cases of ketamine-associated ulcerative cystitis in 2007. We report on four patients who had history of ketamine abuse, presenting with dysuria, fluctuating lower urinary tract symptoms (LUTS), lower abdominal or perineal pain, and impaired functional bladder capacities. Urinalysis showed pyuria and microhematuria. Urine culture was sterile. Bladder ulceration with severe diffuse hemorrhage and low bladder capacity were noted under anesthetized cystoscopic examination. Transurethral bladder mucosa biopsy was consistent with chronic cystitis. Cessation of ketamine abuse was the milestone of treatment, followed by the administration of mucosal protective agents, such as pentosan polysulphate or hyaluronic acid. Suprapubic pain was improved in three patients during follow-up. However, the outcome of treatment depends on the severity of the disease process, similar to that of interstitial cystitis (IC). Copyright © 2011. Published by Elsevier B.V.

  11. Curcumin attenuates the expression of NMDAR-NR1 in Chronic Constructive Injury model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Xiangdi Yu

    2015-03-01

    Full Text Available Objective: Neuropathic pain is a prevalent desease that greatly impairs the patients’ quality of life. A lack of the understanding of its aetiology, inadequate relief, and development of tolerance and potential toxicity of classical antinociceptives warrant the investigation of the newer agents to relieve this pain. The aim of the present study was to explore the antinociceptic effect of curcumin and its effect on expression of N-methyl-D-aspartate (NMDA receptor in spinal dorsal horn and dorsal root ganglion in chronic constriction injury (CCI mode of neuropathic pain of rats. Methods: Paw withdrawal mechanical threshold (PWMT and paw withdrawal thermal latency (PWTL of rats were measured on 2th pre-operative and 1, 3, 5, 7, 10, 14 post-operative days, and the expression of NMDAR NR-1 in spinal dorsal horn and DRG was measured by Immunohistochemical staining and western-blot. Results: CCI rats exhibited significant hyperalgesia after operation as compared with control rats. Chronic treatment with curcumin 100mg/kg/day for 14days starting from the 1 th day after CCI operation significantly attenuated PWMT and PWTL. Curcumin also inhibited the expression of NMDAR NR-1 in spinal dorsal horn and DRG. Conclusion: These results indicate an antinociceptive activity of curcumin possibly through its inhibitory action on expression of NMDAR NR-1 in spinal dorsal horn and DRG and point towards its potential to attenuate neuropathic pain.

  12. Adjunctive sarcosine plus benzoate improved cognitive function in chronic schizophrenia patients with constant clinical symptoms: A randomised, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Lin, Chun-Yuan; Liang, Sun-Yuan; Chang, Yue-Cune; Ting, Shuo-Yen; Kao, Ching-Ling; Wu, Yu-Hsin; Tsai, Guochuan E; Lane, Hsien-Yuan

    2017-08-01

    Objectives Hypofunction of NMDA receptor is implicated in the pathophysiology, particularly cognitive impairment, of schizophrenia. Sarcosine, a glycine transporter I (GlyT-1) inhibitor, and sodium benzoate, a d-amino acid oxidase (DAAO) inhibitor, can both enhance NMDA receptor-mediated neurotransmission. We proposed simultaneously inhibiting DAAO and GlyT-1 may be more effective than inhibition of either in improving the cognitive and global functioning of schizophrenia patients. Methods This study compared add-on sarcosine (2 g/day) plus benzoate (1 g/day) vs. sarcosine (2 g/day) for the clinical symptoms, as well as the cognitive and global functioning, of chronic schizophrenia patients in a 12-week, double-blind, randomised, placebo-controlled trial. Participants were measured with the Positive and Negative Syndrome Scale and the Global Assessment of Functioning Scale every 3 weeks. Seven cognitive domains, recommended by the Measurement and Treatment Research to Improve Cognition in Schizophrenia Committee, were measured at weeks 0 and 12. Results Adjunctive sarcosine plus benzoate, but not sarcosine alone, improved the cognitive and global functioning of patients with schizophrenia, even when their clinical symptoms had not improved. Conclusions This finding suggests N-methyl-d-aspartate receptor-enhancement therapy can improve the cognitive function of patients with schizophrenia, further indicating this pro-cognitive effect can be primary without improvement in clinical symptoms.

  13. Context-dependent memory following recurrent hypoglycaemia in non-diabetic rats is mediated via glucocorticoid signalling in the dorsal hippocampus.

    Science.gov (United States)

    Osborne, Danielle M; O'Leary, Kelsey E; Fitzgerald, Dennis P; George, Alvin J; Vidal, Michael M; Anderson, Brian M; McNay, Ewan C

    2017-01-01

    Recurrent hypoglycaemia is primarily caused by repeated over-administration of insulin to patients with diabetes. Although cognition is impaired during hypoglycaemia, restoration of euglycaemia after recurrent hypoglycaemia is associated with improved hippocampally mediated memory. Recurrent hypoglycaemia alters glucocorticoid secretion in response to hypoglycaemia; glucocorticoids are well established to regulate hippocampal processes, suggesting a possible mechanism for recurrent hypoglycaemia modulation of subsequent cognition. We tested the hypothesis that glucocorticoids within the dorsal hippocampus might mediate the impact of recurrent hypoglycaemia on hippocampal cognitive processes. We characterised changes in the dorsal hippocampus at several time points to identify specific mechanisms affected by recurrent hypoglycaemia, using a well-validated 3 day model of recurrent hypoglycaemia either alone or with intrahippocampal delivery of glucocorticoid (mifepristone) and mineralocorticoid (spironolactone) receptor antagonists prior to each hypoglycaemic episode. Recurrent hypoglycaemia enhanced learning and also increased hippocampal expression of glucocorticoid receptors, serum/glucocorticoid-regulated kinase 1, cyclic AMP response element binding (CREB) phosphorylation, and plasma membrane levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors. Both hippocampus-dependent memory enhancement and the molecular changes were reversed by glucocorticoid receptor antagonist treatment. These results indicate that increased glucocorticoid signalling during recurrent hypoglycaemia produces several changes in the dorsal hippocampus that are conducive to enhanced hippocampus-dependent contextual learning. These changes appear to be adaptive, and in addition to supporting cognition may reduce damage otherwise caused by repeated exposure to severe hypoglycaemia.

  14. Interaction between the medial prefrontal cortex and hippocampal CA1 area is essential for episodic-like memory in rats.

    Science.gov (United States)

    Chao, Owen Y; Nikolaus, Susanne; Lira Brandão, Marcus; Huston, Joseph P; de Souza Silva, Maria A

    2017-05-01

    The interplay between medial prefrontal cortex (mPFC) and hippocampus, particularly the hippocampal CA3 area, is critical for episodic memory. To what extent the mPFC also interacts with the hippocampus CA1 subregion still requires elucidation. To investigate this issue, male rats received unilateral N-methyl- D -aspartate lesions of the mPFC together with unilateral lesions of the hippocampal CA1 area, either in the same (control) or in the opposite hemispheres (disconnection). They underwent an episodic-like memory test, combining what-where-when information, and separate tests for novel object preference (what), object place preference (where) and temporal order memory (when). Compared to controls, the disconnected mPFC-CA1 rats exhibited disrupted episodic-like memory with an impaired integration of the what-where-when elements. Both groups showed intact memories for what and when, while only the control group showed intact memory for where. These findings suggest that the functional interaction of the mPFC-CA1 circuit is crucial for the processing of episodic memory and, in particular, for the integration of the spatial memory component. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Dysfunctional synapse in Alzheimer's disease - A focus on NMDA receptors.

    Science.gov (United States)

    Mota, Sandra I; Ferreira, Ildete L; Rego, A Cristina

    2014-01-01

    Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Alterations capable of causing brain circuitry dysfunctions in AD may take several years to develop. Oligomeric amyloid-beta peptide (Aβ) plays a complex role in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in this devastating disease. Moreover, N-methyl-D-aspartate (NMDA) receptors (NMDARs) activation has been recently implicated in AD-related synaptic dysfunction. Thus, in this review we focus on glutamatergic neurotransmission impairment and the changes in NMDAR regulation in AD, following the description on the role and location of NMDARs at pre- and post-synaptic sites under physiological conditions. In addition, considering that there is currently no effective ways to cure AD or stop its progression, we further discuss the relevance of NMDARs antagonists to prevent AD symptomatology. This review posits additional information on the role played by Aβ in AD and the importance of targeting the tripartite glutamatergic synapse in early asymptomatic and possible reversible stages of the disease through preventive and/or disease-modifying therapeutic strategies. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The nitric oxide donor sodium nitroprusside attenuates recognition memory deficits and social withdrawal produced by the NMDA receptor antagonist ketamine and induces anxiolytic-like behaviour in rats.

    Science.gov (United States)

    Trevlopoulou, Aikaterini; Touzlatzi, Ntilara; Pitsikas, Nikolaos

    2016-03-01

    Experimental evidence indicates that the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine impairs cognition and can mimic certain aspects of positive and negative symptoms of schizophrenia in rodents. Nitric oxide (NO) is considered as an intracellular messenger in the brain, and its abnormalities have been linked to schizophrenia. The present study was designed to investigate the ability of the NO donor sodium nitroprusside (SNP) to counteract schizophrenia-like behavioural deficits produced by ketamine in rats. The ability of SNP to reverse ketamine-induced memory deficits and social withdrawal were assessed using the novel object recognition task (NORT) and the social interaction test, respectively. Furthermore, since anxiety disorders are noted to occur commonly in schizophrenics, the effects of SNP on anxiety-like behaviour were examined using the light/dark test. Locomotor activity was also assessed as an independent measure of the potential motoric effects of this NO donor. SNP (0.3 and 1 mg/kg) reversed ketamine (3 mg/kg)-induced short-term recognition memory deficits. SNP (1 mg/kg) counteracted the ketamine (8 mg/kg)-induced social isolation in the social interaction test. The anxiolytic-like effects in the light/dark test of SNP (1 mg/kg) cannot be attributed to changes in locomotor activity. Our findings illustrate a functional interaction between the nitrergic and glutamatergic system that may be of relevance for schizophrenia-like behavioural deficits. The data also suggest a role of NO in anxiety.

  17. Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment.

    Science.gov (United States)

    Mouri, Akihiro; Noda, Yukihiro; Enomoto, Takeshi; Nabeshima, Toshitaka

    2007-01-01

    In humans, phencyclidine (PCP), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, reproduces a schizophrenia-like psychosis including positive symptoms, negative symptoms and cognitive dysfunction. Thus, the glutamatergic neuronal dysfunction hypothesis is one of the main explanatory hypotheses and PCP-treated animals have been utilized as an animal model of schizophrenia. The adult rodents treated with PCP repeatedly exhibit hyperlocomotion as an index of positive symptoms, a social behavioral deficit in a social interaction test and enhanced immobility in a forced swimming test as indices of negative symptoms. They also show a sensorimotor gating deficits and cognitive dysfunctions in several learning and memory tests. Some of these behavioral changes endure after withdrawal from repeated PCP treatment. Furthermore, repeated PCP treatment induces some neurochemical and neuroanatomical changes. On the other hand, the exposure to viral or environmental insult in the second trimester of pregnancy increases the probability of subsequently developing schizophrenia as an adult. NMDA receptor has been implicated in controlling the structure and plasticity of developing brain circuitry. Based on neurodevelopment hypothesis of schizophrenia, schizophrenia model rats treated with PCP at the perinatal stage is developed. Perinatal PCP treatment impairs neuronal development and induces long-lasting schizophrenia-like behaviors in adult period. Many findings suggest that these PCP animal models would be useful for evaluating novel therapeutic candidates and for confirming pathological mechanisms of schizophrenia.

  18. Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    2015-01-01

    Full Text Available Endoplasmic reticulum (ER protein sigma-1 receptor represents unique chaperone activity in the central nervous system, and it exerts a potent influence on a number of neurotransmitter systems. Several lines of evidence suggest that activation of sigma-1 receptor plays a role in the pathophysiology of neuropsychiatric diseases, as well as in the mechanisms of some therapeutic drugs and neurosteroids. Preclinical studies showed that some selective serotonin reuptake inhibitors (SSRIs; fluvoxamine, fluoxetine, excitalopram, donepezil, and ifenprodil act as sigma-1 receptor agonists. Furthermore, sigma-1 receptor agonists could improve the N-methyl-D-aspartate (NMDA antagonist phencyclidine (PCP-induced cognitive deficits in mice. A study using positron emission tomography have demonstrated that an oral administration of fluvoxamine or donepezil could bind to sigma-1 receptor in the healthy human brain, suggesting that sigma-1 receptor might be involved in the therapeutic mechanisms of these drugs. Moreover, case reports suggest that sigma-1 receptor agonists, including fluvoxamine, and ifenprodil, may be effective in the treatment of cognitive impairment in schizophrenia, delirium in elderly people, and flashbacks in post-traumatic stress disorder. In this review article, the author would like to discuss the clinical implication of sigma-1 receptor agonists, including endogenous neurosteroids, in the neuropsychiatric diseases.

  19. A randomised trial of the effect of the glycine reuptake inhibitor Org 25935 on cognitive performance in healthy male volunteers.

    Science.gov (United States)

    Christmas, David; Diaper, Alison; Wilson, Sue; Rich, Ann; Phillips, Suzanne; Udo de Haes, Joanna; Sjogren, Magnus; Nutt, David

    2014-03-01

    Cognitive impairment is integral to many neurological illnesses. Specific enhancement of glutamatergic transmission may improve memory and learning. Org 25935 increases the synaptic availability of glycine, an obligate co-agonist with glutamate at N-methyl-D-aspartate receptors. We hypothesised that Org 25935 would acutely improve the learning and memory of healthy volunteers. A randomised, double-blind, parallel-group, single-dose study of Org 25935 and placebo was carried out. Thirty-two healthy male volunteers took either 12-mg Org 25935 or matching placebo and were later assessed with the manikin task, digit span and verbal memory tests. Systematic assessments of cardiovascular and adverse events were also taken. There was no effect of Org 25935 on reaction time, number of correct responses or learning (greater or slower improvement over successive tasks) compared with placebo. Org 25935 caused significantly more dizziness and drowsiness compared with placebo; these side effects were mainly mild. A single dose of Org 25935 does not improve learning or memory in healthy male individuals. However, the drug was well tolerated, and it remains to be seen whether it would have a positive effect on cognition in patient groups with pre-existing cognitive deficits.

  20. Current Research Therapeutic Strategies for Alzheimer’s Disease Treatment

    Directory of Open Access Journals (Sweden)

    Jaume Folch

    2016-01-01

    Full Text Available Alzheimer’s disease (AD currently presents one of the biggest healthcare issues in the developed countries. There is no effective treatment capable of slowing down disease progression. In recent years the main focus of research on novel pharmacotherapies was based on the amyloidogenic hypothesis of AD, which posits that the beta amyloid (Aβ peptide is chiefly responsible for cognitive impairment and neuronal death. The goal of such treatments is (a to reduce Aβ production through the inhibition of β and γ secretase enzymes and (b to promote dissolution of existing cerebral Aβ plaques. However, this approach has proven to be only modestly effective. Recent studies suggest an alternative strategy centred on the inhibition of the downstream Aβ signalling, particularly at the synapse. Aβ oligomers may cause aberrant N-methyl-D-aspartate receptor (NMDAR activation postsynaptically by forming complexes with the cell-surface prion protein (PrPC. PrPC is enriched at the neuronal postsynaptic density, where it interacts with Fyn tyrosine kinase. Fyn activation occurs when Aβ is bound to PrPC-Fyn complex. Fyn causes tyrosine phosphorylation of the NR2B subunit of metabotropic glutamate receptor 5 (mGluR5. Fyn kinase blockers masitinib and saracatinib have proven to be efficacious in treating AD symptoms in experimental mouse models of the disease.

  1. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika

    2013-01-01

    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  2. Bacopa monnieri Extract (CDRI-08 Modulates the NMDA Receptor Subunits and nNOS-Apoptosis Axis in Cerebellum of Hepatic Encephalopathy Rats

    Directory of Open Access Journals (Sweden)

    Papia Mondal

    2015-01-01

    Full Text Available Hepatic encephalopathy (HE, characterized by impaired cerebellar functions during chronic liver failure (CLF, involves N-methyl-D-aspartate receptor (NMDAR overactivation in the brain cells. Bacopa monnieri (BM extract is a known neuroprotectant. The present paper evaluates whether BM extract is able to modulate the two NMDAR subunits (NR2A and NR2B and its downstream mediators in cerebellum of rats with chronic liver failure (CLF, induced by administration of 50 mg/kg bw thioacetamide (TAA i.p. for 14 days, and in the TAA group rats orally treated with 200 mg/kg bw BM extract from days 8 to 14. NR2A is known to impart neuroprotection and that of NR2B induces neuronal death during NMDAR activation. Neuronal nitric oxide synthase- (nNOS- apoptosis pathway is known to mediate NMDAR led excitotoxicity. The level of NR2A was found to be significantly reduced with a concomitant increase of NR2B in cerebellum of the CLF rats. This was consistent with significantly enhanced nNOS expression, nitric oxide level, and reduced Bcl2/Bax ratio. Moreover, treatment with BM extract reversed the NR2A/NR2B ratio and also normalized the levels of nNOS-apoptotic factors in cerebellum of those rats. The findings suggest modulation of NR2A and NR2B expression by BM extract to prevent neurochemical alterations associated with HE.

  3. Effects of Subchronic Treatment with Ibuprofen and Nimesulide on Spatial Memory and NMDAR Subunits Expression in Aged Rats.

    Science.gov (United States)

    Ozturk Bilgin, Ozlem; Kumbul Doguc, Duygu; Altuntas, Irfan; Sutcu, Recep; Delibas, Namık

    2013-01-01

    Several studies point to an important function of cyclooxygenase (COX) and prostaglandin signaling in models of synaptic plasticity which is associated with N-methyl-D-aspartate receptors (NMDARs). Cyclooxygenase gene is suggested to be an immediate early gene that is tightly regulated in neurons by NMDA dependent synaptic activity. Nonsteroid Antiinflammatory Drugs (NSAIDs) exert their antiinflammatory effect by the inhibion of COX have controversial effects on learning and memory. We administered ibuprofen as a non-selective COX-2 inhibitor and nimesulide as a selective COX-2 inhibitor for 8 weeks for determining the cognitive impact of subchronic administration of NSAIDs to aged rats. Wistar albino rats (16 mo, n = 30) were separated into control (n = 10), ibuprofen (n = 10) and nimesulide (n = 10) treated groups. First we evaluated hippocampus-dependent spatial memory in the radial arm maze (RAM) and than we evaluated the expression of the NMDAR subunits, NR2A and NR2B by western blotting to see if their expressions are effected by subchronic administration with these drugs. Ibuprofen and nimesulide treated rats completed the task in a statistically significant shorter time when compared with control group (p RAM. Furthermore, no statistically significant difference was detected for the protein expressions of NR2A and NR2B of the subjects. Oral administration of ibuprofen and nimesulide for 8 weeks showed no impairment but partly improved spatial memory.

  4. Hippocampal NMDA receptors are involved in rats' spontaneous object recognition only under high memory load condition.

    Science.gov (United States)

    Sugita, Manami; Yamada, Kazuo; Iguchi, Natsumi; Ichitani, Yukio

    2015-10-22

    The possible involvement of hippocampal N-methyl-D-aspartate (NMDA) receptors in spontaneous object recognition was investigated in rats under different memory load conditions. We first estimated rats' object memory span using 3-5 objects in "Different Objects Task (DOT)" in order to confirm the highest memory load condition in object recognition memory. Rats were allowed to explore a field in which 3 (3-DOT), 4 (4-DOT), or 5 (5-DOT) different objects were presented. After a delay period, they were placed again in the same field in which one of the sample objects was replaced by another object, and their object exploration behavior was analyzed. Rats could differentiate the novel object from the familiar ones in 3-DOT and 4-DOT but not in 5-DOT, suggesting that rats' object memory span was about 4. Then, we examined the effects of hippocampal AP5 infusion on performance in both 2-DOT (2 different objects were used) and 4-DOT. The drug treatment before the sample phase impaired performance only in 4-DOT. These results suggest that hippocampal NMDA receptors play a critical role in spontaneous object recognition only when the memory load is high. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  6. Histamine ameliorates spatial memory deficits induced by MK-801 infusion into ventral hippocampus as evaluated by radial maze task in rats

    Institute of Scientific and Technical Information of China (English)

    Li-sha XU; Li-xia YANG; Wei-wei HU; Xiao YU; Li MA; Lu-ying LIU; Er-qing WEI; Zhong CHEN

    2005-01-01

    Aim: To investigate the role of histamine in memory deficits induced by MK-801 infusion into the ventral hippocampus in rats. Methods: An 8-arm radial maze (4arms baited) was used to assess spatial memory. Results: Bilateral ventral intrahippocampal (ih) infusion of MK-801 (0.3 μg/site), an N-methyl-D-aspartate (NMDA) antagonist, impaired the retrieval process in both working memory and reference memory. Intrahippocampal injection of histamine (25 or 50 ng/site) or intraperitoneal (ip) injection of histidine (25, 50 or 100 mg/kg) markedly ameliorated the spatial memory deficits induced by MK-801. Both the histamine H1 antagonist pyrilamine (0.5 or 1.0 μg/site, ih) and the H2 antagonist cimetidine (2.5 μg/site,ih) abolished the ameliorating effect of histidine (100 mg/kg, ip) on reference memory deficits, but not that on working memory deficits induced by MK-801. Conclusion:The results indicate that histamine in the ventral hippocampus can ameliorate MK-801-induced spatial memory deficits, and that histamine's effect on reference memory is mediated by postsynaptic histamine H1 and H2 receptors.

  7. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Rationale and design of a randomized double-blind clinical trial in breast cancer: dextromethorphan in chemotherapy-induced peripheral neuropathy.

    Science.gov (United States)

    Martin, Elodie; Morel, Véronique; Joly, Dominique; Villatte, Christine; Delage, Noémie; Dubray, Claude; Pereira, Bruno; Pickering, Gisèle

    2015-03-01

    Anti-cancer chemotherapy often induces peripheral neuropathy and consequent cognitive and quality of life impairment. Guidelines recommend antiepileptics or antidepressants but their efficacy is limited.Dextromethorphan, a N-methyl-D-aspartate receptor antagonist, has shown its efficacy in painful diabetic neuropathy and in post-operative pain but has not been studied in chemotherapy-induced peripheral neuropathy. This clinical trial evaluates the effect of dextromethorphan on pain, cognition and quality of life in patients who suffer from neuropathic pain induced by chemotherapy for breast cancer. It also assesses the impact of dextromethorphan genetic polymorphism on analgesia. This trial is a randomized, placebo-controlled, double-blind clinical study in two parallel groups (NCT02271893). It includes 40 breast cancer patients suffering from chemotherapy-induced peripheral neuropathy. They are randomly allocated to dextromethorphan (maximal dose 90 mg/day) or placebo for 4 weeks. The primary endpoint is pain intensity measured after 4 weeks of treatment on a (0-10) Numeric Pain Rating Scale. Secondary outcomes include assessment of neuropathic pain, cognitive function, anxiety/depression, sleep and quality of life. Data analysis is performed using mixed models and the tests are two-sided, with a type I error set at α=0.05. Considering the poor efficacy of available drugs in chemotherapy-induced neuropathic pain, dextromethorphan may be a valuable therapeutic option. Pharmacogenetics may provide predictive factors of dextromethorphan response in patients suffering from breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Therapies for Prevention and Treatment of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    J. Mendiola-Precoma

    2016-01-01

    Full Text Available Alzheimer’s disease (AD is the most common cause of dementia associated with a progressive neurodegenerative disorder, with a prevalence of 44 million people throughout the world in 2015, and this figure is estimated to double by 2050. This disease is characterized by blood-brain barrier disruption, oxidative stress, mitochondrial impairment, neuroinflammation, and hypometabolism; it is related to amyloid-β peptide accumulation and tau hyperphosphorylation as well as a decrease in acetylcholine levels and a reduction of cerebral blood flow. Obesity is a major risk factor for AD, because it induces adipokine dysregulation, which consists of the release of the proinflammatory adipokines and decreased anti-inflammatory adipokines, among other processes. The pharmacological treatments for AD can be divided into two categories: symptomatic treatments such as acetylcholinesterase inhibitors and N-methyl-D-aspartate (NMDA receptor antagonists and etiology-based treatments such as secretase inhibitors, amyloid binders, and tau therapies. Strategies for prevention of AD through nonpharmacological treatments are associated with lifestyle interventions such as exercise, mental challenges, and socialization as well as caloric restriction and a healthy diet. AD is an important health issue on which all people should be informed so that prevention strategies that minimize the risk of its development may be implemented.

  10. Chronic exposure of mutant DISC1 mice to lead produces sex-dependent abnormalities consistent with schizophrenia and related mental disorders: a gene-environment interaction study.

    Science.gov (United States)

    Abazyan, Bagrat; Dziedzic, Jenifer; Hua, Kegang; Abazyan, Sofya; Yang, Chunxia; Mori, Susumu; Pletnikov, Mikhail V; Guilarte, Tomas R

    2014-05-01

    The glutamatergic hypothesis of schizophrenia suggests that hypoactivity of the N-methyl-D-aspartate receptor (NMDAR) is an important factor in the pathophysiology of schizophrenia and related mental disorders. The environmental neurotoxicant, lead (Pb(2+)), is a potent and selective antagonist of the NMDAR. Recent human studies have suggested an association between prenatal Pb(2+) exposure and the increased likelihood of schizophrenia later in life, possibly via interacting with genetic risk factors. In order to test this hypothesis, we examined the neurobehavioral consequences of interaction between Pb(2+) exposure and mutant disrupted in schizophrenia 1 (mDISC1), a risk factor for major psychiatric disorders. Mutant DISC1 and control mice born by the same dams were raised and maintained on a regular diet or a diet containing moderate levels of Pb(2+). Chronic, lifelong exposure of mDISC1 mice to Pb(2+) was not associated with gross developmental abnormalities but produced sex-dependent hyperactivity, exaggerated responses to the NMDAR antagonist, MK-801, mildly impaired prepulse inhibition of the acoustic startle, and enlarged lateral ventricles. Together, these findings support the hypothesis that environmental toxins could contribute to the pathogenesis of mental disease in susceptible individuals.

  11. A pilot randomized controlled trial of D-cycloserine and distributed practice as adjuvants to constraint-induced movement therapy after stroke.

    Science.gov (United States)

    Nadeau, Stephen E; Davis, Sandra E; Wu, Samuel S; Dai, Yunfeng; Richards, Lorie G

    2014-01-01

    Background. Phase III trials of rehabilitation of paresis after stroke have proven the effectiveness of intensive and extended task practice, but they have also shown that many patients do not qualify, because of severity of impairment, and that many of those who are treated are left with clinically significant deficits. Objective. To test the value of 2 potential adjuvants to normal learning processes engaged in constraint-induced movement therapy (CIMT): greater distribution of treatment over time and the coadministration of d-cycloserine, a competitive agonist at the glycine site of the N-methyl-D-aspartate glutamate receptor. Methods. A prospective randomized single-blind parallel-group trial of more versus less condensed therapy (2 vs 10 weeks) and d-cycloserine (50 mg) each treatment day versus placebo (in a 2 × 2 design), as potential adjuvants to 60 hours of CIMT. Results. Twenty-four participants entered the study, and 22 completed it and were assessed at the completion of treatment and 3 months later. Neither greater distribution of treatment nor treatment with d-cycloserine significantly augmented retention of gains achieved with CIMT. Conclusions. Greater distribution of practice and treatment with d-cycloserine do not appear to augment retention of gains achieved with CIMT. However, concentration of CIMT over 2 weeks ("massed practice") appears to confer no advantage either. © The Author(s) 2014.

  12. [Contributions of neuropsychology to anti-NMDA receptor antibody encephalitis: a literature review].

    Science.gov (United States)

    Luna-Lario, P; Hernaez-Goni, P; Tirapu-Ustarroz, J

    2016-05-01

    Limbic encephalitis generated by anti-N-methyl-D-aspartate (NMDA) receptor antibodies is an acute and severe neurological entity, which is more prevalent in young females and is associated to an underlying tumour. Since it leads to severe cognitive impairment, thought needs to be given to the contributions of neuropsychology to the diagnosis, development and treatment of the disease, which have received little attention from researchers to date. A review is conducted of the prior literature, evaluating the measurement of the cognitive symptoms (predominantly mnemonic and executive) associated to this disease. Valid, reliable neuropsychological instruments are proposed, and it is suggested that neuropsychological measures may be used as parameters to follow up these patients which help monitor their functionality in daily living once they have recovered from the acute phase. Similarly they can become a basis on which to assemble rehabilitation programmes that favour the accomplishment of personal autonomy and the patients' reintegration in the community. Nevertheless, we stress the need to include neuropsychologists and neuropsychiatrists in not only the detection but also the treatment of these patients so as to enable them to recover their personal independence and re-adapt to their natural settings.

  13. Regulation of extinction-related plasticity by opioid receptors in the ventrolateral periaqueductal gray matter

    Directory of Open Access Journals (Sweden)

    Ryan Parsons

    2010-08-01

    Full Text Available Recent work has led to a better understanding of the neural mechanisms underlying the extinction of Pavlovian fear conditioning. Long-term synaptic changes in the medial prefrontal cortex (mPFC are critical for extinction learning, but very little is currently known about how the mPFC and other brain areas interact during extinction. The current study examined the effect of drugs that impair the extinction of fear conditioning on the activation of the extracellular-related kinase/mitogen-activated protein kinase (ERK/MAPK in brain regions that likely participate in the consolidation of extinction learning. Inhibitors of opioid and N-methyl-D-aspartic acid (NMDA receptors were applied to the ventrolateral periaqueductal gray matter (vlPAG and amygdala shortly before extinction training. Results from these experiments show that blocking opioid receptors in the vlPAG prevented the formation of extinction memory, whereas NMDA receptor blockade had no effect. Conversely, blocking NMDA receptors in the amygdala disrupted the formation of fear extinction memory, but opioid receptor blockade in the same brain area did not. Subsequent experiments tested the effect of these drug treatments on the activation of the ERK/MAPK signaling pathway in various brain regions following extinction training. Only opioid receptor blockade in the vlPAG disrupted ERK phosphorylation in the mPFC and amygdala. These data support the idea that opiodergic signaling derived from the vlPAG affects plasticity across the brain circuit responsible for the formation of extinction memory.

  14. N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice.

    Science.gov (United States)

    Lin, Jen-Cheng; Chan, Ming-Huan; Lee, Mei-Yi; Chen, Yi-Chyan; Chen, Hwei-Hsien

    2016-11-03

    Ketamine, a dissociative anesthetic, produces rapid and sustained antidepressant effects at subanesthtic doses. However, it still inevitably induces psychotomimetic side effects. N,N-dimethylglycine (DMG) is a derivative of the amino acid glycine and is used as a dietary supplement. Recently, DMG has been found acting at glycine binding site of the N-methyl-d-aspartate receptor (NMDAR). As blockade of NMDARs is one of the main mechanisms responsible for the action of ketamine on central nervous system, DMG might modulate the behavioral responses to ketamine. The present study determined the effects of DMG on the ketamine-induced psychotomimetic, anesthetic and antidepressant-like effects in mice. DMG pretreatment reversed the ketamine-induced locomotor hyperactivity and impairment in the rotarod performance, novel location and novel object recognition tests, and prepulse inhibition. In addition, DMG alone exhibited antidepressant-like effects in the forced swim test and produced additive effects when combined with ketamine. However, DMG did not affect ketamine-induced anesthesia. These results reveal that DMG could antagonize ketamine's psychotomimetic effects, yet produce additive antidepressant-like effects with ketamine, suggesting that DMG might have antipsychotic potential and be suitable as an add-on therapy to ketamine for patients with treatment-resistant depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Olanzapine Reverses MK-801-Induced Cognitive Deficits and Region-Specific Alterations of NMDA Receptor Subunits

    Science.gov (United States)

    Liu, Xiao; Li, Jitao; Guo, Chunmei; Wang, Hongli; Sun, Yaxin; Wang, Han; Su, Yun-Ai; Li, Keqing; Si, Tianmei

    2018-01-01

    Cognitive dysfunction constitutes an essential component in schizophrenia for its early presence in the pathophysiology of the disease and close relatedness to life quality of patients. To develop effective treatment of cognitive deficits, it is important to understand their neurobiological causes and to identify potential therapeutic targets. In this study, adopting repeated MK-801 treatment as an animal model of schizophrenia, we investigated whether antipsychotic drugs, olanzapine and haloperidol, can reverse MK-801-induced cognitive deficits and how the reversal processes recruited proteins involved in glutamate neurotransmission in rat medial prefrontal cortex (mPFC) and hippocampus. We found that low-dose chronic MK-801 treatment impaired object-in-context recognition memory and reversal learning in the Morris water maze, leaving reference memory relatively unaffected, and that these cognitive deficits can be partially reversed by olanzapine, not haloperidol, treatment. At the molecular level, chronic MK-801 treatment resulted in the reduction of multiple N-methyl-D-aspartate (NMDA) receptor subunits in rat mPFC and olanzapine, not haloperidol, treatment restored the levels of GluN1 and phosphorylated GluN2B in this region. Taken together, MK-801-induced cognitive deficits may be associated with region-specific changes in NMDA receptor subunits and the reversal of specific NMDA receptor subunits may underlie the cognition-enhancing effects of olanzapine. PMID:29375333

  16. Is Farm Management Skill Persistent?

    OpenAIRE

    Li, Xin; Paulson, Nicholas

    2014-01-01

    Farm management skills can affect farm managers' performance. In this article, farm management performance is analyzed based on yearly Illinois Farm Business Farm Management (FBFM) panel data across 6,760 farms from 1996 through 2011. Two out-of-sample measures of skill are used to analyze the ability of farm managers that consistently perform well over yearly and longer time horizons. Persistence tests show management skills are consistent and predictable. Results also suggest that the most ...

  17. Persistent Authentication in Smart Environments

    DEFF Research Database (Denmark)

    Hansen, Mads Syska; Kirschmeyer, Martin; Jensen, Christian D.

    2008-01-01

    present a proof-of-concept implementation of the proposed mechanism, which employs camera based tracking with a single stationary 3D camera that uses the "time of flight" principle. A preliminary evaluation of the proposed mechanism indicates that persistent authentication is technically possible...... with the proposed hardware. The proposed model is sufficiently general to allow the addition of more cameras or supplemental tracking technologies, which will improve the robustness and scalability of the proposed mechanism....

  18. Long memory and changing persistence

    DEFF Research Database (Denmark)

    Kruse, Robinson; Sibbertsen, Philipp

    We study the empirical behaviour of semi-parametric log-periodogram estimation for long memory models when the true process exhibits a change in persistence. Simulation results confirm theoretical arguments which suggest that evidence for long memory is likely to be found. A recently proposed test...... by Sibbertsen and Kruse (2009) is shown to exhibit noticeable power to discriminate between long memory and a structural change in autoregressive parameters....

  19. How persistent is civilization growth?

    OpenAIRE

    Garrett, Timothy J.

    2011-01-01

    In a recent study (Garrett, 2011), I described theoretical arguments and empirical evidence showing how civilization evolution might be considered from a purely physical basis. One implication is that civilization exhibits the property of persistence in its growth. Here, this argument is elaborated further, and specific near-term forecasts are provided for key economic variables and anthropogenic CO2 emission rates at global scales. Absent some external shock, civilization wealth, energy cons...

  20. Congenital hearing impairment

    Energy Technology Data Exchange (ETDEWEB)

    Robson, Caroline D. [Children' s Hospital and Harvard Medical School, Division of Neuroradiology, Department of Radiology, Boston, MA (United States)

    2006-04-15

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  1. Congenital hearing impairment

    International Nuclear Information System (INIS)

    Robson, Caroline D.

    2006-01-01

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  2. Neuronal antibodies in pediatric epilepsy: Clinical features and long-term outcomes of a historical cohort not treated with immunotherapy.

    Science.gov (United States)

    Wright, Sukhvir; Geerts, Ada T; Jol-van der Zijde, Cornelia Maria; Jacobson, Leslie; Lang, Bethan; Waters, Patrick; van Tol, Maarten J D; Stroink, Hans; Neuteboom, Rinze F; Brouwer, Oebele F; Vincent, Angela

    2016-05-01

    In autoimmune encephalitis the etiologic role of neuronal cell-surface antibodies is clear; patients diagnosed and treated early have better outcomes. Neuronal antibodies have also been described in patients with pediatric epilepsy without encephalitis. The aim was to assess whether antibody presence had any effect on long-term outcomes in these patients. Patients (n = 178) were recruited between 1988 and 1992 as part of the prospective Dutch Study of Epilepsy in Childhood; none received immunotherapy. Healthy age-matched bone-marrow donors served as controls (n = 112). All sera were tested for serum N-methyl-d-aspartate receptor (NMDAR), alpha amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, leucine rich glioma inactivated 1, contactin associated protein like 2 (CASPR2), contactin-2, glutamic acid decarboxylase, and voltage gated potassium channel (VGKC)-complex antibodies by standard techniques. No cerebrospinal fluid (CSF) samples were available. Results were correlated with clinical data collected over 15 years. Seventeen patients (9.5%) were positive for VGKC complex (n = 3), NMDAR (n = 7), CASPR2 (n = 4), and contactin-2 (n = 3), compared to three (3/112; 2.6%) healthy controls (VGKC complex [n = 1], NMDAR [n = 2]; p = 0.03; Fisher's exact test). Titers were relatively low (≤1:100 for cell-surface antibodies), but 8 (47%) of the 17 positive samples bound to the surface of live hippocampal neurons consistent with a potential pathogenic antibody. Preexisting cognitive impairment was more frequent in antibody-positive patients (9/17 vs. 33/161; p = 0.01). Fourteen antibody-positive patients were treated with standard antiepileptic drugs (AEDs); three (17%) became intractable but this was not different from the 16 (10%) of 161 antibody-negative patients. In 96 patients with available follow-up samples at 6 and/or 12 months, 6 of 7 positive antibodies had disappeared and, conversely, antibodies had appeared for the first time in a further 7 patients

  3. The role of metabolism in bacterial persistence

    Directory of Open Access Journals (Sweden)

    Stephanie M. Amato

    2014-03-01

    Full Text Available Bacterial persisters are phenotypic variants with extraordinary tolerances toward antibiotics. Persister survival has been attributed to inhibition of essential cell functions during antibiotic stress, followed by reversal of the process and resumption of growth upon removal of the antibiotic. Metabolism plays a critical role in this process, since it participates in the entry, maintenance, and exit from the persister phenotype. Here, we review the experimental evidence that demonstrates the importance of metabolism to persistence, highlight the successes and potential for targeting metabolism in the search for anti-persister therapies, and discuss the current methods and challenges to understand persister physiology.

  4. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering

    OpenAIRE

    Sitek, Kevin R.; Cai, Shanqing; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had st...

  5. Decreased cerebellar-orbitofrontal connectivity correlates with stuttering severity: Whole-brain functional and structural connectivity associations with persistent developmental stuttering

    OpenAIRE

    Kevin Richard Sitek; Kevin Richard Sitek; Shanqing eCai; Shanqing eCai; Deryk Scott Beal; Deryk Scott Beal; Deryk Scott Beal; Deryk Scott Beal; Deryk Scott Beal; Joseph S Perkell; Joseph S Perkell; Frank eGuenther; Satrajit S Ghosh; Satrajit S Ghosh

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here, we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had ...

  6. Impairments to Vision

    Science.gov (United States)

    ... an external Non-Government web site. Impairments to Vision Normal Vision Diabetic Retinopathy Age-related Macular Degeneration In this ... pictures, fixate on the nose to simulate the vision loss. In diabetic retinopathy, the blood vessels in ...

  7. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  8. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level.

    Science.gov (United States)

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-25

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance.

  9. MOOCs and Persistence: Definitions and Predictors

    Science.gov (United States)

    Evans, Brent J.; Baker, Rachel B.

    2016-01-01

    The chapter argues for redefining the term "persistence" as it relates to MOOCs and considers how different measures produce different results in the research; it closes with a review of research on persistence in MOOCs.

  10. Persistence and drug tolerance in pathogenic yeast

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth; Regenberg, Birgitte; Folkesson, Sven Anders

    2017-01-01

    In this review, we briefly summarize the current understanding of how fungal pathogens can persist antifungal treatment without heritable resistance mutations by forming tolerant persister cells. Fungal infections tolerant to antifungal treatment have become a major medical problem. One mechanism...

  11. Mild traumatic brain injury: Impairment and disability assessment caveats.

    Science.gov (United States)

    Zasler, Nathan D; Martelli, Michael F

    2003-01-01

    Mild traumatic brain injury (MTBI) accounts for approximately 80% of all brain injuries, and persistent sequelae can impede physical, emotional, social, marital, vocational, and avocational functioning. Evaluation of impairment and disability following MTBI typically can involve such contexts as social security disability application, personal injury litigation, worker's compensation claims, disability insurance policy application, other health care insurance policy coverage issues, and the determination of vocational and occupational competencies and limitations. MTBI is still poorly understood and impairment and disability assessment in MTBI can present a significant diagnostic challenge. There are currently no ideal systems for rating impairment and disability for MTBI residua. As a result, medicolegal examiners and clinicians must necessarily familiarise themselves with the variety of disability and impairment evaluation protocols and understand their limitations. The current paper reviews recommended procedures and potential obstacles and confounding issues.

  12. Physical trust-based persistent authentication

    DEFF Research Database (Denmark)

    Fujita, Masahiro; Jensen, Christian D.; Arimura, Shiori

    2015-01-01

    propose a new type of persistent authentication, called Persistent Authentication Based On physical Trust (PABOT). PABOT uses a context of “physical trust relationship” that is built by visual contact between users, and thus can offer a persistent authentication mechanism with better usability and higher...

  13. Distributed Persistent Identifiers System Design

    Directory of Open Access Journals (Sweden)

    Pavel Golodoniuc

    2017-06-01

    Full Text Available The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID systems, of which there is a great variety in terms of technical and social implementation, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have, by in large, catered for identifier uniqueness, integrity, and persistence, regardless of the identifier’s application domain. Trustworthiness of these systems has been measured by the criteria first defined by Bütikofer (2009 and further elaborated by Golodoniuc 'et al'. (2016 and Car 'et al'. (2017. Since many PID systems have been largely conceived and developed by a single organisation they faced challenges for widespread adoption and, most importantly, the ability to survive change of technology. We believe that a cause of PID systems that were once successful fading away is the centralisation of support infrastructure – both organisational and computing and data storage systems. In this paper, we propose a PID system design that implements the pillars of a trustworthy system – ensuring identifiers’ independence of any particular technology or organisation, implementation of core PID system functions, separation from data delivery, and enabling the system to adapt for future change. We propose decentralisation at all levels — persistent identifiers and information objects registration, resolution, and data delivery — using Distributed Hash Tables and traditional peer-to-peer networks with information replication and caching mechanisms, thus eliminating the need for a central PID data store. This will increase overall system fault tolerance thus ensuring its trustworthiness. We also discuss important aspects of the distributed system’s governance, such as the notion of the authoritative source and data integrity

  14. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse.

    Science.gov (United States)

    Korpi, Esa R; den Hollander, Bjørnar; Farooq, Usman; Vashchinkina, Elena; Rajkumar, Ramamoorthy; Nutt, David J; Hyytiä, Petri; Dawe, Gavin S

    2015-10-01

    Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Altering attentional control settings causes persistent biases of visual attention.

    Science.gov (United States)

    Knight, Helen C; Smith, Daniel T; Knight, David C; Ellison, Amanda

    2016-01-01

    Attentional control settings have an important role in guiding visual behaviour. Previous work within cognitive psychology has found that the deployment of general attentional control settings can be modulated by training. However, research has not yet established whether long-term modifications of one particular type of attentional control setting can be induced. To address this, we investigated persistent alterations to feature search mode, also known as an attentional bias, towards an arbitrary stimulus in healthy participants. Subjects were biased towards the colour green by an information sheet. Attentional bias was assessed using a change detection task. After an interval of either 1 or 2 weeks, participants were then retested on the same change detection task, tested on a different change detection task where colour was irrelevant, or were biased towards an alternative colour. One experiment included trials in which the distractor stimuli (but never the target stimuli) were green. The key finding was that green stimuli in the second task attracted attention, despite this impairing task performance. Furthermore, inducing a second attentional bias did not override the initial bias toward green objects. The attentional bias also persisted for at least two weeks. It is argued that this persistent attentional bias is mediated by a chronic change to participants' attentional control settings, which is aided by long-term representations involving contextual cueing. We speculate that similar changes to attentional control settings and continuous cueing may relate to attentional biases observed in psychopathologies. Targeting these biases may be a productive approach to treatment.

  16. Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection.

    Science.gov (United States)

    Di Cristina, Manlio; Dou, Zhicheng; Lunghi, Matteo; Kannan, Geetha; Huynh, My-Hang; McGovern, Olivia L; Schultz, Tracey L; Schultz, Aric J; Miller, Alyssa J; Hayes, Beth M; van der Linden, Wouter; Emiliani, Carla; Bogyo, Matthew; Besteiro, Sébastien; Coppens, Isabelle; Carruthers, Vern B

    2017-06-19

    Globally, nearly 2 billion people are infected with the intracellular protozoan Toxoplasma gondii 1 . This persistent infection can cause severe disease in immunocompromised people and is epidemiologically linked to major mental illnesses 2 and cognitive impairment 3 . There are currently no options for curing this infection. The lack of effective therapeutics is due partly to a poor understanding of the essential pathways that maintain long-term infection. Although it is known that Toxoplasma replicates slowly within intracellular cysts demarcated with a cyst wall, precisely how it sustains itself and remodels organelles in this niche is unknown. Here, we identify a key role for proteolysis within the parasite lysosomal organelle (the vacuolar compartment or VAC) in turnover of autophagosomes and persistence during neural infection. We found that disrupting a VAC-localized cysteine protease compromised VAC digestive function and markedly reduced chronic infection. Death of parasites lacking the VAC protease was preceded by accumulation of undigested autophagosomes in the parasite cytoplasm. These findings suggest an unanticipated function for parasite lysosomal degradation in chronic infection, and identify an intrinsic role for autophagy in the T. gondii parasite and its close relatives. This work also identifies a key element of Toxoplasma persistence and suggests that VAC proteolysis is a prospective target for pharmacological development.

  17. New-found fundamentals of bacterial persistence.

    Science.gov (United States)

    Kint, Cyrielle I; Verstraeten, Natalie; Fauvart, Maarten; Michiels, Jan

    2012-12-01

    Persister cells display tolerance to high doses of bactericidal antibiotics and typically comprise a small fraction of a bacterial population. Recently, evidence was provided for a causal link between therapy failure and the presence of persister cells in chronic infections, underscoring the need for research on bacterial persistence. A series of recent breakthroughs have shed light on the multiplicity of persister genes, the contribution of gene expression noise to persister formation, the importance of active responses to antibiotic tolerance and heterogeneity among persister cells. Moreover, the development of in vivo model systems has highlighted the clinical relevance of persistence. This review discusses these recent advances and how this knowledge fundamentally changes the way in which we will perceive the problem of antibiotic tolerance in years to come. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    N.V. Vakhnina

    2014-01-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  19. Lithium and Renal Impairment

    DEFF Research Database (Denmark)

    Nielsen, René Ernst; Kessing, Lars Vedel; Nolen, Willem A

    2018-01-01

    INTRODUCTION: Lithium is established as an effective treatment of mania, of depression in bipolar and unipolar disorder, and in maintenance treatment of these disorders. However, due to the necessity of monitoring and concerns about irreversible adverse effects, in particular renal impairment......, after long-term use, lithium might be underutilized. METHODS: This study reviewed 6 large observational studies addressing the risk of impaired renal function associated with lithium treatment and methodological issues impacting interpretation of results. RESULTS: An increased risk of renal impairment...... associated with lithium treatment is suggested. This increased risk may, at least partly, be a result of surveillance bias. Additionally, the earliest studies pointed toward an increased risk of end-stage renal disease associated with lithium treatment, whereas the later and methodologically most sound...

  20. Social communication impairments: pragmatics.

    Science.gov (United States)

    Russell, Robert L

    2007-06-01

    Social communication or pragmatic impairments are characterized and illustrated as involving inappropriate or ineffective use of language and gesture in social contexts. Three clinical vignettes illustrate different pragmatic impairments and the wealth of diagnostic information that can be garnered from observation of a child's social communication behavior. Definitions of, and developmental milestones in, domains of pragmatic competence are provided. Several screening instruments are suggested for use in assessing pragmatic competence within the time-frame of a pediatric examination. Frequent comorbid psychiatric conditions are described and a sample of current neurobiologic research is briefly summarized.

  1. Influence of pharmacological manipulations of NMDA and cholinergic receptors on working versus reference memory in a dual component odor span task.

    Science.gov (United States)

    MacQueen, David A; Dalrymple, Savannah R; Drobes, David J; Diamond, David M

    2016-06-01

    Developed as a tool to assess working memory capacity in rodents, the odor span task (OST) has significant potential to advance drug discovery in animal models of psychiatric disorders. Prior investigations indicate OST performance is impaired by systemic administration of N-methyl-d-aspartate receptor (NMDA-r) antagonists and is sensitive to cholinergic manipulations. The present study sought to determine whether an impairment in OST performance can be produced by systemic administration of the competitive NMDA-r antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP; 3, 10, 17 mg/kg i.p.) in a unique dual-component variant of the OST, and whether this impairment is ameliorated by nicotine (0.75 mg/kg i.p.). Male Sprague-Dawley rats were trained to asymptotic level of performance on a 24-trial two-comparison incrementing nonmatching to sample OST. In addition, rats were administered a two-comparison olfactory reference memory (RM) task, which was integrated into the OST. The RM task provided an assessment of the effects of drug administration on global behavioral measures, long-term memory and motivation. Several measures of working memory (span, longest run, and accuracy) were dose dependently impaired by CPP without adversely affecting RM. Analysis of drug effects across trial blocks demonstrated a significant impairment of performance even at low memory loads, suggesting a CPP-induced deficit of olfactory short-term memory that is not load-dependent. Although nicotine did not ameliorate CPP-induced impairments in span or accuracy, it did block the impairment in longest run produced by the 10 mg/kg dose of CPP. Overall, our results indicate that performance in our 24 odor two-comparison OST is capacity dependent and that CPP impaired OST working, but not reference, memory. © 2016 MacQueen et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Persistent cough in an adolescent.

    Science.gov (United States)

    Stein, M T; Harper, G; Chen, J

    1999-12-01

    Jessica, a 14-year-old girl with a history of asthma, went to her pediatrician's office because of a persistent cough. She had been coughing for at least 3 months with occasional cough-free periods of less than a few days. The cough was nonproductive and was not accompanied by fever, rhinorrhea, or facial or chest pain. Jessica and her mother observed that the cough increased with exercise and typically was not present during sleep. She has used two metered-dose inhalers--albuterol and cromolyn--without any change in the cough pattern. For the past 5 years, Jessica has had mild asthma responsive to albuterol. She enjoys running on the cross-country team, soccer, and dancing. She is an average student and denies any change in academic performance. She has never been hospitalized or had an emergency department visit for asthma or pneumonia. There has been no recent travel or exposure to a person with a chronic productive cough, tobacco smoke, or a live-in pet. Jessica lives with her mother and younger sister in a 10-year-old, carpeted apartment without any evidence of mold or recent renovation. In the process of taking the history, the pediatrician noticed that Jessica coughed intermittently, with two or three coughs during each episode. At times, the cough was harsh; at other times, it was a quiet cough, as if she were clearing her throat. She was cooperative, without overt anxiety or respiratory distress. After a complete physical examination with normal findings, the pediatrician interviewed Jessica and her mother alone. Jessica's parents had been divorced for the past 6 years. She lived with her mother but visited her father, and his new family with two young children, every weekend. She spoke about this arrangement comfortably and said that she loved her father and mother but didn't like the tension she experienced at her father's home. "I don't like adults arguing when kids are around." When asked why she thought the cough persisted so long, she commented in a

  3. Persistent homology and string vacua

    Energy Technology Data Exchange (ETDEWEB)

    Cirafici, Michele [Center for Mathematical Analysis, Geometry and Dynamical Systems,Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Institut des Hautes Études Scientifiques,Le Bois-Marie, 35 route de Chartres, F-91440 Bures-sur-Yvette (France)

    2016-03-08

    We use methods from topological data analysis to study the topological features of certain distributions of string vacua. Topological data analysis is a multi-scale approach used to analyze the topological features of a dataset by identifying which homological characteristics persist over a long range of scales. We apply these techniques in several contexts. We analyze N=2 vacua by focusing on certain distributions of Calabi-Yau varieties and Landau-Ginzburg models. We then turn to flux compactifications and discuss how we can use topological data analysis to extract physical information. Finally we apply these techniques to certain phenomenologically realistic heterotic models. We discuss the possibility of characterizing string vacua using the topological properties of their distributions.

  4. Coping with persistent environmental problems

    DEFF Research Database (Denmark)

    Varjopuro, Riku; Andrulewicz, Eugeniusz; Brandt, Urs Steiner

    2014-01-01

    to a decision to taking action and several years further for actual implementation. Ecosystem responses to measures illustrate that feedback can keep the ecosystem in a certain state and cause a delay in ecosystem response. These delays can operate on decadal scales. Our aim in this paper...... involved in the implementation are keys to improve understanding of the systemic delays. The improved understanding is necessary for the adaptive management of a persistent environmental problem. In addition to the state of the environment, the monitoring and analysis should be targeted also......; (2) implementation delay: the time from the launch of a policy to the actual implementation; (3) ecosystem delay: the time difference between the implementation and an actual measurable effects. A policy process is one characterized by delays. It may take years from problem identification...

  5. Bilateral persistent hyperplastic primary vitreous

    Directory of Open Access Journals (Sweden)

    Jain Tarun

    2009-01-01

    Full Text Available A case of bilateral persistent hyperplastic primary vitreous (PHPV in a 3-month-old male infant, who had bilateral leukokoria, is presented. The child was referred for imaging with a clinical suspicion of retinoblastoma. Gray-scale ultrasound evaluation revealed an echogenic band in the posterior segment of both globes, extending from the posterior surface of the lens capsule to the optic disc. Doppler examination revealed the presence of arterial flow in the band in both globes. Associated echogenic hemorrhage was also seen, which was confirmed by computed tomography. Most cases of PHPV are sporadic and unilateral, and bilateral PHPV is rare. The imaging features in this case suggest the diagnosis of bilateral PHPV and differentiate it from retinoblastoma. This entity, although infrequent, should be considered in the differential diagnosis while evaluating bilateral leukokoria.

  6. Persistence of antimuscarinic drug use

    DEFF Research Database (Denmark)

    Brostrøm, Søren; Hallas, Jesper

    2009-01-01

    PURPOSE: Evidence suggests antimuscarinic drugs for the overactive-bladder syndrome only confer modest improvements in quality of life. We wanted to describe the persistence of therapy, including an extended analysis beyond the 1-year follow-up employed in other studies. METHODS: All prescriptions...... for drugs in ATC category G04BD were retrieved for the period 1999-2006 from a regional database with complete capture of all reimbursed prescriptions. Kaplan-Meyer curves were generated for duration of treatment for each substance and analyzed for determinants of termination. RESULTS: With the exception...... of trospium chloride, all drugs had continuation rates of less than 50% at 6 months, less than 25% at 1 year, and less than 10% at 2 years and longer. Trospium chloride, however, exhibited continuation rates of 46% at 6 months, 36% at 1 year, 22% at 2 years, and 16% at 3 years. CONCLUSIONS: In a setting...

  7. Dematerialization: Variety, caution, and persistence.

    Science.gov (United States)

    Ausubel, Jesse H; Waggoner, Paul E

    2008-09-02

    Dematerialization, represented by declining consumption per GDP of energy or of goods, offers some hope for rising environmental quality with development. The declining proportion of income spent on staples as affluence grows, which income elasticity <1.0 measures, makes dematerialization widespread. Further, as learning improves efficiency of resource use, the intensity of environmental impact per production of staples often declines. We observe that combinations of low income elasticity for staples and of learning by producers cause a variety of dematerializations and declining intensities of impact, from energy use and carbon emission to food consumption and fertilizer use, globally and in countries ranging from the United States and France to China, India, Brazil, and Indonesia. Because dematerialization and intensity of impact are ratios of parameters that may be variously defined and are sometimes difficult to estimate, their fluctuations must be interpreted cautiously. Nevertheless, substantial declining intensity of impact, and especially, dematerialization persisted between 1980 and 2006.

  8. Life Span Studies of ADHD—Conceptual Challenges and Predictors of Persistence and Outcome

    Science.gov (United States)

    Caye, Arthur; Swanson, James; Thapar, Anita; Sibley, Margaret; Arseneault, Louise; Hechtman, Lily; Arnold, L. Eugene; Niclasen, Janni; Moffitt, Terrie

    2018-01-01

    There is a renewed interest in better conceptualizing trajectories of attention-deficit/hyperactivity disorder (ADHD) from childhood to adulthood, driven by an increased recognition of long-term impairment and potential persistence beyond childhood and adolescence. This review addresses the following major issues relevant to the course of ADHD in light of current evidence from longitudinal studies: (1) conceptual and methodological issues related to measurement of persistence of ADHD, (2) estimates of persistence rate from childhood to adulthood and its predictors, (3) long-term negative outcomes of childhood ADHD and their early predictors, and (4) the recently proposed new adult-onset ADHD. Estimates of persistence vary widely in the literature, and diagnostic criteria, sample characteristics, and information source are the most important factors explaining variability among studies. Evidence indicates that ADHD severity, comorbid conduct disorder and major depressive disorder, and treatment for ADHD are the main predictors of ADHD persistence from childhood to adulthood. Comorbid conduct disorder and ADHD severity in childhood are the most important predictors of adverse outcomes in adulthood among children with ADHD. Three recent population studies suggested the existence of a significant proportion of individuals who report onset of ADHD symptoms and impairments after childhood. Finally, we highlight areas for improvement to increase our understanding of ADHD across the life span. PMID:27783340

  9. Treatment of persistent knee synovitis with Yttrium 90

    International Nuclear Information System (INIS)

    Bouyoucef, S.E.

    2007-01-01

    Full text: Management of persistent knee synovitis includes both systemic and local articular treatment relevant to specific etiology. Local treatment may involve attempts to control inflammation and pain in knee joints by intra articular application of analgesics or glucocorticoids. However, in many patients these fail to reduce significantly the synovitis phenomenon and moreover they may lead to severe side effects. Radiosynoviorthesis with Y90 has been in use for many years in several joint pathologies. Indications of Radiosynoviorthesis include various inflammatory and degenerative diseases and its use should be envisaged when other conservative methods have failed like intra articular injections of long acting corticosteroids. Persistent knee synovitis is defined by the presence of hydrops in the joint or functional impairment with warmth, pain and local signs and symptoms requiring intra articular injection of glucocorticoids. In this study, 151 knees with persistent knee synovitis have been treated with Y 90 and have had all a minimum of one year follow up. Many parameters have been identified to measure efficiency of the RSO including pain, hydarthrosis, mobility, as well as global perception of the patients. Excellent and good responses have been appreciated through pain at rest, pain at stress, volume of effusion, and articular mobility. Results showed that percentage of excellent and good response is superior to 80% at three and six months. Success of Y 90 appears to be higher for rheumatoid arthritis as well as for oligoarthritis. Whatever the etiology, intensity of the inflammatory process appears one the major parameters which could better predict the outcomes of yttrium 90 in persistent knee synovitis. (author)

  10. Medications and impaired driving.

    Science.gov (United States)

    Hetland, Amanda; Carr, David B

    2014-04-01

    To describe the association of specific medication classes with driving outcomes and provide clinical recommendations. The MEDLINE and EMBASE databases were searched for articles published from January 1973 to June 2013 on classes of medications associated with driving impairment. The search included outcome terms such as automobile driving, motor vehicle crash, driving simulator, and road tests. Only English-language articles that contained findings from observational or interventional designs with ≥ 10 participants were included in this review. Cross-sectional studies, case series, and case reports were excluded. Driving is an important task and activity for the majority of adults. Some commonly prescribed medications have been associated with driving impairment measured by road performance, driving simulation, and/or motor vehicle crashes. This review of 30 studies identified findings with barbiturates, benzodiazepines, hypnotics, antidepressants, opioid and nonsteroidal analgesics, anticonvulsants, antipsychotics, antiparkinsonian agents, skeletal muscle relaxants, antihistamines, anticholinergic medications, and hypoglycemic agents. Additional studies of medication impact on sedation, sleep latency, and psychomotor function, as well as the role of alcohol, are also discussed. Psychotropic agents and those with central nervous system side effects were associated with measures of impaired driving performance. It is difficult to determine if such associations are actually a result of medication use or the medical diagnosis itself. Regardless, clinicians should be aware of the increased risk of impaired driving with specific classes of medications, educate their patients, and/or consider safer alternatives.

  11. Persistence of stapedial artery: a case report

    International Nuclear Information System (INIS)

    Carvalho, Bruna Vilaca de; Gaiotti, Juliana Oggioni; Diniz, Renata Lopes Furletti Caldeira; Ribeiro, Marcelo Almeida; Motta, Emilia Guerra Pinto Coelho; Moreira, Wanderval

    2013-01-01

    Persistent stapedial artery is a rare congenital anomaly that occurs by a failure in the involution of such artery. Most patients with persistent stapedial artery are asymptomatic. The imaging diagnosis is made principally by means of multidetector computed tomography. In the present case, persistent stapedial artery was an incidental computed tomography finding. The authors discuss the embryogenesis, computed tomography findings and the importance of an early diagnosis of such anomaly. (author)

  12. Dualities in persistent (co)homology

    International Nuclear Information System (INIS)

    De Silva, Vin; Morozov, Dmitriy; Vejdemo-Johansson, Mikael

    2011-01-01

    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establish algebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existing algorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. We present experimental evidence for the practical efficiency of the latter algorithm

  13. Grammatical Impairments in PPA.

    Science.gov (United States)

    Thompson, Cynthia K; Mack, Jennifer E

    2014-09-01

    Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real-time processes underlying grammatical impairments in

  14. Translating Romans: some persistent headaches

    Directory of Open Access Journals (Sweden)

    A.B. du Toit

    2010-07-01

    Full Text Available Translating Romans: some persistent headaches Gone are the days when it was axiomatic that expertise in biblical languages automatically qualified one as a Bible translator. In 1949, Ronald Knox, who for nine years conscientiously struggled with translating the Bible for his generation, published a booklet under the title The trials of a translator. At that stage Bible translation as the subject of scientific study was still in its infancy. Since then, research into the intricacies of communicating the biblical message in an authentic but understandable manner, has made significant progress (cf. Roberts, 2009. However, the frustrations of Bible translators, first of all to really understand what the biblical authors wanted to convey to their original addressees, and then to commu-nicate that message to their own targeted readers in a meaningful way, have not disappeared. In fact, the challenge to meet the vary-ing requirements of the multiple kinds of translation that are present-ly in vogue, has only increased.

  15. Energy savings: persuasion and persistence

    Energy Technology Data Exchange (ETDEWEB)

    Eijadi, David; McDougall, Tom; Leaf, Kris; Douglas, Jim; Steinbock, Jason; Reimer, Paul [The Weidt Group, Minnetonka, MN (United States); Gauthier, Julia [Xcel Energy, Minneapolis, MN (United States); Wild, Doug; Richards McDaniel, Stephanie [BWBR Architects, Inc., Saint Paul, MN (United States)

    2005-07-01

    In this study, the architects, sponsoring utility and energy simulation specialist joined together to investigate the persistence of energy savings in three completed projects: a college library; a municipal transportation facility; and a hospital. The primary question being 'How well did the design decisions made with the help of simulation analysis translate into building operations over several years?' Design simulation and metered performance data are compared for specific energy-saving strategies. The paper provides a brief overview of the basis of selection of the three projects, the energy design assistance methods employed and the decisions made, along with their savings expectations. For each case, design characteristics, modelling assumptions, selected strategies and actual metered performance are outlined. We find evidence of appropriate levels of energy conservation, but they are not the absolute values predicted. In each case, the discrepancies between modelling assumptions and final construction or operating procedures are identified, examined and rectified. The paper illustrates that while owners are saving energy, they are not always getting the full savings potential for what they install. The paper concludes with a re-examination of the overall process. It evaluates the potential for additional savings of individual technologies and related larger utility incentives to design teams and building owners.

  16. Teenage outcomes after speech and language impairment at preschool age.

    Science.gov (United States)

    Ek, Ulla; Norrelgen, Fritjof; Westerlund, Joakim; Dahlman, Andrea; Hultby, Elizabeth; Fernell, Elisabeth

    2012-01-01

    Ten years ago, we published developmental data on a representative group of children (n = 25) with moderate or severe speech and language impairment, who were attending special preschools for children. The aim of this study was to perform a follow-up of these children as teenagers. Parents of 23 teenagers participated in a clinical interview that requested information on the child's current academic achievement, type of school, previous clinical assessments, and developmental diagnoses. Fifteen children participated in a speech and language evaluation, and 13 participated in a psychological evaluation. Seven of the 23 teenagers had a mild intellectual disability, and another three had borderline intellectual functioning. Nine had symptoms of disorders on the autism spectrum; five of these had an autism spectrum disorder, and four had clear autistic traits. Six met criteria for attention-deficit hyperactivity disorder (ADHD)/subthreshold ADHD. Thirteen of 15 teenagers had a moderate or severe language impairment, and 13 of 15 had a moderate or severe reading impairment. Overlapping disorders were frequent. None of the individuals who underwent the clinical evaluation were free from developmental problems. A large number of children with speech and language impairment at preschool age had persistent language problems and/or met the criteria for developmental diagnoses other than speech and language impairment at their follow-up as teenagers. Language impairment in young children is a marker for several developmental disorders, particularly intellectual disability and autism spectrum disorder.

  17. Working with impairments

    OpenAIRE

    Maroesjka Versantvoort; Patricia van Echtelt

    2012-01-01

    Original title: Belemmerd aan het werk The Netherlands was long known as a country with high sickness absenteeism rates and a burgeoning group of people who were unfit for work. In response to this, many policy measures have been introduced in recent decades which attempt to limit the benefit volume and foster the reintegration of people with health impairments. What is the position of the Netherlands today in this regard? The main trends in sickness absenteeism, degree of incapacity for work...

  18. Peripheral auditory processing and speech reception in impaired hearing

    DEFF Research Database (Denmark)

    Strelcyk, Olaf

    One of the most common complaints of people with impaired hearing concerns their difficulty with understanding speech. Particularly in the presence of background noise, hearing-impaired people often encounter great difficulties with speech communication. In most cases, the problem persists even...... if reduced audibility has been compensated for by hearing aids. It has been hypothesized that part of the difficulty arises from changes in the perception of sounds that are well above hearing threshold, such as reduced frequency selectivity and deficits in the processing of temporal fine structure (TFS......) at the output of the inner-ear (cochlear) filters. The purpose of this work was to investigate these aspects in detail. One chapter studies relations between frequency selectivity, TFS processing, and speech reception in listeners with normal and impaired hearing, using behavioral listening experiments. While...

  19. Cognitive Impairment in Bipolar Disorder: Treatment and Prevention Strategies.

    Science.gov (United States)

    Solé, Brisa; Jiménez, Esther; Torrent, Carla; Reinares, Maria; Bonnin, Caterina Del Mar; Torres, Imma; Varo, Cristina; Grande, Iria; Valls, Elia; Salagre, Estela; Sanchez-Moreno, Jose; Martinez-Aran, Anabel; Carvalho, André F; Vieta, Eduard

    2017-08-01

    Over the last decade, there has been a growing appreciation of the importance of identifying and treating cognitive impairment associated with bipolar disorder, since it persists in remission periods. Evidence indicates that neurocognitive dysfunction may significantly influence patients' psychosocial outcomes. An ever-increasing body of research seeks to achieve a better understanding of potential moderators contributing to cognitive impairment in bipolar disorder in order to develop prevention strategies and effective treatments. This review provides an overview of the available data from studies examining treatments for cognitive dysfunct