WorldWideScience

Sample records for persistent progressive memory

  1. Role of Prefrontal Persistent Activity in Working Memory

    Science.gov (United States)

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between

  2. Long memory and changing persistence

    DEFF Research Database (Denmark)

    Kruse, Robinson; Sibbertsen, Philipp

    We study the empirical behaviour of semi-parametric log-periodogram estimation for long memory models when the true process exhibits a change in persistence. Simulation results confirm theoretical arguments which suggest that evidence for long memory is likely to be found. A recently proposed test...... by Sibbertsen and Kruse (2009) is shown to exhibit noticeable power to discriminate between long memory and a structural change in autoregressive parameters....

  3. Persistent increased PKMζ in long-term and remote spatial memory.

    Science.gov (United States)

    Hsieh, Changchi; Tsokas, Panayiotis; Serrano, Peter; Hernández, A Iván; Tian, Dezhi; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2017-02-01

    PKMζ is an autonomously active PKC isoform that is thought to maintain both LTP and long-term memory. Whereas persistent increases in PKMζ protein sustain the kinase's action in LTP, the molecular mechanism for the persistent action of PKMζ during long-term memory has not been characterized. PKMζ inhibitors disrupt spatial memory when introduced into the dorsal hippocampus from 1day to 1month after training. Therefore, if the mechanisms of PKMζ's persistent action in LTP maintenance and long-term memory were similar, persistent increases in PKMζ would last for the duration of the memory, far longer than most other learning-induced gene products. Here we find that spatial conditioning by aversive active place avoidance or appetitive radial arm maze induces PKMζ increases in dorsal hippocampus that persist from 1day to 1month, coinciding with the strength and duration of memory retention. Suppressing the increase by intrahippocampal injections of PKMζ-antisense oligodeoxynucleotides prevents the formation of long-term memory. Thus, similar to LTP maintenance, the persistent increase in the amount of autonomously active PKMζ sustains the kinase's action during long-term and remote spatial memory maintenance. Copyright © 2016. Published by Elsevier Inc.

  4. Long - Memory Persistence in African Stock Markets

    Directory of Open Access Journals (Sweden)

    Emmanuel Numapau Gyamfi

    2016-05-01

    Full Text Available Emerging stock markets are said to become efficient with time. This study seeks to investigate this assertion by analyzing long - memory persistence in 8 African stock markets covering the period from 28 August 2000 to 28 August 2015. The Hurst exponent is used as our efficiency measure which is evaluated by the Detrended Fluctuation Analysis (DFA. Our findings show strong evidence of long - memory persistence in the markets studied therefore violating the weak - form Efficient Market Hypothesis (EMH.

  5. The role of rewarding and novel events in facilitating memory persistence in a separate spatial memory task

    Science.gov (United States)

    Salvetti, Beatrice; Morris, Richard G.M.; Wang, Szu-Han

    2014-01-01

    Many insignificant events in our daily life are forgotten quickly but can be remembered for longer when other memory-modulating events occur before or after them. This phenomenon has been investigated in animal models in a protocol in which weak memories persist longer if exploration in a novel context is introduced around the time of memory encoding. This study aims to understand whether other types of rewarding or novel tasks, such as rewarded learning in a T-maze and novel object recognition, can also be effective memory-modulating events. Rats were trained in a delayed matching-to-place task to encode and retrieve food locations in an event arena. Weak encoding with only one food pellet at the sample location induced memory encoding but forgetting over 24 h. When this same weak encoding was followed by a rewarded task in a T-maze, the memory persisted for 24 h. Moreover, the same persistence of memory over 24 h could be achieved by exploration in a novel box or by a rewarded T-maze task after a “non-rewarded” weak encoding. When the one-pellet weak encoding was followed by novel object exploration, the memory did not persist at 24 h. Together, the results confirm that place encoding is possible without explicit reward, and that rewarded learning in a separate task lacking novelty can be an effective memory-modulating event. The behavioral and neurobiological implications are discussed. PMID:24429424

  6. Forecasting long memory time series under a break in persistence

    DEFF Research Database (Denmark)

    Heinen, Florian; Sibbertsen, Philipp; Kruse, Robinson

    We consider the problem of forecasting time series with long memory when the memory parameter is subject to a structural break. By means of a large-scale Monte Carlo study we show that ignoring such a change in persistence leads to substantially reduced forecasting precision. The strength...... of this effect depends on whether the memory parameter is increasing or decreasing over time. A comparison of six forecasting strategies allows us to conclude that pre-testing for a change in persistence is highly recommendable in our setting. In addition we provide an empirical example which underlines...

  7. Post-Retrieval Late Process Contributes to Persistence of Reactivated Fear Memory

    Science.gov (United States)

    Nakayama, Daisuke; Yamasaki, Yoshiko; Matsuki, Norio; Nomura, Hiroshi

    2013-01-01

    Several studies have demonstrated the mechanisms involved in memory persistence after learning. However, little is known about memory persistence after retrieval. In this study, a protein synthesis inhibitor, anisomycin, was infused into the basolateral amygdala of mice 9.5 h after retrieval of contextual conditioned fear. Anisomycin attenuated…

  8. Fundamental bound on the persistence and capacity of short-term memory stored as graded persistent activity.

    Science.gov (United States)

    Koyluoglu, Onur Ozan; Pertzov, Yoni; Manohar, Sanjay; Husain, Masud; Fiete, Ila R

    2017-09-07

    It is widely believed that persistent neural activity underlies short-term memory. Yet, as we show, the degradation of information stored directly in such networks behaves differently from human short-term memory performance. We build a more general framework where memory is viewed as a problem of passing information through noisy channels whose degradation characteristics resemble those of persistent activity networks. If the brain first encoded the information appropriately before passing the information into such networks, the information can be stored substantially more faithfully. Within this framework, we derive a fundamental lower-bound on recall precision, which declines with storage duration and number of stored items. We show that human performance, though inconsistent with models involving direct (uncoded) storage in persistent activity networks, can be well-fit by the theoretical bound. This finding is consistent with the view that if the brain stores information in patterns of persistent activity, it might use codes that minimize the effects of noise, motivating the search for such codes in the brain.

  9. The differential role of cortical protein synthesis in taste memory formation and persistence

    Science.gov (United States)

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-05-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n⩾5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P=8.9E-5), but had no effect on LTM persistence when infused 3 days post acquisition (P=0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P=0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-D-aspartate receptor antagonist (P=0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

  10. Stress within a Restricted Time Window Selectively Affects the Persistence of Long-Term Memory

    Science.gov (United States)

    Fang, Qin; Chai, Ning; Zhao, Li-Yan; Xue, Yan-Xue; Luo, Yi-Xiao; Jian, Min; Han, Ying; Shi, Hai-Shui; Lu, Lin; Wu, Ping; Wang, Ji-Shi

    2013-01-01

    The effects of stress on emotional memory are distinct and depend on the stages of memory. Memory undergoes consolidation and reconsolidation after acquisition and retrieval, respectively. Stress facilitates the consolidation but disrupts the reconsolidation of emotional memory. Previous research on the effects of stress on memory have focused on long-term memory (LTM) formation (tested 24 h later), but the effects of stress on the persistence of LTM (tested at least 1 week later) are unclear. Recent findings indicated that the persistence of LTM requires late-phase protein synthesis in the dorsal hippocampus. The present study investigated the effect of stress (i.e., cold water stress) during the late phase after the acquisition and retrieval of contextual fear memory in rats. We found that stress and corticosterone administration during the late phase (12 h) after acquisition, referred to as late consolidation, selectively enhanced the persistence of LTM, whereas stress during the late phase (12 h) after retrieval, referred to as late reconsolidation, selectively disrupted the restabilized persistence of LTM. Moreover, the effects of stress on the persistence of LTM were blocked by the corticosterone synthesis inhibitor metyrapone, which was administered before stress, suggesting that the glucocorticoid system is involved in the effects of stress on the persistence of LTM. We conclude that stress within a restricted time window after acquisition or retrieval selectively affects the persistence of LTM and depends on the glucocorticoid system. PMID:23544051

  11. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila

    Science.gov (United States)

    Zhao, Xiaoliang; Lenek, Daniela; Dag, Ugur; Dickson, Barry J

    2018-01-01

    Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MBγ>M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory. PMID:29322941

  12. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila.

    Science.gov (United States)

    Zhao, Xiaoliang; Lenek, Daniela; Dag, Ugur; Dickson, Barry J; Keleman, Krystyna

    2018-01-11

    Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MB γ >M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory. © 2018, Zhao et al.

  13. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    Science.gov (United States)

    Gonzalez, María C.; Kramar, Cecilia P.; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H.

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318

  14. Effects of the swimming exercise on the consolidation and persistence of auditory and contextual fear memory.

    Science.gov (United States)

    Faria, Rodolfo Souza; Gutierres, Luís Felipe Soares; Sobrinho, Fernando César Faria; Miranda, Iris do Vale; Reis, Júlia Dos; Dias, Elayne Vieira; Sartori, Cesar Renato; Moreira, Dalmo Antonio Ribeiro

    2016-08-15

    Exposure to negative environmental events triggers defensive behavior and leads to the formation of aversive associative memory. Cellular and molecular changes in the central nervous system underlie this memory formation, as well as the associated behavioral changes. In general, memory process is established in distinct phases such as acquisition, consolidation, evocation, persistence, and extinction of the acquired information. After exposure to a particular event, early changes in involved neural circuits support the memory consolidation, which corresponds to the short-term memory. Re-exposure to previously memorized events evokes the original memory, a process that is considered essential for the reactivation and consequent persistence of memory, ensuring that long-term memory is established. Different environmental stimuli may modulate the memory formation process, as well as their distinct phases. Among the different environmental stimuli able of modulating memory formation is the physical exercise which is a potent modulator of neuronal activity. There are many studies showing that physical exercise modulates learning and memory processes, mainly in the consolidation phase of the explicit memory. However, there are few reports in the literature regarding the role of physical exercise in implicit aversive associative memory, especially at the persistence phase. Thus, the present study aimed to investigate the relationship between swimming exercise and the consolidation and persistence of contextual and auditory-cued fear memory. Male Wistar rats were submitted to sessions of swimming exercise five times a week, over six weeks. After that, the rats were submitted to classical aversive conditioning training by a pairing tone/foot shock paradigm. Finally, rats were evaluated for consolidation and persistence of fear memory to both auditory and contextual cues. Our results demonstrate that classical aversive conditioning with tone/foot shock pairing induced

  15. Emotional memory can be persistently weakened by suppressing cortisol during retrieval.

    Science.gov (United States)

    Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2015-03-01

    Cortisol's effects on memory follow an inverted U-shaped function such that memory retrieval is impaired with very low concentrations, presumably due to insufficient activation of high-affine mineralocorticoid receptors (MR), or with very high concentrations, due to predominant low-affine glucocorticoid receptor (GR) activation. Through corresponding changes in re-encoding, the retrieval effect of cortisol might translate into a persistent change of the retrieved memory. We tested whether partial suppression of morning cortisol synthesis by metyrapone, leading to intermediate, circadian nadir-like levels with presumed predominant MR activation, improves retrieval, particularly of emotional memory, and persistently changes the memory. In a randomized, placebo-controlled, double-blind, within-subject cross-over design, 18 men were orally administered metyrapone (1g) vs. placebo at 4:00 AM to suppress the morning cortisol rise. Retrieval of emotional and neutral texts and pictures (learned 3 days earlier) was assessed 4h after substance administration and a second time one week later. Metyrapone suppressed endogenous cortisol release to circadian nadir-equivalent levels at the time of retrieval testing. Contrary to our expectations, metyrapone significantly impaired free recall of emotional texts (ppictures remained unaffected. One week later, participants still showed lower memory for emotional texts in the metyrapone than placebo condition (pmemories corroborates the concept that retrieval effects of cortisol produce persistent memory changes, possibly by affecting re-encoding. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Persistence of Memory for Ignored Lists of Digits: Areas of Developmental Constancy and Change.

    Science.gov (United States)

    Cowan, Nelson; Nugent, Lara D.; Elliott, Emily M.; Saults, J. Scott

    2000-01-01

    Examined persistence of sensory memory by studying developmental differences in recall of attended and ignored lists of digits for second-graders, fifth-graders, and adults. Found developmental increase in the persistence of memory only for the final item in an ignored list, which is the item for which sensory memory is thought to be the most…

  17. Hippocampal subfield and medial temporal cortical persistent activity during working memory reflects ongoing encoding

    Directory of Open Access Journals (Sweden)

    Rachel K Nauer

    2015-03-01

    Full Text Available Previous neuroimaging studies support a role for the medial temporal lobes (MTL in maintaining novel stimuli over brief working memory (WM delays, and suggest delay period activity predicts subsequent memory. Additionally, slice recording studies have demonstrated neuronal persistent spiking in entorhinal cortex (EC, perirhinal cortex (PrC, and hippocampus (CA1, CA3, subiculum. These data have led to computational models that suggest persistent spiking in parahippocampal regions could sustain neuronal representations of sensory information over many seconds. This mechanism may support both WM maintenance and encoding of information into long term episodic memory. The goal of the current study was to use high-resolution fMRI to elucidate the contributions of the MTL cortices and hippocampal subfields to WM maintenance as it relates to later episodic recognition memory. We scanned participants while they performed a delayed match to sample task with novel scene stimuli, and assessed their memory for these scenes post-scan. We hypothesized stimulus-driven activation that persists into the delay period—a putative correlate of persistent spiking—would predict later recognition memory. Our results suggest sample and delay period activation in the parahippocampal cortex (PHC, PrC, and subiculum (extending into DG/CA3 and CA1 was linearly related to increases in subsequent memory strength. These data extend previous neuroimaging studies that have constrained their analysis to either the sample or delay period by modeling these together as one continuous ongoing encoding process, and support computational frameworks that predict persistent activity underlies both WM and episodic encoding.

  18. Spatial patterns of persistent neural activity vary with the behavioral context of short-term memory.

    Science.gov (United States)

    Daie, Kayvon; Goldman, Mark S; Aksay, Emre R F

    2015-02-18

    A short-term memory can be evoked by different inputs and control separate targets in different behavioral contexts. To address the circuit mechanisms underlying context-dependent memory function, we determined through optical imaging how memory is encoded at the whole-network level in two behavioral settings. Persistent neural activity maintaining a memory of desired eye position was imaged throughout the oculomotor integrator after saccadic or optokinetic stimulation. While eye position was encoded by the amplitude of network activity, the spatial patterns of firing were context dependent: cells located caudally generally were most persistent following saccadic input, whereas cells located rostrally were most persistent following optokinetic input. To explain these data, we computationally identified four independent modes of network activity and found these were differentially accessed by saccadic and optokinetic inputs. These results show how a circuit can simultaneously encode memory value and behavioral context, respectively, in its amplitude and spatial pattern of persistent firing. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms.

    Science.gov (United States)

    da Silva de Vargas, Liane; Neves, Ben-Hur Souto das; Roehrs, Rafael; Izquierdo, Iván; Mello-Carpes, Pâmela

    2017-06-30

    Previously we showed the involvement of the hippocampal noradrenergic system in the consolidation and persistence of object recognition (OR) memory. Here we show that one-single physical exercise session performed immediately after learning promotes OR memory persistence and increases norepinephrine levels in the hippocampus. Additionally, effects of exercise on memory are avoided by an intra-hippocampal beta-adrenergic antagonist infusion. Taken together, these results suggest that exercise effects on memory can be related to noradrenergic mechanisms and acute physical exercise can be a non-pharmacological intervention to assist memory consolidation and persistence, with few or no side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Does stress remove the HDAC brakes for the formation and persistence of long-term memory?

    Science.gov (United States)

    White, André O.; Wood, Marcelo A.

    2013-01-01

    It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. PMID:24149059

  1. Presynaptic learning and memory with a persistent firing neuron and a habituating synapse: a model of short term persistent habituation.

    Science.gov (United States)

    Ramanathan, Kiruthika; Ning, Ning; Dhanasekar, Dhiviya; Li, Guoqi; Shi, Luping; Vadakkepat, Prahlad

    2012-08-01

    Our paper explores the interaction of persistent firing axonal and presynaptic processes in the generation of short term memory for habituation. We first propose a model of a sensory neuron whose axon is able to switch between passive conduction and persistent firing states, thereby triggering short term retention to the stimulus. Then we propose a model of a habituating synapse and explore all nine of the behavioral characteristics of short term habituation in a two neuron circuit. We couple the persistent firing neuron to the habituation synapse and investigate the behavior of short term retention of habituating response. Simulations show that, depending on the amount of synaptic resources, persistent firing either results in continued habituation or maintains the response, both leading to longer recovery times. The effectiveness of the model as an element in a bio-inspired memory system is discussed.

  2. Does stress remove the HDAC brakes for the formation and persistence of long-term memory?

    Science.gov (United States)

    White, André O; Wood, Marcelo A

    2014-07-01

    It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Lesion progression in post-treatment persistent endodontic lesions.

    Science.gov (United States)

    Yu, Victoria Soo Hoon; Messer, Harold Henry; Shen, Liang; Yee, Robert; Hsu, Chin-ying Stephen

    2012-10-01

    Radiographic lesions related to root-filled teeth may persist for long periods after treatment and are considered to indicate failure of initial treatment. Persistent lesions are found in a proportion of cases, but information on lesion progression is lacking. This study examined the incidence of lesion improvement, remaining unchanged, and deterioration among persistent lesions in a group of patients recruited from a university-based clinic and identified potential predictors for lesion progression. Patients of a university clinic with persistent endodontic lesions at least 4 years since treatment and with original treatment radiographs available were recruited with informed consent. Data were obtained by interview and from dental records and clinical and radiographic examinations. Univariate and multivariate statistical analyses were carried out by using SPSS (version 19). One hundred fifty-one persistent lesions were identified in 114 patients. A majority of the lesions (107, 70.9%) received treatment between 4 and 5 years prior. Eighty-six lesions (57.0%) improved, 18 (11.9%) remained unchanged, and 47 (31.1%) deteriorated since treatment. Potential predictors for lesions that did not improve included recall lesion size, pain on biting at recall examination, history of a postobturation flare-up, and a non-ideal root-filling length (P < .05). Lesions that had persisted for a longer period appeared less likely to be improving (relative risk, 1.038; 95% confidence interval, 1.000-1.077). A specific time interval alone should not be used to conclude that a lesion will not resolve without intervention. This study identified several clinical factors that are associated with deteriorating persistent lesions, which should aid in identifying lesions that require further intervention. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Progress In Optical Memory Technology

    Science.gov (United States)

    Tsunoda, Yoshito

    1987-01-01

    More than 20 years have passed since the concept of optical memory was first proposed in 1966. Since then considerable progress has been made in this area together with the creation of completely new markets of optical memory in consumer and computer application areas. The first generation of optical memory was mainly developed with holographic recording technology in late 1960s and early 1970s. Considerable number of developments have been done in both analog and digital memory applications. Unfortunately, these technologies did not meet a chance to be a commercial product. The second generation of optical memory started at the beginning of 1970s with bit by bit recording technology. Read-only type optical memories such as video disks and compact audio disks have extensively investigated. Since laser diodes were first applied to optical video disk read out in 1976, there have been extensive developments of laser diode pick-ups for optical disk memory systems. The third generation of optical memory started in 1978 with bit by bit read/write technology using laser diodes. Developments of recording materials including both write-once and erasable have been actively pursued at several research institutes. These technologies are mainly focused on the optical memory systems for computer application. Such practical applications of optical memory technology has resulted in the creation of such new products as compact audio disks and computer file memories.

  5. Association Between Persistent Pain and Memory Decline and Dementia in a Longitudinal Cohort of Elders.

    Science.gov (United States)

    Whitlock, Elizabeth L; Diaz-Ramirez, L Grisell; Glymour, M Maria; Boscardin, W John; Covinsky, Kenneth E; Smith, Alexander K

    2017-08-01

    Chronic pain is common among the elderly and is associated with cognitive deficits in cross-sectional studies; the population-level association between chronic pain and longitudinal cognition is unknown. To determine the population-level association between persistent pain, which may reflect chronic pain, and subsequent cognitive decline. Cohort study with biennial interviews of 10 065 community-dwelling older adults in the nationally representative Health and Retirement Study who were 62 years or older in 2000 and answered pain and cognition questions in both 1998 and 2000. Data analysis was conducted between June 24 and October 31, 2016. "Persistent pain," defined as a participant reporting that he or she was often troubled with moderate or severe pain in both the 1998 and 2000 interviews. Coprimary outcomes were composite memory score and dementia probability, estimated by combining neuropsychological test results and informant and proxy interviews, which were tracked from 2000 through 2012. Linear mixed-effects models, with random slope and intercept for each participant, were used to estimate the association of persistent pain with slope of the subsequent cognitive trajectory, adjusting for demographic characteristics and comorbidities measures in 2000 and applying sampling weights to represent the 2000 US population. We hypothesized that persistent pain would predict accelerated memory decline and increased probability of dementia. To quantify the impact of persistent pain on functional independence, we combined our primary results with information on the association between memory and ability to manage medications and finances independently. Of the 10 065 eligible HRS sample members, 60% were female, and median baseline age was 73 years (interquartile range, 67-78 years). At baseline, persistent pain affected 10.9% of participants and was associated with worse depressive symptoms and more limitations in activities of daily living. After covariate

  6. The Role of Rewarding and Novel Events in Facilitating Memory Persistence in a Separate Spatial Memory Task

    Science.gov (United States)

    Salvetti, Beatrice; Morris, Richard G. M.; Wang, Szu-Han

    2014-01-01

    Many insignificant events in our daily life are forgotten quickly but can be remembered for longer when other memory-modulating events occur before or after them. This phenomenon has been investigated in animal models in a protocol in which weak memories persist longer if exploration in a novel context is introduced around the time of memory…

  7. Working memory in school-age children with and without a persistent speech sound disorder.

    Science.gov (United States)

    Farquharson, Kelly; Hogan, Tiffany P; Bernthal, John E

    2017-03-17

    The aim of this study was to explore the role of working memory processes as a possible cognitive underpinning of persistent speech sound disorders (SSD). Forty school-aged children were enrolled; 20 children with persistent SSD (P-SSD) and 20 typically developing children. Children participated in three working memory tasks - one to target each of the components in Baddeley's working memory model: phonological loop, visual spatial sketchpad and central executive. Children with P-SSD performed poorly only on the phonological loop tasks compared to their typically developing age-matched peers. However, mediation analyses revealed that the relation between working memory and a P-SSD was reliant upon nonverbal intelligence. These results suggest that co-morbid low-average nonverbal intelligence are linked to poor working memory in children with P-SSD. Theoretical and clinical implications are discussed.

  8. Mood-congruent false memories persist over time

    OpenAIRE

    Knott, L.; Thorley, C.

    2014-01-01

    In this study we examined the role of mood-congruency and retention interval on the false recognition of emotion laden items using the Deese/Roediger-McDermott (DRM) paradigm. Previous research has shown a mood-congruent false memory enhancement during immediate recognition tasks. The present study examined the persistence of this effect following a one-week delay. Participants were placed in a negative or neutral mood, presented with negative-emotion and neutral-emotion DRM word lists, and a...

  9. Speech Perception and Short-Term Memory Deficits in Persistent Developmental Speech Disorder

    Science.gov (United States)

    Kenney, Mary Kay; Barac-Cikoja, Dragana; Finnegan, Kimberly; Jeffries, Neal; Ludlow, Christy L.

    2006-01-01

    Children with developmental speech disorders may have additional deficits in speech perception and/or short-term memory. To determine whether these are only transient developmental delays that can accompany the disorder in childhood or persist as part of the speech disorder, adults with a persistent familial speech disorder were tested on speech…

  10. Mood-congruent false memories persist over time.

    Science.gov (United States)

    Knott, Lauren M; Thorley, Craig

    2014-01-01

    In this study, we examined the role of mood-congruency and retention interval on the false recognition of emotion laden items using the Deese/Roediger-McDermott (DRM) paradigm. Previous research has shown a mood-congruent false memory enhancement during immediate recognition tasks. The present study examined the persistence of this effect following a one-week delay. Participants were placed in a negative or neutral mood, presented with negative-emotion and neutral-emotion DRM word lists, and administered with both immediate and delayed recognition tests. Results showed that a negative mood state increased remember judgments for negative-emotion critical lures, in comparison to neutral-emotion critical lures, on both immediate and delayed testing. These findings are discussed in relation to theories of spreading activation and emotion-enhanced memory, with consideration of the applied forensic implications of such findings.

  11. Persistence of a pitch-segregating echoic memory.

    Science.gov (United States)

    Kubovy, M; Howard, F P

    1976-11-01

    Auditory stimuli were computer generated in order to measure the persistence of echoic memory. The stimuli consisted of 18 bursts (lasting 307 msec) of six equal-amplitued dichotic tones (frequencies: 392, 440, 494, 523, 587, and 659 Hz), each having a different interaural time disparity. For each stimulus a canonical distribution of interaural time disparities was defined. Five of the interaural time disparities in each burst were equal to canonical disparities for that stimulus; the sixth was not. The deviant tones in successive bursts constituted a musical scale. These deviant tones were perceptually segregated when the interburst interval was short, even though individual bursts sounded like noise when played separately. The interburst intervals for which five subjects could identify with 71% accuracy whether the scale was ascending or descending (obtained by an adaptive psychophysical procedure) averaged about 1 sec. This figure represents a lower bound on the average half-life of echoic memory. A sixth subject performed perfectly even with an inter burst interval of 9.7 sec. Two further experiments were carried out with this subject to support the claim that his performance was due to echoic memory.

  12. Maintaining the ties that bind: the role of an intermediate visual memory store in the persistence of awareness.

    Science.gov (United States)

    Ferber, Susanne; Emrich, Stephen M

    2007-03-01

    Segregation and feature binding are essential to the perception and awareness of objects in a visual scene. When a fragmented line-drawing of an object moves relative to a background of randomly oriented lines, the previously hidden object is segregated from the background and consequently enters awareness. Interestingly, in such shape-from-motion displays, the percept of the object persists briefly when the motion stops, suggesting that the segregated and bound representation of the object is maintained in awareness. Here, we tested whether this persistence effect is mediated by capacity-limited working-memory processes, or by the amount of object-related information available. The experiments demonstrate that persistence is affected mainly by the proportion of object information available and is independent of working-memory limits. We suggest that this persistence effect can be seen as evidence for an intermediate, form-based memory store mediating between sensory and working memory.

  13. The OKS persistent in-memory object manager

    International Nuclear Information System (INIS)

    Jones, R.; Mapelli, L.; Soloviev, I.

    1998-01-01

    The OKS (Object Kernel Support) is a library to support a simple, active persistent in-memory object manager. It is suitable for applications which need to create persistent structured information with fast access but do not require full database functionality. It can be used as the frame of configuration databases and real-time object managers for Data Acquisition and Detector Control Systems in such fields as setup, diagnostics and general configuration description. OKS is based on an object model that supports objects, classes, associations, methods, inheritance, polymorphism, object identifiers, composite objects, integrity constraints, schema evolution, data migration and active notification. OKS stores the class definitions and their instances in portable ASCII files. It provides query facilities, including indices support. The OKS has a C++ API (Application Program Interface) and includes Motif based GUI applications to design class schema and to manipulate objects. OKS has been developed on top of the Rogue Wave Tools h++ C++ class library

  14. Modulation of network excitability by persistent activity: how working memory affects the response to incoming stimuli.

    Directory of Open Access Journals (Sweden)

    Elisa M Tartaglia

    2015-02-01

    Full Text Available Persistent activity and match effects are widely regarded as neuronal correlates of short-term storage and manipulation of information, with the first serving active maintenance and the latter supporting the comparison between memory contents and incoming sensory information. The mechanistic and functional relationship between these two basic neurophysiological signatures of working memory remains elusive. We propose that match signals are generated as a result of transient changes in local network excitability brought about by persistent activity. Neurons more active will be more excitable, and thus more responsive to external inputs. Accordingly, network responses are jointly determined by the incoming stimulus and the ongoing pattern of persistent activity. Using a spiking model network, we show that this mechanism is able to reproduce most of the experimental phenomenology of match effects as exposed by single-cell recordings during delayed-response tasks. The model provides a unified, parsimonious mechanistic account of the main neuronal correlates of working memory, makes several experimentally testable predictions, and demonstrates a new functional role for persistent activity.

  15. Preferential selection based on strategy persistence and memory promotes cooperation in evolutionary prisoner's dilemma games

    Science.gov (United States)

    Liu, Yuanming; Huang, Changwei; Dai, Qionglin

    2018-06-01

    Strategy imitation plays a crucial role in evolutionary dynamics when we investigate the spontaneous emergence of cooperation under the framework of evolutionary game theory. Generally, when an individual updates his strategy, he needs to choose a role model whom he will learn from. In previous studies, individuals choose role models randomly from their neighbors. In recent works, researchers have considered that individuals choose role models according to neighbors' attractiveness characterized by the present network topology or historical payoffs. Here, we associate an individual's attractiveness with the strategy persistence, which characterizes how frequently he changes his strategy. We introduce a preferential parameter α to describe the nonlinear correlation between the selection probability and the strategy persistence and the memory length of individuals M into the evolutionary games. We investigate the effects of α and M on cooperation. Our results show that cooperation could be promoted when α > 0 and at the same time M > 1, which corresponds to the situation that individuals are inclined to select their neighbors with relatively higher persistence levels during the evolution. Moreover, we find that the cooperation level could reach the maximum at an optimal memory length when α > 0. Our work sheds light on how to promote cooperation through preferential selection based on strategy persistence and a limited memory length.

  16. [Musical long-term memory throughout the progression of Alzheimer disease].

    Science.gov (United States)

    Groussard, Mathilde; Mauger, Caroline; Platel, Hervé

    2013-03-01

    In Alzheimer patients with a solid musical background, isolated case-reports have reported the maintenance of remarkable musical abilities despite clear difficulties in their verbal memory and linguistic functions. These reports have encouraged a number of scientists to undertake more systematic studies which would allow a rigorous approach to the analysis of musical memory in Alzheimer patients with no formal musical background. Although restricted in number, the latest data are controversial regarding preserved musical capacities in Alzheimer patients. Our current review of the literature addresses this topic and advances the hypothesis that the processes of musical memory are function of illness progression. In the earlier stages, the majority of evaluations concerned musical episodic memory and suggested a dysfunction of this memory whereas in the moderate and severe stages, musical semantic memory and implicit learning are the majority of investigations and seemed more resistant to Alzheimer disease. In summary, our current review bring to understand the memory circuits involved and highlight the necessity to adapted the investigational tools employed to conform with the severity of the signs and symptoms of progressive Alzheimer disease in order to demonstrate the preserved musical capacities.

  17. Persistent spatial information in the FEF during object-based short-term memory does not contribute to task performance.

    Science.gov (United States)

    Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin

    2014-06-01

    We previously reported the existence of a persistent spatial signal in the FEF during object-based STM. This persistent activity reflected the location at which the sample appeared, irrespective of the location of upcoming targets. We hypothesized that such a spatial signal could be used to maintain or enhance object-selective memory activity elsewhere in cortex, analogous to the role of a spatial signal during attention. Here, we inactivated a portion of the FEF with GABAa agonist muscimol to test whether the observed activity contributes to object memory performance. We found that, although RTs were slowed for saccades into the inactivated portion of retinotopic space, performance for samples appearing in that region was unimpaired. This contrasts with the devastating effects of the same FEF inactivation on purely spatial working memory, as assessed with the memory-guided saccade task. Thus, in a task in which a significant fraction of FEF neurons displayed persistent, sample location-based activity, disrupting this activity had no impact on task performance.

  18. Fast progressive memory loss in a 63-year-old man

    OpenAIRE

    De Smet, K; De Maeseneer, M; Yazdi Amir, T; De Mey, J

    2011-01-01

    A 63-year-old man presented to the neurology department with fast progressive memory loss especially short term memory. For 2 weeks he had experienced loss of orientation, judgment difficulties, and concentration problems. A CT scan of the brain was normal.

  19. Cholestasis progression effects on long-term memory in bile duct ligation rats

    Directory of Open Access Journals (Sweden)

    Nasrin Hosseini

    2014-01-01

    Full Text Available Background : There is evidence that cognitive functions are affected by some liver diseases such as cholestasis. Bile duct ligation induces cholestasis as a result of impaired liver function and cognition. This research investigates the effect of cholestasis progression on memory function in bile duct ligation rats. Materials and Methods: Male Wistar rats were randomly divided into five groups, which include: control group for BDL-7, control group for BDL-21, sham group (underwent laparotomy without bile duct ligation, BDL-7 group (7 days after bile duct ligation, and BDL-21 group (21 days after bile duct ligation. Step-through passive avoidance test was employed to examine memory function. In all groups, short-term (7 days after foot shock and long-term memories (21 days after foot shock were assessed. Results: Our results showed that liver function significantly decreased with cholestasis progression (P < 0.01. Also our findings indicated BDL-21 significantly impaired acquisition time (P < 0.05. Memory retrieval impaired 7 (P < 0.05 and 21 days (P < 0.001 after foot shock in BDL-7 and BDL-21 groups, respectively. Conclusion: Based on these findings, liver function altered in cholestasis and memory (short-term and long-term memory impaired with cholestasis progression in bile duct ligation rats. Further studies are needed to better insight the nature of progression of brain damage in cholestatic disease.

  20. Correlations in background activity control persistent state stability and allow execution of working memory tasks

    Directory of Open Access Journals (Sweden)

    Mario eDipoppa

    2013-10-01

    Full Text Available Working memory (WM is tightly capacity limited, it requires selective information gating, active information maintenance, and rapid active updating. Hence performing a WM task needs rapid and controlled transitions between neural persistent activity and the resting state. We propose that changes in spike-time correlations in neural activity provides a mechanism for the required working memory operations. As a proof of principle, we implement sustained activity and working memory in a recurrently-coupled spiking network with neurons receiving excitatory random background activity where background correlations are induced by a common noise source. We first characterize how the level of background correlations controls the stability of the persistent state. With sufficiently high correlations, the sustained state becomes practically unstable, so it cannot be initiated by a transient stimulus. We exploit this in a working memory model implementing the delay match to sample task by modulating flexibly in time the correlation level at different phases of the task. The modulation sets the network in different working regimes: more prompt to gate in a signal or clear the memory. The findings presented in this manuscript can form the basis for a new paradigm about how correlations are flexibly controlled by the cortical circuits to execute WM operations.

  1. Shaping the CD4+ memory immune response against tuberculosis: the role of antigen persistence, location and multi-functionality.

    Science.gov (United States)

    Ancelet, Lindsay; Kirman, Joanna

    2012-02-01

    Abstract Effective vaccination against intracellular pathogens, such as tuberculosis (TB), relies on the generation and maintenance of CD4 memory T cells. An incomplete understanding of the memory immune response has hindered the rational design of a new, more effective TB vaccine. This review discusses how the persistence of antigen, the location of memory cells, and their multifunctional ability shape the CD4 memory T cell response against TB.

  2. Memories Persist in Silence

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Arenas Grisales

    2012-08-01

    Full Text Available This article exposes the hypothesis that memory artifacts, created to commemorate the victims of armed conflict in Colombia, are an expression of the underground memories and a way of political action in the midst of war. We analyze three cases of creations of memory artifacts in Medellín, Colombia, as forms of suffering, perceiving and resisting the power of armed groups in Medellín. The silence, inherent in these objects, should not be treated as an absence of language, but as another form of expression of memory. Silence is a tactic used to overcome losses and reset everyday life in contexts of protracted violence.

  3. Chronic corticosterone exposure persistently elevates the expression of memory-related genes in the lateral amygdala and enhances the consolidation of a Pavlovian fear memory.

    Directory of Open Access Journals (Sweden)

    Melissa S Monsey

    Full Text Available Chronic exposure to stress has been widely implicated in the development of anxiety disorders, yet relatively little is known about the long-term effects of chronic stress on amygdala-dependent memory formation. Here, we examined the effects of a history of chronic exposure to the stress-associated adrenal steroid corticosterone (CORT on the consolidation of a fear memory and the expression of memory-related immediate early genes (IEGs in the lateral nucleus of the amygdala (LA. Rats received chronic exposure to CORT (50 μg/ml in their drinking water for 2 weeks and were then titrated off the CORT for an additional 6 days followed by a 2 week 'wash-out' period consisting of access to plain water. Rats were then either sacrificed to examine the expression of memory-related IEG expression in the LA or given auditory Pavlovian fear conditioning. We show that chronic exposure to CORT leads to a persistent elevation in the expression of the IEGs Arc/Arg3.1 and Egr-1 in the LA. Further, we show that rats with a history of chronic CORT exposure exhibit enhanced consolidation of a fear memory; short-term memory (STM is not affected, while long-term memory (LTM is significantly enhanced. Treatment with the selective serotonin reuptake inhibitor (SSRI fluoxetine following the chronic CORT exposure period was observed to effectively reverse both the persistent CORT-related increases in memory-related IEG expression in the LA and the CORT-related enhancement in fear memory consolidation. Our findings suggest that chronic exposure to CORT can regulate memory-related IEG expression and fear memory consolidation processes in the LA in a long-lasting manner and that treatment with fluoxetine can reverse these effects.

  4. Chronic corticosterone exposure persistently elevates the expression of memory-related genes in the lateral amygdala and enhances the consolidation of a Pavlovian fear memory.

    Science.gov (United States)

    Monsey, Melissa S; Boyle, Lara M; Zhang, Melinda L; Nguyen, Caroline P; Kronman, Hope G; Ota, Kristie T; Duman, Ronald S; Taylor, Jane R; Schafe, Glenn E

    2014-01-01

    Chronic exposure to stress has been widely implicated in the development of anxiety disorders, yet relatively little is known about the long-term effects of chronic stress on amygdala-dependent memory formation. Here, we examined the effects of a history of chronic exposure to the stress-associated adrenal steroid corticosterone (CORT) on the consolidation of a fear memory and the expression of memory-related immediate early genes (IEGs) in the lateral nucleus of the amygdala (LA). Rats received chronic exposure to CORT (50 μg/ml) in their drinking water for 2 weeks and were then titrated off the CORT for an additional 6 days followed by a 2 week 'wash-out' period consisting of access to plain water. Rats were then either sacrificed to examine the expression of memory-related IEG expression in the LA or given auditory Pavlovian fear conditioning. We show that chronic exposure to CORT leads to a persistent elevation in the expression of the IEGs Arc/Arg3.1 and Egr-1 in the LA. Further, we show that rats with a history of chronic CORT exposure exhibit enhanced consolidation of a fear memory; short-term memory (STM) is not affected, while long-term memory (LTM) is significantly enhanced. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine following the chronic CORT exposure period was observed to effectively reverse both the persistent CORT-related increases in memory-related IEG expression in the LA and the CORT-related enhancement in fear memory consolidation. Our findings suggest that chronic exposure to CORT can regulate memory-related IEG expression and fear memory consolidation processes in the LA in a long-lasting manner and that treatment with fluoxetine can reverse these effects.

  5. CaMKII Requirement for in Vivo Insular Cortex LTP Maintenance and CTA Memory Persistence

    Directory of Open Access Journals (Sweden)

    Yectivani Juárez-Muñoz

    2017-11-01

    Full Text Available Calcium-calmodulin/dependent protein kinase II (CaMKII plays an essential role in LTP induction, but since it has the capacity to remain persistently activated even after the decay of external stimuli it has been proposed that it can also be necessary for LTP maintenance and therefore for memory persistence. It has been shown that basolateral amygdaloid nucleus (Bla stimulation induces long-term potentiation (LTP in the insular cortex (IC, a neocortical region implicated in the acquisition and retention of conditioned taste aversion (CTA. Our previous studies have demonstrated that induction of LTP in the Bla-IC pathway before CTA training increased the retention of this task. Although it is known that IC-LTP induction and CTA consolidation share similar molecular mechanisms, little is known about the molecular actors that underlie their maintenance. The purpose of the present study was to evaluate the role of CaMKII in the maintenance of in vivo Bla-IC LTP as well as in the persistence of CTA long-term memory (LTM. Our results show that acute microinfusion of myr-CaMKIINtide, a selective inhibitor of CaMKII, in the IC of adult rats during the late-phase of in vivo Bla-IC LTP blocked its maintenance. Moreover, the intracortical inhibition of CaMKII 24 h after CTA acquisition impairs CTA-LTM persistence. Together these results indicate that CaMKII is a central key component for the maintenance of neocortical synaptic plasticity as well as for persistence of CTA-LTM.

  6. Persistent Memory in Single Node Delay-Coupled Reservoir Computing.

    Science.gov (United States)

    Kovac, André David; Koall, Maximilian; Pipa, Gordon; Toutounji, Hazem

    2016-01-01

    Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality.

  7. Persistent Memory in Single Node Delay-Coupled Reservoir Computing.

    Directory of Open Access Journals (Sweden)

    André David Kovac

    Full Text Available Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality.

  8. Emotional Memory Persists Longer than Event Memory

    Science.gov (United States)

    Kuriyama, Kenichi; Soshi, Takahiro; Fujii, Takeshi; Kim, Yoshiharu

    2010-01-01

    The interaction between amygdala-driven and hippocampus-driven activities is expected to explain why emotion enhances episodic memory recognition. However, overwhelming behavioral evidence regarding the emotion-induced enhancement of immediate and delayed episodic memory recognition has not been obtained in humans. We found that the recognition…

  9. Loss and persistence of implicit memory for sound: evidence from auditory stream segregation context effects.

    Science.gov (United States)

    Snyder, Joel S; Weintraub, David M

    2013-07-01

    An important question is the extent to which declines in memory over time are due to passive loss or active interference from other stimuli. The purpose of the present study was to determine the extent to which implicit memory effects in the perceptual organization of sound sequences are subject to loss and interference. Toward this aim, we took advantage of two recently discovered context effects in the perceptual judgments of sound patterns, one that depends on stimulus features of previous sounds and one that depends on the previous perceptual organization of these sounds. The experiments measured how listeners' perceptual organization of a tone sequence (test) was influenced by the frequency separation, or the perceptual organization, of the two preceding sequences (context1 and context2). The results demonstrated clear evidence for loss of context effects over time but little evidence for interference. However, they also revealed that context effects can be surprisingly persistent. The robust effects of loss, followed by persistence, were similar for the two types of context effects. We discuss whether the same auditory memories might contain information about basic stimulus features of sounds (i.e., frequency separation), as well as the perceptual organization of these sounds.

  10. Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8+ T Cells by Persistent Viruses and Vaccines

    Directory of Open Access Journals (Sweden)

    Claire Louse Gordon

    2018-04-01

    Full Text Available Summary: The induction and maintenance of T cell memory is critical to the success of vaccines. A recently described subset of memory CD8+ T cells defined by intermediate expression of the chemokine receptor CX3CR1 was shown to have self-renewal, proliferative, and tissue-surveillance properties relevant to vaccine-induced memory. We tracked these cells when memory is sustained at high levels: memory inflation induced by cytomegalovirus (CMV and adenovirus-vectored vaccines. In mice, both CMV and vaccine-induced inflationary T cells showed sustained high levels of CX3R1int cells exhibiting an effector-memory phenotype, characteristic of inflationary pools, in early memory. In humans, CX3CR1int CD8+ T cells were strongly induced following adenovirus-vectored vaccination for hepatitis C virus (HCV (ChAd3-NSmut and during natural CMV infection and were associated with a memory phenotype similar to that in mice. These data indicate that CX3CR1int cells form an important component of the memory pool in response to persistent viruses and vaccines in both mice and humans. : Gordon et al. demonstrate that CX3CR1int peripheral memory T cells are a substantial component of memory inflation induced by persistent CMVs and adenoviral vaccination. They are characterized by sustained proliferation and an effector-memory phenotype linked to these expanded CD8+ T cell memory responses. Core phenotypic features are shared by humans and mice. Keywords: cytomegalovirus, T cells, memory, adenovirus, vaccination, CX3CR1, memory inflation, mouse, human

  11. Associative Memory Extinction Is Accompanied by Decayed Plasticity at Motor Cortical Neurons and Persistent Plasticity at Sensory Cortical Neurons.

    Science.gov (United States)

    Guo, Rui; Ge, Rongjing; Zhao, Shidi; Liu, Yulong; Zhao, Xin; Huang, Li; Guan, Sodong; Lu, Wei; Cui, Shan; Wang, Shirlene; Wang, Jin-Hui

    2017-01-01

    Associative memory is essential for cognition, in which associative memory cells and their plasticity presumably play important roles. The mechanism underlying associative memory extinction vs. maintenance remains unclear, which we have studied in a mouse model of cross-modal associative learning. Paired whisker and olfaction stimulations lead to a full establishment of odorant-induced whisker motion in training day 10, which almost disappears if paired stimulations are not given in a week, and then recovers after paired stimulation for an additional day. In mice that show associative memory, extinction and recovery, we have analyzed the dynamical plasticity of glutamatergic neurons in layers II-III of the barrel cortex and layers IV-V of the motor cortex. Compared with control mice, the rate of evoked spikes as well as the amplitude and frequency of excitatory postsynaptic currents increase, whereas the amplitude and frequency of inhibitory postsynaptic currents (IPSC) decrease at training day 10 in associative memory mice. Without paired training for a week, these plastic changes are persistent in the barrel cortex and decayed in the motor cortex. If paired training is given for an additional day to revoke associative memory, neuronal plasticity recovers in the motor cortex. Our study indicates persistent neuronal plasticity in the barrel cortex for cross-modal memory maintenance as well as the dynamical change of neuronal plasticity in the motor cortex for memory retrieval and extinction. In other words, the sensory cortices are essential for long-term memory while the behavior-related cortices with the inability of memory retrieval are correlated to memory extinction.

  12. Associative Memory Extinction Is Accompanied by Decayed Plasticity at Motor Cortical Neurons and Persistent Plasticity at Sensory Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2017-06-01

    Full Text Available Associative memory is essential for cognition, in which associative memory cells and their plasticity presumably play important roles. The mechanism underlying associative memory extinction vs. maintenance remains unclear, which we have studied in a mouse model of cross-modal associative learning. Paired whisker and olfaction stimulations lead to a full establishment of odorant-induced whisker motion in training day 10, which almost disappears if paired stimulations are not given in a week, and then recovers after paired stimulation for an additional day. In mice that show associative memory, extinction and recovery, we have analyzed the dynamical plasticity of glutamatergic neurons in layers II–III of the barrel cortex and layers IV–V of the motor cortex. Compared with control mice, the rate of evoked spikes as well as the amplitude and frequency of excitatory postsynaptic currents increase, whereas the amplitude and frequency of inhibitory postsynaptic currents (IPSC decrease at training day 10 in associative memory mice. Without paired training for a week, these plastic changes are persistent in the barrel cortex and decayed in the motor cortex. If paired training is given for an additional day to revoke associative memory, neuronal plasticity recovers in the motor cortex. Our study indicates persistent neuronal plasticity in the barrel cortex for cross-modal memory maintenance as well as the dynamical change of neuronal plasticity in the motor cortex for memory retrieval and extinction. In other words, the sensory cortices are essential for long-term memory while the behavior-related cortices with the inability of memory retrieval are correlated to memory extinction.

  13. Persistence of Gender Related-Effects on Visuo-Spatial and Verbal Working Memory in Right Brain-Damaged Patients.

    Science.gov (United States)

    Piccardi, Laura; Matano, Alessandro; D'Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola

    2016-01-01

    The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men's superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement.

  14. Memory persistency and nonlinearity in daily mean dew point across India

    Science.gov (United States)

    Ray, Rajdeep; Khondekar, Mofazzal Hossain; Ghosh, Koushik; Bhattacharjee, Anup Kumar

    2016-04-01

    Enterprising endeavour has been taken in this work to realize and estimate the persistence in memory of the daily mean dew point time series obtained from seven different weather stations viz. Kolkata, Chennai (Madras), New Delhi, Mumbai (Bombay), Bhopal, Agartala and Ahmedabad representing different geographical zones in India. Hurst exponent values reveal an anti-persistent behaviour of these dew point series. To affirm the Hurst exponent values, five different scaling methods have been used and the corresponding results are compared to synthesize a finer and reliable conclusion out of it. The present analysis also bespeaks that the variation in daily mean dew point is governed by a non-stationary process with stationary increments. The delay vector variance (DVV) method has been exploited to investigate nonlinearity, and the present calculation confirms the presence of deterministic nonlinear profile in the daily mean dew point time series of the seven stations.

  15. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    Science.gov (United States)

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-06

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Persistent non-verbal memory impairment in remitted major depression - caused by encoding deficits?

    Science.gov (United States)

    Behnken, Andreas; Schöning, Sonja; Gerss, Joachim; Konrad, Carsten; de Jong-Meyer, Renate; Zwanzger, Peter; Arolt, Volker

    2010-04-01

    While neuropsychological impairments are well described in acute phases of major depressive disorders (MDD), little is known about the neuropsychological profile in remission. There is evidence for episodic memory impairments in both acute depressed and remitted patients with MDD. Learning and memory depend on individuals' ability to organize information during learning. This study investigates non-verbal memory functions in remitted MDD and whether nonverbal memory performance is mediated by organizational strategies whilst learning. 30 well-characterized fully remitted individuals with unipolar MDD and 30 healthy controls matching in age, sex and education were investigated. Non-verbal learning and memory were measured by the Rey-Osterrieth-Complex-Figure-Test (RCFT). The RCFT provides measures of planning, organizational skills, perceptual and non-verbal memory functions. For assessing the mediating effects of organizational strategies, we used the Savage Organizational Score. Compared to healthy controls, participants with remitted MDD showed more deficits in their non-verbal memory function. Moreover, participants with remitted MDD demonstrated difficulties in organizing non-verbal information appropriately during learning. In contrast, no impairments regarding visual-spatial functions in remitted MDD were observed. Except for one patient, all the others were taking psychopharmacological medication. The neuropsychological function was solely investigated in the remitted phase of MDD. Individuals with MDD in remission showed persistent non-verbal memory impairments, modulated by a deficient use of organizational strategies during encoding. Therefore, our results strongly argue for additional therapeutic interventions in order to improve these remaining deficits in cognitive function. Copyright 2009 Elsevier B.V. All rights reserved.

  17. A single standard for memory: the case for reconsolidation.

    Science.gov (United States)

    Nader, Karim; Hardt, Oliver

    2009-03-01

    Consolidated memories can re-enter states of transient instability following reactivation, from which they must again stabilize in order to persist, contradicting the previously dominant view that memory and its associated plasticity mechanisms progressively and irreversibly decline with time. We witness exciting times, as neuroscience begins embracing a position, long-held in cognitive psychology, that recognizes memory as a principally dynamic process. In light of remaining controversy, we here establish that the same operational definitions and types of evidence underpin the deduction of both reconsolidation and consolidation, thus validating the extrapolation that post-retrieval memory plasticity reflects processes akin to those that stabilized the memory following acquisition.

  18. Eternal inflation, bubble collisions, and the persistence of memory

    International Nuclear Information System (INIS)

    Garriga, Jaume; Guth, Alan H.; Vilenkin, Alexander

    2007-01-01

    A 'bubble universe' nucleating in an eternally inflating false vacuum will experience, in the course of its expansion, collisions with an infinite number of other bubbles. In an idealized model, we calculate the rate of collisions around an observer inside a given reference bubble. We show that the collision rate violates both the homogeneity and the isotropy of the bubble universe. Each bubble has a center which can be related to 'the beginning of inflation' in the parent false vacuum, and any observer not at the center will see an anisotropic bubble collision rate that peaks in the outward direction. Surprisingly, this memory of the onset of inflation persists no matter how much time elapses before the nucleation of the reference bubble

  19. Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

    Directory of Open Access Journals (Sweden)

    Michael E. Hasselmo

    2008-01-01

    Full Text Available The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.

  20. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance.

    Science.gov (United States)

    Gebhardt, Thomas; Palendira, Umaimainthan; Tscharke, David C; Bedoui, Sammy

    2018-05-01

    A large proportion of memory T cells disseminated throughout the body are non-recirculating cells whose maintenance and function is regulated by tissue-specific environmental cues. These sessile cells are referred to as tissue-resident memory T (T RM ) cells and similar populations of non-recirculating cells also exist among unconventional T cells and innate lymphocyte cells. The pool of T RM cells is highly diverse with respect to anatomical positioning, phenotype, molecular regulation and effector function. Nevertheless, certain transcriptional programs are shared and appear as important unifying features for the overall population of T RM cells and tissue-resident lymphocytes. It is now widely appreciated that T RM cells are a critical component of our immune defense by acting as peripheral sentinels capable of rapidly mobilizing protective tissue immunity upon pathogen recognition. This function is of particular importance in anatomical sites that are not effectively surveilled by blood-borne memory T cells in absence of inflammation, such as neuronal tissues or epithelial compartments in skin and mucosae. Focusing on the well-characterized subtype of CD8 +  CD69 +  CD103 + T RM cells, we will review current concepts on the generation, persistence and function of T RM cells and will summarize commonly used tools to study these cells. Furthermore, we will discuss accumulating data that emphasize localized T RM responses as an important determinant of tissue homeostasis and immune defense in the context of microbiota-immune interactions, persistent infections and cancer surveillance. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Persistence of Gender Related-Effects on Visuo-Spatial and Verbal Working Memory in Right Brain-Damaged Patients

    Science.gov (United States)

    Piccardi, Laura; Matano, Alessandro; D’Antuono, Giovanni; Marin, Dario; Ciurli, Paola; Incoccia, Chiara; Verde, Paola; Guariglia, Paola

    2016-01-01

    The aim of the present study was to verify if gender differences in verbal and visuo-spatial working memory would persist following right cerebral lesions. To pursue our aim we investigated a large sample (n. 346) of right brain-damaged patients and healthy participants (n. 272) for the presence of gender effects in performing Corsi and Digit Test. We also assessed a subgroup of patients (n. 109) for the nature (active vs. passive) of working memory tasks. We tested working memory (WM) administering the Corsi Test (CBT) and the Digit Span (DS) using two different versions: forward (fCBT and fDS), subjects were required to repeat stimuli in the same order that they were presented; and backward (bCBT and bDS), subjects were required to repeat stimuli in the opposite order of presentation. In this way, passive storage and active processing of working memory were assessed. Our results showed the persistence of gender-related effects in spite of the presence of right brain lesions. We found that men outperformed women both in CBT and DS, regardless of active and passive processing of verbal and visuo-spatial stimuli. The presence of visuo-spatial disorders (i.e., hemineglect) can affect the performance on Corsi Test. In our sample, men and women were equally affected by hemineglect, therefore it did not mask the gender effect. Generally speaking, the persistence of the men’s superiority in visuo-spatial tasks may be interpreted as a protective factor, at least for men, within other life factors such as level of education or kind of profession before retirement. PMID:27445734

  2. Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia.

    Science.gov (United States)

    Tan, Rachel H; Wong, Stephanie; Kril, Jillian J; Piguet, Olivier; Hornberger, Michael; Hodges, John R; Halliday, Glenda M

    2014-07-01

    Despite accruing evidence for relative preservation of episodic memory in the semantic variant of primary progressive aphasia (previously semantic dementia), the neural basis for this remains unclear, particularly in light of their well-established hippocampal involvement. We recently investigated the Papez network of memory structures across pathological subtypes of behavioural variant frontotemporal dementia and demonstrated severe degeneration of all relay nodes, with the anterior thalamus in particular emerging as crucial for intact episodic memory. The present study investigated the status of key components of Papez circuit (hippocampus, mammillary bodies, anterior thalamus, cingulate cortex) and anterior temporal cortex using volumetric and quantitative cell counting methods in pathologically-confirmed cases with semantic variant of primary progressive aphasia (n = 8; 61-83 years; three males), behavioural variant frontotemporal dementia with TDP pathology (n = 9; 53-82 years; six males) and healthy controls (n = 8, 50-86 years; four males). Behavioural variant frontotemporal dementia cases with TDP pathology were selected because of the association between the semantic variant of primary progressive aphasia and TDP pathology. Our findings revealed that the semantic variant of primary progressive aphasia and behavioural variant frontotemporal dementia show similar degrees of anterior thalamic atrophy. The mammillary bodies and hippocampal body and tail were preserved in the semantic variant of primary progressive aphasia but were significantly atrophic in behavioural variant frontotemporal dementia. Importantly, atrophy in the anterior thalamus and mild progressive atrophy in the body of the hippocampus emerged as the main memory circuit regions correlated with increasing dementia severity in the semantic variant of primary progressive aphasia. Quantitation of neuronal populations in the cingulate cortices confirmed the selective loss of anterior cingulate

  3. Semantic Memory in the Clinical Progression of Alzheimer Disease.

    Science.gov (United States)

    Tchakoute, Christophe T; Sainani, Kristin L; Henderson, Victor W

    2017-09-01

    Semantic memory measures may be useful in tracking and predicting progression of Alzheimer disease. We investigated relationships among semantic memory tasks and their 1-year predictive value in women with Alzheimer disease. We conducted secondary analyses of a randomized clinical trial of raloxifene in 42 women with late-onset mild-to-moderate Alzheimer disease. We assessed semantic memory with tests of oral confrontation naming, category fluency, semantic recognition and semantic naming, and semantic density in written narrative discourse. We measured global cognition (Alzheimer Disease Assessment Scale, cognitive subscale), dementia severity (Clinical Dementia Rating sum of boxes), and daily function (Activities of Daily Living Inventory) at baseline and 1 year. At baseline and 1 year, most semantic memory scores correlated highly or moderately with each other and with global cognition, dementia severity, and daily function. Semantic memory task performance at 1 year had worsened one-third to one-half standard deviation. Factor analysis of baseline test scores distinguished processes in semantic and lexical retrieval (semantic recognition, semantic naming, confrontation naming) from processes in lexical search (semantic density, category fluency). The semantic-lexical retrieval factor predicted global cognition at 1 year. Considered separately, baseline confrontation naming and category fluency predicted dementia severity, while semantic recognition and a composite of semantic recognition and semantic naming predicted global cognition. No individual semantic memory test predicted daily function. Semantic-lexical retrieval and lexical search may represent distinct aspects of semantic memory. Semantic memory processes are sensitive to cognitive decline and dementia severity in Alzheimer disease.

  4. Altered T cell memory and effector cell development in chronic lymphatic filarial infection that is independent of persistent parasite antigen.

    Directory of Open Access Journals (Sweden)

    Cathy Steel

    2011-04-01

    Full Text Available Chronic lymphatic filarial (LF infection is associated with suppression of parasite-specific T cell responses that persist even following elimination of infection. While several mechanisms have been implicated in mediating this T cell specific downregulation, a role for alterations in the homeostasis of T effector and memory cell populations has not been explored. Using multiparameter flow cytometry, we investigated the role of persistent filarial infection on the maintenance of T cell memory in patients from the filarial-endemic Cook Islands. Compared to filarial-uninfected endemic normals (EN, microfilaria (mf positive infected patients (Inf had a reduced CD4 central memory (T(CM compartment. In addition, Inf patients tended to have more effector memory cells (T(EM and fewer effector cells (T(EFF than did ENs giving significantly smaller T(EFF:T(EM ratios. These contracted T(CM and T(EFF populations were still evident in patients previously mf+ who had cleared their infection (CLInf. Moreover, the density of IL-7Rα, necessary for T memory cell maintenance (but decreased in T effector cells, was significantly higher on memory cells of Inf and CLInf patients, although there was no evidence for decreased IL-7 or increased soluble IL7-Rα, both possible mechanisms for signaling defects in memory cells. However, effector cells that were present in Inf and CLInf patients had lower percentages of HLA-DR suggesting impaired function. These changes in T cell populations appear to reflect chronicity of infection, as filarial-infected children, despite the presence of active infection, did not show alterations in the frequencies of these T cell phenotypes. These data indicate that filarial-infected patients have contracted T(CM compartments and a defect in effector cell development, defects that persist even following clearance of infection. The fact that these global changes in memory and effector cell compartments do not yet occur in infected children

  5. Persistent spatial working memory deficits in rats with bilateral cortical microgyria

    Directory of Open Access Journals (Sweden)

    Rosen Glenn D

    2008-10-01

    Full Text Available Abstract Background Anomalies of cortical neuronal migration (e.g., microgyria (MG and/or ectopias are associated with a variety of language and cognitive deficits in human populations. In rodents, postnatal focal freezing lesions lead to the formation of cortical microgyria similar to those seen in human dyslexic brains, and also cause subsequent deficits in rapid auditory processing similar to those reported in human language impaired populations. Thus convergent findings support the ongoing study of disruptions in neuronal migration in rats as a putative model to provide insight on human language disability. Since deficits in working memory using both verbal and non-verbal tasks also characterize dyslexic populations, the present study examined the effects of neonatally induced bilateral cortical microgyria (MG on working memory in adult male rats. Methods A delayed match-to-sample radial water maze task, in which the goal arm was altered among eight locations on a daily basis, was used to assess working memory performance in MG (n = 8 and sham (n = 10 littermates. Results Over a period of 60 sessions of testing (each session comprising one pre-delay sample trial, and one post-delay test trial, all rats showed learning as evidenced by a significant decrease in overall test errors. However, MG rats made significantly more errors than shams during initial testing, and this memory deficit was still evident after 60 days (12 weeks of testing. Analyses performed on daily error patterns showed that over the course of testing, MG rats utilized a strategy similar to shams (but with less effectiveness, as indicated by more errors. Conclusion These results indicate persistent abnormalities in the spatial working memory system in rats with induced disruptions of neocortical neuronal migration.

  6. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection.

    Science.gov (United States)

    Maru, Saumya; Jin, Ge; Schell, Todd D; Lukacher, Aron E

    2017-04-01

    Establishing functional tissue-resident memory (TRM) cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV) variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.

  7. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice.

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W

    2015-04-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Food restriction increases long-term memory persistence in adult or aged mice.

    Science.gov (United States)

    Talhati, F; Patti, C L; Zanin, K A; Lopes-Silva, L B; Ceccon, L M B; Hollais, A W; Bizerra, C S; Santos, R; Tufik, S; Frussa-Filho, R

    2014-04-03

    Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12h) or repeated (12h/day for 2days) FR protocols on learning and memory of adult and aged mice evaluated in the plus-maze discriminative avoidance task (PM-DAT), an animal model that concurrently (but independently) evaluates learning and memory, anxiety and locomotion. We also investigated the possible role of FR-induced stress by the corticosterone concentration in adult mice. Male mice were kept at home cage with food ad libitum (CTRL-control condition) or subjected to FR during the dark phase of the cycle for 12h/day or 12h/2days. The FR protocols were applied before training, immediately after it or before testing. Our results demonstrated that only FR for 2days enhanced memory persistence when applied before training in adults and before testing in aged mice. Conversely, FR for 2days impaired consolidation and exerted no effects on retrieval irrespective of age. These effects do not seem to be related to corticosterone concentration. Collectively, these results indicate that FR for 2days can promote promnestic effects not only in aged mice but also in adults. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Dynamic contrast-enhanced MR imaging in predicting progression of enhancing lesions persisting after standard treatment in glioblastoma patients: a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Roh-Eul; Choi, Hye Jeong; You, Sung-Hye; Kang, Koung Mi; Yun, Tae Jin; Kim, Ji-Hoon; Sohn, Chul-Ho [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Choi, Seung Hong [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University, Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul (Korea, Republic of); Seoul National University, School of Chemical and Biological Engineering, Seoul (Korea, Republic of); Kim, Tae Min [Seoul National University College of Medicine, Department of Internal Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Park, Chul-Kee [Seoul National University College of Medicine, Department of Neurosurgery, Biomedical Research Institute, Seoul (Korea, Republic of); Park, Sung-Hye; Won, Jae-Kyung [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Kim, Il Han [Seoul National University College of Medicine, Department of Radiation Oncology, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Soon Tae [Seoul National University College of Medicine, Department of Neurology, Seoul (Korea, Republic of)

    2017-08-15

    To prospectively explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the progression of enhancing lesions persisting after standard treatment in patients with surgically resected glioblastoma (GBM). Forty-seven GBM patients, who underwent near-total tumorectomy followed by concurrent chemoradiation therapy (CCRT) with temozolomide (TMZ) between May 2014 and February 2016, were enrolled. Twenty-four patients were finally analyzed for measurable enhancing lesions persisting after standard treatment. DCE-MRI parameters were calculated at enhancing lesions. Mann-Whitney U tests and multivariable stepwise logistic regression were used to compare parameters between progression (n = 16) and non-progression (n = 8) groups. Mean K{sup trans} and v{sub e} were significantly lower in progression than in non-progression (P = 0.037 and P = 0.037, respectively). The 5th percentile of the cumulative K{sup trans} histogram was also significantly lower in the progression than in non-progression group (P = 0.017). Mean v{sub e} was the only independent predictor of progression (P = 0.007), with a sensitivity of 100%, specificity of 63%, and an overall accuracy of 88% at a cut-off value of 0.873. DCE-MRI may help predict the progression of enhancing lesions persisting after the completion of standard treatment in patients with surgically resected GBM, with mean v{sub e} serving as an independent predictor of progression. (orig.)

  10. Dynamic contrast-enhanced MR imaging in predicting progression of enhancing lesions persisting after standard treatment in glioblastoma patients: a prospective study

    International Nuclear Information System (INIS)

    Yoo, Roh-Eul; Choi, Hye Jeong; You, Sung-Hye; Kang, Koung Mi; Yun, Tae Jin; Kim, Ji-Hoon; Sohn, Chul-Ho; Choi, Seung Hong; Kim, Tae Min; Park, Chul-Kee; Park, Sung-Hye; Won, Jae-Kyung; Kim, Il Han; Lee, Soon Tae

    2017-01-01

    To prospectively explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the progression of enhancing lesions persisting after standard treatment in patients with surgically resected glioblastoma (GBM). Forty-seven GBM patients, who underwent near-total tumorectomy followed by concurrent chemoradiation therapy (CCRT) with temozolomide (TMZ) between May 2014 and February 2016, were enrolled. Twenty-four patients were finally analyzed for measurable enhancing lesions persisting after standard treatment. DCE-MRI parameters were calculated at enhancing lesions. Mann-Whitney U tests and multivariable stepwise logistic regression were used to compare parameters between progression (n = 16) and non-progression (n = 8) groups. Mean K trans and v e were significantly lower in progression than in non-progression (P = 0.037 and P = 0.037, respectively). The 5th percentile of the cumulative K trans histogram was also significantly lower in the progression than in non-progression group (P = 0.017). Mean v e was the only independent predictor of progression (P = 0.007), with a sensitivity of 100%, specificity of 63%, and an overall accuracy of 88% at a cut-off value of 0.873. DCE-MRI may help predict the progression of enhancing lesions persisting after the completion of standard treatment in patients with surgically resected GBM, with mean v e serving as an independent predictor of progression. (orig.)

  11. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates.

    Science.gov (United States)

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-07-20

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys.

  12. Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease.

    Science.gov (United States)

    Seugnet, Laurent; Galvin, James E; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J

    2009-08-01

    Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on shortterm memory using a Drosophila model of Parkinson disease. Transgenic strains of Drosophila melanogaster. Using the GAL4-UAS system, human alpha-synuclein was expressed throughout the nervous system of adult flies. Alpha-synuclein expressing flies (alpha S flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. MEASURMENTS AND RESULTS: When sleep deprived at an intermediate stage of the pathology, alpha S flies showed persistent short-term memory deficits that lasted > or = 3 days. Cognitive deficits were not observed in younger alpha S flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived alpha S flies. Blocking D1-like receptors during sleep deprivation prevented persistent shortterm memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics.

  13. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection.

    Directory of Open Access Journals (Sweden)

    Saumya Maru

    2017-04-01

    Full Text Available Establishing functional tissue-resident memory (TRM cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.

  14. [Progress on metaplasticity and its role in learning and memory].

    Science.gov (United States)

    Wang, Shao-Li; Lu, Wei

    2016-08-25

    Long-term potentiation (LTP) and long-term depression (LTD) are two major forms of synaptic plasticity that are widely considered as important cellular models of learning and memory. Metaplasticity is defined as the plasticity of synaptic plasticity and thus is an advanced form of plasticity. The history of synaptic activity can affect the subsequent synaptic plasticity induction. Therefore, it is important to study metaplasticity to explore new mechanisms underlying various brain functions including learning and memory. Since the concept of metaplasticity was proposed, it has aroused widespread concerns and attracted numerous researchers to dig more details on this topic. These new-found experimental phenomena and cellular mechanisms have established the basis of theoretical studies on metaplasticity. In recent years, researchers have found that metaplasticity can not only affect the synaptic plasticity, but also regulate the neural network to encode specific content and enhance the learning and memory. These findings have greatly enriched our knowledge on plasticity and opened a new route to study the mechanism of learning and memory. In this review, we discuss the recent progress on metaplasticity on following three aspects: (1) the molecular mechanisms of metaplasticity; (2) the role of metaplasticity in learning and memory; and (3) the outlook of future study on metaplasticity.

  15. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P.; Kenyon, Christopher J.; Caughey, Sarah; Walker, Brian R.; Holmes, Megan C.; Seckl, Jonathan R.; Yau, Joyce L.W.

    2015-01-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. PMID:25497454

  16. Persistent spatial information in the frontal eye field during object-based short-term memory.

    Science.gov (United States)

    Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin

    2012-08-08

    Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.

  17. Persistent and progressive long-term lung disease in survivors of preterm birth.

    Science.gov (United States)

    Urs, Rhea; Kotecha, Sailesh; Hall, Graham L; Simpson, Shannon J

    2018-04-13

    Preterm birth accounts for approximately 11% of births globally, with rates increasing across many countries. Concurrent advances in neonatal care have led to increased survival of infants of lower gestational age (GA). However, infants born poor respiratory outcomes throughout childhood, into adolescence and adulthood. Indeed, survivors of preterm birth have shown increased respiratory symptoms, altered lung structure, persistent and even declining lung function throughout childhood. The mechanisms behind this persistent and sometimes progressive lung disease are unclear, and the implications place those born preterm at increased risk of respiratory morbidity into adulthood. This review aims to summarise what is known about the long-term pulmonary outcomes of contemporary preterm birth, examine the possible mechanisms of long-term respiratory morbidity in those born preterm and discuss addressing the unknowns and potentials for targeted treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Correlations in background activity control persistent state stability and allow execution of working memory tasks.

    Science.gov (United States)

    Dipoppa, Mario; Gutkin, Boris S

    2013-01-01

    Working memory (WM) requires selective information gating, active information maintenance, and rapid active updating. Hence performing a WM task needs rapid and controlled transitions between neural persistent activity and the resting state. We propose that changes in correlations in neural activity provides a mechanism for the required WM operations. As a proof of principle, we implement sustained activity and WM in recurrently coupled spiking networks with neurons receiving excitatory random background activity where background correlations are induced by a common noise source. We first characterize how the level of background correlations controls the stability of the persistent state. With sufficiently high correlations, the sustained state becomes practically unstable, so it cannot be initiated by a transient stimulus. We exploit this in WM models implementing the delay match to sample task by modulating flexibly in time the correlation level at different phases of the task. The modulation sets the network in different working regimes: more prompt to gate in a signal or clear the memory. We examine how the correlations affect the ability of the network to perform the task when distractors are present. We show that in a winner-take-all version of the model, where two populations cross-inhibit, correlations make the distractor blocking robust. In a version of the mode where no cross inhibition is present, we show that appropriate modulation of correlation levels is sufficient to also block the distractor access while leaving the relevant memory trace in tact. The findings presented in this manuscript can form the basis for a new paradigm about how correlations are flexibly controlled by the cortical circuits to execute WM operations.

  19. Aging Memories: Differential Decay of Episodic Memory Components

    Science.gov (United States)

    Talamini, Lucia M.; Gorree, Eva

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a…

  20. Aging memories: differential decay of episodic memory components

    NARCIS (Netherlands)

    Talamini, L.M.; Gorree, E.

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent

  1. Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans.

    Science.gov (United States)

    van Kesteren, Marlieke T R; Fernández, Guillén; Norris, David G; Hermans, Erno J

    2010-04-20

    The hippocampus is thought to promote gradual incorporation of novel information into long-term memory by binding, reactivating, and strengthening distributed cortical-cortical connections. Recent studies implicate a key role in this process for hippocampally driven crosstalk with the (ventro)medial prefrontal cortex (vmPFC), which is proposed to become a central node in such representational networks over time. The existence of a relevant prior associative network, or schema, may moreover facilitate this process. Thus, hippocampal-vmPFC crosstalk may support integration of new memories, particularly in the absence of a relevant prior schema. To address this issue, we used functional magnetic resonance imaging (fMRI) and prior schema manipulation to track hippocampal-vmPFC connectivity during encoding and postencoding rest. We manipulated prior schema knowledge by exposing 30 participants to the first part of a movie that was temporally scrambled for 15 participants. The next day, participants underwent fMRI while encoding the movie's final 15 min in original order and, subsequently, while resting. Schema knowledge and item recognition performance show that prior schema was successfully and selectively manipulated. Intersubject synchronization (ISS) and interregional partial correlation analyses furthermore show that stronger prior schema was associated with more vmPFC ISS and less hippocampal-vmPFC interregional connectivity during encoding. Notably, this connectivity pattern persisted during postencoding rest. These findings suggest that additional crosstalk between hippocampus and vmPFC is required to compensate for difficulty integrating novel information during encoding and provide tentative support for the notion that functionally relevant hippocampal-neocortical crosstalk persists during off-line periods after learning.

  2. Academic Persistence of Online Students in Higher Education Impacted by Student Progress Factors and Social Media

    Science.gov (United States)

    Lint, Anna H.

    2013-01-01

    This quantitative study evaluated and investigated the theoretical underpinnings of the Kember's (1995) student progress model that examines the direct or indirect effects of student persistence in online education by identifying the relationships between variables. The primary method of data collection in this study was a survey by exploring the…

  3. Neuropsychological alterations in mercury intoxication persist several years after exposure.

    Science.gov (United States)

    Zachi, Elaine Cristina; Taub, Anita; Faria, Marcília de Araújo Medrado; Ventura, Dora Fix

    2008-01-01

    Elemental mercury is a liquid toxic metal widely used in industry. Occupational exposure occurs mainly via inhalation. Previously, neuropsychological assessment detected deficits in former workers of a fluorescent lamp plant who had been exposed to elemental mercury vapor and were away from exposure for several years at the time of examination. The purpose of this work was to reexamine these functions after 18 months in order to evaluate their progression. Thirteen participants completed tests of attention, inhibitory control, verbal/visual memory, psychomotor speed, verbal fluency, visuomotor ability, executive function, semantic knowledge, and depression and anxiety inventories on 2 separate occasions. At baseline, the former workers indicated slower psychomotor and information processing speed, verbal spontaneous recall memory impairment, and increased depression and anxiety symptoms compared to controls (Precovery of functions, the neuropsychological effects related to mercury exposure are found to persist for many years.

  4. Risk of progression from mild memory impairment to clinically diagnosable Alzheimer's disease in a Japanese community (from the Nakayama Study).

    Science.gov (United States)

    Sonobe, Naomi; Hata, Ryuji; Ishikawa, Tomohisa; Sonobe, Kantaro; Matsumoto, Teruhisa; Toyota, Yasutaka; Mori, Takaaki; Fukuhara, Ryuji; Komori, Kenjiro; Ueno, Shu-Ichi; Tanimukai, Satoshi; Ikeda, Manabu

    2011-06-01

    Memory impairment has been proposed as the most common early sign of Alzheimer's disease (AD). The aims of this work were to evaluate the risk of progression from mild memory impairment/no dementia (MMI/ND) to clinically diagnosable AD in a community-based prospective cohort and to establish the risk factors for progression from MMI/ND to AD in the elderly. Elderly subjects aged over 65 years were selected from the participants in the first Nakayama study. MMI/ND was defined as memory deficit on objective memory assessment, without dementia, impairment of general cognitive function, or disability in activities of daily living. A total of 104 MMI/ND subjects selected from 1242 community-dwellers were followed longitudinally for five years. During the five-year follow-up, 11 (10.6%) subjects were diagnosed with AD, five (4.8%) with vascular dementia (VaD), and six (5.8%) with dementia of other etiology. Logistic regression analysis revealed that diabetes mellitus (DM) and a family history of dementia (within third-degree relatives) were positively associated with progression to AD, while no factor was significantly associated with progression to VaD or all types of dementia. DM and a family history of dementia were significant risk factors for progression from MMI/ND to clinically diagnosable AD in the elderly in a Japanese community.

  5. Subtle persistent working memory and selective attention deficits in women with premenstrual syndrome.

    Science.gov (United States)

    Slyepchenko, Anastasiya; Lokuge, Sonali; Nicholls, Brianne; Steiner, Meir; Hall, Geoffrey B C; Soares, Claudio N; Frey, Benicio N

    2017-03-01

    As a recurrent, cyclical phenomenon, premenstrual syndrome (PMS) affects a significant proportion of women of the reproductive age, and leads to regular monthly days of functional impairment. Symptoms of PMS include somatic and psychological symptoms, such as headaches, sleep disturbances, social withdrawal and mood changes, during the late luteal phase of the menstrual cycle, which alleviate during the follicular phase. This study investigated neurocognitive functioning in women with moderate to severe PMS symptoms (n=13) compared to women with mild/no PMS (n=27) through administration of a battery of neuropsychological tests during the asymptomatic follicular phase of the menstrual cycle. Relative to women with mild/no PMS symptoms, women with moderate to severe PMS showed significantly poorer accuracy and more errors of omission on the N-0-back, as well as more errors of omission on the N-2-back task, indicating the presence of impairment in selective attention and working memory. This study provides evidence of persistent, subtle working memory and selective attention difficulties in those with moderate to severe PMS during the follicular phase of the menstrual cycle. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Autobiographical memory specificity and the persistence of depressive symptoms in HIV-positive patients: rumination and social problem-solving skills as mediators.

    Science.gov (United States)

    Yanes, Paula K; Morse, Gene; Hsiao, Chiu-Bin; Simms, Leonard; Roberts, John E

    2012-01-01

    Individuals infected with human immunodeficiency virus (HIV) are at elevated risk for depressive conditions, which in turn can negatively impact health-related behaviours and the course of illness. The present study tested the role of autobiographical memory specificity and its interaction with perceived stress in the persistence of depressive symptoms among dysphoric HIV-positive individuals. Additionally, we examined whether rumination and social problem solving mediated these effects. Results indicated that memory specificity moderated the impact of perceived stress, such that perceived stress was more strongly associated with follow-up depressive symptoms among those with greater memory specificity. Rumination, but not social problem solving, mediated this effect. Implications of these findings are discussed.

  7. Academic Outcomes in Individuals With Childhood-Onset Epilepsy: Mediating Effects of Working Memory.

    Science.gov (United States)

    Danguecan, Ashley N; Smith, Mary Lou

    2017-08-01

    Academic difficulties are common in children with epilepsy, although little is known about the effect of various seizure-related and cognitive variables. Given that persistent seizures may negatively impact academics, and that working memory is predictive of academic abilities, we examined the effects of recent seizures and working memory on word reading, spelling, and arithmetic in pediatric epilepsy. We hypothesized that persistent seizures would be associated with lower working memory ability, which would in turn result in poorer academic performance. Our sample consisted of 91 children with epilepsy being treated at the Hospital for Sick Children in Toronto, Canada, who underwent neuropsychological testing between 2002 and 2009 to help determine surgical candidacy. Four to 11 years later, follow-up testing was conducted on both surgical (n=61) and non-surgical (n=30) patients. Seizure status was defined by the presence or absence of seizures within the preceding 12 months. 5000 bias-corrected bootstrap resamples with replacement were used to calculate the 95% confidence intervals (CIs) for the indirect effect of seizure status on academics through working memory, controlling for baseline academic functioning. Persistent seizures were associated with reduced working memory, which was in turn associated with lower reading (B=-4.64, 95% CI [-10.21, -1.30]), spelling (B=-7.09, 95% CI [-13.97, -2.56], and arithmetic scores (B=-8.04, 95% CI [-13.66, -3.58] at follow-up. For children with intractable epilepsy, working memory deficits present a significant barrier to the development of academic skills. Working memory interventions may be a helpful adjunct to academic remediation in this population to facilitate academic progress. (JINS, 2017, 23, 594-604).

  8. Persistence of memory B-cell and T-cell responses to the quadrivalent HPV vaccine in HIV-infected children.

    Science.gov (United States)

    Weinberg, Adriana; Huang, Sharon; Moscicki, Anna-Barbara; Saah, Afred; Levin, Myron J

    2018-04-24

    To determine the magnitude and persistence of quadrivalent human papillomavirus (HPV)16 and HPV18 B-cell and T-cell memory after three or four doses of quadrivalent HPV vaccine (QHPV) in HIV-infected children. Seventy-four HIV-infected children immunized with four doses and 23 with three doses of QHPV had HPV16 and HPV18 IgG B-cell and IFNγ and IL2 T-cell ELISPOT performed at 2, 3.5 and 4-5 years after the last dose. HPV16 and HPV18 T-cell responses were similar in both treatment groups, with higher responses to HPV16 vs. HPV18. These HPV T-cell responses correlated with HIV disease characteristics at the study visits. Global T-cell function declined over time as measured by nonspecific mitogenic stimulation. B-cell memory was similar across treatment groups and HPV genotypes. There was a decline in HPV-specific B-cell memory over time that reached statistical significance for HPV16 in the four-dose group. B-cell and T-cell memory did not significantly differ after either three or four doses of QHPV in HIV-infected children. The clinical consequences of decreasing global T-cell function and HPV B-cell memory over time in HIV-infected children requires further investigation.

  9. Cultural differences in categorical memory errors persist with age.

    Science.gov (United States)

    Gutchess, Angela; Boduroglu, Aysecan

    2018-01-02

    This cross-sectional experiment examined the influence of aging on cross-cultural differences in memory errors. Previous research revealed that Americans committed more categorical memory errors than Turks; we tested whether the cognitive constraints associated with aging impacted the pattern of memory errors across cultures. Furthermore, older adults are vulnerable to memory errors for semantically-related information, and we assessed whether this tendency occurs across cultures. Younger and older adults from the US and Turkey studied word pairs, with some pairs sharing a categorical relationship and some unrelated. Participants then completed a cued recall test, generating the word that was paired with the first. These responses were scored for correct responses or different types of errors, including categorical and semantic. The tendency for Americans to commit more categorical memory errors emerged for both younger and older adults. In addition, older adults across cultures committed more memory errors, and these were for semantically-related information (including both categorical and other types of semantic errors). Heightened vulnerability to memory errors with age extends across cultural groups, and Americans' proneness to commit categorical memory errors occurs across ages. The findings indicate some robustness in the ways that age and culture influence memory errors.

  10. Memory effect driven emissions of persistent organic pollutants from industrial thermal processes, their implications and management: a review.

    Science.gov (United States)

    Trivedi, Jitendra; Majumdar, Deepanjan

    2013-04-15

    Memory effect is delayed emission of certain persistent organic pollutants (POPs). Many of the POP compounds viz. polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) get trapped in the particulate phase deposited in the flue transfer lines and air pollution control systems (equivalent to storage in the memory of a system) and released subsequently. Memory effect driven emission is a combination of real time emission and emission of stored compounds and so is not a true measure of actual real time emission. Memory effect is now realized to have existed for a long time but was not identified and understood until recently. Memory effect has several serious implications e.g. it wrongly depicts emission patterns of POPs; it makes compliance to stipulated emission standards difficult; it could lead to wrong calculations of emission factors and emission inventory estimates of a plant and leads to misinterpretation of efficacy of processes and air pollution control systems. Further, new PCDD/Fs may be formed in the trapped particulate phase via de novo synthesis and the new compounds may be emitted, thereby increasing total PCDD/F emissions, apart from altering the homologue pattern of PCDD/Fs in emissions. Memory effect could be minimized by judicious operational and management (O&M) procedures like optimizing combustion, minimizing unnecessary halts in operations, periodical cleaning of flue transfer lines, application of inhibitors etc. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Role of Short-term Consolidation in Memory Persistence

    OpenAIRE

    Timothy J. Ricker

    2015-01-01

    Short-term memory, often described as working memory, is one of the most fundamental information processing systems of the human brain. Short-term memory function is necessary for language, spatial navigation, problem solving, and many other daily activities. Given its importance to cognitive function, understanding the architecture of short-term memory is of crucial importance to understanding human behavior. Recent work from several laboratories investigating the entry of information into s...

  12. Progressive paradoxical sleep deprivation impairs partial memory following learning tasks in rats

    Institute of Scientific and Technical Information of China (English)

    Chunmin Zhu; Xiangrong Yao; Weisheng Zhang; Yanfeng Song; Yiping Hou

    2008-01-01

    BACKGROUND: Complex learning tasks result in a greater number of paradoxical sleep phases, which can improve memory. The effect of paradoxical sleep deprivation, induced by "flower pot" technique, on spatial reference memory and working memory require further research. OBJECTIVE: To observe the effect of progressive paradoxical sleep deprivation in rats, subsequent to learning, on memory using the Morris Water Maze. DESIGN, TIME AND SETTING: Controlled observation experiment. The experiment was performed at the Laboratory of Neurobiology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Lanzhou University from December 2006 to October 2007. MATERIALS: Twenty-eight, male, Wistar rats, 3-4 months old, were provided by the Experimental Animal Center of Lanzhou University. The Morris Water Maze and behavioral analyses system was purchased from Genheart Company, Beijing, China. METHODS: All animals, according to a random digits table, were randomly divided into paradoxical sleep deprivation, tank control, and home cage control groups. Paradoxical sleep deprivation was induced by the "flower pot" technique for 72 hours, housing the rats on small platforms over water. Rats in the "tank control" and "home cage control" groups were housed either in a tank with large platforms over the water or in normal cages without paradoxical sleep deprivation. MAIN OUTCOME MEASURES: Morris Water Maze was employed for task learning and spatial memory testing. Rats in all groups were placed at six random starting points each day for four consecutive days. Each placement was repeated for two trials; the first trial represented reference memory and the second working memory. Rats in the first trial were allowed to locate the submerged platform within 120 seconds. Data, including swimming distance, escape latency, swimming velocity, percentage of time in correct quarter, and memory scores were recorded and analyzed automatically by behavioral analyses

  13. Amnestically Induced Persistence in Random Walks

    Science.gov (United States)

    Cressoni, J. C.; da Silva, Marco Antonio Alves; Viswanathan, G. M.

    2007-02-01

    We study how the Hurst exponent α depends on the fraction f of the total time t remembered by non-Markovian random walkers that recall only the distant past. We find that otherwise nonpersistent random walkers switch to persistent behavior when inflicted with significant memory loss. Such memory losses induce the probability density function of the walker’s position to undergo a transition from Gaussian to non-Gaussian. We interpret these findings of persistence in terms of a breakdown of self-regulation mechanisms and discuss their possible relevance to some of the burdensome behavioral and psychological symptoms of Alzheimer’s disease and other dementias.

  14. Term Structure Persistence

    OpenAIRE

    Abbritti, M. (Mirko); Gil-Alana, L.A. (Luis A.); Lovcha, Y. (Yuliya); Moreno, A. (Antonio)

    2012-01-01

    Stationary I(0) models employed in yield curve analysis typically imply an unrealistically low degree of volatility in long-run short-rate expectations due to fast mean reversion. In this paper we propose a novel multivariate affine term structure model with a two-fold source of persistence in the yield curve: Long-memory and short-memory. Our model, based on an I(d) specification, nests the I(0) and I(1) models as special cases and the I(0) model is decisively rejected by the data. Our model...

  15. Testing Memories of Personally Experienced Events: The Testing Effect Seems Not to Persist in Autobiographical Memory

    Science.gov (United States)

    Emmerdinger, Kathrin J.; Kuhbandner, Christof

    2018-01-01

    Numerous studies have shown that retrieving contents from memory in a test improves long-term retention for those contents, even when compared to restudying (i.e., the “testing effect”). The beneficial effect of retrieval practice has been demonstrated for many different types of memory representations; however, one particularly important memory system has not been addressed in previous testing effect research: autobiographical memory. The aim of the present study was to examine the effect of retrieving memories for personally experienced events on long-term memory for those events. In an initial elicitation session, participants described memories for personally experienced events in response to a variety of cue words. In a retrieval practice/restudy session the following day, they repeatedly practiced retrieval for half of their memories by recalling and writing down the previously described events; the other half of memories was restudied by rereading and copying the event descriptions. Long-term retention of all previously collected memories was assessed at two different retention intervals (2 weeks and 13 weeks). In the retrieval practice session, a hypermnesic effect emerged, with memory performance increasing across the practice cycles. Long-term memory performance significantly dropped from the 2-weeks to the 13-weeks retention interval, but no significant difference in memory performance was observed between previously repeatedly retrieved and previously repeatedly restudied memories. Thus, in autobiographical memory, retrieval practice seems to be no more beneficial for long-term retention than repeated re-exposure. PMID:29881365

  16. Neuropsychological alterations in mercury intoxication persist several years after exposure

    Directory of Open Access Journals (Sweden)

    Elaine Cristina Zachi

    Full Text Available Abstract Elemental mercury is a liquid toxic metal widely used in industry. Occupational exposure occurs mainly via inhalation. Previously, neuropsychological assessment detected deficits in former workers of a fluorescent lamp plant who had been exposed to elemental mercury vapor and were away from exposure for several years at the time of examination. Objectives: The purpose of this work was to reexamine these functions after 18 months in order to evaluate their progression. Methods: Thirteen participants completed tests of attention, inhibitory control, verbal/visual memory, psychomotor speed, verbal fluency, visuomotor ability, executive function, semantic knowledge, and depression and anxiety inventories on 2 separate occasions. Results: At baseline, the former workers indicated slower psychomotor and information processing speed, verbal spontaneous recall memory impairment, and increased depression and anxiety symptoms compared to controls (P<0.05. Paired comparisons of neuropsychological functioning within the exposed group at baseline and 1.5 years later showed poorer immediate memory performance (P<0.05. There were no differences on other measures. Conclusions: Although the literature show signs of recovery of functions, the neuropsychological effects related to mercury exposure are found to persist for many years.

  17. Age differences in visual sensory memory.

    Science.gov (United States)

    Walsh, D A; Thompson, L W

    1978-05-01

    Age differences in visual sensory memory were studied using the direct measure procedure of Haber and Standing (1969) -- the longest interstimulus interval at which subjects reported a single stimulus as continuous was measured. The visual storage of the young (mean age 24 years) was found to persist for 289 msec compared to 248 for the old (mean age 67 years). Similar estimates of sensory memory duration were obtained when either monoptic or dichoptic stimulus presentations were employed, supporting the idea that visual storage is centrally mediated for both age groups. The relevance of these findings for age differences in the registration of information into primary and secondary memory and their implications for the stimulus persistence hypothesis are considered. The appropriateness and validity of the persistence of form task for studies of sensory memory and aging are also discussed.

  18. Qualitative and quantitative analysis of diffusion-weighted imaging of gestational trophoblastic disease: Can it predict progression of molar pregnancy to persistent form of disease?

    Energy Technology Data Exchange (ETDEWEB)

    Sefidbakht, Sepideh [Medical imaging research center, Department of Radiology and Imaging, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Hosseini, Fatemeh, E-mail: f.hoseini88@gmail.com [Medical imaging research center, Department of Radiology and Imaging, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Bijan, Bijan [Abdominal Imaging/MR and Nonvascular Interventional Division, University of California, Davis, CA (United States); Hamedi, Bahareh; Azizi, Tayyebeh [Obstetrics& Gynecology Department, Medical School, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)

    2017-03-15

    Highlights: • The incidence of GTD in Iran is significantly higher than America and Europe. • ADC value of GTD is (1.96 ± 0.32 × 10{sup −3} mm{sup 2}/s). • GTD in T1 and T2-weighted images shows heterogeneous “snow-storm” appearance. • Focal intratumoral hemorrhage is bright in DWI and low signal in the ADC map. • ADC value and DWI are not helpful to predict progression of HM to persistent disease. - Abstract: Purpose: To describe the diffusion-weighted imaging (DWI) appearance of gestational trophoblastic disease (GTD) and to determine its apparent diffusion coefficient (ADC) values. To evaluate the feasibility of DWI to predict progression of hydatidiform mole (HM) to persistent disease. Methods: During a period of 6 months, women with preliminary diagnosis of GTD, based on ultrasound and ßhCG levels, underwent 1.5T MRI (T2 high-resolution and DWI; b values 50, 400, 800; sagittal and perpendicular to the endometrium; and T1, T2 Turbo Spin Echo [TSE] axial images). Patients were followed for 6–12 months to monitor progression to persistent form of the disease. ADC values and image characteristics were compared between HM and persistent neoplasia and between GTD and non-molar pregnancy using Mann–Whitney U and Fisher’s exact tests, respectively. Results: Among the 23 studied patients, 19 (83%) were classified as molar and 4 (17%) as non-molar, based on pathology reports. After 6–12 months of follow-up, 5 (26%) cases progressed to persistent disease and 14 (74%) cases were benign HM. There was no significant difference between ADC values for HM (1.93 ± 0.33 × 10{sup −3} mm{sup 2}/s) and persistent neoplasia (2.03 ± 0.28 × 10{sup −3} mm{sup 2}/s) (P = 0.69). The ADC of non-molar pregnancies was (0.96 ± 0.46 × 10{sup −3} mm{sup 2}/s), which was significantly different from GTD (1.96 ± 0.32 × 10{sup −3} mm{sup 2}/s) (P = 0.001). Heterogeneous snowstorm appearance, focal intratumoral hemorrhage, myometrial contraction, and

  19. The demand to progress: critical nostalgia in LGBTQ cultural memory.

    Science.gov (United States)

    de Szegheo Lang, Tamara

    2015-01-01

    This article argues that, while representations of tragic lesbian, gay, bisexual, transgender, and queer (LGBTQ) histories are disseminated widely, positive aspects of the past must be largely pushed out of the cultural imaginary to support a vision of the present in which sexual rights and freedoms have been achieved. It proposes that this view relies on a linear progress narrative wherein the experiences of LGBTQ people are held as consistently improving over time. In considering the construction of cultural memory through popular media and art, it claims a nostalgic turn to the past as a useful political tool for dismantling the pacifying aspects of the present.

  20. Persistence, spatial distribution and implications for progression detection of blind parts of the visual field in glaucoma: a clinical cohort study.

    Directory of Open Access Journals (Sweden)

    Francisco G Junoy Montolio

    Full Text Available BACKGROUND: Visual field testing is an essential part of glaucoma care. It is hampered by variability related to the disease itself, response errors and fatigue. In glaucoma, blind parts of the visual field contribute to the diagnosis but--once established--not to progression detection; they only increase testing time. The aims of this study were to describe the persistence and spatial distribution of blind test locations in standard automated perimetry in glaucoma and to explore how the omission of presumed blind test locations would affect progression detection. METHODOLOGY/PRINCIPAL FINDINGS: Data from 221 eyes of 221 patients from a cohort study with the Humphrey Field Analyzer with 30-2 grid were used. Patients were stratified according to baseline mean deviation (MD in six strata of 5 dB width each. For one, two, three and four consecutive 0.1 for all strata. Omitting test locations with three consecutive <0 dB sensitivities at baseline did not affect the performance of the MD-based Nonparametric Progression Analysis progression detection algorithm. CONCLUSIONS/SIGNIFICANCE: Test locations that have been shown to be reproducibly blind tend to display a reasonable blindness persistence and do no longer contribute to progression detection. There is no clinically useful universal MD cut-off value beyond which testing can be limited to 10 degree eccentricity.

  1. Improving Outcome of Psychosocial Treatments by Enhancing Memory and Learning

    Science.gov (United States)

    Harvey, Allison G.; Lee, Jason; Williams, Joseph; Hollon, Steven D.; Walker, Matthew P.; Thompson, Monique A.; Smith, Rita

    2014-01-01

    Mental disorders are prevalent and lead to significant impairment. Progress toward establishing treatments has been good. However, effect sizes are small to moderate, gains may not persist, and many patients derive no benefit. Our goal is to highlight the potential for empirically-supported psychosocial treatments to be improved by incorporating insights from cognitive psychology and research on education. Our central question is: If it were possible to improve memory for content of sessions of psychosocial treatments, would outcome substantially improve? This question arises from five lines of evidence: (a) mental illness is often characterized by memory impairment, (b) memory impairment is modifiable, (c) psychosocial treatments often involve the activation of emotion, (d) emotion can bias memory and (e) memory for psychosocial treatment sessions is poor. Insights from scientific knowledge on learning and memory are leveraged to derive strategies for a transdiagnostic and transtreatment cognitive support intervention. These strategies can be applied within and between sessions and to interventions delivered via computer, the internet and text message. Additional novel pathways to improving memory include improving sleep, engaging in exercise and imagery. Given that memory processes change across the lifespan, services to children and older adults may benefit from cognitive support. PMID:25544856

  2. New Rule Use Drives the Relation between Working Memory Capacity and Raven's Advanced Progressive Matrices

    Science.gov (United States)

    Wiley, Jennifer; Jarosz, Andrew F.; Cushen, Patrick J.; Colflesh, Gregory J. H.

    2011-01-01

    The correlation between individual differences in working memory capacity and performance on the Raven's Advanced Progressive Matrices (RAPM) is well documented yet poorly understood. The present work proposes a new explanation: that the need to use a new combination of rules on RAPM problems drives the relation between performance and working…

  3. Transacted Memory for Smart Cards

    NARCIS (Netherlands)

    Hartel, Pieter H.; Butler, Michael J.; de Jong, Eduard; Longley, Mark; Olivieira, J.N.; Zave, P.

    A transacted memory that is implemented using EEPROM technology offers persistence, undoability and auditing. The transacted memory system is formally specified in Z, and refined in two steps to a prototype C implementation / SPIN model. Conclusions are offered both on the transacted memory system

  4. Persistence in the Cryptocurrency Market

    OpenAIRE

    Caporale, Guglielmo Maria; Gil-Alaña, Luis A.; Plastun, Alex

    2017-01-01

    This paper examines persistence in the cryptocurrency market. Two different long-memory methods (R/S analysis and fractional integration) are used to analyse it in the case of the four main cryptocurrencies (BitCoin, LiteCoin, Ripple, Dash) over the sample period 2013-2017. The findings indicate that this market exhibits persistence (there is a positive correlation between its past and future values), and that its degree changes over time. Such predictability represents evidence of market ine...

  5. Memory Erasure Experiments Indicate a Critical Role of CaMKII in Memory Storage.

    Science.gov (United States)

    Rossetti, Tom; Banerjee, Somdeb; Kim, Chris; Leubner, Megan; Lamar, Casey; Gupta, Pooja; Lee, Bomsol; Neve, Rachael; Lisman, John

    2017-09-27

    The abundant synaptic protein CaMKII is necessary for long-term potentiation (LTP) and memory. However, whether CaMKII is required only during initial processes or whether it also mediates memory storage remains unclear. The most direct test of a storage role is the erasure test. In this test, a putative memory molecule is inhibited after learning. The key prediction is that this should produce persistent memory erasure even after the inhibitory agent is removed. We conducted this test using transient viral (HSV) expression of dominant-negative CaMKII-alpha (K42M) in the hippocampus. This produced persistent erasure of conditioned place avoidance. As an additional test, we found that expression of activated CaMKII (T286D/T305A/T306A) impaired place avoidance, a result not expected if a process other than CaMKII stores memory. Our behavioral results, taken together with prior experiments on LTP, strongly support a critical role of CaMKII in LTP maintenance and memory storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Requirement for nuclear calcium signaling in Drosophila long-term memory.

    Science.gov (United States)

    Weislogel, Jan-Marek; Bengtson, C Peter; Müller, Michaela K; Hörtzsch, Jan N; Bujard, Martina; Schuster, Christoph M; Bading, Hilmar

    2013-05-07

    Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.

  7. Design and Implementation of Papyrus: Parallel Aggregate Persistent Storage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungwon [ORNL; Sajjapongse, Kittisak [ORNL; Lee, Seyong [ORNL; Vetter, Jeffrey S [ORNL

    2017-01-01

    A surprising development in recently announced HPC platforms is the addition of, sometimes massive amounts of, persistent (nonvolatile) memory (NVM) in order to increase memory capacity and compensate for plateauing I/O capabilities. However, there are no portable and scalable programming interfaces using aggregate NVM effectively. This paper introduces Papyrus: a new software system built to exploit emerging capability of NVM in HPC architectures. Papyrus (or Parallel Aggregate Persistent -YRU- Storage) is a novel programming system that provides features for scalable, aggregate, persistent memory in an extreme-scale system for typical HPC usage scenarios. Papyrus mainly consists of Papyrus Virtual File System (VFS) and Papyrus Template Container Library (TCL). Papyrus VFS provides a uniform aggregate NVM storage image across diverse NVM architectures. It enables Papyrus TCL to provide a portable and scalable high-level container programming interface whose data elements are distributed across multiple NVM nodes without requiring the user to handle complex communication, synchronization, replication, and consistency model. We evaluate Papyrus on two HPC systems, including UTK Beacon and NERSC Cori, using real NVM storage devices.

  8. Auditory memory for temporal characteristics of sound.

    Science.gov (United States)

    Zokoll, Melanie A; Klump, Georg M; Langemann, Ulrike

    2008-05-01

    This study evaluates auditory memory for variations in the rate of sinusoidal amplitude modulation (SAM) of noise bursts in the European starling (Sturnus vulgaris). To estimate the extent of the starling's auditory short-term memory store, a delayed non-matching-to-sample paradigm was applied. The birds were trained to discriminate between a series of identical "sample stimuli" and a single "test stimulus". The birds classified SAM rates of sample and test stimuli as being either the same or different. Memory performance of the birds was measured as the percentage of correct classifications. Auditory memory persistence time was estimated as a function of the delay between sample and test stimuli. Memory performance was significantly affected by the delay between sample and test and by the number of sample stimuli presented before the test stimulus, but was not affected by the difference in SAM rate between sample and test stimuli. The individuals' auditory memory persistence times varied between 2 and 13 s. The starlings' auditory memory persistence in the present study for signals varying in the temporal domain was significantly shorter compared to that of a previous study (Zokoll et al. in J Acoust Soc Am 121:2842, 2007) applying tonal stimuli varying in the spectral domain.

  9. Structural, Synaptic, and Epigenetic Dynamics of Enduring Memories

    Directory of Open Access Journals (Sweden)

    Ossama Khalaf

    2016-01-01

    Full Text Available Our memories are the records of the experiences we gain in our everyday life. Over time, they slowly transform from an initially unstable state into a long-lasting form. Many studies have been investigating from different aspects how a memory could persist for sometimes up to decades. In this review, we highlight three of the greatly addressed mechanisms that play a central role for a given memory to endure: the allocation of the memory to a given neuronal population and what brain areas are recruited for its storage; the structural changes that underlie memory persistence; and finally the epigenetic control of gene expression that might regulate and support memory perseverance. Examining such key properties of a memory is essential towards a finer understanding of its capacity to last.

  10. Structural, Synaptic, and Epigenetic Dynamics of Enduring Memories

    Science.gov (United States)

    Khalaf, Ossama; Gräff, Johannes

    2016-01-01

    Our memories are the records of the experiences we gain in our everyday life. Over time, they slowly transform from an initially unstable state into a long-lasting form. Many studies have been investigating from different aspects how a memory could persist for sometimes up to decades. In this review, we highlight three of the greatly addressed mechanisms that play a central role for a given memory to endure: the allocation of the memory to a given neuronal population and what brain areas are recruited for its storage; the structural changes that underlie memory persistence; and finally the epigenetic control of gene expression that might regulate and support memory perseverance. Examining such key properties of a memory is essential towards a finer understanding of its capacity to last. PMID:26933513

  11. Memory as the "whole brain work": a large-scale model based on "oscillations in super-synergy".

    Science.gov (United States)

    Başar, Erol

    2005-01-01

    According to recent trends, memory depends on several brain structures working in concert across many levels of neural organization; "memory is a constant work-in progress." The proposition of a brain theory based on super-synergy in neural populations is most pertinent for the understanding of this constant work in progress. This report introduces a new model on memory basing on the processes of EEG oscillations and Brain Dynamics. This model is shaped by the following conceptual and experimental steps: 1. The machineries of super-synergy in the whole brain are responsible for formation of sensory-cognitive percepts. 2. The expression "dynamic memory" is used for memory processes that evoke relevant changes in alpha, gamma, theta and delta activities. The concerted action of distributed multiple oscillatory processes provides a major key for understanding of distributed memory. It comprehends also the phyletic memory and reflexes. 3. The evolving memory, which incorporates reciprocal actions or reverberations in the APLR alliance and during working memory processes, is especially emphasized. 4. A new model related to "hierarchy of memories as a continuum" is introduced. 5. The notions of "longer activated memory" and "persistent memory" are proposed instead of long-term memory. 6. The new analysis to recognize faces emphasizes the importance of EEG oscillations in neurophysiology and Gestalt analysis. 7. The proposed basic framework called "Memory in the Whole Brain Work" emphasizes that memory and all brain functions are inseparable and are acting as a "whole" in the whole brain. 8. The role of genetic factors is fundamental in living system settings and oscillations and accordingly in memory, according to recent publications. 9. A link from the "whole brain" to "whole body," and incorporation of vegetative and neurological system, is proposed, EEG oscillations and ultraslow oscillations being a control parameter.

  12. Generating Dynamic Persistence in the Time Domain

    Science.gov (United States)

    Guerrero, A.; Smith, L. A.; Smith, L. A.; Kaplan, D. T.

    2001-12-01

    Many dynamical systems present long-range correlations. Physically, these systems vary from biological to economical, including geological or urban systems. Important geophysical candidates for this type of behaviour include weather (or climate) and earthquake sequences. Persistence is characterised by slowly decaying correlation function; that, in theory, never dies out. The Persistence exponent reflects the degree of memory in the system and much effort has been expended creating and analysing methods that successfully estimate this parameter and model data that exhibits persistence. The most widely used methods for generating long correlated time series are not dynamical systems in the time domain, but instead are derived from a given spectral density. Little attention has been drawn to modelling persistence in the time domain. The time domain approach has the advantage that an observation at certain time can be calculated using previous observations which is particularly suitable when investigating the predictability of a long memory process. We will describe two of these methods in the time domain. One is a traditional approach using fractional ARIMA (autoregressive and moving average) models; the second uses a novel approach to extending a given series using random Fourier basis functions. The statistical quality of the two methods is compared, and they are contrasted with weather data which shows, reportedly, persistence. The suitability of this approach both for estimating predictability and for making predictions is discussed.

  13. Propagation of soil moisture memory into the climate system

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2012-04-01

    Soil moisture is known for its integrative behaviour and resulting memory characteristics. Associated anomalies can persist for weeks or even months into the future, making initial soil moisture an important potential component in weather forecasting. This is particularly crucial given the role of soil moisture for land-atmosphere interactions and its impacts on the water and energy balances on continents. We present here an analysis of the characteristics of soil moisture memory and of its propagation into runoff and evapotranspiration in Europe, based on available measurements from several sites across the continent and expanding a previous analysis focused on soil moisture [1]. We identify the main drivers of soil moisture memory at the analysed sites, as well as their role for the propagation of soil moisture persistence into runoff and evapotranspiration memory characteristics. We focus on temporal and spatial variations in these relationships and identify seasonal and latitudinal differences in the persistence of soil moisture, evapotranspiration and runoff. Finally, we assess the role of these persistence characteristics for the development of agricultural and hydrological droughts. [1] Orth and Seneviratne: Analysis of soil moisture memory from observations in Europe; submitted to J. Geophysical Research.

  14. Sleep after Learning Aids Memory Recall

    Science.gov (United States)

    Born, Jan; Gais, Steffen; Lucas, Brian

    2006-01-01

    In recent years, the effect of sleep on memory consolidation has received considerable attention. In humans, these studies concentrated mainly on procedural types of memory, which are considered to be hippocampus-independent. Here, we show that sleep also has a persisting effect on hippocampus-dependent declarative memory. In two experiments, we…

  15. Persistent deficits in hippocampal synaptic plasticity accompany losses of hippocampus-dependent memory in a rodent model of psychosis

    Directory of Open Access Journals (Sweden)

    Valentina eWiescholleck

    2013-03-01

    Full Text Available Irreversible N-methyl-D-aspartate receptor (NMDAR antagonism is known to provoke symptoms of psychosis and schizophrenia in healthy humans. NMDAR hypofunction is believed to play a central role in the pathophysiology of both disorders and in an animal model of psychosis, that is based on irreversible antagonism of NMDARs, pronounced deficits in hippocampal synaptic plasticity have been reported shortly after antagonist treatment. Here, we examined the long-term consequences for long-term potentiation (LTP of a single acute treatment with an irreversible antagonist and investigated whether deficits are associated with memory impairments.The ability to express long-term potentiation (LTP at the perforant pathway – dentate gyrus synapse, as well as object recognition memory was assessed 1, 2, 3 and 4 weeks after a single -treatment of the antagonist, MK801. Here, LTP in freely behaving rats was significantly impaired at all time-points compared to control LTP before treatment. Object recognition memory was also significantly poorer in MK801-treated compared to vehicle-treated animals for several weeks after treatment. Histological analysis revealed no changes in brain tissue.Taken together, these data support that acute treatment with an irreversible NMDAR antagonist persistently impairs hippocampal functioning on behavioral, as well as synaptic levels. The long-term deficits in synaptic plasticity may underlie the cognitive impairments that are associated with schizophrenia-spectrum disorders.

  16. Effect of an Enhanced Nose-to-Brain Delivery of Insulin on Mild and Progressive Memory Loss in the Senescence-Accelerated Mouse.

    Science.gov (United States)

    Kamei, Noriyasu; Tanaka, Misa; Choi, Hayoung; Okada, Nobuyuki; Ikeda, Takamasa; Itokazu, Rei; Takeda-Morishita, Mariko

    2017-03-06

    Insulin is now considered to be a new drug candidate for treating dementias, such as Alzheimer's disease, whose pathologies are linked to insulin resistance in the brain. Our recent work has clarified that a noncovalent strategy involving cell-penetrating peptides (CPPs) can increase the direct transport of insulin from the nasal cavity into the brain parenchyma. The present study aimed to determine whether the brain insulin level increased by intranasal coadministration of insulin with the CPP penetratin has potential for treating dementia. The pharmacological actions of insulin were investigated at different stages of memory impairment using a senescence-accelerated mouse-prone 8 (SAMP8) model. The results of spatial learning tests suggested that chronic intranasal administration of insulin with l-penetratin to SAMP8 slowed the progression of memory loss in the early stage of memory impairment. However, contrary to expectations, this strategy using penetratin was ineffective in recovering the severe cognitive dysfunction in the progressive stage, which involves brain accumulation of amyloid β (Aβ). Immunohistological examination of hippocampal regions of samples from SAMP8 in the progressive stage suggested that accelerated nose-to-brain insulin delivery had a partial neuroprotective function but unexpectedly increased Aβ plaque deposition in the hippocampus. These findings suggest that the efficient nose-to-brain delivery of insulin combined with noncovalent CPP strategy has different effects on dementia during the mild and progressive stages of cognitive dysfunction.

  17. Detailed Sensory Memory, Sloppy Working Memory

    OpenAIRE

    Sligte, Ilja G.; Vandenbroucke, Annelinde R. E.; Scholte, H. Steven; Lamme, Victor A. F.

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a...

  18. Short-term memory in networks of dissociated cortical neurons.

    Science.gov (United States)

    Dranias, Mark R; Ju, Han; Rajaram, Ezhilarasan; VanDongen, Antonius M J

    2013-01-30

    Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissociated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity, persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting the stage for therapeutic applications using this platform.

  19. Feelings without memory in Alzheimer disease.

    Science.gov (United States)

    Guzmán-Vélez, Edmarie; Feinstein, Justin S; Tranel, Daniel

    2014-09-01

    Patients with Alzheimer disease (AD) typically have impaired declarative memory as a result of hippocampal damage early in the disease. Far less is understood about AD's effect on emotion. We investigated whether feelings of emotion can persist in patients with AD, even after their declarative memory for what caused the feelings has faded. A sample of 17 patients with probable AD and 17 healthy comparison participants (case-matched for age, sex, and education) underwent 2 separate emotion induction procedures in which they watched film clips intended to induce feelings of sadness or happiness. We collected real-time emotion ratings at baseline and at 3 post-induction time points, and we administered a test of declarative memory shortly after each induction. As expected, the patients with AD had severely impaired declarative memory for both the sad and happy films. Despite their memory impairment, the patients continued to report elevated levels of sadness and happiness that persisted well beyond their memory for the films. This outcome was especially prominent after the sadness induction, with sustained elevations in sadness lasting for more than 30 minutes, even in patients with no conscious recollection for the films. These findings indicate that patients with AD can experience prolonged states of emotion that persist well beyond the patients' memory for the events that originally caused the emotion. The preserved emotional life evident in patients with AD has important implications for their management and care, and highlights the need for caretakers to foster positive emotional experiences.

  20. Memory vs memory-like: The different facets of CD8+ T-cell memory in HCV infection.

    Science.gov (United States)

    Hofmann, Maike; Wieland, Dominik; Pircher, Hanspeter; Thimme, Robert

    2018-05-01

    Memory CD8 + T cells are essential in orchestrating protection from re-infection. Hallmarks of virus-specific memory CD8 + T cells are the capacity to mount recall responses with rapid induction of effector cell function and antigen-independent survival. Growing evidence reveals that even chronic infection does not preclude virus-specific CD8 + T-cell memory formation. However, whether this kind of CD8 + T-cell memory that is established during chronic infection is indeed functional and provides protection from re-infection is still unclear. Human chronic hepatitis C virus infection represents a unique model system to study virus-specific CD8 + T-cell memory formation during and after cessation of persisting antigen stimulation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Pregnancy persistently affects memory T cell populations

    NARCIS (Netherlands)

    Kieffer, Tom E. C.; Faas, Marijke M.; Scherjon, Sicco A.; Prins, Jelmer R.

    Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the

  2. Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia.

    Science.gov (United States)

    Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J

    2017-06-01

    Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Aging memories: differential decay of episodic memory components.

    Science.gov (United States)

    Talamini, Lucia M; Gorree, Eva

    2012-05-17

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a preferential loss of hippocampus-dependent, configurational information over more cortically based memory components, including memory for individual objects. The current study systematically tests this hypothesis, using a new paradigm that allows the contemporaneous assessment of memory for objects, object pairings, and object-position conjunctions. Retention of each memory component was tested, at multiple intervals, up to 3 mo following encoding. The three memory subtasks adopted the same retrieval paradigm and were matched for initial difficulty. Results show differential decay of the tested episodic memory components, whereby memory for configurational aspects of a scene (objects' co-occurrence and object position) decays faster than memory for featured objects. Interestingly, memory requiring a visually detailed object representation decays at a similar rate as global object recognition, arguing against interpretations based on task difficulty and against the notion that (visual) detail is forgotten preferentially. These findings show that memories undergo qualitative changes as they age. More specifically, event memories become less configurational over time, preferentially losing some of the higher order associations that are dependent on the hippocampus for initial fast encoding. Implications for theories of long-term memory are discussed.

  4. Do animacy effects persist in memory for context?

    Science.gov (United States)

    Gelin, Margaux; Bonin, Patrick; Méot, Alain; Bugaiska, Aurélia

    2018-04-01

    The adaptive view of human memory assumes that animates (e.g, rabbit) are remembered better than inanimates (e.g. glass) because animates are ultimately more important for fitness than inanimates. Previous studies provided evidence for this view by showing that animates were recalled or recognized better than inanimates, but they did not assess memory for contextual details (e.g., where animates vs inanimates occurred). In this study, we tested recollection of spatial information (Study 1) and temporal information (Study 2) associated with animate versus inanimate words. The findings showed that the two types of contextual information were remembered better when they were related to animates than to inanimates. These findings provide further evidence for an ultimate explanation of animacy effects.

  5. Common variants in immune and DNA repair genes and risk for human papillomavirus persistence and progression to cervical cancer.

    Science.gov (United States)

    Wang, Sophia S; Bratti, M Concepcion; Rodríguez, Ana Cecilia; Herrero, Rolando; Burk, Robert D; Porras, Carolina; González, Paula; Sherman, Mark E; Wacholder, Sholom; Lan, Z Elizabeth; Schiffman, Mark; Chanock, Stephen J; Hildesheim, Allan

    2009-01-01

    We examined host genetic factors to identify those more common in individuals whose human papillomavirus (HPV) infections were most likely to persist and progress to cervical intraepithelial neoplasia grade 3 (CIN3) and cancer. We genotyped 92 single-nucleotide polymorphisms (SNPs) from 49 candidate immune response and DNA repair genes obtained from 469 women with CIN3 or cancer, 390 women with persistent HPV infections (median duration, 25 months), and 452 random control subjects from the 10,049-woman Guanacaste Costa Rica Natural History Study. We calculated odds ratios and 95% confidence intervals (CIs) for the association of SNP and haplotypes in women with CIN3 or cancer and HPV persistence, compared with random control subjects. A SNP in the Fanconi anemia complementation group A gene (FANCA) (G501S) was associated with increased risk of CIN3 or cancer. The AG and GG genotypes had a 1.3-fold (95% CI, 0.95-1.8-fold) and 1.7-fold (95% CI, 1.1-2.6-fold) increased risk for CIN3 or cancer, respectively (P(trend) = .008; referent, AA). The FANCA haplotype that included G501S also conferred increased risk of CIN3 or cancer, as did a different haplotype that included 2 other FANCA SNPs (G809A and T266A). A SNP in the innate immune gene IRF3 (S427T) was associated with increased risk for HPV persistence (P(trend) = .009). Our results require replication but support the role of FANCA variants in cervical cancer susceptibility and of IRF3 in HPV persistence.

  6. Persistence of Long-Term Memory in Vitrified and Revived Caenorhabditis elegans.

    Science.gov (United States)

    Vita-More, Natasha; Barranco, Daniel

    2015-10-01

    Can memory be retained after cryopreservation? Our research has attempted to answer this long-standing question by using the nematode worm Caenorhabditis elegans, a well-known model organism for biological research that has generated revolutionary findings but has not been tested for memory retention after cryopreservation. Our study's goal was to test C. elegans' memory recall after vitrification and reviving. Using a method of sensory imprinting in the young C. elegans, we establish that learning acquired through olfactory cues shapes the animal's behavior and the learning is retained at the adult stage after vitrification. Our research method included olfactory imprinting with the chemical benzaldehyde (C6H5CHO) for phase-sense olfactory imprinting at the L1 stage, the fast-cooling SafeSpeed method for vitrification at the L2 stage, reviving, and a chemotaxis assay for testing memory retention of learning at the adult stage. Our results in testing memory retention after cryopreservation show that the mechanisms that regulate the odorant imprinting (a form of long-term memory) in C. elegans have not been modified by the process of vitrification or by slow freezing.

  7. Long-term outcomes of memory retrieval under stress

    NARCIS (Netherlands)

    Tollenaar, M.S.; Elzinga, B.M.; Spinhoven, P.; Everaerd, W.

    2008-01-01

    Previous studies have found impairing effects of stress hormones on memory retrieval. So far, it is unknown whether these impairments are temporary, persistent throughout time, or whether the strength of the memory trace changes after retrieval because of the effects of stress hormones on memory

  8. Methylphenidate and Memory and Attention Adaptation Training for Persistent Cognitive Symptoms after Traumatic Brain Injury: A Randomized, Placebo-Controlled Trial.

    Science.gov (United States)

    McDonald, Brenna C; Flashman, Laura A; Arciniegas, David B; Ferguson, Robert J; Xing, Li; Harezlak, Jaroslaw; Sprehn, Gwen C; Hammond, Flora M; Maerlender, Arthur C; Kruck, Carrie L; Gillock, Karen L; Frey, Kim; Wall, Rachel N; Saykin, Andrew J; McAllister, Thomas W

    2017-08-01

    The purpose of this multicenter, prospective, randomized, placebo-controlled study was to evaluate and compare the efficacy of two cognitive rehabilitation interventions (Memory and Attention Adaptation Training (MAAT) and Attention Builders Training (ABT)), with and without pharmacological enhancement (ie, with methylphenidate (MPH) or placebo), for treating persistent cognitive problems after traumatic brain injury (TBI). Adults with a history of TBI at least 4 months before study enrollment with either objective cognitive deficits or subjective cognitive complaints were randomized to receive MPH or placebo and MAAT or ABT, yielding four treatment combinations: MAAT/MPH (N=17), ABT/MPH (N=19), MAAT/placebo (N=17), and ABT/placebo (N=18). Assessments were conducted pre-treatment (baseline) and after 6 weeks of treatment (post treatment). Outcome measures included scores on neuropsychological measures and subjective rating scales. Statistical analyses used linear regression models to predict post-treatment scores for each outcome variable by treatment type, adjusting for relevant covariates. Statistically significant (PABT/placebo), nonverbal learning (MAAT/MPH>MAAT/placebo and MAAT/MPH>ABT/MPH), and auditory working memory and divided attention (MAAT/MPH>ABT/MPH). These results suggest that combined treatment with metacognitive rehabilitation (MAAT) and pharmacotherapy (MPH) can improve aspects of attention, episodic and working memory, and executive functioning after TBI.

  9. Tumour model with intrusive morphology, progressive phenotypical heterogeneity and memory

    Science.gov (United States)

    Atangana, Abdon; Alqahtani, Rubayyi T.

    2018-03-01

    The model of a tumour, taking into account invasive morphology, progressive phenotypical heterogeneity and also memory, is developed and analyzed in this paper. Three models are investigated: first we consider the model describing the proliferation concentrates in proximity of tumour boundaries, in which the oxygen levels are pronounced. Then we consider the model where the oxygen around the tumour is considered to be unchanged by the vascular system. Finally, we investigate the model of growth of tumours using the concept of non-local operators with the Mittag-Leffler kernel. We provide the numerical solution using the extended 3/8 Simpson method for the new trends of fractional integration for the proliferation concentrates in the proximity of the tumour model. Then we provide the exact solutions of the Gompertz model with three different fractional differentiations involving power law, exponential decay law and the Mittag-Leffler law.

  10. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice.

    Science.gov (United States)

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-05-17

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice.

  11. The role of temporal synchrony as a binding cue for visual persistence in early visual areas: an fMRI study.

    Science.gov (United States)

    Wong, Yvonne J; Aldcroft, Adrian J; Large, Mary-Ellen; Culham, Jody C; Vilis, Tutis

    2009-12-01

    We examined the role of temporal synchrony-the simultaneous appearance of visual features-in the perceptual and neural processes underlying object persistence. When a binding cue (such as color or motion) momentarily exposes an object from a background of similar elements, viewers remain aware of the object for several seconds before it perceptually fades into the background, a phenomenon known as object persistence. We showed that persistence from temporal stimulus synchrony, like that arising from motion and color, is associated with activation in the lateral occipital (LO) area, as measured by functional magnetic resonance imaging. We also compared the distribution of occipital cortex activity related to persistence to that of iconic visual memory. Although activation related to iconic memory was largely confined to LO, activation related to object persistence was present across V1 to LO, peaking in V3 and V4, regardless of the binding cue (temporal synchrony, motion, or color). Although persistence from motion cues was not associated with higher activation in the MT+ motion complex, persistence from color cues was associated with increased activation in V4. Taken together, these results demonstrate that although persistence is a form of visual memory, it relies on neural mechanisms different from those of iconic memory. That is, persistence not only activates LO in a cue-independent manner, it also recruits visual areas that may be necessary to maintain binding between object elements.

  12. Stress and memory in humans: twelve years of progress?

    Science.gov (United States)

    Wolf, Oliver T

    2009-10-13

    Stress leads to an enhanced activity of the hypothalamus-pituitary adrenal (HPA) axis resulting in an increased release of glucocorticoids from the adrenal cortex. These hormones influence target systems in the periphery as well as in the brain. The present review paper describes the impact of the human stress hormone cortisol on episodic long-term memory. Starting out with our early observation that stress as well as cortisol treatment impaired declarative memory, experiments by the author are described, which result in an enhanced understanding of how cortisol influences memory. The main conclusions are that stress or cortisol treatment temporarily blocks memory retrieval. The effect is stronger for emotional arousing material independent of its valence. In addition cortisol only influences memory when a certain amount of testing induced arousal occurs. A functional magnetic resonance imaging (fMRI) study suggests that the neuronal correlate of the cortisol induced retrieval blockade is a reduced activity of the hippocampus. In contrast to the effects on retrieval cortisol enhances memory consolidation. Again this effect is often stronger for emotionally arousing material and sometimes occurs at the cost of memory for neutral material. A fMRI study revealed that higher cortisol levels were associated with a stronger amygdala response to emotional stimuli. Thus stimulatory effects of cortisol on this structure might underlie the cortisol induced enhancement of emotional memory consolidation. The findings presented are in line with models derived from experiments in rodents and are of relevance for our understanding of stress associated psychiatric disorders.

  13. Durable fear memories require PSD-95

    Science.gov (United States)

    Fitzgerald, Paul J.; Pinard, Courtney R.; Camp, Marguerite C.; Feyder, Michael; Sah, Anupam; Bergstrom, Hadley; Graybeal, Carolyn; Liu, Yan; Schlüter, Oliver; Grant, Seth G.N.; Singewald, Nicolas; Xu, Weifeng; Holmes, Andrew

    2014-01-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. While overly persistent fear memories underlie anxiety disorders such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Post-synaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Employing a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95GK), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95GK mice to retrieve remote cued fear memories was associated with hypoactivation of the infralimbic cortex (IL) (not anterior cingulate (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated PSD-95 virus-mediated knockdown in the IL, not ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories. PMID:25510511

  14. Object Persistence Enhances Spatial Navigation: A Case Study in Smartphone Vision Science.

    Science.gov (United States)

    Liverence, Brandon M; Scholl, Brian J

    2015-07-01

    Violations of spatiotemporal continuity disrupt performance in many tasks involving attention and working memory, but experiments on this topic have been limited to the study of moment-by-moment on-line perception, typically assessed by passive monitoring tasks. We tested whether persisting object representations also serve as underlying units of longer-term memory and active spatial navigation, using a novel paradigm inspired by the visual interfaces common to many smartphones. Participants used key presses to navigate through simple visual environments consisting of grids of icons (depicting real-world objects), only one of which was visible at a time through a static virtual window. Participants found target icons faster when navigation involved persistence cues (via sliding animations) than when persistence was disrupted (e.g., via temporally matched fading animations), with all transitions inspired by smartphone interfaces. Moreover, this difference occurred even after explicit memorization of the relevant information, which demonstrates that object persistence enhances spatial navigation in an automatic and irresistible fashion. © The Author(s) 2015.

  15. Towards the Emergence of Procedural Memories from Lifelong Multi-Modal Streaming Memories for Cognitive Robots

    OpenAIRE

    Petit, M; Fischer, T; Demiris, Y

    2016-01-01

    Various research topics are emerging as the demand for intelligent lifelong interactions between robot and humans increases. Among them, we can find the examination of persistent storage, the continuous unsupervised annotation of memories and the usage of data at high-frequency over long periods of time. We recently proposed a lifelong autobiographical memory architecture tackling some of these challenges, allowing the iCub humanoid robot to 1) create new memories for both actions that are se...

  16. Schemas and memory consolidation.

    Science.gov (United States)

    Tse, Dorothy; Langston, Rosamund F; Kakeyama, Masaki; Bethus, Ingrid; Spooner, Patrick A; Wood, Emma R; Witter, Menno P; Morris, Richard G M

    2007-04-06

    Memory encoding occurs rapidly, but the consolidation of memory in the neocortex has long been held to be a more gradual process. We now report, however, that systems consolidation can occur extremely quickly if an associative "schema" into which new information is incorporated has previously been created. In experiments using a hippocampal-dependent paired-associate task for rats, the memory of flavor-place associations became persistent over time as a putative neocortical schema gradually developed. New traces, trained for only one trial, then became assimilated and rapidly hippocampal-independent. Schemas also played a causal role in the creation of lasting associative memory representations during one-trial learning. The concept of neocortical schemas may unite psychological accounts of knowledge structures with neurobiological theories of systems memory consolidation.

  17. Hierarchical Traces for Reduced NSM Memory Requirements

    Science.gov (United States)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  18. Abnormal Fear Memory as a Model for Posttraumatic Stress Disorder.

    Science.gov (United States)

    Desmedt, Aline; Marighetto, Aline; Piazza, Pier-Vincenzo

    2015-09-01

    For over a century, clinicians have consistently described the paradoxical co-existence in posttraumatic stress disorder (PTSD) of sensory intrusive hypermnesia and declarative amnesia for the same traumatic event. Although this amnesia is considered as a critical etiological factor of the development and/or persistence of PTSD, most current animal models in basic neuroscience have focused exclusively on the hypermnesia, i.e., the persistence of a strong fear memory, neglecting the qualitative alteration of fear memory. The latest is characterized by an underrepresentation of the trauma in the context-based declarative memory system in favor of its overrepresentation in a cue-based sensory/emotional memory system. Combining psychological and neurobiological data as well as theoretical hypotheses, this review supports the idea that contextual amnesia is at the core of PTSD and its persistence and that altered hippocampal-amygdalar interaction may contribute to such pathologic memory. In a first attempt to unveil the neurobiological alterations underlying PTSD-related hypermnesia/amnesia, we describe a recent animal model mimicking in mice some critical aspects of such abnormal fear memory. Finally, this line of argument emphasizes the pressing need for a systematic comparison between normal/adaptive versus abnormal/maladaptive fear memory to identify biomarkers of PTSD while distinguishing them from general stress-related, potentially adaptive, neurobiological alterations. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Diffusion coefficients for multi-step persistent random walks on lattices

    International Nuclear Information System (INIS)

    Gilbert, Thomas; Sanders, David P

    2010-01-01

    We calculate the diffusion coefficients of persistent random walks on lattices, where the direction of a walker at a given step depends on the memory of a certain number of previous steps. In particular, we describe a simple method which enables us to obtain explicit expressions for the diffusion coefficients of walks with a two-step memory on different classes of one-, two- and higher dimensional lattices.

  20. Fluoxetine Inhibits Natural Decay of Long-Term Memory via Akt/GSK-3β Signaling.

    Science.gov (United States)

    Yi, Jee Hyun; Zhang, JiaBao; Ko, Sang Yoon; Kwon, Huiyoung; Jeon, Se Jin; Park, Se Jin; Jung, Jiwook; Kim, Byung C; Lee, Young Choon; Kim, Dong Hyun; Ryu, Jong Hoon

    2018-02-09

    Understanding the mechanisms underlying the natural decay of long-term memory can help us find means of extending the duration of long-term memory. However, the neurobiological processes involved in the decay of long-term memory are poorly understood. In the present study, we examined the effect of acute and chronic treatment of fluoxetine on natural decay of long-term memory and the possible mechanism. Late administration of fluoxetine prolonged the persistence of long-term memory in mice, as demonstrated by object location recognition and Barnes maze tests. Fluoxetine altered Akt/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling in the hippocampus. Late short- and long-term pharmacological inhibition of GSK-3β mimicked the effect of fluoxetine on memory persistence. Pharmacological inhibition of Akt blocked the effect of fluoxetine on memory persistence. Finally, late infusion of fluoxetine increased hippocampal long-term potentiation (LTP) and pharmacological inhibition of GSK-3β blocked the natural decline in LTP. These results demonstrate that GSK-3β might be a key molecule in memory decay process, and fluoxetine extends the period of long-term memory maintenance via Akt/GSK-3β signaling.

  1. Auditory sensory memory and language abilities in former late talkers: a mismatch negativity study.

    Science.gov (United States)

    Grossheinrich, Nicola; Kademann, Stefanie; Bruder, Jennifer; Bartling, Juergen; Von Suchodoletz, Waldemar

    2010-09-01

    The present study investigated whether (a) a reduced duration of auditory sensory memory is found in late talking children and (b) whether deficits of sensory memory are linked to persistent difficulties in language acquisition. Former late talkers and children without delayed language development were examined at the age of 4 years and 7 months using mismatch negativity (MMN) with interstimulus intervals (ISIs) of 500 ms and 2000 ms. Additionally, short-term memory, language skills, and nonverbal intelligence were assessed. MMN mean amplitude was reduced for the ISI of 2000 ms in former late talking children both with and without persistent language deficits. In summary, our findings suggest that late talkers are characterized by a reduced duration of auditory sensory memory. However, deficits in auditory sensory memory are not sufficient for persistent language difficulties and may be compensated for by some children.

  2. Neural Correlates of Verbal Episodic Memory and Lexical Retrieval in Logopenic Variant Primary Progressive Aphasia.

    Science.gov (United States)

    Win, Khaing T; Pluta, John; Yushkevich, Paul; Irwin, David J; McMillan, Corey T; Rascovsky, Katya; Wolk, David; Grossman, Murray

    2017-01-01

    Objective: Logopenic variant primary progressive aphasia (lvPPA) is commonly associated with Alzheimer's disease (AD) pathology. But lvPPA patients display different cognitive and anatomical profile from the common clinical AD patients, whose verbal episodic memory is primarily affected. Reports of verbal episodic memory difficulty in lvPPA are inconsistent, and we hypothesized that their lexical retrieval impairment contributes to verbal episodic memory performance and is associated with left middle temporal gyrus atrophy. Methods: We evaluated patients with lvPPA ( n = 12) displaying prominent word-finding and repetition difficulties, and a demographically-matched cohort of clinical Alzheimer's disease (AD, n = 26), and healthy seniors ( n = 16). We assessed lexical retrieval with confrontation naming and verbal episodic memory with delayed free recall. Whole-brain regressions related naming and delayed free recall to gray matter atrophy. Medial temporal lobe (MTL) subfields were examined using high in-plane resolution imaging. Results: lvPPA patients had naming and delayed free recall impairments, but intact recognition memory. In lvPPA, delayed free recall was related to naming; both were associated with left middle temporal gyrus atrophy but not MTL atrophy. Despite cerebrospinal fluid evidence consistent with AD pathology, examination of MTL subfields revealed no atrophy in lvPPA. While AD patients displayed impaired delayed free recall, this deficit did not correlate with naming. Regression analyses related delayed free recall deficits in clinical AD patients to MTL subfield atrophy, and naming to left middle temporal gyrus atrophy. Conclusion: Unlike amnestic AD patients, MTL subfields were not affected in lvPPA patients. Verbal episodic memory deficit observed in lvPPA was unlikely to be due to a hippocampal-mediated mechanism but appeared to be due to poor lexical retrieval. Relative sparing of MTL volume and intact recognition memory are consistent with

  3. Clinicopathologic analysis of progressive non-fluent aphasia and corticobasal degeneration:Case report and review

    Directory of Open Access Journals (Sweden)

    Paulo Roberto de Brito-Marques

    Full Text Available Abstract Objective: To investigate progressive non-fluent aphasia and histopathologically-proven corticobasal degeneration. Methods: We evaluated symptoms, signs, neuropsychological deficits, and radiology data longitudinally, in a patient with autopsy-proven corticobasal degeneration and correlated these observations directly to the neuroanatomic distribution of the disease. Results: At presentation, a specific pattern of cognitive impairment was evident with an extreme extrapyramidal motor abnormality. Follow-up examination revealed persistent impairment of praxis and executive functioning, progressive worsening of language performance, and moderately preserved memory. The motor disorder manifested and worsened as the condition progressed. Many of the residual nerve cells were ballooned and achromatic with eccentric nuclei. Tau-immunoreactive pathology was significantly more prominent in neurons in the frontal and parietal cortices and dentate nuclei than in temporal neocortex, hippocampi and brainstem. Conclusion: The clinical diagnosis of progressive non-fluent aphasia secondary to corticobasal degeneration hinged on a specific pattern of impaired cognition as well as an extrapyramidal motor disorder, reflecting the neuroanatomic distribution of the disease in frontal and anterior temporal cortices and the dentate nuclei.

  4. Clinicopathologic analysis of progressive non-fluent aphasia and corticobasal degeneration: Case report and review.

    Science.gov (United States)

    de Brito-Marques, Paulo Roberto; Vieira-Mello, Roberto José; Montenegro, Luciano; Aragão, Maria de Fátima Vasco

    2011-01-01

    To investigate progressive non-fluent aphasia and histopathologically-proven corticobasal degeneration. We evaluated symptoms, signs, neuropsychological deficits, and radiology data longitudinally, in a patient with autopsy-proven corticobasal degeneration and correlated these observations directly to the neuroanatomic distribution of the disease. At presentation, a specific pattern of cognitive impairment was evident with an extreme extrapyramidal motor abnormality. Follow-up examination revealed persistent impairment of praxis and executive functioning, progressive worsening of language performance, and moderately preserved memory. The motor disorder manifested and worsened as the condition progressed. Many of the residual nerve cells were ballooned and achromatic with eccentric nuclei. Tau-immunoreactive pathology was significantly more prominent in neurons in the frontal and parietal cortices and dentate nuclei than in temporal neocortex, hippocampi and brainstem. The clinical diagnosis of progressive non-fluent aphasia secondary to corticobasal degeneration hinged on a specific pattern of impaired cognition as well as an extrapyramidal motor disorder, reflecting the neuroanatomic distribution of the disease in frontal and anterior temporal cortices and the dentate nuclei.

  5. Dissociating response systems: erasing fear from memory.

    Science.gov (United States)

    Soeter, Marieke; Kindt, Merel

    2010-07-01

    In addition to the extensive evidence in animals, we previously showed that disrupting reconsolidation by noradrenergic blockade produced amnesia for the original fear response in humans. Interestingly, the declarative memory for the fear association remained intact. These results asked for a solid replication. Moreover, given the constructive nature of memories, the intact recollection of the fear association could eventually 'rebuild' the fear memory, resulting in the spontaneous recovery of the fear response. Yet, perseverance of the amnesic effects would have substantial clinical implications, as even the most effective treatments for psychiatric disorders display high percentages of relapse. Using a differential fear conditioning procedure in humans, we replicated our previous findings by showing that administering propranolol (40mg) prior to memory reactivation eliminated the startle fear response 24h later. But most importantly, this effect persisted at one month follow-up. Notably, the propranolol manipulation not only left the declarative memory for the acquired contingency untouched, but also skin conductance discrimination. In addition, a close association between declarative knowledge and skin conductance responses was found. These findings are in line with the supposed double dissociation of fear conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. They support the view that skin conductance conditioning primarily reflects contingency learning, whereas the startle response is a rather specific measure of fear. Furthermore, the results indicate the absence of a causal link between the actual knowledge of a fear association and its fear response, even though they often operate in parallel. Interventions targeting the amygdalar fear memory may be essential in specifically and persistently dampening the emotional impact of fear. From a clinical and ethical perspective, disrupting reconsolidation points to promising

  6. Local Inflammatory Cues Regulate Differentiation and Persistence of CD8+ Tissue-Resident Memory T Cells

    Directory of Open Access Journals (Sweden)

    Tessa Bergsbaken

    2017-04-01

    Full Text Available Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8+ T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103−CD69+ Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN-β and interleukin-12 (IL-12, which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103−CD69+ Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-β and IL-12 during infection, and deletion of CCR2+ IL-12-producing cells reduced the size of the CD103− Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity.

  7. Methylprednisolone as a memory enhancer in rats: Effects on aversive memory, long-term potentiation and calcium influx.

    Science.gov (United States)

    de Vargas, Liane da Silva; Gonçalves, Rithiele; Lara, Marcus Vinícius S; Costa-Ferro, Zaquer S M; Salamoni, Simone Denise; Domingues, Michelle Flores; Piovesan, Angela Regina; de Assis, Dênis Reis; Vinade, Lucia; Corrado, Alexandre P; Alves-Do-Prado, Wilson; Correia-de-Sá, Paulo; da Costa, Jaderson Costa; Izquierdo, Ivan; Dal Belo, Cháriston A; Mello-Carpes, Pâmela B

    2017-09-01

    It is well recognized that stress or glucocorticoids hormones treatment can modulate memory performance in both directions, either impairing or enhancing it. Despite the high number of studies aiming at explaining the effects of glucocorticoids on memory, this has not yet been completely elucidated. Here, we demonstrate that a low daily dose of methylprednisolone (MP, 5mg/kg, i.p.) administered for 10-days favors aversive memory persistence in adult rats, without any effect on the exploring behavior, locomotor activity, anxiety levels and pain perception. Enhanced performance on the inhibitory avoidance task was correlated with long-term potentiation (LTP), a phenomenon that was strengthen in hippocampal slices of rats injected with MP (5mg/kg) during 10days. Additionally, in vitro incubation with MP (30-300µM) concentration-dependently increased intracellular [Ca 2+ ] i in cultured hippocampal neurons depolarized by KCl (35mM). In conclusion, a low daily dose of MP for 10days may promote aversive memory persistence in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The gravitational-wave memory effect

    International Nuclear Information System (INIS)

    Favata, Marc

    2010-01-01

    The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.

  9. Misattribution, false recognition and the sins of memory.

    OpenAIRE

    Schacter, D L; Dodson, C S

    2001-01-01

    Memory is sometimes a troublemaker. Schacter has classified memory's transgressions into seven fundamental 'sins': transience, absent-mindedness, blocking, misattribution, suggestibility, bias and persistence. This paper focuses on one memory sin, misattribution, that is implicated in false or illusory recognition of episodes that never occurred. We present data from cognitive, neuropsychological and neuroimaging studies that illuminate aspects of misattribution and false recognition. We firs...

  10. Modeling reconsolidation in kernel associative memory.

    Directory of Open Access Journals (Sweden)

    Dimitri Nowicki

    Full Text Available Memory reconsolidation is a central process enabling adaptive memory and the perception of a constantly changing reality. It causes memories to be strengthened, weakened or changed following their recall. A computational model of memory reconsolidation is presented. Unlike Hopfield-type memory models, our model introduces an unbounded number of attractors that are updatable and can process real-valued, large, realistic stimuli. Our model replicates three characteristic effects of the reconsolidation process on human memory: increased association, extinction of fear memories, and the ability to track and follow gradually changing objects. In addition to this behavioral validation, a continuous time version of the reconsolidation model is introduced. This version extends average rate dynamic models of brain circuits exhibiting persistent activity to include adaptivity and an unbounded number of attractors.

  11. Recent life stress exposure is associated with poorer long-term memory, working memory, and self-reported memory.

    Science.gov (United States)

    Shields, Grant S; Doty, Dominique; Shields, Rebecca H; Gower, Garrett; Slavich, George M; Yonelinas, Andrew P

    2017-11-01

    Although substantial research has examined the effects of stress on cognition, much of this research has focused on acute stress (e.g. manipulated in the laboratory) or chronic stress (e.g. persistent interpersonal or financial difficulties). In contrast, the effects of recent life stress on cognition have been relatively understudied. To address this issue, we examined how recent life stress is associated with long-term, working memory, and self-reported memory in a sample of 142 healthy young adults who were assessed at two time points over a two-week period. Recent life stress was measured using the newly-developed Stress and Adversity Inventory for Daily Stress (Daily STRAIN), which assesses the frequency of relatively common stressful life events and difficulties over the preceding two weeks. To assess memory performance, participants completed both long-term and working memory tasks. Participants also provided self-reports of memory problems. As hypothesized, greater recent life stress exposure was associated with worse performance on measures of long-term and working memory, as well as more self-reported memory problems. These associations were largely robust while controlling for possible confounds, including participants' age, sex, and negative affect. The findings indicate that recent life stress exposure is broadly associated with worse memory. Future studies should thus consider assessing recent life stress as a potential predictor, moderator, or covariate of memory performance.

  12. The seven sins of memory: implications for self.

    Science.gov (United States)

    Schacter, Daniel L; Chiao, Joan Y; Mitchell, Jason P

    2003-10-01

    We examine the relation between memory and self by considering errors of memory. We draw on the idea that memory's imperfections can be classified into seven basic categories or "sins." Three of the sins concern different types of forgetting (transience, absent-mindedness, and blocking), three concern different types of distortion (misattribution, suggestibility, and bias), and one concerns intrusive memories (persistence). We focus in particular on two of the distortion-related sins, misattribution and bias. By describing cognitive, neuropsychological, and neuroimaging studies that illuminate these memory sins, we consider how they might bear on the relation between memory and self.

  13. Sustained experience of emotion after loss of memory in patients with amnesia.

    Science.gov (United States)

    Feinstein, Justin S; Duff, Melissa C; Tranel, Daniel

    2010-04-27

    Can the experience of an emotion persist once the memory for what induced the emotion has been forgotten? We capitalized on a rare opportunity to study this question directly using a select group of patients with severe amnesia following circumscribed bilateral damage to the hippocampus. The amnesic patients underwent a sadness induction procedure (using affectively-laden film clips) to ascertain whether their experience of sadness would persist beyond their memory for the sadness-inducing films. The experiment showed that the patients continued to experience elevated levels of sadness well beyond the point in time at which they had lost factual memory for the film clips. A second experiment using a happiness induction procedure yielded similar results, suggesting that both positive and negative emotional experiences can persist independent of explicit memory for the inducing event. These findings provide direct evidence that a feeling of emotion can endure beyond the conscious recollection for the events that initially triggered the emotion.

  14. The (gradual) rise of memory inflation.

    Science.gov (United States)

    Klenerman, Paul

    2018-05-01

    Memory inflation, as a term, has been used for 15 years now to describe the longitudinal development of stable, expanded CD8 + T memory pools with a distinct phenotype and functional profile which emerge in specific infection and vaccine settings. These settings have in common the persistence of antigen, especially cytomegalovirus infection but also more recently adenoviral vector vaccination. However, in contrast to chronic infections which lead to "exhaustion" the repeated antigen encounters experienced by CD8 + T cells lead to development of a robust T-cell population structure which maintains functionality and size. In this review, I will discuss how the ideas around this form of memory have evolved over time and some new models which can help explain how these populations are induced and sustained. These models are relevant to immunity against persistent viruses, to novel vaccine strategies and to concepts about aging. © 2018 The Author. Immunological Reviews Published by John Wiley & Sons Ltd.

  15. Plasma memories associated to a particle detector

    International Nuclear Information System (INIS)

    Comby, G.; Mangeot, Ph.

    1978-01-01

    The realization of a localized and persisting memory of a detected particle which can be easily read out offers new possibilities for the detection of events with high multiplicity. The association of the plasma memory to a spark chamber allows the test of the principles of memorization and read-out. By means of one gap of plasma memories, one can read out without ambiguity the coordinates of a large number of memories. This device can be adapted to other types of detectors and also to larger geometries. (Auth.)

  16. Molecular brake pad hypothesis: pulling off the brakes for emotional memory.

    Science.gov (United States)

    Vogel-Ciernia, Annie; Wood, Marcelo A

    2012-01-01

    Under basal conditions histone deacetylases(HDACs) and their associated co-repressor complexes serve as molecular 'brake pads' to prevent the gene expression required for long-term memory formation. Following a learning event, HDACs and their co-repressor complexes are removed from a subset of specific gene promoters, allowing the histone acetylation and active gene expression required for long-term memory formation.Inhibition of HDACs increases histone acetylation,extends gene expression profiles, and allows for the formation of persistent long-term memories for training events that are otherwise forgotten. We propose that emotionally salient experiences have utilized this system to form strong and persistent memories for behaviorally significant events. Consequently, the presence or absence of HDACs at a selection of specific gene promoters could serve as a critical barrier for permitting the formation of long-term memories.

  17. Molecular brake pad hypothesis: pulling off the brakes for emotional memory

    Science.gov (United States)

    Vogel-Ciernia, Annie

    2015-01-01

    Under basal conditions histone deacetylases (HDACs) and their associated co-repressor complexes serve as molecular ‘brake pads’ to prevent the gene expression required for long-term memory formation. Following a learning event, HDACs and their co-repressor complexes are removed from a subset of specific gene promoters, allowing the histone acetylation and active gene expression required for long-term memory formation. Inhibition of HDACs increases histone acetylation, extends gene expression profiles, and allows for the formation of persistent long-term memories for training events that are otherwise forgotten. We propose that emotionally salient experiences have utilized this system to form strong and persistent memories for behaviorally significant events. Consequently, the presence or absence of HDACs at a selection of specific gene promoters could serve as a critical barrier for permitting the formation of long-term memories. PMID:23096102

  18. Glucose-independent persistence of PAI-1 gene expression and H3K4 tri-methylation in type 1 diabetic mouse endothelium: implication in metabolic memory.

    Science.gov (United States)

    Takizawa, Fumihiko; Mizutani, Shuki; Ogawa, Yoshihiro; Sawada, Naoki

    2013-03-29

    Clinical trials with type 1 and type 2 diabetes have identified a phenomenon known as "metabolic memory" in which previous periods of hyperglycemia result in the long-lasting deleterious impact on cardiovascular events. Emerging evidence shows that transient hyperglycemic exposure of human endothelial cells induces histone 3 lysine 4 mono-methylation (H3K4me1) on the promoter and persistent mRNA expression of RelA and IL-8 genes, suggesting that epigenetic histone modification and chromatin structure remodeling is a key event underlying metabolic memory. This burgeoning hypothesis, however, critically remains to be tested for relevance in the disease process of diabetes in vivo, and for broader applicability to an array of genes involved in endothelial dysfunction. To address this, we used type 1 diabetes mouse model induced by streptozocin to be hyperglycemic for 8 weeks, and isolated endothelial cells that were used either freshly after isolation or after 2 to 3-week cell culture in normoglycemic conditions. mRNA expression profiling in diabetic mouse endothelial cells revealed significant and persistent up-regulation of Serpine1 encoding PAI-1, the hypo-fibrinolytic mediator leading to thrombotic diseases in diabetes, along with Rock2, Fn1 and Ccl2, whereas only Serpine 1 was persistently elevated in high glucose-treated mouse endothelial cells. Chromosome immunoprecipitation assay in type 1 diabetic mouse endothelial cells showed predominant enrichment of H3K4 tri-methylation on Serpine1 promoter, suggesting a unique epigenetic regulation in diabetic mice as opposed to high glucose-treated human ECs. Our study demonstrates the importance of combining in vivo models of diabetes with high glucose-treated cell culture to better assess the epigenetic mechanisms relevant to disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. NF-κB Transcription Factor Role in Consolidation and Reconsolidation of Persistent Memories

    Directory of Open Access Journals (Sweden)

    Verónica ede la Fuente

    2015-09-01

    Full Text Available Transcriptional regulation is an important molecular process required for long-term neural plasticity and long-term memory formation. Thus, one main interest in molecular neuroscience in the last decades has been the identification of transcription factors that are involved in memory processes. Among them, the NF-κB family of transcription factors has gained interest due to a significant body of evidence that supports a key role of these proteins in synaptic plasticity and memory. In recent years, the interest was particularly reinforced because NF-κB was characterized as an important regulator of synaptogenesis. This function may be explained by its participation in synapse to nucleus communication, as well as a possible local role at the synapse. This review provides an overview of experimental work obtained in the last years, showing the essential role of this transcription factor in memory processes in different learning tasks in mammals. We focus the review on the consolidation and reconsolidation memory phases as well as on the regulation of immediate-early and late genes by epigenetic mechanisms that determine enduring forms of memories.

  20. Letters persistence after physical offset: visual word form area and left planum temporale. An fMRI study.

    Science.gov (United States)

    Barban, Francesco; Zannino, Gian Daniele; Macaluso, Emiliano; Caltagirone, Carlo; Carlesimo, Giovanni A

    2013-06-01

    Iconic memory is a high-capacity low-duration visual memory store that allows the persistence of a visual stimulus after its offset. The categorical nature of this store has been extensively debated. This study provides functional magnetic resonance imaging evidence for brain regions underlying the persistence of postcategorical representations of visual stimuli. In a partial report paradigm, subjects matched a cued row of a 3 × 3 array of letters (postcategorical stimuli) or false fonts (precategorical stimuli) with a subsequent triplet of stimuli. The cued row was indicated by two visual flankers presented at the onset (physical stimulus readout) or after the offset of the array (iconic memory readout). The left planum temporale showed a greater modulation of the source of readout (iconic memory vs. physical stimulus) when letters were presented compared to false fonts. This is a multimodal brain region responsible for matching incoming acoustic and visual patterns with acoustic pattern templates. These findings suggest that letters persist after their physical offset in an abstract postcategorical representation. A targeted region of interest analysis revealed a similar pattern of activation in the Visual Word Form Area. These results suggest that multiple higher-order visual areas mediate iconic memory for postcategorical stimuli. Copyright © 2012 Wiley Periodicals, Inc.

  1. Savings Memory Is Accompanied by Transcriptional Changes That Persist beyond the Decay of Recall

    Science.gov (United States)

    Perez, Leticia; Patel, Ushma; Rivota, Marissa; Calin-Jageman, Irina E.; Calin-Jageman, Robert J.

    2018-01-01

    Most long-term memories are forgotten. What happens, then, to the changes in neuronal gene expression that were initially required to encode and maintain the memory? Here we show that the decay of recall for long-term sensitization memory in "Aplysia" is accompanied both by a form of savings memory (easier relearning) and by persistent…

  2. Does energy consumption by the US electric power sector exhibit long memory behavior?

    International Nuclear Information System (INIS)

    Gil-Alana, Luis A.; Loomis, David; Payne, James E.

    2010-01-01

    This study analyzes energy consumption by the US electric power by various energy sources through fractional integration. In doing so, we are able to determine the level of persistence of the shocks affecting each energy source. The results indicate long memory behavior as each energy source is highly persistent, displaying long memory along with autoregressive behavior and strong seasonal patterns.

  3. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators.

    Science.gov (United States)

    Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu

    2018-03-01

    Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Emotion causes targeted forgetting of established memories

    Directory of Open Access Journals (Sweden)

    Bryan A. Strange

    2010-11-01

    Full Text Available Reconsolidation postulates that reactivation of a memory trace renders it susceptible to disruption by treatments similar to those that impair initial memory consolidation. Despite evidence that implicit, or non-declarative, human memories can be disrupted at retrieval, a convincing demonstration of selective impairment in retrieval of target episodic memories following reactivation is lacking. In human subjects, we demonstrate that if reactivation of a verbal memory, through successful retrieval, is immediately followed by an emotionally aversive stimulus, a significant impairment is evident in its later recall. This effect is time-dependent and persists for at least six days. Thus, in line with a reconsolidation hypothesis, established human episodic memories can be selectively impaired following their retrieval.

  5. Emotion causes targeted forgetting of established memories.

    Science.gov (United States)

    Strange, Bryan A; Kroes, Marijn C W; Fan, Judith E; Dolan, Raymond J

    2010-01-01

    Reconsolidation postulates that reactivation of a memory trace renders it susceptible to disruption by treatments similar to those that impair initial memory consolidation. Despite evidence that implicit, or non-declarative, human memories can be disrupted at retrieval, a convincing demonstration of selective impairment in retrieval of target episodic memories following reactivation is lacking. In human subjects, we demonstrate that if reactivation of a verbal memory, through successful retrieval, is immediately followed by an emotionally aversive stimulus, a significant impairment is evident in its later recall. This effect is time-dependent and persists for at least 6 days. Thus, in line with a reconsolidation hypothesis, established human episodic memories can be selectively impaired following their retrieval.

  6. Synaptic Effects of Dopamine Breakdown and Their Relation to Schizophrenia-Linked Working Memory Deficits

    Directory of Open Access Journals (Sweden)

    Andrew D. Bolton

    2018-06-01

    Full Text Available Working memory is the ability to hold information “online” over a time delay in order to perform a task. This kind of memory is encoded in the brain by persistent neural activity that outlasts the presentation of a stimulus. Patients with schizophrenia perform poorly in working memory tasks that require the brief memory of a target location in space. This deficit indicates that persistent neural activity related to spatial locations may be impaired in the disease. At the circuit level, many studies have shown that NMDA receptors and the dopamine system are involved in both schizophrenia pathology and working memory-related persistent activity. In this Hypothesis and Theory article, we examine the possible connection between NMDA receptors, the dopamine system, and schizophrenia-linked working memory deficits. In particular, we focus on the dopamine breakdown product homocysteine (HCY, which is consistently elevated in schizophrenia patients. Our previous studies have shown that HCY strongly reduces the desensitization of NMDA currents. Here, we show that HCY likely affects NMDA receptors in brain regions that support working memory; this is because these areas favor dopamine breakdown over transport to clear dopamine from synapses. Finally, within the context of two NMDA-based computational models of working memory, we suggest a mechanism by which HCY could give rise to the working memory deficits observed in schizophrenia patients.

  7. Frontal lobe damage impairs process and content in semantic memory: evidence from category-specific effects in progressive non-fluent aphasia.

    Science.gov (United States)

    Reilly, Jamie; Rodriguez, Amy D; Peelle, Jonathan E; Grossman, Murray

    2011-06-01

    Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. Copyright © 2010 Elsevier Srl. All rights reserved.

  8. Colpocytological abnormalities in HIV infected and uninfected pregnant women: prevalence, persistence and progression.

    Science.gov (United States)

    Carriero, Carmine; Fascilla, Fabiana Divina; Cramarossa, Paola; Lepera, Achiropita; Bettocchi, Stefano; Vimercati, Antonella

    2018-02-01

    In this retrospective case-control study, we analyse data of 48 HIV-positive pregnant patients, versus a control group of 99 HIV-negative pregnant women, followed as outpatients by our department from 2009 to 2014. The aims of the study were to investigate the prevalence, persistence and progression of cervical squamous intraepithelial lesions (SIL) in each group and to correlate colpo-cytological lesions to the socio-demographic and clinical-laboratory findings in the HIV + pregnant women. In our study we observed that immunosuppression, HPV infection and vaginal coinfections were predictive of cervical lesions. Pap smear and colposcopy should be part of routine care for HIV-infected pregnant women because these lesions behave aggressively in these patients. Success of prevention depends on massive access of patients to screening. HAART reduces viral load and maintains CD4 count and can affect progression of SIL. Multidisciplinary services on the same site appear to be one promising strategy to improve compliance in patients. Impact Statement What is already known on this subject: Our study provided novel information on a highly vulnerable population of young HIV + pregnant women. What the results of this study add: We observed that immunosuppression, HPV infection and vaginal coinfections were predictive of cervical lesions remarkable with colposcopy. We could consider these important risk factors to evaluate to establish an appropriate strategy of management for these patients. What the implications are of these findings for clinical practice and/or further research: Association of the risk between SIL presence and HIV and HPV infection also deserves additional investigation. We believe that Pap smears and colposcopies should be part of the routine care for HIV-infected women because these lesions behave particularly aggressively in these patients.

  9. Persistent Autobiographical Amnesia: A Case Report

    Directory of Open Access Journals (Sweden)

    C. Repetto

    2007-01-01

    Full Text Available We describe a 47-year-old man who referred to the Emergency Department for sudden global amnesia and left mild motor impairment in the setting of increased arterial blood pressure. The acute episode resolved within 24 hours. Despite general recovery and the apparent transitory nature of the event, a persistent selective impairment in recollecting events from some specific topics of his personal life became apparent. Complete neuropsychological tests one week after the acute onset and 2 months later demonstrated a clear retrograde memory deficit contrasting with the preservation of anterograde memory and learning abilities. One year later, the autobiographic memory deficit was unmodified, except for what had been re-learnt. Brain MRI was normal while H20 brain PET scans demonstrated hypometabolism in the right globus pallidus and putamen after 2 weeks from onset, which was no longer present one year later. The absence of a clear pathomechanism underlying focal amnesia lead us to consider this case as an example of functional retrograde amnesia.

  10. Evidence of long memory behavior in U.S. renewable energy consumption

    International Nuclear Information System (INIS)

    Pestana Barros, Carlos; Gil-Alana, Luis A.; Payne, James E.

    2012-01-01

    This study examines the degrees of time persistence in U.S. total renewable energy consumption using innovative fractional integration and autoregressive models with monthly data from 1981:1 to 2010:10. The results indicate that renewable energy consumption is better explained in terms of a long memory model that incorporates persistence components and seasonality. The degree of integration is above 0.5 but significantly below 1.0, suggesting nonstationarity with mean reverting behavior. The presence of long memory behavior (persistence) in renewable energy consumption suggests that random shocks may very well move renewable energy consumption from pre-determined target levels for a period of time.

  11. Persistent expansion of CD4(+) effector memory T cells in Wegener's granulomatosis

    NARCIS (Netherlands)

    Abdulahad, W. H.; van der Geld, Y. M.; Stegeman, C. A.; Kallenberg, C. G. M.

    In order to test the hypothesis that Wegener's granulomatosis (WG) is associated with an ongoing immune effector response, even in remission, we examined the distribution of peripheral naive and memory T-lymphocytes in this disease, and analyzed the function-related phenotypes of the memory T-cell

  12. Does Working Memory Training Lead to Generalized Improvements in Children with Low Working Memory? A Randomized Controlled Trial

    Science.gov (United States)

    Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…

  13. Aversive Memory Reactivation Engages in the Amygdala Only Some Neurotransmitters Involved in Consolidation

    Science.gov (United States)

    Bucherelli, Corrado; Baldi, Elisabetta; Mariottini, Chiara; Passani, Maria Beatrice; Blandina, Patrizio

    2006-01-01

    Consolidation refers to item stabilization in long-term memory. Retrieval renders a consolidated memory sensitive, and a "reconsolidation" process has been hypothesized to keep the original memory persistent. Some authors could not detect this phenomenon. Here we show that retrieved contextual fear memory is vulnerable to amnesic treatments and…

  14. Structure-from-motion: dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation.

    Science.gov (United States)

    Pastukhov, Alexander; Braun, Jochen

    2013-02-01

    In the structure-from-motion paradigm, physical motion on a screen produces the vivid illusion of an object rotating in depth. Here, we show how to dissociate illusory depth and illusory rotation in a structure-from-motion stimulus using a rotationally asymmetric shape and reversals of physical motion. Reversals of physical motion create a conflict between the original illusory states and the new physical motion: Either illusory depth remains constant and illusory rotation reverses, or illusory rotation stays the same and illusory depth reverses. When physical motion reverses after the interruption in presentation, we find that illusory rotation tends to remain constant for long blank durations (T (blank) ≥ 0.5 s), but illusory depth is stabilized if interruptions are short (T (blank) ≤ 0.1 s). The stability of illusory depth over brief interruptions is consistent with the effect of neural persistence. When this is curtailed using a mask, stability of ambiguous vision (for either illusory depth or illusory rotation) is disrupted. We also examined the selectivity of the neural persistence of illusory depth. We found that it relies on a static representation of an interpolated illusory object, since changes to low-level display properties had little detrimental effect. We discuss our findings with respect to other types of history dependence in multistable displays (sensory stabilization memory, neural fatigue, etc.). Our results suggest that when brief interruptions are used during the presentation of multistable displays, switches in perception are likely to rely on the same neural mechanisms as spontaneous switches, rather than switches due to the initial percept choice at the stimulus onset.

  15. Learning and memory in zebrafish larvae

    Science.gov (United States)

    Roberts, Adam C.; Bill, Brent R.; Glanzman, David L.

    2013-01-01

    Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory. PMID:23935566

  16. Have We Forgotten Auditory Sensory Memory? Retention Intervals in Studies of Nonverbal Auditory Working Memory.

    Science.gov (United States)

    Nees, Michael A

    2016-01-01

    Researchers have shown increased interest in mechanisms of working memory for nonverbal sounds such as music and environmental sounds. These studies often have used two-stimulus comparison tasks: two sounds separated by a brief retention interval (often 3-5 s) are compared, and a "same" or "different" judgment is recorded. Researchers seem to have assumed that sensory memory has a negligible impact on performance in auditory two-stimulus comparison tasks. This assumption is examined in detail in this comment. According to seminal texts and recent research reports, sensory memory persists in parallel with working memory for a period of time following hearing a stimulus and can influence behavioral responses on memory tasks. Unlike verbal working memory studies that use serial recall tasks, research paradigms for exploring nonverbal working memory-especially two-stimulus comparison tasks-may not be differentiating working memory from sensory memory processes in analyses of behavioral responses, because retention interval durations have not excluded the possibility that the sensory memory trace drives task performance. This conflation of different constructs may be one contributor to discrepant research findings and the resulting proliferation of theoretical conjectures regarding mechanisms of working memory for nonverbal sounds.

  17. Risk of progression of early cervical lesions is associated with integration and persistence of HPV-16 and expression of E6, Ki-67, and telomerase

    Directory of Open Access Journals (Sweden)

    Arianna Vega-Peña

    2013-01-01

    Full Text Available Background: Low-grade squamous intraepithelial lesions (LSIL are the earliest lesions of the uterine cervix, the persistence and integration of high-risk human papillomavirus (HR-HPV as type 16, which promotes the development of more aggressive lesions. Aim: To select more aggressive lesions with tendency to progress to invasive cervical cancer. Materials and Methods: A total of 75 cytological specimens in liquid base (Liqui-PREP were analyzed: 25 specimens were with no signs of SIL (NSIL and without HPV; 25 NSIL with HPV-16, and 25 with both LSIL and HPV-16. The expression of Ki-67, telomerase, and viral E6 was evaluated by immunocytochemistry; and the detection of viral DNA was done by polymerase chain reaction (PCR and restriction fragment length polymorphism (RFLPs for genotyping or sequencing of HPV-16. The physical state of HPV-16 was evaluated by in situ hybridization with amplification with tyramide. Results: Of the total group, 58.6% had LSIL associated with persistence and of these 59.3% was associated with integrated state of HPV as intense expression of E6, Ki-67 (P = 0.013, P = 0.055 has except for the expression of telomerase present a non-significant association (P<0.341. Conclusions: Overexpression of E6 and Ki-67 is associated with the integration of HPV-16, favoring viral persistence, and increasing the risk of progression in women with NSIL and LSIL.

  18. Detailed sensory memory, sloppy working memory

    Directory of Open Access Journals (Sweden)

    Ilja G Sligte

    2010-10-01

    Full Text Available Visual short-term memory (VSTM enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the pre-change object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the pre-change object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88 percent of the iconic memory trials, on 71 percent of the fragile VSTM trials and merely on 53 percent of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  19. Detailed sensory memory, sloppy working memory.

    Science.gov (United States)

    Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  20. Two retrievals from a single cue: A bottleneck persists across episodic and semantic memory.

    Science.gov (United States)

    Orscheschek, Franziska; Strobach, Tilo; Schubert, Torsten; Rickard, Timothy

    2018-05-01

    There is evidence in the literature that two retrievals from long-term memory cannot occur in parallel. To date, however, that work has explored only the case of two retrievals from newly acquired episodic memory. These studies demonstrated a retrieval bottleneck even after dual-retrieval practice. That retrieval bottleneck may be a global property of long-term memory retrieval, or it may apply only to the case of two retrievals from episodic memory. In the current experiments, we explored whether that apparent dual-retrieval bottleneck applies to the case of one retrieval from episodic memory and one retrieval from highly overlearned semantic memory. Across three experiments, subjects learned to retrieve a left or right keypress response form a set of 14 unique word cues (e.g., black-right keypress). In addition, they learned a verbal response which involved retrieving the antonym of the presented cue (e.g., black-"white"). In the dual-retrieval condition, subjects had to retrieve both the keypress response and the antonym word. The results suggest that the retrieval bottleneck is superordinate to specific long-term memory systems and holds across different memory components. In addition, the results support the assumption of a cue-level response chunking account of learned retrieval parallelism.

  1. Research on Multi - Person Parallel Modeling Method Based on Integrated Model Persistent Storage

    Science.gov (United States)

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Liu, Ying

    2018-03-01

    This paper mainly studies the multi-person parallel modeling method based on the integrated model persistence storage. The integrated model refers to a set of MDDT modeling graphics system, which can carry out multi-angle, multi-level and multi-stage description of aerospace general embedded software. Persistent storage refers to converting the data model in memory into a storage model and converting the storage model into a data model in memory, where the data model refers to the object model and the storage model is a binary stream. And multi-person parallel modeling refers to the need for multi-person collaboration, the role of separation, and even real-time remote synchronization modeling.

  2. Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial

    OpenAIRE

    Dunning, Darren L; Holmes, Joni; Gathercole, Susan E

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first randomized controlled trial with low working memory children investigated whether the benefits of training extend beyond standard working memory tasks...

  3. The Glass Ceiling: Progress and Persistent Challenges

    Science.gov (United States)

    McLlwain, Wendy M.

    2012-01-01

    It has been written that since 2001, there has not been any significant progress and the glass ceiling is still intact. Women are still underrepresented in top positions (Anonymous, 2004). If this is true, the glass ceiling presents a major barrier between women and their desire to advance into executive or senior management positions. In addition…

  4. Analysis of soil moisture memory from observations in Europe

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2012-08-01

    Soil moisture is known to show distinctive persistence characteristics compared to other quantities in the climate system. As soil moisture is governing land-atmosphere feedbacks to a large extent, its persistence can provide potential to improve seasonal climate predictions. So far, many modeling studies have investigated the nature of soil moisture memory, with consistent, but model-dependent results. This study investigates soil moisture memory in long-term observational records based on data from five stations across Europe. We investigate spatial and seasonal variations in soil moisture memory and identify their main climatic drivers. Also, we test an existing framework and introduce an extension thereof to approximate soil moisture memory and evaluate the contributions of its driving processes. At the analyzed five sites, we identify the variability of initial soil moisture divided by that of the accumulated forcing over the considered time frame as a main driver of soil moisture memory that reflects the impact of the precipitation regime and of soil and vegetation characteristics. Another important driver is found to be the correlation of initial soil moisture with subsequent forcing that captures forcing memory as it propagates to the soil and also land-atmosphere interactions. Thereby, the role of precipitation is found to be dominant for the forcing. In contrast to results from previous modeling studies, the runoff and evapotranspiration sensitivities to soil moisture are found to have only a minor influence on soil moisture persistence at the analyzed sites. For the central European sites, the seasonal cycles of soil moisture memory display a maximum in late summer and a minimum in spring. An opposite seasonal cycle is found at the analyzed site in Italy. High soil moisture memory is shown to last up to 40 days in some seasons at most sites. Extremely dry or wet states of the soil tend to increase soil moisture memory, suggesting enhanced prediction

  5. Have We Forgotten Auditory Sensory Memory? Retention Intervals in Studies of Nonverbal Auditory Working Memory

    Directory of Open Access Journals (Sweden)

    Michael A. Nees

    2016-12-01

    Full Text Available Researchers have shown increased interest in mechanisms of working memory for nonverbal sounds such as music and environmental sounds. These studies often have used two-stimulus comparison tasks: two sounds separated by a brief retention interval (often 3 to 5 s are compared, and a same or different judgment is recorded. Researchers seem to have assumed that sensory memory has a negligible impact on performance in auditory two-stimulus comparison tasks. This assumption is examined in detail in this comment. According to seminal texts and recent research reports, sensory memory persists in parallel with working memory for a period of time following hearing a stimulus and can influence behavioral responses on memory tasks. Unlike verbal working memory studies that use serial recall tasks, research paradigms for exploring nonverbal working memory—especially two-stimulus comparison tasks—may not be differentiating working memory from sensory memory processes in analyses of behavioral responses, because retention interval durations have not excluded the possibility that the sensory memory trace drives task performance. This conflation of different constructs may be one contributor to discrepant research findings and the resulting proliferation of theoretical conjectures regarding mechanisms of working memory for nonverbal sounds.

  6. Learning induces the translin/trax RNase complex to express activin receptors for persistent memory

    NARCIS (Netherlands)

    Park, Alan Jung; Havekes, Robbert; Fu, Xiuping; Hansen, Rolf; Tudor, Jennifer C; Peixoto, Lucia; Li, Zhi; Wu, Yen-Ching; Poplawski, Shane G; Baraban, Jay M; Abel, Ted

    2017-01-01

    Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at

  7. Emotionally negative pictures enhance gist memory.

    Science.gov (United States)

    Bookbinder, S H; Brainerd, C J

    2017-02-01

    In prior work on how true and false memory are influenced by emotion, valence and arousal have often been conflated. Thus, it is difficult to say which specific effects are caused by valence and which are caused by arousal. In the present research, we used a picture-memory paradigm that allowed emotional valence to be manipulated with arousal held constant. Negatively valenced pictures elevated both true and false memory, relative to positive and neutral pictures. Conjoint recognition modeling revealed that negative valence (a) reduced erroneous suppression of true memories and (b) increased the familiarity of the semantic content of both true and false memories. Overall, negative valence impaired the verbatim side of episodic memory but enhanced the gist side, and these effects persisted even after a week-long delay. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Repeated checking causes memory distrust

    NARCIS (Netherlands)

    van den Hout, M.; Kindt, M.

    2003-01-01

    This paper attempts to explain why in obsessive-compulsive disorder (OCD) checkers distrust in memory persists despite extensive checking. It is argued that: (1) repeated checking increases familiarity with the issues checked; (2) increased familiarity promotes conceptual processing which inhibits

  9. Coaching positively influences the effects of working memory training on visual working memory as well as mathematical ability

    NARCIS (Netherlands)

    Nelwan, M.; Vissers, C.T.W.M.; Kroesbergen, E.H.

    2018-01-01

    The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were

  10. Dysfunctional overnight memory consolidation in ecstasy users.

    Science.gov (United States)

    Smithies, Vanessa; Broadbear, Jillian; Verdejo-Garcia, Antonio; Conduit, Russell

    2014-08-01

    Sleep plays an important role in the consolidation and integration of memory in a process called overnight memory consolidation. Previous studies indicate that ecstasy users have marked and persistent neurocognitive and sleep-related impairments. We extend past research by examining overnight memory consolidation among regular ecstasy users (n=12) and drug naïve healthy controls (n=26). Memory recall of word pairs was evaluated before and after a period of sleep, with and without interference prior to testing. In addition, we assessed neurocognitive performances across tasks of learning, memory and executive functioning. Ecstasy users demonstrated impaired overnight memory consolidation, a finding that was more pronounced following associative interference. Additionally, ecstasy users demonstrated impairments on tasks recruiting frontostriatal and hippocampal neural circuitry, in the domains of proactive interference memory, long-term memory, encoding, working memory and complex planning. We suggest that ecstasy-associated dysfunction in fronto-temporal circuitry may underlie overnight consolidation memory impairments in regular ecstasy users. © The Author(s) 2014.

  11. A new theory of cytotoxic T-lymphocyte memory: implications for HIV treatment

    DEFF Research Database (Denmark)

    Wodarz, D; Page, K M; Arnaout, R A

    2000-01-01

    result in the failure to establish CTL memory which in turn leads to viral persistence. Based on our models we suggest conceptual treatment regimes which ensure establishment of CTL memory. This would allow the immune response to control HIV in the long term in the absence of continued therapy....... reinfection is only effective in a restricted set of circumstances, we find that resolution of the primary infection requires persistence of CTL precursors (GTLp), as well as a fast rate of activation of the CTLp. Since these are commonly the defining characteristics of CTL memory, we propose that CTL memory...... may have evolved in order to clear the virus during primary challenge. We show experimental data from lymphocytic choriomeningitis virus infection in mice, supporting our theory on CTL memory. We adapt our models to HIV and find that immune impairment during the primary phase of the infection may...

  12. Nonfractional Memory: Filtering, Antipersistence, and Forecasting

    DEFF Research Database (Denmark)

    Vera-Valdés, J. Eduardo

    The fractional difference operator remains to be the most popular mechanism to generate long memory due to the existence of efficient algorithms for their simulation and forecasting. Nonetheless, there is no theoretical argument linking the fractional difference operator with the presence of long....... Pointedly, while the autocorrelations for the fractional difference operator are negative for negative degrees of memory by construction, this restriction does not apply to the cross-sectional aggregated scheme. We show that this has implications for long memory tests in the frequency domain, which...... memory in real data. In this regard, one of the most predominant theoretical explanations for the presence of long memory is cross-sectional aggregation of persistent micro units. Yet, the type of processes obtained by cross-sectional aggregation differs from the one due to fractional differencing. Thus...

  13. Disruption of Memory Reconsolidation Erases a Fear Memory Trace in the Human Amygdala: An 18-Month Follow-Up.

    Directory of Open Access Journals (Sweden)

    Johannes Björkstrand

    Full Text Available Fear memories can be attenuated by reactivation followed by disrupted reconsolidation. Using functional magnetic resonance imaging we recently showed that reactivation and reconsolidation of a conditioned fear memory trace in the basolateral amygdala predicts subsequent fear expression over two days, while reactivation followed by disrupted reconsolidation abolishes the memory trace and suppresses fear. In this follow-up study we demonstrate that the behavioral effect persists over 18 months reflected in superior reacquisition after undisrupted, as compared to disrupted reconsolidation, and that neural activity in the basolateral amygdala representing the initial fear memory predicts return of fear. We conclude that disrupting reconsolidation have long lasting behavioral effects and may permanently erase the fear component of an amygdala-dependent memory.

  14. Redirection to the bone marrow improves T cell persistence and antitumor functions.

    Science.gov (United States)

    Khan, Anjum B; Carpenter, Ben; Santos E Sousa, Pedro; Pospori, Constandina; Khorshed, Reema; Griffin, James; Velica, Pedro; Zech, Mathias; Ghorashian, Sara; Forrest, Calum; Thomas, Sharyn; Gonzalez Anton, Sara; Ahmadi, Maryam; Holler, Angelika; Flutter, Barry; Ramirez-Ortiz, Zaida; Means, Terry K; Bennett, Clare L; Stauss, Hans; Morris, Emma; Lo Celso, Cristina; Chakraverty, Ronjon

    2018-05-01

    A key predictor for the success of gene-modified T cell therapies for cancer is the persistence of transferred cells in the patient. The propensity of less differentiated memory T cells to expand and survive efficiently has therefore made them attractive candidates for clinical application. We hypothesized that redirecting T cells to specialized niches in the BM that support memory differentiation would confer increased therapeutic efficacy. We show that overexpression of chemokine receptor CXCR4 in CD8+ T cells (TCXCR4) enhanced their migration toward vascular-associated CXCL12+ cells in the BM and increased their local engraftment. Increased access of TCXCR4 to the BM microenvironment induced IL-15-dependent homeostatic expansion and promoted the differentiation of memory precursor-like cells with low expression of programmed death-1, resistance to apoptosis, and a heightened capacity to generate polyfunctional cytokine-producing effector cells. Following transfer to lymphoma-bearing mice, TCXCR4 showed a greater capacity for effector expansion and better tumor protection, the latter being independent of changes in trafficking to the tumor bed or local out-competition of regulatory T cells. Thus, redirected homing of T cells to the BM confers increased memory differentiation and antitumor immunity, suggesting an innovative solution to increase the persistence and functions of therapeutic T cells.

  15. Persistence Characteristics of Australian Rainfall Anomalies

    Science.gov (United States)

    Simmonds, Ian; Hope, Pandora

    1997-05-01

    Using 79 years (1913-1991) of Australian monthly precipitation data we examined the nature of the persistence of rainfall anomalies. Analyses were performed for four climate regions covering the country, as well as for the entire Australian continent. We show that rainfall over these regions has high temporal variability and that annual rainfall amounts over all five sectors vary in phase and are, with the exception of the north-west region, significantly correlated with the Southern Oscillation Index (SOI). These relationships were particularly strong during the spring season.It is demonstrated that Australian rainfall exhibits statistically significant persistence on monthly, seasonal, and (to a limited extent) annual time-scales, up to lags of 3 months and one season and 1 year. The persistence showed strong seasonal dependence, with each of the five regions showing memory out to 4 or 5 months from winter and spring. Many aspects of climate in the Australasian region are known to have undergone considerable changes about 1950. We show this to be true for persistence also; its characteristics identified for the entire record were present during the 1951--1980 period, but virtually disappeared in the previous 30-year period.Much of the seasonal distribution of rainfall persistence on monthly time-scales, particularly in the east, is due to the influence of the SOI. However, most of the persistence identified in winter and spring in the north-west is independent of the ENSO phenomenon.Rainfall anomalies following extreme dry and wet months, seasons and years (lowest and highest two deciles) persisted more than would be expected by chance. For monthly extreme events this was more marked in the winter semester for the wet events, except in the south-east region. In general, less persistence was found for the extreme seasons. Although the persistence of dry years was less than would have been expected by chance, the wet years appear to display persistence.

  16. Learning induces the translin/trax RNase complex to express activin receptors for persistent memory.

    Science.gov (United States)

    Park, Alan Jung; Havekes, Robbert; Fu, Xiuping; Hansen, Rolf; Tudor, Jennifer C; Peixoto, Lucia; Li, Zhi; Wu, Yen-Ching; Poplawski, Shane G; Baraban, Jay M; Abel, Ted

    2017-09-20

    Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.

  17. Bifurcation with memory

    International Nuclear Information System (INIS)

    Olmstead, W.E.; Davis, S.H.; Rosenblat, S.; Kath, W.L.

    1986-01-01

    A model equation containing a memory integral is posed. The extent of the memory, the relaxation time lambda, controls the bifurcation behavior as the control parameter R is increased. Small (large) lambda gives steady (periodic) bifurcation. There is a double eigenvalue at lambda = lambda 1 , separating purely steady (lambda 1 ) from combined steady/T-periodic (lambda > lambda 1 ) states with T → infinity as lambda → lambda + 1 . Analysis leads to the co-existence of stable steady/periodic states and as R is increased, the periodic states give way to the steady states. Numerical solutions show that this behavior persists away from lambda = lambda 1

  18. Conflict and memory

    DEFF Research Database (Denmark)

    Wagoner, Brady; Brescó, Ignacio

    2016-01-01

    This introduction to the special issue on conflict and memory aims to underscore the importance of memory (whether individual and collective) in relation to intergroup conflicts. We argue that the way in which societies reconstruct and bring the past into the present—especially, the historical past......—is crucial when it comes to the study of intergroup conflict dynamics. In this regard, we also highlight the growing importance of memory studies within the area of social sciences as well as the multiple ways of approaching memory. Drawing from this wide theoretical framework, we introduce the articles...... of this issue, eight articles that tackle the role of memory in different conflicts, whether currently under way, in progress of being resolved, in postwar settings, or in contexts conflicts expected to happen do not arise....

  19. Longitudinal assessment of short-term memory deterioration in a logopenic variant primary progressive aphasia with post-mortem confirmed Alzheimer's Disease pathology.

    Science.gov (United States)

    Tree, Jeremy; Kay, Janice

    2015-09-01

    In the field of dementia research, there are reports of neurodegenerative cases with a focal loss of language, termed primary progressive aphasia (PPA). Currently, this condition has been further sub-classified, with the most recent sub-type dubbed logopenic variant (PPA-LV). As yet, there remains somewhat limited evaluation of the characteristics of this condition, with no studies providing longitudinal assessment accompanied by post-mortem examination. Moreover, a key characteristic of the PPA-LV case is a deterioration of phonological short-term memory, but again little work has scrutinized the nature of this impairment over time. The current study seeks to redress these oversights and presents detailed longitudinal examination of language and memory function in a case of PPA-LV, with special focus on tests linked to components of phonological short-term memory function. Our findings are then considered with reference to a contemporary model of the neuropsychology of phonological short-term memory. Additionally, post-mortem examinations indicated Alzheimer's disease type pathology, providing further evidence that the PPA-LV presentation may reflect an atypical presentation of this condition. © 2014 The British Psychological Society.

  20. LOCAL IMMUNITY BY TISSUE-RESIDENT CD8+ MEMORY T CELLS

    Directory of Open Access Journals (Sweden)

    Thomas eGebhardt

    2012-11-01

    Full Text Available Microbial infection primes a CD8+ cytotoxic T cell response that gives rise to a long-lived population of circulating memory cells able to provide protection against systemic reinfection. Despite this, effective CD8+ T cell surveillance of barrier tissues such as skin and mucosa typically wanes with time, resulting in limited T cell-mediated protection in these peripheral tissues. However, recent evidence suggests that a specialized subset of CD103+ memory T cells can permanently lodge and persist in peripheral tissues, and that these cells can compensate for the loss of peripheral immune surveillance by circulating memory T cells. Here, we review evolving concepts regarding the generation and long-term persistence of these tissue-resident memory T cells (TRM in epithelial and neuronal tissues. We further discuss the role of TRM cells in local infection control and their contribution to localized immune phenomena, in both mice and humans.

  1. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  2. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non-Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  3. Practice makes imperfect: Working memory training can harm recognition memory performance

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Laura E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Trumbo, Michael C. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Haass, Michael J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hunter, Michael A. [Univ. of New Mexico, Albuquerque, NM (United States); Silva, Austin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stevens-Adams, Susan M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bunting, Michael F. [Univ. of Maryland, College Park, MD (United States). Center for Advanced Study of Language; O?Rourke, Polly [Univ. of Maryland, College Park, MD (United States). Center for Advanced Study of Language

    2016-07-05

    There is a great deal of debate concerning the benefits of working memory (WM) training and whether that training can transfer to other tasks. Although a consistent finding is that WM training programs elicit a short-term near-transfer effect (i.e., improvement in WM skills), results are inconsistent when considering persistence of such improvement and far transfer effects. In this study, we compared three groups of participants: a group that received WM training, a group that received training on how to use a mental imagery memory strategy, and a control group that received no training. Although the WM training group improved on the trained task, their posttraining performance on nontrained WM tasks did not differ from that of the other two groups. In addition, although the imagery training group’s performance on a recognition memory task increased after training, the WM training group’s performance on the task decreased after training. Participants’ descriptions of the strategies they used to remember the studied items indicated that WM training may lead people to adopt memory strategies that are less effective for other types of memory tasks. Our results indicate that WM training may have unintended consequences for other types of memory performance.

  4. A Java Reference Model of Transacted Memory for Smart Cards

    NARCIS (Netherlands)

    Poll, Erik; Hartel, Pieter H.; de Jong, Eduard

    Transacted Memory offers persistence, undoability and auditing. We present a Java/JML Reference Model of the Transacted Memory system on the basis of our earlier separate Z model and C implementation. We conclude that Java/JML combines the advantages of a high level specification in the JML part

  5. A Java Reference Model of Transacted Memory for Smart Cards

    NARCIS (Netherlands)

    Poll, Erik; Hartel, Pieter H.; de Jong, Eduard

    2002-01-01

    Transacted Memory offers persistence, undoability and auditing. We present a Java/JML Reference Model of the Transacted Memory system on the basis of our earlier separate Z model and C implementation. We conclude that Java/JML combines the advantages of a high level specification in the JML part

  6. Understanding mild persistent asthma in children

    DEFF Research Database (Denmark)

    Bisgaard, Hans; Szefler, Stanley J

    2005-01-01

    Limitations in asthma prevalence studies and difficulties in diagnosing pediatric asthma lead to uncertainty over the full extent of mild persistent asthma in children and adolescents. Although recent surveys have reported that the majority of pediatric patients with asthma in the United States...... and Europe have symptoms consistent with mild disease, these surveys have limitations in design. Thus, the true prevalence of mild asthma remains unknown. It is unclear whether children with mild persistent asthma progress to more severe asthma, but the risk of severe asthma exacerbations seems...... to be unrelated to the symptom severity. Clinical studies restricted to pediatric patients with mild asthma are limited, but available data do suggest substantial morbidity of mild persistent asthma in this population and support inhaled corticosteroid intervention. There is a need for further investigation...

  7. Feelings Without Memory in Alzheimer Disease

    OpenAIRE

    Guzmán-Vélez, Edmarie; Feinstein, Justin S.; Tranel, Daniel

    2014-01-01

    Background: Patients with Alzheimer disease (AD) typically have impaired declarative memory as a result of hippocampal damage early in the disease. Far less is understood about AD’s effect on emotion. Objective: We investigated whether feelings of emotion can persist in patients with AD, even after their declarative memory for what caused the feelings has faded. Methods: A sample of 17 patients with probable AD and 17 healthy comparison participants (case-matched for age, sex, and education) ...

  8. Memory Dysfunction

    Science.gov (United States)

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  9. Persistent and recurrent hyperparathyroidism.

    Science.gov (United States)

    Guerin, Carole; Paladino, Nunzia Cinzia; Lowery, Aoife; Castinetti, Fréderic; Taieb, David; Sebag, Fréderic

    2017-06-01

    Despite remarkable progress in imaging modalities and surgical management, persistence or recurrence of primary hyperparathyroidism (PHPT) still occurs in 2.5-5% of cases of PHPT. The aim of this review is to expose the management of persistent and recurrent hyperparathyroidism. A literature search was performed on MEDLINE using the search terms "recurrent" or "persistent" and "hyperparathyroidism" within the past 10 years. We also searched the reference lists of articles identified by this search strategy and selected those we judged relevant. Before considering reoperation, the surgeon must confirm the diagnosis of PHPT. Then, the patient must be evaluated with new imaging modalities. A single adenoma is found in 68% of cases, multiglandular disease in 28%, and parathyroid carcinoma in 3%. Others causes (<1%) include parathyromatosis and graft recurrence. The surgeon must balance the benefits against the risks of a reoperation (permanent hypocalcemia and recurrent laryngeal nerve palsy). If surgery is necessary, a focused approach can be considered in cases of significant imaging foci, but in the case of multiglandular disease, a bilateral neck exploration could be necessary. Patients with multiple endocrine neoplasia syndromes are at high risk of recurrence and should be managed regarding their hereditary pathology. The cure rate of persistent-PHPT or recurrent-PHPT in expert centers is estimated from 93 to 97%. After confirming the diagnosis of PHPT, patients with persistent-PHPT and recurrent-PHPT should be managed in an expert center with all dedicated competencies.

  10. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains.

    Science.gov (United States)

    Sudhakaran, Indulekha P; Ramaswami, Mani

    2017-05-04

    Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs

  11. Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall.

    Science.gov (United States)

    Moczulska, Kaja Ewa; Tinter-Thiede, Juliane; Peter, Manuel; Ushakova, Lyubov; Wernle, Tanja; Bathellier, Brice; Rumpel, Simon

    2013-11-05

    Long-lasting changes in synaptic connections induced by relevant experiences are believed to represent the physical correlate of memories. Here, we combined chronic in vivo two-photon imaging of dendritic spines with auditory-cued classical conditioning to test if the formation of a fear memory is associated with structural changes of synapses in the mouse auditory cortex. We find that paired conditioning and unpaired conditioning induce a transient increase in spine formation or spine elimination, respectively. A fraction of spines formed during paired conditioning persists and leaves a long-lasting trace in the network. Memory recall triggered by the reexposure of mice to the sound cue did not lead to changes in spine dynamics. Our findings provide a synaptic mechanism for plasticity in sound responses of auditory cortex neurons induced by auditory-cued fear conditioning; they also show that retrieval of an auditory fear memory does not lead to a recapitulation of structural plasticity in the auditory cortex as observed during initial memory consolidation.

  12. Glucose-induced metabolic memory in Schwann cells: prevention by PPAR agonists.

    Science.gov (United States)

    Kim, Esther S; Isoda, Fumiko; Kurland, Irwin; Mobbs, Charles V

    2013-09-01

    A major barrier in reversing diabetic complications is that molecular and pathologic effects of elevated glucose persist despite normalization of glucose, a phenomenon referred to as metabolic memory. In the present studies we have investigated the effects of elevated glucose on Schwann cells, which are implicated in diabetic neuropathy. Using quantitative PCR arrays for glucose and fatty acid metabolism, we have found that chronic (>8 wk) 25 mM high glucose induces a persistent increase in genes that promote glycolysis, while inhibiting those that oppose glycolysis and alternate metabolic pathways such as fatty acid metabolism, the pentose phosphate pathway, and trichloroacetic acid cycle. These sustained effects were associated with decreased peroxisome proliferator-activated receptor (PPAR)γ binding and persistently increased reactive oxygen species, cellular NADH, and altered DNA methylation. Agonists of PPARγ and PPARα prevented select effects of glucose-induced gene expression. These observations suggest that Schwann cells exhibit features of metabolic memory that may be regulated at the transcriptional level. Furthermore, targeting PPAR may prevent metabolic memory and the development of diabetic complications.

  13. Sensory memory of structure-from-motion is shape-specific.

    Science.gov (United States)

    Pastukhov, Alexander; Füllekrug, Jana; Braun, Jochen

    2013-08-01

    Perceptual priming can stabilize the phenomenal appearance of multistable visual displays (Leopold, Wilke, Maier, & Logothetis, Nature Neuroscience, 5, 605-609, 2002). Prior exposure to such displays induces a sensory memory of their appearance, which persists over long intervals and intervening stimulation, and which facilitates renewed perception of the same appearance. Here, we investigated perceptual priming for the apparent rotation in depth of ambiguous structure-from-motion (SFM) displays. Specifically, we generated SFM objects with different three-dimensional shapes and presented them in random order and with intervening blank periods. To assess perceptual priming, we established the probability that a perceived direction of rotation would persist between successive objects. In general, persistence was greatest between identical objects, intermediate between similar objects, and negligible between dissimilar objects. These results demonstrate unequivocally that sensory memory for apparent rotation is specific to three-dimensional shape, contrary to previous reports (e.g., Maier, Wilke, Logothetis, & Leopold, Current Biology, 13, 1076-1085, 2003). Because persistence did not depend on presentation order for any pair of objects, it provides a commutative measure for the similarity of object shapes. However, it is not clear exactly which features or aspects of object shape determine similarity. At least, we did not find simple, low-level features (such as volume overlap, heterogeneity, or rotational symmetry) that could have accounted for all observations. Accordingly, it seems that sensory memory of SFM (which underlies priming of ambiguous rotation) engages higher-level representations of object surface and shape.

  14. Multiple Memory Processes Following Training That a Food Is Inedible in Aplysia

    OpenAIRE

    Botzer, Dina; Markovich, Silvia; Susswein, Abraham J.

    1998-01-01

    In many organisms, memory after training can be separated into a number of processes. We now report that separable memory processes are also initiated by a training procedure affecting Aplysia feeding behavior, a model system for examining the neural mechanisms underlying the regulation of a complex behavior. Four distinct memory process were identified: (1) a very short-term memory that declines within 15 min, (2) a short-term memory that persists for 0.5–1.0 hr, (3) an intermediate-term mem...

  15. Auditory and visual memory in musicians and nonmusicians.

    Science.gov (United States)

    Cohen, Michael A; Evans, Karla K; Horowitz, Todd S; Wolfe, Jeremy M

    2011-06-01

    Numerous studies have shown that musicians outperform nonmusicians on a variety of tasks. Here we provide the first evidence that musicians have superior auditory recognition memory for both musical and nonmusical stimuli, compared to nonmusicians. However, this advantage did not generalize to the visual domain. Previously, we showed that auditory recognition memory is inferior to visual recognition memory. Would this be true even for trained musicians? We compared auditory and visual memory in musicians and nonmusicians using familiar music, spoken English, and visual objects. For both groups, memory for the auditory stimuli was inferior to memory for the visual objects. Thus, although considerable musical training is associated with better musical and nonmusical auditory memory, it does not increase the ability to remember sounds to the levels found with visual stimuli. This suggests a fundamental capacity difference between auditory and visual recognition memory, with a persistent advantage for the visual domain.

  16. Memorial Camels and Design by Committee: St Andrews Black Saturday Memorials

    Directory of Open Access Journals (Sweden)

    SueAnne Ware

    2015-02-01

    Full Text Available This paper examines a work in progress, the St Andrews Bushfire Memorial, which commemorates victims of the 7 February 2009 bushfires in Victoria, Australia. The paper’s intent is threefold: to describe and reflect on a current and ongoing memorial design project; to frame this project within a larger series of design discourses; and to examine the processes by which this memorial, but also many other grassroots or ‘bottom-up’ memorials, come into being. By examining the design process, I aim to open up various memorialisation and consultation methods for review. More importantly, however, by framing this project in contemporary discussions regarding socially engaged design practices, I offer a critique of the dictator–democrat binaries mentioned above and offer another way forward.

  17. Cell-Specific PKM Isoforms Contribute to the Maintenance of Different Forms of Persistent Long-Term Synaptic Plasticity.

    Science.gov (United States)

    Hu, Jiangyuan; Adler, Kerry; Farah, Carole Abi; Hastings, Margaret H; Sossin, Wayne S; Schacher, Samuel

    2017-03-08

    Multiple kinase activations contribute to long-term synaptic plasticity, a cellular mechanism mediating long-term memory. The sensorimotor synapse of Aplysia expresses different forms of long-term facilitation (LTF)-nonassociative and associative LTF-that require the timely activation of kinases, including protein kinase C (PKC). It is not known which PKC isoforms in the sensory neuron or motor neuron L7 are required to sustain each form of LTF. We show that different PKMs, the constitutively active isoforms of PKCs generated by calpain cleavage, in the sensory neuron and L7 are required to maintain each form of LTF. Different PKMs or calpain isoforms were blocked by overexpressing specific dominant-negative constructs in either presynaptic or postsynaptic neurons. Blocking either PKM Apl I in L7, or PKM Apl II or PKM Apl III in the sensory neuron 2 d after 5-hydroxytryptamine (5-HT) treatment reversed persistent nonassociative LTF. In contrast, blocking either PKM Apl II or PKM Apl III in L7, or PKM Apl II in the sensory neuron 2 d after paired stimuli reversed persistent associative LTF. Blocking either classical calpain or atypical small optic lobe (SOL) calpain 2 d after 5-HT treatment or paired stimuli did not disrupt the maintenance of persistent LTF. Soon after 5-HT treatment or paired stimuli, however, blocking classical calpain inhibited the expression of persistent associative LTF, while blocking SOL calpain inhibited the expression of persistent nonassociative LTF. Our data suggest that different stimuli activate different calpains that generate specific sets of PKMs in each neuron whose constitutive activities sustain long-term synaptic plasticity. SIGNIFICANCE STATEMENT Persistent synaptic plasticity contributes to the maintenance of long-term memory. Although various kinases such as protein kinase C (PKC) contribute to the expression of long-term plasticity, little is known about how constitutive activation of specific kinase isoforms sustains long

  18. Circadian Oscillations within the Hippocampus Support Hippocampus-dependent Memory Processing

    Directory of Open Access Journals (Sweden)

    Kristin Lynn Eckel-Mahan

    2012-04-01

    Full Text Available The ability to sustain memories over long periods of time, sometimes even a lifetime, is one of the most remarkable properties of the brain. Much knowledge has been gained over the past few decades regarding the molecular correlates of memory formation. Once a memory is forged, however, the molecular events that provide permanence are as of yet unclear. Studies in multiple organisms have revealed that circadian rhythmicity is important for the formation, stability, and recall of memories [1]. The neuronal events that provide this link need to be explored further. This article will discuss the findings related to the circadian regulation of memory-dependent processes in the hippocampus. Specifically, the circadian-controlled MAP kinase and cAMP signal transduction pathway plays critical roles in the consolidation of hippocampus-dependent memory. A series of studies have revealed the circadian oscillation of this pathway within the hippocampus, an activity that is absent in memory-deficient, transgenic mice lacking Ca2+-stimulated adenylyl cyclases. Interference with these oscillations proceeding the cellular memory consolidation period impairs the persistence of hippocampus-dependent memory. These data suggest that the persistence of long-term memories may depend upon reactivation of this signal transduction pathway in the hippocampus during the circadian cycle. New data reveals the dependence of hippocampal oscillation in MAPK activity on the SCN, again underscoring the importance of this region in maintaining the circadian physiology of memory. Finally, the downstream ramification of these oscillations in terms of gene expression and epigenetics should be considered, as emerging evidence is pointing strongly to a circadian link between epigenetics and long term synaptic plasticity.

  19. Pseudoproxy Experiments Using the BARCAST Reconstruction Technique: Effects on Spatiotemporal Persistence Properties

    Science.gov (United States)

    Nilsen, T.; Divine, D.; Rypdal, M.; Werner, J.; Rypdal, K.

    2016-12-01

    A modified two-dimensional stochastic-diffusive energy balance model (EBM) defined on a sphere was used for generating pseudoproxy/instrumental data and target data for surface temperature. The EBM is described in Rypdal et al. (2015). The target field has prescribed long-range memory (LRM) properties in time, and a frequency-dependent autocorrelation function in space. The Bayesian hierarchical model BARCAST, was used to generate surface temperature field reconstructions of an area corresponding to the European landmass for the past millennium. BARCAST has a built-in multivariate AR(1) model for the evolution of the temperature field, with an exponential, spatial covariance function, (Tingley & Huybers, 2010). The AR(1) process has a short-range memory, and we seek to find out how the competing spatiotemporal models influence the persistence of the reconstruction. A number of pseudoproxy experiments were performed with a fixed proxy network, using different signal-to-noise ratios (SNR) and colors of noise, (white/red). To study the persistence properties, the power-law relation of the power spectral density for LRM processes was used: S(f) f-β. The spectral exponent β was estimated both for local data and the spatial mean of the full region. The local β for the target varies between (0.1, 0.4), and for the spatial mean β 0.6. Results for the reconstructions show that the local and global memory is influenced by the noise color and level. Low noise levels or absence of noise results in reconstructions that exhibit similar properties as the target, while for higher noise levels the reconstructions have memory properties of a white/red character, (SNR=0.3 by standard deviation). Since an SNR of 0.5-0.25 is considered realistic for real proxy records, this implies that estimates of temporal persistence from proxy-based reconstructions reflect the proxy noise to a high degree, and not the signal as desired. Rypdal et al., 2015: Spatiotemporal Long-Range Persistence

  20. Persistent atrial fibrillation vs paroxysmal atrial fibrillation: differences in management.

    Science.gov (United States)

    Margulescu, Andrei D; Mont, Lluis

    2017-08-01

    Atrial fibrillation (AF) is the most common human arrhythmia. AF is a progressive disease, initially being nonsustained and induced by trigger activity, and progressing towards persistent AF through alteration of the atrial myocardial substrate. Treatment of AF aims to decrease the risk of stroke and improve the quality of life, by preventing recurrences (rhythm control) or controlling the heart rate during AF (rate control). In the last 20 years, catheter-based and, less frequently, surgical and hybrid ablation techniques have proven more successful compared with drug therapy in achieving rhythm control in patients with AF. However, the efficiency of ablation techniques varies greatly, being highest in paroxysmal and lowest in long-term persistent AF. Areas covered: In this review, we discuss the fundamental differences between paroxysmal and persistent AF and the potential impact of those differences on patient management, emphasizing the available therapeutic strategies to achieve rhythm control. Expert commentary: Treatment to prevent AF recurrences is suboptimal, particularly in patients with persistent AF. Emerging technologies, such as documentation of atrial fibrosis using magnetic resonance imaging and documentation of electrical substrate using advanced electrocardiographic imaging techniques are likely to provide valuable insights about patient-specific tailoring of treatments.

  1. Geometry Helps to Compare Persistence Diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Kerber, Michael; Morozov, Dmitriy; Nigmetov, Arnur

    2015-11-16

    Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a well-studied subject. In contrast, the practical advantages of using geometry for such problems have not been explored. We implement geometric variants of the Hopcroft--Karp algorithm for bottleneck matching (based on previous work by Efrat el al.), and of the auction algorithm by Bertsekas for Wasserstein distance computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query. Our interest in this problem stems from the desire to compute distances between persistence diagrams, a problem that comes up frequently in topological data analysis. We show that our geometric matching algorithms lead to a substantial performance gain, both in running time and in memory consumption, over their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only other implementation available for comparing persistence diagrams.

  2. Headmasters: Microglial regulation of learning and memory in health and disease

    Directory of Open Access Journals (Sweden)

    Laetitia Weinhard

    2018-03-01

    Full Text Available Microglia are mononuclear phagocytes that reside throughout the lifetime of the animal in the central nervous system (CNS. Originating from the yolk sac, microglial progenitors infiltrate the developing brain anlage even before the formation of the neural network. Mature microglial cells persist by slow rates of self-renewal that vary across brain regions. Eminent studies in the recent decade have highlighted a role for steady state microglia in neurogenesis, synaptic pruning, and formation and maintenance of connectivity within the CNS, which are critical to learning and memory functions. Activity- and learning-dependent synaptic remodeling by microglia has been described in various contexts. Molecular pathways, including signaling through fractalkine CX3CL1 and its receptor CX3CR1, transforming growth factor-beta, classical complement system, colony-stimulating factor 1 receptor, adaptor protein DAP12, and brain-derived neurotropic factor, have been proposed to be important mediators of synaptic plasticity regulated by microglia. Reactive, dysfunctional, or aged microglia are thought to impact learning and memory, and are implicated in human neurodegenerative disorders in which dementia is a hallmark. These disorders include Nasu-Hakola disease, hereditary diffuse leukoencephaly with spheroids, Alzheimer’s disease, frontotemporal dementia, and Parkinson’s disease. Focusing on microglia, here we discuss the potential detrimental effects and risks presented by microglia-specific genetic variants, the environmental factors that target microglia, and microglial aging that likely lead to progressive memory loss in neurodegenerative diseases. Finally, we consider some caveats of the animal model systems that to date have advanced our understanding of microglial regulation of learning and memory.

  3. [Vaccination against viral hepatitis A and B in adults aged over 40 years--antibody persistence and immune memory].

    Science.gov (United States)

    Chlibek, R; Smetana, J; Bostíková, V; Splino, M

    2011-09-01

    HAB group, 90.5% in the ENG+HAV group and 85.3% in the HBVX+VAQ group. In the adults aged over 40 years, an adequate anti-HAV antibody response persisted for at least four years after vaccination and was higher and more sustained in those who received the combined HAB vaccine. A strong antibody response to the booster dose indicative ofthe presence of immune memory was seen in all study groups.

  4. The Impact of Awareness of and Concern About Memory Performance on the Prediction of Progression From Mild Cognitive Impairment to Alzheimer Disease Dementia.

    Science.gov (United States)

    Munro, Catherine E; Donovan, Nancy J; Amariglio, Rebecca E; Papp, Kate V; Marshall, Gad A; Rentz, Dorene M; Pascual-Leone, Alvaro; Sperling, Reisa A; Locascio, Joseph J; Vannini, Patrizia

    2018-05-03

    To investigate the relationship of awareness of and concern about memory performance to progression from mild cognitive impairment (MCI) to Alzheimer disease (AD) dementia. Participants (n = 33) had a diagnosis of MCI at baseline and a diagnosis of MCI or AD dementia at follow-up. Participants were categorized as "Stable-MCI" if they retained an MCI diagnosis at follow-up (mean follow-up = 18.0 months) or "Progressor-MCI" if they were diagnosed with AD dementia at follow-up (mean follow-up = 21.6 months). Awareness was measured using the residual from regressing a participant's objective memory score onto their subjective complaint score (i.e., residualConcern was assessed using a questionnaire examining the degree of concern when forgetting. Logistic regression was used to determine whether the presence of these syndromes could predict future diagnosis of AD dementia, and repeated measures analysis of covariance tests were used to examine longitudinal patterns of these syndromes. Baseline anosognosia was apparent in the Progressor-MCI group, whereas participants in the Stable-MCI group demonstrated relative awareness of their memory performance. Baseline awareness scores successfully predicted whether an individual would progress to AD-dementia. Neither group showed change in awareness of performance over time. Neither group showed differences in concern about memory performance at baseline or change in concern about performance over time. These data suggest that anosognosia may appear prior to the onset of AD dementia, while anosodiaphoria likely does not appear until later in the AD continuum. Additionally, neither group showed significant changes in awareness or concern over time, suggesting that change in these variables may happen over longer periods. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Pre- and long-term postoperative courses of hippocampus-associated memory impairment in epilepsy patients with antibody-associated limbic encephalitis and selective amygdalohippocampectomy.

    Science.gov (United States)

    Hansen, Niels; Ernst, Leon; Rüber, Theodor; Widman, Guido; Becker, Albert J; Elger, Christian E; Helmstaedter, Christoph

    2018-02-01

    Limbic encephalitis (LE) is defined by mesiotemporal lobe structure abnormalities, seizures, memory, and psychiatric disturbances. This study aimed to identify the long-term clinical and neuropsychological outcome of selective amygdalohippocampectomy (sAH) in drug-resistant patients with temporal lobe epilepsy due to known or later diagnosed subacute LE not responding to immunotherapy associated with neuronal autoantibodies. In seven patients with temporal lobe epilepsy due to antibody positive LE (glutamic acid decarboxylase (GAD65): n=5; voltage-gated potassium channel complex (VGKC), N-methyl d-aspartate receptor (NMDAR): n=1; Ma-2/Ta: n=1) sAH (6 left, 1 right) was performed. Those patients underwent repeated electroencephalography (EEG) recordings, magnetic resonance imaging (MRI) volumetry of the amygdala and hippocampus, and neuropsychological examinations and were followed up for 6-7years on average. Verbal memory and figural memory were affected in 57% of patients at baseline and 71% at the last follow-up. At the last follow-up, 14% of the patients had declined in verbal memory and figural memory. We observed improved memory in 43% of patients regarding figural memory, but not in a single patient regarding verbal memory. Repeated evaluations across the individual courses reveal cognitive and MRI dynamics that appear to be unrelated to surgery and drug treatment. Three of the seven patients with LE with different antibodies (NMDAR: n=1, Ma-2/Ta: n=1 and GAD65: n=1) achieved persistent seizure freedom along with no accelerated memory decline after surgery. Two of the five GAD65-antibody patients positive with LE showed progressive memory decline and a long-term tendency to contralateral hippocampus atrophy. While memory demonstrated some decline in the long run, what is most important is that a progressive decline in memory is seldom found after sAH in patients with LE. Moreover, the dynamics in performance and MRI before and after surgery reveal disease

  6. A flavonol present in cocoa [(-)epicatechin] enhances snail memory.

    Science.gov (United States)

    Fruson, Lee; Dalesman, Sarah; Lukowiak, Ken

    2012-10-15

    Dietary consumption of flavonoids (plant phytochemicals) may improve memory and neuro-cognitive performance, though the mechanism is poorly understood. Previous work has assessed cognitive effects in vertebrates; here we assess the suitability of Lymnaea stagnalis as an invertebrate model to elucidate the effects of flavonoids on cognition. (-)Epicatechin (epi) is a flavonoid present in cocoa, green tea and red wine. We studied its effects on basic snail behaviours (aerial respiration and locomotion), long-term memory (LTM) formation and memory extinction of operantly conditioned aerial respiratory behaviour. We found no significant effect of epi exposure (15 mg l(-1)) on either locomotion or aerial respiration. However, when snails were operantly conditioned in epi for a single 0.5 h training session, which typically results in memory lasting ~3 h, they formed LTM lasting at least 24 h. Snails exposed to epi also showed significantly increased resistance to extinction, consistent with the hypothesis that epi induces a more persistent LTM. Thus training in epi facilitates LTM formation and results in a more persistent and stronger memory. Previous work has indicated that memory-enhancing stressors (predator kairomones and KCl) act via sensory input from the osphradium and are dependent on a serotonergic (5-HT) signalling pathway. Here we found that the effects of epi on LTM were independent of osphradial input and 5-HT, demonstrating that an alternative mechanism of memory enhancement exists in L. stagnalis. Our data are consistent with the notion that dietary sources of epi can improve cognitive abilities, and that L. stagnalis is a suitable model with which to elucidate neuronal mechanisms.

  7. Ketamine effects on memory reconsolidation favor a learning model of delusions.

    Directory of Open Access Journals (Sweden)

    Philip R Corlett

    Full Text Available Delusions are the persistent and often bizarre beliefs that characterise psychosis. Previous studies have suggested that their emergence may be explained by disturbances in prediction error-dependent learning. Here we set up complementary studies in order to examine whether such a disturbance also modulates memory reconsolidation and hence explains their remarkable persistence. First, we quantified individual brain responses to prediction error in a causal learning task in 18 human subjects (8 female. Next, a placebo-controlled within-subjects study of the impact of ketamine was set up on the same individuals. We determined the influence of this NMDA receptor antagonist (previously shown to induce aberrant prediction error signal and lead to transient alterations in perception and belief on the evolution of a fear memory over a 72 hour period: they initially underwent Pavlovian fear conditioning; 24 hours later, during ketamine or placebo administration, the conditioned stimulus (CS was presented once, without reinforcement; memory strength was then tested again 24 hours later. Re-presentation of the CS under ketamine led to a stronger subsequent memory than under placebo. Moreover, the degree of strengthening correlated with individual vulnerability to ketamine's psychotogenic effects and with prediction error brain signal. This finding was partially replicated in an independent sample with an appetitive learning procedure (in 8 human subjects, 4 female. These results suggest a link between altered prediction error, memory strength and psychosis. They point to a core disruption that may explain not only the emergence of delusional beliefs but also their persistence.

  8. Measuring consistency of autobiographical memory recall in depression.

    LENUS (Irish Health Repository)

    Semkovska, Maria

    2012-05-15

    Autobiographical amnesia assessments in depression need to account for normal changes in consistency over time, contribution of mood and type of memories measured. We report herein validation studies of the Columbia Autobiographical Memory Interview - Short Form (CAMI-SF), exclusively used in depressed patients receiving electroconvulsive therapy (ECT) but without previous published report of normative data. The CAMI-SF was administered twice with a 6-month interval to 44 healthy volunteers to obtain normative data for retrieval consistency of its Semantic, Episodic-Extended and Episodic-Specific components and assess their reliability and validity. Healthy volunteers showed significant large decreases in retrieval consistency on all components. The Semantic and Episodic-Specific components demonstrated substantial construct validity. We then assessed CAMI-SF retrieval consistencies over a 2-month interval in 30 severely depressed patients never treated with ECT compared with healthy controls (n=19). On initial assessment, depressed patients produced less episodic-specific memories than controls. Both groups showed equivalent amounts of consistency loss over a 2-month interval on all components. At reassessment, only patients with persisting depressive symptoms were distinguishable from controls on episodic-specific memories retrieved. Research quantifying retrograde amnesia following ECT for depression needs to control for normal loss in consistency over time and contribution of persisting depressive symptoms.

  9. Acute Sleep Deprivation Blocks Short- and Long-Term Operant Memory in Aplysia.

    Science.gov (United States)

    Krishnan, Harini C; Gandour, Catherine E; Ramos, Joshua L; Wrinkle, Mariah C; Sanchez-Pacheco, Joseph J; Lyons, Lisa C

    2016-12-01

    Insufficient sleep in individuals appears increasingly common due to the demands of modern work schedules and technology use. Consequently, there is a growing need to understand the interactions between sleep deprivation and memory. The current study determined the effects of acute sleep deprivation on short and long-term associative memory using the marine mollusk Aplysia californica , a relatively simple model system well known for studies of learning and memory. Aplysia were sleep deprived for 9 hours using context changes and tactile stimulation either prior to or after training for the operant learning paradigm, learning that food is inedible (LFI). The effects of sleep deprivation on short-term (STM) and long-term memory (LTM) were assessed. Acute sleep deprivation prior to LFI training impaired the induction of STM and LTM with persistent effects lasting at least 24 h. Sleep deprivation immediately after training blocked the consolidation of LTM. However, sleep deprivation following the period of molecular consolidation did not affect memory recall. Memory impairments were independent of handling-induced stress, as daytime handled control animals demonstrated no memory deficits. Additional training immediately after sleep deprivation failed to rescue the induction of memory, but additional training alleviated the persistent impairment in memory induction when training occurred 24 h following sleep deprivation. Acute sleep deprivation inhibited the induction and consolidation, but not the recall of memory. These behavioral studies establish Aplysia as an effective model system for studying the interactions between sleep and memory formation. © 2016 Associated Professional Sleep Societies, LLC.

  10. Functional neuroanatomy of Drosophila olfactory memory formation.

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L

    2014-10-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. © 2014 Guven-Ozkan and Davis; Published by Cold Spring Harbor Laboratory Press.

  11. Working memory and decision processes in visual area V4

    Directory of Open Access Journals (Sweden)

    Benjamin eHayden

    2013-02-01

    Full Text Available Recognizing and responding to a remembered stimulus requires the coordination of perception, working memory and decision-making. To investigate the role of visual cortex in these processes, we recorded responses of single V4 neurons during performance of a delayed match-to-sample task that incorporates rapid serial visual presentation of natural images. We found that neuronal activity during the delay period after the cue but before the images depends on the identity of the remembered image and that this change persists while distractors appear. This persistent response modulation has been identified as a diagnostic criterion for putative working memory signals; our data thus suggest that working memory may involve reactivation of sensory neurons. When the remembered image reappears in the neuron’s receptive field, visually evoked responses are enhanced; this match enhancement is a diagnostic criterion for decision. One model that predicts these data is the matched filter hypothesis, which holds that during search V4 neurons change their tuning so as to match the remembered cue, and thus become detectors for that image. More generally, these results suggest that V4 neurons participate in the perceptual, working memory and decision processes that are needed to perform memory-guided decision-making.

  12. Working memory and decision processes in visual area v4.

    Science.gov (United States)

    Hayden, Benjamin Y; Gallant, Jack L

    2013-01-01

    Recognizing and responding to a remembered stimulus requires the coordination of perception, working memory, and decision-making. To investigate the role of visual cortex in these processes, we recorded responses of single V4 neurons during performance of a delayed match-to-sample task that incorporates rapid serial visual presentation of natural images. We found that neuronal activity during the delay period after the cue but before the images depends on the identity of the remembered image and that this change persists while distractors appear. This persistent response modulation has been identified as a diagnostic criterion for putative working memory signals; our data thus suggest that working memory may involve reactivation of sensory neurons. When the remembered image reappears in the neuron's receptive field, visually evoked responses are enhanced; this match enhancement is a diagnostic criterion for decision. One model that predicts these data is the matched filter hypothesis, which holds that during search V4 neurons change their tuning so as to match the remembered cue, and thus become detectors for that image. More generally, these results suggest that V4 neurons participate in the perceptual, working memory, and decision processes that are needed to perform memory-guided decision-making.

  13. The future of memory

    Science.gov (United States)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  14. β-Adrenoreceptor stimulation mediates reconsolidation of social reward-related memories.

    Directory of Open Access Journals (Sweden)

    E J Marijke Achterberg

    Full Text Available In recent years, the notion that consolidated memories become transiently unstable after retrieval and require reconsolidation to persist for later use has received strong experimental support. To date, the majority of studies on reconsolidation have focused on memories of negative emotions, while the dynamics of positive memories have been less well studied. Social play, the most characteristic social behavior displayed by young mammals, is important for social and cognitive development. It has strong rewarding properties, illustrated by the fact that it can induce conditioned place preference (CPP. In order to understand the dynamics of positive social memories, we evaluated the effect of propranolol, a β-adrenoreceptor antagonist known to influence a variety of memory processes, on acquisition, consolidation, retrieval and reconsolidation of social play-induced CPP in adolescent rats.Systemic treatment with propranolol, immediately before or after a CPP test (i.e. retrieval session, attenuated CPP 24 h later. Following extinction, CPP could be reinstated in saline--but not in propranolol-treated rats, indicating that propranolol treatment had persistently disrupted the CPP memory trace. Propranolol did not affect social play-induced CPP in the absence of memory retrieval or when administered 1 h or 6 h after retrieval. Furthermore, propranolol did not affect acquisition, consolidation or retrieval of social play-induced CPP.We conclude that β-adrenergic neurotransmission selectively mediates the reconsolidation, but not other processes involved in the storage and stability of social reward-related memories in adolescent rats. These data support the notion that consolidation and reconsolidation of social reward-related memories in adolescent rats rely on distinct neural mechanisms.

  15. Structural Components of Synaptic Plasticity and Memory Consolidation

    Science.gov (United States)

    Bailey, Craig H.; Kandel, Eric R.; Harris, Kristen M.

    2015-01-01

    Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain. PMID:26134321

  16. Atypical PKCs in Memory Maintenance: The Roles of Feedback and Redundancy

    Science.gov (United States)

    Jalil, Sajiya J.; Sacktor, Todd Charlton; Shouval, Harel Z.

    2015-01-01

    Memories that last a lifetime are thought to be stored, at least in part, as persistent enhancement of the strength of particular synapses. The synaptic mechanism of these persistent changes, late long-term potentiation (L-LTP), depends on the state and number of specific synaptic proteins. Synaptic proteins, however, have limited dwell times due…

  17. Mechanisms of Memory Enhancement

    Science.gov (United States)

    Stern, Sarah A.

    2012-01-01

    The ongoing quest for memory enhancement is one that grows necessary as the global population increasingly ages. The extraordinary progress that has been made in the past few decades elucidating the underlying mechanisms of how long-term memories are formed has provided insight into how memories might also be enhanced. Capitalizing on this knowledge, it has been postulated that targeting many of the same mechanisms, including CREB activation, AMPA/NMDA receptor trafficking, neuromodulation (e.g. via dopamine, adrenaline, cortisol or acetylcholine) and metabolic processes (e.g. via glucose and insulin) may all lead to the enhancement of memory. These and other mechanisms and/or approaches have been tested via genetic or pharmacological methods in animal models, and several have been investigated in humans as well. In addition, a number of behavioral methods, including exercise and reconsolidation, may also serve to strengthen and enhance memories. By capitalizing on this knowledge and continuing to investigate these promising avenues, memory enhancement may indeed be achieved in the future. PMID:23151999

  18. Can Testing Immunize Memories against Interference?

    Science.gov (United States)

    Potts, Rosalind; Shanks, David R.

    2012-01-01

    Testing typically enhances subsequent recall of tested material. In contrast, it has been proposed that consolidated memories can be destabilized when reactivated and then need to be reconsolidated in order to persist. Learning new material immediately after reactivation may disrupt reconsolidation. We investigated whether the well-known benefits…

  19. Memory Synapses Are Defined by Distinct Molecular Complexes: A Proposal.

    Science.gov (United States)

    Sossin, Wayne S

    2018-01-01

    Synapses are diverse in form and function. While there are strong evidential and theoretical reasons for believing that memories are stored at synapses, the concept of a specialized "memory synapse" is rarely discussed. Here, we review the evidence that memories are stored at the synapse and consider the opposing possibilities. We argue that if memories are stored in an active fashion at synapses, then these memory synapses must have distinct molecular complexes that distinguish them from other synapses. In particular, examples from Aplysia sensory-motor neuron synapses and synapses on defined engram neurons in rodent models are discussed. Specific hypotheses for molecular complexes that define memory synapses are presented, including persistently active kinases, transmitter receptor complexes and trans-synaptic adhesion proteins.

  20. Antibody and immune memory persistence post infant hepatitis B vaccination

    Directory of Open Access Journals (Sweden)

    Hudu SA

    2013-09-01

    Full Text Available Shuaibu A Hudu,1,2 Yasmin A Malik,3 Mohd Taib Niazlin,1 Nabil S Harmal,1,4 Ariza Adnan,5 Ahmed S Alshrari,1 Zamberi Sekawi1 1Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; 2Department of Pathology and Medical Microbiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Sokoto State, Nigeria; 3Department of Clinical Science, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia; 4Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen; 5Cluster of Laboratory Medical Sciences, Faculty of Medicine Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia Objectives: This study aimed to evaluate the level of hepatitis B immunity among undergraduate students 23 years after commencement of the nationwide hepatitis B childhood immunization program in Malaysia. Methods: A total of 402 serum samples obtained from volunteer undergraduate students were screened for the presence of hepatitis B surface antibodies using qualitative ELISA. Results: Results showed that 62.7% of volunteers had protective anti-hepatitis B surface antigens (≥10 IU/L, of whom 67.9% received three doses of the vaccine. The estimated post-vaccination immunity was found to be at least 20 years, indicating persistent immunity against hepatitis B and a significant association (P < 0.05 with duration of vaccination. Anamnestic response 1 month post-hepatitis B booster was 94.0% and highly significant (P < 0.01. Isolated anti-hepatitis B core antigen (anti-HBc prevalence was found to be 5.0%, all having had a positive anamnestic response. Conclusion: Immunity after primary vaccination with hepatitis B recombinant vaccine persists for at least 20 years post-vaccination, with significant association with the number of vaccinations. Furthermore, the presence of anamnestic response to

  1. Retrospective review of neonates with persistent pulmonary ...

    African Journals Online (AJOL)

    Persistent pulmonary hypertension of the newborn (PPHN) is a clinical condition characterised by severe respiratory failure and hypoxaemia.[1] Its incidence is estimated at around 2 per 1 000 live births worldwide and it is associated with a high morbidity and mortality.[2,3] Despite the progress in treating PPHN, it remains a.

  2. Working memory representations persist in the face of unexpected task alterations.

    Science.gov (United States)

    Swan, Garrett; Wyble, Brad; Chen, Hui

    2017-07-01

    It is well known that information can be held in memory while performing other tasks concurrently, such as remembering a color or number during a separate visual search task. However, it is not clear what happens to stored information in the face of unexpected tasks, such as the surprise questions that are often used in experiments related to inattentional and change blindness. Does the unpredicted shift in task context cause memory representations to be cleared in anticipation of new information? To answer this question, we ran two experiments where the task unexpectedly switched partway through the experiment with a surprise question. Half of the participants were asked to report the same attribute (Exp. 1 = Identity, Exp. 2 = Color) of a target stimulus in both presurprise and postsurprise trials, while for the other half, the reported attribute switched from identity to color (Exp. 1) or vice versa (Exp. 2). Importantly, all participants had to read an unexpected set of instructions and respond differently on the surprise trial. Accuracy on the surprise trial was higher for the same-attribute groups than the different-attribute groups. Furthermore, there was no difference in reaction time on the surprise trial between the two groups. These results suggest that information participants expected to report can survive an encounter with an unexpected task. The implication is that failures to report information on a surprise trial in many experiments reflect genuine differences in memory encoding, rather than forgetting or overwriting induced by the surprise question.

  3. Towards a proportionality assessment of risk reduction measures aimed at restricting the use of persistent and bioaccumulative substances.

    NARCIS (Netherlands)

    Oosterhuis, Frans; Brouwer, Roy; Janssen, Martien; Verhoeven, Julia; Luttikhuizen, Cees

    2017-01-01

    International chemicals legislation aims at adequately controlling persistent organic pollutants (POPs) and substances of very high concern (SVHCs), such as persistent, bioaccumulative, and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances, with a view to progressively

  4. Histone Acetylation is Recruited in Consolidation as a Molecular Feature of Stronger Memories

    Science.gov (United States)

    Federman, Noel; Fustinana, Maria Sol; Romano, Arturo

    2009-01-01

    Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone…

  5. Sparse distributed memory overview

    Science.gov (United States)

    Raugh, Mike

    1990-01-01

    The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.

  6. Glycemic Memory as a Pathogenic Basis for Modern Antidiabetic Therapy Algorithm Forming

    Directory of Open Access Journals (Sweden)

    V.V. Poltorak

    2014-04-01

    Full Text Available Prevention/delay of the development of vascular complications remains one of major challenges in treatment of diabetes mellitus. Epidemiological studies have shown lack of efficacy of stable glycemic control in patients with long-existing diabetes. This phenomenon, confirmed in animal models and analyzed at the molecular genetic level, is called metabolic/glycemic memory and associated with epigenetic modifications of gene expression. On the other hand, it has been proven that early intensive intervention in type 1 and 2 diabetes mellitus reduces the risk of micro- and macrovascular complications development and progression, forming the basis for long-term favorable effects that persist beyond normoglycemia. The foregoing justifies change of therapeutic approach in diabetes mellitus since the moment of establishing diagnosis for the early and maximum safely achievement of blood glucose and glycosylated hemoglobin levels close to normal ones.

  7. The role of prefrontal cortex in working memory: a mini review

    Directory of Open Access Journals (Sweden)

    Antonio Homero Lara

    2015-12-01

    Full Text Available A prominent account of prefrontal cortex (PFC function is that single neurons within the PFC maintain representations of task-relevant stimuli in working memory. Evidence for this view comes from studies in which subjects hold a stimulus across a delay lasting up to several seconds. Persistent elevated activity in the PFC has been observed in animal models as well as in humans performing these tasks. This persistent activity has been interpreted as evidence for the encoding of the stimulus itself in working memory. However, recent findings have posed a challenge to this notion. A number of recent studies have examined neural data from the PFC and posterior sensory areas, both at the single neuron level in primates, and at a larger scale in humans, and have failed to find encoding of stimulus information in the PFC during tasks with a substantial working memory component. Strong stimulus related information, however, was seen in posterior sensory areas. These results suggest that delay period activity in the PFC might be better understood not as a signature of memory storage per se, but as a top down signal that influences posterior sensory areas where the actual working memory representations are maintained.

  8. Measuring consistency of autobiographical memory recall in depression.

    Science.gov (United States)

    Semkovska, Maria; Noone, Martha; Carton, Mary; McLoughlin, Declan M

    2012-05-15

    Autobiographical amnesia assessments in depression need to account for normal changes in consistency over time, contribution of mood and type of memories measured. We report herein validation studies of the Columbia Autobiographical Memory Interview - Short Form (CAMI-SF), exclusively used in depressed patients receiving electroconvulsive therapy (ECT) but without previous published report of normative data. The CAMI-SF was administered twice with a 6-month interval to 44 healthy volunteers to obtain normative data for retrieval consistency of its Semantic, Episodic-Extended and Episodic-Specific components and assess their reliability and validity. Healthy volunteers showed significant large decreases in retrieval consistency on all components. The Semantic and Episodic-Specific components demonstrated substantial construct validity. We then assessed CAMI-SF retrieval consistencies over a 2-month interval in 30 severely depressed patients never treated with ECT compared with healthy controls (n=19). On initial assessment, depressed patients produced less episodic-specific memories than controls. Both groups showed equivalent amounts of consistency loss over a 2-month interval on all components. At reassessment, only patients with persisting depressive symptoms were distinguishable from controls on episodic-specific memories retrieved. Research quantifying retrograde amnesia following ECT for depression needs to control for normal loss in consistency over time and contribution of persisting depressive symptoms. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Turbulence-induced persistence in laser beam wandering.

    Science.gov (United States)

    Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G

    2015-07-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.

  10. Partial reconstitution of virus-specific memory CD8+ T cells following whole body γ-irradiation

    International Nuclear Information System (INIS)

    Grayson, Jason M.; Laniewski, Nathan G.; Holbrook, Beth C.

    2006-01-01

    CD8 + memory T cells are critical in providing immunity to viral infection. Previous studies documented that antigen-specific CD8 + memory T cells are more resistant to radiation-induced apoptosis than naive T cells. Here, we determined the number and in vivo function of memory CD8 + T cells as immune reconstitution progressed following irradiation. Immediately following irradiation, the number of memory CD8 + T cells declined 80%. As reconstitution progressed, the number of memory cells reached a zenith at 33% of pre-irradiation levels, and was maintained for 120 days post-irradiation. In vitro, memory CD8 + T cells were able to produce cytokines at all times post-irradiation, but when adoptively transferred, they were not able to expand upon rechallenge immediately following irradiation, but regained this ability as reconstitution progressed. When proliferation was examined in vitro, irradiated memory CD8 + T cells were able to respond to mitogenic growth but were unable to divide

  11. Episodic memory in nonhuman animals.

    Science.gov (United States)

    Templer, Victoria L; Hampton, Robert R

    2013-09-09

    Episodic memories differ from other types of memory because they represent aspects of the past not present in other memories, such as the time, place, or social context in which the memories were formed. Focus on phenomenal experience in human memory, such as the sense of 'having been there', has resulted in conceptualizations of episodic memory that are difficult or impossible to apply to nonhuman species. It is therefore a significant challenge for investigators to agree on objective behavioral criteria that can be applied in nonhuman animals and still capture features of memory thought to be critical in humans. Some investigators have attempted to use neurobiological parallels to bridge this gap; however, defining memory types on the basis of the brain structures involved rather than on identified cognitive mechanisms risks missing crucial functional aspects of episodic memory, which are ultimately behavioral. The most productive way forward is likely a combination of neurobiology and sophisticated cognitive testing that identifies the mental representations present in episodic memory. Investigators that have refined their approach from asking the naïve question "do nonhuman animals have episodic memory" to instead asking "what aspects of episodic memory are shared by humans and nonhumans" are making progress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Persistent Associative Plasticity at an Identified Synapse Underlying Classical Conditioning Becomes Labile with Short-Term Homosynaptic Activation.

    Science.gov (United States)

    Hu, Jiangyuan; Schacher, Samuel

    2015-12-09

    Synapses express different forms of plasticity that contribute to different forms of memory, and both memory and plasticity can become labile after reactivation. We previously reported that a persistent form of nonassociative long-term facilitation (PNA-LTF) of the sensorimotor synapses in Aplysia californica, a cellular analog of long-term sensitization, became labile with short-term heterosynaptic reactivation and reversed when the reactivation was followed by incubation with the protein synthesis inhibitor rapamycin. Here we examined the reciprocal impact of different forms of short-term plasticity (reactivations) on a persistent form of associative long-term facilitation (PA-LTF), a cellular analog of classical conditioning, which was expressed at Aplysia sensorimotor synapses when a tetanic stimulation of the sensory neurons was paired with a brief application of serotonin on 2 consecutive days. The expression of short-term homosynaptic plasticity [post-tetanic potentiation or homosynaptic depression (HSD)], or short-term heterosynaptic plasticity [serotonin-induced facilitation or neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFa)-induced depression], at synapses expressing PA-LTF did not affect the maintenance of PA-LTF. The kinetics of HSD was attenuated at synapses expressing PA-LTF, which required activation of protein kinase C (PKC). Both PA-LTF and the attenuated kinetics of HSD were reversed by either a transient blockade of PKC activity or a homosynaptic, but not heterosynaptic, reactivation when paired with rapamycin. These results indicate that two different forms of persistent synaptic plasticity, PA-LTF and PNA-LTF, expressed at the same synapse become labile when reactivated by different stimuli. Activity-dependent changes in neural circuits mediate long-term memories. Some forms of long-term memories become labile and can be reversed with specific types of reactivations, but the mechanism is complex. At the cellular level, reactivations that induce a

  13. Single nucleotide polymorphisms in the PRDX3 and RPS19 and risk of HPV persistence and cervical precancer/cancer.

    Directory of Open Access Journals (Sweden)

    Mahboobeh Safaeian

    Full Text Available Host genetic factors might affect the risk of progression from infection with carcinogenic human papillomavirus (HPV, the etiologic agent for cervical cancer, to persistent HPV infection, and hence to cervical precancer and cancer.We assessed 18,310 tag single nucleotide polymorphisms (SNPs from 1113 genes in 416 cervical intraepithelial neoplasia 3 (CIN3/cancer cases, 356 women with persistent carcinogenic HPV infection (median persistence of 25 months and 425 randomly selected women (non-cases and non-HPV persistent from the 10,049 women from the Guanacaste, Costa Rica HPV natural history cohort. For gene and SNP associations, we computed age-adjusted odds ratio and p-trend. Three comparisons were made: 1 association with CIN3/cancer (compared CIN3/cancer cases to random controls, 2 association with persistence (compared HPV persistence to random controls, and 3 progression (compared CIN3/cancers with HPV-persistent group. Regions statistically significantly associated with CIN3/cancer included genes for peroxiredoxin 3 PRDX3, and ribosomal protein S19 RPS19. The single most significant SNPs from each gene associated with CIN3/cancer were PRDX3 rs7082598 (P(trend<0.0001, and RPS19 rs2305809 (P(trend=0.0007, respectively. Both SNPs were also associated with progression.These data suggest involvement of two genes, RSP19 and PRDX3, or other SNPs in linkage disequilibrium, with cervical cancer risk. Further investigation showed that they may be involved in both the persistence and progression transition stages. Our results require replication but, if true, suggest a role for ribosomal dysfunction, mitochondrial processes, and/or oxidative stress, or other unknown function of these genes in cervical carcinogenesis.

  14. Short-term memory and dual task performance

    Science.gov (United States)

    Regan, J. E.

    1982-01-01

    Two hypotheses concerning the way in which short-term memory interacts with another task in a dual task situation are considered. It is noted that when two tasks are combined, the activity of controlling and organizing performance on both tasks simultaneously may compete with either task for a resource; this resource may be space in a central mechanism or general processing capacity or it may be some task-specific resource. If a special relationship exists between short-term memory and control, especially if there is an identity relationship between short-term and a central controlling mechanism, then short-term memory performance should show a decrement in a dual task situation. Even if short-term memory does not have any particular identity with a controlling mechanism, but both tasks draw on some common resource or resources, then a tradeoff between the two tasks in allocating resources is possible and could be reflected in performance. The persistent concurrence cost in memory performance in these experiments suggests that short-term memory may have a unique status in the information processing system.

  15. Self-perceived memory complaints predict progression to Alzheimer disease. The LADIS study

    DEFF Research Database (Denmark)

    Verdelho, Ana; Madureira, Sofia; Moleiro, Carla

    2011-01-01

    the follow-up (ß = 2.7, p = 0.008; HR = 15.5, CI 95% [2.04, 117.6]), independently of other confounders, namely depressive symptoms, WMC severity, medial temporal lobe atrophy, and global cognition status at baseline. Self perceived memory complaints did not predict vascular dementia. In the LADIS study......Memory complaints are frequent in the elderly but its implications in cognition over time remain a controversial issue. Our objective was to evaluate the risk of self perceived memory complaints in the evolution for future dementia. The LADIS (Leukoaraiosis and Disability) prospective multinational...... battery. Dementia and subtypes of dementia were classified. Self perceived memory complaints in independent elderly were collected during the interview. MRI was performed at entry and at the end of the study. 639 subjects were included (74.1 ± 5 years old, 55% women, 9.6 ± 3.8 years of schooling). At end...

  16. Differential role of calpain-dependent protein cleavage in intermediate and long-term operant memory in Aplysia.

    Science.gov (United States)

    Lyons, Lisa C; Gardner, Jacob S; Lentsch, Cassidy T; Gandour, Catherine E; Krishnan, Harini C; Noakes, Eric J

    2017-01-01

    In addition to protein synthesis, protein degradation or protein cleavage may be necessary for intermediate (ITM) and long-term memory (LTM) to remove molecular constraints, facilitate persistent kinase activity and modulate synaptic plasticity. Calpains, a family of conserved calcium dependent cysteine proteases, modulate synaptic function through protein cleavage. We used the marine mollusk Aplysia californica to investigate the in vivo role of calpains during intermediate and long-term operant memory formation using the learning that food is inedible (LFI) paradigm. A single LFI training session, in which the animal associates a specific netted seaweed with the failure to swallow, generates short (30min), intermediate (4-6h) and long-term (24h) memory. Using the calpain inhibitors calpeptin and MDL-28170, we found that ITM requires calpain activity for induction and consolidation similar to the previously reported requirements for persistent protein kinase C activity in intermediate-term LFI memory. The induction of LTM also required calpain activity. In contrast to ITM, calpain activity was not necessary for the molecular consolidation of LTM. Surprisingly, six hours after LFI training we found that calpain activity was necessary for LTM, although this is a time at which neither persistent PKC activity nor protein synthesis is required for the maintenance of long-term LFI memory. These results demonstrate that calpains function in multiple roles in vivo during associative memory formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Modelling the role of Tax expression in HTLV-I persistence in vivo.

    Science.gov (United States)

    Li, Michael Y; Lim, Aaron G

    2011-12-01

    Human T-lymphotropic virus type I (HTLV-I) is a persistent human retrovirus characterized by life-long infection and risk of developing HAM/TSP, a progressive neurological and inflammatory disease, and adult T-cell leukemia (ATL). Chronically infected individuals often harbor high proviral loads despite maintaining a persistently activated immune response. Based on a new hypothesis for the persistence of HTLV-I infection, a three-dimensional compartmental model is constructed that describes the dynamic interactions among latently infected target cells, target-cell activation, and immune responses to HTLV-I, with an emphasis on understanding the role of Tax expression in the persistence of HTLV-I.

  18. Working memory cells' behavior may be explained by cross-regional networks with synaptic facilitation.

    Directory of Open Access Journals (Sweden)

    Sergio Verduzco-Flores

    2009-08-01

    Full Text Available Neurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns include: 1 persistent fixed-frequency elevated rates above baseline, 2 elevated rates that decay throughout the tasks memory period, 3 rates that accelerate throughout the delay, and 4 patterns of inhibited firing (below baseline analogous to each of the preceding excitatory patterns. Persistent elevated rate patterns are believed to be the neural correlate of working memory retention and preparation for execution of behavioral/motor responses as required in working memory tasks. Models have proposed that such activity corresponds to stable attractors in cortical neural networks with fixed synaptic weights. However, the variability in patterned behavior and the firing statistics of real neurons across the entire range of those behaviors across and within trials of working memory tasks are typical not reproduced. Here we examine the effect of dynamic synapses and network architectures with multiple cortical areas on the states and dynamics of working memory networks. The analysis indicates that the multiple pattern types exhibited by cells in working memory networks are inherent in networks with dynamic synapses, and that the variability and firing statistics in such networks with distributed architectures agree with that observed in the cortex.

  19. Probing echoic memory with different voices.

    Science.gov (United States)

    Madden, D J; Bastian, J

    1977-05-01

    Considerable evidence has indicated that some acoustical properties of spoken items are preserved in an "echoic" memory for approximately 2 sec. However, some of this evidence has also shown that changing the voice speaking the stimulus items has a disruptive effect on memory which persists longer than that of other acoustical variables. The present experiment examined the effect of voice changes on response bias as well as on accuracy in a recognition memory task. The task involved judging recognition probes as being present in or absent from sets of dichotically presented digits. Recognition of probes spoken in the same voice as that of the dichotic items was more accurate than recognition of different-voice probes at each of three retention intervals of up to 4 sec. Different-voice probes increased the likelihood of "absent" responses, but only up to a 1.4-sec delay. These shifts in response bias may represent a property of echoic memory which should be investigated further.

  20. Considerations of persistence and security in CHOICES, an object-oriented operating system

    Science.gov (United States)

    Campbell, Roy H.; Madany, Peter W.

    1990-01-01

    The current design of the CHOICES persistent object implementation is summarized, and research in progress is outlined. CHOICES is implemented as an object-oriented system, and persistent objects appear to simplify and unify many functions of the system. It is demonstrated that persistent data can be accessed through an object-oriented file system model as efficiently as by an existing optimized commercial file system. The object-oriented file system can be specialized to provide an object store for persistent objects. The problems that arise in building an efficient persistent object scheme in a 32-bit virtual address space that only uses paging are described. Despite its limitations, the solution presented allows quite large numbers of objects to be active simultaneously, and permits sharing and efficient method calls.

  1. A developmental study of latent absolute pitch memory.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  2. Neurogenesis Inhibition Prevents Enriched Environment to Prolong and Strengthen Social Recognition Memory, But Not to Increase BDNF Expression.

    Science.gov (United States)

    Pereira-Caixeta, Ana Raquel; Guarnieri, Leonardo O; Pena, Roberta R; Dias, Thomáz L; Pereira, Grace Schenatto

    2017-07-01

    Hippocampus-dependent memories, such as social recognition (SRM), are modulated by neurogenesis. However, the precise role of newborn neurons in social memory processing is still unknown. We showed previously that 1 week of enriched environment (EE) is sufficient to increase neurogenesis in the hippocampus (HIP) and the olfactory bulb (OB) of mice. Here, we tested the hypothesis that 1 week of EE would enhance SRM persistence and strength. In addition, as brain-derived neurotrophic factor (BDNF) may mediate some of the neurogenesis effects on memory, we also tested if 1 week of EE would increase BDNF expression in the HIP and OB. We also predicted that neurogenesis inhibition would block the gain of function caused by EE on both SRM and BDNF expression. We found that EE increased BDNF expression in the HIP and OB of mice; at the same time, it allowed SRM to last longer. In addition, mice on EE had their SRM unaffected by memory consolidation interferences. As we predicted, treatment with the anti-mitotic drug AraC blocked EE effects on SRM. Surprisingly, neurogenesis inhibition did not affect the BDNF expression, increased by EE. Together, our results suggest that newborn neurons improve SRM persistence through a BDNF-independent mechanism. Interestingly, this study on social memory uncovered an unexpected dissociation between the effect of adult neurogenesis and BDNF expression on memory persistence, reassuring the idea that not all neurogenesis effects on memory are BDNF-dependent.

  3. Ontogeny of Contextual Fear Memory Formation, Specificity, and Persistence in Mice

    Science.gov (United States)

    Akers, Katherine G.; Arruda-Carvalho, Maithe; Josselyn, Sheena A.; Frankland, Paul W.

    2012-01-01

    Pinpointing the precise age when young animals begin to form memories of aversive events is valuable for understanding the onset of anxiety and mood disorders and for detecting early cognitive impairment in models of childhood-onset disorders. Although these disorders are most commonly modeled in mice, we know little regarding the development of…

  4. Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony

    Science.gov (United States)

    Dipoppa, Mario; Szwed, Marcin; Gutkin, Boris S.

    2016-01-01

    Working memory (WM) is a primary cognitive function that corresponds to the ability to update, stably maintain, and manipulate short-term memory (ST M) rapidly to perform ongoing cognitive tasks. A prevalent neural substrate of WM coding is persistent neural activity, the property of neurons to remain active after having been activated by a transient sensory stimulus. This persistent activity allows for online maintenance of memory as well as its active manipulation necessary for task performance. WM is tightly capacity limited. Therefore, selective gating of sensory and internally generated information is crucial for WM function. While the exact neural substrate of selective gating remains unclear, increasing evidence suggests that it might be controlled by modulating ongoing oscillatory brain activity. Here, we review experiments and models that linked selective gating, persistent activity, and brain oscillations, putting them in the more general mechanistic context of WM. We do so by defining several operations necessary for successful WM function and then discussing how such operations may be carried out by mechanisms suggested by computational models. We specifically show how oscillatory mechanisms may provide a rapid and flexible active gating mechanism for WM operations. PMID:28154616

  5. Persistent cognitive deficits after whiplash injury: a comparative study with mild traumatic brain injury patients and healthy volunteers.

    Science.gov (United States)

    Beeckmans, Kurt; Crunelle, Cleo; Van Ingelgom, Silke; Michiels, Karla; Dierckx, Eva; Vancoillie, Patrick; Hauman, Henri; Sabbe, Bernard

    2017-06-01

    In this study, we evaluated persistent cognitive deficits in whiplash injury (WI) patients and compared these to cognitive functioning in mild traumatic brain injury (MTBI) patients and healthy controls (HC). Sixty-one patients suffering from a WI were compared with 57 patients suffering from a MTBI and with 30 HC. They were examined with an extensive neuropsychological test battery assessing attention, memory, and visuospatial and executive functions. In both patient groups, participants showed persistent cognitive symptoms (more than 6 months post-injury). The two patient groups did not differ significantly with regard to measurements of attention, memory, and visuospatial and executive functions. The WI group, as compared to the HC group, was found to be significantly more deficient in speed of performance during sustained and divided attention, focused attention, alternating attention, the storage of new auditory-verbal unrelated information into memory, the long-term delayed recall of stored auditory-verbal related information from memory, abstract reasoning and accuracy of performance during planning and problem solving. No differences could be found between both groups concerning speed of information processing, visuospatial abilities and verbal fluency.

  6. The effect of cannabis use on memory function: an update

    Directory of Open Access Journals (Sweden)

    Schoeler T

    2013-01-01

    Full Text Available Tabea Schoeler, Sagnik BhattacharyyaDepartment of Psychosis Studies, King's College London, Institute of Psychiatry, London, UKAbstract: Investigating the effects of cannabis use on memory function appears challenging. While early observational investigations aimed to elucidate the longer-term effects of cannabis use on memory function in humans, findings remained equivocal and pointed to a pattern of interacting factors impacting on the relationship between cannabis use and memory function, rather than a simple direct effect of cannabis. Only recently, a clearer picture of the chronic and acute effects of cannabis use on memory function has emerged once studies have controlled for potential confounding factors and started to investigate the acute effects of delta-9-tetrahydrocannabinol (Δ9-THC and cannabidiol (CBD, the main ingredients in the extract of the cannabis plant in pharmacological challenge experiments. Relatively consistent findings have been reported regarding the acute impairments induced by a single dose of Δ9-THC on verbal and working memory. It is unclear whether they may persist beyond the intoxication state. In the long-term, these impairments seem particularly likely to manifest and may also persist following abstinence if regular and heavy use of cannabis strains high in Δ9-THC is started at an early age. Although still at an early stage, studies that employed advanced neuroimaging techniques have started to model the neural underpinnings of the effects of cannabis use and implicate a network of functional and morphological alterations that may moderate the effects of cannabis on memory function. Future experimental and epidemiological studies that take into consideration individual differences, particularly previous cannabis history and demographic characteristics, but also the precise mixture of the ingredients of the consumed cannabis are necessary to clarify the magnitude and the mechanisms by which cannabis

  7. Delay reduction in persistent erasure channels for generalized instantly decodable network coding

    KAUST Repository

    Sorour, Sameh

    2013-06-01

    In this paper, we consider the problem of minimizing the decoding delay of generalized instantly decodable network coding (G-IDNC) in persistent erasure channels (PECs). By persistent erasure channels, we mean erasure channels with memory, which are modeled as a Gilbert-Elliott two-state Markov model with good and bad channel states. In this scenario, the channel erasure dependence, represented by the transition probabilities of this channel model, is an important factor that could be exploited to reduce the decoding delay. We first formulate the G-IDNC minimum decoding delay problem in PECs as a maximum weight clique problem over the G-IDNC graph. Since finding the optimal solution of this formulation is NP-hard, we propose two heuristic algorithms to solve it and compare them using extensive simulations. Simulation results show that each of these heuristics outperforms the other in certain ranges of channel memory levels. They also show that the proposed heuristics significantly outperform both the optimal strict IDNC in the literature and the channel-unaware G-IDNC algorithms. © 2013 IEEE.

  8. Delay reduction in persistent erasure channels for generalized instantly decodable network coding

    KAUST Repository

    Sorour, Sameh; Aboutorab, Neda; Sadeghi, Parastoo; Karim, Mohammad Shahriar; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2013-01-01

    In this paper, we consider the problem of minimizing the decoding delay of generalized instantly decodable network coding (G-IDNC) in persistent erasure channels (PECs). By persistent erasure channels, we mean erasure channels with memory, which are modeled as a Gilbert-Elliott two-state Markov model with good and bad channel states. In this scenario, the channel erasure dependence, represented by the transition probabilities of this channel model, is an important factor that could be exploited to reduce the decoding delay. We first formulate the G-IDNC minimum decoding delay problem in PECs as a maximum weight clique problem over the G-IDNC graph. Since finding the optimal solution of this formulation is NP-hard, we propose two heuristic algorithms to solve it and compare them using extensive simulations. Simulation results show that each of these heuristics outperforms the other in certain ranges of channel memory levels. They also show that the proposed heuristics significantly outperform both the optimal strict IDNC in the literature and the channel-unaware G-IDNC algorithms. © 2013 IEEE.

  9. The Persistence of the Self over Time in Mild Cognitive Impairment and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Lynette J. Tippett

    2018-02-01

    Full Text Available Diachronic unity is the belief that, despite changes, we are the same person across the lifespan. We propose that diachronic unity is supported by the experience of remembering the self over time during episodic recall (i.e., phenomenological continuity. However, we also predict that diachronic unity is also possible when episodic memory is impaired, as long as the ability to construct life narratives from semantic memory (i.e., semantic continuity is intact. To examine this prediction, we investigated diachronic unity in Alzheimer's Disease (AD and amnestic mild cognitive impairment (aMCI, two conditions characterised by disrupted phenomenological continuity. If semantic continuity is also altered in these conditions, there should be an associated deterioration in diachronic unity. Participants with AD, aMCI, and healthy controls (HC completed a self-persistence interview measuring diachronic unity (beliefs about self-persistence, explanations for stability/change. Semantic continuity was assessed with a life-story interview measuring autobiographical reasoning (self-event connections, and coherence (temporal/thematic/causal of narratives. Our results highlight a complex relationship between semantic continuity and diachronic unity and revealed a divergence between two aspects of diachronic unity: AD/aMCI groups did not differ from HC in continuity beliefs, but AD explanations for self-persistence were less sophisticated. Semantic continuity was most impaired in AD: their narratives had fewer self-event connections (vs. HCs and lower temporal/thematic coherence (vs. HC/aMCI, while both AD/aMCI groups had lower causal coherence. Paradoxically AD participants who scored higher on measures of beliefs in the persistence of the core self, provided less sophisticated explanations for their self-persistence and were less able to explore persistence in their life narratives. These findings support the importance of semantic continuity to diachronic

  10. The 1988 Leti Division progress report

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The 1988 progress report of the CEA's LETI Division (Division of Electronics, Technology and Instrumentation, France) is presented. The missions of LETI Division involve military and nuclear applications of electronics and fundamental research. The research programs developed in 1988 are the following: materials and components, non-volatile silicon memories, silicon-over-insulator, integrated circuits technologies, common experimental laboratory (opened to the European community), mass memories, photodetectors, micron sensors and flat screens [fr

  11. When Higher Working Memory Capacity Hinders Insight

    Science.gov (United States)

    DeCaro, Marci S.; Van Stockum, Charles A., Jr.; Wieth, Mareike B.

    2016-01-01

    Higher working memory capacity (WMC) improves performance on a range of cognitive and academic tasks. However, a greater ability to control attention sometimes leads individuals with higher WMC to persist in using complex, attention-demanding approaches that are suboptimal for a given task. We examined whether higher WMC would hinder insight…

  12. Long-term persistence of immunity and B-cell memory following Haemophilus influenzae type B conjugate vaccination in early childhood and response to booster.

    Science.gov (United States)

    Perrett, K P; John, T M; Jin, C; Kibwana, E; Yu, L-M; Curtis, N; Pollard, A J

    2014-04-01

    Protection against Haemophilus influenzae type b (Hib), a rapidly invading encapsulated bacteria, is dependent on maintenance of an adequate level of serum antibody through early childhood. In many countries, Hib vaccine booster doses have been implemented after infant immunization to sustain immunity. We investigated the long-term persistence of antibody and immunological memory in primary-school children following infant (with or without booster) Hib vaccination. Anti-polyribosylribitol phosphate (PRP) immunoglobulin G (IgG) concentration and the frequency of circulating Hib-specific memory B cells were measured before a booster of a Hib-serogroup C meningococcal (MenC) conjugate vaccine and again 1 week, 1 month, and 1 year after the booster in 250 healthy children aged 6-12 years in an open-label phase 4 clinical study. Six to 12 years following infant priming with 3 doses of Hib conjugate vaccine, anti-PRP IgG geometric mean concentrations were 3.11 µg/mL and 0.71 µg/mL and proportions with anti-PRP IgG ≥1.0 µg/mL were 79% and 43% in children who had or had not, respectively, received a fourth Hib conjugate vaccine dose (mean age, 3.9 years). Higher baseline and post-Hib-MenC booster responses (anti-PRP IgG and memory B cells) were found in younger children and in those who had received a fourth Hib dose. Sustained Hib conjugate vaccine-induced immunity in children is dependent on time since infant priming and receipt of a booster. Understanding the relationship between humoral and cellular immunity following immunization with conjugate vaccines may direct vaccine design and boosting strategies to sustain individual and population immunity against encapsulated bacteria in early childhood. Clinical Trials Registration ISRCTN728588998.

  13. Preschool speech articulation and nonword repetition abilities may help predict eventual recovery or persistence of stuttering.

    Science.gov (United States)

    Spencer, Caroline; Weber-Fox, Christine

    2014-09-01

    In preschool children, we investigated whether expressive and receptive language, phonological, articulatory, and/or verbal working memory proficiencies aid in predicting eventual recovery or persistence of stuttering. Participants included 65 children, including 25 children who do not stutter (CWNS) and 40 who stutter (CWS) recruited at age 3;9-5;8. At initial testing, participants were administered the Test of Auditory Comprehension of Language, 3rd edition (TACL-3), Structured Photographic Expressive Language Test, 3rd edition (SPELT-3), Bankson-Bernthal Test of Phonology-Consonant Inventory subtest (BBTOP-CI), Nonword Repetition Test (NRT; Dollaghan & Campbell, 1998), and Test of Auditory Perceptual Skills-Revised (TAPS-R) auditory number memory and auditory word memory subtests. Stuttering behaviors of CWS were assessed in subsequent years, forming groups whose stuttering eventually persisted (CWS-Per; n=19) or recovered (CWS-Rec; n=21). Proficiency scores in morphosyntactic skills, consonant production, verbal working memory for known words, and phonological working memory and speech production for novel nonwords obtained at the initial testing were analyzed for each group. CWS-Per were less proficient than CWNS and CWS-Rec in measures of consonant production (BBTOP-CI) and repetition of novel phonological sequences (NRT). In contrast, receptive language, expressive language, and verbal working memory abilities did not distinguish CWS-Rec from CWS-Per. Binary logistic regression analysis indicated that preschool BBTOP-CI scores and overall NRT proficiency significantly predicted future recovery status. Results suggest that phonological and speech articulation abilities in the preschool years should be considered with other predictive factors as part of a comprehensive risk assessment for the development of chronic stuttering. At the end of this activity the reader will be able to: (1) describe the current status of nonlinguistic and linguistic predictors for

  14. The radish gene reveals a memory component with variable temporal properties.

    Directory of Open Access Journals (Sweden)

    Holly LaFerriere

    Full Text Available Memory phases, dependent on different neural and molecular mechanisms, strongly influence memory performance. Our understanding, however, of how memory phases interact is far from complete. In Drosophila, aversive olfactory learning is thought to progress from short-term through long-term memory phases. Another memory phase termed anesthesia resistant memory, dependent on the radish gene, influences memory hours after aversive olfactory learning. How does the radish-dependent phase influence memory performance in different tasks? It is found that the radish memory component does not scale with the stability of several memory traces, indicating a specific recruitment of this component to influence different memories, even within minutes of learning.

  15. Memory: Enduring Traces of Perceptual and Reflective Attention

    Science.gov (United States)

    Chun, Marvin M.; Johnson, Marcia K.

    2011-01-01

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: To what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. PMID:22099456

  16. Memory: enduring traces of perceptual and reflective attention.

    Science.gov (United States)

    Chun, Marvin M; Johnson, Marcia K

    2011-11-17

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: to what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Memory NK cells: why do they reside in the liver?

    OpenAIRE

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-01-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may ge...

  18. Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory.

    Science.gov (United States)

    Day, Jeremy J; Sweatt, J David

    2011-07-01

    Although long-lasting behavioral memories have long been thought to require equally persistent molecular changes, little is known about the biochemical underpinnings of memory storage and maintenance. Increasing evidence now suggests that long-term behavioral change may be associated with epigenetic regulation of transcription in the central nervous system. In this review, we present evidence that changes in DNA methylation contribute to memory formation and maintenance, consider how DNA methylation affects readout of memory-related genes, and discuss how these changes may be important in the large-scale context of memory circuits. Finally, we discuss potential challenges involved in examining epigenetic changes in the brain and highlight how epigenetic mechanisms may be relevant for other cognitive processes. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Affect influences false memories at encoding: evidence from recognition data.

    Science.gov (United States)

    Storbeck, Justin; Clore, Gerald L

    2011-08-01

    Memory is susceptible to illusions in the form of false memories. Prior research found, however, that sad moods reduce false memories. The current experiment had two goals: (1) to determine whether affect influences retrieval processes, and (2) to determine whether affect influences the strength and the persistence of false memories. Happy or sad moods were induced either before or after learning word lists designed to produce false memories. Control groups did not experience a mood induction. We found that sad moods reduced false memories only when induced before learning. Signal detection analyses confirmed that sad moods induced prior to learning reduced activation of nonpresented critical lures suggesting that they came to mind less often. Affective states, however, did not influence retrieval effects. We conclude that negative affective states promote item-specific processing, which reduces false memories in a similar way as using an explicitly guided cognitive control strategy. 2011 APA, all rights reserved

  20. Effect of dorsal hippocampal lesion compared to dorsal hippocampal blockade by atropine on reference memory in vision deprived rats.

    Science.gov (United States)

    Dhume, R A; Noronha, A; Nagwekar, M D; Mascarenhas, J F

    1989-10-01

    In order to study the primacy of the hippocampus in place learning function 24 male adult albino rats were hippocampally-lesioned in dorsal hippocampus involving fornical damage (group I); sham operated for comparison with group I (group II); cannulated for instillation of atropine sulphate in the same loci as group I (group III); and cannulated for instillation of saline which served as control for group III (group IV). All the animals were enucleated and their reference memory (long-term memory) was tested, using open 4-arm radial maze. There was loss of reference memory in groups I and III. However, hippocampally-lesioned animals, showed recovery of reference memory deficit within a short period of 10 days or so. Whereas atropinized animals showed persistent reference memory deficit as long as the instillation effect continued. The mechanism involved in the recovery of reference memory in hippocampally-lesioned animals and persistent deficit of reference memory in atropinized animals has been postulated to explain the primacy of hippocampus in the place learning function under normal conditions.

  1. Short-term depression and transient memory in sensory cortex.

    Science.gov (United States)

    Gillary, Grant; Heydt, Rüdiger von der; Niebur, Ernst

    2017-12-01

    Persistent neuronal activity is usually studied in the context of short-term memory localized in central cortical areas. Recent studies show that early sensory areas also can have persistent representations of stimuli which emerge quickly (over tens of milliseconds) and decay slowly (over seconds). Traditional positive feedback models cannot explain sensory persistence for at least two reasons: (i) They show attractor dynamics, with transient perturbations resulting in a quasi-permanent change of system state, whereas sensory systems return to the original state after a transient. (ii) As we show, those positive feedback models which decay to baseline lose their persistence when their recurrent connections are subject to short-term depression, a common property of excitatory connections in early sensory areas. Dual time constant network behavior has also been implemented by nonlinear afferents producing a large transient input followed by much smaller steady state input. We show that such networks require unphysiologically large onset transients to produce the rise and decay observed in sensory areas. Our study explores how memory and persistence can be implemented in another model class, derivative feedback networks. We show that these networks can operate with two vastly different time courses, changing their state quickly when new information is coming in but retaining it for a long time, and that these capabilities are robust to short-term depression. Specifically, derivative feedback networks with short-term depression that acts differentially on positive and negative feedback projections are capable of dynamically changing their time constant, thus allowing fast onset and slow decay of responses without requiring unrealistically large input transients.

  2. PRESCHOOL SPEECH ARTICULATION AND NONWORD REPETITION ABILITIES MAY HELP PREDICT EVENTUAL RECOVERY OR PERSISTENCE OF STUTTERING

    Science.gov (United States)

    Spencer, Caroline; Weber-Fox, Christine

    2014-01-01

    Purpose In preschool children, we investigated whether expressive and receptive language, phonological, articulatory, and/or verbal working memory proficiencies aid in predicting eventual recovery or persistence of stuttering. Methods Participants included 65 children, including 25 children who do not stutter (CWNS) and 40 who stutter (CWS) recruited at age 3;9–5;8. At initial testing, participants were administered the Test of Auditory Comprehension of Language, 3rd edition (TACL-3), Structured Photographic Expressive Language Test, 3rd edition (SPELT-3), Bankson-Bernthal Test of Phonology-Consonant Inventory subtest (BBTOP-CI), Nonword Repetition Test (NRT; Dollaghan & Campbell, 1998), and Test of Auditory Perceptual Skills-Revised (TAPS-R) auditory number memory and auditory word memory subtests. Stuttering behaviors of CWS were assessed in subsequent years, forming groups whose stuttering eventually persisted (CWS-Per; n=19) or recovered (CWS-Rec; n=21). Proficiency scores in morphosyntactic skills, consonant production, verbal working memory for known words, and phonological working memory and speech production for novel nonwords obtained at the initial testing were analyzed for each group. Results CWS-Per were less proficient than CWNS and CWS-Rec in measures of consonant production (BBTOP-CI) and repetition of novel phonological sequences (NRT). In contrast, receptive language, expressive language, and verbal working memory abilities did not distinguish CWS-Rec from CWS-Per. Binary logistic regression analysis indicated that preschool BBTOP-CI scores and overall NRT proficiency significantly predicted future recovery status. Conclusion Results suggest that phonological and speech articulation abilities in the preschool years should be considered with other predictive factors as part of a comprehensive risk assessment for the development of chronic stuttering. PMID:25173455

  3. Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory

    OpenAIRE

    Alaghband, Yasaman; O'Dell, Steven J.; Azarnia, Siavash; Khalaj, Anna J.; Guzowski, John F.; Marshall, John F.

    2014-01-01

    The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue...

  4. Working Memory: Maintenance, Updating, and the Realization of Intentions

    Science.gov (United States)

    Nyberg, Lars; Eriksson, Johan

    2016-01-01

    “Working memory” refers to a vast set of mnemonic processes and associated brain networks, relates to basic intellectual abilities, and underlies many real-world functions. Working-memory maintenance involves frontoparietal regions and distributed representational areas, and can be based on persistent activity in reentrant loops, synchronous oscillations, or changes in synaptic strength. Manipulation of content of working memory depends on the dorsofrontal cortex, and updating is realized by a frontostriatal ‘“gating” function. Goals and intentions are represented as cognitive and motivational contexts in the rostrofrontal cortex. Different working-memory networks are linked via associative reinforcement-learning mechanisms into a self-organizing system. Normal capacity variation, as well as working-memory deficits, can largely be accounted for by the effectiveness and integrity of the basal ganglia and dopaminergic neurotransmission. PMID:26637287

  5. Small groups and long memories promote cooperation.

    Science.gov (United States)

    Stewart, Alexander J; Plotkin, Joshua B

    2016-06-01

    Complex social behaviors lie at the heart of many of the challenges facing evolutionary biology, sociology, economics, and beyond. For evolutionary biologists the question is often how group behaviors such as collective action, or decision making that accounts for memories of past experience, can emerge and persist in an evolving system. Evolutionary game theory provides a framework for formalizing these questions and admitting them to rigorous study. Here we develop such a framework to study the evolution of sustained collective action in multi-player public-goods games, in which players have arbitrarily long memories of prior rounds of play and can react to their experience in an arbitrary way. We construct a coordinate system for memory-m strategies in iterated n-player games that permits us to characterize all cooperative strategies that resist invasion by any mutant strategy, and stabilize cooperative behavior. We show that, especially when groups are small, longer-memory strategies make cooperation easier to evolve, by increasing the number of ways to stabilize cooperation. We also explore the co-evolution of behavior and memory. We find that even when memory has a cost, longer-memory strategies often evolve, which in turn drives the evolution of cooperation, even when the benefits for cooperation are low.

  6. Effects of Mineralocorticoid Receptors Blockade on FearMemory Reconsolidation in Rats

    Directory of Open Access Journals (Sweden)

    Abbas Ali Vafaei

    2011-08-01

    Full Text Available Reconsolidation memory is defined as a process in which the retrieval of a previously consolidated memory returns to a labile state which is then subject to stabilization. Previous studies have shown that mineralocorticoid receptors (MRs modulate distinct phases of learning and memory, which display a high concentration and distinct distribution in the hippocampus. Moreover, we found no studies that examined the role of hippocampal MRs in fear memory reconsolidation. Here, we investigated the effect of MRs blockade on fear memory reconsolidation in rats. Additionally, to test whether blockade of protein synthesis would disrupt fear memory reconsolidation in our paradigm, we tested the effect of cycloheximide, an inhibitor of protein synthesis after memory reactivation. Results indicated that systemic as well as intra-hippocampal administrations of the MR antagonist spironolactone immediately following memory reactivation did not affect on post-retrieval long-term memory. Cycloheximide given after the reactivation treatment produced a strong impairment that persisted over test sessions. These findings indicate that MRs are not required for reconsolidation of fear-based memory.

  7. The Association of Aging and Aerobic Fitness With Memory

    Directory of Open Access Journals (Sweden)

    Alexis M. Bullock

    2018-03-01

    Full Text Available The present study examined the differential effects of aging and fitness on memory. Ninety-five young adults (YA and 81 older adults (OA performed the Mnemonic Similarity Task (MST to assess high-interference memory and general recognition memory. Age-related differences in high-interference memory were observed across the lifespan, with performance progressively worsening from young to old. In contrast, age-related differences in general recognition memory were not observed until after 60 years of age. Furthermore, OA with higher aerobic fitness had better high-interference memory, suggesting that exercise may be an important lifestyle factor influencing this aspect of memory. Overall, these findings suggest different trajectories of decline for high-interference and general recognition memory, with a selective role for physical activity in promoting high-interference memory.

  8. How does negative emotion cause false memories?

    Science.gov (United States)

    Brainerd, C J; Stein, L M; Silveira, R A; Rohenkohl, G; Reyna, V F

    2008-09-01

    Remembering negative events can stimulate high levels of false memory, relative to remembering neutral events. In experiments in which the emotional valence of encoded materials was manipulated with their arousal levels controlled, valence produced a continuum of memory falsification. Falsification was highest for negative materials, intermediate for neutral materials, and lowest for positive materials. Conjoint-recognition analysis produced a simple process-level explanation: As one progresses from positive to neutral to negative valence, false memory increases because (a) the perceived meaning resemblance between false and true items increases and (b) subjects are less able to use verbatim memories of true items to suppress errors.

  9. [Progressive visual agnosia].

    Science.gov (United States)

    Sugimoto, Azusa; Futamura, Akinori; Kawamura, Mitsuru

    2011-10-01

    Progressive visual agnosia was discovered in the 20th century following the discovery of classical non-progressive visual agnosia. In contrast to the classical type, which is caused by cerebral vascular disease or traumatic injury, progressive visual agnosia is a symptom of neurological degeneration. The condition of progressive visual loss, including visual agnosia, and posterior cerebral atrophy was named posterior cortical atrophy (PCA) by Benson et al. (1988). Progressive visual agnosia is also observed in semantic dementia (SD) and other degenerative diseases, but there is a difference in the subtype of visual agnosia associated with these diseases. Lissauer (1890) classified visual agnosia into apperceptive and associative types, and it in most cases, PCA is associated with the apperceptive type. However, SD patients exhibit symptoms of associative visual agnosia before changing to those of semantic memory disorder. Insights into progressive visual agnosia have helped us understand the visual system and discover how we "perceive" the outer world neuronally, with regard to consciousness. Although PCA is a type of atypical dementia, its diagnosis is important to enable patients to live better lives with appropriate functional support.

  10. Neural and Cellular Mechanisms of Fear and Extinction Memory Formation

    Science.gov (United States)

    Orsini, Caitlin A.; Maren, Stephen

    2012-01-01

    Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last thirty years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes. PMID:22230704

  11. Working Memory Training Does Not Improve Intelligence in Healthy Young Adults

    Science.gov (United States)

    Chooi, Weng-Tink; Thompson, Lee A.

    2012-01-01

    Jaeggi and her colleagues claimed that they were able to improve fluid intelligence by training working memory. Subjects who trained their working memory on a dual n-back task for a period of time showed significant improvements in working memory span tasks and fluid intelligence tests such as the Raven's Progressive Matrices and the Bochumer…

  12. Visual working memory for global, object, and part-based information.

    Science.gov (United States)

    Patterson, Michael D; Bly, Benjamin Martin; Porcelli, Anthony J; Rypma, Bart

    2007-06-01

    We investigated visual working memory for novel objects and parts of novel objects. After a delay period, participants showed strikingly more accurate performance recognizing a single whole object than the parts of that object. This bias to remember whole objects, rather than parts, persisted even when the division between parts was clearly defined and the parts were disconnected from each other so that, in order to remember the single whole object, the participants needed to mentally combine the parts. In addition, the bias was confirmed when the parts were divided by color. These experiments indicated that holistic perceptual-grouping biases are automatically used to organize storage in visual working memory. In addition, our results suggested that the bias was impervious to top-down consciously directed control, because when task demands were manipulated through instruction and catch trials, the participants still recognized whole objects more quickly and more accurately than their parts. This bias persisted even when the whole objects were novel and the parts were familiar. We propose that visual working memory representations depend primarily on the global configural properties of whole objects, rather than part-based representations, even when the parts themselves can be clearly perceived as individual objects. This global configural bias beneficially reduces memory load on a capacity-limited system operating in a complex visual environment, because fewer distinct items must be remembered.

  13. Young and Old Pavlovian Fear Memories Can Be Modified with Extinction Training during Reconsolidation in Humans

    Science.gov (United States)

    Steinfurth, Elisa C. K.; Kanen, Jonathan W.; Raio, Candace M.; Clem, Roger L.; Huganir, Richard L.; Phelps, Elizabeth A.

    2014-01-01

    Extinction training during reconsolidation has been shown to persistently diminish conditioned fear responses across species. We investigated in humans if older fear memories can benefit similarly. Using a Pavlovian fear conditioning paradigm we compared standard extinction and extinction after memory reactivation 1 d or 7 d following acquisition.…

  14. Retention of Ag-specific memory CD4+ T cells in the draining lymph node indicates lymphoid tissue resident memory populations.

    Science.gov (United States)

    Marriott, Clare L; Dutton, Emma E; Tomura, Michio; Withers, David R

    2017-05-01

    Several different memory T-cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4 + T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non-photoconverted Ag-specific CD4 + T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4 + T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non-lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4 + T-cell populations are generated in peripheral lymph nodes following immunisation. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhancing early consolidation of human episodic memory by theta EEG neurofeedback.

    Science.gov (United States)

    Rozengurt, Roman; Shtoots, Limor; Sheriff, Aviv; Sadka, Ofir; Levy, Daniel A

    2017-11-01

    Consolidation of newly formed memories is readily disrupted, but can it be enhanced? Given the prominent role of hippocampal theta oscillations in memory formation and retrieval, we hypothesized that upregulating theta power during early stages of consolidation might benefit memory stability and persistence. We used EEG neurofeedback to enable participants to selectively increase theta power in their EEG spectra following episodic memory encoding, while other participants engaged in low beta-focused neurofeedback or passively viewed a neutral nature movie. Free recall assessments immediately following the interventions, 24h later and 7d later all indicated benefit to memory of theta neurofeedback, relative to low beta neurofeedback or passive movie-viewing control conditions. The degree of benefit to memory was correlated with the extent of theta power modulation, but not with other spectral changes. Theta enhancement may provide optimal conditions for stabilization of new hippocampus-dependent memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Computerized training of non-verbal reasoning and working memory in children with intellectual disability

    Directory of Open Access Journals (Sweden)

    Stina eSöderqvist

    2012-10-01

    Full Text Available Children with intellectual disabilities show deficits in both reasoning ability and working memory (WM that impact everyday functioning and academic achievement. In this study we investigated the feasibility of cognitive training for improving WM and non-verbal reasoning (NVR ability in children with intellectual disability. Participants were randomized to a 5-week adaptive training program (intervention group or non-adaptive version of the program (active control group. Cognitive assessments were conducted prior to and directly after training, and one year later to examine effects of the training. Improvements during training varied largely and amount of progress during training predicted transfer to WM and comprehension of instructions, with higher training progress being associated with greater transfer effects. The strongest predictors for training progress were found to be gender, co-morbidity and baseline capacity on verbal WM. In particular, females without an additional diagnosis and with higher baseline performance showed greater progress. No significant effects of training were observed at the one-year follow-up, suggesting that training should be more intense or repeated in order for effects to persist in children with intellectual disabilities. A major finding of this study is that cognitive training is feasible in children with intellectual disabilities and can help improve their cognitive capacities. However, a minimum cognitive capacity or training ability seems necessary for the training to be beneficial, with some individuals showing little improvement in performance. Future studies of cognitive training should take into consideration how inter-individual differences in training progress influence transfer effects and further investigate how baseline capacities predict training outcome.

  17. Negative emotional experiences arouse rumination and affect working memory capacity.

    Science.gov (United States)

    Curci, Antonietta; Lanciano, Tiziana; Soleti, Emanuela; Rimé, Bernard

    2013-10-01

    Following an emotional experience, individuals are confronted with the persistence of ruminative thoughts that disturb the undertaking of other activities. In the present study, we experimentally tested the idea that experiencing a negative emotion triggers a ruminative process that drains working memory (WM) resources normally devoted to other tasks. Undergraduate participants of high versus low WM capacity were administered the operation-word memory span test (OSPAN) as a measure of availability of WM resources preceding and following the presentation of negative emotional versus neutral material. Rumination was assessed immediately after the second OSPAN session and at a 24-hr delay. Results showed that both the individual's WM capacity and the emotional valence of the material influenced WM performance and the persistence of ruminative thoughts. Following the experimental induction, rumination mediated the relationship between the negative emotional state and the concomitant WM performance. Based on these results, we argue that ruminative processes deplete WM resources, making them less available for concurrent tasks; in addition, rumination tends to persist over time. These findings have implications for the theoretical modeling of the long-term effects of emotions in both daily life and clinical contexts.

  18. Towards realising high-speed large-bandwidth quantum memory

    Institute of Scientific and Technical Information of China (English)

    SHI BaoSen; DING DongSheng

    2016-01-01

    Indispensable for quantum communication and quantum computation,quantum memory executes on demand storage and retrieval of quantum states such as those of a single photon,an entangled pair or squeezed states.Among the various forms of quantum memory,Raman quantum memory has advantages forits broadband and high-speed characteristics,which results in a huge potential for applications in quantum networks and quantum computation.However,realising Raman quantum memory with true single photons and photonic entanglementis challenging.In this review,after briefly introducing the main benchmarks in the development of quantum memory and describing the state of the art,we focus on our recent experimental progress inquantum memorystorage of quantum states using the Raman scheme.

  19. Role of adult neurogenesis in hippocampal-cortical memory consolidation

    Science.gov (United States)

    2014-01-01

    Acquired memory is initially dependent on the hippocampus (HPC) for permanent memory formation. This hippocampal dependency of memory recall progressively decays with time, a process that is associated with a gradual increase in dependency upon cortical structures. This process is commonly referred to as systems consolidation theory. In this paper, we first review how memory becomes hippocampal dependent to cortical dependent with an emphasis on the interactions that occur between the HPC and cortex during systems consolidation. We also review the mechanisms underlying the gradual decay of HPC dependency during systems consolidation from the perspective of memory erasures by adult hippocampal neurogenesis. Finally, we discuss the relationship between systems consolidation and memory precision. PMID:24552281

  20. Aging affects the interaction between attentional control and source memory: an fMRI study.

    Science.gov (United States)

    Dulas, Michael R; Duarte, Audrey

    2014-12-01

    Age-related source memory impairments may be due, at least in part, to deficits in executive processes mediated by the PFC at both study and test. Behavioral work suggests that providing environmental support at encoding, such as directing attention toward item-source associations, may improve source memory and reduce age-related deficits in the recruitment of these executive processes. The present fMRI study investigated the effects of directed attention and aging on source memory encoding and retrieval. At study, participants were shown pictures of objects. They were either asked to attend to the objects and their color (source) or to their size. At test, participants determined if objects were seen before, and if so, whether they were the same color as previously. Behavioral results showed that direction of attention improved source memory for both groups; however, age-related deficits persisted. fMRI results revealed that, across groups, direction of attention facilitated medial temporal lobe-mediated contextual binding processes during study and attenuated right PFC postretrieval monitoring effects at test. However, persistent age-related source memory deficits may be related to increased recruitment of medial anterior PFC during encoding, indicative of self-referential processing, as well as underrecruitment of lateral anterior PFC-mediated relational processes. Taken together, this study suggests that, even when supported, older adults may fail to selectively encode goal-relevant contextual details supporting source memory performance.

  1. Models of Verbal Working Memory Capacity: What Does It Take to Make Them Work?

    Science.gov (United States)

    Cowan, Nelson; Rouder, Jeffrey N.; Blume, Christopher L.; Saults, J. Scott

    2012-01-01

    Theories of working memory (WM) capacity limits will be more useful when we know what aspects of performance are governed by the limits and what aspects are governed by other memory mechanisms. Whereas considerable progress has been made on models of WM capacity limits for visual arrays of separate objects, less progress has been made in…

  2. Revealing hidden states in visual working memory using electroencephalography

    NARCIS (Netherlands)

    Wolff, Michael J.; Ding, Jacqueline; Myers, Nicholas E.; Stokes, Mark G.

    2015-01-01

    It is often assumed that information in visual working memory (vWM) is maintained via persistent activity. However, recent evidence indicates that information in vWM could be maintained in an effectively "activity-silent" neural state. Silent vWM is consistent with recent cognitive and neural

  3. Adaptive memory: the survival-processing memory advantage is not due to negativity or mortality salience.

    Science.gov (United States)

    Bell, Raoul; Röer, Jan P; Buchner, Axel

    2013-05-01

    Recent research has highlighted the adaptive function of memory by showing that imagining being stranded in the grasslands without any survival material and rating words according to their survival value in this situation leads to exceptionally good memory for these words. Studies examining the role of emotions in causing the survival-processing memory advantage have been inconclusive, but some studies have suggested that the effect might be due to negativity or mortality salience. In Experiments 1 and 2, we compared the survival scenario to a control scenario that implied imagining a hopeless situation (floating in outer space with dwindling oxygen supplies) in which only suicide can avoid the agony of choking to death. Although this scenario was perceived as being more negative than the survival scenario, the survival-processing memory advantage persisted. In Experiment 3, thinking about the relevance of words for survival led to better memory for these words than did thinking about the relevance of words for death. This survival advantage was found for concrete, but not for abstract, words. The latter finding is consistent with the assumption that the survival instructions encourage participants to think about many different potential uses of items to aid survival, which may be a particularly efficient form of elaborate encoding. Together, the results suggest that thinking about death is much less effective in promoting recall than is thinking about survival. Therefore, the survival-processing memory advantage cannot be satisfactorily explained by negativity or mortality salience.

  4. Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation.

    Science.gov (United States)

    Irish, Muireann; Lawlor, Brian A; Coen, Robert F; O'Mara, Shane M

    2011-08-04

    Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time.

  5. Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation

    Directory of Open Access Journals (Sweden)

    Lawlor Brian A

    2011-08-01

    Full Text Available Abstract Background Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD and is also a defining feature of amnestic Mild Cognitive Impairment (MCI, which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory, associative memory (face-name pairings, spatial memory (route learning and recall, and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. Results The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months, 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. Conclusions As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time.

  6. Everyday episodic memory in amnestic Mild Cognitive Impairment: a preliminary investigation

    LENUS (Irish Health Repository)

    Irish, Muireann

    2011-08-04

    Abstract Background Decline in episodic memory is one of the hallmark features of Alzheimer\\'s disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient\\'s daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants\\' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. Results The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. Conclusions As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time.

  7. Spatial memory is intact in aged rats after propofol anesthesia.

    Science.gov (United States)

    Lee, In Ho; Culley, Deborah J; Baxter, Mark G; Xie, Zhongcong; Tanzi, Rudolph E; Crosby, Gregory

    2008-10-01

    We have previously demonstrated that aged rats have persistent impairment of spatial memory after sedation with nitrous oxide or general anesthesia with isoflurane-nitrous oxide. Propofol has different receptor mechanisms of action and a favorable short-term recovery profile, and it has been proposed that propofol is devoid of enduring effects on cognitive performance. No studies have investigated this question in aged subjects, however, so we designed an experiment to examine the long-term effects of propofol anesthesia on spatial working memory. Eighteen-mo-old rats were randomized to 2 h of 100% oxygen-propofol anesthesia (n=11) or to a control group that breathed 100% oxygen (n=10). Propofol was administered by continuous infusion via a tail vein catheter. Rats breathed spontaneously and rectal temperature was maintained. Mean arterial blood pressure was measured noninvasively and a venous blood gas was obtained just before discontinuation of propofol. After a 2-day recovery, spatial working memory was assessed for 14 days using a 12-arm radial maze. The number of total errors, number of correct choices to first error, and time to complete the maze was recorded and analyzed using a repeated measure analysis of variance (ANOVA), with Pmemory in aged rats. In aged rats, propofol anesthesia is devoid of the persistent memory effects observed with other general anesthetics in this model. Thus, while it appears that the state of general anesthesia is neither necessary nor sufficient for development of postanesthetic memory impairment, the choice of anesthetics may play a role in late cognitive outcome in the aged.

  8. Adaptive memory: animacy effects persist in paired-associate learning.

    Science.gov (United States)

    VanArsdall, Joshua E; Nairne, James S; Pandeirada, Josefa N S; Cogdill, Mindi

    2015-01-01

    Recent evidence suggests that animate stimuli are remembered better than matched inanimate stimuli. Two experiments tested whether this animacy effect persists in paired-associate learning of foreign words. Experiment 1 randomly paired Swahili words with matched animate and inanimate English words. Participants were told simply to learn the English "translations" for a later test. Replicating earlier findings using free recall, a strong animacy advantage was found in this cued-recall task. Concerned that the effect might be due to enhanced accessibility of the individual responses (e.g., animates represent a more accessible category), Experiment 2 selected animate and inanimate English words from two more constrained categories (four-legged animals and furniture). Once again, an advantage was found for pairs using animate targets. These results argue against organisational accounts of the animacy effect and potentially have implications for foreign language vocabulary learning.

  9. Effects of Aging on General and Specific Memory for Impressions

    Directory of Open Access Journals (Sweden)

    Megan J. Limbert

    2018-05-01

    Full Text Available Despite the number of documented declines in memory with age, memory for socioemotional information can be preserved into older adulthood. These studies assessed whether memory for character information could be preserved with age, and how the general versus specific nature of the information tested affected outcomes. We hypothesized that memory for general impressions would be preserved with age, but that memory for specific details would be impaired. In two experiments, younger and older adults learned character information about individuals characterized as positive, neutral, or negative. Participants then retrieved general impressions and specific information for each individual. The testing conditions in Experiment 2 discouraged deliberate recall. In Experiment 1, we found that younger performed better than older adults on both general and specific memory measures. Although age differences in memory for specific information persisted in Experiment 2, we found that younger and older adults remembered general impressions to a similar extent when testing conditions encouraged the use of “gut impressions” rather than deliberate retrieval from memory. We conclude that aging affects memory for specific character information, but memory for general impressions can be age-equivalent. Furthermore, there is no evidence for a positivity bias or differences in the effects of valence on memory across the age groups.

  10. Activation of a remote (1-year old) emotional memory interferes with the retrieval of a newly formed hippocampus-dependent memory in rats.

    Science.gov (United States)

    Zoladz, Phillip R; Woodson, James C; Haynes, Vernon F; Diamond, David M

    2010-01-01

    The persistent intrusion of remote traumatic memories in people with post-traumatic stress disorder (PTSD) may contribute to the impairment of their ongoing hippocampal and prefrontal cortical functioning. In the current work, we have developed a rodent analogue of the intrusive memory phenomenon. We studied the influence of the activation of a remote traumatic memory in rats on their ability to retrieve a newly formed hippocampus-dependent memory. Adult male Sprague-Dawley rats were given inhibitory avoidance (IA) training, and then 24 h or 1, 6 or 12 months later, the same rats were trained to learn, and then remember across a 30-min delay period, the location of a hidden escape platform in the radial-arm water maze (RAWM). When IA-trained rats spent the 30-min delay period in the IA apparatus, they exhibited intact remote (1-year old) memory of the shock experience. More importantly, activation of the rats' memory of the shock experience profoundly impaired their ability to retrieve the newly formed spatial memory of the hidden platform location in the RAWM. Our finding that reactivation of a remote emotional memory exerted an intrusive effect on new spatial memory processing in rats provides a novel approach toward understanding how intrusive memories of traumatic experiences interfere with ongoing cognitive processing in people with PTSD.

  11. Students' Self-Determined Motivation, Emotional Intelligence and Academic Persistence: An Examination of Second Year Students at a Public and a Private Historically Black University

    Science.gov (United States)

    Watts-Martinez, Evanda Shentelle

    2015-01-01

    Self-determined Motivation, Emotional Intelligence, Persistence Attitudes, and Persistence Behaviors are non-cognitive factors that influence students' academic progression. This study examined the associations between Self-determined Motivation, EI, Persistence Attitudes, and Persistence Behaviors and the degree to which EI, as a mediating…

  12. Type II membrane protein CD69 regulates the formation of resting T-helper memory.

    OpenAIRE

    Shinoda, K.; Tokoyoda, K.; Hanazawa, A.; Hayashizaki, K.; Zehentmeier, S.; Hosokawa, H.; Iwamura, C.; Koseki, H.; Tumes, D. J.; Radbruch, A.; Nakayama, T.

    2012-01-01

    Memory T-helper (Th) lymphocytes are crucial for the maintenance of acquired immunity to eliminate infectious pathogens. We have previously demonstrated that most memory Th lymphocytes reside and rest on stromal niches of the bone marrow (BM). Little is known, however, regarding the molecular basis for the generation and maintenance of BM memory Th lymphocytes. Here we show that CD69-deficient effector CD4 T lymphocytes fail to relocate into and persist in the BM and therefore to differentiat...

  13. Memory NK cells: why do they reside in the liver?

    Science.gov (United States)

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-05-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may generate both the initiation and the recall phase of memory. We propose that the liver may have unique precursors for memory NK cells, which are developmentally distinct from NK cells derived from bone marrow.

  14. Human T Cell Memory: A Dynamic View

    Directory of Open Access Journals (Sweden)

    Derek C. Macallan

    2017-02-01

    Full Text Available Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy.

  15. The heterogeneity and natural history of mild cognitive impairment of visual memory predominant type.

    Science.gov (United States)

    Ye, Byoung Seok; Chin, Juhee; Kim, Seong Yoon; Lee, Jung-Sun; Kim, Eun-Joo; Lee, Yunhwan; Hong, Chang Hyung; Choi, Seong Hye; Park, Kyung Won; Ku, Bon D; Moon, So Young; Kim, SangYun; Han, Seol-Hee; Lee, Jae-Hong; Cheong, Hae-Kwan; Park, Sun Ah; Jeong, Jee Hyang; Na, Duk L; Seo, Sang Won

    2015-01-01

    We evaluate the longitudinal outcomes of amnestic mild cognitive impairment (aMCI) according to the modality of memory impairment involved. We recruited 788 aMCI patients and followed them up. aMCI patients were categorized into three groups according to the modality of memory impairment: Visual-aMCI, only visual memory impaired; Verbal-aMCI, only verbal memory impaired; and Both-aMCI, both visual and verbal memory impaired. Each aMCI group was further categorized according to the presence or absence of recognition failure. Risk of progression to dementia was compared with pooled logistic regression analyses while controlling for age, gender, education, and interval from baseline. Of the sample, 219 (27.8%) aMCI patients progressed to dementia. Compared to the Visual-aMCI group, Verbal-aMCI (OR = 1.98, 95% CI = 1.19-3.28, p = 0.009) and Both-aMCI (OR = 3.05, 95% CI = 1.97-4.71, p Memory recognition failure was associated with increased risk of progression to dementia only in the Visual-aMCI group, but not in the Verbal-aMCI and Both-aMCI groups. The Visual-aMCI without recognition failure group were subcategorized into aMCI with depression, small vessel disease, or accelerated aging, and these subgroups showed a variety of progression rates. Our findings underlined the importance of heterogeneous longitudinal outcomes of aMCI, especially Visual-aMCI, for designing and interpreting future treatment trials in aMCI.

  16. Persistent hyperlactacidaemia: about a clinical case.

    Science.gov (United States)

    Oliveira, Ana Rita Saraiva; Valente, Rosalina; Ramos, José; Ventura, Lurdes

    2013-05-22

    Lactate is the endogenous end product of the anaerobic glycolysis, whose production is favoured in situations of hypoperfusion or mitochondrial dysfunction. Leigh syndrome is a rare, progressive encephalomyopathy that represents a spectrum of mitochondrial genetic diseases phenotypically distinct, but with neuroradiological and pathological uniform presentation. We present the case of a 7-month-old infant, with a history of prematurity, psychomotor retardation and epilepsy, admitted to the paediatric intensive care unit (PICU) due to cardio-respiratory arrest because of respiratory infection. Hyperlactacidaemia was detected and was persistent. The study of redox potential was normal but MRI with spectroscopy identified bilateral and symmetrical lesions involving thalamic and basal ganglia, with small lactate peaks at T2 flair, findings that were suggestive of Leigh syndrome. Subsequent enzymatic study identified lack of pyruvate dehydrogenase. Persistent hyperlactacidaemia, in the appropriate clinical context, should lead to the screening of mitochondrial diseases.

  17. Hippocampal morphology mediates biased memories of chronic pain

    Science.gov (United States)

    Berger, Sara E.; Vachon-Presseau, Étienne; Abdullah, Taha B.; Baria, Alex T.; Schnitzer, Thomas J.; Apkarian, A. Vania

    2018-01-01

    Experiences and memories are often mismatched. While multiple studies have investigated psychological underpinnings of recall error with respect to emotional events, the neurobiological mechanisms underlying the divergence between experiences and memories remain relatively unexplored in the domain of chronic pain. Here we examined the discrepancy between experienced chronic low back pain (CBP) intensity (twice daily ratings) and remembered pain intensity (n = 48 subjects) relative to psychometric properties, hippocampus morphology, memory capabilities, and personality traits related to reward. 77% of CBP patients exaggerated remembered pain, which depended on their strongest experienced pain and their most recent mood rating. This bias persisted over nearly 1 year and was related to reward memory bias and loss aversion. Shape displacement of a specific region in the left posterior hippocampus mediated personality effects on pain memory bias, predicted pain memory bias in a validation CBP group (n = 21), and accounted for 55% of the variance of pain memory bias. In two independent groups (n = 20/group), morphology of this region was stable over time and unperturbed by the development of chronic pain. These results imply that a localized hippocampal circuit, and personality traits associated with reward processing, largely determine exaggeration of daily pain experiences in chronic pain patients. PMID:29080714

  18. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells.

    Science.gov (United States)

    Hurton, Lenka V; Singh, Harjeet; Najjar, Amer M; Switzer, Kirsten C; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N

    2016-11-29

    Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (T SCM ) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR + T cells with preserved T SCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19 + leukemia. Long-lived T cells were CD45RO neg CCR7 + CD95 + , phenotypically most similar to T SCM , and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR + T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.

  19. Time-place learning and memory persist in mice lacking functional Per1 and Per2 clock genes.

    Science.gov (United States)

    Mulder, C; Van Der Zee, E A; Hut, R A; Gerkema, M P

    2013-12-01

    With time-place learning, animals link a stimulus with the location and the time of day. This ability may optimize resource localization and predator avoidance in daily changing environments. Time-place learning is a suitable task to study the interaction of the circadian system and memory. Previously, we showed that time-place learning in mice depends on the circadian system and Cry1 and/or Cry2 clock genes. We questioned whether time-place learning is Cry specific or also depends on other core molecular clock genes. Here, we show that Per1/Per2 double mutant mice, despite their arrhythmic phenotype, acquire time-place learning similar to wild-type mice. As well as an established role in circadian rhythms, Per genes have also been implicated in the formation and storage of memory. We found no deficiencies in short-term spatial working memory in Per mutant mice compared to wild-type mice. Moreover, both Per mutant and wild-type mice showed similar long-term memory for contextual features of a paradigm (a mild foot shock), measured in trained mice after a 2-month nontesting interval. In contrast, time-place associations were lost in both wild-type and mutant mice after these 2 months, suggesting a lack of maintained long-term memory storage for this type of information. Taken together, Cry-dependent time-place learning does not require Per genes, and Per mutant mice showed no PER-specific short-term or long-term memory deficiencies. These results limit the functional role of Per clock genes in the circadian regulation of time-place learning and memory.

  20. Conversational assessment in memory clinic encounters: interactional profiling for differentiating dementia from functional memory disorders.

    Science.gov (United States)

    Jones, Danielle; Drew, Paul; Elsey, Christopher; Blackburn, Daniel; Wakefield, Sarah; Harkness, Kirsty; Reuber, Markus

    2016-01-01

    In the UK dementia is under-diagnosed, there is limited access to specialist memory clinics, and many of the patients referred to such clinics are ultimately found to have functional (non-progressive) memory disorders (FMD), rather than a neurodegenerative disorder. Government initiatives on 'timely diagnosis' aim to improve the rate and quality of diagnosis for those with dementia. This study seeks to improve the screening and diagnostic process by analysing communication between clinicians and patients during initial specialist clinic visits. Establishing differential conversational profiles could help the timely differential diagnosis of memory complaints. This study is based on video- and audio recordings of 25 initial consultations between neurologists and patients referred to a UK memory clinic. Conversation analysis was used to explore recurrent communicative practices associated with each diagnostic group. Two discrete conversational profiles began to emerge, to help differentiate between patients with dementia and functional memory complaints, based on (1) whether the patient is able to answer questions about personal information; (2) whether they can display working memory in interaction; (3) whether they are able to respond to compound questions; (4) the time taken to respond to questions; and (5) the level of detail they offer when providing an account of their memory failure experiences. The distinctive conversational profiles observed in patients with functional memory complaints on the one hand and neurodegenerative memory conditions on the other suggest that conversational profiling can support the differential diagnosis of functional and neurodegenerative memory disorders.

  1. Some neglected contributions of Wilhelm Wundt to the psychology of memory.

    Science.gov (United States)

    Carpenter, Shana K

    2005-08-01

    Wilhelm Wundt, whose name is rarely associated with the scientific study of memory, conducted a number of memory experiments that appear to have escaped the awareness of modern cognitive psychologists. Aspects of Wundt's system are reviewed, particularly with respect to his experimental work on memory. Wundt investigated phenomena that would fall under the modern headings of iconic memory, short-term memory, and the enactment and generation effects, but this research has been neglected. Revisiting the Wundtian perspective may provide insight into some of the reasons behind the historical course of memory research and in general into the progress of science in psychology.

  2. Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile

    Science.gov (United States)

    Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.

    2012-09-01

    Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.

  3. Individual differences in false memory from misinformation: cognitive factors.

    Science.gov (United States)

    Zhu, Bi; Chen, Chuansheng; Loftus, Elizabeth F; Lin, Chongde; He, Qinghua; Chen, Chunhui; Li, He; Xue, Gui; Lu, Zhonglin; Dong, Qi

    2010-07-01

    This research investigated the cognitive correlates of false memories that are induced by the misinformation paradigm. A large sample of Chinese college students (N=436) participated in a misinformation procedure and also took a battery of cognitive tests. Results revealed sizable and systematic individual differences in false memory arising from exposure to misinformation. False memories were significantly and negatively correlated with measures of intelligence (measured with Raven's Advanced Progressive Matrices and Wechsler Adult Intelligence Scale), perception (Motor-Free Visual Perception Test, Change Blindness, and Tone Discrimination), memory (Wechsler Memory Scales and 2-back Working Memory tasks), and face judgement (Face Recognition and Facial Expression Recognition). These findings suggest that people with relatively low intelligence and poor perceptual abilities might be more susceptible to the misinformation effect.

  4. Neuroanatomy of episodic and semantic memory in humans: a brief review of neuroimaging studies.

    Science.gov (United States)

    García-Lázaro, Haydée G; Ramirez-Carmona, Rocio; Lara-Romero, Ruben; Roldan-Valadez, Ernesto

    2012-01-01

    One of the most basic functions in every individual and species is memory. Memory is the process by which information is saved as knowledge and retained for further use as needed. Learning is a neurobiological phenomenon by which we acquire certain information from the outside world and is a precursor to memory. Memory consists of the capacity to encode, store, consolidate, and retrieve information. Recently, memory has been defined as a network of connections whose function is primarily to facilitate the long-lasting persistence of learned environmental cues. In this review, we present a brief description of the current classifications of memory networks with a focus on episodic memory and its anatomical substrate. We also present a brief review of the anatomical basis of memory systems and the most commonly used neuroimaging methods to assess memory, illustrated with magnetic resonance imaging images depicting the hippocampus, temporal lobe, and hippocampal formation, which are the main brain structures participating in memory networks.

  5. Reactivation in working memory: an attractor network model of free recall.

    Science.gov (United States)

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.

  6. Reactivation in working memory: an attractor network model of free recall.

    Directory of Open Access Journals (Sweden)

    Anders Lansner

    Full Text Available The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.

  7. Reactivation in Working Memory: An Attractor Network Model of Free Recall

    Science.gov (United States)

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view. PMID:24023690

  8. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia.

    Directory of Open Access Journals (Sweden)

    Junie P Warrington

    Full Text Available Whole brain radiation therapy (WBRT is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40-50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia or 21% oxygen (normoxia for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored.

  9. Conscious visual memory with minimal attention.

    Science.gov (United States)

    Pinto, Yair; Vandenbroucke, Annelinde R; Otten, Marte; Sligte, Ilja G; Seth, Anil K; Lamme, Victor A F

    2017-02-01

    Is conscious visual perception limited to the locations that a person attends? The remarkable phenomenon of change blindness, which shows that people miss nearly all unattended changes in a visual scene, suggests the answer is yes. However, change blindness is found after visual interference (a mask or a new scene), so that subjects have to rely on working memory (WM), which has limited capacity, to detect the change. Before such interference, however, a much larger capacity store, called fragile memory (FM), which is easily overwritten by newly presented visual information, is present. Whether these different stores depend equally on spatial attention is central to the debate on the role of attention in conscious vision. In 2 experiments, we found that minimizing spatial attention almost entirely erases visual WM, as expected. Critically, FM remains largely intact. Moreover, minimally attended FM responses yield accurate metacognition, suggesting that conscious memory persists with limited spatial attention. Together, our findings help resolve the fundamental issue of how attention affects perception: Both visual consciousness and memory can be supported by only minimal attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. The effect of electroconvulsive therapy on autobiographical memory: a systematic review.

    Science.gov (United States)

    Fraser, Louisa M; O'Carroll, Ronan E; Ebmeier, Klaus P

    2008-03-01

    In the last 20 years, an increasing number of articles have been published about effects of electroconvulsive therapy (ECT) on memory. Here, we review autobiographical memory studies in particular because there have been conflicting reports about the extent and persistence of ECT effects and the period before treatment from which memories are most likely to be affected. Five psychological and medical databases (MEDLINE, PubMed, PsychINFO, ScienceDirect, and Web of Knowledge) were searched from 1980 to 2007, yielding 15 studies of ECT and autobiographical memory. Evidence suggests that autobiographical memory impairment does occur as a result of ECT. Objective measures found memory loss to be relatively short term (6 months post-ECT). Electroconvulsive therapy predominantly affects memory of prior personal events that are near the treatment (within 6 months). Autobiographical memory loss is reduced by using brief pulse ECT rather than sine wave-unilateral positioning of electrodes rather than bilateral-and by titrating electrical current relative to the patient's own seizure threshold. Further research is required to determine memory loss associated with ECT, controlling for the direct effects of the depressive state.

  11. Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory.

    Science.gov (United States)

    Alaghband, Yasaman; O'Dell, Steven J; Azarnia, Siavash; Khalaj, Anna J; Guzowski, John F; Marshall, John F

    2014-12-01

    The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue memories. First, we directly compared, in a consistent setting, the involvement of cortical and subcortical brain regions in cocaine-cue memory retrieval by quantifying activity-regulated cytoskeletal-associated (Arc) protein expression in both the CPP and CA models. Second, because NMDA receptor activation is required for Arc expression, we investigated the NMDA receptor dependency of memory persistence using the CA model. In both the CPP and CA models, drug-paired animals showed significant increases in Arc immunoreactivity in regions of the frontal cortex and amygdala compared to unpaired controls. Additionally, administration of a NMDA receptor antagonist (MK-801 or memantine) immediately after cocaine-CA memory reactivation impaired the subsequent conditioned locomotion associated with the cocaine-paired environment. The enhanced Arc expression evident in a subset of corticolimbic regions after retrieval of a cocaine-context memory, observed in both the CPP and CA paradigms, likely signifies that these regions: (i) are activated during retrieval of these memories irrespective of preference-based decisions, and (ii) undergo neuroplasticity in order to update information about cues previously associated with cocaine. This study also establishes the involvement of NMDA receptors in maintaining memories established using the CA model, a characteristic previously demonstrated using CPP. Overall, these results demonstrate the utility of the CA model for studies of cocaine

  12. Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales

    Science.gov (United States)

    McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.

    2008-01-01

    Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…

  13. Molecular mechanisms of memory in imprinting.

    Science.gov (United States)

    Solomonia, Revaz O; McCabe, Brian J

    2015-03-01

    Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-D-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼ 15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Overview of emerging nonvolatile memory technologies.

    Science.gov (United States)

    Meena, Jagan Singh; Sze, Simon Min; Chand, Umesh; Tseng, Tseung-Yuen

    2014-01-01

    class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices.

  15. Overview of emerging nonvolatile memory technologies

    Science.gov (United States)

    2014-01-01

    class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices. PMID:25278820

  16. Stimulus-specific variability in color working memory with delayed estimation.

    Science.gov (United States)

    Bae, Gi-Yeul; Olkkonen, Maria; Allred, Sarah R; Wilson, Colin; Flombaum, Jonathan I

    2014-04-08

    Working memory for color has been the central focus in an ongoing debate concerning the structure and limits of visual working memory. Within this area, the delayed estimation task has played a key role. An implicit assumption in color working memory research generally, and delayed estimation in particular, is that the fidelity of memory does not depend on color value (and, relatedly, that experimental colors have been sampled homogeneously with respect to discriminability). This assumption is reflected in the common practice of collapsing across trials with different target colors when estimating memory precision and other model parameters. Here we investigated whether or not this assumption is secure. To do so, we conducted delayed estimation experiments following standard practice with a memory load of one. We discovered that different target colors evoked response distributions that differed widely in dispersion and that these stimulus-specific response properties were correlated across observers. Subsequent experiments demonstrated that stimulus-specific responses persist under higher memory loads and that at least part of the specificity arises in perception and is eventually propagated to working memory. Posthoc stimulus measurement revealed that rendered stimuli differed from nominal stimuli in both chromaticity and luminance. We discuss the implications of these deviations for both our results and those from other working memory studies.

  17. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    Science.gov (United States)

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  18. Power-law neuronal fluctuations in a recurrent network model of parametric working memory.

    Science.gov (United States)

    Miller, Paul; Wang, Xiao-Jing

    2006-02-01

    In a working memory system, persistent activity maintains information in the absence of external stimulation, therefore the time scale and structure of correlated neural fluctuations reflect the intrinsic microcircuit dynamics rather than direct responses to sensory inputs. Here we show that a parametric working memory model capable of graded persistent activity is characterized by arbitrarily long correlation times, with Fano factors and power spectra of neural activity described by the power laws of a random walk. Collective drifts of the mnemonic firing pattern induce long-term noise correlations between pairs of cells, with the sign (positive or negative) and amplitude proportional to the product of the gradients of their tuning curves. None of the power-law behavior was observed in a variant of the model endowed with discrete bistable neural groups, where noise fluctuations were unable to cause long-term changes in rate. Therefore such behavior can serve as a probe for a quasi-continuous attractor. We propose that the unusual correlated fluctuations have important implications for neural coding in parametric working memory circuits.

  19. Semantic Dementia and Persisting Wernicke's Aphasia: Linguistic and Anatomical Profiles

    Science.gov (United States)

    Ogar, J. M.; Baldo, J. V.; Wilson, S. M.; Brambati, S. M.; Miller, B. L.; Dronkers, N. F.; Gorno-Tempini, M. L.

    2011-01-01

    Few studies have directly compared the clinical and anatomical characteristics of patients with progressive aphasia to those of patients with aphasia caused by stroke. In the current study we examined fluent forms of aphasia in these two groups, specifically semantic dementia (SD) and persisting Wernicke's aphasia (WA) due to stroke. We compared…

  20. Age-Related Neurodegeneration and Memory Loss in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Jason P. Lockrow

    2012-01-01

    Full Text Available Down syndrome (DS is a condition where a complete or segmental chromosome 21 trisomy causes variable intellectual disability, and progressive memory loss and neurodegeneration with age. Many research groups have examined development of the brain in DS individuals, but studies on age-related changes should also be considered, with the increased lifespan observed in DS. DS leads to pathological hallmarks of Alzheimer's disease (AD by 40 or 50 years of age. Progressive age-related memory deficits occurring in both AD and in DS have been connected to degeneration of several neuronal populations, but mechanisms are not fully elucidated. Inflammation and oxidative stress are early events in DS pathology, and focusing on these pathways may lead to development of successful intervention strategies for AD associated with DS. Here we discuss recent findings and potential treatment avenues regarding development of AD neuropathology and memory loss in DS.

  1. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    OpenAIRE

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related long-term memo...

  2. Biomorphic Multi-Agent Architecture for Persistent Computing

    Science.gov (United States)

    Lodding, Kenneth N.; Brewster, Paul

    2009-01-01

    A multi-agent software/hardware architecture, inspired by the multicellular nature of living organisms, has been proposed as the basis of design of a robust, reliable, persistent computing system. Just as a multicellular organism can adapt to changing environmental conditions and can survive despite the failure of individual cells, a multi-agent computing system, as envisioned, could adapt to changing hardware, software, and environmental conditions. In particular, the computing system could continue to function (perhaps at a reduced but still reasonable level of performance) if one or more component( s) of the system were to fail. One of the defining characteristics of a multicellular organism is unity of purpose. In biology, the purpose is survival of the organism. The purpose of the proposed multi-agent architecture is to provide a persistent computing environment in harsh conditions in which repair is difficult or impossible. A multi-agent, organism-like computing system would be a single entity built from agents or cells. Each agent or cell would be a discrete hardware processing unit that would include a data processor with local memory, an internal clock, and a suite of communication equipment capable of both local line-of-sight communications and global broadcast communications. Some cells, denoted specialist cells, could contain such additional hardware as sensors and emitters. Each cell would be independent in the sense that there would be no global clock, no global (shared) memory, no pre-assigned cell identifiers, no pre-defined network topology, and no centralized brain or control structure. Like each cell in a living organism, each agent or cell of the computing system would contain a full description of the system encoded as genes, but in this case, the genes would be components of a software genome.

  3. Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine

    KAUST Repository

    Boury-Jamot, B

    2015-10-27

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte–neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.

  4. Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine

    KAUST Repository

    Boury-Jamot, B; Carrard, A; Martin, J L; Halfon, O; Magistretti, Pierre J.; Boutrel, B

    2015-01-01

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte–neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.

  5. Sleep deprivation specifically impairs short-term olfactory memory in Drosophila.

    Science.gov (United States)

    Li, Xinjian; Yu, Feng; Guo, Aike

    2009-11-01

    Sleep is crucial to memory consolidation in humans and other animals; however, the effect of insufficient sleep on subsequent learning and memory remains largely elusive. Learning and memory after 1-day sleep deprivation (slpD) was evaluated using Pavlovian olfactory conditioning in Drosophila, and locomotor activity was measured using the Drosophila Activity Monitoring System in a 12:12 light-dark cycle. We found that slpD specifically impaired 1-h memory in wild type Canton-S flies, and this effect could persist for at least 2 h. However, alternative stresses (heat stress, oxidative stress, starvation, and rotation stress) did not result in a similar effect and left the flies' memory intact. Mechanistic studies demonstrated that flies with either silenced transmission of the mushroom body (MB) during slpD or down-regulated cAMP levels in the MB demonstrated no slpD-induced 1-h memory impairment. We found that slpD specifically impaired 1-h memory in Drosophila, and either silencing of MB transmission during slpD or down-regulation of the cAMP level in the MB protected the flies from slpD-induced impairment.

  6. Long persistence of rigor mortis at constant low temperature.

    Science.gov (United States)

    Varetto, Lorenzo; Curto, Ombretta

    2005-01-06

    We studied the persistence of rigor mortis by using physical manipulation. We tested the mobility of the knee on 146 corpses kept under refrigeration at Torino's city mortuary at a constant temperature of +4 degrees C. We found a persistence of complete rigor lasting for 10 days in all the cadavers we kept under observation; and in one case, rigor lasted for 16 days. Between the 11th and the 17th days, a progressively increasing number of corpses showed a change from complete into partial rigor (characterized by partial bending of the articulation). After the 17th day, all the remaining corpses showed partial rigor and in the two cadavers that were kept under observation "à outrance" we found the absolute resolution of rigor mortis occurred on the 28th day. Our results prove that it is possible to find a persistence of rigor mortis that is much longer than the expected when environmental conditions resemble average outdoor winter temperatures in temperate zones. Therefore, this datum must be considered when a corpse is found in those environmental conditions so that when estimating the time of death, we are not misled by the long persistence of rigor mortis.

  7. On recency and echoic memory.

    Science.gov (United States)

    Gardiner, J M

    1983-08-11

    In short-term memory, the tendency for the last few (recency) items from a verbal sequence to be increasingly well recalled is more pronounced if the items are spoken rather than written. This auditory recency advantage has been quite generally attributed to echoic memory, on the grounds that in the auditory, but not the visual, mode, sensory memory persists just long enough to supplement recall of the most recent items. This view no longer seems tenable. There are now several studies showing that an auditory recency advantage occurs not only in long-term memory, but under conditions in which it cannot possibly be attributed to echoic memory. Also, similar recency phenomena have been discovered in short-term memory when the items are lip-read, or presented in sign-language, rather than heard. This article provides a partial review of these studies, taking a broad theoretical position from which these particular recency phenomena are approached as possible exceptions, to a general theory according to which recency is due to temporal distinctiveness. Much of the fresh evidence reviewed is of a somewhat preliminary nature and it is as yet unexplained by any theory of memory. The need for additional, converging experimental tests is obvious; so too is the need for further theoretical development. Several alternative theoretical resolutions are mentioned, including the possibility that enhanced recency may reflect movement, from sequentially occurring stimulus features, and the suggestion that it may be associated with the primary linguistic mode of the individuals concerned. But special weight is attached to the conjecture that all these recency phenomena might be accounted for in terms of distinctiveness or discriminability. On this view, the enhanced recency effects observed with certain modes, including the auditory mode, are attributed to items possessing greater temporal discriminability in those modes.

  8. The Impact of Biofilm Formation on the Persistence of Candidemia

    Directory of Open Access Journals (Sweden)

    Wei-Sin Li

    2018-06-01

    Full Text Available This study aimed to determine the predictors of persistent candidemia and examine the impact of biofilm formation by Candida isolates in adult patients with candidemia. Of the adult patients with candidemia in Kaohsiung Chang Gung Memorial Hospital between January 2007 and December 2012, 68 case patients with persistent candidemia (repeated candidemia after a 3-day systemic antifungal therapy and 68 control patients with non-persistent candidemia (Candida clearance from the bloodstream after a 3-day systemic antifungal therapy were included based on propensity score matching and matching for the Candida species isolated. Biofilm formation by the Candida species was assessed in vitro using standard biomass assays. Presence of central venous catheters (CVCs at diagnosis (adjusted odd ratio [AOR], 3.77; 95% confidence interval [CI], 1.09–13.00, p = 0.04, infection with higher biofilm forming strains of Candida species (AOR, 8.03; 95% CI, 2.50–25.81; p < 0.01, and receipt of suboptimal fluconazole doses as initial therapy (AOR, 5.54; 95% CI, 1.53–20.10; p < 0.01 were independently associated with persistent candidemia. Biofilm formation by Candida albicans, C. tropicalis, and C. glabrata strains was significantly higher in the case patients than in the controls. There were no significant differences in the overall mortality and duration of hospitalization between the two groups. Our data suggest that, other than presence of retained CVCs and use of suboptimal doses of fluconazole, biofilm formation was highly associated with development of persistent candidemia.

  9. Coaching positively influences the effects of working memory training on visual working memory as well as mathematical ability.

    Science.gov (United States)

    Nelwan, Michel; Vissers, Constance; Kroesbergen, Evelyn H

    2018-05-01

    The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were evaluated. In this study, 23 children between 9 and 12 years of age with both attentional and mathematical difficulties participated in a working memory training program with a high amount of coaching, while another 25 children received no working memory training. Results of these groups were compared to 21 children who completed the training with a lower amount of coaching. The quality of working memory, as well as mathematic skills, were measured three times using untrained transfer tasks. Bayesian statistics were used to test informative hypotheses. After receiving working memory training, the highly coached group performed better than the group that received less coaching on visual working memory and mathematics, but not on verbal working memory. The highly coached group retained their advantage in mathematics, even though the effect on visual working memory decreased. However, no added effect of working memory training was found on the learning curve during mathematical training. Moreover, the less-coached group was outperformed by the group that did not receive working memory training, both in visual working memory and mathematics. These results suggest that motivation and proper coaching might be crucial for ensuring compliance and effects of working memory training, and that far transfer might be possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Spatial memory and animal movement.

    Science.gov (United States)

    Fagan, William F; Lewis, Mark A; Auger-Méthé, Marie; Avgar, Tal; Benhamou, Simon; Breed, Greg; LaDage, Lara; Schlägel, Ulrike E; Tang, Wen-wu; Papastamatiou, Yannis P; Forester, James; Mueller, Thomas

    2013-10-01

    Memory is critical to understanding animal movement but has proven challenging to study. Advances in animal tracking technology, theoretical movement models and cognitive sciences have facilitated research in each of these fields, but also created a need for synthetic examination of the linkages between memory and animal movement. Here, we draw together research from several disciplines to understand the relationship between animal memory and movement processes. First, we frame the problem in terms of the characteristics, costs and benefits of memory as outlined in psychology and neuroscience. Next, we provide an overview of the theories and conceptual frameworks that have emerged from behavioural ecology and animal cognition. Third, we turn to movement ecology and summarise recent, rapid developments in the types and quantities of available movement data, and in the statistical measures applicable to such data. Fourth, we discuss the advantages and interrelationships of diverse modelling approaches that have been used to explore the memory-movement interface. Finally, we outline key research challenges for the memory and movement communities, focusing on data needs and mathematical and computational challenges. We conclude with a roadmap for future work in this area, outlining axes along which focused research should yield rapid progress. © 2013 John Wiley & Sons Ltd/CNRS.

  11. Working-memory training improves developmental dyslexia in Chinese children

    Institute of Scientific and Technical Information of China (English)

    Yan Luo; Jing Wang; Hanrong Wu; Dongmei Zhu; Yu Zhang

    2013-01-01

    Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.

  12. Perspectives on Episodic-Like and Episodic Memory

    Science.gov (United States)

    Pause, Bettina M.; Zlomuzica, Armin; Kinugawa, Kiyoka; Mariani, Jean; Pietrowsky, Reinhard; Dere, Ekrem

    2013-01-01

    Episodic memory refers to the conscious recollection of a personal experience that contains information on what has happened and also where and when it happened. Recollection from episodic memory also implies a kind of first-person subjectivity that has been termed autonoetic consciousness. Episodic memory is extremely sensitive to cerebral aging and neurodegenerative diseases. In Alzheimer’s disease deficits in episodic memory function are among the first cognitive symptoms observed. Furthermore, impaired episodic memory function is also observed in a variety of other neuropsychiatric diseases including dissociative disorders, schizophrenia, and Parkinson disease. Unfortunately, it is quite difficult to induce and measure episodic memories in the laboratory and it is even more difficult to measure it in clinical populations. Presently, the tests used to assess episodic memory function do not comply with even down-sized definitions of episodic-like memory as a memory for what happened, where, and when. They also require sophisticated verbal competences and are difficult to apply to patient populations. In this review, we will summarize the progress made in defining behavioral criteria of episodic-like memory in animals (and humans) as well as the perspectives in developing novel tests of human episodic memory which can also account for phenomenological aspects of episodic memory such as autonoetic awareness. We will also define basic behavioral, procedural, and phenomenological criteria which might be helpful for the development of a valid and reliable clinical test of human episodic memory. PMID:23616754

  13. Silicon spintronics: Progress and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sverdlov, Viktor; Selberherr, Siegfried, E-mail: Selberherr@TUWien.ac.at

    2015-07-14

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized.

  14. Silicon spintronics: Progress and challenges

    International Nuclear Information System (INIS)

    Sverdlov, Viktor; Selberherr, Siegfried

    2015-01-01

    Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. Recent progress and challenges regarding spin-based devices are reviewed. An order of magnitude enhancement of the electron spin lifetime in silicon thin films by shear strain is predicted and its impact on spin transport in SpinFETs is discussed. A relatively weak coupling between spin and effective electric field in silicon allows magnetoresistance modulation at room temperature, however, for long channel lengths. Due to tunneling magnetoresistance and spin transfer torque effects, a much stronger coupling between the spin (magnetization) orientation and charge current is achieved in magnetic tunnel junctions. Magnetic random access memory (MRAM) built on magnetic tunnel junctions is CMOS compatible and possesses all properties needed for future universal memory. Designs of spin-based non-volatile MRAM cells are presented. By means of micromagnetic simulations it is demonstrated that a substantial reduction of the switching time can be achieved. Finally, it is shown that any two arbitrary memory cells from an MRAM array can be used to perform a logic operation. Thus, an intrinsic non-volatile logic-in-memory architecture can be realized

  15. How aging affects sleep-dependent memory consolidation?

    Directory of Open Access Journals (Sweden)

    Caroline eHarand

    2012-02-01

    Full Text Available Sleep plays multiple functions among which energy conservation or recuperative processes. Besides, growing evidence indicate that sleep plays also a major role in memory consolidation, a process by which recently acquired and labile memory traces are progressively strengthened into more permanent and/or enhanced forms. Indeed, memories are not stored as they were initially encoded but rather undergo a gradual reorganization process, which is favoured by the neurochemical environment and the electrophysiological activity observed during sleep. Two putative, probably not exclusive, models (hippocampo-neocortical dialogue and synaptic homeostasis hypothesis have been proposed to explain the beneficial effect of sleep on memory processes. It is worth noting that all data gathered until now emerged from studies conducted in young subjects. The investigation of the relationships between sleep and memory in older adults has sparked off little interest until recently. Though, aging is characterized by memory impairment, changes in sleep architecture, as well as brain and neurochemical alterations. All these elements suggest that sleep-dependent memory consolidation may be impaired or occurs differently in older adults.Here, we give an overview of the mechanisms governing sleep-dependent memory consolidation, and the crucial points of this complex process that may dysfunction and result in impaired memory consolidation in aging.

  16. System Consolidation of Spatial Memories in Mice: Effects of Enriched Environment

    Directory of Open Access Journals (Sweden)

    Joyce Bonaccorsi

    2013-01-01

    Full Text Available Environmental enrichment (EE is known to enhance learning and memory. Declarative memories are thought to undergo a first rapid and local consolidation process, followed by a prolonged process of system consolidation, which consist in a time-dependent gradual reorganization of brain regions supporting remote memory storage and crucial for the formation of enduring memories. At present, it is not known whether EE can affect the process of declarative memory system consolidation. We characterized the time course of hippocampal and cortical activation following recall of progressively more remote spatial memories. Wild-type mice either exposed to EE for 40 days or left in standard environment were subjected to spatial learning in the Morris water maze and to the probe test 1, 10, 20, 30, and 50 days after learning. Following the probe test, regional expression of the inducible immediate early gene c-Fos was mapped by immunohistochemistry, as an indicator of neuronal activity. We found that activation of the medial prefrontal cortex (mPFC, suggested to have a privileged role in processing remote spatial memories, was evident at shorter time intervals after learning in EE mice; in addition, EE induced the progressive activation of a distributed cortical network not activated in non-EE mice. This suggests that EE not only accelerates the process of mPFC recruitment but also recruits additional cortical areas into the network supporting remote spatial memories.

  17. Conditional bistability, a generic cellular mnemonic mechanism for robust and flexible working memory computations.

    Science.gov (United States)

    Rodriguez, Guillaume; Sarazin, Matthieu; Clemente, Alexandra; Holden, Stephanie; Paz, Jeanne T; Delord, Bruno

    2018-04-30

    Persistent neural activity, the substrate of working memory, is thought to emerge from synaptic reverberation within recurrent networks. However, reverberation models do not robustly explain fundamental dynamics of persistent activity, including high-spiking irregularity, large intertrial variability, and state transitions. While cellular bistability may contribute to persistent activity, its rigidity appears incompatible with persistent activity labile characteristics. Here, we unravel in a cellular model a form of spike-mediated conditional bistability that is robust, generic and provides a rich repertoire of mnemonic computations. Under asynchronous synaptic inputs of the awakened state, conditional bistability generates spiking/bursting episodes, accounting for the irregularity, variability and state transitions characterizing persistent activity. This mechanism has likely been overlooked because of the sub-threshold input it requires and we predict how to assess it experimentally. Our results suggest a reexamination of the role of intrinsic properties in the collective network dynamics responsible for flexible working memory. SIGNIFICANCE STATEMENT This study unravels a novel form of intrinsic neuronal property, i.e. conditional bistability. We show that, thanks of its conditional character, conditional bistability favors the emergence of flexible and robust forms of persistent activity in PFC neural networks, in opposition to previously studied classical forms of absolute bistability. Specifically, we demonstrate for the first time that conditional bistability 1) is a generic biophysical spike-dependent mechanism of layer V pyramidal neurons in the PFC and that 2) it accounts for essential neurodynamical features for the organisation and flexibility of PFC persistent activity (the large irregularity and intertrial variability of the discharge and its organization under discrete stable states), which remain unexplained in a robust fashion by current models

  18. The memory loophole

    Science.gov (United States)

    Shanahan, Daniel

    2008-05-01

    The memory loophole supposes that the measurement of an entangled pair is influenced by the measurements of earlier pairs in the same run of measurements. To assert the memory loophole is thus to deny that measurement is intrinsically random. It is argued that measurement might instead involve a process of recovery and equilibrium in the measuring apparatus akin to that described in thermodynamics by Le Chatelier's principle. The predictions of quantum mechanics would then arise from conservation of the measured property in the combined system of apparatus and measured ensemble. Measurement would be consistent with classical laws of conservation, not simply in the classical limit of large numbers, but whatever the size of the ensemble. However variances from quantum mechanical predictions would be self-correcting and centripetal, rather than Markovian and increasing as under the standard theory. Entanglement correlations would persist, not because the entangled particles act in concert (which would entail nonlocality), but because the measurements of the particles were influenced by the one fluctuating state of imbalance in the process of measurement.

  19. The neurobiological bases of memory formation: from physiological conditions to psychopathology.

    Science.gov (United States)

    Bisaz, Reto; Travaglia, Alessio; Alberini, Cristina M

    2014-01-01

    The formation of long-term memories is a function necessary for an adaptive survival. In the last two decades, great progress has been made in the understanding of the biological bases of memory formation. The identification of mechanisms necessary for memory consolidation and reconsolidation, the processes by which the posttraining and postretrieval fragile memory traces become stronger and insensitive to disruption, has indicated new approaches for investigating and treating psychopathologies. In this review, we will discuss some key biological mechanisms found to be critical for memory consolidation and strengthening, the role/s and mechanisms of memory reconsolidation, and how the interference with consolidation and/or reconsolidation can modulate the retention and/or storage of memories that are linked to psychopathologies. © 2014 S. Karger AG, Basel.

  20. Propagation of soil moisture memory to runoff and evapotranspiration

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2012-10-01

    As a key variable of the land-climate system soil moisture is a main driver of runoff and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence) characteristics. Also for runoff many studies report distinct low frequency variations that represent a memory. Using data from over 100 near-natural catchments located across Europe we investigate in this study the connection between soil moisture memory and the respective memory of runoff and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalized by precipitation) and evapotranspiration (normalized by radiation) on soil moisture are fitted using runoff observations. The model therefore allows to compute memory of soil moisture, runoff and evapotranspiration on catchment scale. We find considerable memory in soil moisture and runoff in many parts of the continent, and evapotranspiration also displays some memory on a monthly time scale in some catchments. We show that the memory of runoff and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of runoff and evapotranspiration to soil moisture. Furthermore we find that the coupling strengths of runoff and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.

  1. Persistent Memory Effects and the Mid- and Post-Brick Dynamic Behaviour of Three-Way Automotive Catalysts Effets mémoires persistants et comportement dynamique des briques médiane et postérieure de catalyseurs automobiles à trois voies

    Directory of Open Access Journals (Sweden)

    Peyton Jones J.C.

    2011-09-01

    Full Text Available This paper presents the results of an experimental study into the dynamic behaviour of a three-way automotive catalyst and its associated exhaust gas oxygen sensors. Motivated by issues of feedback sensor location, the study seeks to overlay the results of repeat experiments, with sensors and fast-response gas analyzers positioned at different locations, in order to obtain a detailed picture of system dynamics at different points within the catalyst. Initial results demonstrated that the dynamic response of the catalyst can be significantly affected by a persistent memory effect in addition to reversible deactivation dynamics and the familiar oxygen storage/release dynamics of the system. In particular, the effects of prior rich or stoichiometric operation are shown to persist even after extended periods of lean operation. This memory effect is important, not only because of its potential impact on conversion efficiency, but also because of its impact on the repeatability of experiments carried out under what would appear to be near-identical operating conditions. By pre-conditioning under rich conditions highly repeatable experiments were achieved. The results were combined to give a detailed picture of catalyst dynamics at pre-, mid- and post-catalyst locations, and provide insight into catalyst and (non-ideal exhaust gas oxygen sensor behavior. Cet article présente les résultats d’une étude expérimentale en matière de comportement dynamique d’un catalyseur automobile à trois voies et de ses capteurs d’oxygène de gaz d’échappement associés. Motivée par les problèmes de localisation des capteurs de retour d’information, l’étude cherche à corréler les résultats d’expériences répétées, capteurs et analyseurs de gaz à réponse rapide étant disposés en des emplacements différents afin d’obtenir une image détaillée des dynamiques de système en différents points à l’intérieur du catalyseur. Les r

  2. Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations

    Science.gov (United States)

    Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki

    2016-01-01

    Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.

  3. GSK-3β and Memory Formation

    Directory of Open Access Journals (Sweden)

    Akihiko eTakashima

    2012-04-01

    Full Text Available In Alzheimer’s disease (AD, tau hyperphosphorylation and neurofibrillary tangle (NFT formation are strongly associated with dementia. Memory impairment is a characteristic, early symptom of AD. Glycogen synthase kinase 3 β (GSK-3β, which is activated in response to amyloid β (Aβ formation, and the normal process of aging, hyperphosphorylates tau present in the NFTs. Furthermore, activation of GSK-3β inhibits synaptic long-term potentiation (LTP through tau. It is therefore likely, that activation of GSK-3β is responsible for the memory problems seen in both advanced age, and AD. Indeed, inhibition of GSK-3 by lithium halts the progression of symptoms in patients with mild cognitive impairment (MCI. However, long-term treatment of lithium increases the risk of dementia in old age, in bipolar patients. To understand the role of GSK-3β in brain function, we analyzed memory formation in GSK-3β heterozygote, knockout mice. Results indicate that these mice show impaired memory reconsolidation. It would seem that activation of GSK-3β is required for memory maintenance, with a higher requirement as animals age, and the volume of memory increases. This in turn causes exaggerated activation of GSK-3β, leading to memory problems, and the formation of NFTs.

  4. Persistent hyperdopaminergia decreases the peak frequency of hippocampal theta oscillations during quiet waking and REM sleep.

    Directory of Open Access Journals (Sweden)

    Kafui Dzirasa

    Full Text Available Long-term changes in dopaminergic signaling are thought to underlie the pathophysiology of a number of psychiatric disorders. Several conditions are associated with cognitive deficits such as disturbances in attention processes and learning and memory, suggesting that persistent changes in dopaminergic signaling may alter neural mechanisms underlying these processes. Dopamine transporter knockout (DAT-KO mice exhibit a persistent five-fold increase in extracellular dopamine levels. Here, we demonstrate that DAT-KO mice display lower hippocampal theta oscillation frequencies during baseline periods of waking and rapid-eye movement sleep. These altered theta oscillations are not reversed via treatment with the antidopaminergic agent haloperidol. Thus, we propose that persistent hyperdopaminergia, together with secondary alterations in other neuromodulatory systems, results in lower frequency activity in neural systems responsible for various cognitive processes.

  5. Stress enhances reconsolidation of declarative memory.

    Science.gov (United States)

    Bos, Marieke G N; Schuijer, Jantien; Lodestijn, Fleur; Beckers, Tom; Kindt, Merel

    2014-08-01

    Retrieval of negative emotional memories is often accompanied by the experience of stress. Upon retrieval, a memory trace can temporarily return into a labile state, where it is vulnerable to change. An unresolved question is whether post-retrieval stress may affect the strength of declarative memory in humans by modulating the reconsolidation process. Here, we tested in two experiments whether post-reactivation stress may affect the strength of declarative memory in humans. In both experiments, participants were instructed to learn neutral, positive and negative words. Approximately 24h later, participants received a reminder of the word list followed by exposure to the social evaluative cold pressor task (reactivation/stress group, nexp1=20; nexp2=18) or control task (reactivation/no-stress group, nexp1=23; nexp2=18). An additional control group was solely exposed to the stress task, without memory reactivation (no-reactivation/stress group, nexp1=23; nexp2=21). The next day, memory performance was tested using a free recall and a recognition task. In the first experiment we showed that participants in the reactivation/stress group recalled more words than participants in the reactivation/no-stress and no-reactivation/stress group, irrespective of valence of the word stimuli. Furthermore, participants in the reactivation/stress group made more false recognition errors. In the second experiment we replicated our observations on the free recall task for a new set of word stimuli, but we did not find any differences in false recognition. The current findings indicate that post-reactivation stress can improve declarative memory performance by modulating the process of reconsolidation. This finding contributes to our understanding why some memories are more persistent than others. Copyright © 2014. Published by Elsevier Ltd.

  6. The seven sins of memory. Insights from psychology and cognitive neuroscience.

    Science.gov (United States)

    Schacter, D L

    1999-03-01

    Though often reliable, human memory is also fallible. This article examines how and why memory can get us into trouble. It is suggested that memory's misdeeds can be classified into 7 basic "sins": transience, absentmindedness, blocking, misattribution, suggestibility, bias, and persistence. The first three sins involve different types of forgetting, the next three refer to different types of distortions, and the final sin concerns intrusive recollections that are difficult to forget. Evidence is reviewed concerning each of the 7 sins from relevant sectors of psychology (cognitive, social, and clinical) and from cognitive neuroscience studies that include patients with focal brain damage or make use of recently developed neuroimaging techniques. Although the 7 sins may appear to reflect flaws in system design, it is argued instead that they are by-products of otherwise adaptive features of memory.

  7. Research by design: honouring the Stolen Generation a theoretical anti-memorial

    OpenAIRE

    Sue-Anne Ware

    1999-01-01

    This paper discusses theoretical design frameworks and research methods for contemporary memorial design. It is a case study for research by design, an expanding area of design discourse, which offers an alternative to quantitative research practices and 'scientific' methodologies. It expands upon a design research studio, which explored formal design outcomes for an anti-memorial to The Stolen Generation. This essay focuses on ideas about progressive memorial design which prompts multiple re...

  8. Clinical progress of human papillomavirus genotypes and their persistent infection in subjects with atypical squamous cells of undetermined significance cytology: Statistical and latent Dirichlet allocation analysis

    Science.gov (United States)

    Kim, Yee Suk; Lee, Sungin; Zong, Nansu; Kahng, Jimin

    2017-01-01

    The present study aimed to investigate differences in prognosis based on human papillomavirus (HPV) infection, persistent infection and genotype variations for patients exhibiting atypical squamous cells of undetermined significance (ASCUS) in their initial Papanicolaou (PAP) test results. A latent Dirichlet allocation (LDA)-based tool was developed that may offer a facilitated means of communication to be employed during patient-doctor consultations. The present study assessed 491 patients (139 HPV-positive and 352 HPV-negative cases) with a PAP test result of ASCUS with a follow-up period ≥2 years. Patients underwent PAP and HPV DNA chip tests between January 2006 and January 2009. The HPV-positive subjects were followed up with at least 2 instances of PAP and HPV DNA chip tests. The most common genotypes observed were HPV-16 (25.9%, 36/139), HPV-52 (14.4%, 20/139), HPV-58 (13.7%, 19/139), HPV-56 (11.5%, 16/139), HPV-51 (9.4%, 13/139) and HPV-18 (8.6%, 12/139). A total of 33.3% (12/36) patients positive for HPV-16 had cervical intraepithelial neoplasia (CIN)2 or a worse result, which was significantly higher than the prevalence of CIN2 of 1.8% (8/455) in patients negative for HPV-16 (Paged ≥51 years (38.7%) than in those aged ≤50 years (20.4%; P=0.036). Progression from persistent infection to CIN2 or worse (19/34, 55.9%) was higher than clearance (0/105, 0.0%; Page and long infection period with a clinical progression of CIN2 or worse. Therefore, LDA results may be presented as explanatory evidence during time-constrained patient-doctor consultations in order to deliver information regarding the patient's status. PMID:28587376

  9. Memory Effects and Coverage Dependence of Surface Diffusion in a Model Adsorption System

    DEFF Research Database (Denmark)

    Vattulainen, Ilpo Tapio; Ying, S. C.; Ala-Nissila, T.

    1999-01-01

    in tracer and collective diffusion. We show that memory effects can be very pronounced deep inside the ordered phases and in regions close to first and second order phase transition boundaries. Particular attention is paid to the details of the time dependence of memory effects. The memory effect in tracer......We study the coverage dependence of surface diffusion coefficients for a strongly interacting adsorption system O/W(110) via Monte Carlo simulations of a lattice-gas model. In particular, we consider the nature and emergence of memory effects as contained in the corresponding correlation factors...... diffusion is found to decay following a power law after an initial transient period. This behavior persists until the hydrodynamic regime is reached, after which the memory effect decays exponentially. The time required to reach the hydrodynamical regime and the related exponential decay is strongly...

  10. Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory.

    Science.gov (United States)

    Frith, Emily; Sng, Eveleen; Loprinzi, Paul D

    2017-11-01

    The broader purpose of this study was to examine the temporal effects of high-intensity exercise on learning, short-term and long-term retrospective memory and prospective memory. Among a sample of 88 young adult participants, 22 were randomized into one of four different groups: exercise before learning, control group, exercise during learning, and exercise after learning. The retrospective assessments (learning, short-term and long-term memory) were assessed using the Rey Auditory Verbal Learning Test. Long-term memory including a 20-min and 24-hr follow-up assessment. Prospective memory was assessed using a time-based procedure by having participants contact (via phone) the researchers at a follow-up time period. The exercise stimulus included a 15-min bout of progressive maximal exertion treadmill exercise. High-intensity exercise prior to memory encoding (vs. exercise during memory encoding or consolidation) was effective in enhancing long-term memory (for both 20-min and 24-h follow-up assessments). We did not observe a differential temporal effect of high-intensity exercise on short-term memory (immediate post-memory encoding), learning or prospective memory. The timing of high-intensity exercise may play an important role in facilitating long-term memory. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Inhibition of PKMzeta in nucleus accumbens core abolishes long-term drug reward memory.

    Science.gov (United States)

    Li, Yan-qin; Xue, Yan-xue; He, Ying-ying; Li, Fang-qiong; Xue, Li-fen; Xu, Chun-mei; Sacktor, Todd Charlton; Shaham, Yavin; Lu, Lin

    2011-04-06

    During abstinence, memories of drug-associated cues persist for many months, and exposure to these cues often provokes relapse to drug use. The mechanisms underlying the maintenance of these memories are unknown. A constitutively active atypical protein kinase C (PKC) isozyme, protein kinase M ζ (PKMζ), is required for maintenance of spatial memory, conditioned taste aversion, and other memory forms. We used conditioned place preference (CPP) and conditioned place aversion (CPA) procedures to study the role of nucleus accumbens PKMζ in the maintenance of drug reward and aversion memories in rats. Morphine CPP training (10 mg/kg, 4 pairings) increased PKMζ levels in accumbens core but not shell. Injections of the PKMζ inhibitor ζ inhibitory peptide (ZIP) into accumbens core but not shell after CPP training blocked morphine CPP expression for up to 14 d after injections. This effect was mimicked by the PKC inhibitor chelerythrine, which inhibits PKMζ, but not by the conventional and novel PKC inhibitor staurosporine, which does not effectively inhibit PKMζ. ZIP injections into accumbens core after training also blocked the expression of cocaine (10 mg/kg) and high-fat food CPP but had no effect on CPA induced by naloxone-precipitated morphine withdrawal. Accumbens core injections of Tat-GluR2(3Y), which inhibits GluR2-dependent AMPA receptor endocytosis, prevented the impairment in morphine CPP induced by local ZIP injections, indicating that the persistent effect of PKMζ is on GluR2-containing AMPA receptors. Results indicate that PKMζ activity in accumbens core is a critical cellular substrate for the maintenance of memories of relapse-provoking reward cues during prolonged abstinence periods.

  12. Persistent visual impairment in multiple sclerosis: prevalence, mechanisms and resulting disability.

    Science.gov (United States)

    Jasse, Laurence; Vukusic, Sandra; Durand-Dubief, Françoise; Vartin, Cristina; Piras, Carolina; Bernard, Martine; Pélisson, Denis; Confavreux, Christian; Vighetto, Alain; Tilikete, Caroline

    2013-10-01

    The objective of this article is to evaluate in multiple sclerosis (MS) patients the prevalence of persistent complaints of visual disturbances and the mechanisms and resulting functional disability of persistent visual complaints (PVCs). Firstly, the prevalence of PVCs was calculated in 303 MS patients. MS-related data of patients with or without PVCs were compared. Secondly, 70 patients with PVCs performed an extensive neuro-ophthalmologic assessment and a vision-related quality of life questionnaire, the National Eye Institute Visual Functionary Questionnaire (NEI-VFQ-25). PVCs were reported in 105 MS patients (34.6%). Patients with PVCs had more frequently primary progressive MS (30.5% vs 13.6%) and more neuro-ophthalmologic relapses (1.97 vs 1.36) than patients without PVCs. In the mechanisms/disability study, an afferent visual and an ocular-motor pathways dysfunction were respectively diagnosed in 41 and 59 patients, mostly related to bilateral optic neuropathy and bilateral internuclear ophthalmoplegia. The NEI-VFQ 25 score was poor and significantly correlated with the number of impaired neuro-ophthalmologic tests. Our study emphasizes the high prevalence of PVC in MS patients. Regarding the nature of neuro-ophthalmologic deficit, our results suggest that persistent optic neuropathy, as part of the progressive evolution of the disease, is not rare. We also demonstrate that isolated ocular motor dysfunctions induce visual disability in daily life.

  13. Type II membrane protein CD69 regulates the formation of resting T-helper memory.

    Science.gov (United States)

    Shinoda, Kenta; Tokoyoda, Koji; Hanazawa, Asami; Hayashizaki, Koji; Zehentmeier, Sandra; Hosokawa, Hiroyuki; Iwamura, Chiaki; Koseki, Haruhiko; Tumes, Damon J; Radbruch, Andreas; Nakayama, Toshinori

    2012-05-08

    Memory T-helper (Th) lymphocytes are crucial for the maintenance of acquired immunity to eliminate infectious pathogens. We have previously demonstrated that most memory Th lymphocytes reside and rest on stromal niches of the bone marrow (BM). Little is known, however, regarding the molecular basis for the generation and maintenance of BM memory Th lymphocytes. Here we show that CD69-deficient effector CD4 T lymphocytes fail to relocate into and persist in the BM and therefore to differentiate into memory cells. Consequently, CD69-deficient CD4 T cells fail to facilitate the production of high-affinity antibodies and the generation of BM long-lived plasma cells in the late phase of immune responses. Thus, CD69 is critical for the generation and maintenance of professional memory Th lymphocytes, which can efficiently help humoral immunity in the late phase. The deficit of immunological memory in CD69-deficient mice also highlights the essential role of BM for the establishment of Th memory.

  14. The Negative Sign and Exponential Expressions: Unveiling Students' Persistent Errors and Misconceptions

    Science.gov (United States)

    Cangelosi, Richard; Madrid, Silvia; Cooper, Sandra; Olson, Jo; Hartter, Beverly

    2013-01-01

    The purpose of this study was to determine whether or not certain errors made when simplifying exponential expressions persist as students progress through their mathematical studies. College students enrolled in college algebra, pre-calculus, and first- and second-semester calculus mathematics courses were asked to simplify exponential…

  15. It’s a Kind of Magic: Situating Nostalgia for Technological Progress and the Occult in Guy Ritchie’s Sherlock Holmes

    Directory of Open Access Journals (Sweden)

    Markus Reisenleitner

    2016-02-01

    Full Text Available Guy Ritchie’s recent blockbuster success with a revisionist Sherlock Holmes is the latest in a series of popular films and fiction to have reinvigorated a nostalgic imaginary of London’s past that places the former capital of the Empire at the crossroads of a persistent Manichean battle between empiricist-driven technological progress and traditions of occult knowledge supposedly submerged in the 17th century yet continuing to trickle into the heart of the Empire from its colonies. By tracing some of these historical layers sedimented into 21st-century popular imaginaries of London’s past, this paper explores the mechanisms of popular culture’s production of nostalgia that mediate public memories and histories and suture them to the imaginary urban geographies that constitute the space of the global city through its metonymic sites and its materialized histories.

  16. Short-term memory coding in children with intellectual disabilities.

    Science.gov (United States)

    Henry, Lucy

    2008-05-01

    To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and word length effects). Neither the intellectual disabilities nor MA groups showed evidence for memory coding strategies. However, children in these groups with MAs above 6 years showed significant visual similarity and word length effects, broadly consistent with an intermediate stage of dual visual and verbal coding. These results suggest that developmental progressions in memory coding strategies are independent of intellectual disabilities status and consistent with MA.

  17. Phenomenological characterization of memory complaints in preclinical and prodromal Alzheimer's disease.

    Science.gov (United States)

    Buckley, Rachel F; Ellis, Kathryn A; Ames, David; Rowe, Christopher C; Lautenschlager, Nicola T; Maruff, Paul; Villemagne, Victor L; Macaulay, S Lance; Szoeke, Cassandra; Martins, Ralph N; Masters, Colin L; Savage, Greg; Rainey-Smith, Stephanie R; Rembach, Alan; Saling, Michael M

    2015-07-01

    To explore the subjective experience of memory change in groups at risk of dementia (those with mild cognitive impairment MCI or high β-amyloid (Aβ+) burden) to determine the existence of potential phenomenological typologies. We recruited 123 healthy controls (HC) and individuals with MCI from the Australian Imaging, Biomarker and Lifestyle (AIBL) study. Sixty-7 (HC = 47,MCI = 20) had Aβ scans available for analysis. Semistructured interviews were administered, transcribed, and meaningful phrases extracted from transcripts. Twelve themes were defined and compared across diagnostic status and Aβ status. MCI endorsed more complaints of burdensome coping strategies, increasing frequency, sense of predomination, poor contextualization, progression, dependency, impact on affect, and dismissive attitudes. HCAβ+ acknowledged a progressive memory decline compared to HCAβ-, while MCIAβ+ expressed more burdensome coping strategies, dismissive attitudes, and dependency comparative to either healthy group. Depression was more likely to be related to complaint themes in HCs, while complaint themes were associated with poorer list-learning performance in individuals with MCI. Complaint themes in those with MCI align with the MCI symptom complex, particularly when accompanied with high Aβ load. Healthy Aβ+ individuals acknowledged progressive memory change, suggesting they are aware of memory changes not yet detectable via neuropsychological measures. Depressive symptomatology associated with HC complaints, suggesting certain themes are affect-driven, while complaints in MCI are associated with organically driven functional impairment. Qualitative analysis of SMCs can inform the earliest clinical manifestations of Alzheimer's disease. Our findings can inform diagnostic approaches to the clinical evaluation of memory complaints in the nondemented elderly. (c) 2015 APA, all rights reserved).

  18. Immunity to hepatitis A and B persists for at least 15 years after immunisation of adolescents with a combined hepatitis A and B vaccine.

    Science.gov (United States)

    Beran, Jiri; Van Der Meeren, Olivier; Leyssen, Maarten; D'silva, Priya

    2016-05-23

    The exact duration of antibody persistence to hepatitis A and B and the need for booster dosing following primary immunisation remains undefined. A long-term study was designed to follow antibody persistence and immune memory on an annual basis for up to 15 years following vaccination during adolescence. Subjects received a combined hepatitis A and B vaccine (Twinrix™, GSK Vaccines, Belgium) at 12-15 years of age, either as 2-dose of the adult formulation or 3-dose of the paediatric formulation. Blood samples were taken every year thereafter to assess antibody persistence and immune memory to hepatitis A and B. Antibodies to hepatitis A virus (anti-HAV) and hepatitis B surface antigen (anti-HBs) were measured at Years 11-15. At Year 15 immune memory was further assessed by measuring the anamnestic response to a challenge dose of the monovalent vaccine, which was administered to subjects whose antibody concentrations fell below the pre-defined cut-offs (anti-HAV: hepatitis B vaccine challenge dose administration to 19 subjects, all except one in the 3-dose group, mounted a robust anamnestic response. The safety and reactogenicity profile of the hepatitis B challenge was consistent with previous experience. Immunity to hepatitis A and B persists 15 years after adolescent vaccination with a combined hepatitis A and B vaccine. Highly effective anamnestic response indicates that a booster dose should not be required for 15 years after primary vaccination. http://www.clinicaltrials.govNCT00875485. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Emotional content enhances true but not false memory for categorized stimuli.

    Science.gov (United States)

    Choi, Hae-Yoon; Kensinger, Elizabeth A; Rajaram, Suparna

    2013-04-01

    Past research has shown that emotion enhances true memory, but that emotion can either increase or decrease false memory. Two theoretical possibilities-the distinctiveness of emotional stimuli and the conceptual relatedness of emotional content-have been implicated as being responsible for influencing both true and false memory for emotional content. In the present study, we sought to identify the mechanisms that underlie these mixed findings by equating the thematic relatedness of the study materials across each type of valence used (negative, positive, or neutral). In three experiments, categorically bound stimuli (e.g., funeral, pets, and office items) were used for this purpose. When the encoding task required the processing of thematic relatedness, a significant true-memory enhancement for emotional content emerged in recognition memory, but no emotional boost to false memory (exp. 1). This pattern persisted for true memory with a longer retention interval between study and test (24 h), and false recognition was reduced for emotional items (exp. 2). Finally, better recognition memory for emotional items once again emerged when the encoding task (arousal ratings) required the processing of the emotional aspect of the study items, with no emotional boost to false recognition (EXP. 3). Together, these findings suggest that when emotional and neutral stimuli are equivalently high in thematic relatedness, emotion continues to improve true memory, but it does not override other types of grouping to increase false memory.

  20. Memory performance on the story recall test and prediction of cognitive dysfunction progression in mild cognitive impairment and Alzheimer's dementia.

    Science.gov (United States)

    Park, Jong-Hwan; Park, Hyuntae; Sohn, Sang Wuk; Kim, Sungjae; Park, Kyung Won

    2017-10-01

    To determine the factors that influence diagnosis and differentiation of patients with mild cognitive impairment (MCI) and Alzheimer's dementia (AD) by comparing memory test results at baseline with those at 1-2-year follow up. We consecutively recruited 23 healthy participants, 44 MCI patients and 27 patients with very mild AD according to the National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer's Disease and Related Disorder Association criteria for probable Alzheimer's disease and Petersen's clinical diagnostic criteria. We carried out detailed neuropsychological tests, including the Story Recall Test (SRT) and the Seoul Verbal Learning Test, for all participants. We defined study participants as the "progression group" as follows: (i) participants who showed conversion to dementia from the MCI state; and (ii) those with dementia who showed more than a three-point decrement in their Mini-Mental State Examination scores with accompanying functional decline from baseline status, which were ascertained by physician's clinical judgment. The SRT delayed recall scores were significantly lower in the patients with mild AD than in those with MCI and after progression. Lower (relative risk 1.1, 95% confidence interval 0.1-1.6) and higher SRT delayed recall scores (relative risk 2.1, confidence interval 1.0-2.8), and two-test combined immediate and delayed recall scores (relative risk 2.0, confidence interval 0.9-2.3; and relative risk 2.8, confidence interval 1.1-4.2, respectively) were independent predictors of progression in a stepwise multiple adjusted Cox proportional hazards model, with age, sex, depression and educational level forced into the model. The present study suggests that the SRT delayed recall score independently predicts progression to dementia in patients with MCI. Geriatr Gerontol Int 2017; 17: 1603-1609. © 2016 Japan Geriatrics Society.

  1. Segregation and persistence of form in the lateral occipital complex.

    Science.gov (United States)

    Ferber, Susanne; Humphrey, G Keith; Vilis, Tutis

    2005-01-01

    While the lateral occipital complex (LOC) has been shown to be implicated in object recognition, it is unclear whether this brain area is responsive to low-level stimulus-driven features or high-level representational processes. We used scrambled shape-from-motion displays to disambiguate the presence of contours from figure-ground segregation and to measure the strength of the binding process for shapes without contours. We found persisting brain activation in the LOC for scrambled displays after the motion stopped indicating that this brain area subserves and maintains figure-ground segregation processes, a low-level function in the object processing hierarchy. In our second experiment, we found that the figure-ground segregation process has some form of spatial constancy indicating top-down influences. The persisting activation after the motion stops suggests an intermediate role in object recognition processes for this brain area and might provide further evidence for the idea that the lateral occipital complex subserves mnemonic functions mediating between iconic and short-term memory.

  2. A biased competition account of attention and memory in Alzheimer's disease

    OpenAIRE

    Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian

    2013-01-01

    The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distribute...

  3. Pharmacological effects of cannabinoids on learning and memory in Lymnaea.

    Science.gov (United States)

    Sunada, Hiroshi; Watanabe, Takayuki; Hatakeyama, Dai; Lee, Sangmin; Forest, Jeremy; Sakakibara, Manabu; Ito, Etsuro; Lukowiak, Ken

    2017-09-01

    Cannabinoids are hypothesized to play an important role in modulating learning and memory formation. Here, we identified mRNAs expressed in Lymnaea stagnalis central nervous system that encode two G-protein-coupled receptors ( Lymnaea CBr-like 1 and 2) that structurally resemble mammalian cannabinoid receptors (CBrs). We found that injection of a mammalian CBr agonist WIN 55,212-2 (WIN 55) into the snail before operant conditioning obstructed learning and memory formation. This effect of WIN 55 injection persisted for at least 4 days following its injection. A similar obstruction of learning and memory occurred when a severe traumatic stimulus was delivered to L. stagnalis In contrast, injection of a mammalian CBr antagonist AM 251 enhanced long-term memory formation in snails and reduced the duration of the effects of the severe traumatic stressor on learning and memory. Neither WIN 55 nor AM 251 altered normal homeostatic aerial respiratory behaviour elicited in hypoxic conditions. Our results suggest that putative cannabinoid receptors mediate stressful stimuli that alter learning and memory formation in Lymnaea This is also the first demonstration that putative CBrs are present in Lymnaea and play a key role in learning and memory formation. © 2017. Published by The Company of Biologists Ltd.

  4. Properties and mechanisms of olfactory learning and memory

    Directory of Open Access Journals (Sweden)

    Michelle T Tong

    2014-07-01

    Full Text Available Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system -- particularly olfactory bulb -- comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal and cumulative (adult appetitive odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  5. Non-volatile main memory management methods based on a file system.

    Science.gov (United States)

    Oikawa, Shuichi

    2014-01-01

    There are upcoming non-volatile (NV) memory technologies that provide byte addressability and high performance. PCM, MRAM, and STT-RAM are such examples. Such NV memory can be used as storage because of its data persistency without power supply while it can be used as main memory because of its high performance that matches up with DRAM. There are a number of researches that investigated its uses for main memory and storage. They were, however, conducted independently. This paper presents the methods that enables the integration of the main memory and file system management for NV memory. Such integration makes NV memory simultaneously utilized as both main memory and storage. The presented methods use a file system as their basis for the NV memory management. We implemented the proposed methods in the Linux kernel, and performed the evaluation on the QEMU system emulator. The evaluation results show that 1) the proposed methods can perform comparably to the existing DRAM memory allocator and significantly better than the page swapping, 2) their performance is affected by the internal data structures of a file system, and 3) the data structures appropriate for traditional hard disk drives do not always work effectively for byte addressable NV memory. We also performed the evaluation of the effects caused by the longer access latency of NV memory by cycle-accurate full-system simulation. The results show that the effect on page allocation cost is limited if the increase of latency is moderate.

  6. Strengthening a consolidated memory: the key role of the reconsolidation process.

    Science.gov (United States)

    Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E

    2014-01-01

    The reconsolidation hypothesis posits that the presentation of a specific cue, previously associated with a life event, makes the stored memory pass from a stable to a reactivated state. In this state, memory is again labile and susceptible to different agents, which may either damage or improve the original memory. Such susceptibility decreases over time and leads to a re-stabilization phase known as reconsolidation process. This process has been assigned two biological roles: memory updating, which suggests that destabilization of the original memory allows the integration of new information into the background of the original memory; and memory strengthening, which postulates that the labilization-reconsolidation process strengthens the original memory. The aim of this review is to analyze the strengthening as an improvement obtained only by triggering such process without any other treatment. In our lab, we have demonstrated that when triggering the labilization-reconsolidation process at least once the original memory becomes strengthened and increases its persistence. We have also shown that repeated labilization-reconsolidation processes strengthened the original memory by enlarging its precision, and said reinforced memories were more resistant to interference. Finally, we have shown that the strengthening function is not operative in older memories. We present and discuss both our findings and those of others, trying to reveal the central role of reconsolidation in the modification of stored information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Comparisons of memory for nonverbal auditory and visual sequential stimuli.

    Science.gov (United States)

    McFarland, D J; Cacace, A T

    1995-01-01

    Properties of auditory and visual sensory memory were compared by examining subjects' recognition performance of randomly generated binary auditory sequential frequency patterns and binary visual sequential color patterns within a forced-choice paradigm. Experiment 1 demonstrated serial-position effects in auditory and visual modalities consisting of both primacy and recency effects. Experiment 2 found that retention of auditory and visual information was remarkably similar when assessed across a 10s interval. Experiments 3 and 4, taken together, showed that the recency effect in sensory memory is affected more by the type of response required (recognition vs. reproduction) than by the sensory modality employed. These studies suggest that auditory and visual sensory memory stores for nonverbal stimuli share similar properties with respect to serial-position effects and persistence over time.

  8. Comparing Normal and Multiple Sclerotic Patients Short Term Memory

    Directory of Open Access Journals (Sweden)

    Mahboubeh Parsaeian

    2006-07-01

    Full Text Available Objective: Multiple sclerosis (MS is a disease of the central nervous system. The main pattern of neuropsychological impairment in M.S. patients characterized with deficits of attention and memory. Memory problem are known to occur in approximately 50% to 60% of people with M.S. The purpose of the present study is to asses memory function in M.S. patients. Materials & Methods: 40 M.S. patients (30 patients suffering from as relapsing – remitting and 10 patients are chronic progressive M.S. assessed using Luria – Nebraska memory scale. Results: All of multiple sclerosis patients (without sever depresive state evaluated by BDI exhibited significant impairments in all of memory veriable (verbal , non - verbal , delayed and whole memory performance as compared with control groups (normal subjects. Difference of memory performance between the patients with two type of M.S. were not significant. Furthermore no significant relation was found between memory loss and MRI lesions.  Conclusion: This study is guidedas such one can lead to a better understanding of memory deficits in M.S. patients. In addition, specific rehabilitation strategies can be planed on the patterns of memory impairment in M.S. patients.

  9. Generation of memory B cells and their reactivation.

    Science.gov (United States)

    Inoue, Takeshi; Moran, Imogen; Shinnakasu, Ryo; Phan, Tri Giang; Kurosaki, Tomohiro

    2018-05-01

    The successful establishment of humoral memory response depends on at least two layers of defense. Pre-existing protective antibodies secreted by long-lived plasma cells act as a first line of defense against reinfection ("constitutive humoral memory"). Previously, a second line of defense in which pathogen-experienced memory B cells are rapidly reactivated to produce antibodies ("reactive humoral memory"), was considered as simply a back-up system for the first line (particularly for re-infection with homologous viruses). However, in the case of re-infection with similar but different strains of viruses, or in response to viral escape mutants, the reactive humoral memory plays a crucial role. Here, we review recent progress in our understanding of how memory B cells are generated in the pre-GC stage and during the GC reaction, and how these memory B cells are robustly reactivated with the help of memory Tfh cells to generate the secondary antibody response. In addition, we discuss how these advances may be relevant to the quest for a vaccine that can induce broadly reactive antibodies against influenza and HIV. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Advertising and the Seven Sins of Memory

    DEFF Research Database (Denmark)

    Percy, Larry

    2004-01-01

    A positive intention may be formed as a result of exposure to an advertisement, but if a memory malfunction interferes with that intention, the advertising will be ineffective.This paper considers the implications for advertisers of Daniel Schacter’s ‘seven sins of memory’: transcience, absent......-mindedness, blocking, misattribution, suggestibility, bias and persistence. Each of the ‘sins’ is explained in detail and advice provided for advertisers on how to avoid these pitfalls....

  11. Long Memory in the Greek Stock Market

    OpenAIRE

    John T. Barkoulas; Christopher F. Baum; Nickolaos Travlos

    1996-01-01

    We test for stochastic long memory in the Greek stock market, an emerging capital market. The fractional differencing parameter is estimated using the spectral regression method. Contrary to findings for major capital markets, significant and robust evidence of positive long-term persistence is found in the Greek stock market. As compared to benchmark linear models, the estimated fractional models provide improved out-of-sample forecasting accuracy for the Greek stock returns series over long...

  12. Electroconvulsive therapy and memory loss: a personal journey.

    Science.gov (United States)

    Donahue, A B

    2000-06-01

    The cause for the significant gap between research and anecdotal evidence regarding the extent of some memory loss after electroconvulsive therapy (ECT) has never been adequately explained. A patient's development of awareness and self-education about her severe side effects from ECT raises questions regarding many current assumptions about memory loss. ECT-specific studies, which conclude that side effects are short term and narrow in scope, have serious limitations, including the fact that they do not take into account broader scientific knowledge about memory function. Because of the potential for devastating and permanent memory loss with ECT, informed consent needs significant enhancement until advancing research on both improved techniques and on better predictive knowledge regarding memory loss progresses to making a greater impact on clinical applications. Follow-up care and education in coping skills need to be a regular part of ECT practice when patients do experience severe effects.

  13. Late-onset Alzheimer's risk variants in memory decline, incident mild cognitive impairment, and Alzheimer's disease.

    Science.gov (United States)

    Carrasquillo, Minerva M; Crook, Julia E; Pedraza, Otto; Thomas, Colleen S; Pankratz, V Shane; Allen, Mariet; Nguyen, Thuy; Malphrus, Kimberly G; Ma, Li; Bisceglio, Gina D; Roberts, Rosebud O; Lucas, John A; Smith, Glenn E; Ivnik, Robert J; Machulda, Mary M; Graff-Radford, Neill R; Petersen, Ronald C; Younkin, Steven G; Ertekin-Taner, Nilüfer

    2015-01-01

    We tested association of nine late-onset Alzheimer's disease (LOAD) risk variants from genome-wide association studies (GWAS) with memory and progression to mild cognitive impairment (MCI) or LOAD (MCI/LOAD) in older Caucasians, cognitively normal at baseline and longitudinally evaluated at Mayo Clinic Rochester and Jacksonville (n>2000). Each variant was tested both individually and collectively using a weighted risk score. APOE-e4 associated with worse baseline memory and increased decline with highly significant overall effect on memory. CLU-rs11136000-G associated with worse baseline memory and incident MCI/LOAD. MS4A6A-rs610932-C associated with increased incident MCI/LOAD and suggestively with lower baseline memory. ABCA7-rs3764650-C and EPHA1-rs11767557-A associated with increased rates of memory decline in subjects with a final diagnosis of MCI/LOAD. PICALM-rs3851179-G had an unexpected protective effect on incident MCI/LOAD. Only APOE-inclusive risk scores associated with worse memory and incident MCI/LOAD. The collective influence of the nine top LOAD GWAS variants on memory decline and progression to MCI/LOAD appears limited. Discovery of biologically functional variants at these loci may uncover stronger effects on memory and incident disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Consolidation differentially modulates schema effects on memory for items and associations.

    Science.gov (United States)

    van Kesteren, Marlieke T R; Rijpkema, Mark; Ruiter, Dirk J; Fernández, Guillén

    2013-01-01

    Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongruent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always consistently supported in the literature, with differential schema effects reported for different types of memory, different retrieval cues, and the possibility of time-dependent effects related to consolidation processes. To examine these effects more directly, we tested participants on two different types of memory (item recognition and associative memory) for newly encoded visuo-tactile associations at different study-test intervals, thus probing memory retrieval accuracy for schema-congruent and schema-incongruent items and associations at different time points (t = 0, t = 20, and t = 48 hours) after encoding. Results show that the schema effect on visual item recognition only arises after consolidation, while the schema effect on associative memory is already apparent immediately after encoding, persisting, but getting smaller over time. These findings give further insight into different factors influencing the schema effect on memory, and can inform future schema experiments by illustrating the value of considering effects of memory type and consolidation on schema-modulated retrieval.

  15. Consolidation differentially modulates schema effects on memory for items and associations.

    Directory of Open Access Journals (Sweden)

    Marlieke T R van Kesteren

    Full Text Available Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongruent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always consistently supported in the literature, with differential schema effects reported for different types of memory, different retrieval cues, and the possibility of time-dependent effects related to consolidation processes. To examine these effects more directly, we tested participants on two different types of memory (item recognition and associative memory for newly encoded visuo-tactile associations at different study-test intervals, thus probing memory retrieval accuracy for schema-congruent and schema-incongruent items and associations at different time points (t = 0, t = 20, and t = 48 hours after encoding. Results show that the schema effect on visual item recognition only arises after consolidation, while the schema effect on associative memory is already apparent immediately after encoding, persisting, but getting smaller over time. These findings give further insight into different factors influencing the schema effect on memory, and can inform future schema experiments by illustrating the value of considering effects of memory type and consolidation on schema-modulated retrieval.

  16. Neuroscience of learning and memory for addiction medicine: from habit formation to memory reconsolidation.

    Science.gov (United States)

    Torregrossa, Mary M; Taylor, Jane R

    2016-01-01

    Identifying effective pharmacological treatments for addictive disorders has remained an elusive goal. Many different classes of drugs have shown some efficacy in preclinical models, but the number of effective clinical therapeutics has remained stubbornly low. The persistence of drug use and the high frequency of relapse is at least partly attributable to the enduring ability of environmental stimuli associated with drug use to maintain behavioral patterns of drug use and induce craving during abstinence. We propose that stimuli associated with drug use exert such powerful control over behavior through the development of abnormally strong memories, and their ability to initiate subconscious sequences of motor actions (habits) that promote uncontrolled drug use. In this chapter, we will review the evidence suggesting that drugs of abuse strengthen associations with cues in the environment and facilitate habit formation. We will also discuss potential mechanisms for disrupting memories associated with drug use to help improve treatments for addiction. © 2016 Elsevier B.V. All rights reserved.

  17. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  18. Misattribution, false recognition and the sins of memory.

    Science.gov (United States)

    Schacter, D L; Dodson, C S

    2001-09-29

    Memory is sometimes a troublemaker. Schacter has classified memory's transgressions into seven fundamental 'sins': transience, absent-mindedness, blocking, misattribution, suggestibility, bias and persistence. This paper focuses on one memory sin, misattribution, that is implicated in false or illusory recognition of episodes that never occurred. We present data from cognitive, neuropsychological and neuroimaging studies that illuminate aspects of misattribution and false recognition. We first discuss cognitive research examining possible mechanisms of misattribution associated with false recognition. We also consider ways in which false recognition can be reduced or avoided, focusing in particular on the role of distinctive information. We next turn to neuropsychological research concerning patients with amnesia and Alzheimer's disease that reveals conditions under which such patients are less susceptible to false recognition than are healthy controls, thus providing clues about the brain mechanisms that drive false recognition. We then consider neuroimaging studies concerned with the neural correlates of true and false recognition, examining when the two forms of recognition can and cannot be distinguished on the basis of brain activity. Finally, we argue that even though misattribution and other memory sins are annoying and even dangerous, they can also be viewed as by-products of adaptive features of memory.

  19. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain.

    Science.gov (United States)

    Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E

    2016-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  20. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    Directory of Open Access Journals (Sweden)

    Aaron T. Mattfeld

    2016-01-01

    Full Text Available Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI. Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  1. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    Science.gov (United States)

    Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.

    2015-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567

  2. Distinct Circuits for the Formation and Retrieval of an Imprinted Olfactory Memory.

    Science.gov (United States)

    Jin, Xin; Pokala, Navin; Bargmann, Cornelia I

    2016-02-11

    Memories formed early in life are particularly stable and influential, representing privileged experiences that shape enduring behaviors. We show that exposing newly hatched C. elegans to pathogenic bacteria results in persistent aversion to those bacterial odors, whereas adult exposure generates only transient aversive memory. Long-lasting imprinted aversion has a critical period in the first larval stage and is specific to the experienced pathogen. Distinct groups of neurons are required during formation (AIB, RIM) and retrieval (AIY, RIA) of the imprinted memory. RIM synthesizes the neuromodulator tyramine, which is required in the L1 stage for learning. AIY memory retrieval neurons sense tyramine via the SER-2 receptor, which is essential for imprinted, but not for adult-learned, aversion. Odor responses in several neurons, most notably RIA, are altered in imprinted animals. These findings provide insight into neuronal substrates of different forms of memory, and lay a foundation for further understanding of early learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Bystander chronic infection negatively impacts development of CD8+ T cell memory

    Science.gov (United States)

    Stelekati, Erietta; Shin, Haina; Doering, Travis A.; Dolfi, Douglas V.; Ziegler, Carly G.; Beiting, Daniel P.; Dawson, Lucas; Liboon, Jennifer; Wolski, David; Ali, Mohammed-Alkhatim A.; Katsikis, Peter D.; Shen, Hao; Roos, David S.; Haining, W. Nicholas; Lauer, Georg M.; Wherry, E. John

    2014-01-01

    Summary Epidemiological evidence suggests that chronic infections impair immune responses to unrelated pathogens and vaccines. The underlying mechanisms, however, are unclear and distinguishing effects on priming versus development of immunological memory has been challenging. We investigated whether bystander chronic infections impact differentiation of memory CD8+ T cells, the hallmark of protective immunity against intracellular pathogens. Chronic bystander infections impaired development of memory CD8+ T cells in several mouse models and humans. These effects were independent of initial priming and were associated with chronic inflammatory signatures. Chronic inflammation negatively impacted the number of bystander CD8+ T cells and their memory development. Distinct underlying mechanisms of altered survival and differentiation were revealed with the latter regulated by the transcription factors T-bet and Blimp-1. Thus, exposure to prolonged bystander inflammation impairs the effector to memory transition. These data have relevance for immunity and vaccination during persisting infections and chronic inflammation. PMID:24837104

  4. 5-Bromo-2'-deoxyuridine impairs long-term food aversion memory in edible snail.

    Science.gov (United States)

    Efimova, O I; Anokhin, K V

    2012-09-01

    We studied the involvement of DNA synthesis into molecular mechanisms of long-term memory. Nucleoside analogue 5-bromo-2'-deoxyuridine (BrdU) is known to incorporate into synthesizing DNA and prevent subsequent DNA replication from this region. To investigate the effect of BrdU administration on long-term memory, terrestrial gastropods edible snails Helix lucorum were trained in the food aversion paradigm. Single-session training (carrot presentation combined with application of 10% quinine solution, three carrot presentations with 10-min intervals) resulted in the formation of long-term memory that persisted for at least 45° days. BrdU administration (250 mg/kg) 30 min before training impaired long-term memory tested 24 h later. Immunohistochemical study revealed BrdU incorporation in the nuclei of identified neurons of defensive behavior.

  5. Positive modulation of a neutral declarative memory by a threatening social event.

    Science.gov (United States)

    Fernández, Rodrigo S; Bavassi, Luz; Campos, Jorge; Allegri, Ricardo F; Molina, Victor A; Forcato, Cecilia; Pedreira, María E

    2015-12-01

    Memories can be altered by negative or arousing experiences due to the activation of the stress-responsive sympatho-adrenal-medullary axis (SYM). Here, we used a neutral declarative memory that was acquired during multi-trial training to determine the effect of a threatening event on memory without emotional valence. To this end, participants received a new threatening social protocol before learning pairs of meaningless syllables and were tested either 15 min, 2 days or 8 days after acquisition. We first demonstrated that this threatening social situation activates not only the SYM axis (Experiment 1) and the hypothalamus-pituitary-adrenal axis (HPA; Experiment 2), but also, it improves the acquisition or early consolidation of the syllable pairs (Experiment 3). This improvement is not a transient effect; it can be observed after the memory is consolidated. Furthermore, this modulation increases the persistence of memory (Experiment 4). Thus, it is possible to affect memories with specific events that contain unrelated content and a different valence. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons.

    Directory of Open Access Journals (Sweden)

    Kyriaki Sidiropoulou

    Full Text Available Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC, which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS and an intrinsic bursting (IB model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given

  7. Persistent viral infections and immune aging.

    Science.gov (United States)

    Brunner, Stefan; Herndler-Brandstetter, Dietmar; Weinberger, Birgit; Grubeck-Loebenstein, Beatrix

    2011-07-01

    Immunosenescence comprises a set of dynamic changes occurring to both, the innate as well as the adaptive immune system that accompany human aging and result in complex manifestations of still poorly defined deficiencies in the elderly population. One of the most prominent alterations during aging is the continuous involution of the thymus gland which is almost complete by the age of 50. Consequently, the output of naïve T cells is greatly diminished in elderly individuals which puts pressure on homeostatic forces to maintain a steady T cell pool for most of adulthood. In a great proportion of the human population, this fragile balance is challenged by persistent viral infections, especially Cytomegalovirus (CMV), that oblige certain T cell clones to monoclonally expand repeatedly over a lifetime which then occupy space within the T cell pool. Eventually, these inflated memory T cell clones become exhausted and their extensive accumulation accelerates the age-dependent decline of the diversity of the T cell pool. As a consequence, infectious diseases are more frequent and severe in elderly persons and immunological protection following vaccination is reduced. This review therefore aims to shed light on how various types of persistent viral infections, especially CMV, influence the aging of the immune system and highlight potential measures to prevent the age-related decline in immune function. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.

    Science.gov (United States)

    Pulvermüller, Friedemann; Garagnani, Max

    2014-08-01

    Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure

  9. Sensory Preconditioning in Newborn Rabbits: From Common to Distinct Odor Memories

    Science.gov (United States)

    Coureaud, Gerard; Tourat, Audrey; Ferreira, Guillaume

    2013-01-01

    This study evaluated whether olfactory preconditioning is functional in newborn rabbits and based on joined or independent memory of odorants. First, after exposure to odorants A+B, the conditioning of A led to high responsiveness to odorant B. Second, responsiveness to B persisted after amnesia of A. Third, preconditioning was also functional…

  10. Psychosis of Alzheimer disease: prevalence, incidence, persistence, risk factors, and mortality.

    Science.gov (United States)

    Vilalta-Franch, Joan; López-Pousa, Secundino; Calvó-Perxas, Laia; Garre-Olmo, Josep

    2013-11-01

    To establish the prevalence, incidence, persistence, risk factors, and mortality risk increase of psychosis of Alzheimer disease (PoAD) in a clinical sample. Cross-sectional, observational study of 491 patients with probable AD who, at baseline visit, were evaluated with the Cambridge Examination for Mental Disorders of the Elderly, the Neuropsychiatric Inventory-10, the Rapid Disability Rating Scale-2, and the Zarit Burden Interview. All participants were reevaluated at 6, 12, 18, and 24 months. PoAD diagnoses were made using specific criteria. PoAD prevalence was 7.3%, and the cumulative incidence at 6, 12, 18, and 24 months was 5.8%, 10.6%, 13.5%, and 15.1%, respectively. After 1 year, psychotic symptoms persisted in 68.7% of the patients with initial PoAD. At baseline, patients with PoAD scored lower in the Cambridge Cognitive Examination and Mini-Mental State Examination and higher in the Rapid Disability Rating Scale-2 and Zarit Burden Interview tests. Both low scores in the Cambridge Cognitive Examination subscale of learning memory (hazard ratio [HR] = 0.874; 95% CI: 0.788-0.969; Wald χ2 = 6.515; df = 1) and perception (HR = 0.743; 95% CI: 0.610-0.904; Wald χ2 = 8.778; df = 1), and high scores in expressive language (HR = 1.179; 95% CI: 1.024-1.358; Wald χ2 = 5.261; df = 1) and calculation skills (HR = 1.763; 95% CI: 1.067-2.913; Wald χ2 = 4.905; df = 1) were found to be associated with PoAD. PoAD leads to a faster functional impairment, and it increases mortality risk (HR = 2.191; 95% CI: 1.136-4.228; Wald χ2 = 5.471; df = 1) after controlling for age, gender, cognitive and functional disability, general health status, and antipsychotic treatment. PoAD seems to define a phenotype of AD of greater severity, with worsened functional progression and increased mortality risk. Copyright © 2013 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Cosmic radiation exposure and persistent cognitive dysfunction

    Science.gov (United States)

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  12. Cognitive control of familiarity: directed forgetting reduces proactive interference in working memory.

    Science.gov (United States)

    Festini, Sara B; Reuter-Lorenz, Patricia A

    2014-03-01

    Proactive interference (PI) occurs when previously learned information interferes with new learning. In a working memory task, PI induces longer response times and more errors to recent negative probes than to new probes, presumably because the recent probe's familiarity invites a "yes" response. Warnings, longer intertrial intervals, and the increased contextual salience of the probes can reduce but not eliminate PI, suggesting that cognitive control over PI is limited. Here we tested whether control exerted in the form of intentional forgetting performed during working memory can reduce the magnitude of PI. In two experiments, participants performed a working memory task with directed-forgetting instructions and the occasional presentation of recent probes. Surprise long-term memory testing indicated better memory for to-be-remembered than for to-be-forgotten items, documenting the classic directed-forgetting effect. Critically, in working memory, PI was virtually eliminated for recent probes from prior to-be-forgotten lists, as compared to recent probes from prior to-be-remembered lists. Thus cognitive control, when executed via directed forgetting, can reduce the adverse and otherwise persistent interference from familiarity, an effect that we attribute to attenuated memory representations of the to-be-forgotten items.

  13. Interaction between basal ganglia and limbic circuits in learning and memory processes.

    Science.gov (United States)

    Calabresi, Paolo; Picconi, Barbara; Tozzi, Alessandro; Ghiglieri, Veronica

    2016-01-01

    Hippocampus and striatum play distinctive roles in memory processes since declarative and non-declarative memory systems may act independently. However, hippocampus and striatum can also be engaged to function in parallel as part of a dynamic system to integrate previous experience and adjust behavioral responses. In these structures the formation, storage, and retrieval of memory require a synaptic mechanism that is able to integrate multiple signals and to translate them into persistent molecular traces at both the corticostriatal and hippocampal/limbic synapses. The best cellular candidate for this complex synthesis is represented by long-term potentiation (LTP). A common feature of LTP expressed in these two memory systems is the critical requirement of convergence and coincidence of glutamatergic and dopaminergic inputs to the dendritic spines of the neurons expressing this form of synaptic plasticity. In experimental models of Parkinson's disease abnormal accumulation of α-synuclein affects these two memory systems by altering two major synaptic mechanisms underlying cognitive functions in cholinergic striatal neurons, likely implicated in basal ganglia dependent operative memory, and in the CA1 hippocampal region, playing a central function in episodic/declarative memory processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Neural circuit mechanisms of short-term memory

    Science.gov (United States)

    Goldman, Mark

    Memory over time scales of seconds to tens of seconds is thought to be maintained by neural activity that is triggered by a memorized stimulus and persists long after the stimulus is turned off. This presents a challenge to current models of memory-storing mechanisms, because the typical time scales associated with cellular and synaptic dynamics are two orders of magnitude smaller than this. While such long time scales can easily be achieved by bistable processes that toggle like a flip-flop between a baseline and elevated-activity state, many neuronal systems have been observed experimentally to be capable of maintaining a continuum of stable states. For example, in neural integrator networks involved in the accumulation of evidence for decision making and in motor control, individual neurons have been recorded whose activity reflects the mathematical integral of their inputs; in the absence of input, these neurons sustain activity at a level proportional to the running total of their inputs. This represents an analog form of memory whose dynamics can be conceptualized through an energy landscape with a continuum of lowest-energy states. Such continuous attractor landscapes are structurally non-robust, in seeming violation of the relative robustness of biological memory systems. In this talk, I will present and compare different biologically motivated circuit motifs for the accumulation and storage of signals in short-term memory. Challenges to generating robust memory maintenance will be highlighted and potential mechanisms for ameliorating the sensitivity of memory networks to perturbations will be discussed. Funding for this work was provided by NIH R01 MH065034, NSF IIS-1208218, Simons Foundation 324260, and a UC Davis Ophthalmology Research to Prevent Blindness Grant.

  15. A neuromorphic circuit mimicking biological short-term memory.

    Science.gov (United States)

    Barzegarjalali, Saeid; Parker, Alice C

    2016-08-01

    Research shows that the way we remember things for a few seconds is a different mechanism from the way we remember things for a longer time. Short-term memory is based on persistently firing neurons, whereas storing information for a longer time is based on strengthening the synapses or even forming new neural connections. Information about location and appearance of an object is segregated and processed by separate neurons. Furthermore neurons can continue firing using different mechanisms. Here, we have designed a biomimetic neuromorphic circuit that mimics short-term memory by firing neurons, using biological mechanisms to remember location and shape of an object. Our neuromorphic circuit has a hybrid architecture. Neurons are designed with CMOS 45nm technology and synapses are designed with carbon nanotubes (CNT).

  16. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization.

    Science.gov (United States)

    Young, Erica J; Aceti, Massimiliano; Griggs, Erica M; Fuchs, Rita A; Zigmond, Zachary; Rumbaugh, Gavin; Miller, Courtney A

    2014-01-15

    Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder. There is a growing consensus that memory is supported by structural and functional plasticity driven by F-actin polymerization in postsynaptic dendritic spines at excitatory synapses. However, the mechanisms responsible for the long-term maintenance of memories, after consolidation has occurred, are largely unknown. Conditioned place preference (n = 112) and context-induced reinstatement of self-administration (n = 19) were used to assess the role of F-actin polymerization and myosin II, a molecular motor that drives memory-promoting dendritic spine actin polymerization, in the maintenance of METH-associated memories and related structural plasticity. Memories formed through association with METH but not associations with foot shock or food reward were disrupted by a highly-specific actin cycling inhibitor when infused into the amygdala during the postconsolidation maintenance phase. This selective effect of depolymerization on METH-associated memory was immediate, persistent, and did not depend upon retrieval or strength of the association. Inhibition of non-muscle myosin II also resulted in a disruption of METH-associated memory. Thus, drug-associated memories seem to be actively maintained by a unique form of cycling F-actin driven by myosin II. This finding provides a potential therapeutic approach for the selective treatment of unwanted memories associated with psychiatric disorders that is both selective and does not rely on retrieval of the memory. The results further suggest that memory maintenance depends upon the preservation of polymerized actin. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. The impact of bilingualism on working memory in pediatric epilepsy

    Science.gov (United States)

    Veenstra, Amy L.; Riley, Jeffrey D.; Barrett, Lauren E.; Muhonen, Michael G.; Zupanc, Mary; Romain, Jonathan E.; Lin, Jack J.; Mucci, Grace

    2016-01-01

    Impairments in executive skills broadly span across multiple childhood epilepsy syndromes and can adversely affect quality of life. Bilingualism has been previously shown to correlate with enhanced executive functioning in healthy individuals. This study seeks to determine whether the bilingual advantage in executive functioning exists in the context of pediatric epilepsy. We retrospectively analyzed neuropsychological data in 52 children with epilepsy and compared executive function scores in monolingual versus bilingual children with epilepsy, while controlling for socioeconomic status and ethnicity. Bilingual children performed significantly better on the Working Memory scale than did monolingual children. There were no significant differences on the remaining executive function variables. The bilingual advantage appears to persist for working memory in children with epilepsy. These findings suggest that bilingualism is potentially a protective variable in the face of epilepsy-related working memory dysfunction. PMID:26720703

  18. Persistent long-term facilitation at an identified synapse becomes labile with activation of short-term heterosynaptic plasticity.

    Science.gov (United States)

    Hu, Jiang-Yuan; Schacher, Samuel

    2014-04-02

    Short-term and long-term synaptic plasticity are cellular correlates of learning and memory of different durations. Little is known, however, how these two forms of plasticity interact at the same synaptic connection. We examined the reciprocal impact of short-term heterosynaptic or homosynaptic plasticity at sensorimotor synapses of Aplysia in cell culture when expressing persistent long-term facilitation (P-LTF) evoked by serotonin [5-hydroxytryptamine (5-HT)]. Short-term heterosynaptic plasticity induced by 5-HT (facilitation) or the neuropeptide FMRFa (depression) and short-term homosynaptic plasticity induced by tetanus [post-tetanic potentiation (PTP)] or low-frequency stimulation [homosynaptic depression (HSD)] of the sensory neuron were expressed in both control synapses and synapses expressing P-LTF in the absence or presence of protein synthesis inhibitors. All forms of short-term plasticity failed to significantly affect ongoing P-LTF in the absence of protein synthesis inhibitors. However, P-LTF reversed to control levels when either 5-HT or FMRFa was applied in the presence of rapamycin. In contrast, P-LTF was unaffected when either PTP or HSD was evoked in the presence of either rapamycin or anisomycin. These results indicate that synapses expressing persistent plasticity acquire a "new" baseline and functionally express short-term changes as naive synapses, but the new baseline becomes labile following selective activations-heterosynaptic stimuli that evoke opposite forms of plasticity-such that when presented in the presence of protein synthesis inhibitors produce a rapid reversal of the persistent plasticity. Activity-selective induction of a labile state at synapses expressing persistent plasticity may facilitate the development of therapies for reversing inappropriate memories.

  19. Illumination influences working memory: an EEG study.

    Science.gov (United States)

    Park, Jin Young; Min, Byoung-Kyong; Jung, Young-Chul; Pak, Hyensou; Jeong, Yeon-Hong; Kim, Eosu

    2013-09-05

    Illumination conditions appear to influence working efficacy in everyday life. In the present study, we obtained electroencephalogram (EEG) correlates of working-memory load, and investigated how these waveforms are modulated by illumination conditions. We hypothesized that illumination conditions may affect cognitive performance. We designed an EEG study to monitor and record participants' EEG during the Sternberg working memory task under four different illumination conditions. Illumination conditions were generated with a factorial design of two color-temperatures (3000 and 7100 K) by two illuminance levels (150 and 700 lx). During a working memory task, we observed that high illuminance led to significantly lower frontal EEG theta activity than did low illuminance. These differences persisted despite no significant difference in task performance between illumination conditions. We found that the latency of an early event-related potential component, such as N1, was significantly modulated by the illumination condition. The fact that the illumination condition affects brain activity but not behavioral performance suggests that the lighting conditions used in the present study did not influence the performance stage of behavioral processing. Nevertheless, our findings provide objective evidence that illumination conditions modulate brain activity. Further studies are necessary to refine the optimal lighting parameters for facilitating working memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake.

    Science.gov (United States)

    Maekawa, Yoichi; Ishifune, Chieko; Tsukumo, Shin-ichi; Hozumi, Katsuto; Yagita, Hideo; Yasutomo, Koji

    2015-01-01

    CD4+ T cells differentiate into memory T cells that protect the host from subsequent infection. In contrast, autoreactive memory CD4+ T cells harm the body by persisting in the tissues. The underlying pathways controlling the maintenance of memory CD4+ T cells remain undefined. We show here that memory CD4+ T cell survival is impaired in the absence of the Notch signaling protein known as recombination signal binding protein for immunoglobulin κ J region (Rbpj). Treatment of mice with a Notch inhibitor reduced memory CD4+ T cell numbers and prevented the recurrent induction of experimental autoimmune encephalomyelitis. Rbpj-deficient CD4+ memory T cells exhibit reduced glucose uptake due to impaired AKT phosphorylation, resulting in low Glut1 expression. Treating mice with pyruvic acid, which bypasses glucose uptake and supplies the metabolite downstream of glucose uptake, inhibited the decrease of autoimmune memory CD4+ T cells in the absence of Notch signaling, suggesting memory CD4+ T cell survival relies on glucose metabolism. Together, these data define a central role for Notch signaling in maintaining memory CD4+ T cells through the regulation of glucose uptake.

  1. The participation of NMDA receptors, PKC, and MAPK in the formation of memory following operant conditioning in Lymnaea

    Directory of Open Access Journals (Sweden)

    Rosenegger David

    2010-08-01

    Full Text Available Abstract Background Memory is the ability to store, retain, and later retrieve information that has been learned. Intermediate term memory (ITM that persists for up to 3 h requires new protein synthesis. Long term memory (LTM that persists for at least 24 h requires: DNA transcription, RNA translation, and the trafficking of newly synthesized proteins. It has been shown in a number of different model systems that NMDA receptors, protein kinase C (PKC and mitogen activated protein kinase (MAPK are all involved in the memory formation process. Results Here we show that snails trained in control conditions are capable of forming, depending on the training procedure used, either ITM or LTM. However, blockage of NMDA receptors (MK 801, inhibition of PKC (GF109203X hydrochloride and MAPK activity (UO126 prevent the formation of both ITM and LTM. Conclusions The injection of either U0126 or GF109203X, which inhibit MAPK and PKC activity respectively, 1 hour prior to training results in the inhibition of both ITM and LTM formation. We further found that NMDA receptor activity was necessary in order for both ITM and LTM formation.

  2. A case of persistent retrograde amnesia following a dissociative fugue: neuropsychological and neurofunctional underpinnings of loss of autobiographical memory and self-awareness.

    Science.gov (United States)

    Hennig-Fast, Kristina; Meister, Franziska; Frodl, Thomas; Beraldi, Anna; Padberg, Frank; Engel, Rolf R; Reiser, Maximilian; Möller, Hans-Jürgen; Meindl, Thomas

    2008-10-01

    Autobiographical memory relies on complex interactions between episodic memory contents, associated emotions and a sense of self-continuity over the course of one's life. This paper reports a study based upon the case of the patient NN who suffered from a complete loss of autobiographical memory and awareness of identity subsequent to a dissociative fugue. Neuropsychological, behavioral, and functional neuroimaging tests converged on the conclusion that NN suffered from a selective retrograde amnesia following an episode of dissociative fugue, during which he had lost explicit knowledge and vivid memory of his personal past. NN's loss of self-related memories was mirrored in neurobiological changes after the fugue whereas his semantic memory remained intact. Although NN still claimed to suffer from a stable loss of autobiographical, self-relevant memories 1 year after the fugue state, a proportionate improvement in underlying fronto-temporal neuronal networks was evident at this point in time. In spite of this improvement in neuronal activation, his anterograde visual memory had been decreased. It is posited that our data provide evidence for the important role of visual processing in autobiographical memory as well as for the efficiency of protective control mechanisms that constitute functional retrograde amnesia.

  3. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-01-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. PMID:27617747

  4. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model.

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-09-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction.

  5. Ferroelectric-gate field effect transistor memories device physics and applications

    CERN Document Server

    Ishiwara, Hiroshi; Okuyama, Masanori; Sakai, Shigeki; Yoon, Sung-Min

    2016-01-01

    This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among the various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has progressed most actively since the late 1980s and has achieved modest mass production levels for specific applications since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handic...

  6. Asymptotic theory of circular polarization memory.

    Science.gov (United States)

    Dark, Julia P; Kim, Arnold D

    2017-09-01

    We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.

  7. What is a missing link among wireless persistent surveillance?

    Science.gov (United States)

    Hsu, Charles; Szu, Harold

    2011-06-01

    The next generation surveillance system will equip with versatile sensor devices and information focus capable of conducting regular and irregular surveillance and security environments worldwide. The community of the persistent surveillance must invest the limited energy and money effectively into researching enabling technologies such as nanotechnology, wireless networks, and micro-electromechanical systems (MEMS) to develop persistent surveillance applications for the future. Wireless sensor networks can be used by the military for a number of purposes such as monitoring militant activity in remote areas and force protection. Being equipped with appropriate sensors these networks can enable detection of enemy movement, identification of enemy force and analysis of their movement and progress. Among these sensor network technologies, covert communication is one of the challenging tasks in the persistent surveillance because it is highly demanded to provide secured sensor nodes and linkage for fear of deliberate sabotage. Due to the matured VLSI/DSP technologies, affordable COTS of UWB technology with noise-like direct sequence (DS) time-domain pulses is a potential solution to support low probability of intercept and low probability of detection (LPI/LPD) data communication and transmission. This paper will describe a number of technical challenges in wireless persistent surveillance development include covert communication, network control and routing, collaborating signal and information processing, and etc. The paper concludes by presenting Hermitian Wavelets to enhance SNR in support of secured communication.

  8. Applications of shape memory alloys in Japan

    International Nuclear Information System (INIS)

    Asai, M.; Suzuki, Y.

    2000-01-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and other field today. (orig.)

  9. Familiar real-world spatial cues provide memory benefits in older and younger adults.

    Science.gov (United States)

    Robin, Jessica; Moscovitch, Morris

    2017-05-01

    Episodic memory, future thinking, and memory for scenes have all been proposed to rely on the hippocampus, and evidence suggests that these all decline in healthy aging. Despite this age-related memory decline, studies examining the effects of context reinstatement on episodic memory have demonstrated that reinstating elements of the encoding context of an event leads to better memory retrieval in both younger and older adults. The current study was designed to test whether more familiar, real-world contexts, such as locations that participants visited often, would improve the detail richness and vividness of memory for scenes, autobiographical events, and imagination of future events in young and older adults. The predicted age-related decline in internal details across all 3 conditions was accompanied by persistent effects of contextual familiarity, in which a more familiar spatial context led to increased detail and vividness of remembered scenes, autobiographical events, and, to some extent, imagined future events. This study demonstrates that autobiographical memory, imagination of the future, and scene memory are similarly affected by aging, and all benefit from being associated with more familiar (real-world) contexts, illustrating the stability of contextual reinstatement effects on memory throughout the life span. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. History and the future perspective of the ferroelectric memory; Kyoyudentai memory no rekishiteki haikei to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Tarui, Y [Waseda University, Tokyo (Japan)

    1998-10-01

    Development work is in progress on ferroelectric memory. The memory is a most suitable non-volatile memory which can be incorporated into IC cards, with its higher speed, lower voltage operation, smaller power consumption, and greater number of rewriting times than EEPROM, DRAM and SRAM. Taking as an opportunity the announcement on an experiment as performed by the authors to control semiconductor charge by using electric depolarization of ferroelectric materials, reports have been made one after another on experiments on thin metal films on TGS or BaTiO3, and experiments on semiconductor films formed on ferroelectric crystals or ceramics substrates by using vacuum deposition. In order to solve problems in ferroelectric materials, thin films of PZT and PLZT have emerged, whose good hysteresis characteristics have also been reported. Thereafter, an announcement was made on a material with bismuth layer like perovskite structure. The material is characterized with having very little film fatigue degradation after rewriting of about 10 {sup 12} times. In scaling a ferroelectric memory, if voltage is decreased in proportion with the size, the operation can be reduced proportionately according to the voltage reduction. This paper introduces a method to constitute a ferroelectric memory. 22 refs., 11 figs., 2 tabs.

  11. Modulation of learning and memory by cytokines: signaling mechanisms and long term consequences.

    Science.gov (United States)

    Donzis, Elissa J; Tronson, Natalie C

    2014-11-01

    This review describes the role of cytokines and their downstream signaling cascades on the modulation of learning and memory. Immune proteins are required for many key neural processes and dysregulation of these functions by systemic inflammation can result in impairments of memory that persist long after the resolution of inflammation. Recent research has demonstrated that manipulations of individual cytokines can modulate learning, memory, and synaptic plasticity. The many conflicting findings, however, have prevented a clear understanding of the precise role of cytokines in memory. Given the complexity of inflammatory signaling, understanding its modulatory role requires a shift in focus from single cytokines to a network of cytokine interactions and elucidation of the cytokine-dependent intracellular signaling cascades. Finally, we propose that whereas signal transduction and transcription may mediate short-term modulation of memory, long-lasting cellular and molecular mechanisms such as epigenetic modifications and altered neurogenesis may be required for the long lasting impact of inflammation on memory and cognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Propagation of soil moisture memory to streamflow and evapotranspiration in Europe

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2013-10-01

    As a key variable of the land-climate system soil moisture is a main driver of streamflow and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence) characteristics. Many studies also report distinct low frequency variations for streamflow, which are likely related to soil moisture memory. Using data from over 100 near-natural catchments located across Europe, we investigate in this study the connection between soil moisture memory and the respective memory of streamflow and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalised by precipitation) and evapotranspiration (normalised by radiation) on soil moisture are fitted using streamflow observations. The model therefore allows us to compute the memory characteristics of soil moisture, streamflow and evapotranspiration on the catchment scale. We find considerable memory in soil moisture and streamflow in many parts of the continent, and evapotranspiration also displays some memory at monthly time scale in some catchments. We show that the memory of streamflow and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of streamflow and evapotranspiration to soil moisture. Furthermore, we find that the coupling strengths of streamflow and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe, we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.

  13. Propagation of soil moisture memory to streamflow and evapotranspiration in Europe

    Directory of Open Access Journals (Sweden)

    R. Orth

    2013-10-01

    Full Text Available As a key variable of the land-climate system soil moisture is a main driver of streamflow and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence characteristics. Many studies also report distinct low frequency variations for streamflow, which are likely related to soil moisture memory. Using data from over 100 near-natural catchments located across Europe, we investigate in this study the connection between soil moisture memory and the respective memory of streamflow and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalised by precipitation and evapotranspiration (normalised by radiation on soil moisture are fitted using streamflow observations. The model therefore allows us to compute the memory characteristics of soil moisture, streamflow and evapotranspiration on the catchment scale. We find considerable memory in soil moisture and streamflow in many parts of the continent, and evapotranspiration also displays some memory at monthly time scale in some catchments. We show that the memory of streamflow and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of streamflow and evapotranspiration to soil moisture. Furthermore, we find that the coupling strengths of streamflow and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe, we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.

  14. Memory for conversation and the development of common ground.

    Science.gov (United States)

    McKinley, Geoffrey L; Brown-Schmidt, Sarah; Benjamin, Aaron S

    2017-11-01

    Efficient conversation is guided by the mutual knowledge, or common ground, that interlocutors form as a conversation progresses. Characterized from the perspective of commonly used measures of memory, efficient conversation should be closely associated with item memory-what was said-and context memory-who said what to whom. However, few studies have explicitly probed memory to evaluate what type of information is maintained following a communicative exchange. The current study examined how item and context memory relate to the development of common ground over the course of a conversation, and how these forms of memory vary as a function of one's role in a conversation as speaker or listener. The process of developing common ground was positively related to both item and context memory. In addition, content that was spoken was remembered better than content that was heard. Our findings illustrate how memory assessments can complement language measures by revealing the impact that basic conversational processes have on memory for what has been discussed. By taking this approach, we show that not only does the process of forming common ground facilitate communication in the present, but it also promotes an enduring record of that event, facilitating conversation into the future.

  15. Selective memory generalization by spatial patterning of protein synthesis.

    Science.gov (United States)

    O'Donnell, Cian; Sejnowski, Terrence J

    2014-04-16

    Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings, we proposed a two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Single Canonical Model of Reflexive Memory and Spatial Attention

    Science.gov (United States)

    Patel, Saumil S.; Red, Stuart; Lin, Eric; Sereno, Anne B.

    2015-01-01

    Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey’s task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes. PMID:26493949

  17. Single Canonical Model of Reflexive Memory and Spatial Attention.

    Science.gov (United States)

    Patel, Saumil S; Red, Stuart; Lin, Eric; Sereno, Anne B

    2015-10-23

    Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey's task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes.

  18. Natural disasters between memory and oblivion

    Science.gov (United States)

    Crescimbene, M.; La Longa, F.; Lanza, T.

    2012-04-01

    The last decades of the twentieth century and the beginning of the new millennium have been marked by a strong focus on the past and, consequently, a proliferation of studies on memory. Perhaps this great attention to memory implies a new way of thinking and experiencing time and space, two categories that deeply changed by the phenomenon of cultural globalization (Huyssen, 2003). If it is true that with new technologies, space and time have been dramatically compressed, it is also true that the horizons of our imagination have expanded to dimensions of space and time which are able to cross the boundaries of a locally circumscribed vision. So our past and our memory no longer have clear and delimited boundaries which were established by a tradition with local and national roots within specific geographical borders. The revival of studies on memory has included large Italian catastrophes occurred in the last centuries. Several initiatives, researches, exhibitions and commemorations wanted to remember these great catastrophes of our country. What is the relationship between these initiatives and the reduction of risk? What relationships are there between memory, forgetting and risk? On the issue of risk reduction the provocative phrase of Pierre Nora fits well: "We talk about memory because it no longer exists "? (Pierre Nora, Les Lieux de mémoire, Gallimard 1997). A direction to work on is indicated by Aleida Assmann (1999) that associates the idea of crisis of memory with the crisis of "living memory", that is linked to the disappearance of the eyewitnesses of the greatest tragedies of the twentieth century. When the generations who lived through L'Aquila earthquake on 6 April 2009 will die, the memory of the earthquake will vanish with them? To answer these questions and to propose communication and educational strategies capable of persisting the passage of generations, this work explores an interdisciplinary point of view, which takes into account recent

  19. Characterization of Self-Defining Memories in Individuals with Severe Alcohol Use Disorders After Mid-Term Abstinence: The Impact of the Emotional Valence of Memories.

    Science.gov (United States)

    Nandrino, Jean-Louis; Gandolphe, Marie-Charlotte

    2017-08-01

    Self-defining memories (SDM) are distinguished from other autobiographical memory (AM) processes to delineate those associated with the sense of personal identity and continuity in one's individual history. With chronic alcohol consumption, the construction of such memories may be modified in terms of specificity, valence, meaning-making, and evoked topics. This study sought to characterize SDM in a population of 27 patients with alcohol use disorder (AUD) who had been abstinent for at least 2 months compared with 28 control participants. Besides cognitive and clinical assessment, participants were told to describe verbally and date 5 SDM and their narratives were recorded. For each memory, 5 dimensions were evaluated: level of specificity, emotional valence, integration of meaning, topics, and distance of memory in time. Overall, SDM of participants with AUD were specifically characterized by (i) low specificity, (ii) low integration, (iii) a predominance of memories with negative emotional valence and a low frequency of positive memories, and (iv) a low frequency of topics related to success. When different dimensions of the SDM were crossed, their characteristics depended mainly on the valence of the memory. Negative memories were more frequent, more specific and more integrated, while positive SDM were less frequent, less specific and less integrated. The results underline the construction of a form of SDM with drinking problems that is mainly characterized by the disruption of positive memory and the presence of highly specific and integrated negative experiences. A disruption of the integration process modulated by the valence of memories could have repercussions on maintaining a sense of personal identity, the pursuit of personal goals and on social adaptability, and could constitute one of the main risks associated with persistent drinking problems. These results highlight the relevance of developing AM training programs for patients with AUD. Copyright

  20. How attention can create synaptic tags for the learning of working memories in sequential tasks.

    Directory of Open Access Journals (Sweden)

    Jaldert O Rombouts

    2015-03-01

    Full Text Available Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neurons in association cortex are thought to be essential for this ability. During learning these neurons become tuned to relevant features and start to represent them with persistent activity during memory delays. This learning process is not well understood. Here we develop a biologically plausible learning scheme that explains how trial-and-error learning induces neuronal selectivity and working memory representations for task-relevant information. We propose that the response selection stage sends attentional feedback signals to earlier processing levels, forming synaptic tags at those connections responsible for the stimulus-response mapping. Globally released neuromodulators then interact with tagged synapses to determine their plasticity. The resulting learning rule endows neural networks with the capacity to create new working memory representations of task relevant information as persistent activity. It is remarkably generic: it explains how association neurons learn to store task-relevant information for linear as well as non-linear stimulus-response mappings, how they become tuned to category boundaries or analog variables, depending on the task demands, and how they learn to integrate probabilistic evidence for perceptual decisions.

  1. Hybrid Josephson-CMOS Memory in Advanced Technologies and Larger Sizes

    International Nuclear Information System (INIS)

    Liu, Q; Van Duzer, T; Fujiwara, K; Yoshikawa, N

    2006-01-01

    Recent progress on demonstrating components of the 64 kb Josephson-CMOS hybrid memory has encouraged exploration of the advancement possible with use of advanced technologies for both the Josephson and CMOS parts of the memory, as well as considerations of the effect of memory size on access time and power dissipation. The simulations to be reported depend on the use of an approximate model for 90 nm CMOS at 4 K. This model is an extension of the one we developed for 0.25 μm CMOS and have already verified. For the Josephson parts, we have chosen 20 kA/cm 2 technology, which was recently demonstrated. The calculations show that power dissipation and access time increase rather slowly with increasing size of the memory

  2. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Tanner M Johanns

    2010-08-01

    Full Text Available The pathogenesis of persistent infection is dictated by the balance between opposing immune activation and suppression signals. Herein, virulent Salmonella was used to explore the role and potential importance of Foxp3-expressing regulatory T cells in dictating the natural progression of persistent bacterial infection. Two distinct phases of persistent Salmonella infection are identified. In the first 3-4 weeks after infection, progressively increasing bacterial burden was associated with delayed effector T cell activation. Reciprocally, at later time points after infection, reductions in bacterial burden were associated with robust effector T cell activation. Using Foxp3(GFP reporter mice for ex vivo isolation of regulatory T cells, we demonstrate that the dichotomy in infection tempo between early and late time points is directly paralleled by drastic changes in Foxp3(+ Treg suppressive potency. In complementary experiments using Foxp3(DTR mice, the significance of these shifts in Treg suppressive potency on infection outcome was verified by enumerating the relative impacts of regulatory T cell ablation on bacterial burden and effector T cell activation at early and late time points during persistent Salmonella infection. Moreover, Treg expression of CTLA-4 directly paralleled changes in suppressive potency, and the relative effects of Treg ablation could be largely recapitulated by CTLA-4 in vivo blockade. Together, these results demonstrate that dynamic regulation of Treg suppressive potency dictates the course of persistent bacterial infection.

  3. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories.

    Directory of Open Access Journals (Sweden)

    Peter Serrano

    2008-12-01

    Full Text Available How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta, an autonomously active atypical protein kinase C (PKC isoform critical for the maintenance of long-term potentiation (LTP. PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH and basolateral amygdala (BLA on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise

  4. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories.

    Science.gov (United States)

    Serrano, Peter; Friedman, Eugenia L; Kenney, Jana; Taubenfeld, Stephen M; Zimmerman, Joshua M; Hanna, John; Alberini, Cristina; Kelley, Ann E; Maren, Stephen; Rudy, Jerry W; Yin, Jerry C P; Sacktor, Todd C; Fenton, André A

    2008-12-23

    How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta), an autonomously active atypical protein kinase C (PKC) isoform critical for the maintenance of long-term potentiation (LTP). PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP) by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH) and basolateral amygdala (BLA) on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US) associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise, or

  5. The Dark Side of Context: Context Reinstatement Can Distort Memory.

    Science.gov (United States)

    Doss, Manoj K; Picart, Jamila K; Gallo, David A

    2018-04-01

    It is widely assumed that context reinstatement benefits memory, but our experiments revealed that context reinstatement can systematically distort memory. Participants viewed pictures of objects superimposed over scenes, and we later tested their ability to differentiate these old objects from similar new objects. Context reinstatement was manipulated by presenting objects on the reinstated or switched scene at test. Not only did context reinstatement increase correct recognition of old objects, but it also consistently increased incorrect recognition of similar objects as old ones. This false recognition effect was robust, as it was found in several experiments, occurred after both immediate and delayed testing, and persisted with high confidence even after participants were warned to avoid the distorting effects of context. To explain this memory illusion, we propose that context reinstatement increases the likelihood of confusing conceptual and perceptual information, potentially in medial temporal brain regions that integrate this information.

  6. The impact of bilingualism on working memory in pediatric epilepsy.

    Science.gov (United States)

    Veenstra, Amy L; Riley, Jeffrey D; Barrett, Lauren E; Muhonen, Michael G; Zupanc, Mary; Romain, Jonathan E; Lin, Jack J; Mucci, Grace

    2016-02-01

    Impairments in executive skills broadly span across multiple childhood epilepsy syndromes and can adversely affect quality of life. Bilingualism has been previously shown to correlate with enhanced executive functioning in healthy individuals. This study sought to determine whether the bilingual advantage in executive functioning exists in the context of pediatric epilepsy. We retrospectively analyzed neuropsychological data in 52 children with epilepsy and compared executive function scores in monolingual versus bilingual children with epilepsy while controlling for socioeconomic status and ethnicity. Bilingual children performed significantly better on the Working Memory Index than did monolingual children. There were no significant differences on the remaining executive function variables. The bilingual advantage appears to persist for working memory in children with epilepsy. These findings suggest that bilingualism is potentially a protective variable in the face of epilepsy-related working memory dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. [Persistent diarrhea

    Science.gov (United States)

    Andrade, J A; Moreira, C; Fagundes Neto, U

    2000-07-01

    INTRODUCTION: Persistent diarrhea has high impact on infantile morbidity and mortality rates in developing countries. Several studies have shown that 3 to 20% of acute diarrheal episodes in children under 5 years of age become persistent. DEFINITION: Persistent diarrhea is defined as an episode that lasts more than 14 days. ETIOLOGY: The most important agents isolated in persistent diarrhea are: Enteropathogenic E. coli (EPEC), Salmonella, Enteroaggregative E. coli (EAEC), Klebisiella and Cryptosporidium. CLINICAL ASPECTS: In general, the clinical characteristics of patients with persistent diarrhea do not change with the pathogenic agent. Persistent diarrhea seems to represent the final result of a several insults a infant suffers that predisposes to a more severe episode of diarrhea due to a combination of host factors and high rates of enviromental contamination. Therefore, efforts should be made to promptly treat all episodes of diarrhea with apropriate follow-up. THERAPY: The aim of the treatment is to restore hydroelectrolytic deficits and to replace losses until the diarrheal ceases. It is possible in the majority of the cases, using oral rehydration therapy and erly an appropriate type of diet. PREVENTION: It is imperative that management strategies also focus on preventive aspects. The most effective diarrheal prevention strategy in young infants worldwide is promotion of exclusive breast feeding.

  8. How eye movements in EMDR work: changes in memory vividness and emotionality.

    Science.gov (United States)

    Leer, Arne; Engelhard, Iris M; van den Hout, Marcel A

    2014-09-01

    Eye movements (EM) during recall of an aversive memory is a treatment element unique to Eye Movement Desensitization and Reprocessing (EMDR). Experimental studies have shown that EM reduce memory vividness and/or emotionality shortly after the intervention. However, it is unclear whether the immediate effects of the intervention reflect actual changes in memory. The aim of this study was to test whether immediate reductions in memory vividness and emotionality persist at a 24 h follow up and whether the magnitude of these effects is related to the duration of the intervention. Seventy-three undergraduates recalled two negative autobiographical memories, one with EM ("recall with EM") and one without ("recall only"). Half of participants recalled each memory for four periods of 24 s, the other half for eight periods of 24 s. Memory vividness/emotionality were self-rated at a pre-test, an immediate post-test, and a 24 h follow-up test. In both duration groups, recall with EM, but not recall only, caused an immediate decrease in memory vividness. There were no immediate reductions in memory emotionality. Furthermore, only the 'eight periods' group showed that recall with EM, but not recall only, caused a decrease in both memory emotionality and memory vividness from the pre-test to the follow-up. Only self-report measures were used. The findings suggest that recall with EM causes 24-h changes in memory vividness/emotionality, which may explain part of the EMDR treatment effect, and these effects are related to intervention duration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The dynamics of sensory buffers: geometric, spatial, and experience-dependent shaping of iconic memory.

    Science.gov (United States)

    Graziano, Martin; Sigman, Mariano

    2008-05-23

    When a stimulus is presented, its sensory trace decays rapidly, lasting for approximately 1000 ms. This brief and labile memory, referred as iconic memory, serves as a buffer before information is transferred to working memory and executive control. Here we explored the effect of different factors--geometric, spatial, and experience--with respect to the access and the maintenance of information in iconic memory and the progressive distortion of this memory. We studied performance in a partial report paradigm, a design wherein recall of only part of a stimulus array is required. Subjects had to report the identity of a letter in a location that was cued in a variable delay after the stimulus onset. Performance decayed exponentially with time, and we studied the different parameters (time constant, zero-delay value, and decay amplitude) as a function of the different factors. We observed that experience (determined by letter frequency) affected the access to iconic memory but not the temporal decay constant. On the contrary, spatial position affected the temporal course of delay. The entropy of the error distribution increased with time reflecting a progressive morphological distortion of the iconic buffer. We discuss our results on the context of a model of information access to executive control and how it is affected by learning and attention.

  10. THE MOLECULAR MECHANISMS OF EPSTEINBARR VIRUS PERSISTENCE IN THE HUMAN ORGANISM

    Directory of Open Access Journals (Sweden)

    Volyanskiy A.Yu.

    2014-12-01

    Full Text Available This review describes advances in molecular aspects of EBV infection and disease. We discuss the spectrum of clinical illness due to EBV persistent infection. The main characteristic of Epstein-Barr virus (EBV is that initial infection results in lifelong persistence. EBV infects nearly all humans by the time they reach adulthood. Healthy humans have approximately 1 to 50 infected cells per million leukocytes. EBV is one of the eight known human herpesviruses. EBV virions have a doublestranded linear DNA and 100 genes had been described in virus genome. Initial infection is thought to occur in the oral compartment. The host cells of EBV are mainly lymphocytes and epithelial cells. EBV attaches to B cells via binding of the viral gp350 protein to CD21 receptor. The consequence of EBV infection is cells proliferation and differentiation into memory B lymphocyte in the germinal center. Infected memory B cells are released into the peripheral circulation. EBV persists mostly in the memory B cell. Latency is the state of persistent viral infection without active viral production. In latently infected B cells EBV virus exist as episomes. During the latent phase episomal replication occurs via host DNA polymerase. Genes of the nuclear antigens (EBNA and latent membrane proteins (LMP are transcribed during latency. These include EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, EBNA leader protein (EBNALP, LMP1 and LMP2 genes. All nuclear antigens are transcription transactivators which bind to cis-regulatory DNA elements of cell or virus genomes directly or in complex with other proteins. LMP2A and LMP1 can function to coordinately mimic B-cell receptor and CD40 coreceptor signaling in latently infected B cells. LMP proteins activate cell signaling systems and as the consequence different gene expression programs. Characterization of gene expression patterns in different cell lines and pathologic conditions has revealed that there are at least three different

  11. Controlling memory impairment in elderly adults using virtual reality memory training: a randomized controlled pilot study.

    Science.gov (United States)

    Optale, Gabriele; Urgesi, Cosimo; Busato, Valentina; Marin, Silvia; Piron, Lamberto; Priftis, Konstantinos; Gamberini, Luciano; Capodieci, Salvatore; Bordin, Adalberto

    2010-05-01

    Memory decline is a prevalent aspect of aging but may also be the first sign of cognitive pathology. Virtual reality (VR) using immersion and interaction may provide new approaches to the treatment of memory deficits in elderly individuals. The authors implemented a VR training intervention to try to lessen cognitive decline and improve memory functions. The authors randomly assigned 36 elderly residents of a rest care facility (median age 80 years) who were impaired on the Verbal Story Recall Test either to the experimental group (EG) or the control group (CG). The EG underwent 6 months of VR memory training (VRMT) that involved auditory stimulation and VR experiences in path finding. The initial training phase lasted 3 months (3 auditory and 3 VR sessions every 2 weeks), and there was a booster training phase during the following 3 months (1 auditory and 1 VR session per week). The CG underwent equivalent face-to-face training sessions using music therapy. Both groups participated in social and creative and assisted-mobility activities. Neuropsychological and functional evaluations were performed at baseline, after the initial training phase, and after the booster training phase. The EG showed significant improvements in memory tests, especially in long-term recall with an effect size of 0.7 and in several other aspects of cognition. In contrast, the CG showed progressive decline. The authors suggest that VRMT may improve memory function in elderly adults by enhancing focused attention.

  12. Embodied memory: effective and stable perception by combining optic flow and image structure.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Bingham, Geoffrey P

    2013-12-01

    Visual perception studies typically focus either on optic flow structure or image structure, but not on the combination and interaction of these two sources of information. Each offers unique strengths in contrast to the other's weaknesses. Optic flow yields intrinsically powerful information about 3D structure, but is ephemeral. It ceases when motion stops. Image structure is less powerful in specifying 3D structure, but is stable. It remains when motion stops. Optic flow and image structure are intrinsically related in vision because the optic flow carries one image to the next. This relation is especially important in the context of progressive occlusion, in which optic flow provides information about the location of targets hidden in subsequent image structure. In four experiments, we investigated the role of image structure in "embodied memory" in contrast to memory that is only in the head. We found that either optic flow (Experiment 1) or image structure (Experiment 2) alone were relatively ineffective, whereas the combination was effective and, in contrast to conditions requiring reliance on memory-in-the-head, much more stable over extended time (Experiments 2 through 4). Limits well documented for visual short memory (that is, memory-in-the-head) were strongly exceeded by embodied memory. The findings support J. J. Gibson's (1979/1986, The Ecological Approach to Visual Perception, Boston, MA, Houghton Mifflin) insights about progressive occlusion and the embodied nature of perception and memory.

  13. Long-memory exchange rate dynamics in the euro era

    International Nuclear Information System (INIS)

    Barkoulas, John T.; Barilla, Anthony G.; Wells, William

    2016-01-01

    We investigate the long-run dynamics of a system of eight major exchange rates in the euro era using both integer and fractional cointegration methodologies. Contrary to the fragile evidence in the pre-euro era, robust evidence of linear cointegratedness is obtained in the foreign exchange market during the euro era. Upon closer examination, deviations from the cointegrating relationship exhibit nonstationary, long-memory dynamic behavior (Joseph effect). We find the long-memory evidence to be temporally stable in the most recent era. Finally, the foreign exchange system dynamics appears to be characterized by less persistence (smaller fractional exponent) in the euro era (as compared to pre-euro time periods), potentially indicating increased policy coordination by central banks in the recent period.

  14. Self-perceived memory complaints predict progression to Alzheimer disease. The LADIS study

    DEFF Research Database (Denmark)

    Verdelho, Ana; Madureira, Sofia; Moleiro, Carla

    2011-01-01

    of follow-up, 90 patients were demented (vascular dementia, 54; Alzheimer's disease (AD) and AD with vascular component, 34; frontotemporal dementia, 2). Using Cox regression analysis, we found that self perceived memory complaints were a strong predictor of AD and AD with vascular component during...

  15. Dissociation and Memory Fragmentation in Posttraumatic Stress Disorder: An Evaluation of the Dissociative Encoding Hypothesis

    Science.gov (United States)

    Bedard-Gilligan, Michele; Zoellner, Lori A.

    2012-01-01

    Several prominent theories of posttraumatic stress disorder (PTSD) posit that peritraumatic dissociation results in insufficient encoding of the trauma memory and that persistent dissociation prevents memory elaboration, resulting in memory fragmentation and PTSD. In this review, we summarize the empirical literature on peritraumatic and trait dissociation and trauma narrative fragmentation as measured by meta-memory and rater/objective coding. Across 16 studies to date, the association between dissociation and fragmentation was most prominent when examining peritraumatic dissociation and patient's own ratings of memory fragmentation. This relationship did not hold when examining trait dissociation or rater-coded or computer-generated measures of fragmentation. Thus, initial evidence points more toward a strong self-reported association between constructs that is not supported on more objective fragmentation coding. Measurement overlap, construct ambiguity, and exclusion of potential confounds may underlie lack of a strong association between dissociation and objective-rated fragmentation. PMID:22348400

  16. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.

    Science.gov (United States)

    Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang

    2015-02-24

    The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.

  17. Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference

    Directory of Open Access Journals (Sweden)

    Emily Frith

    2018-06-01

    Full Text Available We evaluated the effects of exercise on proactive memory interference. Study 1 (n = 88 employed a 15-min treadmill walking protocol, while Study 2 (n = 88 included a 15-min bout of progressive maximal exertion treadmill exercise. Each study included four distinct groups, in which groups of 22 participants each were randomly assigned to: (a exercise before memory encoding, (b a control group with no exercise, (c exercise during memory encoding, and (d exercise after memory encoding (i.e., during memory consolidation. We used the Rey Auditory Verbal Learning Test (RAVLT to assess proactive memory interference. In both studies, the group that exercised prior to memory encoding recalled the most words from list B (distractor list of the RAVLT, though group differences were not statistically significant for Study 1 (walking exercise (p = 0.521 or Study 2 (high-intensity exercise (p = 0.068. In this sample of young adults, high intensity exercise prior to memory encoding showed a non-significant tendency to attenuate impairments in recall attributable to proactive memory interference. Thus, future work with larger samples is needed to clarify potential beneficial effects of exercise for reducing proactive memory interference.

  18. Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference.

    Science.gov (United States)

    Frith, Emily; Sng, Eveleen; Loprinzi, Paul D

    2018-06-11

    We evaluated the effects of exercise on proactive memory interference. Study 1 ( n = 88) employed a 15-min treadmill walking protocol, while Study 2 ( n = 88) included a 15-min bout of progressive maximal exertion treadmill exercise. Each study included four distinct groups, in which groups of 22 participants each were randomly assigned to: (a) exercise before memory encoding, (b) a control group with no exercise, (c) exercise during memory encoding, and (d) exercise after memory encoding (i.e., during memory consolidation). We used the Rey Auditory Verbal Learning Test (RAVLT) to assess proactive memory interference. In both studies, the group that exercised prior to memory encoding recalled the most words from list B (distractor list) of the RAVLT, though group differences were not statistically significant for Study 1 (walking exercise) ( p = 0.521) or Study 2 (high-intensity exercise) ( p = 0.068). In this sample of young adults, high intensity exercise prior to memory encoding showed a non-significant tendency to attenuate impairments in recall attributable to proactive memory interference. Thus, future work with larger samples is needed to clarify potential beneficial effects of exercise for reducing proactive memory interference.

  19. Role of secondary sensory cortices in emotional memory storage and retrieval in rats.

    Science.gov (United States)

    Sacco, Tiziana; Sacchetti, Benedetto

    2010-08-06

    Visual, acoustic, and olfactory stimuli associated with a highly charged emotional situation take on the affective qualities of that situation. Where the emotional meaning of a given sensory experience is stored is a matter of debate. We found that excitotoxic lesions of auditory, visual, or olfactory secondary sensory cortices impaired remote, but not recent, fear memories in rats. Amnesia was modality-specific and not due to an interference with sensory or emotional processes. In these sites, memory persistence was dependent on ongoing protein kinase Mzeta activity and was associated with an increased activity of layers II-IV, thus suggesting a synaptic strengthening of corticocortical connections. Lesions of the same areas left intact the memory of sensory stimuli not associated with any emotional charge. We propose that secondary sensory cortices support memory storage and retrieval of sensory stimuli that have acquired a behavioral salience with the experience.

  20. Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.

    Science.gov (United States)

    Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni

    2006-01-01

    Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.

  1. Working Memory Capacity and Fluid Abilities: Examining the Correlation between Operation Span and Raven

    Science.gov (United States)

    Unsworth, N.; Engle, R.W.

    2005-01-01

    The correlation between a measure of working memory capacity (WMC) (Operation Span) and a measure of fluid abilities (Raven Advanced Progressive Matrices) was examined. Specifically, performance on Raven problems was decomposed by difficulty, memory load, and rule type. The results suggest that the relation between Operation Span and Raven is…

  2. BAF53b, a Neuron-Specific Nucleosome Remodeling Factor, Is Induced after Learning and Facilitates Long-Term Memory Consolidation.

    Science.gov (United States)

    Yoo, Miran; Choi, Kwang-Yeon; Kim, Jieun; Kim, Mujun; Shim, Jaehoon; Choi, Jun-Hyeok; Cho, Hye-Yeon; Oh, Jung-Pyo; Kim, Hyung-Su; Kaang, Bong-Kiun; Han, Jin-Hee

    2017-03-29

    Although epigenetic mechanisms of gene expression regulation have recently been implicated in memory consolidation and persistence, the role of nucleosome-remodeling is largely unexplored. Recent studies show that the functional loss of BAF53b, a postmitotic neuron-specific subunit of the BAF nucleosome-remodeling complex, results in the deficit of consolidation of hippocampus-dependent memory and cocaine-associated memory in the rodent brain. However, it is unclear whether BAF53b expression is regulated during memory formation and how BAF53b regulates fear memory in the amygdala, a key brain site for fear memory encoding and storage. To address these questions, we used viral vector approaches to either decrease or increase BAF53b function specifically in the lateral amygdala of adult mice in auditory fear conditioning paradigm. Knockdown of Baf53b before training disrupted long-term memory formation with no effect on short-term memory, basal synaptic transmission, and spine structures. We observed in our qPCR analysis that BAF53b was induced in the lateral amygdala neurons at the late consolidation phase after fear conditioning. Moreover, transient BAF53b overexpression led to persistently enhanced memory formation, which was accompanied by increase in thin-type spine density. Together, our results provide the evidence that BAF53b is induced after learning, and show that such increase of BAF53b level facilitates memory consolidation likely by regulating learning-related spine structural plasticity. SIGNIFICANCE STATEMENT Recent works in the rodent brain begin to link nucleosome remodeling-dependent epigenetic mechanism to memory consolidation. Here we show that BAF53b, an epigenetic factor involved in nucleosome remodeling, is induced in the lateral amygdala neurons at the late phase of consolidation after fear conditioning. Using specific gene knockdown or overexpression approaches, we identify the critical role of BAF53b in the lateral amygdala neurons for

  3. Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI.

    Science.gov (United States)

    Deiber, Marie-Pierre; Ibañez, Vicente; Missonnier, Pascal; Herrmann, François; Fazio-Costa, Lara; Gold, Gabriel; Giannakopoulos, Panteleimon

    2009-09-01

    The electroencephalography (EEG) theta frequency band reacts to memory and selective attention paradigms. Global theta oscillatory activity includes a posterior phase-locked component related to stimulus processing and a frontal-induced component modulated by directed attention. To investigate the presence of early deficits in the directed attention-related network in elderly individuals with mild cognitive impairment (MCI), time-frequency analysis at baseline was used to assess global and induced theta oscillatory activity (4-6Hz) during n-back working memory tasks in 29 individuals with MCI and 24 elderly controls (EC). At 1-year follow-up, 13 MCI patients were still stable and 16 had progressed. Baseline task performance was similar in stable and progressive MCI cases. Induced theta activity at baseline was significantly reduced in progressive MCI as compared to EC and stable MCI in all n-back tasks, which were similar in terms of directed attention requirements. While performance is maintained, the decrease of induced theta activity suggests early deficits in the directed-attention network in progressive MCI, whereas this network is functionally preserved in stable MCI.

  4. New learning following reactivation in the human brain: targeting emotional memories through rapid serial visual presentation.

    Science.gov (United States)

    Wirkner, Janine; Löw, Andreas; Hamm, Alfons O; Weymar, Mathias

    2015-03-01

    Once reactivated, previously consolidated memories destabilize and have to be reconsolidated to persist, a process that might be altered non-invasively by interfering learning immediately after reactivation. Here, we investigated the influence of interference on brain correlates of reactivated episodic memories for emotional and neutral scenes using event-related potentials (ERPs). To selectively target emotional memories we applied a new reactivation method: rapid serial visual presentation (RSVP). RSVP leads to enhanced implicit processing (pop out) of the most salient memories making them vulnerable to disruption. In line, interference after reactivation of previously encoded pictures disrupted recollection particularly for emotional events. Furthermore, memory impairments were reflected in a reduced centro-parietal ERP old/new difference during retrieval of emotional pictures. These results provide neural evidence that emotional episodic memories in humans can be selectively altered through behavioral interference after reactivation, a finding with further clinical implications for the treatment of anxiety disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Updating appetitive memory during reconsolidation window: critical role of cue-directed behavior and amygdala central nucleus.

    Science.gov (United States)

    Olshavsky, Megan E; Song, Bryan J; Powell, Daniel J; Jones, Carolyn E; Monfils, Marie-H; Lee, Hongjoo J

    2013-01-01

    When presented with a light cue followed by food, some rats simply approach the foodcup (Nonorienters), while others first orient to the light in addition to displaying the food-cup approach behavior (Orienters). Cue-directed orienting may reflect enhanced attentional and/or emotional processing of the cue, suggesting divergent natures of cue-information processing in Orienters and Nonorienters. The current studies investigate how differences in cue processing might manifest in appetitive memory retrieval and updating using a paradigm developed to persistently attenuate fear responses (Retrieval-extinction paradigm; Monfils et al., 2009). First, we examined whether the retrieval-extinction paradigm could attenuate appetitive responses in Orienters and Nonorienters. Next, we investigated if the appetitive memory could be updated using reversal learning (fear conditioning) during the reconsolidation window (as opposed to repeated unreinforced trials, i.e., extinction). Both extinction and new fear learning given within the reconsolidation window were effective at persistently updating the initial appetitive memory in the Orienters, but not the Nonorienters. Since conditioned orienting is mediated by the amygdala central nucleus (CeA), our final experiment examined the CeA's role in the retrieval-extinction process. Bilateral CeA lesions interfered with the retrieval-extinction paradigm-did not prevent spontaneous recovery of food-cup approach. Together, our studies demonstrate the critical role of conditioned orienting behavior and the CeA in updating appetitive memory during the reconsolidation window.

  6. Development of verbal short-term memory and working memory in children with epilepsy: Developmental delay and impact of time-related variables. A cross-sectional study.

    Science.gov (United States)

    van Iterson, Loretta; de Jong, Peter F

    2018-01-01

    While short-term memory (STM) and working memory (WM) are understood as being crucial for learning, and children with epilepsy often experience learning difficulties, little is known about the age-related development of memory span tasks in children with epilepsy. Short-term memory and WM, operationalized as digit span forwards (DSF) or digit span backwards (DSB), respectively, were studied. Participants were 314 children with epilepsy and 327 typically developing children in ages between 5 and 15years and full scale intelligence quotient (FS-IQ)≥75. Cross-sectional analyses of the data were done with analyses of variance and analyses of covariance ((M)ANCOVAs) and generalized linear analyses. The analyses revealed that STM problems in epilepsy were mediated by age-related gains in WM as well as by differences in IQ. Working memory developed at a quick pace in the younger children, the pace slowed down to some extent in the later primary school years and resumed again later on. Working memory problems prevailed in epilepsy, independent of IQ and development of STM. Timing of the epilepsy in terms of age at onset and duration determined memory development. The youngest children with epilepsy showed age-appropriate development in STM but were the most vulnerable in terms of WM development. Later in the course of the epilepsy, the WM problems of the young children attenuated. In later onset epilepsy, WM problems were smaller but persisted over time. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential Tasks

    NARCIS (Netherlands)

    Rombouts, J.O.; Bohte, S.M.; Roelfsema, P.R.

    2015-01-01

    Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neurons in association cortex are thought to be essential for this ability. During learning these neurons become tuned to relevant features and start to represent them with persistent activity during memory

  8. Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Denise M.; Fontaine-Bodin, Lisa; Bischofs, Ilka; Price, Gavin; Keasling, Jay; Arkin, Adam P.

    2007-11-15

    Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These"memory" effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenologicalmeasure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesisand estimate the capacity of these systems and growth dynamics to"remember" 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cellhistory, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy.

  9. The effects of emotion regulation on explicit memory depend on strategy and testing method.

    Science.gov (United States)

    Knight, Marisa; Ponzio, Allison

    2013-12-01

    Although previous work has shown that emotion regulation strategies can influence memory, the mechanisms through which different strategies produce different memory outcomes are not well understood. We examined how two cognitive reappraisal strategies with similar elaboration demands but diverging effects on visual attention and emotional arousal influenced explicit memory for emotional stimuli and for the strategies used to evaluate the stimuli. At encoding, participants used reappraisal to increase and decrease the personal relevance of neutral and emotional pictures. In two experiments, recall accuracy was highest for emotional pictures featured on increase trials, intermediate for emotional pictures featured on look (respond naturally) trials, and lowest for emotional pictures featured on decrease trials. This recall pattern emerged after a short delay (15 min) and persisted over a longer delay (48 hr). Memory accuracy for the strategies used to evaluate the pictures showed a different pattern: Strategy memory was better for emotional pictures featured on decrease and increase trials than for pictures featured on look trials. Our findings show that the effects of emotion regulation on memory depend both on the particular strategy engaged and the particular aspect of memory being tested.

  10. Molecular and Neuronal Plasticity Mechanisms in the Amygdala-Prefrontal Cortical Circuit: Implications for Opiate Addiction Memory Formation

    Directory of Open Access Journals (Sweden)

    Laura G Rosen

    2015-11-01

    Full Text Available The persistence of associative memories linked to the rewarding properties of drugs of abuse is a core underlying feature of the addiction process. Opiate class drugs in particular, possess potent euphorigenic effects which, when linked to environmental cues, can produce drug-related ‘trigger’ memories that may persist for lengthy periods of time, even during abstinence, in both humans and other animals. Furthermore, the transitional switch from the drug-naïve, non-dependent state to states of dependence and withdrawal, represents a critical boundary between distinct neuronal and molecular substrates associated with opiate-reward memory formation. Identifying the functional molecular and neuronal mechanisms related to the acquisition, consolidation, recall and extinction phases of opiate-related reward memories is critical for understanding, and potentially reversing, addiction-related memory plasticity characteristic of compulsive drug-seeking behaviors. The mammalian prefrontal cortex (PFC and basolateral nucleus of the amygdala (BLA share important functional and anatomical connections that are involved importantly in the processing of associative memories linked to drug reward. In addition, both regions share interconnections with the mesolimbic pathway’s ventral tegmental area (VTA and nucleus accumbens (NAc and can modulate dopamine (DA transmission and neuronal activity associated with drug-related DAergic signaling dynamics. In this review, we will summarize research from both human and animal modelling studies highlighting the importance of neuronal and molecular plasticity mechanisms within this circuitry during critical phases of opiate addiction-related learning and memory processing. Specifically, we will focus on two molecular signaling pathways known to be involved in both drug-related neuroadaptations and in memory-related plasticity mechanisms; the extracellular-signal-regulated kinase system (ERK and the Ca2+/calmodulin

  11. Short-Term Memory and Aphasia: From Theory to Treatment.

    Science.gov (United States)

    Minkina, Irene; Rosenberg, Samantha; Kalinyak-Fliszar, Michelene; Martin, Nadine

    2017-02-01

    This article reviews existing research on the interactions between verbal short-term memory and language processing impairments in aphasia. Theoretical models of short-term memory are reviewed, starting with a model assuming a separation between short-term memory and language, and progressing to models that view verbal short-term memory as a cognitive requirement of language processing. The review highlights a verbal short-term memory model derived from an interactive activation model of word retrieval. This model holds that verbal short-term memory encompasses the temporary activation of linguistic knowledge (e.g., semantic, lexical, and phonological features) during language production and comprehension tasks. Empirical evidence supporting this model, which views short-term memory in the context of the processes it subserves, is outlined. Studies that use a classic measure of verbal short-term memory (i.e., number of words/digits correctly recalled in immediate serial recall) as well as those that use more intricate measures (e.g., serial position effects in immediate serial recall) are discussed. Treatment research that uses verbal short-term memory tasks in an attempt to improve language processing is then summarized, with a particular focus on word retrieval. A discussion of the limitations of current research and possible future directions concludes the review. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Failure of Working Memory Training to Enhance Cognition or Intelligence

    Science.gov (United States)

    Thompson, Todd W.; Waskom, Michael L.; Garel, Keri-Lee A.; Cardenas-Iniguez, Carlos; Reynolds, Gretchen O.; Winter, Rebecca; Chang, Patricia; Pollard, Kiersten; Lala, Nupur; Alvarez, George A.; Gabrieli, John D. E.

    2013-01-01

    Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities. PMID:23717453

  13. Failure of working memory training to enhance cognition or intelligence.

    Directory of Open Access Journals (Sweden)

    Todd W Thompson

    Full Text Available Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities.

  14. Shape Memory Alloys for Monitoring Minor Over-Heating/Cooling Based on the Temperature Memory Effect via Differential Scanning Calorimetry: A Review of Recent Progress

    Science.gov (United States)

    Wang, T. X.; Huang, W. M.

    2017-12-01

    The recent development in the temperature memory effect (TME) via differential scanning calorimetry in shape memory alloys is briefly discussed. This phenomenon was also called the thermal arrest memory effect in the literature. However, these names do not explicitly reveal the potential application of this phenomenon in temperature monitoring. On the other hand, the standard testing process of the TME has great limitation. Hence, it cannot be directly applied for temperature monitoring in most of the real engineering applications in which temperature fluctuation occurs mostly in a random manner within a certain range. However, as shown here, after proper modification, we are able to monitor the maximum or minimum temperature in either over-heating or over-cooling with reasonable accuracy.

  15. Thermopriming Triggers Splicing Memory in Arabidopsis

    KAUST Repository

    Ling, Yu

    2018-02-20

    Abiotic and biotic stresses limit crop productivity. Exposure to a non-lethal stress, referred to as priming, can allow plants to survive subsequent and otherwise lethal conditions; the priming effect persists even after a prolonged stress-free period. However, the molecular mechanisms underlying priming are not fully understood. Here, we investigated the molecular basis of heat shock memory and the role of priming in Arabidopsisthaliana. Comprehensive analysis of transcriptome-wide changes in gene expression and alternative splicing in primed and non-primed plants revealed that alternative splicing functions as a novel component of heat shock memory. We show that priming of plants with a non-lethal heat stress results in de-repression of splicing after a second exposure to heat stress. By contrast, non-primed plants showed significant repression of splicing. These observations link ‘splicing memory’ to the ability of plants to survive subsequent and otherwise lethal heat stress. This newly discovered priming-induced splicing memory may represent a general feature of heat stress responses in plants and other organisms as many of the key components of heat shock responses are conserved among eukaryotes. Furthermore, this finding could facilitate the development of novel approaches to improve plant survival under extreme heat stress.

  16. The role of cytokines in T-cell memory in health and disease.

    Science.gov (United States)

    Raeber, Miro E; Zurbuchen, Yves; Impellizzieri, Daniela; Boyman, Onur

    2018-05-01

    Upon stimulation with their cognate antigen, naive T cells undergo proliferation and differentiation into effector cells, followed by apoptosis or survival as precursors of long-lived memory cells. These phases of a T-cell response and the ensuing maintenance of memory T cells are shaped by cytokines, most notably interleukin-2 (IL-2), IL-7, and IL-15 that share the common γ chain (γ c ) cytokine receptor. Steady-state production of IL-7 and IL-15 is necessary for background proliferation and homeostatic survival of CD4 + and CD8 + memory T cells. During immune responses, augmented levels of IL-2, IL-15, IL-21, IL-12, IL-18, and type-I interferons determine the memory potential of antigen-specific effector CD8 + cells, while increased IL-2 and IL-15 cause bystander proliferation of heterologous CD4 + and CD8 + memory T cells. Limiting availability of γ c cytokines, reduction in regulatory T cells or IL-10, and persistence of inflammation or cognate antigen can result in memory T cells, which fail to become cytokine-dependent long-lived cells. Conversely, increased IL-7 and IL-15 can expand memory T cells, including pathogenic tissue-resident memory T cells, as seen in lymphopenia and certain chronic-inflammatory disorders and malignancies. These abovementioned factors impact immunotherapy and vaccines directed at memory T cells in cancer and chronic infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Functional neuroimaging of sex differences in autobiographical memory recall in depression.

    Science.gov (United States)

    Young, K D; Bodurka, J; Drevets, W C

    2017-11-01

    Females are more likely than males to develop major depressive disorder (MDD). The current study used fMRI to compare the neural correlates of autobiographical memory (AM) recall between males and females diagnosed with MDD. AM overgenerality is a persistent cognitive deficit in MDD, the magnitude of which is correlated with depressive severity only in females. Delineating the neurobiological correlates of this deficit may elucidate the nature of sex-differences in the diathesis for developing MDD. Participants included unmedicated males and females diagnosed with MDD (n = 20/group), and an age and sex matched healthy control group. AM recall in response to positive, negative, and neutral cue words was compared with a semantic memory task. The behavioral properties of AMs did not differ between MDD males and females. In contrast, main effects of sex on cerebral hemodynamic activity were observed in left dorsolateral prefrontal cortex and parahippocampal gyrus during recall of positive specific memories, and middle prefrontal cortex (mPFC), and precuneus during recall of negative specific memories. Moreover, main effects of diagnosis on regional hemodynamic activity were observed in left ventrolateral prefrontal cortex and mPFC during positive specific memory recall, and dorsal anterior cingulate cortex during negative specific memory recall. Sex × diagnosis interactions were evident in the dorsomedial prefrontal cortex, caudate, and precuneus during positive memory recall, and in the posterior cingulate cortex, insula, precuneus and thalamus during negative specific memory recall. The differential hemodynamic changes conceivably may reflect sex-specific cognitive strategies during recall of AMs irrespective of the phenomenological properties of those memories.

  18. PKMzeta maintains 1-day- and 6-day-old long-term object location but not object identity memory in dorsal hippocampus.

    Science.gov (United States)

    Hardt, Oliver; Migues, Paola V; Hastings, Margaret; Wong, Jacinda; Nader, Karim

    2010-06-01

    Continuous activity of the atypical protein kinase C isoform M zeta (PKMzeta) is necessary for maintaining long-term memory acquired in aversively or appetitively motivated associative learning tasks, such as active avoidance, aversive taste conditioning, auditory and contextual fear conditioning, radial arm maze, and watermaze. Whether unreinforced, nonassociative memory will also require PKMzeta for long-term maintenance is not known. Using recognition memory for object location and object identity, we found that inactivating PKMzeta in dorsal hippocampus abolishes 1-day and 6-day-old long-term recognition memory for object location, while recognition memory for object identity was not affected by this treatment. Memory for object location persisted for no more than 35 days after training. These results suggest that the dorsal hippocampus mediates long-term memory for where, but not what things have been encountered, and that PKMzeta maintains this type of spatial knowledge as long as the memory exists.

  19. Cognitive implications of facilitating echoic persistence.

    Science.gov (United States)

    Baldwin, Carryl L

    2007-06-01

    Seventeen participants performed a tone-pattern-matching task at different presentation levels while concurrently engaged in a simulated-driving task. Presentation levels of 60, 65, and 70 dBC (SPL) were combined factorially with tone-matching delays of 2, 3, and 4 sec. Intensity had no effect on performance in single-task conditions and short-delay conditions. However, when the participants were engaged concurrently in the driving task, a significant interaction between presentation level and delay was observed. In the longest delay condition, the participants performed the tone-pattern-matching task more efficiently (more quickly and without additional errors) as presentation intensity increased. These findings demonstrate the interaction between sensory and cognitive processes and point to a direct-intensity relationship where intensity affects the persistence of echoic memory. Implications for facilitating auditory processing and improving auditory interfaces in complex systems (i.e., transportation environments), particularly for older and hearing-impaired listeners, are discussed.

  20. Stress and Memory: A Selective Review on Recent Developments in the Understanding of Stress Hormone Effects on Memory and Their Clinical Relevance.

    Science.gov (United States)

    Wolf, O T; Atsak, P; de Quervain, D J; Roozendaal, B; Wingenfeld, K

    2016-08-01

    Stress causes a neuroendocrine response cascade, leading to the release of catecholamines and glucocorticoids (GCs). GCs influence learning and memory by acting on mineralocorticoid (MR) and glucocorticoid (GR) receptors. Typically, GCs enhance the consolidation of memory processing at the same time as impairing the retrieval of memory of emotionally arousing experiences. The present selective review addresses four recent developments in this area. First, the role of the endocannabinoid system in mediating the rapid, nongenomic effects of GCs on memory is illustrated in rodents. Subsequently, studies on the impact of the selective stimulation of MRs on different memory processes in humans are summarised. Next, a series of human experiments on the impact of stress or GC treatment on fear extinction and fear reconsolidation is presented. Finally, the clinical relevance of the effects of exogenous GC administration is highlighted by the description of patients with anxiety disorders who demonstrate an enhancement of extinction-based therapies by GC treatment. The review highlights the substantial progress made in our mechanistic understanding of the memory-modulating properties of GCs, as well as their clinical potential. © 2015 British Society for Neuroendocrinology.

  1. Environmental cue saliency influences the vividness of a remote spatial memory in rats.

    Science.gov (United States)

    Lopez, Joëlle; de Vasconcelos, Anne Pereira; Cassel, Jean-Christophe

    2008-07-01

    The Morris water maze is frequently used to evaluate the acquisition and retrieval of spatial memories. Few experiments, however, have investigated the effects of environmental cue saliency on the strength or persistence of such memories after a short vs. long post-acquisition interval. Using a Morris water maze, we therefore tested in rats the effect of the saliency of distal cues on the vividness of a recent (5 days) vs. remote (25 days) memory. Rats trained in a cue-enriched vs. a cue-impoverished context showed a better overall level of performance during acquisition. Furthermore, the probe trials revealed that the rats trained and tested in the cue-impoverished context (1) spent less time in the target quadrant at the 25-day delay, and (2) swam shorter distances in the target area, with fewer crossings at both 5- and 25-day delays, as compared to their counterparts trained and tested in the cue-enriched context. Thus, the memory trace formed in the cue-enriched context shows better resistance to time, suggesting an implication of cue saliency in the vividness of a spatial memory.

  2. Modulation of persistent magnetoresistance by piezo-strain effect in manganite-based heterostructures

    Science.gov (United States)

    Li, W.; Yan, H.; Chai, X. J.; Wang, S. H.; Dong, X. L.; Ren, L. X.; Chen, C. L.; Jin, K. X.

    2017-05-01

    Persistent magnetoresistance effects in the phase-separated Pr0.65(Ca0.25Sr0.75)0.35MnO3/SrTiO3 and Pr0.65(Ca0.25Sr0.75)0.35MnO3/0.7PbMg1/3Nb2/3O3-0.3PbTiO3 heterostructures under a low magnetic field are investigated. It is observed that the persistent magnetoresistance effects decrease with increasing temperatures and the values for the heterostructures on 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 and SrTiO3 substrates are about 86.6% and 33.2% at 40 K, respectively. More interestingly, the applied electric field on the 0.7PbMg1/3Nb2/3O3-0.3PbTiO3 substrate can suppress the persistent magnetoresistance effect, indicating that different energy landscapes can be dramatically modulated by the piezo-strain. These results are discussed in terms of the strain-induced competition in the ferromagnetic state and the charge-ordering phase by the energy scenario, which provide a promising approach for designing devices of electric-magnetic memories in all-oxide heterostructures.

  3. Recent progress in tungsten oxides based memristors and their neuromorphological applications

    Science.gov (United States)

    Qu, Bo; Younis, Adnan; Chu, Dewei

    2016-09-01

    The advance in conventional silicon based semiconductor industry is now becoming indeterminacy as it still along the road of Moore's Law and concomitant problems associated with it are the emergence of a number of practical issues such as short channel effect. In terms of memory applications, it is generally believed that transistors based memory devices will approach to their scaling limits up to 2018. Therefore, one of the most prominent challenges today in semiconductor industry is the need of a new memory technology which is able to combine the best characterises of current devices. The resistive switching memories which are regarded as "memristors" thus gain great attentions thanks to their specific nonlinear electrical properties. More importantly, their behaviour resembles with the transmission characteristic of synapse in biology. Therefore, the research of synapses biomimetic devices based on memristor will certainly bring a great research prospect in studying synapse emulation as well as building artificial neural networks. Tungsten oxides (WO x ) exhibits many essential characteristics as a great candidate for memristive devices including: accredited endurance (over 105 cycles), stoichiometric flexibility, complimentary metal-oxide-semiconductor (CMOS) process compatibility and configurable properties including non-volatile rectification, memorization and learning functions. Herein, recent progress on Tungsten oxide based materials and its associating memory devices had been reviewed. The possible implementation of this material as a bio-inspired artificial synapse is also highlighted. The penultimate section summaries the current research progress for tungsten oxide based biological synapses and end up with several proposals that have been suggested for possible future developments.

  4. Dissociation and memory fragmentation in post-traumatic stress disorder: an evaluation of the dissociative encoding hypothesis.

    Science.gov (United States)

    Bedard-Gilligan, Michele; Zoellner, Lori A

    2012-01-01

    Several prominent theories of post-traumatic stress disorder (PTSD) posit that peritraumatic dissociation results in insufficient encoding of the trauma memory and that persistent dissociation prevents memory elaboration, resulting in memory fragmentation and PTSD. In this review we summarise the empirical literature on peritraumatic and trait dissociation and trauma narrative fragmentation as measured by meta-memory and rater/objective coding. Across 16 studies to date, the association between dissociation and fragmentation was most prominent when examining peritraumatic dissociation and patient's own ratings of memory fragmentation. This relationship did not hold when examining trait dissociation or rater-coded or computer-generated measures of fragmentation. Thus initial evidence points more towards a strong self-reported association between constructs that is not supported on more objective fragmentation coding. Measurement overlap, construct ambiguity, and exclusion of potential confounds may underlie lack of a strong association between dissociation and objective-rated fragmentation.

  5. Involvement of Glycogen Synthase Kinase-3 in the Mechanisms of Conditioned Food Aversion Memory Reconsolidation.

    Science.gov (United States)

    Nikitin, V P; Solntseva, S V; Kozyrev, S A

    2017-02-01

    Experiments were performed on the snails trained in conditioned food aversion for 3 days. Injection of TDZD-8 (glycogen synthase kinase-3 inhibitor, 2 mg/kg) in combination with reminder (presentation of a conditioned food stimulus) led to memory impairment developing 3 days after inhibitor/reminder exposure and followed by spontaneous recovery in 10 days. Injections of TDZD-8 in a dose of 4 or 20 mg/kg before reminder were shown to cause amnesia that persisted for more than 10 days. Memory recovery during repeated training was observed at the earlier period than after initial training. The impairment of memory reconsolidation by TDZD-8 after training of snails for 1 day was less pronounced than under standard training conditions (3 days). The effect of a glycogen synthase kinase-3 inhibitor during memory reconsolidation is probably followed by impairment of memory retrieval and/or partial loss, which can be compensated spontaneously or after repeated training.

  6. Proactive Interference and Item Similarity in Working Memory

    Science.gov (United States)

    Bunting, Michael

    2006-01-01

    Proactive interference (PI) may influence the predictive utility of working memory span tasks. Participants in one experiment (N=70) completed Ravens Advanced Progressive Matrices (RAPM) and multiple versions of operation span and probed recall, modified for the type of memoranda (digits or words). Changing memoranda within- or across-trials…

  7. Effects of selective phosphodiesterases-4 inhibitors on learning and memory: a review of recent research.

    Science.gov (United States)

    Peng, Sheng; Sun, Haiyan; Zhang, Xiaoqing; Liu, Gongjian; Wang, Guanglei

    2014-09-01

    Phosphodiesterase-4 (PDE-4) regulates the intracellular level of cyclic adenosine monophosphate. Recent studies demonstrated that PDE-4 inhibitors can counteract deficits in long-term memory caused by aging or increased expression of mutant forms of human amyloid precursor proteins, and can influence the process of memory function and cognitive enhancement. Therapeutics, such as ketamine, a drug used in clinical anesthesia, can also cause memory deficits as adverse effects. Targeting PDE-4 with selective inhibitors may offer a novel therapeutic strategy to prevent, slow the progress, and, eventually, treat memory deficits.

  8. Memory Training for Individuals with Alzheimer’s Disease Improves Name Recall

    OpenAIRE

    Kesslak, J. P.; Nackoul, K.; Sandman, C. A.

    1997-01-01

    Alzheimer’s disease is clinically characterized by a variety of progressive cognitive deficits, most notably an impaired ability to acquire new information, such as name recall. Eleven demented patients and 11 controls participated in a 4 week memory program that included training in name–face recall. Individuals were taught strategies for name–face rehearsal, and administered task specific and standardized tests to assess the intervention efficacy. During the memory training patients improve...

  9. Every breath you take: the impact of environment on resident memory CD8 T cells in the lung.

    Science.gov (United States)

    Shane, Hillary L; Klonowski, Kimberly D

    2014-01-01

    Resident memory T cells (TRM) are broadly defined as a population of T cells, which persist in non-lymphoid sites long-term, do not re-enter the circulation, and are distinct from central memory T cells (TCM) and circulating effector memory T cells (TEM). Recent studies have described populations of TRM cells in the skin, gut, lungs, and nervous tissue. However, it is becoming increasingly clear that the specific environment in which the TRM reside can further refine their phenotypical and functional properties. Here, we focus on the TRM cells that develop following respiratory infection and reside in the lungs and the lung airways. Specifically, we will review recent studies that have described some of the requirements for establishment of TRM cells in these tissues, and the defining characteristics of TRM in the lungs and lung airways. With continual bombardment of the respiratory tract by both pathogenic and environmental antigens, dynamic fluctuations in the local milieu including homeostatic resources and niche restrictions can impact TRM longevity. Beyond a comprehensive characterization of lung TRM cells, special attention will be placed on studies, which have defined how the microenvironment of the lung influences memory T cell survival at this site. As memory T cell populations in the lung airways are requisite for protection yet wane numerically over time, developing a comprehensive picture of factors which may influence TRM development and persistence at these sites is important for improving T cell-based vaccine design.

  10. Every breath you take: The impact of environment on resident memory CD8 T cells in the lung

    Directory of Open Access Journals (Sweden)

    Hillary eShane

    2014-07-01

    Full Text Available Resident memory T cells (TRM are broadly defined as a population of T cells which persist in non-lymphoid sites long term, do not re-enter the circulation, and are distinct from central memory T cells (TCM and circulating effector memory T cells (TEM. Recent studies have described populations of TRM cells in the skin, gut, lungs and nervous tissue. However, it is becoming increasingly clear that the specific environment in which the TRM reside can further refine their phenotypical and functional properties. Here, we focus on the TRM cells that develop following respiratory infection and reside in the lungs and the lung airways. Specifically, we will review recent studies that have described some of the requirements for establishment of TRM cells in these tissues, and the defining characteristics of TRM in the lungs and lung airways. With continual bombardment of the respiratory tract by both pathogenic and environmental antigens, dynamic fluctuations in the local milieu including homeostatic resources and niche restrictions can impact TRM longevity. Beyond a comprehensive characterization of lung TRM cells, special attention will be placed on studies which have defined how the microenvironment of the lung influences memory T cell survival at this site. As memory T cell populations in the lung airways are requisite for protection yet wane numerically over time, developing a comprehensive picture of factors which may influence TRM development and persistence at these sites is important for improving T cell-based vaccine design.

  11. Solid waste containing persistent organic pollutants in Serbia: From precautionary measures to the final treatment (case study).

    Science.gov (United States)

    Stevanovic-Carapina, Hristina; Milic, Jelena; Curcic, Marijana; Randjelovic, Jasminka; Krinulovic, Katarina; Jovovic, Aleksandar; Brnjas, Zvonko

    2016-07-01

    Sustainable solid waste management needs more dedicated attention in respect of environmental and human health protection. Solid waste containing persistent organic pollutants is of special concern, since persistent organic pollutants are persistent, toxic and of high risk to human health and the environment. The objective of this investigation was to identify critical points in the Serbian system of solid waste and persistent organic pollutants management, to assure the life cycle management of persistent organic pollutants and products containing these chemicals, including prevention and final destruction. Data were collected from the Serbian competent authorities, and led us to identify preventive actions for solid waste management that should reduce or minimise release of persistent organic pollutants into the environment, and to propose actions necessary for persistent organic pollutants solid waste. The adverse impact of persistent organic pollutants is multidimensional. Owing to the lack of treatment or disposal plants for hazardous waste in Serbia, the only option at the moment to manage persistent organic pollutants waste is to keep it in temporary storage and when conditions are created (primarily financial), such waste should be exported for destruction in hazardous waste incinerators. Meanwhile, it needs to be assured that any persistent organic pollutants management activity does not negatively impact recycling flows or disturb progress towards a more circular economy in Serbia. © The Author(s) 2016.

  12. The role of motor memory in action selection and procedural learning: insights from children with typical and atypical development.

    Science.gov (United States)

    Tallet, Jessica; Albaret, Jean-Michel; Rivière, James

    2015-01-01

    Motor memory is the process by which humans can adopt both persistent and flexible motor behaviours. Persistence and flexibility can be assessed through the examination of the cooperation/competition between new and old motor routines in the motor memory repertoire. Two paradigms seem to be particularly relevant to examine this competition/cooperation. First, a manual search task for hidden objects, namely the C-not-B task, which allows examining how a motor routine may influence the selection of action in toddlers. The second paradigm is procedural learning, and more precisely the consolidation stage, which allows assessing how a previously learnt motor routine becomes resistant to subsequent programming or learning of a new - competitive - motor routine. The present article defends the idea that results of both paradigms give precious information to understand the evolution of motor routines in healthy children. Moreover, these findings echo some clinical observations in developmental neuropsychology, particularly in children with Developmental Coordination Disorder. Such studies suggest that the level of equilibrium between persistence and flexibility of motor routines is an index of the maturity of the motor system.

  13. The effects of acute social isolation on long-term social recognition memory.

    Science.gov (United States)

    Leser, Noam; Wagner, Shlomo

    2015-10-01

    The abilities to recognize individual animals of the same species and to distinguish them from other individuals are the basis for all mammalian social organizations and relationships. These abilities, termed social recognition memory, can be explored in mice and rats using their innate tendency to investigate novel social stimuli more persistently than familiar ones. Using this methodology it was found that social recognition memory is mediated by a specific neural network in the brain, the activity of which is modulated by several molecules, such the neuropeptides oxytocin and vasopressin. During the last 15 years several independent studies have revealed that social recognition memory of mice and rats depends upon their housing conditions. Specifically, long-term social recognition memory cannot be formed as shortly as few days following social isolation of the animal. This rapid and reversible impairment caused by acute social isolation seems to be specific to social memory and has not been observed in other types of memory. Here we review these studies and suggest that this unique system may serve for exploring of the mechanisms underlying the well-known negative effects of partial or perceived social isolation on human mental health. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Science.gov (United States)

    Phan, Mimi L.; Bieszczad, Kasia M.

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded. PMID:26881129

  15. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation.

    Science.gov (United States)

    Phan, Mimi L; Bieszczad, Kasia M

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  16. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    Directory of Open Access Journals (Sweden)

    Mimi L. Phan

    2016-01-01

    Full Text Available Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded.

  17. Two memories for geographical slant: separation and interdependence of action and awareness

    Science.gov (United States)

    Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    1998-01-01

    The present study extended previous findings of geographical slant perception, in which verbal judgments of the incline of hills were greatly overestimated but motoric (haptic) adjustments were much more accurate. In judging slant from memory following a brief or extended time delay, subjects' verbal judgments were greater than those given when viewing hills. Motoric estimates differed depending on the length of the delay and place of response. With a short delay, motoric adjustments made in the proximity of the hill did not differ from those evoked during perception. When given a longer delay or when taken away from the hill, subjects' motoric responses increased along with the increase in verbal reports. These results suggest two different memorial influences on action. With a short delay at the hill, memory for visual guidance is separate from the explicit memory informing the conscious response. With short or long delays away from the hill, short-term visual guidance memory no longer persists, and both motor and verbal responses are driven by an explicit representation. These results support recent research involving visual guidance from memory, where actions become influenced by conscious awareness, and provide evidence for communication between the "what" and "how" visual processing systems.

  18. Memory CD8+ T Cells: Orchestrators and Key Players of Innate Immunity?

    Directory of Open Access Journals (Sweden)

    Grégoire Lauvau

    2016-09-01

    Full Text Available Over the past decades, the dichotomy between innate and adaptive immune responses has largely dominated our understanding of immunology. Upon primary encounter with microbial pathogens, differentiation of adaptive immune cells into functional effectors usually takes several days or even longer, making them contribute to host protection only late during primary infection. However, once generated, antigen-experienced T lymphocytes can persist in the organism and constitute a pool of memory cells that mediate fast and effective protection to a recall infection with the same microbial pathogen. Herein, we challenge this classical paradigm by highlighting the "innate nature" of memory CD8+ T cells. First, within the thymus or in the periphery, naïve CD8+ T cells may acquire phenotypic and functional characteristics of memory CD8+ T cells independently of challenge with foreign antigens. Second, both the "unconventional" and the "conventional" memory cells can rapidly express protective effector functions in response to sets of inflammatory cytokines and chemokines signals, independent of cognate antigen triggering. Third, memory CD8+ T cells can act by orchestrating the recruitment, activation, and licensing of innate cells, leading to broad antimicrobial states. Thus, collectively, memory CD8+ T cells may represent important actors of innate immune defenses.

  19. The progress of Chinese burn medicine from the Third Military Medical University-in memory of its pioneer, Professor Li Ao.

    Science.gov (United States)

    Li, Haisheng; Zhou, Junyi; Peng, Yizhi; Zhang, Jiaping; Peng, Xi; Luo, Qizhi; Yuan, Zhiqiang; Yan, Hong; Peng, Daizhi; He, Weifeng; Wang, Fengjun; Liang, Guangping; Huang, Yuesheng; Wu, Jun; Luo, Gaoxing

    2017-01-01

    Professor Li Ao was one of the founders of Chinese burn medicine and one of the most renowned doctors and researchers of burns in China. He established one of the Chinese earliest special departments for burns at Third Military Medical University (TMMU) in 1958. To memorialize Professor Li Ao on his 100th birthday in 2017 and introduce our extensive experience, it is our honor to briefly review the development and achievement of the Chinese burn medicine from TMMU. The epidemiology and outcomes of admitted burn patients since 1958 were reviewed. Furthermore, main achievements of basic and clinical research for the past roughly 60 years were presented. These achievements mainly included the Chinese Rule of Nine, fluid resuscitation protocol, experience in inhalation injury, wound treatment strategies, prevention and treatment of burn infections, nutrition therapy, organ support therapies, and rehabilitation. The progress shaped and enriched modern Chinese burn medicine and promoted the development of world burn medicine.

  20. Chronic methamphetamine exposure produces a delayed, long-lasting memory deficit.

    Science.gov (United States)

    North, Ashley; Swant, Jarod; Salvatore, Michael F; Gamble-George, Joyonna; Prins, Petra; Butler, Brittany; Mittal, Mukul K; Heltsley, Rebecca; Clark, John T; Khoshbouei, Habibeh

    2013-05-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment. Whether this is due to long-term deficits in short-term memory and/or hippocampal plasticity remains unclear. Recently, we reported that METH increases baseline synaptic transmission and reduces LTP in an ex vivo preparation of the hippocampal CA1 region from young mice. In the current study, we tested the hypothesis that a repeated neurotoxic regimen of METH exposure in adolescent mice decreases hippocampal synaptic plasticity and produces a deficit in short-term memory. Contrary to our prediction, there was no change in the hippocampal plasticity or short-term memory when measured after 14 days of METH exposure. However, we found that at 7, 14, and 21 days of drug abstinence, METH-exposed mice exhibited a deficit in spatial memory, which was accompanied by a decrease in hippocampal plasticity. Our results support the interpretation that the deleterious cognitive consequences of neurotoxic levels of METH exposure may manifest and persist after drug abstinence. Therefore, therapeutic strategies should consider short-term as well as long-term consequences of methamphetamine exposure. Copyright © 2012 Wiley Periodicals, Inc.