WorldWideScience

Sample records for peroxidase-mediated phenol coupling

  1. Peroxidase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qingguo; Weber, Walter J., Jr.

    2003-03-26

    This study focuses on elucidation of the reaction behaviors of peroxidase-mediated phenol coupling in the presence of soil/sediment materials. Our goal is a mechanistic understanding of the influences of geosorbent materials on enzymatic coupling reactions in general and the development of methods for predicting such influences. Extensive experimental investigations of coupling reactions were performed under strategically selected conditions in systems containing model geosorbents having different properties and chemical characteristics. The geosorbents tested were found to influence peroxidase-mediated phenol coupling through one or both of two principal mechanisms; i.e., (1) mitigation of enzyme inactivation and/or (2) participation in cross-coupling reactions. Such influences were found to correlate with the chemical characteristics of the sorbent materials and to be simulated well by a modeling approach designed in this paper. The results of the study have important implications for potential engineering implementation and enhancement of enzymatic coupling reactions in soil/subsurface remediation practice.

  2. Horseradish peroxidase-modified porous silicon for phenol monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kermad, A., E-mail: amina_energetique@yahoo.fr [Unité de Recherche Matériaux et Energies Renouvelables (URMER), Département de Physique, Faculté des Sciences, Université Abou Baker Belkaid, B.P. 119, Tlemcen 13000 (Algeria); Sam, S., E-mail: Sabrina.sam@polytechnique.edu [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), 02 Bd. Frantz-Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Ghellai, N., E-mail: na_ghellai@yahoo.fr [Unité de Recherche Matériaux et Energies Renouvelables (URMER), Département de Physique, Faculté des Sciences, Université Abou Baker Belkaid, B.P. 119, Tlemcen 13000 (Algeria); Khaldi, K., E-mail: Khadidjaphy@yahoo.fr [Unité de Recherche Matériaux et Energies Renouvelables (URMER), Département de Physique, Faculté des Sciences, Université Abou Baker Belkaid, B.P. 119, Tlemcen 13000 (Algeria); Gabouze, N., E-mail: ngabouze@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), 02 Bd. Frantz-Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria)

    2013-11-01

    Highlights: • Horseradish peroxidase enzyme (HRP) was covalently immobilized on porous silicon (PSi) surface. • Multistep strategy was used allowing the maintaining of the enzymatic activity of the immobilized enzyme. • Direct electron transfer has occurred between the immobilized enzyme and the surface. • Electrochemical measurements showed a response of HRP-modified PSi toward phenol in the presence of H{sub 2}O{sub 2}. -- Abstract: In this study, horseradish peroxidase enzyme (HRP) was covalently immobilized on porous silicon (PSi) surface using multistep strategy. First, acid terminations were generated on hydrogenated PSi surface by thermal hydrosilylation of undecylenic acid. Then, the carboxyl-terminated monolayer was transformed to active ester (succinimidyl ester) using N-hydroxysuccinimide (NHS) in the presence of the coupling agent N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC). Subsequently, the enzyme was anchored on the surface via an amidation reaction. The structure of the PSi layers was observed by scanning electron microscopy (SEM). Infrared spectroscopy (FTIR) and contact angle measurements confirmed the efficiency of the modification at each step of the functionalization. Cyclic voltammetry was recorded using the HRP-modified PSi as working electrode. The results show that the enzymatic activity of the immobilized HRP is preserved and in the presence of hydrogen peroxide, the enzyme oxidizes phenolic molecules which were subsequently reduced at the modified-PSi electrode.

  3. Horseradish peroxidase-modified porous silicon for phenol monitoring

    International Nuclear Information System (INIS)

    Kermad, A.; Sam, S.; Ghellai, N.; Khaldi, K.; Gabouze, N.

    2013-01-01

    Highlights: • Horseradish peroxidase enzyme (HRP) was covalently immobilized on porous silicon (PSi) surface. • Multistep strategy was used allowing the maintaining of the enzymatic activity of the immobilized enzyme. • Direct electron transfer has occurred between the immobilized enzyme and the surface. • Electrochemical measurements showed a response of HRP-modified PSi toward phenol in the presence of H 2 O 2 . -- Abstract: In this study, horseradish peroxidase enzyme (HRP) was covalently immobilized on porous silicon (PSi) surface using multistep strategy. First, acid terminations were generated on hydrogenated PSi surface by thermal hydrosilylation of undecylenic acid. Then, the carboxyl-terminated monolayer was transformed to active ester (succinimidyl ester) using N-hydroxysuccinimide (NHS) in the presence of the coupling agent N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC). Subsequently, the enzyme was anchored on the surface via an amidation reaction. The structure of the PSi layers was observed by scanning electron microscopy (SEM). Infrared spectroscopy (FTIR) and contact angle measurements confirmed the efficiency of the modification at each step of the functionalization. Cyclic voltammetry was recorded using the HRP-modified PSi as working electrode. The results show that the enzymatic activity of the immobilized HRP is preserved and in the presence of hydrogen peroxide, the enzyme oxidizes phenolic molecules which were subsequently reduced at the modified-PSi electrode

  4. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: Horseradish peroxidase immobilized on magnetic beads

    International Nuclear Information System (INIS)

    Bayramoglu, Guelay; Arica, M. Yakup

    2008-01-01

    Horseradish peroxidase was immobilized on the magnetic poly(glycidylmethacrylate-co-methylmethacrylate) (poly(GMA-MMA)), via covalent bonding and used for the treatment of phenolic wastewater in continuous systems. For this purposes, horseradish peroxidase (HRP) was covalently immobilized onto magnetic poly(GMA-MMA) beds using glutaraldehyde (GA) as a coupling agent. The maximum HRP immobilization capacity of the magnetic poly(GMA-MMA)-GA beads was 3.35 mg g -1 . The immobilized HRP retained 79% of the activity of the free HRP used for immobilization. The immobilized HRP was used for the removal of phenol and p-chlorophenol via polymerization of dissolved phenols in the presence of hydrogen peroxide (H 2 O 2 ). The effect of pH and temperature on the phenol oxidation rate was investigated. The results were compared with the free HRP, which showed that the optimum pH value for the immobilized HRP is similar to that for the free HRP. The optimum pH value for free and immobilized HRP was observed at pH 7.0. The optimum temperature for phenols oxidation with immobilized HRP was between 25 and 35 deg. C and the immobilized HRP has more resistance to temperature inactivation than that of the free form. Finally, the immobilized HRP was operated in a magnetically stabilized fluidized bed reactor, and phenols were successfully removed in the enzyme reactor

  5. Potential application of hemoglobin as an alternative to peroxidase in a phenol biosensor

    International Nuclear Information System (INIS)

    Kafi, A.K.M.; Lee, Dong-Yun; Park, Sang-Hyun; Kwon, Young-Soo

    2008-01-01

    This work describes a new amperometric biosensor for detecting phenolic compounds. The sensor was designed by immobilizing Hemoglobin (Hb) in a sol-gel matrix onto a carbon electrode. Using the peroxidase activity of Hb, the phenolic compound can be reduced in the presence of H 2 O 2 . The biosensor's performance in phenolic compound detection was based on mediated electron transfer by Hb. The direct electron transfer of Hb can be avoided by use of the sol-gel matrix. The proposed biosensor presents a very sensitive response for phenolic compounds at an applied potential of 0.0 mV vs. Ag/AgCl. The parameters of the fabrication process for the electrode were optimized. Experimental conditions influencing the biosensor performance, such as pH and potential, were investigated and assessed. Various types of phenolic compounds were detected. Among them, using the optimized conditions, a linearity for the detection of the phenol was observed from 5 μM to 50 μM. Biosensor response levels after 30 days were at more than 80% of their initial response readings level. The response time of the biosensor was about 10 s

  6. Oxidizability of unsaturated fatty acids and of a non-phenolic lignin structure in the manganese peroxidase-dependent lipid peroxidation system

    Science.gov (United States)

    Alexander N. Kapich; Tatyana V. Korneichik; Annele Hatakka; Kenneth E. Hammel

    2010-01-01

    Unsaturated fatty acids have been proposed to mediate the oxidation of recalcitrant, non-phenolic lignin structures by fungal manganese peroxidases (MnP), but their precise role remains unknown. We investigated the oxidizability of three fatty acids with varying degrees of polyunsaturation (linoleic, linolenic, and arachidonic acids) by measuring conjugated dienes...

  7. Phenol remediation by peroxidase from an invasive mesquite: Turning an environmental wound into wisdom.

    Science.gov (United States)

    Singh, Savita; Mishra, Ruchi; Sharma, Radhey Shyam; Mishra, Vandana

    2017-07-15

    The present study examines mesquite (Prosopis juliflora), an invasive species, to yield peroxidase that may reduce hazards of phenolics to living organisms. As low as 0.3U of low-purity mesquite peroxidase (MPx) efficiently remove phenol and chlorophenols (90-92%) compared with Horseradish peroxidase (HRP) (40-60%). MPx shows a very high removal efficiency (40-50%) at a wide range of pH (2-9) and temperature (20-80°C), as opposed to HRP (15-20%). At a high-level of the substrate (2.4mM) and without the addition of PEG, MPx maintains a significant phenolic removal (60-≥92%) and residual activity (∼25%). It proves the superiority of MPx over HRP, which showed insignificant removal (10-12%) under similar conditions, and no residual activity even with PEG addition. The root elongation and plant growth bioassays confirm phenolic detoxification by MPx. Readily availability of mesquite across the countries and easy preparation of MPx from leaves make this tree as a sustainable source for a low-technological solution for phenol remediation. This study is the first step towards converting a biological wound of invasive species into wisdom and strength for protecting the environment from phenol pollution. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan

    2014-02-20

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan; Corgié , Sté phane C.; Aneshansley, Daniel J.; Wang, Peng; Walker, Larry P.; Giannelis, Emmanuel P.

    2014-01-01

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The reactivity of phenolic and non-phenolic residual kraft lignin model compounds with Mn(II)-peroxidase from Lentinula edodes.

    Science.gov (United States)

    Crestini, C; D'Annibale, A; Sermanni, G G; Saladino, R

    2000-02-01

    Three phenolic model compounds representing bonding patterns of residual kraft lignin were incubated with manganese peroxidase from Lentinula edodes. Extensive degradation of all the phenolic models, mainly occurring via side-chain benzylic oxidation, was observed. Among the tested model compounds the diphenylmethane alpha-5 phenolic model was found to be the most reactive, yielding several products showing oxidation and fragmentation at the bridging position. The non-phenolic 5-5' biphenyl and 5-5' diphenylmethane models were found unreactive.

  11. Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites.

    Science.gov (United States)

    Kim, Su Jin; Joo, Jeong Chan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan

    2015-04-01

    Peroxidases have great potential as industrial biocatalysts. In particular, the oxidative polymerization of phenolic compounds catalyzed by peroxidases has been extensively examined because of the advantage of this method over other conventional chemical methods. However, the industrial application of peroxidases is often limited because of their rapid inactivation by phenoxyl radicals during oxidative polymerization. In this work, we report a novel protein engineering approach to improve the radical stability of horseradish peroxidase isozyme C (HRPC). Phenylalanine residues that are vulnerable to modification by the phenoxyl radicals were identified using mass spectrometry analysis. UV-Vis and CD spectra showed that radical coupling did not change the secondary structure or the active site of HRPC. Four phenylalanine (Phe) residues (F68, F142, F143, and F179) were each mutated to alanine residues to generate single mutants to examine the role of these sites in radical coupling. Despite marginal improvement of radical stability, each single mutant still exhibited rapid radical inactivation. To further reduce inactivation by radical coupling, the four substitution mutations were combined in F68A/F142A/F143A/F179A. This mutant demonstrated dramatic enhancement of radical stability by retaining 41% of its initial activity compared to the wild-type, which was completely inactivated. Structure and sequence alignment revealed that radical-vulnerable Phe residues of HPRC are conserved in homologous peroxidases, which showed the same rapid inactivation tendency as HRPC. Based on our site-directed mutagenesis and biochemical characterization, we have shown that engineering radical-vulnerable residues to eliminate multiple radical coupling can be a good strategy to improve the stability of peroxidases against radical attack. © 2014 Wiley Periodicals, Inc.

  12. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    International Nuclear Information System (INIS)

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-01-01

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H_2O_2 concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K_C_A_T and K_C_A_T/K_M values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H_2O_2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H_2O_2 concentration, while the optimal pH and H_2O_2 concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL"−"1 SBP in 30 min reaction time, while an HRP dose of 0.3 U mL"−"1 was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K_C_A_T) and catalytic efficiency (K_C_A_T/K_M) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment.

  13. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhua; Peng, Jianbiao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhang, Ya [Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of the People’s Republic of China, Nanjing 210042 (China); Ji, Yuefei [College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095 (China); Shi, Huanhuan; Mao, Liang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Gao, Shixiang, E-mail: ecsxg@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-06-05

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H{sub 2}O{sub 2} concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K{sub CAT} and K{sub CAT}/K{sub M} values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H{sub 2}O{sub 2} concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H{sub 2}O{sub 2} concentration, while the optimal pH and H{sub 2}O{sub 2} concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL{sup −1} SBP in 30 min reaction time, while an HRP dose of 0.3 U mL{sup −1} was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K{sub CAT}) and catalytic efficiency (K{sub CAT}/K{sub M}) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water

  14. Effect of phenol on germination capacity and polyphenol oxidase, peroxidase and catalase activities in lettuce

    Directory of Open Access Journals (Sweden)

    Tadić Vojin

    2014-01-01

    Full Text Available In this study we examined the activities of polyphenol oxidase (PPO and antioxidant enzymes, peroxidase (POX and catalase (CAT during lettuce seed germination at different concentrations of phenol. Out of eleven varieties of lettuce, four were chosen according to their germination tolerance to phenol as follows: plants exhibiting high (Ljubljanska ledenka - LJL and Nansen - N and low toleranace (Little Gem - LG and Majska kraljica - MK. A decrease in germination efficiency after exposure to LD50 of phenol was determined for these four varieties. The effects of phenol treatment on POX, CAT and PPO activities were determined after 4, 5, 6, 7 and 8 days of growth at LD50 concentrations. A trend of increased peroxidase activity was observed in seeds grown on LD50 of phenol compared to control seeds. A significant increase in CAT activity was observed at the beginning of treatment for MK, LG and N in seeds grown on phenol as well as in control seeds. A trend of increased PPO activity was observed in all control seeds. We also investigated the affinity of PPO for two different substrates that were used for the determination of enzyme activity. Our results show that LJL and N are the varieties most tolerant to growth on phenol. Here we report on the activities of their antioxidant enzymes and PPO during seed germination. [Projekat Ministarstva nauke Republike Srbije, br. ON173017

  15. Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures.

    Science.gov (United States)

    Hilgers, Roelant; Vincken, Jean-Paul; Gruppen, Harry; Kabel, Mirjam A

    2018-02-05

    Laccase-mediator systems (LMS) have been widely studied for their capacity to oxidize the nonphenolic subunits of lignin (70-90% of the polymer). The phenolic subunits (10-30% of the polymer), which can also be oxidized without mediators, have received considerably less attention. Consequently, it remains unclear to what extent the presence of a mediator influences the reactions of the phenolic subunits of lignin. To get more insight in this, UHPLC-MS was used to study the reactions of a phenolic lignin dimer (GBG), initiated by a laccase from Trametes versicolor , alone or in combination with the mediators HBT and ABTS. The role of HBT was negligible, as its oxidation by laccase occurred slowly in comparison to that of GBG. Laccase and laccase/HBT oxidized GBG at a comparable rate, resulting in extensive polymerization of GBG. In contrast, laccase/ABTS converted GBG at a higher rate, as GBG was oxidized both directly by laccase but also by ABTS radical cations, which were rapidly formed by laccase. The laccase/ABTS system resulted in Cα oxidation of GBG and coupling of ABTS to GBG, rather than polymerization of GBG. Based on these results, we propose reaction pathways of phenolic lignin model compounds with laccase/HBT and laccase/ABTS.

  16. Cooxidation of styrene by horseradish peroxidase and phenols. A biochemical model for protein-mediated cooxidation

    International Nuclear Information System (INIS)

    Ortiz de Montellano, P.R.; Grab, L.A.

    1987-01-01

    Styrene is oxidized to styrene oxide and benzaldehyde when incubated with horseradish peroxidase, H 2 O 2 , and 4-methylphenol. Styrene oxide is not formed in the absence of any of these reaction components or of molecular oxygen. The coupling products 2-(4-methylphenoxy)-1-phenylethane, 2-(4-methylphenoxy)-1-phenylethan-1-ol, and 2-(4-methylphenoxy)-2-phenylethan-1-ol are not formed, but the ortho-linked dimer of 4-methylphenol is a major product. The epoxide oxygen is labeled in the presence of 18 O 2 but not H 2 18 O 2 . Styrene oxide formation is not inhibited by mannitol or superoxide dismutase. The stereochemistry of trans-[1- 2 H]styrene is partially scrambled in the epoxide product. EPR signals attributable to the 2,4-dihydroxyl-5-methylphenoxy radical, a product of the oxidation of 4-methylcatechol, are observed if Zn 2+ is added to stabilize the radical. This radical is only detected in the presence of styrene. The results imply that styrene is epoxidized by the hydroperoxy radical generated by addition of molecular oxygen to the 4-methylphenoxy radical. The epoxidation mimics the chemistry proposed to occur in the protein-mediated cooxidation of styrene by hemoglobin and myoglobin

  17. Inhibition of Heme Peroxidase During Phenol Derivatives Oxidation. Possible Molecular Cloaking of the Active Center

    Directory of Open Access Journals (Sweden)

    Juozas Kulys

    2005-10-01

    Full Text Available Abstract: Ab initio quantum chemical calculations have been applied to the study of the molecular structure of phenol derivatives and oligomers produced during peroxidasecatalyzed oxidation. The interaction of substrates and oligomers with Arthromyces ramosus peroxidase was analyzed by docking methods. The most possible interaction site of oligomers is an active center of the peroxidase. The complexation energy increases with increasing oligomer length. However, the complexed oligomers do not form a precise (for the reaction hydrogen bonding network in the active center of the enzyme. It seems likely that strong but non productive docking of the oligomers determines peroxidase inhibition during the reaction.

  18. Stabilization of enzymatically polymerized phenolic chemicals in a model soil organic matter-free geomaterial.

    Science.gov (United States)

    Palomo, Mónica; Bhandari, Alok

    2012-01-01

    A variety of remediation methods, including contaminant transformation by peroxidase-mediated oxidative polymerization, have been proposed to manage soils and groundwater contaminated with chlorinated phenols. Phenol stabilization has been successfully observed during cross polymerization between phenolic polymers and soil organic matter (SOM) for soils with SOM >3%. This study evaluates peroxidase-mediated transformation and removal of 2,4-dichlorophenol (DCP) from an aqueous phase in contact with a natural geomaterial modified to contain negligible (soils with higher SOM. The SOM-free sorbent was generated by removing SOM using a NaOCl oxidation. When horseradish peroxidase (HRP) was used to induce polymerization of DCP, the soil-water phase distribution relationship (PDR) of DCP polymerization products (DPP) was complete within 1 d and PDRs did not significantly change over the 28 d of study. The conversion of DCP to DPP was close to 95% efficient. Extractable solute consisted entirely of DPP with 5% or less of unreacted DCP. The aqueous extractability of DPP from SOM-free geomaterial decreased at longer contact times and at smaller residual aqueous concentrations of DPP. DCP stabilization appeared to have resulted from a combination of sorption, precipitation, and ligand exchange between oligomeric products and the exposed mineral surfaces. Modification of the mineral surface through coverage with DPP enhanced the time-dependent retention of the oligomers. DPP stabilization in SOM-free geomaterial was comparable with that reported in the literature with soil containing SOM contents >1%. Results from this study suggest that the effectiveness of HRP-mediated stabilization of phenolic compounds not only depends on the cross-coupling with SOM, but also on the modification of the surface of the sorbent that can augment affinity with oligomers and enhance stabilization. Coverage of the mineral surface by phenolic oligomers may be analogous to SOM that can potentially

  19. Degradation kinetics of peroxidase enzyme, phenolic content, and physical and sensorial characteristics in broccoli (Brassica oleracea L. ssp. Italica) during blanching.

    Science.gov (United States)

    Gonçalves, Elsa M; Pinheiro, Joaquina; Alegria, Carla; Abreu, Marta; Brandão, Teresa R S; Silva, Cristina L M

    2009-06-24

    The effects of water blanching treatment on peroxidase inactivation, total phenolic content, color parameters [-a*/b* and hue (h degrees*)], texture (maximum shear force), and sensory attributes (color and texture, evaluated by a trained panel) of broccoli (Brassica oleracea L. ssp. Italica) were studied at five temperatures (70, 75, 80, 85, and 90 degrees C). Experimental results showed that all studied broccoli quality parameters suffered significative changes due to blanching treatments. The vegetal total phenolic content showed a marked decline. Degradation on objective color and texture measurements and alterations in sensorial attributes were detected. Correlations between sensory and instrumental measurements have been found. Under the conditions 70 degrees C and 6.5 min or 90 degrees C and 0.4 min, 90% of the initial peroxidase activity was reduced. At these conditions, no significant alterations were detected by panelists, and a small amount of phenolic content was lost (ca. 16 and 10%, respectively). The peroxidase inactivation and phenolic content degradation were found to follow first-order reaction models. The zero-order reaction model showed a good fit to the broccoli color (-a*/b* and h degrees*), texture, and sensory parameters changes. The temperature effect was well-described by the Arrhenius law.

  20. Phenol degradation catalyzed by a peroxidase mimic constructed through the grafting of heme onto metal-organic frameworks.

    Science.gov (United States)

    Jiang, Wei; Yang, Jiebing; Wang, Xinghuo; Han, Haobo; Yang, Yan; Tang, Jun; Li, Quanshun

    2018-01-01

    The aim of this work was to construct a peroxidase mimic for achieving the phenol degradation through Fenton reaction. The enzyme mimic was synthesized through the conjugation of heme with the amino group of 2-amino-1,4-benzene dicarboxylate in UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. Compared to free heme, the composite Heme-ZrMOF exhibited an obviously enhanced ability for phenol degradation with up to 97.3% of phenol removal after 2h. Meanwhile, it could achieve the easy separation of catalyst from the system and the elimination of iron residues in the process of phenol degradation. Finally, the catalyst Heme-ZrMOF was observed to possess good recyclability in the phenol degradation with still 76.2% of phenol removal after 4 cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Towards semisynthetic natural compounds with a biaryl axis: Oxidative phenol coupling in Aspergillus niger.

    Science.gov (United States)

    Hugentobler, Katharina Gloria; Müller, Michael

    2018-04-01

    Regio- and stereoselective phenol coupling is difficult to achieve using synthetic strategies. However, in nature, cytochrome P450 enzyme-mediated routes are employed to achieve complete axial stereo- and regiocontrol in the biosynthesis of compounds with potent bioactivity. Here, we report a synthetic biology approach whereby the bicoumarin metabolic pathway in Aspergillus niger was specifically tailored towards the formation of new coupling products. This strategy represents a manipulation of the bicoumarin pathway in A. niger via interchange of the phenol-coupling biocatalyst and could be applied to other components of the pathway to access a variety of atropisomeric natural product derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A catalytic approach to estimate the redox potential of heme-peroxidases

    International Nuclear Information System (INIS)

    Ayala, Marcela; Roman, Rosa; Vazquez-Duhalt, Rafael

    2007-01-01

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple

  3. Screening of Coprinus species for the production of extracellular peroxidase and evaluation of its applicability to the treatment of aqueous phenol

    International Nuclear Information System (INIS)

    Ikehata, K.; Buchanan, I.D.

    2002-01-01

    Twenty-nine strains of Coprinus species comprising 16 strains from 12 identified species and 13 unidentified strains as well as one Arthromyces ramosus strain were screened for the production of extracellular peroxidase. Among the fungi examined, three strains of C. cinereus, UAMH 4103, UAMH 7907 and IFO 30116, as well as one Coprinus sp., UAMH 10067, which was isolated from urea treated soil, were shown to produce large amounts of extracellular peroxidase. The performance of crude peroxidase, obtained from liquid culture of C. cinereus, (CIP) on phenol removal from synthetic wastewater was evaluated and compared with that of purified horseradish peroxidase and A. ramosus peroxidase. Although crude CIP performed better than both purified enzymes, its superiority vanished in the presence of poly(ethylene glycol), a known protective agent of peroxidase. This suggests that the residual soluble substances present in crude CIP have protective effects similar to those of poly(ethylene glycol). (author)

  4. Comparison of content in phenolic compounds, polyphenol oxidase and peroxidase in grains of fifty sorghum cultivars from Burkina Faso.

    NARCIS (Netherlands)

    Dicko, M.H.; Hilhorst, M.H.; Gruppen, H.; Traore, A.S.; Laane, N.C.M.; Berkel, van W.J.H.; Voragen, A.G.J.

    2002-01-01

    Analysis of fifty sorghum [Sorghum bicolor (L.) Moench] varieties used in Burkina Faso showed that they have different contents of phenolic compounds, peroxidase (POX), and polyphenol oxidase (PPO). Most of the varieties (82%) had a tannin content less than 0.25% (w/w). POX specific activity was

  5. Peroxidase catalyzed conjugation of peptides, proteins and polysaccharides via endogenous and exogenous phenols.

    NARCIS (Netherlands)

    Oudgenoeg, G.

    2004-01-01

    The research was directed towards peroxidase mediated cross-linking of proteins and polysaccharides. Two approaches were explored, cross-linking by use of ferulic acid (FA)oand cross-linking by use

  6. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  7. Fenóis totais, peroxidase e suas relações com a compatibilidade de mudas de pessegueiro interenxertadas Total phenols content, peroxidase activity and their relationship with the compatibility of the intergrafted seedlings of peach tree

    Directory of Open Access Journals (Sweden)

    Charles Allan Telles

    2009-02-01

    Full Text Available O conhecimento das relações entre porta-enxerto e copa é vital para produção de mudas sem problemas de compatibilidade. Nesse sentido, a atividade de peroxidases e a concentração de fenóis apresentam grande importância na união entre enxerto e porta-enxerto, influenciando na resposta de compatibilidade de enxertia. Objetivou-se, neste trabalho, avaliar a compatibilidade de enxertia em mudas de pessegueiro interenxertadas, quantificando a atividade da peroxidase e a concentração dos fenóis totais em cultivares do gênero Prunus, no período de crescimento vegetativo e de repouso. Amostras da casca foram processadas e quantificadas por espectrofotometria. Os tratamentos foram a combinação de dois porta-enxertos de pessegueiro ('Okinawa' e 'Capdeboscq', com dois interenxertos de ameixeira ('Irati' e 'Reubennel' e duas copas ('Chimarrita' e 'Coral', mais o damasqueiro Japonês e cerejeira 'Capulin', cultivados no viveiro da Embrapa Transferência de Tecnologia, Canoinhas-SC. O delineamento experimental foi inteiramente ao acaso, com três repetições e três plantas por parcela. Concluiu-se que a atividade da peroxidase e os fenóis totais apresentaram baixa variação entre o pessegueiro e a ameixeira, sendo compatíveis entre si. A atividade da peroxidase e os fenóis totais foram superiores no período de repouso das mudas. O damasqueiro e a cerejeira apresentaram alta incompatibilidade, quando enxertados sobre porta-enxertos de pessegueiro.The understanding of the biochemical relation between rootstock and scion is very important for the production of seedlings without incompatibility problems. The activity of peroxidases and the phenol concentration are very important to the union between scion and rootstock, influencing the graft compatibility. This work aimed to analyze the compatibility of graft in peach tree intergrafted seedlings, to determine the peroxidase activity and total phenols in cultivars of Prunus, during the

  8. Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor.

    Science.gov (United States)

    Chekin, Fereshteh; Gorton, Lo; Tapsobea, Issa

    2015-01-01

    This study compares the behaviour of direct and mediated electrochemistry of horseradish peroxidase (HRP) immobilised on screen-printed carbon electrodes (SPCEs), screen-printed carbon electrodes modified with carboxyl-functionalised multi-wall carbon nanotubes (MWCNT-SPCEs) and screen-printed carbon electrodes modified with carboxyl-functionalised single-wall carbon nanotubes (SWCNT-SPCEs). The techniques of cyclic voltammetry and amperometry in the flow mode were used to characterise the properties of the HRP immobilised on screen-printed electrodes. From measurements of the mediated and mediatorless currents of hydrogen peroxide reduction at the HRP-modified electrodes, it was concluded that the fraction of enzyme molecules in direct electron transfer (DET) contact with the electrode varies substantially for the different electrodes. It was observed that the screen-printed carbon electrodes modified with carbon nanotubes (MWCNT-SPCEs and SWCNT-SPCEs) demonstrated a substantially higher percentage (≈100 %) of HRP molecules in DET contact than the screen-printed carbon electrodes (≈60 %). The HRP-modified electrodes were used for determination of hydrogen peroxide in mediatorless mode. The SWCNT-SPCE gave the lowest detection limit (0.40 ± 0.09 μM) followed by MWCNT-SPCE (0.48 ± 0.07 μM) and SPCE (0.98 ± 0.2 μM). These modified electrodes were additionally developed for amperometric determination of phenolic compounds. It was found that the SWCNT-SPCE gave a detection limit for catechol of 110.2 ± 3.6 nM, dopamine of 640.2 ± 9.2 nM, octopamine of 3341 ± 15 nM, pyrogallol of 50.10 ± 2.9 nM and 3,4-dihydroxy-L-phenylalanine of 980.7 ± 8.7 nM using 50 μM H2O2 in the flow carrier.

  9. Peroxidase-mediated polymerization of 1-naphthol: impact of solution pH and ionic strength.

    Science.gov (United States)

    Bhandari, Alok; Xu, Fangxiang; Koch, David E; Hunter, Robert P

    2009-01-01

    Peroxidase-mediated oxidation has been proposed as a treatment method for naphthol-contaminated water. However, the impact of solution chemistry on naphthol polymerization and removal has not been documented. This research investigated the impact of pH and ionic strength on peroxidase-mediated removal of 1-naphthol in completely mixed batch reactors. The impact of hydrogen peroxide to 1-naphthol ratio and activity of horseradish peroxidase was also studied. Size exclusion chromatography was used to estimate the molecular weight distribution of oligomeric products, and liquid chromatography/mass spectrometry was used to estimate product structure. Naphthol transformation decreased with ionic strength, and substrate removal was lowest at neutral pHs. Solution pH influenced the size and the composition of the oligomeric products. An equimolar ratio of H(2)O(2):naphthol was sufficient for optimal naphthol removal. Polymerization products included naphthoquinones and oligomers derived from two, three, and four naphthol molecules. Our results illustrate the importance of water chemistry when considering a peroxidase-based approach for treatment of naphthol-contaminated waters.

  10. Lignin peroxidase mediated biotransformations useful in the biocatalytic production of vanillin

    NARCIS (Netherlands)

    Have, ten R.

    2000-01-01

    This research concentrates on lignin peroxidase (LiP) mediated biotrans-formations that are useful in producing vanillin.

    In order to obtain this extracellular enzyme, the white-rot fungus Bjerkandera sp. strain BOS55 was cultivated on nitrogen rich

  11. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  12. Phenolic extract of Parkia biglobosa fruit pulp stalls aflatoxin B1 – mediated oxidative rout in the liver of male rats

    Directory of Open Access Journals (Sweden)

    Taofeek O. Ajiboye

    Full Text Available The effect of phenolic extract of Parkia biglobosa (Jacq. R. Br. ex G. Don, Fabaceae, pulp on aflatoxin B1 induced oxidative imbalance in rat liver was evaluated. Thirty-five male rats were randomized into seven groups of five animals each. Rats in group A served as control and received vehicle for drug administration (0.5% DMSO once daily at 24 h intervals for six weeks. Rats in groups B, D, E, F and G, received aflatoxin B1 (167 μg/kg body weight in 0.5% DMSO for three weeks, starting from the third week of the experimental period. Rats in Group C received 400 mg/kg bodyweight of the extract for six weeks, while groups D, E and F rats were treated with 100, 200 and 400 mg/kg bodyweight of the extract for six weeks respectively. Group G rats received 100 mg/kg body weight of vitamin C. Aflatoxin B1-mediated decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase were significantly attenuated. Aflatoxin B1 mediated the elevation in malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl, and significantly lowered DNA fragmentation percentage. Overall, the phenolic extract of P. biglobosa pulp stalls aflatoxin B1-mediated oxidative rout by enhancing antioxidant enzyme activities leading to decreased lipid peroxidation, protein oxidation and DNA fragmentation.

  13. Structure of soybean seed coat peroxidase: a plant peroxidase with unusual stability and haem-apoprotein interactions

    DEFF Research Database (Denmark)

    Henriksen, A; Mirza, O; Indiani, C

    2001-01-01

    Soybean seed coat peroxidase (SBP) is a peroxidase with extraordinary stability and catalytic properties. It belongs to the family of class III plant peroxidases that can oxidize a wide variety of organic and inorganic substrates using hydrogen peroxide. Because the plant enzyme is a heterogeneous...... glycoprotein, SBP was produced recombinant in Escherichia coli for the present crystallographic study. The three-dimensional structure of SBP shows a bound tris(hydroxymethyl)aminomethane molecule (TRIS). This TRIS molecule has hydrogen bonds to active site residues corresponding to the residues that interact...... with the small phenolic substrate ferulic acid in the horseradish peroxidase C (HRPC):ferulic acid complex. TRIS is positioned in what has been described as a secondary substrate-binding site in HRPC, and the structure of the SBP:TRIS complex indicates that this secondary substrate-binding site could...

  14. Bioinspired Syntheses of Dimeric Hydroxycinnamic Acids (Lignans and Hybrids, Using Phenol Oxidative Coupling as Key Reaction, and Medicinal Significance Thereof

    Directory of Open Access Journals (Sweden)

    George E. Magoulas

    2014-11-01

    Full Text Available Lignans are mainly dimers of 4-hydroxycinnamic acids (HCAs and reduced analogs thereof which are produced in Nature through phenol oxidative coupling (POC as the primary C-C or C-O bond-forming reaction under the action of the enzymes peroxidases and laccases. They present a large structural variety and particularly interesting biological activities, therefore, significant efforts has been devoted to the development of efficient methodologies for the synthesis of lignans isolated from natural sources, analogs and hybrids with other biologically interesting small molecules. We summarize in the present review those methods which mimic Nature for the assembly of the most common lignan skeleta by using either enzymes or one-electron inorganic oxidants to effect POC of HCAs and derivatives, such as esters and amides, or cross-POC of pairs of HCAs or HCAs with 4-hydrocycinnamyl alcohols. We, furthermore, provide outlines of mechanistic schemes accounting for the formation of the coupled products and, where applicable, indicate their potential application in medicine.

  15. Use of Phenols, Peroxidase and Polyphenoloxidase of Seed to Quantify Resistance of Cotton Genotypes to Damping-off Incited by Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Heba I. Mohamed

    2014-03-01

    Full Text Available A greenhouse test was conducted in 2011 and 2012 growing seasons at Giza Agricultural Research Station to evaluate the reaction of six cotton genotypes to damping-off incited by Fusarium oxysporum. Damping-off incidence on the genotypes ranged from 70-88%. In general, the genotypes could be divided into highly susceptible, susceptible, and moderately susceptible. Data for damping-off incidence and level or activity of some biochemical components (phenols, peroxidase, and polyphenoloxidase were entered into a computerized linear regression analysis. The analysis contrasted seven predictive models by using the biochemical components, singly or in combination, as biochemical predictors. It was evident that models nos. 2 and 6 were the best models for predicting incidence of damping-off. The superiority of these models was attributed to their high RІ values (0.748 and 0.902, respectively and the significance of their F. values (P = 0.026 and P = 0.031, respectively. The results of the present study suggest that peroxidase alone or both peroxidase and polyphenoloxidase, which may or may not parts of damping-off resistance mechanisms, can be used as biochemical markers to predict resistance to damping-off incited by F. oxysporum.

  16. The Role of Polyphenoloxidase, Peroxidase, and β-Glucosidase in Phenolics Accumulation in Olea europaea L. Fruits under Different Water Regimes

    Directory of Open Access Journals (Sweden)

    Marco Cirilli

    2017-05-01

    Full Text Available Olive fruits and oils contain an array of compounds that contribute to their sensory and nutritional properties. Phenolic compounds in virgin oil and olive-derived products have been proven to be highly beneficial for human health, eliciting increasing attention from the food industry and consumers. Although phenolic compounds in olive fruit and oil have been extensively investigated, allowing the identification of the main classes of metabolites and their accumulation patterns, knowledge of the molecular and biochemical mechanisms regulating phenolic metabolism remains scarce. We focused on the role of polyphenoloxidase (PPO, peroxidase (PRX and β-glucosidase (β-GLU gene families and their enzyme activities in the accumulation of phenolic compounds during olive fruit development (35–146 days after full bloom, under either full irrigation (FI or rain-fed (RF conditions. The irrigation regime affected yield, maturation index, mesocarp oil content, fruit size, and pulp-to-pit ratio. Accumulation of fruit phenolics was higher in RF drupes than in FI ones. Members of each gene family were developmentally regulated, affected by water regime, and their transcript levels were correlated with the respective enzyme activities. During the early phase of drupe growth (35–43 days after full bloom, phenolic composition appeared to be linked to β-GLU and PRX activities, probably through their effects on oleuropein catabolism. Interestingly, a higher β-GLU activity was measured in immature RF drupes, as well as a higher content of the oleuropein derivate 3,4-DHPEA-EDA and verbascoside. Activity of PPO enzymes was slightly affected by the water status of trees during ripening (from 120 days after full bloom, but was not correlated with phenolics content. Overall, the main changes in phenolics content appeared soon after the supply of irrigation water and remained thereafter almost unchanged until maturity, despite fruit growth and the progressive

  17. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    Science.gov (United States)

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat  = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat  = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. © 2015 Wiley Periodicals, Inc.

  18. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.

    Science.gov (United States)

    Mammarella, Nicole D; Cheng, Zhenyu; Fu, Zheng Qing; Daudi, Arsalan; Bolwell, G Paul; Dong, Xinnian; Ausubel, Frederick M

    2015-04-01

    Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Chemical structure of the adducts formed by the oxidation of benzidine in the presence of phenols

    International Nuclear Information System (INIS)

    Josephy, P.D.; Mason, R.P.; Eling, T.

    1982-01-01

    Bioactivation of carcinogens by peroxidases has received increasing attention since the discovery of the oxidation of carcinogens by prostaglandin hydroperoxidase. Benzidine and 3,5,3',5'-tetramethylbenzidine are oxidized by horseradish peroxidase and prostaglandin synthase to two-electron oxidation products (di-imines). Di-imines readily react with the phenolic anti-oxidant butylated hydroxyanisole to form adducts. In this paper, we have studied the oxidation of benzidine by horseradish peroxidase in the presence of phenolic compounds and characterized the resultant benzidine/phenol adducts. A benzidine/2,6-dimethylphenol adduct was isolated and characterized by mass spectrometry and high field n.m.r. The reaction of [ 14 C]benzidine in the presence of horseradish peroxidase and phenol yielded only the benzidine/phenol adduct. Our results indicate that the benzidine/phenol adducts are analogous to the indoaniline dyes, differing only in substitution of a biphenyl group for a benzene ring. The reaction of benzidine di-imine with endogenous phenols may represent a new pathway for detoxication, removing potentially harmful metabolites of benzidine

  20. Lignin peroxidase mediated biotransformations useful in the biocatalytic production of vanillin

    OpenAIRE

    Have, ten, R.

    2000-01-01

    This research concentrates on lignin peroxidase (LiP) mediated biotrans-formations that are useful in producing vanillin.

    In order to obtain this extracellular enzyme, the white-rot fungus Bjerkandera sp. strain BOS55 was cultivated on nitrogen rich medium. This procedure resulted in a successful LiP production of 600 U/L. Peptone in the culture medium was shown to interfere with the standard LiP assay in which the formation of veratraldehyde (V...

  1. Exploration of mild copper-mediated coupling of organotrifluoroborates in the synthesis of thiirane-based inhibitors of matrix metalloproteinases.

    Science.gov (United States)

    Testero, Sebastian A; Bouley, Renee; Fisher, Jed F; Chang, Mayland; Mobashery, Shahriar

    2011-05-01

    The copper-mediated and non-basic oxidative cross-coupling of organotrifluoroborates with phenols was applied to elaboration of the structures of thiirane-based inhibitors of matrix metalloproteinases. By revision of the synthetic sequence to allow this cross-coupling as the final step, and taking advantage of the neutral nature of organotrifluoroborate cross-coupling, a focussed series of inhibitors showing aryloxy and alkenyloxy replacement of the phenoxy substituent was prepared. This reaction shows exceptional promise as an alternative to the classic copper-mediated but strongly basic Ullmann reaction, for the diversification of ether segments within base-labile lead structures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Peroxidase-catalyzed stabilization of 2,4-dichlorophenol in alkali-extracted soils.

    Science.gov (United States)

    Palomo, Mónica; Bhandari, Alok

    2011-01-01

    Horseradish peroxidase- (HRP) mediated stabilization of phenolic contaminants is a topic of interest due to its potential for remediation of contaminated soils. This study evaluated the sorption of 2,4-dichlorophenol (DCP) and its HRP-mediated stabilization in two alkali-extracted soils. Alkali extraction reduced the soil organic matter (SOM) contents of the geomaterials and enriched the residual SOM with humin C. Sorption of DCP on these sorbents was complete within 1 d. However, most of the sorbed DCP was removed from the geomaterials by water and methanol, suggesting weak solute-sorbent interactions. The addition of HRP resulted in the generation of DCP polymerization products (DPP), which partitioned between the aqueous and solid phases. The DPP phase distribution was rapid and complete within 24 h. Between 70 and 90% of the added DCP was converted to DPP and up to 43% of the initial aqueous phase contaminant was transformed into a residue that was resistant to extraction with methanol. Bound residues of DPP increased with initial aqueous phase solute concentration and remained fairly constant after 7 d of contact. Contaminant stabilization was noted to be high in the humin-mineral geomaterial. Results illustrate that HRP may be effective in stabilizing phenolic contaminants in subsoils that are likely to contain SOM enriched in humin C.

  3. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    International Nuclear Information System (INIS)

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E.

    2006-01-01

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of γ-glutamylcysteine synthetase-heavy subunit (γ-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis

  4. Phenolic compounds and related enzymes as determinants of sorghum for food use

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Traore, A.S.; Voragen, A.G.J.; Berkel, van W.J.H.

    2006-01-01

    Phenolic compounds and related enzymes such as phenol biosynthesizing enzymes (phenylalanine ammonia lyase) and phenol catabolizing enzymes (polyphenol oxidase and peroxidase) are determinants for sorghum utilization as human food because they influence product properties during and after sorghum

  5. Phenol Removal from Industrial Wastewater by HRP Enzyme

    Directory of Open Access Journals (Sweden)

    Iran Alemzadeh

    2009-01-01

    Full Text Available In this research, horseradish peroxidase for phenol removal was utilized. First, the process was studied at the laboratory scale using a synthetic phenol solution (1-10 mM. Results showed that horseradish peroxidase (HRP could effectively remove phenolic compounds from wastewater and that the catalytic capability of the enzyme was maintained for a wide range of pH, temperature, and aromatic concentration levels. The performance conditions were optimized for at lease 95% and 100% removal of phenolic compounds for both actual and synthetic wastewaters under high and low phenol concentrations (1 and 10 mM. The phenolic wastewater used was an olive mill effluent with a phenol concentration of 1221 mg/L (13 mM and a pH value of 3.5. At the end of the reaction, the phenolic compounds changed to insoluble polymers and precipitated. Each enzyme/wastewater system was optimized for the following chemical dosages: hydrogen peroxide, enzyme, polyethylene glycol (PEG, and buffer. Furthermore, the reaction time to achieve at least 95% phenol removal was determined. According to the results, COD and BOD reduced to 58% and 78%, respectively. Experimental results showed an increase in H2O2 concentration beyond the optimum dose resulting from enzyme inactivation, thus reducing the phenol removal efficiency. On the other hand, increasing the enzyme, PEG, and/or reaction time beyond the optimum values resulted in only a marginal increase in removal efficiency.

  6. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification

    DEFF Research Database (Denmark)

    Ostergaard, L; Teilum, K; Mirza, O

    2000-01-01

    Lignins are phenolic biopolymers synthesized by terrestrial, vascular plants for mechanical support and in response to pathogen attack. Peroxidases have been proposed to catalyse the dehydrogenative polymerization of monolignols into lignins, although no specific isoenzyme has been shown...... to be involved in lignin biosynthesis. Recently we isolated an extracellular anionic peroxidase, ATP A2, from rapidly lignifying Arabidopsis cell suspension culture and cloned its cDNA. Here we show that the Atp A2 promoter directs GUS reporter gene expression in lignified tissues of transgenic plants. Moreover......-coumaryl and coniferyl alcohols are preferred by ATP A2, while the oxidation of sinapyl alcohol will be sterically hindered in ATP A2 as well as in all other plant peroxidases due to an overlap with the conserved Pro-139. We suggest ATP A2 is involved in a complex regulation of the covalent cross-linking in the plant...

  7. Human myeloperoxidase (MPO) and horseradish peroxidase (HRP) catalyzed oxidation of phenol

    International Nuclear Information System (INIS)

    Ross, D.; Eastmond, D.A.; Ruzo, L.O.; Smith, M.T.

    1986-01-01

    MPO-catalyzed conversion of phenolic metabolites of benzene may be involved in benzene-induced myelotoxicity. The authors have studied the metabolism and protein binding of phenol - the major metabolite of benzene - during peroxidatic oxidation. The major metabolite observed during MPO- and HRP- catalyzed oxidation was characterized as 4,4 biphenol using HPLC and combined GC-MS. When glutathione (GSH) was added to the incubation mixtures, two additional compounds were observed during HPLC analysis which were characterized as GSH-conjugates of 4,4-diphenoquinone by fast atom bombardment MS and by NMR. ESR spectroscopy showed that both MPO-and HRP-catalyzed oxidation of phenol proceeded via the generation of free radical intermediates. Using 14 C-phenol, both MPO- and HRP-catalyzed oxidations resulted in the production of species which bound covalently to boiled liver microsomal protein. The increase in binding correlated well with removal of substrate. Thus, peroxidatic oxidation of phenolic metabolites of benzene in the bone marrow may be involved in benzene-induced myelotoxicity

  8. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    Science.gov (United States)

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Laccase catalyzed grafting of-N-OH type mediators to lignin via radical-radical coupling

    DEFF Research Database (Denmark)

    Munk, Line; Punt, A. M.; Kabel, M. A.

    2017-01-01

    Lignin is an underexploited resource in biomass refining. Laccases (EC 1.10.3.2) catalyze oxidation of phenolic hydroxyls using O2 as electron acceptor and may facilitate lignin modification in the presence of mediators. This study assessed the reactivity of four different synthetic mediators...... better than HBT (1-hydroxybenzotriazole). Three different mechanisms are suggested to explain the grafting of HPI and HBT, all involving radical-radical coupling to produce covalent bonding to lignin. Lignin from exhaustive cellulase treatment of wheat straw was more susceptible to grafting than beech...... organosolv lignin with the relative abundance of grafting being 35% vs. 11% for HPI and 5% vs. 1% for HBT on these lignin substrates. The data imply that lignin can be functionalized via laccase catalysis with-N-OH type mediators....

  10. Molecular cloning and partial characterization of a peroxidase gene expressed in the roots of Portulaca oleracea cv., one potentially useful in the remediation of phenolic pollutants.

    Science.gov (United States)

    Matsui, Takeshi; Nomura, Yuki; Takano, Mai; Imai, Sofue; Nakayama, Hideki; Miyasaka, Hitoshi; Okuhata, Hiroshi; Tanaka, Satoshi; Matsuura, Hideyuki; Harada, Kazuo; Bamba, Takeshi; Hirata, Kazumasa; Kato, Ko

    2011-01-01

    Portulaca (Portulaca oleracea cv.) efficiently removes phenolic pollutants from hydroponic solution. In plant roots, peroxidase (PRX) is thought to be involved in the removal of phenolic pollutants by the cross-linking them to cell wall polysaccharides or proteins at the expense of reduction of hydrogen peroxide (H(2)O(2)). In this study, we found that portulaca roots secreted an acidic PRX isozyme that had relatively high H(2)O(2) affinity. We isolated five PRX genes, and the recombinant PRX proteins produced in cultured tobacco cells were partially characterized. Among these genes, PoPRX2 probably encoded the acidic PRX isozyme. PoPRX2 had an extra N-terminal region which has not been reported for other PRX proteins. We found that PoPRX2 oxidized phenolic pollutants, including bisphenol A, octylphenol, nonylphenol, and 17β-estradiol. In addition, we found that the Cys261 residue of PoPRX2 played an important role in the determination of affinity for H(2)O(2) and stability toward H(2)O(2).

  11. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide.

    Science.gov (United States)

    Yuan, Jipei; Guo, Weiwei; Wang, Erkang

    2008-02-15

    In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching. Using a quantum dots-enzyme system, the detection limits for phenolic compounds and hydrogen peroxide were detected to be approximately 10(-7) mol L(-1). The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.

  12. Peroxidase isozyme profiles in some sweet cherry rootstocks and ...

    African Journals Online (AJOL)

    PERS

    2012-01-10

    , 2005). Santamour (1980) defined role of peroxidase in graft compatibility as; 1) lignification is essential for a strong and permanent graft union; 2) peroxidase isoenzymes mediate the polymeri- zation of cinnamic alcohols to ...

  13. Influence of Phytophthora capsici L. inoculation on disease severity, necrosis length, peroxidase and catalase activity, and phenolic content of resistant and susceptible pepper (Capsicum annuum L.) plants

    OpenAIRE

    KOÇ, Esra; ÜSTÜN, Ayşen Sülün

    2014-01-01

    This study explored the level of infection caused by different inoculum concentrations (102, 103, and 104 zoospores mL-1) of Phytophthora capsici in 3 pepper cultivars at days 2, 4, and 6. The effect that the infection induced on the peroxidase (POX), catalase (CAT), and phenolics of resistant and sensitive seedlings, as well as the defense mechanism against the pathogen, were also investigated. The resistance of PM-702 against the isolate used was high, whereas KM-Hot and DEM-8 displayed sen...

  14. Phenolic extract of Dialium guineense pulp enhances reactive oxygen species detoxification in aflatoxin B₁ hepatocarcinogenesis.

    Science.gov (United States)

    Adeleye, Abdulwasiu O; Ajiboye, Taofeek O; Iliasu, Ganiyat A; Abdussalam, Folakemi A; Balogun, Abdulazeez; Ojewuyi, Oluwayemisi B; Yakubu, Musa T

    2014-08-01

    This study investigated the effect of Dialium guineense pulp phenolic extract on aflatoxin B1 (AFB1)-induced oxidative imbalance in rat liver. Reactive oxygen species (ROS) scavenging potentials of free and bound phenolic extract of D. guineense (0.2-1.0 mg/mL) were investigated in vitro using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide ion (O2(-)), hydrogen peroxide (H2O2), hydroxyl radical, and ferric ion reducing system. In the in vivo study, 35 animals were randomized into seven groups of five rats each. Free and bound phenolic extract (1 mg/mL) produced 66.42% and 93.08%, 57.1% and 86.0%, 62.0% and 90.05%, and 60.11% and 72.37% scavenging effect on DPPH radical, O2(-) radical, H2O2, and hydroxyl radical, while ferric ion was significantly reduced. An AFB1-mediated decrease in the activities of ROS detoxifying enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose 6 phosphate dehydrogenase) was significantly attenuated (P<.05). AFB1-mediated elevation in the concentrations of oxidative stress biomarkers; malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl, and percentage DNA fragmentation were significantly lowered by D. guineense phenolic extract (P<.05). Overall, the in vitro and in vivo effects suggest that D. guineense phenolic extract elicited ROS scavenging and detoxification potentials, as well as the capability of preventing lipid peroxidation, protein oxidation, and DNA fragmentation.

  15. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    Effect of heat treatment (55°C/20 min) on polyphenol oxidase (PPO) and peroxidase (POD) activities and total phenolic compounds was investigated in Algerian dates (Deglet Nour variety) at Tamar (fully ripe) stage and in dates stored for 5 months at ambient temperature and in cold storage (10°C). Results obtained ...

  16. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts.

    Science.gov (United States)

    Hong, Do-Young; Miller, Stephen J; Agrawal, Pradeep K; Jones, Christopher W

    2010-02-21

    Pt supported on HY zeolite is successfully used as a bifunctional catalyst for phenol hydrodeoxygenation in a fixed-bed configuration at elevated hydrogen pressures, leading to hydrogenation-hydrogenolysis ring-coupling reactions producing hydrocarbons, some with enhanced molecular weight.

  17. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    Science.gov (United States)

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Methyl Jasmonate and Salicylic Acid Induced Oxidative Stress and Accumulation of Phenolics in Panax ginseng Bioreactor Root Suspension Cultures

    Directory of Open Access Journals (Sweden)

    Kee-Yoeup Paek

    2007-03-01

    Full Text Available To investigate the enzyme variations responsible for the synthesis of phenolics, 40 day-old adventitious roots of Panax ginseng were treated with 200 μM methyl jasmonate (MJ or salicylic acid (SA in a 5 L bioreactor suspension culture (working volume 4 L. Both treatments caused an increase in the carbonyl and hydrogen peroxide (H2O2 contents, although the levels were lower in SA treated roots. Total phenolic, flavonoid, ascorbic acid, non-protein thiol (NPSH and cysteine contents and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical reducing activity were increased by MJ and SA. Fresh weight (FW and dry weight (DW decreased significantly after 9 days of exposure to SA and MJ. The highest total phenolics (62%, DPPH activity (40%, flavonoids (88%, ascorbic acid (55%, NPSH (33%, and cysteine (62% contents compared to control were obtained after 9 days in SA treated roots. The activities of glucose 6-phosphate dehydrogenase, phenylalanine ammonia lyase, substrate specific peroxidases (caffeic acid peroxidase, quercetin peroxidase and ferulic acid peroxidase were higher in MJ treated roots than the SA treated ones. Increased shikimate dehydrogenase, chlorogenic acid peroxidase and β-glucosidase activities and proline content were observed in SA treated roots than in MJ ones. Cinnamyl alcohol dehydrogenase activity remained unaffected by both MJ and SA. These results strongly indicate that MJ and SA induce the accumulation of phenolic compounds in ginseng root by altering the phenolic synthesis enzymes.

  19. Free radicals quenching potential, protective properties against oxidative mediated ion toxicity and HPLC phenolic profile of a Cameroonian spice: Piper guineensis.

    Science.gov (United States)

    Moukette Moukette, Bruno; Constant Anatole, Pieme; Nya Biapa, Cabral Prosper; Njimou, Jacques Romain; Ngogang, Jeanne Yonkeu

    2015-01-01

    Considerations on antioxidants derived from plants have continuously increased during this decade because of their beneficial effects on human health. In the present study we investigated the free radical scavenging properties of extracts from Piper guineense ( P. guineense ) and their inhibitory potentials against oxidative mediated ion toxicity. The free radical quenching properties of the extracts against [1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS•), hydroxyl radical (HO•), nitric oxide (NO•)] radical and their antioxidant potentials by FRAP and phosphomolybdenum were determined as well as their protective properties on liver enzymes. The phenolic profile was also investigated by HPLC. The results obtained, revealed that the extracts significantly inhibited the DPPH, NO, HO and ABTS radicals in a concentration depending manner. They also showed a significant ferrous ion chelating ability through FRAP and phosphomolybdenum antioxidant potential. Their polyphenol contents varied depending on the type of extracts and the solvent used. The hydroethanolic extracts (FFH) and the ethanolic extracts (FFE) of P. guineense leaves showed the higher level of phenolic compounds respectively of 21.62 ± 0.06 mg caffeic acid/g dried extract (CAE/g DE) and 19.01 ± 0.03 CAE/g DE. The HPLC phenolic compounds profile revealed a higher quantity of Eugenol, quercetin, rutin and catechin in the stem than in the leaves. The presence of these molecules could be responsible of the protective potentials of P. guineense extracts against lipid peroxidation and SOD, catalase and peroxidase. In conclusion, P. guineense extracts demonstrated significant antioxidant property and may be used as a prospective protector against metal related toxicity.

  20. Analysis of Protein-Phenolic Compound Modifications Using Electrochemistry Coupled to Mass Spectrometry.

    Science.gov (United States)

    Kallinich, Constanze; Schefer, Simone; Rohn, Sascha

    2018-01-29

    In the last decade, electrochemical oxidation coupled with mass spectrometry has been successfully used for the analysis of metabolic studies. The application focused in this study was to investigate the redox potential of different phenolic compounds such as the very prominent chlorogenic acid. Further, EC/ESI-MS was used as preparation technique for analyzing adduct formation between electrochemically oxidized phenolic compounds and food proteins, e.g., alpha-lactalbumin or peptides derived from a tryptic digestion. In the first step of this approach, two reactant solutions are combined and mixed: one contains the solution of the digested protein, and the other contains the phenolic compound of interest, which was, prior to the mixing process, electrochemically transformed to several oxidation products using a boron-doped diamond working electrode. As a result, a Michael-type addition led to covalent binding of the activated phenolic compounds to reactive protein/peptide side chains. In a follow-up approach, the reaction mix was further separated chromatographically and finally detected using ESI-HRMS. Compound-specific, electrochemical oxidation of phenolic acids was performed successfully, and various oxidation and reaction products with proteins/peptides were observed. Further optimization of the reaction (conditions) is required, as well as structural elucidation concerning the final adducts, which can be phenolic compound oligomers, but even more interestingly, quite complex mixtures of proteins and oxidation products.

  1. Peroxidase of Brazilian Cerrado grass as an alternative for agro industrial waste treatment

    Directory of Open Access Journals (Sweden)

    Raquel Pinheiro Reis Souza Ramalho

    2016-03-01

    Full Text Available Decontamination of wastewater continues to be a challenge for society and the scientific community. Despite the availability of various materials for study, enzymes stand out due to their specificity for decomposition and biodegradability for disposal. New sources of enzymes may represent efficient and low-cost alternatives compared to routinely used techniques. In this survey, the peroxidase profile from Echinolaena inflexa fruits was studied for possible applications in the treatment of wastewater. The protein content was found to be 5.33 mg g-1. The optimum reaction conditions were: 50°C, pH 7.5 at 0.1 mol L-1 of phosphate buffer for 15 min. The enzyme was inactivated after 5 min at 94°C and was inhibited when incubated with ascorbic acid at 10 mmol L-1. In tests using phenols and agro industrial waste, the peroxidase was able to oxidase 87.5% of catechol, 67.8% of pyrogallol, 39.1% of resorcinol and still presented 29.1% of the degradation capacity of raw wastewater phenolic compounds. The results showed that the Echinolaena inflexa peroxidase, a new source of enzymes, is a potential alternative to wastewater treatment.

  2. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng.

    Science.gov (United States)

    Zhou, Ying; Yang, Zhenming; Gao, Lingling; Liu, Wen; Liu, Rongkun; Zhao, Junting; You, Jiangfeng

    2017-07-01

    Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H 2 O 2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione- S -transferase activity remained constant. Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound

  3. Demonstration of Lignin-to-Peroxidase Direct Electron Transfer

    Science.gov (United States)

    Sáez-Jiménez, Verónica; Baratto, Maria Camilla; Pogni, Rebecca; Rencoret, Jorge; Gutiérrez, Ana; Santos, José Ignacio; Martínez, Angel T.; Ruiz-Dueñas, Francisco Javier

    2015-01-01

    Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn2+, and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan. PMID:26240145

  4. Calculated ionisation potentials to determine the oxidation of vanillin precursors by lignin peroxidase.

    NARCIS (Netherlands)

    Have, ten R.; Rietjens, I.M.C.M.; Hartmans, S.; Swarts, H.J.; Field, J.A.

    1998-01-01

    In view of the biocatalytic production of vanillin, this research focused on the lignin peroxidase (LiP) catalysed oxidation of naturally occurring phenolic derivatives: O-methyl ethers, O-acetyl esters, and O-glucosyl ethers. The ionisation potential (IP) of a series of model compounds was

  5. Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes

    Directory of Open Access Journals (Sweden)

    Paolo Zucca

    2016-07-01

    Full Text Available Synthetic and bioinspired metalloporphyrins are a class of redox-active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and nitroso-compounds, has been deeply investigated. Such a broad substrate specificity has suggested their use also in the bleaching of textile plant wastewaters. In fact, industrial dyes belong to very different chemical classes, being their effective and inexpensive oxidation an important challenge from both economic and environmental perspective. Accordingly, we review here the most widespread synthetic metalloporphyrins, and the most promising formulations for large-scale applications. In particular, we focus on the most convenient approaches for immobilization to conceive economical affordable processes. Then, the molecular routes of catalysis and the reported substrate specificity on the treatment of the most diffused textile dyes are encompassed, including the use of redox mediators and the comparison with the most common biological and enzymatic alternative, in order to depict an updated picture of a very promising field for large-scale applications.

  6. Purification of peroxidase from Horseradish (Armoracia rusticana) roots.

    Science.gov (United States)

    Lavery, Christopher B; Macinnis, Morgan C; Macdonald, M Jason; Williams, Joanna Bassey; Spencer, Colin A; Burke, Alicia A; Irwin, David J G; D'Cunha, Godwin B

    2010-08-11

    Peroxidase (EC 1.11.1.7) from horseradish ( Armoracia rusticana ) roots was purified using a simple, rapid, three-step procedure: ultrasonication, ammonium sulfate salt precipitation, and hydrophobic interaction chromatography on phenyl Sepharose CL-4B. The preparation gave an overall yield of 71%, 291-fold purification, and a high specific activity of 772 U mg(-1) protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme was homogeneous and had a molecular weight of approximately 40 kDa. The isolated enzyme had an isoelectric point of 8.8 and a Reinheitszahl value of 3.39 and was stable when stored in the presence of glycerol at -20 degrees C, with >95% retention of original enzyme activity for at least 6 months. Maximal activity of purified horseradish peroxidase (HRP) was obtained under different optimized conditions: substrate (guaiacol and H(2)O(2)) concentrations (0.5 and 0.3 mM, respectively), type of buffer (50 mM phosphate buffer), pH (7.0), time (1.0 min), and temperature of incubation (30 degrees C). In addition, the effect of HRP and H(2)O(2) in a neutral-buffered aqueous solution for the oxidation of phenol and 2-chlorophenol substrates was also studied. Different conditions including concentrations of phenol/2-chlorophenol, H(2)O(2), and enzyme, time, pH, and temperature were standardized for the maximal activity of HRP with these substrates; under these optimal conditions 89.6 and 91.4% oxidations of phenol and 2-chlorophenol were obtained, respectively. The data generated from this work could have direct implications in studies on the commercial production of this biotechnologically important enzyme and its stability in different media.

  7. Iodination of phenol

    International Nuclear Information System (INIS)

    Christiansen, J.V.; Feldthus, A.; Carlsen, L.

    1990-01-01

    Phenol is iodinated in aqueous solution at pH 5 (acetate buffer) by elemental iodine or, if the iodine is present as iodide, enzymatically controlled by peroxidases. Generally mono-, di- and triiodophenols are obtained, the overall product composition being virtually identical for the two iodination modes. However, there is a tendency to a higher para to ortho ratio for the enzymatically controlled reaction. The mutual ratios of the single iodophenols depends on the initial concentration ratio between phenol and the iodinating species. The first step in the iodination leads preferentially to substitution in the ortho position rather than in the para position in contract to e.g. the corresponding bromination. The relative rates of the competive reactions in the combined iodination scheme has been derived. (author) 2 tabs., 3 ills., 15 refs

  8. Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light.

    Science.gov (United States)

    Zhou, Dandan; Xu, Zhengxue; Dong, Shanshan; Huo, Mingxin; Dong, Shuangshi; Tian, Xiadi; Cui, Bin; Xiong, Houfeng; Li, Tingting; Ma, Dongmei

    2015-07-07

    Intimate coupling of photocatalysis and biodegradation (ICPB) technology is attractive for phenolic wastewater treatment, but has only been investigated using UV light (called UPCB). We examined the intimate coupling of visible-light-induced photocatalysis and biodegradation (VPCB) for the first time. Our catalyst was prepared doping both of Er(3+) and YAlO3 into TiO2 which were supported on macroporous carriers. The macroporous carriers was used to support for the biofilms as well. 99.8% removal efficiency of phenol was achieved in the VPCB, and this was 32.6% higher than that in the UPCB. Mineralization capability of UPCB was even worse, due to less adsorbable intermediates and cell lysis induced soluble microbial products release. The lower phenol degradation in the UPCB was due to the serious detachment of the biofilms, and then the microbes responsible for phenol degradation were insufficient due to disinfection by UV irradiation. In contrast, microbial communities in the carriers were well protected under visible light irradiation and extracellular polymeric substances secretion was enhanced. Thus, we found that the photocatalytic reaction and biodegradation were intimately coupled in the VPCB, resulting in 64.0% removal of dissolved organic carbon. Therefore, we found visible light has some advantages over UV light in the ICPB technology.

  9. Peroxidase activity in root hairs of cress (lepidium sativum L.) Cytochemical localization and radioactive labelling of wall bound peroxidase

    International Nuclear Information System (INIS)

    Zaar, K.

    1979-01-01

    The ultrastructural localization of peroxidase activity in young, growing root hairs of cress (Lepidium sativum L.) after assay with 3,3'-diaminobenzidine is reported. Prominent peroxidase activity has been found in the dictyosomes and the associated vesicles, in ribosomes on ER-cisternae, as well as in the cell wall. On the basis of both ultrastructural and cytochemical evidence it is proposed that peroxidase in root hairs is synthesized on the ER- and within dictyosome cisternae packaged and transported in secretory vesicles and extruded into the cell wall particularily at the tip region of a root hair. The kinetic of Golgi apparatus mediated peroxidasesecretion was monitored by measuring the 55 Fe protoheme content of primary cell walls. Peroxidase secretion seems to be enhanced during stress incubation in destilled water. Secretory activity in root hairs is 20 times higher than in cells of the root body. (author)

  10. Holographic gauge mediation via strongly coupled messengers

    International Nuclear Information System (INIS)

    McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske

    2010-01-01

    We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.

  11. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation.

    LENUS (Irish Health Repository)

    Walsh, Marie-Therese

    2011-11-01

    Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1\\/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.

  12. Strongly coupled semidirect mediation of supersymmetry breaking

    International Nuclear Information System (INIS)

    Ibe, M.; Izawa, K.-I.; Nakai, Y.

    2009-01-01

    Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.

  13. EFFECTS OF SEED IRRADIATION ON 14C FIXATION AND ANTIOXIDANT ACTIVITY OF VITAMIN C AND TOTAL PHENOLS OF CANOLA LEAVES

    International Nuclear Information System (INIS)

    KAMEL, H.A.

    2008-01-01

    Seeds of canola were gamma irradiated with doses of 10, 25, 50, 100 and 200 Gy then cultivated in 30 cm plastic pots containing 7 kg clay soil. After 45 days of cultivation, plants were used to measure 14 C fixation capacity, vitamin C, total phenol, free proline and peroxidase activity in addition to the antioxidant activity. The results showed decrease in the chlorophyll content and 14 C fixation at all gamma doses. Irradiation of canola seeds caused significant reduction in vitamin C and phenol content, while significant increase was occurred in free proline and peroxidase activity. Antioxidant activity of vitamin C was higher than that of phenols at all doses used

  14. A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus.

    Science.gov (United States)

    Kimura, Mitsuhiro; Cutler, Sean; Isobe, Sachiko

    2015-01-01

    Agrobacterium-mediated transformation is a commonly used method for plant genetic engineering. However, the limitations of Agrobacterium host-plant interactions and the complexity of plant tissue culture often make the production of transgenic plants difficult. Transformation efficiency in many legume species, including soybean and the common bean, has been reported to be quite low. To improve the transformation procedure in legumes, we screened for chemicals that increase the transformation efficiency of Lotus japonicus, a model legume species. A Chemical library was screened and chemicals that increase in transient transformation efficiency of L. japonicus accession, Miyakojima MG-20 were identified. The transient transformation efficiency was quantified by reporter activity in which an intron-containing reporter gene produces the GUS protein only when the T-DNA is expressed in the plant nuclei. We identified a phenolic compound, chloroxynil, which increased the genetic transformation of L. japonicus by Agrobacterium tumefaciens strain EHA105. Characterization of the mode of chloroxynil action indicated that it enhanced Agrobacterium-mediated transformation through the activation of the Agrobacterium vir gene expression, similar to acetosyringone, a phenolic compound known to improve Agrobacterium-mediated transformation efficiency. Transient transformation efficiency of L. japonicus with 5 μM chloroxynil was 60- and 6- fold higher than that of the control and acetosyringone treatment, respectively. In addition, transgenic L. japonicus lines were successfully generated by 5 μM chloroxynil treatment.Furthermore, we show that chloroxynil improves L. japonicus transformation by Agrobacterium strain GV3101 and rice transformation. Our results demonstrate that chloroxynil significantly improves Agrobacterium tumefaciens-mediated transformation efficiency of various agriculturally important crops.

  15. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    International Nuclear Information System (INIS)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.

    2009-01-01

    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  16. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    Energy Technology Data Exchange (ETDEWEB)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.

    2009-07-01

    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  17. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    Science.gov (United States)

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Horseradish peroxidase-catalyzed oligomerization of ferulic acid on a template of a tyrosine-containing tripeptide

    NARCIS (Netherlands)

    Oudgenoeg, G.; Dirksen, E.; Ingemann, S.; Hilhorst, R.; Gruppen, H.; Boeriu, C.G.; Piersma, S.R.; Berkel, W.J.H. van; Laane, C.; Voragen, A.G.J.

    2002-01-01

    Ferulic acid (FA) is an abundantly present phenolic constituent of plant cell walls. Kinetically controlled incubation of FA and the tripeptide Gly-Tyr-Gly (GYG) with horseradish peroxidase and H2O2 yielded a range of new cross-linked products. Two predominant series of hetero-oligomers of FA linked

  19. Use of an immuno-peroxidase staining method for the detection of ...

    African Journals Online (AJOL)

    Immunopurified antigens of axenic E. histolytica were used to produce rabbit hyper-immune sera. Immunoglobulin G (IgG) was purified from hyper-immune sera and coupled to peroxidase using a two-step procedure. The IgG-peroxidase conjugate was then evaluated by detection of E. histolytica in 128 stool samples and ...

  20. A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles.

    Science.gov (United States)

    Liu, Shuwen; Xu, Naihan; Tan, Chunyan; Fang, Wei; Tan, Ying; Jiang, Yuyang

    2018-08-14

    In this study, a novel colorimetric aptasensor was prepared by coupling trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles for highly sensitive and selective detection of target proteins. A three G-quadruplex (G4) DNA-hemin complex was employed as the trivalent peroxidase-mimic DNAzyme, in which hemin assisted the G4-DNA to fold into a catalytic conformation and act as an enzyme. The design of the aptasensor includes magnetic nanoparticles (MNPs), complementary DNA (cDNA) modified with biotin, and a label-free single strand DNA (ssDNA) including the aptamer and trivalent peroxidase-mimic DNAzyme. The trivalent DNAzyme, which has the highest catalytic activity among multivalent DNAzymes, catalyzed the H 2 O 2 -mediated oxidation of ABTS. The colorless ABTS was oxidized to produce a blue-green product that can be clearly distinguished by the naked eye. The aptamer and trivalent peroxidase-mimic DNAzyme promote the specificity and sensitivity of this detection method, which can be generalized for other targets by simply replacing the corresponding aptamers. To demonstrate the feasible use of the aptasensor for target detection, a well-known tumor biomarker MUC1 was evaluated as the model target. The limits of detection were determined to be 5.08 and 5.60 nM in a linear range of 50-1000 nM in a buffer solution and 10% serum system, respectively. This colorimetric and label-free aptasensor with excellent sensitivity and strong anti-interference ability has potential application in disease diagnoses, prognosis tracking, and therapeutic evaluation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Heme-coordinated histidine residues form non-specific functional "ferritin-heme" peroxidase system: Possible and partial mechanistic relevance to oxidative stress-mediated pathology in neurodegenerative diseases.

    Science.gov (United States)

    Esmaeili, Sajjad; Kooshk, Mohammad Reza Ashrafi; Asghari, Seyyed Mohsen; Khodarahmi, Reza

    2016-10-01

    Ferritin is a giant protein composed of 24 subunits which is able to sequester up to 4500 atoms of iron. We proposed two kinds of heme binding sites in mammalian ferritins and provided direct evidence for peroxidase activity of heme-ferritin, since there is the possibility that "ferritin-heme" systems display unexpected catalytic behavior like heme-containing enzymes. In the current study, peroxidase activity of heme-bound ferritin was studied using TMB(1), l-DOPA, serotonin, and dopamine, in the presence of H2O2, as oxidant substrate. The catalytic oxidation of TMB was consistent with first-order kinetics with respect to ferritin concentration. Perturbation of the binding affinity and catalytic behavior of heme-bound His-modified ferritin were also documented. We also discuss the importance of the peroxidase-/nitrative-mediated oxidation of vital molecules as well as ferritin-induced catalase inhibition using in vitro experimental system. Uncontrollable "heme-ferritin"-based enzyme activity as well as up-regulation of heme and ferritin may inspire that some oxidative stress-mediated cytotoxic effects in AD-affected cells could be correlated to ferritin-heme interaction and/or ferritin-induced catalase inhibition and describe its contribution as an important causative pathogenesis mechanism in some neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Assessing two different peroxidases´ potential for application in recalcitrant organic compound bioremediation

    Directory of Open Access Journals (Sweden)

    Nelson Caicedo

    2001-07-01

    Full Text Available This work shows the promising future presented by the following enzymes: Chloroperoxidase (CPO from Caldariomyces fumago and royal palm peroxidase (Roystonea regia, PPR. These peroxidases were obtained from different sources (microbial and vegetable and used as biocatalysts for applicating them in bioremediation of recalcitrant organic compounds. Each one of the enzymes' peroxidase catalytic activity was evaluated in organic phase systems, using different model compounds such as: PAHs (pyrene and anthracene, organic-nitrogenated compounds (diphenylamine, monoaromatic phenolic molecules (guayacol and dyes (methyl orange and ABTS. The reaction systems were composed of mono-phase water mixtures and organic miscible solvent (methanol, ethanol, isopropanol, acetonitrile, tetrahydrofuran, dimethyl sulfoxide and dimethyl formamide, on which both peroxidases' catalytic activity was evaluated. The two enzymes' catalytic activity was observed on the evaluated substrates in most of these assays. However, PPR did not show biocatalytic oxidation for methyl orange dye and some PAHs. This enzyme did show the best tolerance to the evaluated solvents. Its catalytic activity was appreciably enhanced when low hydrophobic solvents were used. The kcat was calculated from this experimental data (as kinetic parameter leading to each enzyme's biocatalytic performance on substrates being compared.

  3. Laccase catalyzed grafting of-N-OH type mediators to lignin via radical-radical coupling

    NARCIS (Netherlands)

    Munk, L.; Punt, A.M.; Kabel, M.A.; Meyer, A.S.

    2017-01-01

    Lignin is an underexploited resource in biomass refining. Laccases (EC 1.10.3.2) catalyze oxidation of phenolic hydroxyls using O2 as electron acceptor and may facilitate lignin modification in the presence of mediators. This study assessed the reactivity of four different synthetic mediators by

  4. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  5. Potential of LC Coupled to Fluorescence Detection in Food Metabolomics: Determination of Phenolic Compounds in Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Romina P. Monasterio

    2016-09-01

    Full Text Available A powerful chromatographic method coupled to a fluorescence detector was developed to determine the phenolic compounds present in virgin olive oil (VOO, with the aim to propose an appropriate alternative to liquid chromatography-mass spectrometry. An excitation wavelength of 285 nm was selected and four different emission wavelengths (316, 328, 350 and 450 nm were simultaneously recorded, working therefore on “multi-emission” detection mode. With the use of commercially available standards and other standards obtained by semipreparative high performance liquid chromatography, it was possible to identify simple phenols, lignans, several complex phenols, and other phenolic compounds present in the matrix under study. A total of 26 phenolic compounds belonging to different chemical families were identified (23 of them were susceptible of being quantified. The proposed methodology provided detection and quantification limits within the ranges of 0.004–7.143 μg·mL−1 and 0.013–23.810 μg·mL−1, respectively. As far as the repeatability is concerned, the relative standard deviation values were below 0.43% for retention time, and 9.05% for peak area. The developed methodology was applied for the determination of phenolic compounds in ten VOOs, both monovarietals and blends. Secoiridoids were the most abundant fraction in all the samples, followed by simple phenolic alcohols, lignans, flavonoids, and phenolic acids (being the abundance order of the latter chemical classes logically depending on the variety and origin of the VOOs.

  6. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    Science.gov (United States)

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role. PMID:21282621

  7. Synthesis and Mechanism of Metal-Mediated Polymerization of Phenolic Resins

    Directory of Open Access Journals (Sweden)

    Zhao Yi

    2016-04-01

    Full Text Available Phenol-formaldehyde (PF resin is a high performance adhesive, but has not been widely developed due to its slow curing rate and high curing temperature. To accelerate the curing rate and to lower the curing temperature of PF resin, four types of metal-mediated catalysts were employed in the synthesis of PF resin; namely, barium hydroxide (Ba(OH2, sodium carbonate (Na2CO3, lithium hydroxide (LiOH, and zinc acetate ((CH3COO2Zn. The cure-acceleration effects of these catalysts on the properties of PF resins were measured, and the chemical structures of the PF resins accelerated with the catalysts were investigated by using Fourier transform infrared (FT-IR spectroscopy and quantitative liquid carbon-13 nuclear magnetic resonance (13C NMR. The results showed that the accelerated efficiency of these catalysts to PF resin could be ordered in the following sequence: Na2CO3 > (CH3COO2Zn > Ba(OH2 > LiOH. The catalysts (CH3COO2Zn and Na2CO3 increased the reaction activity of the phenol ortho position and the condensation reaction of ortho methylol. The accelerating mechanism of (CH3COO2Zn on PF resin is probably different from that of Na2CO3, which can be confirmed by the differences in the differential thermogravimetric (DTG curve and thermogravimetric (TG data. Compared to the Na2CO3-accelerated PF resin, the (CH3COO2Zn-accelerated PF resin showed different peaks in the DTG curve and higher weight residues. In the synthesis process, the catalyst (CH3COO2Zn may form chelating compounds (containing a metal-ligand bond, which can promote the linkage of formaldehyde to the phenolic hydroxyl ortho position.

  8. Impedimetric aptasensor for nuclear factor kappa B with peroxidase-like mimic coupled DNA nanoladders as enhancer.

    Science.gov (United States)

    Peng, Kanfu; Zhao, Hongwen; Xie, Pan; Hu, Shuang; Yuan, Yali; Yuan, Ruo; Wu, Xiongfei

    2016-07-15

    In this work, we developed a sensitive and universal aptasensor for nuclear factor kappa B (NF-κB) detection based on peroxidase-like mimic coupled DNA nanoladders for signal amplification. The dsDNA formed by capture DNA S1 and NF-κB binding aptamer (NBA) was firstly assembled on electrode surface. The presence of target NF-κB then led to the leave of NBA from electrode surface and thus provided the binding sites for immobilizing initiator to trigger in situ formation of DNA nanoladders on electrode surface. Since the peroxidase-like mimic manganese (III) meso-tetrakis (4-Nmethylpyridyl)-porphyrin (MnTMPyP) interacts with DNA nanoladders via groove binding, the insoluble benzo-4-chlorohexadienone (4-CD) precipitation derived from the oxidation of 4-chloro-1-naphthol (4-CN) could be formed on electrode surface in the presence of H2O2, resulting in a significantly amplified EIS signal output for quantitative target analysis. As a result, the developed aptasensor showed a low detection limit of 7pM and a wide linear range of 0.01-20nM. Featured with high sensitivity and label-free capability, the proposed sensing scheme can thus offer new opportunities for achieving sensitive, selective and stable detection of different types of target proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of Antioxidant and Antimicrobial Activities and Phenolic Profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys

    Directory of Open Access Journals (Sweden)

    Laurian Vlase

    2014-04-01

    Full Text Available This study was designed to examine the in vitro antioxidant and antimicrobial activities and to characterize the polyphenolic composition of the ethanolic extracts of Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Qualitative and quantitative analysis of the major phenolic compounds were conducted using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS. The total polyphenols, caffeic acid derivatives and flavonoids content was spectrophotometrically determined. The phenolic profile showed the presence of phenolic acid derivatives (caftaric, gentisic, caffeic, p-coumaric, chlorogenic and ferulic acids, flavonoid glycosides (rutin, isoquercitrin and quercitrin and free flavonoid aglycons (luteolin, quercetin, in different concentrations. DPPH radical scavenging assay, Trolox equivalent antioxidant capacity (TEAC method, hemoglobin ascorbate peroxidase activity inhibition (HAPX assay, and electron paramagnetic resonance (EPR radicals detection were employed, revealing several aspects of the antioxidant activities of these species. The antimicrobial tests were performed using the disk diffusion assay. These extracts contained a large amount of the polyphenolic compounds (77.72, 175.57, and 243.65 mg/g, respectively, and they showed a good antioxidant activity, as witnessed by a number of methods. T. chamaedrys had a high antimicrobial activity. Besides their antioxidant activity, the antimicrobial effect of these extracts confirms the biological activities of these herbal medicinal products.

  10. Mixed Phenolic Acids Mediated Proliferation of Pathogens Talaromyces helicus and Kosakonia sacchari in Continuously Monocultured Radix pseudostellariae Rhizosphere Soil

    Science.gov (United States)

    Wu, Hongmiao; Wu, Linkun; Wang, Juanying; Zhu, Quan; Lin, Sheng; Xu, Jiahui; Zheng, Cailiang; Chen, Jun; Qin, Xianjin; Fang, Changxun; Zhang, Zhixing; Azeem, Saadia; Lin, Wenxiong

    2016-01-01

    Radix pseudostellariae L. is a common and popular Chinese medication. However, continuous monoculture has increased its susceptibility to severe diseases. We identified two pathogenic microorganisms, Talaromyces helicus M. (KU355274) and Kosakonia sacchari W. (KU324465), and their antagonistic bacterium, Bacillus pumilus Z. in rhizosphere soil of continuously monocultured R. pseudostellariae. Nine types of phenolic acids were identified both in the rhizosphere soil and in culture medium under sterile conditions. A syringic acid and phenolic acid mixture significantly promoted the growth of T. helicus and K. sacchari. T. helicus could utilize eight types of phenolic acids, whereas K. sacchari could only use four phenolic acids. K. sacchari produced protocatechuic acid when consuming vanillin. Protocatechuic acid negatively affected the growth of B. pumilus. The 3A-DON toxin produced by T. helicus promoted the growth of K. sacchari and inhibited growth of B. pumilus at low concentrations. These data help explain why phenolic exudates mediate a microflora shift and structure disorder in the rhizosphere soil of continuously monocultured R. pseudostellariae and lead to increased replanting disease incidence. PMID:27014250

  11. Quercetin oxidation by horseradish peroxidase: The effect of UV-B irradiation

    Directory of Open Access Journals (Sweden)

    Savić Saša R.

    2013-01-01

    Full Text Available Horseradish peroxidase (HRP, a highly-investigated member of the peroxidase family has been known, among many other biological activities, to catalyze the oxidation of flavonoids and phenolic substrates overall, including quercetin. On the other hand, quercetin is very well known for its antioxidant activities, which in the case of UV external radiation is exibited partly in a preventive manner since it is an excellent UV-absorber. Therefore the aim of this investigation is to study quercetin oxidation by HRP in phosphate buffer under the conditions of UV-stress, i.e. continuous, prolonged UV-B irradiation. The results show that while UV-B irradiation affects the activity of HRP, and the overal rate of quercetin oxidation by HRP, it probably has very little effect on it for longer UV-B-irradiation periods (>30 min. [Acknowledgements. This work was supported by the Ministry of Education and Science of the Republic of Serbia under Project No.TR-34012 and OI-172044

  12. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  13. Heterologous Expression of Phanerochaete chrysoporium Glyoxal Oxidase and its Application for the Coupled Reaction with Manganese Peroxidase to Decolorize Malachite Green

    Science.gov (United States)

    Son, Yu-Lim; Kim, Hyoun-Young; Thiyagarajan, Saravanakumar; Xu, Jing Jing

    2012-01-01

    cDNA of the glx1 gene encoding glyoxal oxidase (GLX) from Phanerochaete chrysosporium was isolated and expressed in Pichia pastoris. The recombinant GLX (rGLX) produces H2O2 over 7.0 nmol/min/mL using methyl glyoxal as a substrate. Use of rGLX as a generator of H2O2 improved the coupled reaction with recombinant manganese peroxidase resulting in decolorization of malachite green up to 150 µM within 90 min. PMID:23323052

  14. Peroxidases in nanostructures

    Directory of Open Access Journals (Sweden)

    Ana Maria eCarmona-Ribeiro

    2015-09-01

    Full Text Available Peroxidases are enzymes catalyzing redox reactions that cleave peroxides. Their active redox centers have heme, cysteine thiols, selenium, manganese and other chemical moieties. Peroxidases and their mimetic systems have several technological and biomedical applications such as environment protection, energy production, bioremediation, sensors and immunoassays design and drug delivery devices. The combination of peroxidases or systems with peroxidase-like activity with nanostructures such as nanoparticles, nanotubes, thin films, liposomes, micelles, nanoflowers, nanorods and others is often an efficient strategy to improve catalytic activity, targeting and reusability.

  15. Plant hormone interaction and phenolic metabolism in the regulation of russet spotting in iceberg lettuce.

    Science.gov (United States)

    Ke, D; Saltveit, M E

    1988-12-01

    Russet spotting (RS) is a physiological disorder induced in iceberg lettuce (Lactuca sativa L.) by exposure to parts per million levels of ethylene at 5 +/- 2 degrees C. Ethylene induced phenylalanine ammonia-lyase and ionically bound peroxidase activities that correlated with development of RS symptoms. The ethylene-treated tissue had significantly higher lignin content than air control tissue with lignification localized in walls of RS-affected cells. Ethylene also caused the accumulation of the flavonoids (+)catechin and (-)epicatechin and the chlorogenic acid derivatives 3-caffeoyl-quinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid. These soluble phenolic compounds were readily oxidized to brown substances by polyphenol oxidase isolated from RS tissue. Ethylene substantially increased ionically bound indole-3-acetic acid (IAA) oxidase activity, while IAA application greatly reduced ethylene-induced phenylalanine ammonia-lyase, peroxidase, and IAA oxidase activities, soluble phenolic content, and RS development.

  16. Highly-sensitive electrocatalytic determination for toxic phenols based on coupled cMWCNT/cyclodextrin edge-functionalized graphene composite

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juanjuan; Liu, Maoxiang [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Song, Haiou, E-mail: songhaiou2011@126.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhang, Shupeng, E-mail: shupeng_2006@126.com [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Qian, Yueyue [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Li, Aimin, E-mail: liaimin@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-11-15

    Highlights: • Phenol detection based on coupled cMWCNT/CD edge-functionalized graphene composite. • Increased conductivity can inspire enhancement of electrocatalytic performance. • The synergistic combination of the trace amounts of CDs and cMWCNT is a pivotal. • GN-CD-cMWCNT shows an excellent electrocatalytic and anti-interference ability. - Abstract: Highly-sensitive electrocatalytic determination of toxic phenol compounds is of significance in environmental monitoring due to their low degradation and high toxicity to the environment and humans. In this paper, a rapid and sensitive electrochemical sensor based on coupled carboxyl-multi-walled carbon nanotube (cMWCNT) and cyclodextrin (CD) edge-functionalized graphene composite was successfully employed towards trace detection of three typical phenols (4-aminophenol, 4-AP; 4-chlorophenol, 4-CP; 4-nitrophenol, 4-NP). The morphology studies from scanning electron microscope and transmission electron microscope analysis revealed that cMWCNTs as conductive bridges were successfully incorporated into CD edge-functionalized graphene layers. Further, The electrocatalytic detection performance of the 3D simultaneously reduced and self-assembled sensing architecture (GN-CD-cMWCNT) with trace amounts of CDs was evaluated. The electrochemical studies demonstrated that GN-CD-cMWCNT displays excellent electrocatalytic activity, high sensitivity and stability. Under optimal conditions, the current responses of 4-AP, 4-CP and 4-NP are linear to concentrations over two different ranges, with low detection limit of 0.019, 0.017 and 0.027 μM (S/N = 3), respectively. And, GN-CD-cMWCNT shows an excellent anti-interference ability against electroactive species and metal ions. In addition, validation of the applicability of the presented sensor was also performed for the determination of three phenols in tap water sample with satisfactory results.

  17. Highly-sensitive electrocatalytic determination for toxic phenols based on coupled cMWCNT/cyclodextrin edge-functionalized graphene composite

    International Nuclear Information System (INIS)

    Gao, Juanjuan; Liu, Maoxiang; Song, Haiou; Zhang, Shupeng; Qian, Yueyue; Li, Aimin

    2016-01-01

    Highlights: • Phenol detection based on coupled cMWCNT/CD edge-functionalized graphene composite. • Increased conductivity can inspire enhancement of electrocatalytic performance. • The synergistic combination of the trace amounts of CDs and cMWCNT is a pivotal. • GN-CD-cMWCNT shows an excellent electrocatalytic and anti-interference ability. - Abstract: Highly-sensitive electrocatalytic determination of toxic phenol compounds is of significance in environmental monitoring due to their low degradation and high toxicity to the environment and humans. In this paper, a rapid and sensitive electrochemical sensor based on coupled carboxyl-multi-walled carbon nanotube (cMWCNT) and cyclodextrin (CD) edge-functionalized graphene composite was successfully employed towards trace detection of three typical phenols (4-aminophenol, 4-AP; 4-chlorophenol, 4-CP; 4-nitrophenol, 4-NP). The morphology studies from scanning electron microscope and transmission electron microscope analysis revealed that cMWCNTs as conductive bridges were successfully incorporated into CD edge-functionalized graphene layers. Further, The electrocatalytic detection performance of the 3D simultaneously reduced and self-assembled sensing architecture (GN-CD-cMWCNT) with trace amounts of CDs was evaluated. The electrochemical studies demonstrated that GN-CD-cMWCNT displays excellent electrocatalytic activity, high sensitivity and stability. Under optimal conditions, the current responses of 4-AP, 4-CP and 4-NP are linear to concentrations over two different ranges, with low detection limit of 0.019, 0.017 and 0.027 μM (S/N = 3), respectively. And, GN-CD-cMWCNT shows an excellent anti-interference ability against electroactive species and metal ions. In addition, validation of the applicability of the presented sensor was also performed for the determination of three phenols in tap water sample with satisfactory results.

  18. Characterization of structure and activity of garlic peroxidase (POX(1B)).

    Science.gov (United States)

    El Ichi, Sarra; Miodek, Anna; Sauriat-Dorizon, Hélène; Mahy, Jean-Pierre; Henry, Céline; Marzouki, Mohamed Nejib; Korri-Youssoufi, Hafsa

    2011-01-01

    Structural characterization and study of the activity of new POX(1B) protein from garlic which has a high peroxidase activity and can be used as a biosensor for the detection of hydrogen peroxide and phenolic compounds were performed and compared with the findings for other heme peroxidases. The structure-function relationship was investigated by analysis of the spectroscopic properties and correlated to the structure determined by a new generation of high-performance hybrid mass spectrometers. The reactivity of the enzyme was analyzed by studies of the redox activity toward various ligands and the reactivity with various substrates. We demonstrated that, in the case of garlic peroxidase, the heme group is pentacoordinated, and has an histidine as a proximal ligand. POX(1B) exhibited a high affinity for hydrogen peroxide as well as various reducing cosubstrates. In addition, high enzyme specificity was demonstrated. The k(cat) and K(M) values were 411 and 400 mM(-1) s(-1) for 3,3',5,5'-tetramethylbenzidine and 2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), respectively. Furthermore, the reduction of nitro compounds in the presence of POX(1B) was demonstrated by iron(II) nitrosoalkane complex assay. In addition, POX(1B) showed a great potential for application for drug metabolism since its ability to react with 1-nitrohexane in the presence of sodium dithionite was demonstrated by the appearance of a characteristic Soret band at 411 nm. The high catalytic efficiency obtained in the case of the new garlic peroxidase (POX(1B)) is suitable for the monitoring of different analytes and biocatalysis.

  19. Not so monofunctional--a case of thermostable Thermobifida fusca catalase with peroxidase activity.

    Science.gov (United States)

    Lončar, Nikola; Fraaije, Marco W

    2015-03-01

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and overexpressed in Escherichia coli with a yield of 400 mg/L. Heat treatment of disrupted cells at 60 °C for 1 h resulted in enzyme preparation of high purity; hence, no chromatography steps are needed for large-scale production. Except for catalyzing the dismutation of hydrogen peroxide, TfuCat was also found to catalyze oxidations of phenolic compounds. The catalase activity was comparable to other described catalases while peroxidase activity was quite remarkable with a k obs of nearly 1000 s(-1) for catechol. Site directed mutagenesis was used to alter the ratio of peroxidase/catalase activity. Resistance to inhibition by classic catalase inhibitors and an apparent melting temperature of 74 °C classifies this enzyme as a robust biocatalyst. As such, it could compete with other commercially available catalases while the relatively high peroxidase activity also offers new biocatalytic possibilities.

  20. Calculated ionisation potentials to determine the oxidation of vanillin precursors by lignin peroxidase.

    OpenAIRE

    Have, ten, R.; Rietjens, I.M.C.M.; Hartmans, S.; Swarts, H.J.; Field, J.A.

    1998-01-01

    In view of the biocatalytic production of vanillin, this research focused on the lignin peroxidase (LiP) catalysed oxidation of naturally occurring phenolic derivatives: O-methyl ethers, O-acetyl esters, and O-glucosyl ethers. The ionisation potential (IP) of a series of model compounds was calculated and compared to their experimental conversion by LiP, defining a relative IP threshold of approximately 9.0 eV. Based on this threshold value only the O-acetyl esters and glucosides of isoeugeno...

  1. Screening of postharvest agricultural wastes as alternative sources of peroxidases: characterization and kinetics of a novel peroxidase from lentil ( Lens culinaris L.) stubble.

    Science.gov (United States)

    Hidalgo-Cuadrado, Nazaret; Pérez-Galende, Patricia; Manzano, Teresa; De Maria, Cándido Garcia; Shnyrov, Valery L; Roig, Manuel G

    2012-05-16

    Aqueous crude extracts of a series of plant wastes (agricultural, wild plants, residues from sports activities (grass), ornamental residues (gardens)) from 17 different plant species representative of the typical biodiversity of the Iberian peninsula were investigated as new sources of peroxidases (EC 1.11.1.7). Of these, lentil (Lens culinaris L.) stubble crude extract was seen to provide one of the highest specific peroxidase activities, catalyzing the oxidation of guaiacol in the presence of hydrogen peroxide to tetraguaiacol, and was used for further studies. For the optimum extraction conditions found, the peroxidase activity in this crude extract (110 U mL(-1)) did not vary for at least 15 months when stored at 4 °C (k(inact) = 0.146 year(-1), t(1/2 inact) = 4.75 year), whereas, for comparative purposes, the peroxidase activity (60 U mL(-1)) of horseradish (Armoracia rusticana L.) root crude extract, obtained and stored under the same conditions, showed much faster inactivation kinetics (k(inact) = 2.2 × 10(-3) day(-1), t(1/2 inact) = 315 days). Using guaiacol as an H donor and a universal buffer (see above), all crude extract samples exhibited the highest peroxidase activity in the pH range between 4 and 7. Once semipurified by passing the crude extract through hydrophobic chromatography on phenyl-Sepharose CL-4B, the novel peroxidase (LSP) was characterized as having a purity number (RZ) of 2.5 and three SDS-PAGE electrophoretic bands corresponding to molecular masses of 52, 35, and 18 kDa. The steady-state kinetic study carried out on the H(2)O(2)-mediated oxidation of guaiacol by the catalytic action of this partially purified peroxidase pointed to apparent Michaelian kinetic behavior (K(m)(appH(2)O(2)) = 1.87 mM; V(max)(appH(2)O(2)) = 6.4 mM min(-1); K(m)(app guaicol) = 32 mM; V(max)(app guaicol) = 9.1 mM min(-1)), compatible with the two-substrate ping-pong mechanism generally accepted for peroxidases. Finally, after the effectiveness of the crude

  2. Alteração na atividade de peroxidase e concentração de fenóis em microtangerinas (Citrus spp. infectadas por Phytophthora parasitica

    Directory of Open Access Journals (Sweden)

    José Ribamar Gusmão Araújo

    2008-02-01

    Full Text Available The present research aimed to characterize and evaluate species and varieties of small-fruited mandarins of Tanaka’s group (Citrus spp. with potential use as rootstocks, in relation to infection to the Phytophthora parasitica, by means of foliar determination of peroxidase activity and total phenolics content. It was used the following species: C. reshni Hort. ex Tan., C. sunki Hort. ex Tan., C. pectinifera Tan., C. crenatifolia Lush., C. amblycarpa Ochese, C. aurantium L, C. reticulata Blanco and C. limonia Osb. The Center of Citrus Germoplasm of Botucatu and Cordeirópolis provide all plant material. Four resistant varieties to the stem rot and root rot infections: Pectinifera, Crenatifolia, Sun Chu Shu (clone Kat 1004 and Cleopatra (clone 1 were evaluated. Susceptible plants infected by P. parasitica presented higher activity of peroxidase, while phenolics contents were lower in susceptible group.

  3. Changes in peroxidases associated with radiation-induced sprout inhibition in garlic (Allium sativum L.)

    International Nuclear Information System (INIS)

    Croci, C.A.; Curvetto, N.R.; Orioli, G.A.; Arguello, J.A.

    1991-01-01

    The effects of an acute dose of γ-rays (10 Gy) to post-dormant garlic cloves on inner sprout growth and changes in peroxidases and soluble proteins were evaluated up to 100 days of storage in darkness at 19±1 0 C and 42±2% relative humidity. Radiation-induced inhibition of sprout growth became evident after 25 days of treatment and was synchronous with a marked increase in peroxidase activity. Thin-layer isoelectric focusing revealed that radiation induced an increase in the number of anodic peroxidase isoenzymes at 100 days, suggesting modifications in the vascularization process. Neither the soluble protein content nor the protein pattern were affected by irradiation. These results are discussed in terms of a possible mediating effect of peroxidase on radiation-induced sprout inhibition in garlic. (author)

  4. Changes in peroxidases associated with radiation-induced sprout inhibition in garlic (Allium sativum L. )

    Energy Technology Data Exchange (ETDEWEB)

    Croci, C.A.; Curvetto, N.R.; Orioli, G.A. (Universidad Nacional del Sur, Bahia Blanca (Argentina)); Arguello, J.A. (Universidad Nacional de Cordoba (Argentina). Dept. de Biologia Aplicada)

    1991-02-01

    The effects of an acute dose of {gamma}-rays (10 Gy) to post-dormant garlic cloves on inner sprout growth and changes in peroxidases and soluble proteins were evaluated up to 100 days of storage in darkness at 19+-1{sup 0}C and 42+-2% relative humidity. Radiation-induced inhibition of sprout growth became evident after 25 days of treatment and was synchronous with a marked increase in peroxidase activity. Thin-layer isoelectric focusing revealed that radiation induced an increase in the number of anodic peroxidase isoenzymes at 100 days, suggesting modifications in the vascularization process. Neither the soluble protein content nor the protein pattern were affected by irradiation. These results are discussed in terms of a possible mediating effect of peroxidase on radiation-induced sprout inhibition in garlic. (author).

  5. Effect of Storage Temperature on Vitamin C, Total Phenolics, UPLC Phenolic Acid Profile and Antioxidant Capacity of Eleven Potato (Solanum tuberosum Varieties

    Directory of Open Access Journals (Sweden)

    Joseph Hubert Yamdeu Galani

    2017-03-01

    Full Text Available Storage of potato tubers at low temperature affects their metabolism and may alter their phytochemical properties. There is a need to elucidate the changes in antioxidant compounds, activity and enzymes during storage of tubers. Eleven Indian potato varieties were evaluated for antioxidant parameters, after 0, 30, 60 and 90 days of storage at room temperature, 15 °C and 4 °C. Total phenolics (0.0786–0.1546 mg gallic acid equivalents⋅g−1 FW and vitamin C content (0.0828–0.2416 mg⋅g−1 FW varied among the varieties and were different with storage temperature; their levels fluctuated during storage but remained above the initial level until the last day of observation. Phenolic acid profiling by UPLC identified 12 compounds among which the most abundant was chlorogenic acid followed by gallic acid, sinapic acid and ellagic acid. Except para-coumaric acid which decreased at 4 °C, all the phenolic acids increased with storage. Caffeic acid, chlorogenic acid, protocatechuic acid and gallic acid mostly correlated with total phenolic content (r = 0.456, 0.482, 0.588 and 0.620, respectively. Antioxidant activity against both DPPH and ABTS radicals increased during the initial days of storage and then dropped to a level comparable or lower than the original value, irrespective of the storage temperature. Correlation study revealed that chlorogenic acid, gallic acid and ferulic acid mostly contributed to antioxidant activity. Activity of both antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased initially but then decreased to values lower than the initial level and were not influenced by storage temperature. Correlation with antioxidant activity indicated that the enhancement of reactive oxygen scavenging species in cold stored tubers could result mainly from ascorbate peroxidase activity. Our results demonstrate that storage temperature adversely influences the metabolism and the content of

  6. Natural Phenol Polymers: Recent Advances in Food and Health Applications.

    Science.gov (United States)

    Panzella, Lucia; Napolitano, Alessandra

    2017-04-14

    Natural phenol polymers are widely represented in nature and include a variety of classes including tannins and lignins as the most prominent. Largely consumed foods are rich sources of phenol polymers, notably black foods traditionally used in East Asia, but other non-edible, easily accessible sources, e.g., seaweeds and wood, have been considered with increasing interest together with waste materials from agro-based industries, primarily grape pomace and other byproducts of fruit and coffee processing. Not in all cases were the main structural components of these materials identified because of their highly heterogeneous nature. The great beneficial effects of natural phenol-based polymers on human health and their potential in improving the quality of food were largely explored, and this review critically addresses the most interesting and innovative reports in the field of nutrition and biomedicine that have appeared in the last five years. Several in vivo human and animal trials supported the proposed use of these materials as food supplements and for amelioration of the health and production of livestock. Biocompatible and stable functional polymers prepared by peroxidase-catalyzed polymerization of natural phenols, as well as natural phenol polymers were exploited as conventional and green plastic additives in smart packaging and food-spoilage prevention applications. The potential of natural phenol polymers in regenerative biomedicine as additives of biomaterials to promote growth and differentiation of osteoblasts is also discussed.

  7. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    OpenAIRE

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, w...

  8. Yttrium Nitrate mediated Nitration of Phenols at room temperature in ...

    Indian Academy of Sciences (India)

    The described method is selective for phenols. ... the significant cause of post translational modification that can ... decades, significant attention was paid on nitration of phenols to .... Progress of the reaction can be noted visually. Yttrium.

  9. New fluorimetric assay of horseradish peroxidase using sesamol as substrate and its application to EIA

    Directory of Open Access Journals (Sweden)

    Hidetoshi Arakawa

    2012-04-01

    Full Text Available Horseradish peroxidase (HRP is generally used as a label enzyme in enzyme immunoassay (EIA. The procedure used for HRP detection in EIA is critical for sensitivity and precision. This paper describes a novel fluorimetric assay for horseradish peroxidase (HRP using sesamol as substrate. The principle of the assay is as follow: sesamol (3,4-methylenedioxy phenol is reacted enzymatically in the presence of hydrogen peroxide to produce dimeric sesamol. The dimer is fluorescent and can be detected sensitively at ex. 347 nm, em. 427 nm.The measurable range of HRP was 1.0×10−18 to 1.0×10−15 mol/assay, with a detection limit of 1.0×10−18 mol/assay. The coefficient of variation (CV, n=8 was examined at each point on the standard curve, with a mean CV percentage of 3.8%. This assay system was applied to thyroid stimulating hormone (TSH EIA using HRP as the label enzyme. Keywords: Sesamol, Fluorescence, Enzyme immunoassay (EIA, Horseradish peroxidase (HRP, Thyroid stimulating hormone (TSH

  10. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...

  11. Direct Electrochemistry of Horseradish Peroxidase-Gold Nanoparticles Conjugate

    Directory of Open Access Journals (Sweden)

    Chanchal K. Mitra

    2009-02-01

    Full Text Available We have studied the direct electrochemistry of horseradish peroxidase (HRP coupled to gold nanoparticles (AuNP using electrochemical techniques, which provide some insight in the application of biosensors as tools for diagnostics because HRP is widely used in clinical diagnostics kits. AuNP capped with (i glutathione and (ii lipoic acid was covalently linked to HRP. The immobilized HRP/AuNP conjugate showed characteristic redox peaks at a gold electrode. It displayed good electrocatalytic response to the reduction of H2O2, with good sensitivity and without any electron mediator. The covalent linking of HRP and AuNP did not affect the activity of the enzyme significantly. The response of the electrode towards the different concentrations of H2O2 showed the characteristics of Michaelis Menten enzyme kinetics with an optimum pH between 7.0 to 8.0. The preparation of the sensor involves single layer of enzyme, which can be carried out efficiently and is also highly reproducible when compared to other systems involving the layer-by-layer assembly, adsorption or encapsulation of the enzyme. The immobilized AuNP-HRP can be used for immunosensor applications

  12. Gravity- and non-gravity-mediated couplings in multiple-field inflation

    International Nuclear Information System (INIS)

    Bernardeau, Francis

    2010-01-01

    Mechanisms for the generation of primordial non-Gaussian metric fluctuations in the context of multiple-field inflation are reviewed. As long as kinetic terms remain canonical, it appears that nonlinear couplings inducing non-Gaussianities can be split into two types. The extension of the one-field results to multiple degrees of freedom leads to gravity-mediated couplings that are ubiquitous but generally modest. Multiple-field inflation offers however the possibility of generating non-gravity-mediated coupling in isocurvature directions that can eventually induce large non-Gaussianities in the metric fluctuations. The robustness of the predictions of such models is eventually examined in view of a case study derived from a high-energy physics construction.

  13. Arabidopsis peroxidase-catalyzed copolymerization of coniferyl and sinapyl alcohols: kinetics of an endwise process.

    Science.gov (United States)

    Demont-Caulet, Nathalie; Lapierre, Catherine; Jouanin, Lise; Baumberger, Stéphanie; Méchin, Valérie

    2010-10-01

    In order to determine the mechanism of the earlier copolymerization steps of two main lignin precursors, sinapyl (S) alcohol and coniferyl (G) alcohol, microscale in vitro oxidations were carried out with a PRX34 Arabidopsis thaliana peroxidase in the presence of H(2)O(2). This plant peroxidase was found to have an in vitro polymerization activity similar to the commonly used horseradish peroxidase. The selected polymerization conditions lead to a bulk polymerization mechanism when G alcohol was the only phenolic substrate available. In the same conditions, the presence of S alcohol at a 50/50 S/G molar ratio turned this bulk mechanism into an endwise one. A kinetics monitoring (size-exclusion chromatography and liquid chromatography-mass spectrometry) of the different species formed during the first 24h oxidation of the S/G mixture allowed sequencing the bondings responsible for oligomerization. Whereas G homodimers and GS heterodimers exhibit low reactivity, the SS pinoresinol structure act as a nucleating site of the polymerization through an endwise process. This study is particularly relevant to understand the impact of S units on lignin structure in plants and to identify the key step at which this structure is programmed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Purification and characterization of novel cationic peroxidases from Asparagus acutifolius L. with biotechnological applications.

    Science.gov (United States)

    Guida, Vincenzo; Cantarella, Maria; Chambery, Angela; Mezzacapo, Maria C; Parente, Augusto; Landi, Nicola; Severino, Valeria; Di Maro, Antimo

    2014-08-01

    Four novel basic peroxidases, named AaP-1, AaP-2, AaP-3, and AaP-4, were purified from Asparagus acutifolius L. seeds by cation-exchange and gel filtration chromatographies. The four proteins showed a similar electrophoretic mobility of 46 kDa while, by MALDI-TOF MS, different Mr values of 42758.3, 41586.9, 42796.3, and 41595.5 were determined for AaP-1, AaP-2, AaP-3, and AaP-4, respectively. N-terminal sequences of AaPs 1-4 up to residue 20 showed a high percentage of identity with the peroxidase from Glycine max. In addition, AaP-1, AaP-2, AaP-3, and AaP-4 were found to be glycoproteins, containing 21.75, 22.27, 25.62, and 18.31 % of carbohydrates, respectively. Peptide mapping and MALDI-TOF MS analysis of AaPs 1-4 showed that the structural differences between AaP-1 and AaP-2 and AaP-3 and AaPs-4 were mainly due to their glycan content. We also demonstrate that AaPs were able to remove phenolic compounds from olive oil mill wastewaters with a higher catalytic efficiency with respect to horseradish peroxidase, thus representing candidate enzymes for potential biotechnological applications in the environmental field.

  15. Improvements in closeness, communication, and psychological distress mediate effects of couple therapy for veterans.

    Science.gov (United States)

    Doss, Brian D; Mitchell, Alexandra; Georgia, Emily J; Biesen, Judith N; Rowe, Lorelei Simpson

    2015-04-01

    Empirically based couple therapy results in significant improvements in relationship satisfaction for the average couple; however, further research is needed to identify mediators that lead to change and to ensure that improvements in mediators predict subsequent-not just concurrent-relationship satisfaction. In addition, given that much of the current literature on couple therapy examines outcomes in a research environment, it is important to examine mediators in a treatment-as-usual setting. To address these questions, 161 heterosexual couples (322 individuals) received treatment-as-usual couple therapy at one of two Veteran Administration Medical Centers (M = 5.0 and 13.0 sessions at the two sites) and were assessed before every session. The majority of couples were married (85%) and had been together for a median of 7.8 years (SD = 13). Participants were primarily White, non-Hispanic (69%), African American (21%), and White, Hispanic/Latino (8%). Individuals' own self-reported improvements in communication, emotional closeness, and psychological distress (but not frequency of behaviors targeted in treatment) mediated the effect of treatment on their subsequent relationship satisfaction. When all significant mediators were examined simultaneously, improvements in men's and women's emotional closeness and men's psychological distress independently mediated subsequent relationship satisfaction. In contrast, improvements in earlier relationship satisfaction mediated the effect of treatment only on subsequent psychological distress. This study identifies unique mediators of treatment effects and shows that gains in mechanisms predict subsequent relationship satisfaction. Future investigations should focus on the role of emotional closeness and psychological distress-constructs that have often been neglected-in couple therapy. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  16. Asparagus byproducts as a new source of peroxidases.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; Lopez, Sergio; Vazquez-Castilla, Sara; Rodriguez-Arcos, Rocio; Jimenez-Araujo, Ana; Guillen-Bejarano, Rafael

    2013-07-03

    Soluble peroxidase (POD) from asparagus byproducts was purified by ion exchange chromatographies, and its kinetic and catalytic properties were studied. The isoelectric point of the purified isoperoxidases was 9.1, and the optimum pH and temperature values were 4.0 and 25 °C, respectively. The cationic asparagus POD (CAP) midpoint inactivation temperature was 57 °C, which favors its use in industrial processes. The Km values of cationic asparagus POD for H₂O₂ and ABTS were 0.318 and 0.634 mM, respectively. The purified CAP is economically obtained from raw materials using a simple protocol and possesses features that make it advantageous for the potential use of this enzyme in a large number of processes with demonstrated requirements of thermostable POD. The results indicate that CAP can be used as a potential candidate for removing phenolic contaminants.

  17. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  18. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    Science.gov (United States)

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. Copyright © 2014. Published by Elsevier Ltd.

  19. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products.

    Science.gov (United States)

    Fernández, María de Los Ángeles; Espino, Magdalena; Gomez, Federico J V; Silva, María Fernanda

    2018-01-15

    An environmentally friendly method for the phenolic compound extraction from agro-food industrial by-products was developed in order to contribute with their sustainable valorization. A Natural Deep Eutectic Solvent was chemometrically-designed for the first time and compared with traditional solvents in terms of analyte stabilization. The combination of lactic acid, glucose and 15% water (LGH-15) was selected as optimal. A high-efficiency ultrasound-assisted extraction mediated by LGH-15 prior to HPLC-DAD allows the determination of 14 phenols in onion, olive, tomato and pear industrial by-products. NADES synthesis as well as the extraction procedures were optimized by Response Surface Methodology. Thus, phenolic determination in these complex samples was achieved by a simple, non-expensive, eco-friendly and robust system. The application to different matrices demonstrated the versatility of the proposed method. NADES opens interesting perspectives for their potential use as vehicles of bioactive compounds as food additives or pharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    Science.gov (United States)

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly

  1. Study on a hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan

    International Nuclear Information System (INIS)

    Kang Xiaobin; Pang Guangchang; Liang Xinyi; Wang Meng; Liu Jing; Zhu Weiming

    2012-01-01

    Highlights: ► Glutaraldehyde was used as the bridge linking agent to covalently bonded thionine in chitosan, which is more stable and could effectively prevalent leakage of the electronic mediator. ► The effect of GNPs adsorbed HRP was first accurately characterized by bio-layer interferometry using the ForteBio Octer system. ► The application of self-assembly technology increases the biosensor stability. - Abstract: A novel hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan has been developed. Gold nanoparticles fixed with horseradish peroxidase were adsorbed on glassy carbon electrode by the chitosan which cross-linked with the electron mediator of horseradish peroxidase as the bridge linking agent. The assembly procedures were monitored by UV–visible spectral scanning, bio-layer interferometry, cyclic voltammetric and alternating current impedance. The chronoamperometry was used to measure hydrogen peroxide. The hydrogen peroxide biosensor linear range of detection is 1 × 10 −7 –1 × 10 −4 mol/L, detection limit up to 5.0 × 10 −8 mol/L. Moreover the stability, reproducibility and selectivity of the biosensor were also studied and the results confirmed that the biosensor exhibit fast response to hydrogen peroxide and possess high sensitivity, good reproducibility and long-term stability.

  2. Determination of Phenolic Compounds in Wines

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2012-04-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Wine contains natural antioxidants such as phenolic compounds also known as bioactive compounds. Samples of commercially available Greek wines were analyzed in order to determine this phenolic content. For the analysis, Reversed Phase-High Performance Liquid Chromatography (RP-HPLC coupled with a multiwavelength Ultraviolet/visible (UV/vis detector was used. The most abundant phenolic substances detected were (+-catechin (13.5-72.4 mg L-1 , gallic acid (0.40-99.47 mg L-1 and caffeic acid (0.87-33.48 mg L-1. The principal component analysis (PCA technique was used to study differentiation among wines according to their production area. Red wines contained more phenolic substances than white ones. Differences of the phenolic composition in wines of the same cultivar were investigated too.

  3. In silico molecular modeling and docking studies on the leishmanial tryparedoxin peroxidase

    Directory of Open Access Journals (Sweden)

    Ozal Mutlu

    2014-04-01

    Full Text Available Leishmaniasis is one of the most common form of neglected parasitic disease that affects about 350 million people worldwide. Leishmanias have a trypanothione mediated hydroperoxide metabolism to eliminate endogenous or exogenous oxidative agents. Both of 2-Cys peroxiredoxin (Prx and glutathione peroxidase type tryparedoxin peroxidase (Px are the terminal enzymes in the trypanothione dependent detoxification system. Therefore absence of trypanothione redox system in mammals and the sensitivity of trypanosomatids against oxidative stress, enzymes of this pathway are drug targets candidates. In this study, 3D structure of tryparedoxin peroxidase (2-Cys peroxiredoxin type from Leishmania donovani (LdTXNPx was described by homology modeling method based on the template of tryparedoxin peroxidase from Crithidia fasciculata and selected compounds were docked to the active site pocket. The quality of the 3D structure of the model was confirmed by various web based validation programs. When compared secondary and tertiary structure of the model, it showed a typical thioredoxin fold containing a central beta-sheet and three alpha-helices. Docking study showed that the selected compound 2 (CID 16073813 interacted with the active site amino acids and binding energy was -118.675 kcal/mol.

  4. New fluorimetric assay of horseradish peroxidase using sesamol as substrate and its application to EIA.

    Science.gov (United States)

    Arakawa, Hidetoshi; Nakabayashi, Shigeo; Ohno, Ken-Ichi; Maeda, Masako

    2012-04-01

    Horseradish peroxidase (HRP) is generally used as a label enzyme in enzyme immunoassay (EIA). The procedure used for HRP detection in EIA is critical for sensitivity and precision. This paper describes a novel fluorimetric assay for horseradish peroxidase (HRP) using sesamol as substrate. The principle of the assay is as follow: sesamol (3,4-methylenedioxy phenol) is reacted enzymatically in the presence of hydrogen peroxide to produce dimeric sesamol. The dimer is fluorescent and can be detected sensitively at ex. 347 nm, em. 427 nm. The measurable range of HRP was 1.0×10 -18 to 1.0×10 -15  mol/assay, with a detection limit of 1.0×10 -18  mol/assay. The coefficient of variation (CV, n =8) was examined at each point on the standard curve, with a mean CV percentage of 3.8%. This assay system was applied to thyroid stimulating hormone (TSH) EIA using HRP as the label enzyme.

  5. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    International Nuclear Information System (INIS)

    Wang Yue; Hasebe, Yasushi

    2012-01-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H 2 O 2 flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is − 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 ± 0.32 μA/μM) with the limit detection of 9.4 μM (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: ► Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. ► GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. ► This flow biosensor enabled the determination of glucose in beverages and liquors.

  6. Glucose oxidase-modified carbon-felt-reactor coupled with peroxidase-modified carbon-felt-detector for amperometric flow determination of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue [School of Chemical Engineering, University of Science and Technology LiaoNing, 185 Qianshan Middle Road, High-tech Zone, Anshan, LiaoNing, 114501 (China); Hasebe, Yasushi, E-mail: hasebe@sit.ac.jp [Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293 (Japan)

    2012-04-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were covalently immobilized on a porous carbon-felt (CF) by using cyanuric chloride (CC) as a linking reagent. The resulting GOx-modified-CF (GOx-ccCF) was used as column-type enzyme reactor and placed on upstream of the HRP-ccCF-based H{sub 2}O{sub 2} flow-detector to fabricate amperometric flow-biosensor for glucose. Sensor setting conditions and the operational conditions were optimized, and the analytical performance characteristics of the resulting flow-biosensor were evaluated. The chemical modification of the GOx via CC was found to be effective to obtain larger catalytic activity as compared with the physical adsorption. Under the optimized conditions (i.e., volume ratio of the GOx-ccCF-reactor to the HRP-ccCF-detector is 1.0; applied potential is - 0.12 V vs. Ag/AgCl; carrier pH is 6.5; and carrier flow rate is 4.3 ml/min), highly selective and quite reproducible peak current responses toward glucose were obtained: the RSD for 30 consecutive injections of 3 mM glucose was 1.04%, and no serious interferences were observed for fructose, ethanol, uric acid, urea and tartaric acid for the amperometric measurements of glucose. The magnitude of the cathodic peak currents for glucose was linear up to 5 mM (sensitivity, 6.38 {+-} 0.32 {mu}A/{mu}M) with the limit detection of 9.4 {mu}M (S/N = 3, noise level, 20 nA). The present GOx-ccCF-reactor and HRP-ccCF-detector-coupled flow-glucose biosensor was utilized for the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by the conventional spectrophotometry. - Highlights: Black-Right-Pointing-Pointer Glucose oxidase (GOx) and peroxidase (HRP) were modified on carbon-felt. Black-Right-Pointing-Pointer GOx-CF reactor and HRP-CF detector-coupled flow glucose biosensor was developed. Black-Right-Pointing-Pointer This flow biosensor enabled the determination of glucose in beverages and

  7. Dynamic Changes in Phenolics and Antioxidant Capacity during Pecan (Carya illinoinensis Kernel Ripening and Its Phenolics Profiles

    Directory of Open Access Journals (Sweden)

    Xiaodong Jia

    2018-02-01

    Full Text Available Pecan (Carya illinoinensis kernels have a high phenolics content and a high antioxidant capacity compared to other nuts—traits that have attracted great interest of late. Changes in the total phenolic content (TPC, condensed tannins (CT, total flavonoid content (TFC, five individual phenolics, and antioxidant capacity of five pecan cultivars were investigated during the process of kernel ripening. Ultra-performance liquid chromatography coupled with quadruple time-of-flight mass (UPLC-Q/TOF-MS was also used to analyze the phenolics profiles in mixed pecan kernels. TPC, CT, TFC, individual phenolics, and antioxidant capacity were changed in similar patterns, with values highest at the water or milk stages, lowest at milk or dough stages, and slightly varied at kernel stages. Forty phenolics were tentatively identified in pecan kernels, of which two were first reported in the genus Carya, six were first reported in Carya illinoinensis, and one was first reported in its kernel. The findings on these new phenolic compounds provide proof of the high antioxidant capacity of pecan kernels.

  8. Dynamic Changes in Phenolics and Antioxidant Capacity during Pecan (Carya illinoinensis) Kernel Ripening and Its Phenolics Profiles.

    Science.gov (United States)

    Jia, Xiaodong; Luo, Huiting; Xu, Mengyang; Zhai, Min; Guo, Zhongren; Qiao, Yushan; Wang, Liangju

    2018-02-16

    Pecan ( Carya illinoinensis ) kernels have a high phenolics content and a high antioxidant capacity compared to other nuts-traits that have attracted great interest of late. Changes in the total phenolic content (TPC), condensed tannins (CT), total flavonoid content (TFC), five individual phenolics, and antioxidant capacity of five pecan cultivars were investigated during the process of kernel ripening. Ultra-performance liquid chromatography coupled with quadruple time-of-flight mass (UPLC-Q/TOF-MS) was also used to analyze the phenolics profiles in mixed pecan kernels. TPC, CT, TFC, individual phenolics, and antioxidant capacity were changed in similar patterns, with values highest at the water or milk stages, lowest at milk or dough stages, and slightly varied at kernel stages. Forty phenolics were tentatively identified in pecan kernels, of which two were first reported in the genus Carya , six were first reported in Carya illinoinensis , and one was first reported in its kernel. The findings on these new phenolic compounds provide proof of the high antioxidant capacity of pecan kernels.

  9. A role of proton transfer in peroxidase-catalyzed process elucidated by substrates docking calculations

    Directory of Open Access Journals (Sweden)

    Ziemys Arturas

    2001-08-01

    Full Text Available Abstract Background Previous kinetic investigations of fungal-peroxidase catalyzed oxidation of N-aryl hydroxamic acids (AHAs and N-aryl-N-hydroxy urethanes (AHUs revealed that the rate of reaction was independent of the formal redox potential of substrates. Moreover, the oxidation rate was 3–5 orders of magnitude less than for oxidation of physiological phenol substrates, though the redox potential was similar. Results To explain the unexpectedly low reactivity of AHAs and AHUs we made ab initio calculations of the molecular structure of the substrates following in silico docking in the active center of the enzyme. Conclusions AHAs and AHUs were docked at the distal side of heme in the sites formed by hydrophobic amino acid residues that retarded a proton transfer and finally the oxidation rate. The analogous phenol substrates were docked at different sites permitting fast proton transfer in the relay of distal His and water that helped fast substrate oxidation.

  10. Insights into lignin degradation and its potential industrial applications.

    Science.gov (United States)

    Abdel-Hamid, Ahmed M; Solbiati, Jose O; Cann, Isaac K O

    2013-01-01

    Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non-phenolic

  11. Peroxidase, phenolics, and antioxidative capacity of common mullein (Verbascum thapsus L. grown in a zinc excess

    Directory of Open Access Journals (Sweden)

    Morina Filis

    2008-01-01

    Full Text Available Common mullein (Verbascum thapsus L. is the dominant plant species at a disposal site polluted with metal from the hydrometallurgical jarosite zinc production process. Seeds collected at the site were germinated and plants were grown hydroponically under controlled conditions in a excess of Zn. Induction of total soluble POD activity in the root occurred at 1, 5, and 10 mM Zn, indicating Zn accumulation within the root. Accumulation of Zn in leaves was not accompanied by changes in POD activity, but resulted in gradual increase of total antioxidative capacity, which could be partly attributed to accumulation of soluble phenolics. The role of the phenolics/POD system in defense of V. thapsus against zinc is discussed.

  12. Comparison of AOPs Efficiencies on Phenolic Compounds Degradation

    Directory of Open Access Journals (Sweden)

    Lourdes Hurtado

    2016-01-01

    Full Text Available In this work, a comparison of the performances of different AOPs in the phenol and 4-chlorophenol (4-CP degradation at lab and pilot scale is presented. It was found that, in the degradation of phenol, the performance of a coupled electro-oxidation/ozonation process is superior to that observed by a photo-Fenton process. Phenol removal rate was determined to be 0.83 mg L−1 min−1 for the coupled process while the removal rate for photo-Fenton process was only 0.52 mg L−1 min−1. Regarding 4-CP degradation, the complete disappearance of the molecule was achieved and the efficiency decreasing order was as follows: coupled electro-oxidation/ozonation > electro-Fenton-like process > photo-Fenton process > heterogeneous photocatalysis. Total organic carbon was completely removed by the coupled electro-oxidation/ozonation process. Also, it was found that oxalic acid is the most recalcitrant by-product and limits the mineralization degree attained by the technologies not applying ozone. In addition, an analysis on the energy consumption per removed gram of TOC was conducted and it was concluded that the less energy consumption is achieved by the coupled electro-oxidation/ozonation process.

  13. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds.

    Science.gov (United States)

    Rahmanpour, Rahman; Rea, Dean; Jamshidi, Shirin; Fülöp, Vilmos; Bugg, Timothy D H

    2016-03-15

    A Dyp-type peroxidase enzyme from thermophilic cellulose degrader Thermobifida fusca (TfuDyP) was investigated for catalytic ability towards lignin oxidation. TfuDyP was characterised kinetically against a range of phenolic substrates, and a compound I reaction intermediate was observed via pre-steady state kinetic analysis at λmax 404 nm. TfuDyP showed reactivity towards Kraft lignin, and was found to oxidise a β-aryl ether lignin model compound, forming an oxidised dimer. A crystal structure of TfuDyP was determined, to 1.8 Å resolution, which was found to contain a diatomic oxygen ligand bound to the heme centre, positioned close to active site residues Asp-203 and Arg-315. The structure contains two channels providing access to the heme cofactor for organic substrates and hydrogen peroxide. Site-directed mutant D203A showed no activity towards phenolic substrates, but reduced activity towards ABTS, while mutant R315Q showed no activity towards phenolic substrates, nor ABTS. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Demonstration of Lignin-to-Peroxidase Direct Electron Transfer: A TRANSIENT-STATE KINETICS, DIRECTED MUTAGENESIS, EPR, AND NMR STUDY.

    Science.gov (United States)

    Sáez-Jiménez, Verónica; Baratto, Maria Camilla; Pogni, Rebecca; Rencoret, Jorge; Gutiérrez, Ana; Santos, José Ignacio; Martínez, Angel T; Ruiz-Dueñas, Francisco Javier

    2015-09-18

    Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn(2+), and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The study of ascorbate peroxidase, catalase and peroxidase during in vitro regeneration of Argyrolobium roseum.

    Science.gov (United States)

    Habib, Darima; Chaudhary, Muhammad Fayyaz; Zia, Muhammad

    2014-01-01

    Here, we demonstrate the micropropagation protocol of Argyrolobium roseum (Camb.), an endangered herb exhibiting anti-diabetic and immune-suppressant properties, and antioxidant enzymes pattern is evaluated. Maximum callogenic response (60 %) was observed from leaf explant at 1.0 mg L(-1) 1-nephthalene acetic acid (NAA) and 0.5 mg L(-1) 6-benzyl aminopurine (BA) in Murashige and Skoog (MS) medium using hypocotyl and root explants (48 % each). Addition of AgNO3 and PVP in the culture medium led to an increase in callogenic response up to 86 % from leaf explant and 72 % from hypocotyl and root explants. The best shooting response was observed in the presence of NAA, while maximum shoot length and number of shoots were achieved based on BA-supplemented MS medium. The regenerated shoots were rooted and successfully acclimatized under greenhouse conditions. Catalase and peroxidase enzymes showed ascending pattern during in vitro plant development from seed while ascorbate peroxidase showed descending pattern. Totally reverse response of these enzymes was observed during callus induction from three different explants. During shoot induction, catalase and peroxidase increased at high rate while there was a mild reduction in ascorbate peroxidase activity. Catalase and peroxidase continuously increased; on the other hand, ascorbate peroxidase activity decreased during root development and acclimatization states. The protocol described here can be employed for the mass propagation and genetic transformation of this rare herb. This study also highlights the importance and role of ascorbate peroxidase, catalase, and peroxidase in the establishment of A. roseum in vitro culture through callogenesis and organogenesis.

  16. Calculated ionisation potentials determine the oxidation of vanillin precursors by lignin peroxidase.

    Science.gov (United States)

    ten Have, R; Rietjens, I M; Hartmans, S; Swarts, H J; Field, J A

    1998-07-03

    In view of the biocatalytic production of vanillin, this research focused on the lignin peroxidase (LiP) catalysed oxidation of naturally occurring phenolic derivatives: O-methyl ethers, O-acetyl esters, and O-glucosyl ethers. The ionisation potential (IP) of a series of model compounds was calculated and compared to their experimental conversion by LiP, defining a relative IP threshold of approximately 9.0 eV. Based on this threshold value only the O-acetyl esters and glucosides of isoeugenol and coniferyl alcohol would be potential LiP substrates. Both O-acetyl esters were tested and were shown to be converted to O-acetyl vanillin in molar yields of 51.8 and 2.3%, respectively.

  17. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    Science.gov (United States)

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  18. Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100)

    Science.gov (United States)

    Novko, D.; Alducin, M.; Juaristi, J. I.

    2018-04-01

    We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.

  19. A polymeric liquid membrane electrode responsive to 3,3',5,5'-tetramethylbenzidine oxidation for sensitive peroxidase/peroxidase mimetic-based potentiometric biosensing.

    Science.gov (United States)

    Wang, Xuewei; Yang, Yangang; Li, Long; Sun, Mingshuang; Yin, Haogen; Qin, Wei

    2014-05-06

    The oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) has great utility in bioanalysis such as peroxidase/peroxidase mimetic-based biosensing. In this paper, the behaviors of TMB oxidation intermediates/products in liquid/liquid biphasic systems have been investigated for the first time. The free radical, charge transfer complex, and diimine species generated by TMB oxidation are all positively charged under acidic and near-neutral conditions. Electron paramagnetic resonance and visible absorbance spectroscopy data demonstrate that these cationic species can be effectively transferred from an aqueous phase into a water-immiscible liquid phase functionalized by an appropriate cation exchanger. Accordingly, sensitive potential responses of TMB oxidation have been obtained on a cation exchanger-doped polymeric liquid membrane electrode under mildly acidic and near-neutral conditions. By using the membrane electrode responsive to TMB oxidations, two sensitive potentiometric biosensing schemes including the peroxidase-labeled sandwich immunoassay and G-quadruplex DNAzyme-based DNA hybridization assay have been developed. The obtained detection limits for the target antigen and DNA are 0.02 ng/mL and 0.1 nM, respectively. Coupled with other advantages such as low cost, high reliability, and ease of miniaturization and integration, the proposed polymeric liquid membrane electrode holds great promise as a facile and efficient transducer for TMB oxidation and related biosensing applications.

  20. Analysis of Naturally Occurring Phenolic Compounds in Aromatic Plants by RP-HPLC Coupled to Diode Array Detector (DAD and GC-MS after Silylation

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2013-03-01

    Full Text Available The following aromatic plants of Greek origin, Origanum dictamnus (dictamus, Eucalyptus globulus (eucalyptus, Origanum vulgare L. (oregano, Mellisa officinalis L. (balm mint and Sideritis cretica (mountain tea, were examined for the content of phenolic substances. Reversed phase HPLC coupled to diode array detector (DAD was used for the analysis of the plant extracts. The gas chromatography-mass spectrometry method (GC-MS was also used for identification of phenolic compounds after silylation. The most abundant phenolic acids were: gallic acid (1.5–2.6 mg/100 g dry sample, ferulic acid (0.34–6.9 mg/100 g dry sample and caffeic acid (1.0–13.8 mg/100 g dry sample. (+-Catechin and (−-epicatechin were the main flavonoids identified in oregano and mountain tea. Quercetin was detected only in eucalyptus and mountain tea.

  1. Multiple-state Feshbach resonances mediated by high-order couplings

    International Nuclear Information System (INIS)

    Hemming, Christopher J.; Krems, Roman V.

    2008-01-01

    We present a study of multistate Feshbach resonances mediated by high-order couplings. Our analysis focuses on a system with one open scattering state and multiple bound states. The scattering state is coupled to one off-resonant bound state and multiple Feshbach resonances are induced by a sequence of indirect couplings between the closed channels. We derive a general recursive expression that can be used to fit the experimental data on multistate Feshbach resonances involving one continuum state and several bound states and present numerical solutions for several model systems. Our results elucidate general features of multistate Feshbach resonances induced by high-order couplings and suggest mechanisms for controlling collisions of ultracold atoms and molecules with external fields

  2. Immunostimulatory effects of the phenolic compounds from lichens on nitric oxide and hydrogen peroxide production

    Directory of Open Access Journals (Sweden)

    Iracilda Z. Carlos

    Full Text Available The effects of isolated compounds from Brazilian lichens and their derivatives on H2O2 and NO production were studied using murine macrophages as a part of an attempt to understand their possible immunomodulatory properties. The compound cytotoxicity was studied using MTT assay. Macrophage stimulation was evaluated by the determination of NO (Griess assay and H2O2 (horseradish peroxidase/phenol red in supernatants of peritoneal macrophage cultures of Swiss mice. This research demonstrated stimulatory activities of some phenolic compounds isolated from lichens and their derivatives on H2O2 and NO production. Structure-activity relationships suggest several synthetic directions for further improvement of immunological activity.

  3. Expression and Function of Cell Wall-Bound Cationic Peroxidase in Asparagus Somatic Embryogenesis

    Science.gov (United States)

    Takeda, Hiroyuki; Kotake, Toshihisa; Nakagawa, Naoki; Sakurai, Naoki; Nevins, Donald J.

    2003-01-01

    Cultured asparagus (Asparagus officinalis L. cv Y6) cells induced to regenerate into whole plants through somatic embryogenesis secreted a 38-kD protein into cell walls. The full-length cDNA sequence of this protein (Asparagus officinalis peroxidase 1 [AoPOX1]) determined by reverse transcriptase-polymerase chain reaction showed similarity with plant peroxidases. AoPOX1 transcripts were particularly abundant during early somatic embryogenesis. To evaluate the in vivo function of AoPOX1 protein, purified recombinant AoPOX1 protein was reacted with a series of phenolic substrates. The AoPOX1 protein was effective in the metabolism of feruloyl (o-methoxyphenol)-substituted substrates, including coniferyl alcohol. The reaction product of coniferyl alcohol was fractionated and subjected to gas chromatography-mass spectrometry analysis and 1H-nuclear magnetic resonance analysis, indicating that the oxidation product of coniferyl alcohol in the presence of AoPOX1 was dehydrodiconiferyl alcohol. The concentration of dehydrodiconiferyl alcohol in the cultured medium of the somatic embryos was in the range of 10−8 m. Functions of the AoPOX1 protein in the cell differentiation are discussed. PMID:12692335

  4. Profile of phenolic compounds of Brazilian virgin olive oils by rapid resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry (RRLC-ESI-TOF-MS).

    Science.gov (United States)

    Ballus, Cristiano Augusto; Quirantes-Piné, Rosa; Bakhouche, Abdelhakim; da Silva, Luiz Fernando de Oliveira; de Oliveira, Adelson Francisco; Coutinho, Enilton Fick; da Croce, Dorli Mario; Segura-Carretero, Antonio; Godoy, Helena Teixeira

    2015-03-01

    In recent years, agronomical researchers began to cultivate several olive varieties in different regions of Brazil to produce virgin olive oil (VOO). Because there has been no reported data regarding the phenolic profile of the first Brazilian VOO, the aim of this work was to determine phenolic contents of these samples using rapid-resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. 25 VOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, Manzanilla, Coratina, Frantoio and MGS Mariense varieties from three different Brazilian states and two crops were analysed. It was possible to quantify 19 phenolic compounds belonging to different classes. The results indicated that Brazilian VOOs have high total phenolic content because the values were comparable with those from high-quality VOOs produced in other countries. VOOs from Coratina, Arbosana and Grappolo presented the highest total phenolic content. These data will be useful in the development and improvement of Brazilian VOO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Wound-induced expression of horseradish peroxidase.

    Science.gov (United States)

    Kawaoka, A; Kawamoto, T; Ohta, H; Sekine, M; Takano, M; Shinmyo, A

    1994-01-01

    Peroxidases have been implicated in the responses of plants to physiological stress and to pathogens. Wound-induced peroxidase of horseradish (Armoracia rusticana) was studied. Total peroxidase activity was increased by wounding in cell wall fractions extracted from roots, stems and leaves of horseradish. On the other hand, wounding decreased the peroxidase activity in the soluble fraction from roots. The enzyme activities of the basic isozymes were induced by wounding in horseradish leaves based on data obtained by fractionation of crude enzyme in isoelectric focusing gel electrophoresis followed by activity staining. We have previously isolated genomic clones for four peroxidase genes, namely, prxC1a, prxC1b, prxC2 and prxC3. Northern blot analysis using gene-specific probes showed that mRNA of prxC2, which encodes a basic isozyme, accumulated by wounding, while the mRNAs for other peroxidase genes were not induced. Tobacco (Nicotiana tabacum) plants were transformed with four chimeric gene constructs, each consisting of a promoter from one of the peroxidase genes and the β-glucuronidase (GUS) structural gene. High level GUS activity induced in response to wounding was observed in tobacco plants containing the prxC2-GUS construct.

  6. Ruphus-mediated Suzuki cross-coupling of secondary alkyl trifluoroborates

    NARCIS (Netherlands)

    Hoogenband, van den A.; Lange, J.H.M.; Terpstra, J.W.; Koch, M.; Visser, G.M.; Visser, de M.; Korstanje, T.J.; Jastrzebski, J.T.B.H.

    2008-01-01

    A Ruphos-mediated Suzuki cross-coupling between (hetero)aryl bromides and secondary alkyltrifluoroborates is described using palladium catalysis. The Ruphos ligand showed superior properties as compared to S-Phos in this type of reaction. This method constitutes a valuable extension to current

  7. Multiligand Metal-Phenolic Assembly from Green Tea Infusions.

    Science.gov (United States)

    Rahim, Md Arifur; Björnmalm, Mattias; Bertleff-Zieschang, Nadja; Ju, Yi; Mettu, Srinivas; Leeming, Michael G; Caruso, Frank

    2018-03-07

    The synthesis of hybrid functional materials using the coordination-driven assembly of metal-phenolic networks (MPNs) is of interest in diverse areas of materials science. To date, MPN assembly has been explored as monoligand systems (i.e., containing a single type of phenolic ligand) where the phenolic components are primarily obtained from natural sources via extraction, isolation, and purification processes. Herein, we demonstrate the fabrication of MPNs from a readily available, crude phenolic source-green tea (GT) infusions. We employ our recently introduced rust-mediated continuous assembly strategy to prepare these GT MPN systems. The resulting hollow MPN capsules contain multiple phenolic ligands and have a shell thickness that can be controlled through the reaction time. These multiligand MPN systems have different properties compared to the analogous MPN systems reported previously. For example, the Young's modulus (as determined using colloidal-probe atomic force microscopy) of the GT MPN system presented herein is less than half that of MPN systems prepared using tannic acid and iron salt solutions, and the disassembly kinetics are faster (∼50%) than other, comparable MPN systems under identical disassembly conditions. Additionally, the use of rust-mediated assembly enables the formation of stable capsules under conditions where the conventional approach (i.e., using iron salt solutions) results in colloidally unstable dispersions. These differences highlight how the choice of phenolic ligand and its source, as well as the assembly protocol (e.g., using solution-based or solid-state iron sources), can be used to tune the properties of MPNs. The strategy presented herein expands the toolbox of MPN assembly while also providing new insights into the nature and robustness of metal-phenolic interfacial assembly when using solution-based or solid-state metal sources.

  8. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana.

    Science.gov (United States)

    Passaia, Gisele; Queval, Guillaume; Bai, Juan; Margis-Pinheiro, Marcia; Foyer, Christine H

    2014-03-01

    Glutathione peroxidases (GPXs) fulfil important functions in oxidative signalling and protect against the adverse effects of excessive oxidation. However, there has been no systematic characterization of the functions of the different GPX isoforms in plants. The roles of the different members of the Arabidopsis thaliana GPX gene (AtGPX) family were therefore investigated using gpx1, gpx2, gpx3, gpx4, gpx6, gpx7, and gpx8 T-DNA insertion mutant lines. The shoot phenotypes were largely similar in all genotypes, with small differences from the wild type observed only in the gpx2, gpx3, gpx7, and gpx8 mutants. In contrast, all the mutants showed altered root phenotypes compared with the wild type. The gpx1, gpx4, gpx6, gpx7, and gpx8 mutants had a significantly greater lateral root density (LRD) than the wild type. Conversely, the gpx2 and gpx3 mutants had significantly lower LRD values than the wild type. Auxin increased the LRD in all genotypes, but the effect of auxin was significantly greater in the gpx1, gpx4, and gpx7 mutants than in the wild type. The application of auxin increased GPX4 and GPX7 transcripts, but not GPX1 mRNAs in the roots of wild-type plants. The synthetic strigolactone GR24 and abscisic acid (ABA) decreased LRD to a similar extent in all genotypes, except gpx6, which showed increased sensitivity to ABA. These data not only demonstrate the importance of redox controls mediated by AtGPXs in the control of root architecture but they also show that the plastid-localized GPX1 and GPX7 isoforms are required for the hormone-mediated control of lateral root development.

  9. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood.

    Science.gov (United States)

    Santos, Sónia A O; Vilela, Carla; Freire, Carmen S R; Neto, Carlos Pascoal; Silvestre, Armando J D

    2013-11-01

    Ultra-high performance liquid chromatography (UHPLC) was applied for the first time in the analysis of wood extracts. The potential of this technique coupled to ion trap mass spectrometry in the rapid and effective detection and identification of bioactive components in complex vegetal samples was demonstrated. Several dozens of compounds were detected in less than 30min of analysis time, corresponding to more than 3-fold reduction in time, when compared to conventional HPLC analysis of similar extracts. The phenolic chemical composition of Eucalyptus grandis, Eucalyptus urograndis (E. grandis×E. urophylla) and Eucalyptus maidenii wood extracts was assessed for the first time, with the identification of 51 phenolic compounds in the three wood extracts. Twenty of these compounds are reported for the first time as Eucalyptus genus components. Ellagic acid and ellagic acid-pentoside are the major components in all extracts, followed by gallic and quinic acids in E. grandis and E. urograndis and ellagic acid-pentoside isomer, isorhamnetin-hexoside and gallic acid in E. maidenii. The antioxidant scavenging activity of the extracts was evaluated, with E. grandis wood extract showing the lowest IC50 value. Moreover, the antioxidant activity of these extracts was higher than that of the commercial antioxidant BHT and of those of the corresponding bark extracts. These results, together with the phenolic content values, open good perspectives for the exploitation of these renewable resources as a source of valuable phenolic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    Science.gov (United States)

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Peroxidase activity as a marker for estrogenicity

    International Nuclear Information System (INIS)

    Levy, J.; Liel, Y.; Glick, S.M.

    1981-01-01

    We examined the possibility that peroxidase activity might be a marker for estrogen activity in established estrogen-dependent tissues: dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumours and human breast cancer. In DMBA-induced tumours undergoing regression after ovariectomy or tamoxifen treatment, tumour size decreased by 50%, estradiol receptors (ER) and progesterone receptors (PgR) decreased by 25 and 20%, respectively, but peroxidase activity paradoxically increased six- to sevenfold. In DMBA tumours stimulated by estradiol treatment or by the cessation of tamoxifen administration in intact rats, tumour size increased threefold. ER and PgR increased two- and threefold, respectively, while peroxidase activity decreased 50%. These data indicate an inverse relation between tumour growth, ER and PgR on the one hand, and peroxidase activity on the other. In the human breast cancers there was a singificant negative relation between the presence of ER and peroxidase activity. By using a calibrated Sephadex G-100 column it was shown that uterine peroxidase differs in molecular weight from the peroxidase of rat mammary tumours and that of human breast cancer. (author)

  12. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase.

    Science.gov (United States)

    Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei

    2015-11-28

    Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is

  13. Formation of brominated phenolic contaminants from natural manganese oxides-catalyzed oxidation of phenol in the presence of Br(.).

    Science.gov (United States)

    Lin, Kunde; Song, Lianghui; Zhou, Shiyang; Chen, Da; Gan, Jay

    2016-07-01

    Brominated phenolic compounds (BPCs) are a class of persistent and potentially toxic compounds ubiquitously present in the aquatic environment. However, the origin of BPCs is not clearly understood. In this study, we investigated the formation of BPCs from natural manganese oxides (MnOx)-catalyzed oxidation of phenol in the presence of Br(-). Experiments at ambient temperature clearly demonstrated that BPCs were readily produced via the oxidation of phenol by MnOx in the presence of Br(-). In the reaction of MnOx sand with 0.213 μmol/L phenol and 0.34 mmol/L Br(-) for 10 min, more than 60% of phenol and 56% of Br(-) were consumed to form BPCs. The yield of BPCs increased with increasing concentrations of phenol and Br(-). Overall, a total of 14 BPCs including simple bromophenols (4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol), hydroxylated polybrominated diphenyl ethers (OH-PBDEs), and hydroxylated polybrominated biphenyls (OH-PBBs) were identified. The production of BPCs increased with increasing concentrations of Br(-) or phenol. It was deduced that Br(-) was first oxidized to form active bromine, leading to the subsequent bromination of phenol to form bromophenols. The further oxidation of bromophenols by MnOx resulted in the formation of OH-PBDEs and OH-PBBs. In view of the ubiquity of phenol, Br(-), and MnOx in the environment, MnOx-mediated oxidation may play a role on the natural production of BPCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Oxidation of NAD dimers by horseradish peroxidase.

    OpenAIRE

    Avigliano, L; Carelli, V; Casini, A; Finazzi-Agrò, A; Liberatore, F

    1985-01-01

    Horseradish peroxidase catalyses the oxidation of NAD dimers, (NAD)2, to NAD+ in accordance with a reaction that is pH-dependent and requires 1 mol of O2 per 2 mol of (NAD)2. Horseradish peroxidase also catalyses the peroxidation of (NAD)2 to NAD+. In contrast, bacterial NADH peroxidase does not catalyse the peroxidation or the oxidation of (NAD)2. A free-radical mechanism is proposed for both horseradish-peroxidase-catalysed oxidation and peroxidation of (NAD)2.

  15. Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Wariishi, Hiroyuki; Valli, K.; Gold, M.H.

    1989-01-01

    In the presence of Mn II and H 2 O 2 , homogeneous manganese peroxidase oxidized 1-(3,5-dimethoxy-4-hydroxyphenyl)-2-(4-methoxyphenyl)-1,3-dihydroxypropane (I) to yield 1-(3,5-dimethoxy-4-hydroxyphenyl)-2-(4-methoxyphenyl)-1-oxo-3-hydroxypropane (II), 2,6-dimethoxy-1,4-benzoquinone (III), 2,6-dimethoxy-1,4-dihydroxybenzene (IV), 1-(4-methoxyphenyl)-1-oxo-2-hydroxyethane (V), 1-(4-methoxyphenyl)-1,2-dihydroxyethane (VI), syringaldehyde (VIII), and 2-(4-methoxyphenyl)-3-hydroxypropanal (IX). Chemically prepared manganese(III) malonate catalyzed the same reactions. Oxidation of I in H 2 18 O under argon resulted in >80% incorporation of 18 O into the phenylglycol VI, the hydroquinone IV, and the quinone III. Oxidation of I in H 2 18 O under aerobic conditions resulted in 40% incorporation of 18 O into VI but no 18 O incorporation into V. Finally, oxidation of I under 18 O 2 resulted in 89% and 28% incorporation of 18 O into V and VI, respectively. These results are explained by mechanisms involving the one-electron oxidation of the substrate I by enzyme-generated Mn III to produce a phenoxy radical intermediate I'. Subsequent C α -C β bond cleavage of the radical intermediate yields syringaldehyde (VIII) and a C 6 -C 2 benzylic radical. Syringaldehyde is oxidized by Mn III in several steps to a cyclohexadiene cation intermediate I double-prime, which is attacked by water to yield the benzoquinone III. The C 6 -C 2 radical is scavenged by O 2 to form a peroxy radical that decomposes to V and VI. In these reactions, Mn III generated by manganese peroxidase catalyzes both formation of the substrate phenoxy radical and oxidation of carbon-centered radical intermediates, to yield reactive cations

  16. Analysis of monoamine oxidase (MAO) enzymatic activity by high-performance liquid chromatography-diode array detection combined with an assay of oxidation with a peroxidase and its application to MAO inhibitors from foods and plants.

    Science.gov (United States)

    Herraiz, Tomás; Flores, Andrea; Fernández, Lidia

    2018-01-15

    Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of biogenic amines and neurotransmitters and produce ammonia, aldehydes, and hydrogen peroxide which is involved in oxidative processes. Inhibitors of MAO-A and -B isozymes are useful as antidepressants and neuroprotectants. The assays of MAO usually measure amine oxidation products or hydrogen peroxide by spectrophotometric techniques. Those assays are often compromised by interfering compounds resulting in poor results. This research describes a new method that combines in the same assay the oxidative deamination of kynuramine to 4-hydroxyquinoline analyzed by HPLC-DAD with the oxidation of tetramethylbenzidine (TMB) (or Amplex Rex) by horseradish peroxidase (HRP) in presence of hydrogen peroxide. The new method was applied to study the inhibition of human MAO-A and -B by bioactive compounds including β-carboline alkaloids and flavonoids occurring in foods and plants. As determined by HPLC-DAD, β-carbolines, methylene blue, kaempferol and clorgyline inhibited MAO-A and methylene blue, 5-nitroindazole, norharman and deprenyl inhibited MAO-B, and all of them inhibited the oxidation of TMB in the same extent. The flavonoids catechin and cyanidin were not inhibitors of MAO by HPLC-DAD but highly inhibited the oxidation of TMB (or Amplex Red) by peroxidase whereas quercetin and resveratrol were moderate inhibitors of MAO-A by HPLC-DAD, but inhibited the peroxidase assay in a higher level. For some phenolic compounds, using the peroxidase-coupled assay to measure MAO activity led to mistaken results. The new method permits to discern between true inhibitors of MAO from those that are antioxidants and which interfere with peroxidase assays but do not inhibit MAO. For true inhibitors of MAO, inhibition as determined by HPLC-DAD correlated well with inhibition of the oxidation of TMB and this approach can be used to assess the in vitro antioxidant activity (less hydrogen peroxide production) resulting

  17. Towards a wire-mediated coupling of trapped ions

    Science.gov (United States)

    Clark, Robert; Lee, Tony; Daniilidis, Nikos; Sankaranarayanan, S.; Häffner, Hartmut

    2008-03-01

    Most schemes for ion trap quantum computation rely upon the exchange of information between ion-qubits in the same trap region, mediated by their shared vibrational mode. An alternative way to achieve this coupling is via the image charges induced in a conducting wire that connects different traps. This was shown to be theoretically possible by Heinzen and Wineland in 1990, but some important practical questions have remained unaddressed. Among these are how the presence of such a wire modifies the motional frequencies and heating rates of trapped ions. We thus have realized this system as a 1 mm-scale planar segmented rf ion trap combined with an electrically floating gold wire of 25 microns diameter and length 1 cm. This wire is placed close to trapped ions using a set of piezoelectric nanopositioners. We present here experimental measurements of the motional frequencies and heating rates of a single trapped calcium ion as the wire is moved from 3.0 mm to 0.2 mm away from the ion. We discuss the implications of these results for achieving wire-mediated coupling in the present apparatus, as well as in future improved setups.

  18. "Chitin-specific" peroxidases in plants.

    Science.gov (United States)

    Maksimov, I V; Cherepanova, E A; Khairullin, R M

    2003-01-01

    The activity of various plant peroxidases and the ability of their individual isoforms to bind chitin was studied. Some increase in peroxidase activity was observed in crude extracts in the presence of chitin. Activated peroxidases of some species fell in the fraction not sorbed on chitin and those of other species can bind chitin. Only anionic isoperoxidases from oat (Avena sativa), rice (Oryza sativa), horseradish (Armoracia rusticana), garden radish (Raphanus sativus var. radicula), peanut (Arachis hypogaea), and tobacco (Nicotiana tabacum Link et Otto) were sorbed on chitin. Both anionic and cationic isoforms from pea (Pisum sativum), galega(Galega orientalis), cucumber (Cucumis sativus), and zucchini (Cucurbita pepo L.) were sorbed on chitin. Peroxidase activation under the influence of chitin was correlated to the processes that occur during hypersensitive reaction and lignification of sites, in which pathogenic fungus penetrates into a plant. The role of chitin-specific isoperoxidases in inhibition of fungal growth and connection of this phenomenon with structural characteristics of isoperoxidases are also discussed.

  19. Methods for extraction and determination of phenolic acids in medicinal plants: a review.

    Science.gov (United States)

    Arceusz, Agnieszka; Wesolowski, Marek; Konieczynski, Pawel

    2013-12-01

    Phenolic acids constitute a group of potentially immunostimulating compounds. They occur in all medicinal plants and are widely used in phytotherapy and foods of plant origin. In recent years, phenolic acids have attracted much interest owing to their biological functions. This paper reviews the extraction and determination methods of phenolic acids in medicinal plants over the last 10 years. Although Soxhlet extraction and ultrasonic assisted extraction (UAE) are commonly used for the extraction of phenolic acids from plant materials, alternative techniques such as supercritical fluid extraction (SFE), and accelerated solvent extraction (ASE) can also be used. After extraction, phenolic acids are determined usually by liquid chromatography (LC) owing to the recent developments in this technique, especially when it is coupled with mass spectrometry (MS). Also detection systems are discussed, including UV-Vis, diode array, electrochemical and fluorimetric. Other popular techniques for the analysis of this group of secondary metabolites are gas chromatography coupled with mass spectrometry (GC-MS) and capillary electrophoresis (CE).

  20. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed)

    OpenAIRE

    Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W.

    2015-01-01

    Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a stan...

  1. Secretion of laccase and manganese peroxidase by Pleurotus strains cultivate in solid-state using Pinus spp. sawdust

    Directory of Open Access Journals (Sweden)

    Marli Camassola

    2013-01-01

    Full Text Available Pleurotus species secrete phenol oxidase enzymes: laccase (Lcc and manganese peroxidase (MnP. New genotypes of these species show potential to be used in processes aiming at the degradation of phenolic compounds, polycyclic aromatic hydrocarbons and dyes. Hence, a screening of some strains of Pleurotus towards Lcc and MnP production was performed in this work. Ten strains were grown through solid-state fermentation on a medium based on Pinus spp. sawdust, wheat bran and calcium carbonate. High Lcc and MnP activities were found with these strains. Highest Lcc activity, 741 ± 245 U gdm-1 of solid state-cultivation medium, was detected on strain IB11 after 32 days, while the highest MnP activity occurred with strains IB05, IB09, and IB11 (5,333 ± 357; 4,701 ± 652; 5,999 ± 1,078 U gdm-1, respectively. The results obtained here highlight the importance of further experiments with lignocellulolytic enzymes present in different strains of Pleurotus species. Such results also indicate the possibility of selecting more valuable strains for future biotechnological applications, in soil bioremediation and biological biomass pre-treatment in biofuels production, for instance, as well as obtaining value-added products from mushrooms, like phenol oxidase enzymes.

  2. Electrokinetic transport behavior of phenol in upper Permian soils

    Energy Technology Data Exchange (ETDEWEB)

    Haus, R.; Zorn, R.; Czurda, K.; Ruthe, H. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Electrokinetic experiments with upper Permian, phenol contaminated soils ('Solaris'-area Chemnitz) were performed. Bench scale results show the successful removal of phenol. The developing soil-pH during electroremediation tests is found to affect the transport behavior of phenol strongly. If buffer solutions are used at the electrode compartments, phenol could be removed from the soils. By neutralizing the generating hydrogen ions at the anode reservoir the hydroxyl ions developing at the cathode by the electrolysis of water enter the soil and propagate to the anode by increasing the soil pH. The pH dependent dehydroxylation of phenol promotes the electromigration of negative charged phenolate ions from the cathode to the anode. At the anode the coupling of phenoxyl-radicals supports the formation of non toxic, water insoluble polyoxyphenylene by electro-polymerization. In the case of buffering the pH at the cathode uncharged phenol is transported by electroosmosis from the anode to the cathode because of the nonexisting base front and the unhindered production of hydrogen ions at the anode. (orig.)

  3. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.

    Science.gov (United States)

    Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong

    2017-12-14

    Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tetra(p-tolyl)borate-functionalized solvent polymeric membrane: a facile and sensitive sensing platform for peroxidase and peroxidase mimetics.

    Science.gov (United States)

    Wang, Xuewei; Qin, Wei

    2013-07-22

    The determination of peroxidase activities is the basis for enzyme-labeled bioaffinity assays, peroxidase-mimicking DNAzymes- and nanoparticles-based assays, and characterization of the catalytic functions of peroxidase mimetics. Here, a facile, sensitive, and cost-effective solvent polymeric membrane-based peroxidase detection platform is described that utilizes reaction intermediates with different pKa values from those of substrates and final products. Several key but long-debated intermediates in the peroxidative oxidation of o-phenylenediamine (o-PD) have been identified and their charge states have been estimated. By using a solvent polymeric membrane functionalized by an appropriate substituted tetraphenylborate as a receptor, those cationic intermediates could be transferred into the membrane from the aqueous phase to induce a large cationic potential response. Thus, the potentiometric indication of the o-PD oxidation catalyzed by peroxidase or its mimetics can be fulfilled. Horseradish peroxidase has been detected with a detection limit at least two orders of magnitude lower than those obtained by spectrophotometric techniques and traditional membrane-based methods. As an example of peroxidase mimetics, G-quadruplex DNAzymes were probed by the intermediate-sensitive membrane and a label-free thrombin detection protocol was developed based on the catalytic activity of the thrombin-binding G-quadruplex aptamer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.

    Science.gov (United States)

    Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge; Labarre, Jean; Toledano, Michel B; Gladyshev, Vadim N

    2015-08-25

    Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.

  6. Evaluation of Hypolipidemic and Antioxidant Effects in Phenolrich Fraction of Crataegus pinnatifida Fruit in Hyperlipidemia Rats and Identification of Chemical Composition by Ultra-performance Liquid Chromatography Coupled with Quadropole Time-of-flight Mass Spectrometry

    Science.gov (United States)

    Shao, Feng; Gu, Lifei; Chen, Huijuan; Liu, Ronghua; Huang, Huilian; Chen, Lanying; Yang, Ming

    2017-01-01

    Background: Hawthorn (Crataegus pinnatifida) fruit has enjoyed a great popularity as a pleasant-tasting food associated with hypolipidemic and antioxidant effects. Objective: Our aim was to screen the effective fraction of hawthorn fruit in the treatment of hyperlipidemia rats. Materials and Methods: In this study, ethanol extract of hawthorn fruit (Fr.1) and four fractionated extracts (Fr.2, Fr.3, Fr.4, and Fr.5) were compared to total phenol content evaluated using Folin–Ciocalteu method, and hypolipidemic and antioxidant effects were assessed in hyperlipidemic rats. Results: Total phenol content of Fr.4 was higher than other fractions by at least 2 fold. Furthermore, this fraction possessed the strongest hypolipidemic and antioxidant effects in hyperlipidemic rats. On this basis, 15 phenolic compounds and four organic acids in Fr.4 were positively or tentatively identified using ultra-performance liquid chromatography coupled with quadropole time-of-flight mass spectrometry. In addition, 5-O-caffeoyl quinic acid butyl ester was first reported in hawthorn fruit. Conclusion: Phenol-rich fraction in hawthorn fruit exhibited satisfactory hypolipidemic and antioxidant effects, and this could be exploited for further promotion of functional foods. SUMMARY Phenol-rich fraction in hawthorn fruit possesses most potent hypolipidemic and antioxidant effects in hyperlidemia rats. Abbreviations used: UPLC-Q-TOF-MS/MS: Ultra performance liquid chromatography coupled with quadropole time-of-flight mass spectrometry; TC: Total cholesterol; TG: Triglyceride; LDL-C: Low-density lipoprotein-cholesterol; HDL-C: High-density lipoprotein-cholesterol; GSH-Px: Glutathione peroxidase; SOD: Superoxide dismutase; MDA: Malondialdehyde; CAT: Catalase; NO: Nitric oxide; NOS: Nitric oxide synthase; ROS: Reactive oxygen species; •OOH: Superoxide anions, •OH: Hydroxyl radicals. PMID:29200740

  7. Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator.

    Science.gov (United States)

    He, Yong

    2017-06-23

    We utilize the surface plasmon field of a metal nanoparticle (MNP) to show strain-mediated coupling in a quantum dot-mechanical resonator hybrid system including a quantum dot (QD) embedded within a conical nanowire (NW) and a MNP in the presence of an external field. Based on the numerical solutions of the master equation, we find that a slow oscillation, originating from the strain-mediated coupling between the QD and the NW, appears in the time evolution of the plasmon field enhancement. The results show that the period (about [Formula: see text]) of the slow oscillation is equal to that of the mechanical resonator of NW, which suggests that the time-resolved measurement of the plasmon field enhancement can be easily achieved based on the current experimental conditions. Its amplitude increases with the increasing strain-mediated coupling strength, and under certain conditions there is a linear relationship between them. The slow oscillation of the plasmon field enhancement provides valuable tools for measurements of the mechanical frequency and the strain-mediated coupling strength.

  8. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.

    Science.gov (United States)

    Viswanathan, Vasanthi S; Ryan, Matthew J; Dhruv, Harshil D; Gill, Shubhroz; Eichhoff, Ossia M; Seashore-Ludlow, Brinton; Kaffenberger, Samuel D; Eaton, John K; Shimada, Kenichi; Aguirre, Andrew J; Viswanathan, Srinivas R; Chattopadhyay, Shrikanta; Tamayo, Pablo; Yang, Wan Seok; Rees, Matthew G; Chen, Sixun; Boskovic, Zarko V; Javaid, Sarah; Huang, Cherrie; Wu, Xiaoyun; Tseng, Yuen-Yi; Roider, Elisabeth M; Gao, Dong; Cleary, James M; Wolpin, Brian M; Mesirov, Jill P; Haber, Daniel A; Engelman, Jeffrey A; Boehm, Jesse S; Kotz, Joanne D; Hon, Cindy S; Chen, Yu; Hahn, William C; Levesque, Mitchell P; Doench, John G; Berens, Michael E; Shamji, Alykhan F; Clemons, Paul A; Stockwell, Brent R; Schreiber, Stuart L

    2017-07-27

    Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.

  9. Quantitative analysis of phenol and alkylphenols in Brazilian coal tar

    Directory of Open Access Journals (Sweden)

    Elina Bastos Caramão

    2004-04-01

    Full Text Available The main purpose of this work is the identification and quantification of phenolic compounds in coal tar samples from a ceramics factory in Cocal (SC, Brazil. The samples were subjected to preparative scale liquid chromatography, using Amberlyst A-27TM ion-exchange resin as stationary phase. The fractions obtained were classified as "acids" and "BN" (bases and neutrals. The identification and quantification of phenols, in the acid fraction, was made by gas chromatography coupled to mass spectrometry (GC/MS. Nearly twenty-five phenols were identified in the samples and nine of them were also quantified. The results showed that coal tar has large quantities of phenolic compounds of industrial interest.

  10. Interqubit coupling mediated by a high-excitation-energy quantum object

    NARCIS (Netherlands)

    Ashhab, S.; Niskanen, A.O.; Harrabi, K.; Nakamura, Y.; Picot, T.; De Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E.; Nori, F.

    2008-01-01

    We consider a system composed of two qubits and a high excitation energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well known

  11. Characterization and profiling of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry.

    Science.gov (United States)

    Zhang, Jingxian; Guan, Shuhong; Sun, Jianghao; Liu, Tian; Chen, Pei; Feng, Ruihong; Chen, Xin; Wu, Wanying; Yang, Min; Guo, De-An

    2015-01-01

    Cortex Lycii, the root bark of Lycium chinense Mill. or Lycium barbarum L., is a frequently used traditional Chinese medicine. Phytochemical studies have shown that phenolic amides are not only characteristic compounds but also abundant ones in this plant. In the present study, an effective method was developed for structural characterization of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with linear ion trap Orbitrap tandem mass spectrometry. The fragmentation of 14 compounds including six cinnamic acid amides, six neolignanamides, and two lignanamides were studied systematically for the first time. It was found that, in the positive ion mode, neutral loss of the tyramide moiety (137 Da) or N-(4-aminobutyl)acetamide moiety (130 Da) were characteristic for these compounds. At least 54 phenolic amides were detected in the extract and 48 of them were characterized, among which 14 known compounds were identified unambiguously by comparing the retention time and mass spectra with those of reference compounds, and 34 components were tentatively identified based on the fragmentation patterns, exact mass, UV spectra, as well as retention time. Fifteen compounds were characterized as potential new ones. Additionally, the developed method was applied to analyze eight batches of samples collected from the northwest of China, and it was found that cinnamic acid amides were the main type of phenolic amides in Cortex Lycii. In conclusion, the identification of these chemicals provided essential data for further phytochemical studies, metabolites identification, and the quality control of Cortex Lycii.

  12. Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase.

    Science.gov (United States)

    Morales, María; Mate, María J; Romero, Antonio; Martínez, María Jesús; Martínez, Ángel T; Ruiz-Dueñas, Francisco J

    2012-11-30

    Versatile peroxidase shares with manganese peroxidase and lignin peroxidase the ability to oxidize Mn(2+) and high redox potential aromatic compounds, respectively. Moreover, it is also able to oxidize phenols (and low redox potential dyes) at two catalytic sites, as shown by biphasic kinetics. A high efficiency site (with 2,6-dimethoxyphenol and p-hydroquinone catalytic efficiencies of ∼70 and ∼700 s(-1) mM(-1), respectively) was localized at the same exposed Trp-164 responsible for high redox potential substrate oxidation (as shown by activity loss in the W164S variant). The second site, characterized by low catalytic efficiency (∼3 and ∼50 s(-1) mM(-1) for 2,6-dimethoxyphenol and p-hydroquinone, respectively) was localized at the main heme access channel. Steady-state and transient-state kinetics for oxidation of phenols and dyes at the latter site were improved when side chains of residues forming the heme channel edge were removed in single and multiple variants. Among them, the E140G/K176G, E140G/P141G/K176G, and E140G/W164S/K176G variants attained catalytic efficiencies for oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) at the heme channel similar to those of the exposed tryptophan site. The heme channel enlargement shown by x-ray diffraction of the E140G, P141G, K176G, and E140G/K176G variants would allow a better substrate accommodation near the heme, as revealed by the up to 26-fold lower K(m) values (compared with native VP). The resulting interactions were shown by the x-ray structure of the E140G-guaiacol complex, which includes two H-bonds of the substrate with Arg-43 and Pro-139 in the distal heme pocket (at the end of the heme channel) and several hydrophobic interactions with other residues and the heme cofactor.

  13. Scope and limitations of the Heck-Matsuda-coupling of phenol diazonium salts and styrenes: a protecting-group economic synthesis of phenolic stilbenes.

    Science.gov (United States)

    Schmidt, Bernd; Elizarov, Nelli; Berger, René; Hölter, Frank

    2013-06-14

    4-Phenol diazonium salts undergo Pd-catalyzed Heck reactions with various styrenes to 4'-hydroxy stilbenes. In almost all cases higher yields and fewer side products were observed, compared to the analogous 4-methoxy benzene diazonium salts. In contrast, the reaction fails completely with 2- and 3-phenol diazonium salts. For these substitution patterns the methoxy-substituted derivatives are superior.

  14. Fungal peroxidases : molecular aspects and applications

    NARCIS (Netherlands)

    Conesa, A.; Punt, P.J.; Hondel, C.A.M.J.J.

    2002-01-01

    Peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze oxidative reactions. A large number of peroxidases have been identified in fungal species and are being characterized at the molecular level. In this manuscript we review the current knowledge on the molecular aspects of this

  15. Laccase/Mediator Systems

    NARCIS (Netherlands)

    Hilgers, Roelant; Vincken, Jean Paul; Gruppen, Harry; Kabel, Mirjam A.

    2018-01-01

    Laccase-mediator systems (LMS) have been widely studied for their capacity to oxidize the nonphenolic subunits of lignin (70-90% of the polymer). The phenolic subunits (10-30% of the polymer), which can also be oxidized without mediators, have received considerably less attention. Consequently, it

  16. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    Science.gov (United States)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  17. Production and Purification of Peroxidase from Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Mohammed A. Jebor

    2017-02-01

    Full Text Available This study was conducted in the laboratories of Biology Department, College of Science, which deals with isolation and purification of peroxidase and optimization of process parameters to achieve maximum yield of peroxidase by Aspergillus niger. Solid-state fermentation of Aspergillus niger was carried out for enhanced production of peroxidase using hydrogen peroxide as the substrate of enzyme maximum activity of the enzyme was achieved under optimum growth conditions. The optimum conditions were the isolated of Aspergillus niger from soil and growth in synthetic medium, it gave high titer of peroxidase activity, the fructose as carbon source, peptone as nitrogen source, after 12 days of incubation, incubation temperature 25 °C and pH = 6.5. Peroxidase purified in four purification steps; precipitation with 70% saturation of ammonium sulfate, step of dialysis, the third by ion exchange chromatography using DEAE-Cellulose and fourth by gel filtration throughout Sephadex G-100. The specific activity of the purified enzyme was 150U/mg with 7.75 folds. The peroxidase was shown to have molecular weight of 40kDa in SDS-PAGA and about 40kDa in gel filtration.The optimum pH and temperature for peroxidase activity 7 and 35 C0 respectively.

  18. Immobilization of horseradish peroxidase on self-assembled (3-mercaptopropyl)trimethoxysilane film: Characterization, direct electrochemistry, redox thermodynamics and biosensing

    International Nuclear Information System (INIS)

    Wu Fanghua; Hu Zhichao; Xu Jingjing; Tian Yuan; Wang Liwei; Xian Yuezhong; Jin Litong

    2008-01-01

    Highly organized (3-mercaptopropyl)trimethoxysilane (3-MPT) films have been prepared via self-assembled coupled with sol-gel linking technology. Horseradish peroxidase (HRP) is successfully immobilized onto the densely packed three-dimensional (3D) 3-MPT network and the direct electrochemistry of HRP is achieved without any electron mediators or promoters. Redox thermodynamics of HRP on the 3-MPT films, which is obtained from the temperature dependence of the reduction potential, suggests that the positive shift of redox potentials of HRP at the interface of 3-MPT originates from the solvent reorganization effects and conformational change of the polypeptide chain of HRP. Based on the direct electrochemistry and electrocatalytic ability of HRP, a sensitive third-generation amperometric H 2 O 2 biosensor is developed with two linear dependence ranges of 5.0 x 10 -7 to 1.0 x 10 -4 and 1.0 x 10 -4 to 2.0 x 10 -2 mol L -1

  19. Degradation of textile dyes using immobilized lignin peroxidase-like metalloporphines under mild experimental conditions

    Directory of Open Access Journals (Sweden)

    Zucca Paolo

    2012-12-01

    Full Text Available Abstract Background Synthetic dyes represent a broad and heterogeneous class of durable pollutants, that are released in large amounts by the textile industry. The ability of two immobilized metalloporphines (structurally emulating the ligninolytic peroxidases to bleach six chosen dyes (alizarin red S, phenosafranine, xylenol orange, methylene blue, methyl green, and methyl orange was compared to enzymatic catalysts. To achieve a green and sustainable process, very mild conditions were chosen. Results IPS/MnTSPP was the most promising biomimetic catalyst as it was able to effectively and quickly bleach all tested dyes. Biomimetic catalysis was fully characterized: maximum activity was centered at neutral pH, in the absence of any organic solvent, using hydrogen peroxide as the oxidant. The immobilized metalloporphine kept a large part of its activity during multi-cycle use; however, well-known redox mediators were not able to increase its catalytic activity. IPS/MnTSPP was also more promising for use in industrial applications than its enzymatic counterparts (lignin peroxidase, laccase, manganese peroxidase, and horseradish peroxidase. Conclusions On the whole, the conditions were very mild (standard pressure, room temperature and neutral pH, using no organic solvents, and the most environmental-friendly oxidant and a significant bleaching and partial mineralization of the dyes was achieved in approximately 1 h. Therefore, the process was consistent with large-scale applications. The biomimetic catalyst also had more promising features than the enzymatic catalysts.

  20. Eleusine indica L. possesses antioxidant activity and precludes carbon tetrachloride (CCl₄)-mediated oxidative hepatic damage in rats.

    Science.gov (United States)

    Iqbal, Mohammad; Gnanaraj, Charles

    2012-07-01

    The purpose of this study was to evaluate the ability of aqueous extract of Eleusine indica to protect against carbon tetrachloride (CCl₄)-induced hepatic injury in rats. The antioxidant activity of E. indica was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. The total phenolic content of E. indica was also determined. Biochemical parameters [e.g. alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), glutathione (GSH), catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and quinone reductase] were used to evaluate hepatic damage in animals pretreated with E. indica and intoxicated with CCl₄. CCl₄-mediated hepatic damage was also evaluated by histopathologically. E. indica extract was able to reduce the stable DPPH level in a dose-dependent manner. The half maximal inhibitory concentration (IC₅₀) value was 2350 μg/ml. Total phenolic content was found to be 14.9 ± 0.002 mg/g total phenolic expressed as gallic acid equivalent per gram of extract. Groups pretreated with E. indica showed significantly increased activity of antioxidant enzymes compared to the CCl₄-intoxicated group (p indica pretreatment (p indica-pretreated groups as compared to the CCl₄-intoxicated group. The protective effect of E. indica was further evident through decreased histopathological alterations in the liver. The results of our study indicate that the hepatoprotective effects of E. indica might be ascribable to its antioxidant and free radical scavenging property.

  1. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed.

    Directory of Open Access Journals (Sweden)

    Md Abdullah Yousuf Al Harun

    Full Text Available Chrysanthemoides monilifera subsp. monilifera (boneseed, a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial

  2. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed).

    Science.gov (United States)

    Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W

    2015-01-01

    Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free

  3. Cyclopropenes in Metallacycle-Mediated Cross-Coupling with Alkynes: Convergent Synthesis of Highly Substituted Vinylcyclopropanes.

    Science.gov (United States)

    O'Rourke, Natasha F; Micalizio, Glenn C

    2016-03-18

    Stereodivergent metallacycle-mediated cross-coupling reactions are described for the synthesis of densely functionalized vinylcyclopropanes from the union of alkynes with cyclopropenes. Strategies explored include hydroxyl-directed and nondirected processes, with the latter of these delivering vinylcyclopropanes with exquisite levels of regio- and stereoselectivity. Challenges inherent to these coupling reactions include diastereoselectivity (with respect to the cyclopropene) and regioselectivity (with respect to both coupling partners).

  4. Separation and characterization of phenolic compounds from ...

    African Journals Online (AJOL)

    Attioua

    2013-07-03

    Jul 3, 2013 ... (Theobroma cacao). J. Mass Spectrom. 38:35-42. Sanchez R, Jauregui LR, Viladomat B, Codina (2004). Qualitative analysis of phenolic compounds in apple Pomace using liquid chromatography coupled to mass spectrometry in tandem mode. Rapid Communun Mass Spectrom. 18:553-563. Saulo LDS ...

  5. Investigation on Possibility of Transferring OysterMushroom (Pleurotusostreatus Manganese Peroxidase Gene (mnp to the White Button Mushroom (Agaricusbisporus

    Directory of Open Access Journals (Sweden)

    Mojgan Parvandi

    2017-12-01

    Full Text Available Introduction: The white button mushroom does not produce remarkable yield in the third flash. Nutritional deficiency and the inability of this mushroom to efficient use of compost are mentioned as its reasons. Basically, compost includes two major food components, lignocellulose and microbial biomass. But this microbial biomass provides just 10% of button mushroom food needs. According to research studies, differentenzymes in both white button mushroom and oyster mushroom are responsible for decomposition of lignin compounds in compost media, from begin of mycelium grows to the end of fruiting. Lacasse, manganese peroxidase, lignin peroxidase, glyoxal oxidase enzymes contribute to degradation of lignin compounds in degradation mushroom has proven by researchers however itis dependent on mushroom types. Manganese peroxidase enzyme (EC. 1.11.1.13 is an extracellular parser lignin enzyme that has a central peroxidase core. Manganese peroxidase enzyme oxidizesMn2+ to Mn3+ and then Mn3+ oxidizes phenolic structure to fonoxile radical. Produced Mn3+ is very active and makes complex by chelating organic acids that is produced by mushrooms such as oxalate or malate. Mn3+ ions become stable by helping of these chelates and it can penetrate through materials such as wood. On the other hand, in recent years, plant biotechnology provides new solutions for old problems such as use of microorganisms, particularly using bacteria for gene transfer and improvement of superlatives. For a sample of this method, Agrobacterium-mediated transformation system can be noted. In addition, the use of suitable promoters for heterologous genes expression in suitable hosts is an important strategy in functional biotechnology that has been raised in edible mushroom genetic engineering. The lack of efficient and sufficient use of compost, low power of white button mushroom in competition with other rivals, lack of yield per area unit due to production costs, pests and diseases

  6. Colorimetric detection of glucose based on ficin with peroxidase-like activity

    Science.gov (United States)

    Pang, Yanjiao; Huang, Zili; Yang, Yufang; Long, Yijuan; Zheng, Huzhi

    2018-01-01

    In this work, we developed a colorimetric biosensing system for glucose detection by coupling the peroxidase-like of ficin and the glucose oxidase (GOx). GOx can catalyze the oxidation of glucose to produce H2O2, then, ficin catalyzes the oxidation of peroxidase substrate 3,3‧,5,5‧-tetramethylbenzidine (TMB) by H2O2 to produce a blue color reaction. The present sensing system showed a linear response toward glucose detection over range of 2.0-100 μM with a detection limit of 0.5 μM. This system is simple, low cost, highly sensitive and selective for glucose detection, and was also applied to measuring glucose in human serum. Furthermore, in order to expand the application of ficin in biological sensing, we immobilized ficin onto the SiO2@Fe3O4 NPs, which exhibited the merits of recycling as well as allowing the repeated detection of glucose. Thus it may provide great potential applications in biomedicine, biotechnology and environmental chemistry.

  7. Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor.

    Science.gov (United States)

    Moghaddam, Hadi Mahmoudi; Beitollahi, Hadi; Tajik, Somayeh; Malakootian, Mohammad; Maleh, Hassan Karimi

    2014-11-01

    The electrochemical oxidation of hydroxylamine on the surface of a carbon paste electrode modified with carbon nanotubes and 2,7-bis(ferrocenyl ethyl)fluoren-9-one is studied. The electrochemical response characteristics of the modified electrode toward hydroxylamine and phenol were investigated. The results showed an efficient catalytic activity of the electrode for the electro-oxidation of hydroxylamine, which leads to lowering its overpotential. The modified electrode exhibits an efficient electron-mediating behavior together with well-separated oxidation peaks for hydroxylamine and phenol. Also, the modified electrode was used for determination of hydroxylamine and phenol in some real samples.

  8. Comparative study of peroxidase purification from apple and orange ...

    African Journals Online (AJOL)

    This paper reports the isolation and purification of peroxidase from low cost material; moreover, no significant work has been done on the isolation and purification of peroxidase from such cost effective sources (apple and orange seeds). Peroxidases had attracted considerable interest in recent years because of their ...

  9. Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes

    Directory of Open Access Journals (Sweden)

    Martina Vrsanska

    2016-11-01

    Full Text Available Ligninolytic enzymes, such as laccase, lignin peroxidase and manganese peroxidase, are biotechnologically-important enzymes. The ability of five white-rot fungal strains Daedaleopsis confragosa, Fomes fomentarius, Trametes gibbosa, Trametes suaveolens and Trametes versicolor to produce these enzymes has been studied. Three different copper(II complexes have been prepared ((Him[Cu(im4(H2O2](btc·3H2O, where im = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid, [Cu3(pmdien3(btc](ClO43·6H2O and [Cu3(mdpta3(btc](ClO43·4H2O, where pmdien = N,N,N′,N′′,N′′-pentamethyl-diethylenetriamine and mdpta = N,N-bis-(3-aminopropylmethyl- amine, and their potential application for laccase and peroxidases induction have been tested. The enzyme-inducing activities of the complexes were compared with that of copper sulfate, and it has been found that all of the complexes are suitable for the induction of laccase and peroxidase activities in white-rot fungi; however, the newly-synthesized complex M1 showed the greatest potential for the induction. With respect to the different copper inducers, this parameter seems to be important for enzyme activity, which depends also on the fungal strains.

  10. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.

    Science.gov (United States)

    Ardelt, P-L; Gawarecki, K; Müller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J

    2016-02-19

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

  11. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  12. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    Science.gov (United States)

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  13. Well-Defined Macromolecules Using Horseradish Peroxidase as a RAFT Initiase.

    Science.gov (United States)

    Danielson, Alex P; Bailey-Van Kuren, Dylan; Lucius, Melissa E; Makaroff, Katherine; Williams, Cameron; Page, Richard C; Berberich, Jason A; Konkolewicz, Dominik

    2016-02-01

    Enzymatic catalysis and control over macromolecular architectures from reversible addition-fragmentation chain transfer polymerization (RAFT) are combined to give a new method of making polymers. Horseradish peroxidase (HRP) is used to catalytically generate radicals using hydrogen peroxide and acetylacetone as a mediator. RAFT is used to control the polymer structure. HRP catalyzed RAFT polymerization gives acrylate and acrylamide polymers with relatively narrow molecular weight distributions. The polymerization is rapid, typically exceeding 90% monomer conversion in 30 min. Complex macromolecular architectures including a block copolymer and a protein-polymer conjugate are synthesized using HRP to catalytically initiate RAFT polymerization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Phenol metabolism and preservation of fresh in-hull walnut stored in modified atmosphere packaging.

    Science.gov (United States)

    Wang, Jin; Li, Pan; Gong, Bi; Li, Shuying; Ma, Huiling

    2017-12-01

    The effects of modified atmosphere packaging (MAP) on phenol metabolism and preservation of fresh in-hull walnuts have been investigated. Fruit was packaged under MAP1 (film thickness, 30 μm), MAP2 (45 μm) and MAP3 (50 μm) and stored at -0.5 to 1.0 °C for up to 60 days. Firmness, soluble solid concentration, total phenols, total flavonoids and total antioxidant activity of the green hull were maintained at higher levels under the MAP conditions, whereas decay incidence was lower compared to the control during storage. Green hull of fruit under MAP conditions contained lower polyphenol oxidase activity than the control and the peroxidase activity was at a similar level to the control after 18 days. Phenylalanine ammonialyase activity was enhanced by MAP conditions, with two peaks on days 18 and 36. Until day 60, the peroxide value and acid value of kernel oils under MAP conditions were lower than that of the control. The MAP3 treatment was most effective for maintaining kernel quality. The protective role of MAP conditions on phenolic contents in green hull may contribute to the mitigation of decay and the maintenance of kernel quality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Phenolic compounds participating in mulberry juice sediment formation during storage.

    Science.gov (United States)

    Zou, Bo; Xu, Yu-Juan; Wu, Ji-Jun; Yu, Yuan-Shan; Xiao, Geng-Sheng

    The stability of clarified juice is of great importance in the beverage industry and to consumers. Phenolic compounds are considered to be one of the main factors responsible for sediment formation. The aim of this study is to investigate the changes in the phenolic content in clarified mulberry juice during storage. Hence, separation, identification, quantification, and analysis of the changes in the contents of phenolic compounds, both free and bound forms, in the supernatant and sediments of mulberry juice, were carried out using high performance liquid chromatographic system, equipped with a photo-diode array detector (HPLC-PDA) and HPLC coupled with quadrupole-time of flight mass spectrometric (HPLC-QTOF-MS/MS) techniques. There was an increase in the amount of sediment formed over the period of study. Total phenolic content of supernatant, as well as free phenolic content in the extracts of the precipitate decreased, whereas the bound phenolic content in the sediment increased. Quantitative estimation of individual phenolic compounds indicated high degradation of free anthocyanins in the supernatant and sediment from 938.60 to 2.30 mg/L and 235.60 to 1.74 mg/g, respectively. A decrease in flavonoids in the supernatant was also observed, whereas the contents of bound forms of gallic acid, protocatechuic acid, caffeic acid, and rutin in the sediment increased. Anthocyanins were the most abundant form of phenolics in the sediment, and accounted for 67.2% of total phenolics after 8 weeks of storage. These results revealed that phenolic compounds, particularly anthocyanins, were involved in the formation of sediments in mulberry juice during storage.

  16. Vortex dynamics mediated by exchange coupling in permalloy double disks

    International Nuclear Information System (INIS)

    Liu Yan; Hu Yong; Du An

    2012-01-01

    The dynamics of magnetic vortices in double disks coupled with a bridge are studied by micromagnetic simulations. There are three types of magnetic configurations being found, which depend on the size of the bridge and the chiralities of the vortices. The exchange coupling between the vortices, which is mediated by the magnetizations in the bridge, influences the trajectories and oscillation frequencies of the vortices. Moreover, the frequency depends on the configurations of the double disks and the bridge size. - Highlights: ► Dynamics of vortices in double Permalloy disks coupled with a bridge are studied. ► Three types of equilibrium configurations are observed for the model. ► Oscillation of the cores depends on the magnetic configuration of the double disks. ► Variation of oscillating frequency with bridge length depends on polarity combination. ► Oscillating frequency decreases with the increasing of the bridge width.

  17. A silica-dextran nanocomposite as a novel matrix for immobilization of horseradish peroxidase, and its application to sensing hydrogen peroxide

    International Nuclear Information System (INIS)

    Satvekar, Rajshri K.; Rohiwal, S. S.; Raut, A. V.; Karande, V. A.; Tiwale, B. M.; Pawar, S. H.

    2014-01-01

    We report on a novel matrix of sol gel organic–inorganic nanocomposite that was fabricated from silica sol gel and dextran. It was used for the immobilization of horseradish peroxidase (HRP) to give a biosensor for hydrogen peroxide (H 2 O 2 ). The sensor film was characterized by Fourier transform infrared and UV–vis spectroscopy with respect to structural features and the conformation of the enzyme. The topographies of the surface of the electrode were investigated by field emission scanning electron microscopy. The biosensor was used to determine H 2 O 2 quantitatively in the presence of Methylene blue as a mediator with high electron transfer efficiency. A pair of stable and well defined quasi-reversible redox peaks of the HRP [Fe (III)]/HRP [Fe (II)] redox couple was observed at pH 7.0. The biosensor responds to H 2 O 2 in the 0.5 mM to 16.5 mM concentration range, and the limit of detection is 0.5 mM. (author)

  18. The relationship between lignin peroxidase and manganese peroxidase production capacities and cultivation periods of mushrooms.

    Science.gov (United States)

    Xu, Jian Z; Zhang, Jun L; Hu, Kai H; Zhang, Wei G

    2013-05-01

    Mushrooms are able to secrete lignin peroxidase (LiP) and manganese peroxidase (MnP), and able to use the cellulose as sources of carbon. This article focuses on the relation between peroxidase-secreting capacity and cultivation period of mushrooms with non-laccase activity. Methylene blue and methyl catechol qualitative assay and spectrophotometry quantitative assay show LiP secreting unvaryingly accompanies the MnP secreting in mushroom strains. The growth rates of hyphae are detected by detecting the dry hyphal mass. We link the peroxidase activities to growth rate of mushrooms and then probe into the relationship between them. The results show that there are close relationships between LiP- and/or MnP-secretory capacities and the cultivation periods of mushrooms. The strains with high LiP and MnP activities have short cultivation periods. However, those strains have long cultivation periods because of the low levels of secreted LiP and/or MnP, even no detectable LiP and/or MnP activity. This study provides the first evidence on the imitate relation between the level of secreted LiP and MnP activities and cultivation periods of mushrooms with non-laccase activity. Our study has significantly increased the understanding of the role of LiP and MnP in the growth and development of mushrooms with non-laccase activity. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography/mass spectrometry with in-liner derivatisation

    NARCIS (Netherlands)

    Peters, S.; Kaal, E.; Horsting, I.; Janssen, H.-G.

    2012-01-01

    A new method is presented for the analysis of phenolic acids in plasma based on ion-pairing ‘Micro-extraction in packed sorbent’ (MEPS) coupled on-line to in-liner derivatisation-gas chromatography-mass spectrometry (GC-MS). The ion-pairing reagent served a dual purpose. It was used both to improve

  20. Glycosylation and thermodynamic versus kinetic stability of horseradish peroxidase

    DEFF Research Database (Denmark)

    Tams, J.W.; Welinder, Karen G.

    1998-01-01

    Glycoprotein stability, glycoprotein unfolding, horseradish peroxidase, thermodynamic stability, kinetik stability......Glycoprotein stability, glycoprotein unfolding, horseradish peroxidase, thermodynamic stability, kinetik stability...

  1. Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism

    Science.gov (United States)

    Yuta Miki; Rebecca Pogni; Sandra Acebes; Fatima Lucas; Elena Fernandez-Fueyo; Maria Camilla Baratto; Maria I. Fernandez; Vivian De Los Rios; Francisco J. Ruiz-duenas; Adalgisa Sinicropi; Riccardo Basosi; Kenneth E. Hammel; Victor Guallar; Angel T. Martinez

    2013-01-01

    LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2...

  2. Wine phenolics.

    Science.gov (United States)

    Waterhouse, Andrew L

    2002-05-01

    Wine contains many phenolic substances, most of which originate in the grape berry. The phenolics have a number of important functions in wine, affecting the tastes of bitterness and astringency, especially in red wine. Second, the color of red wine is caused by phenolics. Third, the phenolics are the key wine preservative and the basis of long aging. Lastly, since phenolics oxidize readily, they are the component that suffers owing to oxidation and the substance that turns brown in wine (and other foods) when exposed to air. Wine phenolics include the non-flavonoids: hydroxycinnamates, hydroxybenzoates and the stilbenes; plus the flavonoids: flavan-3-ols, the flavonols, and the anthocyanins. While polymeric condensed tannins and pigmented tannins constitute the majority of wine phenolics, their large size precludes absorption and thus they are not likely to have many health effects (except, perhaps, in the gut). The total amount of phenols found in a glass of red wine is on the order of 200 mg versus about 40 mg in a glass of white wine.

  3. Sorption of phenol and phenol derivatives in hydrotalcite

    International Nuclear Information System (INIS)

    Avina G, E.I.

    2002-01-01

    One of the main problems in Mexico and in the World is the waste water pollution of a great variety of industrial processes by organic compounds. Among those ones the phenol compounds which are highly toxic, refractories (to the chemical degradation) and poorly biodegradable. This is due in a large extent to the problem created by the accelerated increase in the environmental pollution in the cities and industrial centers. The phenol compounds are used in a great variety of industries such as the production of resins, plasticizers, antioxidants, pesticides, colourings, disinfectants, etc. These phenol compounds are specially harmful, since they have repercussions on the flora of plants of biological treatment of water affecting its operation. The main objective of this work is to evaluate the capacities of phenol detention and its derivatives in an hydrotalcite type compound and diminishing with it the presence in water, in this case, of solutions prepared in the laboratory. In order to analyse this elimination process was used a methodology based in the carrying out in batch experiments and in the elaboration of a sorption isotherm. It is worth pointing out that this work was realized at laboratory scale, at relatively high phenol concentration ratio. With the obtained results when the sorption properties are evaluated the calcined hydrotalcite (HTC) for detaining phenol and p-chloro phenol it was observed that it is detained greater quantity of p-chloro phenol than phenol in the HTC. The detention of these phenol compounds in the HTC is due to the memory effect by the hydrotalcite regeneration starting from the oxides which are formed by the burning material. (Author)

  4. Mechanism of ascorbic acid interference in biochemical tests that use peroxide and peroxidase to generate chromophore.

    Science.gov (United States)

    Martinello, Flávia; Luiz da Silva, Edson

    2006-11-01

    Ascorbic acid interferes negatively in peroxidase-based tests (Trinder method). However, the precise mechanism remains unclear for tests that use peroxide, a phenolic compound and 4-aminophenazone (4-AP). We determined the chemical mechanism of this interference, by examining the effects of ascorbic acid in the reaction kinetics of the production and reduction of the oxidized chromophore in urate, cholesterol, triglyceride and glucose tests. Reaction of ascorbic acid with the Trinder method constituents was also verified. Ascorbic acid interfered stoichiometrically with all tests studied. However, it had two distinct effects on the reaction rate. In the urate test, ascorbic acid decreased the chromophore formation with no change in its production kinetics. In contrast, in cholesterol, triglyceride and glucose tests, an increase in the lag phase of color development occurred. Of all the Trinder constituents, only peroxide reverted the interference. In addition, ascorbic acid did not interfere with oxidase activity nor reduce significantly the chromophore formed. Peroxide depletion was the predominant chemical mechanism of ascorbic acid interference in the Trinder method with phenolics and 4-AP. Distinctive effects of ascorbic acid on the reaction kinetics of urate, cholesterol, glucose and triglyceride might be due to the rate of peroxide production by oxidases.

  5. Effect of Vitamin C on Glutathione Peroxidase Activities in Pregnant ...

    African Journals Online (AJOL)

    Glutathione peroxidase is one of the most important antioxidant enzymes in humans. We studied the relationship between serum glutathione peroxidase activity and vitamin C ingestion during normal pregnancy in women attending antenatal clinic in the University of Ilorin Teaching Hospital, Ilorin. Glutathione peroxidase ...

  6. Luffa aegyptiaca (Gourd) Fruit Juice as a Source of Peroxidase

    OpenAIRE

    Yadav, R. S. S.; Yadav, K. S.; Yadav, H. S.

    2011-01-01

    Peroxidases have turned out to be potential biocatalyst for a variety of organic reactions. The research work reported in this communication was done with the objective of finding a convenient rich source of peroxidase which could be used as a biocatalyst for organic synthetic reactions. The studies made have shown that Luffa aegyptiaca (gourd) fruit juice contains peroxidase activity of the order of 180 enzyme unit/mL. The K m values of this peroxidase for the substrates guaiacol and hydroge...

  7. Automated on-line solid phase extraction coupled to HPLC-APCI-MS detection as a versatile tool for the analysis of phenols in water samples

    International Nuclear Information System (INIS)

    Wissiack, R.

    2001-05-01

    In this work a liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS) technique was developed for the determination of phenols and anilines in waste water samples. All relevant parameters were optimized for liquid chromatographic (LC) separation and mass spectrometric (MS) detection. Mass spectrometric detection was used in either negative ionization (NI) or positive ionization (PI) mode, which was depending on the physicochemical properties of the analyte. For screening analysis, full scan mode (SCAN) was used, while selected ion monitoring (SIM) mode of acquisition was used for maximum sensitivity. The optimal interface parameters and solvent compositions were evaluated, which mainly determined the ionization of analytes thus strongly influencing the sensitivity. The quasi-molecular ions were the most abundant signals both for phenols ([M-H]- in NI) and for anilines ([M+H]+ in PI). In general, fragmentation was hardly observed for one-ring phenols. Only fragmentation due to neutral losses of NO, HCl, NH3, CO2, CHO or CO from the functional groups were obtained via collision induced dissociation (CID) in a single quadrupole mass spectrometer. A further source of structural information was the relative intensity of positive and negative ions for one analyte: Only in the case of para-methyl substituted phenols, detection was also possible in positive ionization mode with reasonable sensitivity. In contrast to the phenols, anilines offered somewhat higher structural information due to increased fragmentation through CID, when detected in the positive ionization mode. The main goal of this work was the development of a method for the determination of US EPA priority phenols in different environmental matrices. As highest sensitivity and selectivity was required for this task, a preconcentrating step was necessary, and consequently solid phase extraction (SPE) was coupled on-line to HPLC-APCI-MS. The optimized method allowed the

  8. Modifying sulfomethylated alkali lignin by horseradish peroxidase to improve the dispersibility and conductivity of polyaniline

    Science.gov (United States)

    Yang, Dongjie; Huang, Wenjing; Qiu, Xueqing; Lou, Hongming; Qian, Yong

    2017-12-01

    Pine and wheat straw alkali lignin (PAL and WAL) were sulfomethylated to improve water solubility, polymerized with horseradish peroxidase (HRP) to improve the molecular weight (Mw) and applied to dope and disperse polyaniline (PANI). The structural effect of lignin from different origins on the reactivities of sulfomethylation and HRP polymerization was investigated. The results show that WAL with less methoxyl groups and lower Mw have higher reactivity in sulfomethylation (SWAL). More phenolic hydroxyl groups and lower Mw benefit the HRP polymerization of sulfomethylated PAL (SPAL). Due to the natural three-dimensional aromatic structure and introduced sulfonic groups, SPAL and SWAL could effectively dope and disperse PANI in water by π-π stacking and electrostatic interaction. HRP modified SPAL (HRP-SPAL) with much higher sulfonation degree and larger Mw significantly increased the conductivity and dispersibility of lignin/PANI composites.

  9. Development of Low Density, Flexible Carbon Phenolic Ablators

    Science.gov (United States)

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  10. Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides.

    Science.gov (United States)

    Selvakumar, Karuthapandi; Shah, Poonam; Singh, Harkesh B; Butcher, Ray J

    2011-11-04

    The synthesis of some ebselen analogues and diaryl diselenides, which have amino acid functions as an intramolecularly coordinating group (Se···O) has been achieved by the DCC coupling procedure. The reaction of 2,2'-diselanediylbis(5-tert-butylisophthalic acid) or the activated ester tetrakis(2,5-dioxopyrrolidin-1-yl) 2,2'-diselanediylbis(5-tert-butylisophthalate) with different C-protected amino acids (Gly, L-Phe, L-Ala, and L-Trp) afforded the corresponding ebselen analogues. The used precursor diselenides have been found to undergo facile intramolecular cyclization during the amide bond formation reaction. In contrast, the DCC coupling of 2,2'-diselanediyldibenzoic acid with C-protected amino acids (Gly, L/D-Ala and L-Phe) affords the corresponding amide derivatives and not the ebselen analogues. Some of the representative compounds have been structurally characterized by single-crystal X-ray crystallography. The glutathione peroxidase (GPx)-like activities of the ebselen analogues and the diaryl diselenides have been evaluated by using the coupled reductase assay method. Intramolecularly stabilized ebselen analogues show slightly higher maximal velocity (V(max)) than ebselen. However, they do not show any GPx-like activity at low GSH concentrations at which ebselen and related diselenides are active. This could be attributed to the peroxide-mediated intramolecular cyclization of the corresponding selenenyl sulfide and diaryl diselenide intermediates generated during the catalytic cycle. Interestingly, the diaryl diselenides with alanine (L,L or D,D) amide moieties showed excellent catalytic efficiency (k(cat)/K(M)) with low K(M) values in comparison to the other compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Studies of peroxidase isozyme profile in mungbean mutants

    International Nuclear Information System (INIS)

    Auti, S.G.; Apparao, B.J.

    2007-01-01

    Peroxidase is an important oxygen-scavenging enzyme. The activity of peroxidase is often correlated with growth, development and hormonal activity. Traditional methods of cultivar identification usually involve observation and recording of morphological characters or description such as yield, height, weight, earliness etc. which vary with environmental conditions and often misleading. So molecular markers like protein and isozymes profiles, RFLP, RAPDs markers etc. are widely employed in varietal identification of cultivars. It plays important role in respiration and is an indicator of oxidative status of plants. Electrophoretic techniques have been used to group species and identify cultivars. Such identification has various advantages including the unique pattern of protein or isozymes bands for each pure cultivar under any set of environmental conditions. Peroxidase isozyme serves as very good marker for any mutational studies. In the present investigation, peroxidase isozyme profiles of various mutants of mungbean was studied employing the technique of electrophoresis

  12. Methylene blue as a lignin surrogate in manganese peroxidase reaction systems.

    Science.gov (United States)

    Goby, Jeffrey D; Penner, Michael H; Lajoie, Curtis A; Kelly, Christine J

    2017-11-15

    Manganese peroxidase (MnP) is associated with lignin degradation and is thus relevant to lignocellulosic-utilization technologies. Technological applications require reaction mixture optimization. A surrogate substrate can facilitate this if its susceptibility to degradation is easily monitored and mirrors that of lignin. The dye methylene blue (MB) was evaluated in these respects as a surrogate substrate by testing its reactivity in reaction mixtures containing relevant redox mediators (dicarboxylic acids, fatty acids). Relative rates of MB degradation were compared to available literature reports of lignin degradation under similar conditions, and suggest that MB can be a useful lignin surrogate in MnP systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Adult Romantic Attachment and Couple Conflict Behaviors: Intimacy as a Multi-Dimensional Mediator

    Directory of Open Access Journals (Sweden)

    Tina D. Du Rocher Schudlich

    2013-06-01

    Full Text Available This study investigated associations between adult romantic attachment and couples’ conflict behaviors and the potential mediating role of intimacy. A community sample of 74 couples reported on their attachment security style on the Attachment Style Measure (ASM (Simpson, 1990 and on multiple dimensions of intimacy on the Personal Assessment of Intimacy in Relationships (PAIR (Schaefer & Olson, 1981. Couples’ conflict behaviors were assessed via behavioral observations and coded for positive and negative dimensions of conflict. Path analyses indicated numerous actor and partner effects in the links between attachment, intimacy, and conflict. For men, both avoidant and anxious attachment styles were predictive of their own and their partner’s intimacy. For women though, both secure and avoidant attachment styles were predictive of their own and their partner’s intimacy. For men, all domains of intimacy were predictive of their own or their partner’s conflict behaviors. For women, only emotional intimacy was predictive of conflict behaviors. All domains of men’s intimacy emerged as significant mediators of associations between attachment and couples’ conflict behaviors. For women, only emotional intimacy mediated these associations. Implications for the treatment of relationally-discordant couples are discussed.

  14. Luffa aegyptiaca (Gourd) Fruit Juice as a Source of Peroxidase.

    Science.gov (United States)

    Yadav, R S S; Yadav, K S; Yadav, H S

    2011-01-01

    Peroxidases have turned out to be potential biocatalyst for a variety of organic reactions. The research work reported in this communication was done with the objective of finding a convenient rich source of peroxidase which could be used as a biocatalyst for organic synthetic reactions. The studies made have shown that Luffa aegyptiaca (gourd) fruit juice contains peroxidase activity of the order of 180 enzyme unit/mL. The K(m) values of this peroxidase for the substrates guaiacol and hydrogen peroxide were 2.0 and 0.2 mM, respectively. The pH and temperature optima were 6.5 and 60°C, respectively. Like other peroxidases, it followed double displacement type mechanism. Sodium azide inhibited the enzyme competitively with K(i) value of 3.35 mM.

  15. Luffa aegyptiaca (Gourd Fruit Juice as a Source of Peroxidase

    Directory of Open Access Journals (Sweden)

    R. S. S. Yadav

    2011-01-01

    Full Text Available Peroxidases have turned out to be potential biocatalyst for a variety of organic reactions. The research work reported in this communication was done with the objective of finding a convenient rich source of peroxidase which could be used as a biocatalyst for organic synthetic reactions. The studies made have shown that Luffa aegyptiaca (gourd fruit juice contains peroxidase activity of the order of 180 enzyme unit/mL. The Km values of this peroxidase for the substrates guaiacol and hydrogen peroxide were 2.0 and 0.2 mM, respectively. The pH and temperature optima were 6.5 and 60°C, respectively. Like other peroxidases, it followed double displacement type mechanism. Sodium azide inhibited the enzyme competitively with Ki value of 3.35 mM.

  16. Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    KAUST Repository

    Corgié , Sté phane C.; Kahawong, Patarawan; Duan, Xiaonan; Bowser, Daniel; Edward, Joseph B.; Walker, Larry P.; Giannelis, Emmanuel P.

    2012-01-01

    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs

  17. Evidence for phonon-mediated coupling in superconducting Ba0.6K0.4BiO3

    International Nuclear Information System (INIS)

    Hinks, D.G.; Dabrowski, B.; Richards, D.R.; Jorgensen, J.D.; Pei, S.; Zasadzinski, J.F.

    1989-01-01

    Superconducting Ba 0.6 K 0.4 BiO 3 , with a T c of 30 K, shows a large 18 O isotope effect which indicates that phonons are involved in the pairing mechanism. Infrared reflectivity measurements indicate a value for the superconducting gap consistent with moderate coupling (2Δ/k T c = 3.5 ± 0.5). A mediating energy for pairing of about 40 meV would be required to obtain a T c of 30 K. Strong coupling of electrons by optical phonons (which are present in this material with energies up to 80 meV) could account for the observed transition temperature. Recent tunneling spectroscopy shows the presence of strongly coupled optical phonons in the 40 to 70 meV region, indicating that superconductivity in this material may be phonon mediated

  18. An N-terminal peptide extension results in efficient expression, but not secretion, of a synthetic horseradish peroxidase gene in transgenic tobacco.

    Science.gov (United States)

    Kis, Mihaly; Burbridge, Emma; Brock, Ian W; Heggie, Laura; Dix, Philip J; Kavanagh, Tony A

    2004-03-01

    Native horseradish (Armoracia rusticana) peroxidase, HRP (EC 1.11.1.7), isoenzyme C is synthesized with N-terminal and C-terminal peptide extensions, believed to be associated with protein targeting. This study aimed to explore the specific functions of these extensions, and to generate transgenic plants with expression patterns suitable for exploring the role of peroxidase in plant development and defence. Transgenic Nicotiana tabacum (tobacco) plants expressing different versions of a synthetic horseradish peroxidase, HRP, isoenzyme C gene were constructed. The gene was engineered to include additional sequences coding for either the natural N-terminal or the C-terminal extension or both. These constructs were placed under the control of a constitutive promoter (CaMV-35S) or the tobacco RUBISCO-SSU light inducible promoter (SSU) and introduced into tobacco using Agrobacterium-mediated transformation. To study the effects of the N- and C-terminal extensions, the localization of recombinant peroxidase was determined using biochemical and molecular techniques. Transgenic tobacco plants can exhibit a ten-fold increase in peroxidase activity compared with wild-type tobacco levels, and the majority of this activity is located in the symplast. The N-terminal extension is essential for the production of high levels of recombinant protein, while the C-terminal extension has little effect. Differences in levels of enzyme activity and recombinant protein are reflected in transcript levels. There is no evidence to support either preferential secretion or vacuolar targeting of recombinant peroxidase in this heterologous expression system. This leads us to question the postulated targeting roles of these peptide extensions. The N-terminal extension is essential for high level expression and appears to influence transcript stability or translational efficiency. Plants have been generated with greatly elevated cytosolic peroxidase activity, and smaller increases in apoplastic

  19. Humanlike substitutions to Ω-loop D of yeast iso-1-cytochrome c only modestly affect dynamics and peroxidase activity.

    Science.gov (United States)

    Lei, Haotian; Bowler, Bruce E

    2018-06-01

    Structural studies of yeast iso-1-cytochrome c (L.J. McClelland, T.-C. Mou, M.E. Jeakins-Cooley, S.R. Sprang, B.E. Bowler, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 6648-6653) show that modest movement of Ω-loop D (residues 70-85, average RMSD versus the native structure: 0.81 Å) permits loss of Met80-heme ligation creating an available coordination site to catalyze the peroxidase activity mediated by cytochrome c early in apoptosis. However, Ala81 and Gly83 move significantly (RMSDs of 2.18 and 1.26 Å, respectively). Ala81 and Gly83 evolve to Ile and Val, respectively, in human cytochrome c and peroxidase activity decreases 25-fold relative to the yeast protein at pH 7. To test the hypothesis that these residues evolved to restrict the peroxidase activity of cytochrome c, A81I and G83V variants of yeast iso-1-cytochrome c were prepared. For both variants, the apparent pK a of the alkaline transition increases by 0.2 to 0.3 relative to the wild type (WT) protein and the rate of opening the heme crevice is slowed. The cooperativity of acid unfolding is decreased for the G83V variant. At pH 7 and 8, the catalytic rate constant, k cat , for the peroxidase activity of both variants decreases relative to WT, consistent with the effects on alkaline isomerization. Below pH 7, the loss in the cooperativity of acid unfolding causes k cat for peroxidase activity to increase for the G83V variant relative to WT. Neither variant decreases k cat to the level of the human protein, indicating that other residues also contribute to the low peroxidase activity of human cytochrome c. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Variability of phenolic content and antioxidant activity of two lettuce varieties under Fe deficiency.

    Science.gov (United States)

    Msilini, Najoua; Oueslati, Samia; Amdouni, Thouraya; Chebbi, Mohamed; Ksouri, Riadh; Lachaâl, Mokhtar; Ouerghi, Zeineb

    2013-06-01

    Fe deficiency affects food growth and quality in calcareous soils. In this study, the effect of Fe deficiency on growth parameters, phenolic content and antioxidant capacities of two lettuce shoots varieties (Romaine and Vista) were investigated. Fresh matter production, pigment (chlorophyll and carotenoid) and Fe2+ content were significantly reduced by Fe deficiency in both varieties. However, restriction of these parameters was particularly pronounced in Romaine variety as compared to Vista. Moreover, Fe deficiency caused decreases in the activity of antioxidant enzymes such as catalase and guaiacol peroxidase, whereas ascorbate peroxidase and malondialdehyde concentrations were not significantly affected. On the other hand, Fe deficiency in Vista variety induced an increase in polyphenol and flavonoid content as compared to Romaine variety. In addition, total antioxidant capacity and antiradical test against DPPH radical decreased in leaves of Romaine variety after 15 days of treatment. These results suggest that the higher polyphenol content in Vista variety supports the involvement of these components in the stability of antioxidant capacities and then in its protection against oxidative damage generated by Fe deficiency in lettuce plants. © 2012 Society of Chemical Industry.

  1. Inhibition mechanism of lanthanum ion on the activity of horseradish peroxidase in vitro

    Science.gov (United States)

    Guo, Shaofen; Wang, Lihong; Lu, Aihua; Lu, Tianhong; Ding, Xiaolan; Huang, Xiaohua

    2010-02-01

    In order to understand the inhibition mechanism of lanthanum ion (La 3+) on the activity of horseradish peroxidase (HRP), the effects of La 3+ on the activity, electron transfer and conformation of HRP in vitro were investigated by using cyclic voltammetry (CV), atomic force microscopy (AFM), circular dichroism (CD), high performance liquid chromatography (HPLC), matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF/MS) and inductively coupled plasma mass spectrometry (ICP-MS). It was found that La 3+ can combine with the amide groups of the polypeptide chain in HRP molecule, forming the complex of La 3+ and HRP (La-HRP). The formation of the La-HRP complex causes the destruction of the native structure of HRP molecule, leading to the decrease in the non-planarity of the porphyrin ring in the heme group of HRP molecule, and then in the exposure extent of active center, Fe(III) of the porphyrin ring of HRP molecule. Thus, the direct electrochemical and catalytic activities of HRP are decreased. It is a possible inhibition mechanism of La 3+ on the activity of peroxidase.

  2. METHODS OF REDUCTION OF FREE PHENOL CONTENT IN PHENOLIC FOAM

    Directory of Open Access Journals (Sweden)

    Bruyako Mikhail Gerasimovich

    2012-12-01

    method aimed at reduction of toxicity of phenolic foams consists in the introduction of a composite mixture of chelate compounds. Raw materials applied in the production of phenolic foams include polymers FRB-1A and VAG-3. The aforementioned materials are used to produce foams FRP-1. Introduction of 1% aluminum fluoride leads to the 40% reduction of the free phenol content in the foam. Introduction of crystalline zinc chloride accelerates the foaming and curing of phenolic foams. The technology that contemplates the introduction of zeolites into the mixture includes pre-mixing with FRB -1A and subsequent mixing with VAG-3; thereafter, the composition is poured into the form, in which the process of foaming is initiated. The content of free phenol was identified using the method of UV spectroscopy. The objective of the research was to develop methods of reduction of the free phenol content in the phenolic foam.

  3. Electrochemical Study of Iodide in the Presence of Phenol and o-Cresol: Application to the Catalytic Determination of Phenol and o-Cresol

    Directory of Open Access Journals (Sweden)

    Davood Nematollahi

    2004-11-01

    Full Text Available Abstract: The electrochemical oxidation of iodide in the presence of phenol and o-cresol was investigated at a glassy carbon electrode in buffered media by cyclic voltammetry, linear sweep voltammetry and controlled–potential coulometry. The experimental results indicate that the phenol and o-cresol convert to their derivatives after participating in a halogenation coupled reaction (quasi-catalytic reaction following the oxidation of iodide to iodine. The concentrations of phenol and o-cresol have been determined in aqueous solutions according to the linear dependence of quasi-catalytic peak currents with the concentration. The calibration graphs show two linear sections of 0.0 to 1.0×10-4 M and 2.0×10-4 to 1.0 ×10-3 M for phenol and 4.2×10-5 to 1.0×10-4 M and 2.0×10-4 to 1.0×10-3 M for o-cresol. The theoretical detection limits and the relative standard deviations for ten measurements of phenol and o-cresol are 1.125×10-5 M, 1.06% and 4.201×10-5 M, 1.44%, respectively.

  4. Degradation of sulfadimethoxine catalyzed by laccase with soybean meal extract as natural mediator: Mechanism and reaction pathway.

    Science.gov (United States)

    Liang, Shangtao; Luo, Qi; Huang, Qingguo

    2017-08-01

    Natural laccase-mediator systems have been well recognized as an eco-friendly and energy-saving approach in environmental remediation, whose further application is however limited by the high cost of natural mediators and relatively long treatment time span. This study evaluated the water extract of soybean meal, a low-cost compound system, in mediating the laccase catalyzed degradation of a model contaminant of emerging concern, sulfadimethoxine (SDM), and demonstrated it as a promising alternative mediator for soil and water remediation. Removal of 73.3% and 65.6% was achieved in 9 h using soybean meal extract (SBE) as the mediating system for laccase-catalyzed degradation of sulfadimethoxine at the concentration of 1 ppm and 10 ppm, respectively. Further degradation of sulfadimethoxine was observed with multiple SBE additions. Using SBE as mediator increased the 9-h removal of SDM at 1 ppm initial concentration by 52.9%, 49.4%, and 36.3% in comparison to the system mediated by 1-Hydroxybenzotriazole (HBT), p-Coumaric acid (COU) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), respectively. With the detection of stable coupling products formed with radical scavenger (5,5-Dimethyl-1-pyrroline N-oxide, DMPO), three phenolic compounds (vanillin, apocynin, and daidzein) in SBE were confirmed to serve as mediators for Trametes versicolor laccase. Reaction pathways were proposed based on the results of High Resolution Mass Spectrometry. SO 2 excursion happened during SDM transformation, leading to elimination of antimicrobial activity. Therefore, as a natural, phenol rich, and affordable compound system, the future application of SBE in wastewater and soil remediation is worth exploring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Incorporation of carbohydrate residues into peroxidase isoenzymes in horseradish roots.

    Science.gov (United States)

    Lew, J Y; Shannon, L M

    1973-11-01

    Sliced root tissue of the horseradish plant (Armoracia rusticana), when incubated with mannose-U-(14)C, incorporated radioactivity into peroxidase isoenzymes. Over 90% of the radioactivity in the highly purified peroxidase isoenzymes was present in the neutral sugar residues of the molecule, i.e. fucose, arabinose, xylose, mannose. When the root slices were incubated simultaneously with leucine-4,5-(3)H and mannose-U-(14)C, cycloheximide strongly inhibited leucine incorporation into the peptide portion of peroxidase isoenzymes but had little effect on the incorporation of (14)C into the neutral sugars. These results indicated that synthesis of the peptide portion of peroxidase was completed before the monosaccharide residues were attached to the molecule. This temporal relationship between the synthesis of protein and the attachment of carbohydrate residues in the plant glycoprotein, horseradish peroxidase, appears to be similar to that reported for glycoprotein biosynthesis in many mammalian systems.

  6. Relationships between urinary biomarkers of phytoestrogens, phthalates, phenols, and pubertal stages in girls

    Directory of Open Access Journals (Sweden)

    Chakraborty TR

    2012-01-01

    Full Text Available Tandra R Chakraborty1, Eilliut Alicea1, Sanjoy Chakraborty21Department of Biology, Adelphi University, One South Avenue, Garden City; 2Department of Biological Sciences, New York City College of Technology, New York, NY, USAAbstract: Phytoestrogens, phthalates, and phenols are estrogen-disrupting chemicals that have a pronounced effect at puberty. They are exogenous chemicals that are either plant-derived or man-made, and can alter the functions of the endocrine system and cause various health defects by interfering with the synthesis, metabolism, binding, or cellular responses of natural estrogens. Phytoestrogens, phthalates, and phenols are some of the potent estrogens detectable in urine. Phytoestrogens are plant-derived xenestrogens found in a wide variety of food products, like soy-based food, beverages, several fruits, and vegetables. Exposure to phytoestrogens can delay breast development and further lead to precocious puberty. The effect of phytoestrogens is mediated through estrogen receptors α and β or by binding with early immediate genes, such as jun and fos. Phthalates are multifunctional synthetic chemicals used in plastics, polyvinyl chloride products, cosmetics, hair spray, and children's toys. Phthalates have been shown to cause defeminization, thelarche, precocious puberty, and an increase in breast and pubic hair in pubertal girls. However, reports are also available that show no association of phthalates with precocious puberty in girls. Phthalates can act through a receptor-mediated signaling pathway or affect the production of luteinizing hormone and follicle-stimulating hormone that has a direct effect on estrogen formation. Phenols like bisphenol A are industrial chemicals used mainly in the manufacture of polycarbonates and plastic materials. Bisphenol A has been shown to cause precocious puberty and earlier menarche in pubertal girls. Reports suggest that the neurotoxic effect of bisphenol A can be mediated either by

  7. Peroxometal-mediated oxidation of bromine leading to ...

    Indian Academy of Sciences (India)

    Administrator

    Peroxometal-mediated oxidation of bromine leading to environmentally favourable protocol for selective bromination of organic substrates: Implications for vanadium bromo peroxidase (VBrPO). SIDDHARTHA D DHAR and MIHIR K CHAUDHURI. Department of Chemistry, Indian Institute of Technology,. Guwahati 781 001 ...

  8. Study on the presence and influence of phenolic compounds in callogenesis and somatic embryo development of cocoa (Theobroma cacao L..

    Directory of Open Access Journals (Sweden)

    Sulistyani Pancaningtyas

    2015-04-01

    Full Text Available Cocoa (Theobroma cacao L. like most tropical trees is recalcitrant in tissue culture. Somatic embryogenesis is generally efficient micropropagation technique to multiply elite material. However, Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. One of the factors often considered as a component of in vitro recalsitrance is a high phenolic content and oxidation of these compounds. In cocoa tissue culture accumulate large amounts of poliphenolics compounds which probably impair further development. This study was conducted to investigate the composition of phenolic compounds in cocoa flower and leaves, and their changes troughout the somatic embryogenesis process. Calli were induced in cacao floral and leaves explants on a half-strenght Murashige and Skoog medium containing 30 g/L Glucose and combination of 2,4 dichlorophenoxyacetic acid (2,4 D with kinetin (kin. Total polyphenol content was observed on Sulawesi 1 cocoa clone. Embryogenic and non-embryogenic callus were also compared. The percentage of callus production from flower tissue is 85%, percentage of embryogenic callus 40 %, although the percentage of somatic embryo production from embryogenic callus callus is 70%. The conservation of callus into somatic embryos followed by decline in phenol content and an increase in peroxidase. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. So that, phenolic compound can influence the production of calli and an absence the phenolic compound can enhance production of somatic embryo.

  9. tBuLi-Mediated One-Pot Direct Highly Selective Cross-Coupling of Two Distinct Aryl Bromides

    NARCIS (Netherlands)

    Vila, Carlos; Cembellin, Sara; Hornillos, Valentin; Giannerini, Massimo; Fananas-Mastral, Martin; Feringa, Ben L.

    2015-01-01

    A Pd-catalyzed direct cross-coupling of two distinct aryl bromides mediated by tBuLi is described. The use of [Pd-PEPPSI-IPr] or [Pd-PEPPSI-IPent] as catalyst allows for the efficient one-pot synthesis of unsymmetrical biaryls at room temperature. The key for this selective cross-coupling is the use

  10. Nano-MnO2-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways.

    Science.gov (United States)

    Sun, Kai; Li, Shunyao; Waigi, Michael Gatheru; Huang, Qingguo

    2018-05-01

    It has been shown that manganese dioxide (MnO 2 ) can mediate transformation of phenolic contaminants to form phenoxyl radical intermediates, and subsequently, these intermediates intercouple to form oligomers via covalent binding. However, the reaction kinetics and transformation mechanisms of phenolic contaminants with humic molecules present in nano-MnO 2 -mediated systems were still unclear. In this study, it was proven that nano-MnO 2 were effective in transforming triclosan under acidic conditions (pH 3.5-5.0) during manganese reduction, and the apparent pseudo first-order kinetics rate constants (k = 0.0599-1.5314 h -1 ) increased as the pH decreased. In particular, the transformation of triclosan by nano-MnO 2 was enhanced in the presence of low-concentration humic acid (1-10 mg L -1 ). The variation in the absorption of humic molecules at 275 nm supported possible covalent binding between humic molecules and triclosan in the nano-MnO 2 -mediated systems. A total of four main intermediate products were identified by high-resolution mass spectrometry (HRMS), regardless of humic molecules present in the systems or not. These products correspond to a suite of radical intercoupling reactions (dimers and trimers), ether cleavage (2,4-dichlorophenol), and oxidation to quinone-like products, triggered by electron transfer from triclosan molecules to nano-MnO 2 . A possible reaction pathway in humic acid solutions, including homo-coupling, decomposition, oxidation, and cross-coupling, was proposed. Our findings provide valuable information regarding the environmental fate and transformation mechanism of triclosan by nano-MnO 2 in complex water matrices.

  11. Sequence and RT-PCR expression analysis of two peroxidases from Arabidopsis thaliana belonging to a novel evolutionary branch of plant peroxidases.

    Science.gov (United States)

    Kjaersgård, I V; Jespersen, H M; Rasmussen, S K; Welinder, K G

    1997-03-01

    cDNA clones encoding two new Arabidopsis thaliana peroxidases, ATP 1a and ATP 2a, have been identified by searching the Arabidopsis database of expressed sequence tags (dbEST). They represent a novel branch of hitherto uncharacterized plant peroxidases which is only 35% identical in amino acid sequence to the well characterized group of basic plant peroxidases represented by the horseradish (Armoracia rusticana) isoperoxidases HRP C, HRP E5 and the similar Arabidopsis isoperoxidases ATP Ca, ATP Cb, and ATP Ea. However ATP 1a is 87% identical in amino acid sequence to a peroxidase encoded by an mRNA isolated from cotton (Gossypium hirsutum). As cotton and Arabidopsis belong to rather diverse families (Malvaceae and Crucifereae, respectively), in contrast with Arabidopsis and horseradish (both Crucifereae), the high degree of sequence identity indicates that this novel type of peroxidase, albeit of unknown function, is likely to be widespread in plant species. The atp 1 and atp 2 types of cDNA sequences were the most redundant among the 28 different isoperoxidases identified among about 200 peroxidase encoding ESTs. Interestingly, 8 out of totally 38 EST sequences coding for ATP 1 showed three identical nucleotide substitutions. This variant form is designated ATP 1b. Similarly, six out of totally 16 EST sequences coding for ATP 2 showed a number of deletions and nucleotide changes. This variant form is designated ATP 2b. The selected EST clones are full-length and contain coding regions of 993 nucleotides for atp 1a, and 984 nucleotides for atp 2a. These regions show 61% DNA sequence identity. The predicted mature proteins ATP 1a, and ATP 2a are 57% identical in sequence and contain the structurally and functionally important residues, characteristic of the plant peroxidase superfamily. However, they do show two differences of importance to peroxidase catalysis: (1) the asparagine residue linked with the active site distal histidine via hydrogen bonding is absent

  12. Cellobiose Dehydrogenase Inhibition of Polymerization of Phenolic Compounds and Enhancing Lignin Degradation by Lignina.

    Science.gov (United States)

    Fang, Jing; Liu, Wen; Gao, Pei-Ji

    1999-01-01

    The kinetic behavior of cellobiose dehydrogenase (CDH) was investigated by steady-state initial velocity studies. Variation in the concentration of one substrate led to changes in K(m) and V(max) of the other substrate. The results were consistent with a ping-pong mechanism. In the presence of cellobiose, CDH could reduce many oxidized products catalyzed by soybean hull peroxidase (SHP). The oxidation product of 1-hydroxybenzotriazole (HBT) catalyzed by SHP inactivated the enzyme itself however, CDH could prevent SHP from inactivation by reducing the oxidation product of HBT. CDH could also inhibit the polymerization of phenolic compounds catalyzed by SHP. It was found that the addition of CDH could enhance kraft pulp lignin degradation by ligninases.

  13. Peroxidase-mediated binding of aromatic amine carcinogens to tissue DNA

    International Nuclear Information System (INIS)

    Wise, R.W.; Lakshmi, V.M.; Zenser, T.V.; Davis, B.B.

    1986-01-01

    Benzidine is a aromatic amine bladder carcinogen in man and dog which requires endogenous metabolic activation. Dog bladder microsomes activate benzidine to bind glutathione and DNA by a peroxidatic but not a mixed-function oxidase mediated pathway. Prostaglandin H synthase was responsible for peroxidatic metabolism. This study was designed to assess benzidine metabolism in a whole cell system. Rabbit renal medullary slices (100 mg/ml) were incubated for 60 min. in Krebs-Ringer bicarbonate buffer containing 100 μM 3 H-benzidine and 250 μM arachidonic acid. Arachidonic acid increased 3-(glutathione-S-yL)-benzidine, a product of peroxidatically activated benzidine, (6-fold) and 3 H-benzidine binding to endogenous DNA (4-fold). Indomethacin (100 μM) completely inhibited arachidonic acid-mediated increases in conjugate formation and DNA binding. HPLC analysis of the media demonstrated benzidine (95% of total 3 H), 3-(glutathion-S-yL)-benzidine (1%) and two unidentified peaks (4%). These results are consistent with the hydroperoxidase activity of prostaglandin H synthase mediating metabolic activation of benzidine to bind tissue nucleophiles in a whole cell system. Inhibition of peroxidatic activation of aromatic amines to bind DNA may prevent initiation of bladder cancer

  14. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Quintanilla, A. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain)]. E-mail: asun.quintanilla@uam.es; Fraile, A.F. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Casas, J.A. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Rodriguez, J.J. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain)

    2007-07-31

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T = 23-100 deg. C, P {sub T} = 1-8 atm, W = 0-2.5 g, and {tau} = 20-320 g{sub CAT} h/g{sub Phenol}). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 deg. C, 2 atm, and 40 g{sub CAT} h/g{sub Phenol}. However, TOC conversion values remain fairly low, (around 5% at 40 g{sub CAT} h/g{sub Phenol}), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 deg. C and 8 atm) is presented as high efficiency process for the decontamination of phenolic wastewaters.

  15. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst.

    Science.gov (United States)

    Quintanilla, A; Fraile, A F; Casas, J A; Rodríguez, J J

    2007-07-31

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T=23-100 degrees C, P(T)=1-8atm, W=0-2.5g, and tau=20-320g(CAT)h/g(Phenol)). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 degrees C, 2atm, and 40g(CAT)h/g(Phenol). However, TOC conversion values remain fairly low, (around 5% at 40g(CAT)h/g(Phenol)), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 degrees C and 8atm) is presented as high efficiency process for the decontamination of phenolic wastewaters.

  16. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst

    International Nuclear Information System (INIS)

    Quintanilla, A.; Fraile, A.F.; Casas, J.A.; Rodriguez, J.J.

    2007-01-01

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T = 23-100 deg. C, P T = 1-8 atm, W = 0-2.5 g, and τ = 20-320 g CAT h/g Phenol ). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 deg. C, 2 atm, and 40 g CAT h/g Phenol . However, TOC conversion values remain fairly low, (around 5% at 40 g CAT h/g Phenol ), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 deg. C and 8 atm) is presented as high efficiency process for the decontamination of phenolic wastewaters

  17. Expression, purification and characterization of a peroxidase from ...

    African Journals Online (AJOL)

    Peroxidase is one of the key enzymes of the cellular antioxidant defense system, which is mostly involved in the reduction of hydrogen peroxide. Here, a peroxidase gene, named ThPOD1 was isolated from a cDNA library, which was generated from root tissue of Tamarix hispida that was exposed to 0.4 M NaCl. The cDNA ...

  18. Optimization of lignin peroxidase, manganese peroxidase, and Lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf

    OpenAIRE

    Sudha Hariharan; Padma Nambisan

    2013-01-01

    This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified...

  19. Mediation Analysis of the Efficacy of the Eban HIV/STD Risk-Reduction Intervention for African American HIV Serodiscordant Couples.

    Science.gov (United States)

    El-Bassel, Nabila; Jemmott, John B; Bellamy, Scarlett L; Pequegnat, Willo; Wingood, Gina M; Wyatt, Gail E; Landis, J Richard; Remien, Robert H

    2016-06-01

    Targeting couples is a promising behavioral HIV risk-reduction strategy, but the mechanisms underlying the effects of such interventions are unknown. We report secondary analyses testing whether Social-Cognitive-Theory variables mediated the Eban HIV-risk-reduction intervention's effects on condom-use outcomes. In a multisite randomized controlled trial conducted in four US cities, 535 African American HIV-serodiscordant couples were randomized to the Eban HIV risk-reduction intervention or attention-matched control intervention. Outcomes were proportion condom-protected sex, consistent condom use, and frequency of unprotected sex measured pre-, immediately post-, and 6 and 12 months post-intervention. Potential mediators included Social-Cognitive-Theory variables: outcome expectancies and self-efficacy. Mediation analyses using the product-of-coefficients approach in a generalized-estimating-equations framework revealed that condom-use outcome expectancy, partner-reaction outcome expectancy, intention, self-efficacy, and safer-sex communication improved post-intervention and mediated intervention-induced improvements in condom-use outcomes. These findings underscore the importance of targeting outcome expectancies, self-efficacy, and safer-sex communication in couples-level HIV risk-reduction interventions.

  20. Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system.

    Science.gov (United States)

    Aumiller, William M; Davis, Bradley W; Hashemian, Negar; Maranas, Costas; Armaou, Antonios; Keating, Christine D

    2014-03-06

    The intracellular environment in which biological reactions occur is crowded with macromolecules and subdivided into microenvironments that differ in both physical properties and chemical composition. The work described here combines experimental and computational model systems to help understand the consequences of this heterogeneous reaction media on the outcome of coupled enzyme reactions. Our experimental model system for solution heterogeneity is a biphasic polyethylene glycol (PEG)/sodium citrate aqueous mixture that provides coexisting PEG-rich and citrate-rich phases. Reaction kinetics for the coupled enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase (HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS). Enzyme kinetics differed between the two phases, particularly for the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however, the Amplex Red substrate necessary to complete the sequential reaction partitioned strongly to the PEG-rich phase. Reactions in ATPS were quantitatively described by a mathematical model that incorporated measured partitioning and kinetic parameters. The model was then extended to new reaction conditions, i.e., higher enzyme concentration. Both experimental and computational results suggest mass transfer across the interface is vital to maintain the observed rate of product formation, which may be a means of metabolic regulation in vivo. Although outcomes for a specific system will depend on the particulars of the enzyme reactions and the microenvironments, this work demonstrates how coupled enzymatic reactions in complex, heterogeneous media can be understood in terms of a mathematical model.

  1. Peroxidase gene discovery from the horseradish transcriptome.

    Science.gov (United States)

    Näätsaari, Laura; Krainer, Florian W; Schubert, Michael; Glieder, Anton; Thallinger, Gerhard G

    2014-03-24

    Horseradish peroxidases (HRPs) from Armoracia rusticana have long been utilized as reporters in various diagnostic assays and histochemical stainings. Regardless of their increasing importance in the field of life sciences and suggested uses in medical applications, chemical synthesis and other industrial applications, the HRP isoenzymes, their substrate specificities and enzymatic properties are poorly characterized. Due to lacking sequence information of natural isoenzymes and the low levels of HRP expression in heterologous hosts, commercially available HRP is still extracted as a mixture of isoenzymes from the roots of A. rusticana. In this study, a normalized, size-selected A. rusticana transcriptome library was sequenced using 454 Titanium technology. The resulting reads were assembled into 14871 isotigs with an average length of 1133 bp. Sequence databases, ORF finding and ORF characterization were utilized to identify peroxidase genes from the 14871 isotigs generated by de novo assembly. The sequences were manually reviewed and verified with Sanger sequencing of PCR amplified genomic fragments, resulting in the discovery of 28 secretory peroxidases, 23 of them previously unknown. A total of 22 isoenzymes including allelic variants were successfully expressed in Pichia pastoris and showed peroxidase activity with at least one of the substrates tested, thus enabling their development into commercial pure isoenzymes. This study demonstrates that transcriptome sequencing combined with sequence motif search is a powerful concept for the discovery and quick supply of new enzymes and isoenzymes from any plant or other eukaryotic organisms. Identification and manual verification of the sequences of 28 HRP isoenzymes do not only contribute a set of peroxidases for industrial, biological and biomedical applications, but also provide valuable information on the reliability of the approach in identifying and characterizing a large group of isoenzymes.

  2. Reductive Dehalogenation of Brominated Phenolic Compounds by Microorganisms Associated with the Marine Sponge Aplysina aerophoba

    Science.gov (United States)

    Ahn, Young-Beom; Rhee, Sung-Keun; Fennell, Donna E.; Kerkhof, Lee J.; Hentschel, Ute; Häggblom, Max M.

    2003-01-01

    Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the δ subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration. PMID:12839794

  3. Peroxidase-like activity of nanocrystalline cobalt selenide and its application for uric acid detection

    Directory of Open Access Journals (Sweden)

    Zhuang QQ

    2017-04-01

    Full Text Available Quan-Quan Zhuang,1 Zhi-Hang Lin,1 Yan-Cheng Jiang,1 Hao-Hua Deng,2 Shao-Bin He,1,3 Li-Ting Su,4 Xiao-Qiong Shi,2 Wei Chen2 1Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, 2Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 3Department of Pharmacy, Quanzhou Infectious Disease Hospital, 4Department of Pharmaceutical Analysis, Quanzhou Medical College, Quanzhou, People’s Republic of China Abstract: Dendrite-like cobalt selenide nanostructures were synthesized from cobalt and selenium powder precursors by a solvothermal method in anhydrous ethylenediamine. The as-prepared nanocrystalline cobalt selenide was found to possess peroxidase-like activity that could catalyze the reaction of peroxidase substrates in the presence of H2O2. A spectrophotometric method for uric acid (UA determination was developed based on the nanocrystalline cobalt selenide-catalyzed coupling reaction between N-ethyl-N-(3-sulfopropyl-3-methylaniline sodium salt and 4-aminoantipyrine (4-AAP in the presence of H2O2. Under optimum conditions, the absorbance was proportional to the concentration of UA over the range of 2.0–40 µM with a detection limit of 0.5 µM. The applicability of the proposed method has been validated by determination of UA in human serum samples with satisfactory results. Keywords: enzyme mimics, cobalt selenide, peroxidase-like activity, uric acid, human serum

  4. Chemical composition and antioxidant activity of phenolic compounds and essential oils from Calamintha nepeta L.

    Science.gov (United States)

    Khodja, Nabyla Khaled; Boulekbache, Lila; Chegdani, Fatima; Dahmani, Karima; Bennis, Faiza; Madani, Khodir

    2018-05-24

    Background Essential oils, infusion and decoction extracts of Calamintha nepeta L. were evaluated for their bioactive substances (polyphenols and essential oils) and antioxidant activities. Methods The amounts of phenolic compounds were determined by colorimetric assays and identified by high performance and liquid chromatography coupled with ultraviolet detector (HPLC-UV) method. The chemical composition of essential oils was determined by gas-chromatography coupled with mass spectrometry (GC/MS) method. For the evaluation of the antioxidant activity of essential oils and extracts, two different assays (reducing power and DPPH radical scavenging activity) were used. Results Infusion extract presented the highest phenolic content, followed by the decoction one, while the lowest amount was observed in essential oils. The amount of flavonoids of the decocted extract was higher than that of the infused one. The phenolic profile of C. nepeta infusion and decoction extracts revealed the presence of 28 and 13 peaks, respectively. Four phenolics compounds were identified in infusion (gallic acid (GA), rosmarinic acid (RA), caffeine (C) and caffeic acid (CA)) and two were identified in decoction (GA and RA). The chemical composition of essential oils revealed the presence of 29 compounds, accounting for the 99.7% of the total oils. Major compounds of essential oil (EO) were trans-menthone (50.06%) and pulegone (33.46%). Infusion and decoction extracts revealed an interesting antioxidant activity which correlates positively with their total phenolic contents. Conclusions These results showed that Calamintha nepeta could be considered as a valuable source of phenolics and essential oils with potent antioxidant activity.

  5. The effect of excimer laser keratectomy on corneal glutathione peroxidase activities and aqueous humor selenium levels in rabbits.

    Science.gov (United States)

    Yis, Ozgür; Bilgihan, Ayşe; Bilgihan, Kamil; Yis, Nilgün Safak; Hasanreisoğlu, Berati

    2002-06-01

    The formation of free oxygen radicals has been demonstrated in the corneal tissue after 193 nm laser irradiation. Cornea has several defense mechanisms that protect against oxidative damage. One of them, glutathione peroxidase (GPx), catalyzes the destruction of hydrogen peroxide and lipid hydroperoxide. Selenium is a trace element which is incorporated into the selenoenzyme GPx. In the present study, the effect of excimer laser keratectomy on corneal GPx activities and aqueous humor selenium concentrations in rabbits was evaluated. Animals were divided into five groups, and all groups were compared: controls (group 1), after epithelial scraping (group 2), transepithelial photorefractive keratectomy(PRK; group 3), superficial traditional PRK (50 microm; group 4) and deep traditional PRK (100 microm; group 5). Corneal GPx activities were measured by a modification of the coupled assay procedure. Aqueous humor selenium concentrations were determined using hydride generation atomic absorption spectrometry. Corneal GPx activities were significantly lower only in group 5 ( P<0.05), and the selenium concentration in the aqueous humor did not change in any group. Deep corneal photoablation inhibits GPx enzyme activities in the cornea. Therefore, antioxidants may be useful in reducing free radical-mediated complications after excimer laser corneal photoablation.

  6. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS.

    Science.gov (United States)

    Abu-Reidah, Ibrahim M; Arráez-Román, David; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-12-01

    The aim of this work was to characterise the phenolic compounds in artichoke (hearts) by using HPLC coupled to DAD-ESI-QTOF-MS, which proved useful in characterising 61 phenolic and other polar compounds. Notably, of the 61 compounds characterised, 34 new phenolic compounds with their isomers have been tentatively characterised in artichoke for the first time, namely: 3 hydroxybenzoic acids, 17 hydroxycinnamic acids, 4 lignans, 7 flavones, 2 flavonols, and 1 phenol derivative. Moreover, a total of 28 isomers of previously described phenolics have also been detected. The data compiled from the qualitative polyphenol characterisation indicate that the artichoke extract analysed (Blanca de Tudela variety) could be regarded as a bioactive functional food and also as a promising source of antioxidant phenolic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Field-theoretic methods in strongly-coupled models of general gauge mediation

    International Nuclear Information System (INIS)

    Fortin, Jean-François; Stergiou, Andreas

    2013-01-01

    An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split

  8. Production of lignin peroxidase by Ganoderma leucidum using solid ...

    African Journals Online (AJOL)

    The main objectives of this study were to optimize the culture conditions for the production of lignin peroxidase by Ganoderma leucidum, economic utilization of waste corn cobs as inducers substrate by pollution free fermentation technology and to optimize the solid state fermentation (SSF) process for lignin peroxidase ...

  9. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi

    International Nuclear Information System (INIS)

    Bonnarme, P.; Jeffries, T.W.

    1990-01-01

    Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14 CO 2 from 14 C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14 CO 2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini

  10. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer

    Science.gov (United States)

    Min, Kyoungseon; Gong, Gyeongtaek; Woo, Han Min; Kim, Yunje; Um, Youngsoon

    2015-01-01

    In the biorefinery using lignocellulosic biomass as feedstock, pretreatment to breakdown or loosen lignin is important step and various approaches have been conducted. For biological pretreatment, we screened Bacillus subtilis KCTC2023 as a potential lignin-degrading bacterium based on veratryl alcohol (VA) oxidation test and the putative heme-containing dye-decolorizing peroxidase was found in the genome of B. subtilis KCTC2023. The peroxidase from B. subtilis KCTC2023 (BsDyP) was capable of oxidizing various substrates and atypically exhibits substrate-dependent optimum temperature: 30°C for dyes (Reactive Blue19 and Reactive Black5) and 50°C for high redox potential substrates (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid [ABTS], VA, and veratryl glycerol-β-guaiacyl ether [VGE]) over +1.0 V vs. normal hydrogen electrode. At 50°C, optimum temperature for high redox potential substrates, BsDyP not only showed the highest VA oxidation activity (0.13 Umg−1) among the previously reported bacterial peroxidases but also successfully achieved VGE decomposition by cleaving Cα-Cβ bond in the absence of any oxidative mediator with a specific activity of 0.086 Umg−1 and a conversion rate of 53.5%. Based on our results, BsDyP was identified as the first bacterial peroxidase capable of oxidizing high redox potential lignin-related model compounds, especially VGE, revealing a previously unknown versatility of lignin degrading biocatalyst in nature. PMID:25650125

  11. Synthesis and dyeing performance of bisazo disperse dyes based on 3-[4-(4-amino-2-chlorophenoxyanilino]phenol

    Directory of Open Access Journals (Sweden)

    Rajesh H. Parab

    2016-09-01

    Full Text Available The present communication aims to develop bisazo disperse dyes based on 3-[4-(4-amino-2-chlorophenoxyanilino]phenol (DAP both as a coupling component as well as a diazonium salt. Coupling reaction of DAP was carried out with a diazonium salt of 4-aminoacetanilide to yield a monoazo disperse dye, and then it was further used as a diazonium salt and coupled with a different aromatic phenol to synthesize bisazo disperse dyes. All the disperse dyes were characterized by elemental analysis, IR, NMR and UV–Visible spectral studies with a view to determine their chemical structure. The dyeing ability of these bisazo disperse dyes has been evaluated in terms of their dyeing behavior and fastness properties on different fabrics.

  12. Toxicity of Phenol and Salt on the Phenol-Degrading Pseudomonas aeruginosa Bacterium

    Directory of Open Access Journals (Sweden)

    Samaei

    2016-08-01

    Full Text Available Background Phenolic compounds, phenol and phenol derivatives are environmental contaminants in some industrial effluents. Entrance of such substances into the environment causes severe environmental pollution, especially pollution of water resources. Biological treatment is a method that uses the potential of microorganisms to clean up contaminated environments. Among microorganisms, bacteria play an important role in treating wastewater contaminated with phenol. Objectives This study aimed to examine the effects of Pseudomonas aeruginosa on degradation of phenol in wastewater contaminated with this pollutant. Methods In this method, the growth rate of P. aeruginosa bacteria was investigated using different concentrations of salt and phenol. This is an experimental study conducted as a pilot in a batch reactor with different concentrations of phenol (25, 50, 100, 150, 300 and 600 mg L-1 and salt (0%, 0.5%, 1%, 2.5% and 5% during 9, 12 and 15 hours. During three days, from 5 experimental and 3 control samples, 18 samples were taken a day forming a sample size of 54 samples for each phenol concentration. Given the number of phenol concentrations (n = 6, a total of 324 samples were analyzed using a spectrophotometer at a wavelength of 600 nm. Results The phenol concentration of 600 mg L-1 was toxic for P. aeruginosa. However, at a certain concentration, it acts as a carbon source for P. aeruginosa. During investigations, it was found that increasing the concentration of phenol increases the rate of bacteria growth. The highest bacteria growth rate occurred was at the salt concentration of zero and phenol concentration of 600 mg L-1. Conclusions The findings of the current study indicate that at high concentrations of salt, the growth of bacteria reduces so that it stops at a concentration of 50 mg L-1 (5%. Thus, the bacterium is halotolerant or halophilic. With an increase in phenol concentration, the growth rate increased. Phenol toxicity appears

  13. An N‐terminal Peptide Extension Results in Efficient Expression, but not Secretion, of a Synthetic Horseradish Peroxidase Gene in Transgenic Tobacco

    Science.gov (United States)

    KIS, MIHALY; BURBRIDGE, EMMA; BROCK, IAN W.; HEGGIE, LAURA; DIX, PHILIP J.; KAVANAGH, TONY A.

    2004-01-01

    • Background and Aims Native horseradish (Armoracia rusticana) peroxidase, HRP (EC 1.11.1.7), isoenzyme C is synthesized with N‐terminal and C‐terminal peptide extensions, believed to be associated with protein targeting. This study aimed to explore the specific functions of these extensions, and to generate transgenic plants with expression patterns suitable for exploring the role of peroxidase in plant development and defence. • Methods Transgenic Nicotiana tabacum (tobacco) plants expressing different versions of a synthetic horseradish peroxidase, HRP, isoenzyme C gene were constructed. The gene was engineered to include additional sequences coding for either the natural N‐terminal or the C‐terminal extension or both. These constructs were placed under the control of a constitutive promoter (CaMV‐35S) or the tobacco RUBISCO‐SSU light inducible promoter (SSU) and introduced into tobacco using Agrobacterium‐mediated transformation. To study the effects of the N‐ and C‐terminal extensions, the localization of recombinant peroxidase was determined using biochemical and molecular techniques. • Key Results Transgenic tobacco plants can exhibit a ten‐fold increase in peroxidase activity compared with wild‐type tobacco levels, and the majority of this activity is located in the symplast. The N‐terminal extension is essential for the production of high levels of recombinant protein, while the C‐terminal extension has little effect. Differences in levels of enzyme activity and recombinant protein are reflected in transcript levels. • Conclusions There is no evidence to support either preferential secretion or vacuolar targeting of recombinant peroxidase in this heterologous expression system. This leads us to question the postulated targeting roles of these peptide extensions. The N‐terminal extension is essential for high level expression and appears to influence transcript stability or translational efficiency. Plants have been

  14. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag"+/TiO_2: Influence of electron donating and withdrawing substituents

    International Nuclear Information System (INIS)

    Xiao, Jiadong; Xie, Yongbing; Han, Qingzhen; Cao, Hongbin; Wang, Yujiao; Nawaz, Faheem; Duan, Feng

    2016-01-01

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O_2"−, rather than ·OH, "1O_2 or h"+. • ·O_2"− preferred to nucleophilically attack EDG substituted phenols. • ·O_2"− more likely electrophilically attacked EWG substituted phenols. • ·O_2"− simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag"+/TiO_2 suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O_2"−) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O_2"− and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O_2"− and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O_2"−, while ·O_2"− preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O_2"− could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate constant. Possible reactive positions on the phenolic compounds were also detailedly uncovered.

  15. Study on the presence and influence of phenolic compounds in callogenesis and somatic embryo development of cocoa (Theobroma cacao L..

    Directory of Open Access Journals (Sweden)

    Sulistyani Pancaningtyas

    2015-03-01

    Full Text Available Cocoa (Theobroma cacao L. like most tropical trees is recalcitrant in tissue culture. Somatic embryogenesis is generally efficient micropropagation technique to multiply elite material. However, Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. One of the factors often considered as a component of in vitro recalsitrance is a high phenolic content and oxidation of these compounds. In cocoa tissue culture accumulate large amounts of poliphenolics compounds which probably impair further development. This study was conducted to investigate the composition of phenolic compounds in cocoa flower and leaves, and their changes troughout the somatic embryogenesis process. Calli were induced in cacao floral and leaves explants on a half-strenght Murashige and Skoog medium containing 30 g/L Glucose and combination of 2,4 dichlorophenoxyacetic acid (2,4 D with kinetin (kin. Total polyphenol content was observed on Sulawesi 1 cocoa clone. Embryogenic and non-embryogenic callus were also compared. The percentage of callus production from flower tissue is 85%, percentage of embryogenic callus 40 %, although  the percentage of somatic embryo production from embryogenic callus callus is 70%. The conservation of callus into somatic embryos followed by decline in phenol content and an increase in peroxidase. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. So that, phenolic compound can influence the production of calli and an absence the phenolic compound can enhance production of somatic embryo.Kata kunci: Theobroma cacao L., polifenol, embrio somatik, kalus, flavonoid, katekin, in vitro recalcitance

  16. Heat stable peroxidases from Vigna species (V) | Mbassi | African ...

    African Journals Online (AJOL)

    Shoots of three landraces of a Vigna species from two climatic areas of Cameroon were evaluated for their content of heat-resistant peroxidases. The peroxidase activity in the three landraces was detected with a greater catalytic efficiency for oxidation of O-dianisidine relative to ABTS (2, 2'-azino-bis-(3- ...

  17. Horseradish Peroxidase-Encapsulated Hollow Silica Nanospheres for Intracellular Sensing of Reactive Oxygen Species

    Science.gov (United States)

    Chen, Hsin-Yi; Wu, Si-Han; Chen, Chien-Tsu; Chen, Yi-Ping; Chang, Feng-Peng; Chien, Fan-Ching; Mou, Chung-Yuan

    2018-04-01

    Reactive oxygen species (ROS) have crucial roles in cell signaling and homeostasis. Overproduction of ROS can induce oxidative damage to various biomolecules and cellular structures. Therefore, developing an approach capable of monitoring and quantifying ROS in living cells is significant for physiology and clinical diagnoses. Some cell-permeable fluorogenic probes developed are useful for the detection of ROS while in conjunction with horseradish peroxidase (HRP). Their intracellular scenario is however hindered by the membrane-impermeable property of enzymes. Herein, a new approach for intracellular sensing of ROS by using horseradish peroxidase-encapsulated hollow silica nanospheres (designated HRP@HSNs), with satisfactory catalytic activity, cell membrane permeability, and biocompatibility, was prepared via a microemulsion method. These HRP@HSNs, combined with selective probes or targeting ligands, could be foreseen as ROS-detecting tools in specific organelles or cell types. As such, dihydrorhodamine 123-coupled HRP@HSNs were used for the qualitative and semi-quantitative analysis of physiological H2O2 levels in activated RAW 264.7 macrophages. We envision that this HSNs encapsulating active enzymes can be conjugated with selective probes and targeting ligands to detect ROS in specific organelles or cell types of interest.

  18. Magnetic resonance spectral characterization of the heme active site of Coprinus cinereus peroxidase

    International Nuclear Information System (INIS)

    Lukat, G.S.; Rodgers, K.R.; Jabro, M.N.; Goff, H.M.

    1989-01-01

    Examination of the peroxidase isolated from the inkcap Basidiomycete Coprinus cinereus shows that the 42,000-dalton enzyme contains a protoheme IX prosthetic group. Reactivity assays and the electronic absorption spectra of native Coprinus peroxidase and several of its ligand complexes indicate that this enzyme has characteristics similar to those reported for horseradish peroxidase. In this paper, the authors characterize the H 2 O 2 -oxidized forms of Coprinus peroxidase compounds I, II, and III by electronic absorption and magnetic resonance spectroscopies. Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies of this Coprinus peroxidase indicate the presence of high-spin Fe(III) in the native protein and a number of differences between the heme site of Coprinus peroxidase and horseradish peroxidase. Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Caprinus peroxidase are consistent with coordination of a proximal histidine ligand. The EPR spectrum of the ferrous NO complex is also reported. Protein reconstitution with deuterated hemin has facilitated the assignment of the heme methyl resonances in the proton NMR spectrum

  19. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hestand, Nicholas J.; Spano, Frank C. [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-12-28

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  20. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    International Nuclear Information System (INIS)

    Hestand, Nicholas J.; Spano, Frank C.

    2015-01-01

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t e ) and hole (t h ) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t e t h and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems

  1. Adhesive F-actin Waves: A Novel Integrin-Mediated Adhesion Complex Coupled to Ventral Actin Polymerization

    OpenAIRE

    Case, Lindsay B.; Waterman, Clare M.

    2011-01-01

    At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the ex...

  2. Role of iron species in the photo-transformation of phenol in artificial and natural seawater

    International Nuclear Information System (INIS)

    Calza, Paola; Massolino, Cristina; Pelizzetti, Ezio; Minero, Claudio

    2012-01-01

    The role played by iron oxides (goethite and akaganeite) and iron(II)/(III) species as photo-sensitizers toward the transformation of organic matter was examined in saline water using phenol as a model molecule. The study was carried out in NaCl 0.7 M solution at pH 8, artificial (ASW) and natural (NSW) seawater, in a device simulating solar light spectrum and intensity. Under illumination phenol decomposition occurs in all the investigated cases. Conversely, dark experiments show that no reaction takes place, implying that phenol transformation is a light- activated process. Following the addition of Fe(II) ions to aerated solutions, Fe(II) is easily oxidized to Fe(III) and hydrogen peroxide is formed. Regardless of the addition of Fe(II) or Fe(III) ions, photo-activated degradation is mediated by Fe(III) species. Several (and different) hydroxylated and halogenated intermediates were identified. In ASW, akaganeite promotes the formation of ortho and para chloro derivatives (2- and 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol), while goethite induces the formation of 3-chlorophenol and bromophenols. Conversely, Fe(II) or Fe(III) addition causes the formation of 3- and 4-chlorophenol and 2,3- or 3,4-dichlorophenol. 4-Bromophenol was only identified when irradiating Fe(II) spiked solutions. Natural seawater sampled in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated. Phenol photo-induced transformation in NSW mediated by natural photosensitizers occurs and leads to the formation of numerous halophenols, condensed products and nitrophenols. When NSW is spiked with phenol and iron oxides, Fe(II) or Fe(III), halophenols production is enhanced. A close analogy exists between Fe(III), Fe(II)/goethite in ASW and NSW products. Different halophenols production in the natural seawater samples depends on Fe(II)/goethite (above all for 3-chlorophenol, 2,3-dichlorophenol and 4-bromophenol formation) and on Fe(III) colloidal species (3

  3. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  4. Preparation of aromatic geraniol analogues via a Cu(I-mediated Grignard coupling

    Directory of Open Access Journals (Sweden)

    Paz J. Luis

    2003-01-01

    Full Text Available Difunctional allylic terpenes are important synthetic building blocks. Functionalization of protected geranyl derivatives by SeO2/t-BuO2H adsorbed on SiO2 provides a convenient route to such compounds. The chosen protecting groups clearly influence the oxidation process. Also, an efficient synthesis of 2-geranylphenol derivatives via a Cu(I-mediated Grignard coupling of 2-lithiophenols and geranyl substrates was developed.

  5. The cDNA sequence of a neutral horseradish peroxidase.

    Science.gov (United States)

    Bartonek-Roxå, E; Eriksson, H; Mattiasson, B

    1991-02-16

    A cDNA clone encoding a horseradish (Armoracia rusticana) peroxidase has been isolated and characterized. The cDNA contains 1378 nucleotides excluding the poly(A) tail and the deduced protein contains 327 amino acids which includes a 28 amino acid leader sequence. The predicted amino acid sequence is nine amino acids shorter than the major isoenzyme belonging to the horseradish peroxidase C group (HRP-C) and the sequence shows 53.7% identity with this isoenzyme. The described clone encodes nine cysteines of which eight correspond well with the cysteines found in HRP-C. Five potential N-glycosylation sites with the general sequence Asn-X-Thr/Ser are present in the deduced sequence. Compared to the earlier described HRP-C this is three glycosylation sites less. The shorter sequence and fewer N-glycosylation sites give the native isoenzyme a molecular weight of several thousands less than the horseradish peroxidase C isoenzymes. Comparison with the net charge value of HRP-C indicates that the described cDNA clone encodes a peroxidase which has either the same or a slightly less basic pI value, depending on whether the encoded protein is N-terminally blocked or not. This excludes the possibility that HRP-n could belong to either the HRP-A, -D or -E groups. The low sequence identity (53.7%) with HRP-C indicates that the described clone does not belong to the HRP-C isoenzyme group and comparison of the total amino acid composition with the HRP-B group does not place the described clone within this isoenzyme group. Our conclusion is that the described cDNA clone encodes a neutral horseradish peroxidase which belongs to a new, not earlier described, horseradish peroxidase group.

  6. Cloning and analysis of the ascorbate peroxidase gene promoter ...

    African Journals Online (AJOL)

    Ascorbate peroxidase (APX) is known to catalyze the reduction of H2O2 to water and enhance plants' tolerance in stress environment. An ascorbate peroxidase protein (BnAPX) was previously isolated from Brassica napus in our laboratory and it was located in the chloroplast. In order to clarify the physiological function of ...

  7. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.

    Science.gov (United States)

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (Pdelivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.

  8. Hepatic and erythrocytic glutathione peroxidase activity in liver diseases.

    Science.gov (United States)

    Cordero, R; Ortiz, A; Hernández, R; López, V; Gómez, M M; Mena, P

    1996-09-01

    Hepatic and erythrocytic glutathione peroxidase activity, together with malondialdehyde levels, were determined as indicators of peroxidation in 83 patients from whom liver biopsies had been taken for diagnostic purposes. On histological study, the patients were classified into groups as minimal changes (including normal liver), steatosis, alcoholic hepatitis, hepatic cirrhosis, light to moderately active chronic hepatitis, and severe chronic active hepatitis. The glutathione peroxidase activity in erythrocytes showed no significant changes in any liver disease group. In the hepatic study, an increased activity was observed in steatosis with respect to the minimal changes group, this increased activity induced by the toxic agent in the initial stages of the alcoholic hepatic disease declining as the hepatic damage progressed. There was a negative correlation between the levels of hepatic malondialdehyde and hepatic glutathione peroxidase in subjects with minimal changes. This suggested the existence of an oxidative equilibrium in this group. This equilibrium is broken in the liver disease groups as was manifest in a positive correlation between malondialdehyde and glutathione peroxidase activity.

  9. Phenolic characterisation of red wines from different grape varieties cultivated in Mendoza province (Argentina).

    Science.gov (United States)

    Fanzone, Martín; Zamora, Fernando; Jofré, Viviana; Assof, Mariela; Gómez-Cordovés, Carmen; Peña-Neira, Álvaro

    2012-02-01

    Knowledge of the chemical composition of wine and its association with the grape variety/cultivar is of paramount importance in oenology and a necessary tool for marketing. Phenolic compounds are very important quality parameters of wines because of their impact on colour, taste and health properties. The aim of the present work was to study and describe the non-flavonoid and flavonoid composition of wines from the principal red grape varieties cultivated in Mendoza (Argentina). Sixty phenolic compounds, including phenolic acids/derivatives, stilbenes, anthocyanins, flavanols, flavonols and dihydroflavonols, were identified and quantified using high-performance liquid chromatography with diode array detection coupled with electrospray ionisation mass spectrometry (HPLC-DAD/ESI-MS). Marked quantitative differences could be seen in the phenolic profile among varieties, especially in stilbenes, acylated anthocyanins and other flavonoids. The polyphenolic content of Malbec wines was higher compared with the other red varieties. Dihydroflavonols represent a significant finding from the chemotaxonomic point of view, especially for Malbec variety. This is the first report on the individual phenolic composition of red wines from Mendoza (Argentina) and suggests that anthocyanins, flavanols and phenolic acids exert a great influence on cultivar-based differentiation. Copyright © 2011 Society of Chemical Industry.

  10. Secondary organic aerosol formation from phenolic compounds in the absence of NOx

    Directory of Open Access Journals (Sweden)

    D. Cocker III

    2011-10-01

    Full Text Available SOA formation from benzene, toluene, m-xylene, and their corresponding phenolic compounds were investigated using the UCR/CE-CERT Environmental Chamber to evaluate the importance of phenolic compounds as intermediate species in aromatic SOA formation. SOA formation yield measurements coupled to gas-phase yield measurements indicate that approximately 20% of the SOA of benzene, toluene, and m-xylene could be ascribed to the phenolic route under low NOx conditions. The SOA densities tend to be initially as high as approximately 1.8 g cm−3 and eventually reach the range of 1.3–1.4 g cm−3. The final SOA density was found to be independent of elemental ratio (O/C indicating that applying constant density (e.g., 1.4 g cm−3 to SOA formed from different aromatic compounds tested in this study is a reasonable approximation. Results from a novel on-line PILS-TOFMS (Particle-into-Liquid Sampler coupled with Agilent Time-of-Flight Mass Spectrometer are reported. Major signals observed by the on-line/off-line Agilent TOFMS indicated that products had the same number of carbon atoms as their parent aromatics, suggesting importance of ring-retaining products or ring-opening products following ring-cleavage.

  11. Candida albicans biofilm on titanium: effect of peroxidase precoating

    Directory of Open Access Journals (Sweden)

    Mohamed Ahariz

    2010-08-01

    Full Text Available Mohamed Ahariz1, Philippe Courtois1,21Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, 2UER de Biologie Médicale, Haute Ecole Francisco Ferrer, Brussels, BelgiumAbstract: The present study aimed to document Candida albicans biofilm development on titanium and its modulation by a peroxidase-precoated material which can generate antimicrobials, such as hypoiodite or hypothiocyanite, from hydrogen peroxide, iodide, or thiocyanate. For this purpose, titanium (powder or foil was suspended in Sabouraud liquid medium inoculated with C. albicans ATCC10231. After continuous stirring for 2–21 days at room temperature, the supernatant was monitored by turbidimetry at 600 nm and titanium washed three times in sterile Sabouraud broth. Using the tetrazolium salt MTT-formazan assay, the titanium-adherent fungal biomass was measured as 7.50 ± 0.60 × 106 blastoconidia per gram of titanium powder (n = 30 and 0.50 ± 0.04 × 106 blastoconidia per cm² of titanium foil (n = 12. The presence of yeast on the surface of titanium was confirmed by microscopy both on fresh preparations and after calcofluor white staining. However, in the presence of peroxidase systems (lactoperoxidase with substrates such as hydrogen peroxide donor, iodide, or thiocyanate, Candida growth in both planktonic and attached phases appeared to be inhibited. Moreover, this study demonstrates the possible partition of peroxidase systems between titanium material (peroxidase-precoated and liquid environment (containing peroxidase substrates to limit C. albicans biofilm formation.Keywords: adhesion, material, oral, yeast

  12. Characteristics of estrogen-induced peroxidase in mouse uterine luminal fluid

    International Nuclear Information System (INIS)

    Jellinck, P.H.; Newbold, R.R.; McLachlan, J.A.

    1991-01-01

    Peroxidase activity in the uterine luminal fluid of mice treated with diethylstilbestrol was measured by the guaiacol assay and also by the formation of 3H2O from [2-3H]estradiol. In the radiometric assay, the generation of 3H2O and 3H-labeled water-soluble products was dependent on H2O2 (25 to 100 microM), with higher concentrations being inhibitory. Tyrosine or 2,4-dichlorophenol strongly enhanced the reaction catalyzed either by the luminal fluid peroxidase or the enzyme in the CaCl2 extract of the uterus, but decreased the formation of 3H2O from [2-3H]estradiol by lactoperoxidase in the presence of H2O2 (80 microM). NADPH, ascorbate, and cytochrome c inhibited both luminal fluid and uterine tissue peroxidase activity to the same extent, while superoxide dismutase showed a marginal activating effect. Lactoferrin, a major protein component of uterine luminal fluid, was shown not to contribute to its peroxidative activity, and such an effect by prostaglandin synthase was also ruled out. However, it was not possible to exclude eosinophil peroxidase, brought to the uterus after estrogen stimulation, as being the source of peroxidase activity in uterine luminal fluid

  13. Peroxidase synthesis and activity in the interaction of soybean with Phytophthora megasperma f. sp. glycinea (Pmg)

    International Nuclear Information System (INIS)

    Chibbar, R.N.; Esnault, R.; Lee, D.; van Huystee, R.B.; Ward, E.W.B.

    1986-01-01

    Changes, in peroxidase (EC1.11.1.7) have been reported following infection. However, determinations of biosynthesis of quantities of the peroxidase protein molecule have not been made! In this study hypocotyl of soybean seedlings (Glycine max; cv Harosoy, susceptible; cv Harosoy 63, resistant) were inoculated with zoospores of Pmg. Incorporation of 35 S-methionine (supplied with inoculum) in TCA precipitates was measured. Peroxidase synthesis was measured by immuno precipitation using antibodies against a cationic and an anionic peroxidase derived from peanut cells. Specific peroxidase activity increased rapidly from 5 to 9 h following infection in the resistant reaction but not in the susceptible reaction or the water controls. There was increased synthesis of the anionic peroxidase but not of the cationic peroxidase in the resistant reaction. The anionic peroxidase did not increase in the susceptible until 15 h. The ratio of peroxidase synthesis to total protein synthesis decreased in inoculated tissues compared to control. Peroxidase synthesis is, therefore, a relative minor host response to infection

  14. Purification and characterization of lignin peroxidases from Penicillium decumbens P6

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Yuan, H.L.; Wang, H.X.; Chen, W.X. [China Agricultural University, Beijing (China). College of Biological Science

    2005-06-01

    Peroxidases are essential enzymes in biodegradation of lignin and lignite which have been investigated intensively in the white-rot fungi. This is the first report of purification and characterization of lignin peroxidase from Penicillium sp. P6 as lignite degradation fungus. The results indicated that the lignin peroxidase of Penicillium decumbens P6 had physical and chemical properties and a N-terminal amino acid sequence different from the lignin peroxidases of white-rot fungi. The lignin peroxidase was isolated from a liquid culture of P. decumbens P6. This enzyme had a molecular weight of 46.3 KDa in SDS-PAGE and exhibited greater activity, temperature stability and wider pH range than those previously reported. The isolation procedure involved (NH{sub 4}){sub 2}SO{sub 4} precipitation, ion-exchange chromatography on DEAE-cellulose and CM-cellulose, gel filtration on Sephadex G-100, and non-denaturing, discontinuous polyacrylamide gel electrophoresis. The K{sub m} and V{sub max} values of this enzyme using veratryl alcohol as substrate were 0.565 mmol L{sup -1} and 0.088 mmol (mg protein){sup -1} min{sup -1} respectively. The optimum pH of P6 lignin peroxidase was 4.0, and 70.6% of the relative activity was remained at pH 9.0. The optimum temperature of the enzyme was 45{sup o}C.

  15. Dual pancreas- and lung-targeting therapy for local and systemic complications of acute pancreatitis mediated by a phenolic propanediamine moiety.

    Science.gov (United States)

    Li, Jianbo; Zhang, Jinjie; Fu, Yao; Sun, Xun; Gong, Tao; Jiang, Jinghui; Zhang, Zhirong

    2015-08-28

    To inhibit both the local and systemic complications with acute pancreatitis, an effective therapy requires a drug delivery system that can efficiently overcome the blood-pancreas barrier while achieving lung-specific accumulation. Here, we report the first dual pancreas- and lung-targeting therapeutic strategy mediated by a phenolic propanediamine moiety for the treatment of acute pancreatitis. Using the proposed dual-targeting ligand, an anti-inflammatory compound Rhein has been tailored to preferentially accumulate in the pancreas and lungs with rapid distribution kinetics, excellent tissue-penetrating properties and minimum toxicity. Accordingly, the drug-ligand conjugate remarkably downregulated the proinflammatory cytokines in the target organs thus effectively inhibiting local pancreatic and systemic inflammation in rats. The dual-specific targeting therapeutic strategy may help pave the way for targeted drug delivery to treat complicated inflammatory diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Romarly F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Oliveira, Eliane M. de; Lima, Marco A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Bettega, Márcio H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Jones, Darryl B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Brunger, Michael J. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Blanco, Francisco [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Ciudad Universitaria, 2840 Madrid (Spain); Colmenares, Rafael [Hospital Ramón y Cajal, 28034 Madrid (Spain); and others

    2015-03-14

    We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].

  17. Gauge coupling unification in heterotic string models with gauge mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Anandakrishnan, Archana; Raby, Stuart

    2011-01-01

    We calculate the weak scale minimal supersymmetric standard model spectrum starting from a heterotic string theory compactified on an anisotropic orbifold. Supersymmetry breaking is mediated by vectorlike exotics that arise naturally in heterotic string theories. The messengers that mediate supersymmetry breaking come in incomplete grand unified theory (GUT) multiplets and give rise to nonuniversal gaugino masses at the GUT scale. Models with nonuniversal gaugino masses at the GUT scale have the attractive feature of allowing for precision gauge coupling unification at the GUT scale with negligible contributions from threshold corrections near the unification scale. The unique features of this minimally supersymmetric standard model spectrum are light gluinos and also large mass differences between the lightest and the next-to-lightest neutralinos and charginos which could lead to interesting signatures at the colliders.

  18. Dual cloud point extraction coupled with hydrodynamic-electrokinetic two-step injection followed by micellar electrokinetic chromatography for simultaneous determination of trace phenolic estrogens in water samples.

    Science.gov (United States)

    Wen, Yingying; Li, Jinhua; Liu, Junshen; Lu, Wenhui; Ma, Jiping; Chen, Lingxin

    2013-07-01

    A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic-electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens (hexestrol, dienestrol, and diethylstilbestrol) in water samples followed by micellar electrokinetic chromatography (MEKC) analysis. Several parameters affecting the extraction and online injection conditions were optimized. Under optimal dCPE-two-step injection-MEKC conditions, detection limits of 7.9-8.9 ng/mL and good linearity in the range from 0.05 to 5 μg/mL with correlation coefficients R(2) ≥ 0.9990 were achieved. Satisfactory recoveries ranging from 83 to 108% were obtained with lake and tap water spiked at 0.1 and 0.5 μg/mL, respectively, with relative standard deviations (n = 6) of 1.3-3.1%. This method was demonstrated to be convenient, rapid, cost-effective, and environmentally benign, and could be used as an alternative to existing methods for analyzing trace residues of phenolic estrogens in water samples.

  19. Efecto de la polietilenimina en la actividad catalítica de la peroxidasa de rábano (horseradish peroxidase inmovilizada en electrodos de oro modificados con monocapas autoensambladas de tioles (SAMs.

    Directory of Open Access Journals (Sweden)

    Pedro R. Matheus

    2009-05-01

    Full Text Available Effect of the Polyethyleneimine in the Activity Catalytic of the horseradish peroxidase Immobilized on Gold Electrodes Modified with a Self-assembled Monolayer of Thiols (SAMs. Studies were conducted bycyclic voltammetry (CV to investigate the effect of the polymer polyethyleneimine (PEI in the electrochemical reversibility of the mediator thionine and thus the catalytic activity of the enzyme horseradish peroxidase of recombinant HRP-NHis (horseradish peroxidase to the has been added to a chain of six histidine in the extreme N-terminal protein. This self produced monolayers of thiols (SAMS on gold electrodes, with chemical modifications obtained through successive stages in the solid phase of the electrode. The gold electrodes were modified with monolayer SAM-TOA-[ANTA/DADOO] -Co2+ [SAM: self-assembled monolayers of thiols, TOA: dithioctic acid, ANTA: nitrilotriacetic acid, DADOO: 1,8-diamino-3,6-dioxa octane]. The results showed that the presence of the polymer improves the electrochemical reversibility of the mediator to endure catalyticcurrents as high as those that are obtained with molar ratios ANTA:DADOO 10:1 in the absence of PEI, and improve the response voltammetric obtained.

  20. Apple and quince peroxidase activity in response to essential oils ...

    African Journals Online (AJOL)

    Enzymatic browning arises by peroxidase in fruits. However, essential oils are recognized as natural antioxidant agents. So in this study, the effect of thyme, coriander and rosemary essential oils were evaluated on the reduction of peroxidase activity in apples (Malus domestica Mill. cv Golden delicious), (M. domestica Mill.

  1. Peroxidase-like activity of magnetoferritin

    Czech Academy of Sciences Publication Activity Database

    Melníková, V.; Pospíšková, K.; Mitróová, Z.; Kopčanský, P.; Šafařík, Ivo

    2014-01-01

    Roč. 181, 3-4 (2014), s. 295-301 ISSN 0026-3672 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : magnetoferritin * magnetic nanoparticles * peroxidase-like activity * hydrogen peroxide * oxidative stress Subject RIV: CE - Biochemistry Impact factor: 3.741, year: 2014

  2. Effect of solvent on the extraction of phenolic compounds and antioxidant capacity of hazelnut kernel.

    Science.gov (United States)

    Fanali, Chiara; Tripodo, Giusy; Russo, Marina; Della Posta, Susanna; Pasqualetti, Valentina; De Gara, Laura

    2018-03-22

    Hazelnut kernel phenolic compounds were recovered applying two different extraction approaches, namely ultrasound-assisted solid/liquid extraction (UA-SLE) and solid-phase extraction (SPE). Different solvents were tested evaluating total phenolic compounds and total flavonoids contents together to antioxidant activity. The optimum extraction conditions, in terms of the highest value of total phenolic compounds extracted together to other parameters like simplicity and cost were selected for method validation and individual phenolic compounds analysis. The UA-SLE protocol performed using 0.1 g of defatted sample and 15 mL of extraction solvent (1 mL methanol/1 mL water/8 mL methanol 0.1% formic acid/5 mL acetonitrile) was selected. The analysis of hazelnut kernel individual phenolic compounds was obtained by HPLC coupled with DAD and MS detections. Quantitative analysis was performed using a mixture of six phenolic compounds belonging to phenolic classes' representative of hazelnut. Then, the method was fully validated and the resulting RSD% values for retention time repeatability were below 1%. A good linearity was obtained giving R 2 no lower than 0.997.The accuracy of the extraction method was also assessed. Finally, the method was applied to the analysis of phenolic compounds in three different hazelnut kernel varieties observing a similar qualitative profile with differences in the quantity of detected compounds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Coupling conducting polymers and mediated electrochemical responses for the detection of Listeria

    International Nuclear Information System (INIS)

    Minett, A.I.; Barisci, J.N.; Wallace, G.G.

    2003-01-01

    Different signal generation techniques were investigated for the development of a biosensor for Listeria monocytogenes. Conventional amperometry at an antibody-containing polypyrrole film electrode was found to be unsuccessful in detecting levels below 10 6 cells ml -1 . More successful was the coupling of a covalently modified film with the use of electron mediators in a single device. This sensor was capable of reproducibly detecting Listeria at levels of 10 5 cells ml -1 in 30 min

  4. Phenolation of vegetable oils

    Directory of Open Access Journals (Sweden)

    ZORAN S. PETROVIĆ

    2011-04-01

    Full Text Available Novel bio-based compounds containing phenols suitable for the syn­thesis of polyurethanes were prepared. The direct alkylation of phenols with different vegetable oils in the presence of superacids (HBF4, triflic acid as ca­talysts was studied. The reaction kinetics was followed by monitoring the de­crease of the double bond content (iodine value with time. In order to under­stand the mechanism of the reaction, phenol was alkylated with model com­pounds. The model compounds containing one internal double bond were 9-oc­tadecene and methyl oleate and those with three double bonds were triolein and high oleic safflower oil (82 % oleic acid. It was shown that the best structures for phenol alkylation are fatty acids with only one double bond (oleic acid. Fatty acids with two double bonds (linoleic acid and three double bonds (lino­lenic acid lead to polymerized oils by a Diels–Alder reaction, and to a lesser extent to phenol alkylated products. The reaction product of direct alkylation of phenol with vegetable oils is a complex mixture of phenol alkylated with poly­merized oil (30–60 %, phenyl esters formed by transesterification of phenol with triglyceride ester bonds (<10 % and unreacted oil (30 %. The phenolated vegetable oils are new aromatic–aliphatic bio-based raw materials suitable for the preparation of polyols (by propoxylation, ethoxylation, Mannich reactions for the preparation of polyurethanes, as intermediates for phenolic resins or as bio-based antioxidants.

  5. [Determination of four phenolic endocrine disruptors in environmental water samples by high performance liquid chromatography-fluorescence detection using dispersive liquid-liquid microextraction coupled with derivatization].

    Science.gov (United States)

    Wang, Xiaoyan; Qi, Weimei; Zhao, Xian'en; Lü, Tao; Wang, Xiya; Zheng, Longfang; Yan, Yehao; You, Jinmao

    2014-06-01

    To achieve accurate, fast and sensitive detection of phenolic endocrine disruptors in small volume of environmental water samples, a method of dispersive liquid-liquid microextraction (DLLME) coupled with fluorescent derivatization was developed for the determination of bisphenol A, nonylphenol, octylphenol and 4-tert-octylphenol in environmental water samples by high performance liquid chromatography-fluorescence detection (HPLC-FLD). The DLLME and derivatization conditions were investigated, and the optimized DLLME conditions for small volume of environmental water samples (pH 4.0) at room temperature were as follows: 70 microL chloroform as extraction solvent, 400 microL acetonitrile as dispersing solvent, vortex mixing for 3 min, and then high-speed centrifugation for 2 min. Using 2-[2-(7H-dibenzo [a, g] carbazol-7-yl)-ethoxy] ethyl chloroformate (DBCEC-Cl) as precolumn derivatization reagent, the stable derivatives of the four phenolic endocrine disruptors were obtained in pH 10.5 Na2CO3-NaHCO3 buffer/acetonitrile at 50 degrees C for 3 min, and then separated within 10 min by HPLC-FLD. The limits of detection (LODs) were in the range of 0.9-1.6 ng/L, and the limits of quantification (LOQs) were in the range of 3.8-7.1 ng/L. This method had perfect linearity, precision and recovery results, and showed obvious advantages and practicality comparing to the previously reported methods. It is a convenient and validated method for the routine analysis of phenolic endocrine disruptors in waste water of paper mill, lake water, domestic wastewater, tap water, etc.

  6. Cu–hemin metal-organic frameworks with peroxidase-like activity as peroxidase mimics for colorimetric sensing of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fenfen; He, Juan; Zeng, Mulang; Hao, Juan; Guo, Qiaohui; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2016-05-15

    In this work, a facile strategy to synthesize Cu–hemin metal-organic frameworks (MOFs) with peroxidase-like activity was reported. The prepared Cu–hemin MOFs were characterized by various techniques such as scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, UV–visible absorbance spectra, and so on. The results showed that the prepared Cu–hemin MOFs looked like a ball-flower with an average diameter of 10 μm and provided a large specific surface area. The Cu–hemin MOFs possessing peroxidase-like activity could be used to catalyze the peroxidase substrate of 3,3,5,5-tetramethylbenzidine in the presence of H{sub 2}O{sub 2}, which was employed to detect H{sub 2}O{sub 2} quantitatively with the linear range from 1.0 μM to 1.0 mM and the detection limit was 0.42 μM. Furthermore, with the additional help of glucose oxidase, a sensitive and selective method to detect glucose was developed by using the Cu–hemin MOFs as catalyst and the linear range was from 10.0 μM to 3.0 mM and the detection limit was 6.9 μM. This work informs researchers of the advantages of MOFs for preparing biomimetic catalysts and extends the functionality of MOFs for biosensor application.Graphical Abstract.

  7. An updated view on horseradish peroxidases: recombinant production and biotechnological applications.

    Science.gov (United States)

    Krainer, Florian W; Glieder, Anton

    2015-02-01

    Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge-the efficient recombinant production of horseradish peroxidase enzymes.

  8. Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd).

    Science.gov (United States)

    Gómez-Caravaca, Ana Maria; Iafelice, Giovanna; Verardo, Vito; Marconi, Emanuele; Caboni, Maria Fiorenza

    2014-08-15

    The aim of this work was to obtain sweet quinoa seeds by a pearling process. Thus, two different pearling degrees (20% and 30%) were tested. Moreover, the effect of pearling process on saponins and phenolic content in quinoa were evaluated. To this end, GC-MS methodology was used to identify and quantify the saponins and reversed phase-high performance liquid chromatography coupled to DAD and mass spectrometer detectors was applied to study the phenolic composition. As expected, whole quinoa had the highest saponins and phenolics contents. An abrasion degree of 30% was necessary to obtain sweet quinoa (with a total saponin content lower than 110 mg/100 g). Obviously, this process caused a decrease of 21.5% and 35.2% of free and bound phenolic compounds, respectively. However, this decrease was lower if compared with other cereals. Thus, pearling process is a promising sustainable method to obtain sweet quinoa with a "green" approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    DEFF Research Database (Denmark)

    Covington, Elizabeth Dunn; Roitsch, Thomas Georg; Dermastia, Marina

    2016-01-01

    Physiological studies in plants often require enzyme extraction from tissues containing high concentrations of phenols and polyphenols. Unless removed or neutralized, such compounds may hinder extraction, inactivate enzymes, and interfere with enzyme detection. The following protocol for activity...... assays for enzymes of primary carbohydrate metabolism, while based on our recently published one for quantitative measurement of activities using coupled spectrophotometric assays in a 96-well format, is tailored to the complexities of phenolic- and anthocyanin-rich extracts from grapevine leaf...

  10. Evaluation of Antioxidant Capacity and Synergistic Associations of Quinonemethide Triterpenes and Phenolic Substances from Maytenus ilicifolia (Celastraceae

    Directory of Open Access Journals (Sweden)

    Ian Castro-Gamboa

    2010-10-01

    Full Text Available This work describes the isolation of the secondary metabolites identified as the quinonemethides maytenin (1 and pristimerin (2 from Maytenus ilicifolia extracts obtained from root barks of adult plants and roots of seedlings and their quantification by high performance liquid chromatography coupled to a diode array detector. The electrochemical profiles obtained from cyclic voltammetry and a coulometric detector coupled to high-performance liquid chromatography contributed to the evaluation of their antioxidant capacity. The antioxidant properties of individual components and the crude extracts of the root barks of Maytenus ilicifolia were compared and the possible synergistic associations of quinonemethide triterpenes and phenolic substances were investigated by using rutin as a model phenolic compound.

  11. Evaluation of antioxidant capacity and synergistic associations of quinonemethide triterpenes and phenolic substances from Maytenus ilicifolia (Celastraceae).

    Science.gov (United States)

    Dos Santos, Vânia Aparecida de Freitas Formenton Macedo; Dos Santos, Daniela Pereira; Castro-Gamboa, Ian; Zanoni, Maria Valnice Boldrin; Furlan, Maysa

    2010-10-11

    This work describes the isolation of the secondary metabolites identified as the quinonemethides maytenin (1) and pristimerin (2) from Maytenus ilicifolia extracts obtained from root barks of adult plants and roots of seedlings and their quantification by high performance liquid chromatography coupled to a diode array detector. The electrochemical profiles obtained from cyclic voltammetry and a coulometric detector coupled to high-performance liquid chromatography contributed to the evaluation of their antioxidant capacity. The antioxidant properties of individual components and the crude extracts of the root barks of Maytenus ilicifolia were compared and the possible synergistic associations of quinonemethide triterpenes and phenolic substances were investigated by using rutin as a model phenolic compound.

  12. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.

    Science.gov (United States)

    Zhang, Yi; Tay, Joo Hwa

    2016-03-15

    Aerobic granule is a novel form of microbial aggregate capable of degrading toxic and recalcitrant substances. Aerobic granules have been formed on phenol as the growth substrate, and used to co-metabolically degrade trichloroethylene (TCE), a synthetic solvent not supporting aerobic microbial growth. Granule formation process, rate limiting factors and the comprehensive toxic effects of phenol and TCE had been systematically studied. To further explore their potential at the level of microbial population and functions, phenol degraders were isolated and purified from mature granules in this study. Phenol and TCE degradation kinetics of 15 strains were determined, together with their TCE transformation capacities and other physiological characteristics. Isolation in the presence of phenol and TCE exerted stress on microbial populations, but the procedure was able to preserve their diversity. Wide variation was found with the isolates' kinetic behaviors, with the parameters often spanning 3 orders of magnitude. Haldane kinetics described phenol degradation well, and the isolates exhibited actual maximum phenol-dependent oxygen utilization rates of 9-449 mg DO g DW(-1) h(-1), in phenol concentration range of 4.8-406 mg L(-1). Both Michaelis-Menten and Haldane types were observed for TCE transformation, with the actual maximum rate of 1.04-21.1 mg TCE g DW(-1) h(-1) occurring between TCE concentrations of 0.42-4.90 mg L(-1). The TCE transformation capacities and growth yields on phenol ranged from 20-115 mg TCE g DW(-1) and 0.46-1.22 g DW g phenol(-1), respectively, resulting in TCE transformation yields of 10-70 mg TCE g phenol(-1). Contact angles of the isolates were between 34° and 82°, suggesting both hydrophobic and hydrophilic cell surface. The diversity in the isolates is a great advantage, as it enables granules to be versatile and adaptive under different operational conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. DYNAMICS OF LEAF PEROXIDASE ACTIVITY DURING ONTOGENY OF HEMP PLANTS, IN RELATION TO SEXUAL PHENOTYPE

    Directory of Open Access Journals (Sweden)

    Elena Truta

    2005-08-01

    Full Text Available During vegetation of female and male hemp plants (Cannabis sativa L., five quantitative determinations of peroxidase activities were made (40 days, 55 days, 70 days, 85 days, 105 days. Peroxidase activity presented some differences in hemp plants, between females and males, during their vegetation cycle. In female plants, before anthesis were registered peaks of peroxidase activities. The blossoming of male plants was coincident with the increase of catalitic action of peroxidase. Generally, the male plants displayed greater levels of peroxidasic activity.

  14. Adult Romantic Attachment and Couple Conflict Behaviors: Intimacy as a Multi-Dimensional Mediator

    OpenAIRE

    Tina D. Du Rocher Schudlich; Nicole M. Stettler; Kristen A. Stouder; Chelsea Harrington

    2013-01-01

    This study investigated associations between adult romantic attachment and couples’ conflict behaviors and the potential mediating role of intimacy. A community sample of 74 couples reported on their attachment security style on the Attachment Style Measure (ASM) (Simpson, 1990) and on multiple dimensions of intimacy on the Personal Assessment of Intimacy in Relationships (PAIR) (Schaefer & Olson, 1981). Couples’ conflict behaviors were assessed via behavioral observations and coded for posit...

  15. Identification of Surface-Exposed Protein Radicals and A Substrate Oxidation Site in A-Class Dye-Decolorizing Peroxidase from Thermomonospora curvata

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Ruben; Chen, Xuejie; Ramyar, Kasra X.; Hayati, Zahra; Carlson, Eric A.; Bossmann, Stefan H.; Song, Likai; Geisbrecht, Brian V.; Li, Ping (FSU); (KSU)

    2016-12-12

    Dye-decolorizing peroxidases (DyPs) are a family of heme peroxidases in which a catalytic distal aspartate is involved in H2O2 activation to catalyze oxidations under acidic conditions. They have received much attention due to their potential applications in lignin compound degradation and biofuel production from biomass. However, the mode of oxidation in bacterial DyPs remains unknown. We have recently reported that the bacterial TcDyP from Thermomonospora curvata is among the most active DyPs and shows activity toward phenolic lignin model compounds. On the basis of the X-ray crystal structure solved at 1.75 Å, sigmoidal steady-state kinetics with Reactive Blue 19 (RB19), and formation of compound II like product in the absence of reducing substrates observed with stopped-flow spectroscopy and electron paramagnetic resonance (EPR), we hypothesized that the TcDyP catalyzes oxidation of large-size substrates via multiple surface-exposed protein radicals. Among 7 tryptophans and 3 tyrosines in TcDyP consisting of 376 residues for the matured protein, W263, W376, and Y332 were identified as surface-exposed protein radicals. Only the W263 was also characterized as one of the surface-exposed oxidation sites. SDS-PAGE and size-exclusion chromatography demonstrated that W376 represents an off-pathway destination for electron transfer, resulting in the cross-linking of proteins in the absence of substrates. Mutation of W376 improved compound I stability and overall catalytic efficiency toward RB19. While Y332 is highly conserved across all four classes of DyPs, its catalytic function in A-class TcDyP is minimal, possibly due to its extremely small solvent-accessible areas. Identification of surface-exposed protein radicals and substrate oxidation sites is important for understanding the DyP mechanism and modulating its catalytic functions for improved activity on phenolic lignin.

  16. Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum

    NARCIS (Netherlands)

    Fraaije, Marco W.; Roubroeks, Hanno P.; Hagen, Wilfred R.; Berkel, Willem J.H. van

    1996-01-01

    The first dimeric catalase-peroxidase of eucaryotic origin, an intracellular hydroperoxidase from Penicillium simplicissimum which exhibited both catalase and peroxidase activities, has been isolated. The enzyme has an apparent molecular mass of about 170 kDa and is composed of two identical

  17. Enzymatic grafting of simple phenols on flax and sisal pulp fibres using laccases.

    Science.gov (United States)

    Aracri, Elisabetta; Fillat, Amanda; Colom, José F; Gutiérrez, Ana; Del Río, José C; Martínez, Angel T; Vidal, Teresa

    2010-11-01

    Flax and sisal pulps were treated with two laccases (from Pycnoporus cinnabarinus, PcL and Trametes villosa, TvL, respectively), in the presence of different phenolic compounds (syringaldehyde, acetosyringone and p-coumaric acid in the case of flax pulp, and coniferaldehyde, sinapaldehyde, ferulic acid and sinapic acid in the case of sisal pulp). In most cases the enzymatic treatments resulted in increased kappa number of pulps suggesting the incorporation of the phenols into fibres. The covalent binding of these compounds to fibres was evidenced by the analysis of the treated pulps, after acetone extraction, by pyrolysis coupled with gas chromatography/mass spectrometry in the absence and/or in the presence of tetramethylammonium hydroxide (TMAH) as methylating agent. The highest extents of phenol incorporation were observed with the p-hydroxycinnamic acids, p-coumaric and ferulic acids. The present work shows for the first time the use of analytical pyrolysis as an effective approach to study fibre functionalization by laccase-induced grafting of phenols. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Phenolics and essential mineral profile of organic acid pretreated unripe banana flour.

    Science.gov (United States)

    Anyasi, Tonna A; Jideani, Afam I O; Mchau, Godwin R A

    2018-02-01

    Banana fruit (Musa spp) though rich in essential minerals, has also been implicated for the presence of phytochemicals which nonetheless beneficial, can also act as mineral inhibitors when in forms such as phenolic compounds, phytates and tannins. This study assayed the essential macro and trace minerals as well as phenolic compounds present in unripe banana flour (UBF) obtained from the pulp of four different cultivars. Unripe banana flour was processed by oven drying in a forced air oven dryer at 70°C upon pretreatment with ascorbic, citric and lactic acid. Organic acid pretreatment was done separately on each unripe banana cultivar at concentrations of 10, 15 and 20g/L. Phenolic compounds were profiled using liquid chromatography mass spectrometry electrospray ion (LC-MS-ESI) while essential minerals were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectroscopy (ICP-MS) respectively. Results of LC-MS-ESI assay of phenolics revealed the presence of flavonoids: epicatechin and myricetin 3-O-rhamnosyl-glucoside in varying concentrations in UBF. Essential mineral profile indicated that Zinc had the least occurrence of 3.55mg/kg (ppotassium was the most abundant mineral at 14746.73mg/kg in UBF of all four banana cultivars. Correlation between phenolic compounds and essential minerals using Pearson's Correlation Coefficient test revealed weak and inverse association between flavonoids and most macro and trace minerals present in UBF samples. Organic acid pretreatment thus exhibited little effect on phenolics and essential minerals of UBF samples, though, inhibitory influence of phenolic compounds was recorded on essential minerals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Guaiacol peroxidase zymography for the undergraduate laboratory.

    Science.gov (United States)

    Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M; Kurz, Liliana

    2014-01-01

    This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically detect peroxidase activity and furthermore, to analyze the total protein profile. After the assay, students may estimate the apparent molecular mass of the enzyme and discuss its structure. After the 4-h experiment, students gain knowledge concerning biological sample preparation, gel preparation, electrophoresis, and the importance of specific staining procedures for the detection of enzymatic activity. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.

  20. A novel flow injection chemiluminescence method for automated and miniaturized determination of phenols in smoked food samples.

    Science.gov (United States)

    Vakh, Christina; Evdokimova, Ekaterina; Pochivalov, Aleksei; Moskvin, Leonid; Bulatov, Andrey

    2017-12-15

    An easily performed fully automated and miniaturized flow injection chemiluminescence (CL) method for determination of phenols in smoked food samples has been proposed. This method includes the ultrasound assisted solid-liquid extraction coupled with gas-diffusion separation of phenols from smoked food sample and analytes absorption into a NaOH solution in a specially designed gas-diffusion cell. The flow system was designed to focus on automation and miniaturization with minimal sample and reagent consumption by inexpensive instrumentation. The luminol - N-bromosuccinimide system in an alkaline medium was used for the CL determination of phenols. The limit of detection of the proposed procedure was 3·10 -8 ·molL -1 (0.01mgkg -1 ) in terms of phenol. The presented method demonstrated to be a good tool for easy, rapid and cost-effective point-of-need screening phenols in smoked food samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components

    Directory of Open Access Journals (Sweden)

    Hong Xie

    2018-01-01

    Full Text Available Tibetan tea (Kangzhuan is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea (LATT was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+-catechin, (−-catechin gallate (CG, (−-epicatechin gallate (ECG, and (−-epigallocatechin gallate. Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO• scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG. Gallic acid and the four catechins were also suggested to chelate Fe2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC−ESI−Q−TOF−MS/MS analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts. In a flow cytometry assay, (+-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H+-transfer, and Fe2+-chelating pathways to exhibit

  2. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components.

    Science.gov (United States)

    Xie, Hong; Li, Xican; Ren, Zhenxing; Qiu, Weimin; Chen, Jianlan; Jiang, Qian; Chen, Ban; Chen, Dongfeng

    2018-01-24

    Tibetan tea (Kangzhuan) is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea ( LATT ) was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+)-catechin, (-)-catechin gallate ( CG ), (-)-epicatechin gallate ( ECG ), and (-)-epigallocatechin gallate). Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG . Gallic acid and the four catechins were also suggested to chelate Fe 2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF) products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts). In a flow cytometry assay, (+)-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H⁺-transfer, and Fe 2+ -chelating pathways to exhibit antioxidative or

  3. COMPARISON OF METHODS FOR ALKALINE PHOSPHATASE AND PEROXIDASE DETECTION IN MILK

    Directory of Open Access Journals (Sweden)

    felipe Nael Seixas

    2014-02-01

    Full Text Available This study evaluated the performance of strips for colorimetric detection of alkaline phosphatase and peroxidase in milk, comparing them with a kit of reagents for alkaline phosphatase and the official methodology for peroxidase. The samples were analyzed at the Laboratory Inspection of Products of Animal Origin, State University of Londrina. For the comparison tests for the detection of alkaline phosphatase four treatments were made by adding different percentages of raw milk (1%, 2%, 5% and 10% in the pasteurized milk, plus two control treatments. Thirty-eight samples triplicate for each treatment were analyzed. To compare the performance of tests for peroxidase 80 pasteurized milk samples were evaluated simultaneously by official methodology and by colorimetric strips. The performance of the alkaline phosphatase were different for the treatments with 1% and 2% of raw milk which had all the strips change color as the reagent kit showed the presence of phosphatase in just 2.63% and 5.26% the cases, respectively for each treatment. The colorimetric strips for alkaline phosphatase are more sensitive for the identification of small quantities compared to the reagent kit. The performance of tests for peroxidase showed no difference. The strips for the detection of peroxidase or alkaline phosphatase were effective and can replace traditional methods.

  4. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds.

    Science.gov (United States)

    Chougui, Nadia; Tamendjari, Abderezak; Hamidj, Wahiba; Hallal, Salima; Barras, Alexandre; Richard, Tristan; Larbat, Romain

    2013-08-15

    The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Investigation of major phenolic antioxidants from Camellia sinensis fruits

    Directory of Open Access Journals (Sweden)

    Ajay Rana

    2015-12-01

    Full Text Available The present study unveils major phenolic antioxidant compounds from Camellia sinensis fruits, followed by their investigation, purification and characterization using HPLC, ESI-MS and NMR studies. The spectrophotometric estimation results have clearly demonstrated that C. sinensis (tea fruits contain up to 14% of total polyphenols (as gallic acid equivalent and 7% of flavonoids (as quercetin equivalent on dry weight basis. Differential solvent-mediated extractions have been performed for quantitative assessment of major phytoconstituents by RP-HPLC analysis. And the results have revealed that these fruits contain adequate amount of tea catechins (4% along with caffeine (1% and theanine (0.4% on dry weight basis. Moreover, purification and characterization of major phytoconstituents such as epigallocatechin, epicatechin, epigallocatechin gallate and epicatechin gallate along with caffeine have been accomplished. Thus, it is clearly demonstrated that tea fruits could act as a possible and reliable source for obtaining major phenolic antioxidants.

  6. Impact of curing time on ageing and degradation of phenol-urea-formaldehyde binder

    DEFF Research Database (Denmark)

    Okhrimenko, D. V.; Thomsen, A. B.; Ceccato, M.

    2018-01-01

    Phenol-urea-formaldehyde (PUF) resin is one of the most important thermosetting polymers. It is widely used in many industrial and construction applications as an organic coating and adhesive. For example, in production of mineral wool for insulation, PUF is used together with the coupling agent (3...

  7. Heterologous Expression of Peroxidases : Chapter 12

    NARCIS (Netherlands)

    Christien Lokman; S. de Weert

    2010-01-01

    This monograph describes many applications of peroxidase-based biocatalysis in the biotechnology industry. The need for such a book emerges from the considerable amount of new data regarding the phylogeny, reaction mechanisms, thermodynamic characterization and structural features of fungal and

  8. Oxidation of eugenol by purified human term placental peroxidase.

    Science.gov (United States)

    Zhang, R; Kulkarni, K A; Kulkarni, A P

    2000-01-01

    The oxidation of eugenol by purified human term placental peroxidase (HTPP) was examined. Spectral analyses indicated that, similar to horseradish peroxidase, HTPP is capable of catalyzing the oxidation of eugenol. The accumulated stable product in the reaction medium due to eugenol oxidation by HTPP was tentatively identified as quinone methide of eugenol (EQM). The EQM formation exhibited a pH optimum of 8.0 and was dependent on incubation time, amount of HTPP and the concentration of both eugenol and hydrogen peroxide. The specific activity of approx 2.8 micromoles of EQM/min/mg protein was observed with different preparations of HTPP. The EQM formation was significantly suppressed by glutathione and ascorbic acid. The classical peroxidase inhibitors viz. potassium cyanide and sodium azide blocked the reaction in a concentration manner. Collectively, the results suggest that eugenol may undergo peroxidative metabolism in human placenta. Copyright 2000 Harcourt Publishers Ltd.

  9. Identification and characterization of phenol hydroxylase from phenol-degrading Candida tropicalis strain JH8.

    Science.gov (United States)

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li

    2014-09-01

    The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the K(m) and V(max) of recombinant phenol hydroxylase were 0.21 mmol·L(-1) and 0.077 μmol·L(-1)·min(-1), respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.

  10. Effect of the molecular structure of phenolic novolac precursor resins on the properties of phenolic fibers

    International Nuclear Information System (INIS)

    Ying, Yong-Gang; Pan, Yan-Ping; Ren, Rui; Dang, Jiang-Min; Liu, Chun-Ling

    2013-01-01

    A series of phenolic resins with different weight-average molecular weights (M w ) and ortho/para (O/P) ratios were prepared. The effect of the phenolic precursor resin structure on the structure and properties of the resulting phenolic fibers was investigated. The structures of the resins and fibers were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, melt rheometry, dynamic mechanical analysis, and thermogravimetric analysis. The results show that the O/P ratio, unsubstituted ortho and para carbon ratio (O u /P u ), and M w of the phenolic resins play an important role in determining the properties of the phenolic fibers. The tensile strength of the phenolic fibers increases with increasing novolac precursor O u /P u ratios, corresponding to low O/P ratios, at comparable resin M w values. Also, the tensile strength of the phenolic fibers increases with increasing novolac M w values at comparable O/P ratios. Phenolic fibers with high tensile strength and good flame resistance characteristics were generated from a phenolic precursor resin, possessing a high weight-average molecular weight and a low O/P value. - Highlights: • Phenolic resins with different weight-average molecular weights and ortho/para ratios have been prepared. • The tensile strength of the phenolic fibers increases with reducing novolac O/P ratio. • The tensile strength of the phenolic fibers increases with increasing novolac M w

  11. Application of solid-phase extraction coupled with freezing-lipid filtration clean-up for the determination of endocrine-disrupting phenols in fish

    International Nuclear Information System (INIS)

    Ahn, Yun Gyong; Shin, Jeoung Hwa; Kim, Hye-Young; Khim, Jeehyeong; Lee, Mi-Kyoung; Hong, Jongki

    2007-01-01

    An analytical method has been developed for the determination of endocrine-disrupting phenols (eight alkylphenols and bisphenol A) in fish samples. The extraction of nine phenols from fish samples was carried out by ultrasonification. After the extraction, high levels of lipids were removed by freezing-lipid filtration instead of the traditional methods of column chromatography or saponification. During freezing-lipid filtration, about 90% of the lipids were eliminated without any significant loss of phenolic compounds. For further purification, hydrophilic-lipophilic balanced copolymer (HLB) sorbent with a poly(divinylbenzene-co-N-vinylpyrrolidone) phase and Florisil-solid-phase extraction (SPE) cartridges were used to eliminate the remaining interferences. Silyl-derivatization, with N,N'-methyl-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA), was applied to enhance the sensitivity of detection of phenolic compounds. Quantification was performed by gas chromatography/mass spectrometry (GC/MS)-selected ion monitoring (SIM) mode, using deuterium-labeled internal standards. Spiking experiments were carried out to determine the recovery, precision and detection limit of the method. The overall recoveries ranged between 70 and 120%, with relative standard deviations of 3-17% for the entire procedure. The detection limits of the method for the nine phenols ranged from 0.02 to 0.41 ng g -1 . The method provided simultaneous screening and accurate confirmation of each phenol when applied to biological samples

  12. Application of solid-phase extraction coupled with freezing-lipid filtration clean-up for the determination of endocrine-disrupting phenols in fish

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yun Gyong [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Department of Civil Environment Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Shin, Jeoung Hwa; Kim, Hye-Young [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Khim, Jeehyeong [Department of Civil Environment Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Mi-Kyoung [College of Pharmacy, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Hong, Jongki [College of Pharmacy, Kyung Hee University, Seoul 130-701 (Korea, Republic of)], E-mail: jhong@khu.ac.kr

    2007-11-05

    An analytical method has been developed for the determination of endocrine-disrupting phenols (eight alkylphenols and bisphenol A) in fish samples. The extraction of nine phenols from fish samples was carried out by ultrasonification. After the extraction, high levels of lipids were removed by freezing-lipid filtration instead of the traditional methods of column chromatography or saponification. During freezing-lipid filtration, about 90% of the lipids were eliminated without any significant loss of phenolic compounds. For further purification, hydrophilic-lipophilic balanced copolymer (HLB) sorbent with a poly(divinylbenzene-co-N-vinylpyrrolidone) phase and Florisil-solid-phase extraction (SPE) cartridges were used to eliminate the remaining interferences. Silyl-derivatization, with N,N'-methyl-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA), was applied to enhance the sensitivity of detection of phenolic compounds. Quantification was performed by gas chromatography/mass spectrometry (GC/MS)-selected ion monitoring (SIM) mode, using deuterium-labeled internal standards. Spiking experiments were carried out to determine the recovery, precision and detection limit of the method. The overall recoveries ranged between 70 and 120%, with relative standard deviations of 3-17% for the entire procedure. The detection limits of the method for the nine phenols ranged from 0.02 to 0.41 ng g{sup -1}. The method provided simultaneous screening and accurate confirmation of each phenol when applied to biological samples.

  13. NACE-ESI-TOF MS to reveal phenolic compounds from olive oil: introducing enriched olive oil directly inside capillary.

    Science.gov (United States)

    Gómez-Caravaca, Ana María; Carrasco-Pancorbo, Alegría; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2009-09-01

    Most CE methods for the analysis of phenols from olive oil use an aqueous electrolyte separation medium, although the importance of NACE is obvious, as this kind of CE seems to be more compatible with the hydrophobic olive oil matrix and could facilitate its direct injection. In the current work we develop a method involving SPE and NACE coupled to ESI-TOF MS. All the CE and ESI-TOF MS parameters were optimized in order to maximize the number of phenolic compounds detected and the sensitivity in their determination. Electrophoretic separation was carried out using a CE buffer system consisting of 25 mM NH(4)OAc/AcH in methanol/ACN (1/1 v/v) at an apparent pH value of 5.0. We studied in depth the effect of the nature and concentration of different electrolytes dissolved in different organic solvents and other experimental and instrumental CE variables. The results were compared with those obtained by CZE (with aqueous buffers) coupled to ESI-TOF MS; both methods offered to the analyst the chance to study phenolic compounds of different families (such as phenolic alcohols, lignans, complex phenols, flavonoids, etc.) from virgin olive oil by injecting methanolic extracts with efficient and fast CE separations. In the case of NACE method, we also studied the direct injection of the investigated matrix introducing a plug of olive oil directly into the capillary.

  14. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection.

    Science.gov (United States)

    Orčić, Dejan; Francišković, Marina; Bekvalac, Kristina; Svirčev, Emilija; Beara, Ivana; Lesjak, Marija; Mimica-Dukić, Neda

    2014-01-15

    A method for quantification of 45 plant phenolics (including benzoic acids, cinnamic acids, flavonoid aglycones, C- and O-glycosides, coumarins, and lignans) in plant extracts was developed, based on reversed phase HPLC separation of extract components, followed by tandem mass spectrometric detection. The phenolic profile of 80% MeOH extracts of the stinging nettle (Urtica dioica L.) herb, root, stem, leaf and inflorescence was obtained by using this method. Twenty-one of the investigated compounds were present at levels above the reliable quantification limit, with 5-O-caffeoylquinic acid, rutin and isoquercitrin as the most abundant. The inflorescence extracts were by far the richest in phenolics, with the investigated compounds amounting 2.5-5.1% by weight. As opposed to this, the root extracts were poor in phenolics, with only several acids and derivatives being present in significant amounts. The results obtained by the developed method represent the most detailed U. dioica chemical profile so far. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Processing ‘Ataulfo’ Mango into Juice Preserves the Bioavailability and Antioxidant Capacity of Its Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Ana Elena Quirós-Sauceda

    2017-09-01

    Full Text Available The health-promoting effects of phenolic compounds depend on their bioaccessibility from the food matrix and their consequent bioavailability. We carried out a randomized crossover pilot clinical trial to evaluate the matrix effect (raw flesh and juice of ‘Ataulfo’ mango on the bioavailability of its phenolic compounds. Twelve healthy male subjects consumed a dose of mango flesh or juice. Blood was collected for six hours after consumption, and urine for 24 h. Plasma and urine phenolics were analyzed by electrochemical detection coupled to high performance liquid chromatography (HPLC-ECD. Five compounds were identified and quantified in plasma. Six phenolic compounds, plus a microbial metabolite (pyrogallol were quantified in urine, suggesting colonic metabolism. The maximum plasma concentration (Cmax occurred 2–4 h after consumption; excretion rates were maximum at 8–24 h. Mango flesh contributed to greater protocatechuic acid absorption (49%, mango juice contributed to higher chlorogenic acid absorption (62%. Our data suggests that the bioavailability and antioxidant capacity of mango phenolics is preserved, and may be increased when the flesh is processed into juice.

  16. Specificity versus redundancy in the RAP2.4 transcription factor family of Arabidopsis thaliana: transcriptional regulation of genes for chloroplast peroxidases.

    Science.gov (United States)

    Rudnik, Radoslaw; Bulcha, Jote Tafese; Reifschneider, Elena; Ellersiek, Ulrike; Baier, Margarete

    2017-08-23

    The Arabidopsis ERFIb / RAP2.4 transcription factor family consists of eight members with highly conserved DNA binding domains. Selected members have been characterized individually, but a systematic comparison is pending. The redox-sensitive transcription factor RAP2.4a mediates chloroplast-to-nucleus redox signaling and controls induction of the three most prominent chloroplast peroxidases, namely 2-Cys peroxiredoxin A (2CPA) and thylakoid- and stromal ascorbate peroxidase (tAPx and sAPx). To test the specificity and redundancy of RAP2.4 transcription factors in the regulation of genes for chloroplast peroxidases, we compared the DNA-binding sites of the transcription factors in tertiary structure models, analyzed transcription factor and target gene regulation by qRT-PCR in RAP2.4, 2-Cys peroxiredoxin and ascorbate peroxidase T-DNA insertion lines and RAP2.4 overexpressing lines of Arabidopsis thaliana and performed promoter binding studies. All RAP2.4 proteins bound the tAPx promoter, but only the four RAP2.4 proteins with identical DNA contact sites, namely RAP2.4a, RAP2.4b, RAP2.4d and RAP2.4h, interacted stably with the redox-sensitive part of the 2CPA promoter. Gene expression analysis in RAP2.4 knockout lines revealed that RAP2.4a is the only one supporting 2CPA and chloroplast APx expression. Rap2.4h binds to the same promoter region as Rap2.4a and antagonizes 2CPA expression. Like the other six RAP2.4 proteins, Rap2.4 h promotes APx mRNA accumulation. Chloroplast ROS signals induced RAP2.4b and RAP2.4d expression, but these two transcription factor genes are (in contrast to RAP2.4a) insensitive to low 2CP availability, and their expression decreased in APx knockout lines. RAP2.4e and RAP2.4f gradually responded to chloroplast APx availability and activated specifically APx expression. These transcription factors bound, like RAP2.4c and RAP2.4g, the tAPx promoter, but hardly the 2CPA promoter. The RAP2.4 transcription factors form an environmentally and

  17. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag{sup +}/TiO{sub 2}: Influence of electron donating and withdrawing substituents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jiadong [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, Yongbing, E-mail: ybxie@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Han, Qingzhen [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wang, Yujiao [Department of Chemical and Biomedical Engineering, University of Science and Technology Beijing (China); Nawaz, Faheem; Duan, Feng [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-03-05

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O{sub 2}{sup −}, rather than ·OH, {sup 1}O{sub 2} or h{sup +}. • ·O{sub 2}{sup −} preferred to nucleophilically attack EDG substituted phenols. • ·O{sub 2}{sup −} more likely electrophilically attacked EWG substituted phenols. • ·O{sub 2}{sup −} simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag{sup +}/TiO{sub 2} suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O{sub 2}{sup −}) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O{sub 2}{sup −} and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O{sub 2}{sup −} and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O{sub 2}{sup −}, while ·O{sub 2}{sup −} preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O{sub 2}{sup −} could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate

  18. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  19. Production of bifunctional proteins by Aspergillus awamori: Llama variable heavy chain antibody fragment (VHH) R9 coupled to Arthromyces ramosus peroxidase (ARP)

    NARCIS (Netherlands)

    Joosten, V.; Roelofs, M.S.; Dries, N. van den; Goosen, T.; Verrips, C.T.; Hondel, C.A.M.J.J. van den; Lokman, B.C.

    2005-01-01

    The Arthromyces ramosus peroxidase gene (arp) was genetically fused to either the 5′- or 3′-terminal ends of the gene encoding llama variable heavy chain antibody fragment VHH R9, resulting in the fusion expression cassettes ARP-R9 or R9-ARP. Aspergillus awamori transformants were obtained which

  20. Exploring the Oxidation of Lignin-Derived Phenols by a Library of Laccase Mutants

    Directory of Open Access Journals (Sweden)

    Isabel Pardo

    2015-09-01

    Full Text Available Saturation mutagenesis was performed over six residues delimiting the substrate binding pocket of a fungal laccase previously engineered in the lab. Mutant libraries were screened using sinapic acid as a model substrate, and those mutants presenting increased activity were selected for exploring the oxidation of lignin-derived phenols. The latter comprised a battery of phenolic compounds of interest due to their use as redox mediators or precursors of added-value products and their biological activity. The new laccase variants were investigated in a multi-screening assay and the structural determinants, at both the substrate and the protein level, for the oxidation of the different phenols are discussed. Laccase activity greatly varied only by changing one or two residues of the enzyme pocket. Our results suggest that once the redox potential threshold is surpassed, the contribution of the residues of the enzymatic pocket for substrate recognition and binding strongly influence the overall rate of the catalytic reaction.

  1. Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols.

    Science.gov (United States)

    Mante, Ofei D; Rodriguez, Jose A; Babu, Suresh P

    2013-11-01

    This study is focused on defunctionalizing monomeric phenolics from lignin into simple phenols for applications such as phenol/formaldehyde resins, epoxidized novolacs, adhesives and binders. Towards this goal, Titanium dioxide (TiO2) was used to selectively remove hydroxyl, methoxy, carbonyl and carboxyl functionalities from the monomeric phenolic compounds from lignin to produce mainly phenol, cresols and xylenols. The results showed that anatase TiO2 was more selective and active compared to rutile TiO2. Catechols were found to be the most reactive phenolics and 4-ethylguaiacol the least reactive with anatase TiO2. An overall conversion of about 87% of the phenolics was achieved at 550°C with a catalyst-to-feed ratio of 5 w/w. Over 97% conversion of phenolics is achievable at moderate temperatures (550°C or ≤ 600°C) and a moderate catalyst-to-feed ratio of 6.5:1. The reactivity of catechols on TiO2 suggests that titania is a promising catalyst in the removal of hydroxyl moiety. Published by Elsevier Ltd.

  2. Thyroid peroxidase autoantibodies in euthyroid subjects

    NARCIS (Netherlands)

    Prummel, Mark F.; Wiersinga, Wilmar M.

    2005-01-01

    Thyroid peroxidase (TPO) is a key enzyme in the formation of thyroid hormones and a major autoantigen in autoimmune thyroid diseases. Titers of TPO antibodies also correlate with the degree of lymphocytic infiltration in euthyroid subjects, and they are frequently present in euthyroid subjects

  3. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans

    OpenAIRE

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D.; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G.; Joyner, Michael J.; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBR...

  4. Phenolic Profiling for Traceability of Vanilla ×tahitensis

    Directory of Open Access Journals (Sweden)

    Matteo Busconi

    2017-10-01

    Full Text Available Vanilla is a flavoring recovered from the cured beans of the orchid genus Vanilla. Vanilla ×tahitensis is traditionally cultivated on the islands of French Polynesia, where vanilla vines were first introduced during the nineteenth century and, since the 1960s, have been introduced to other Pacific countries such as Papua New Guinea (PNG, cultivated and sold as “Tahitian vanilla,” although both sensory properties and aspect are different. From an economic point of view, it is important to ensure V. ×tahitensis traceability and to guarantee that the marketed product is part of the future protected designation of the origin “Tahitian vanilla” (PDO, currently in progress in French Polynesia. The application of metabolomics, allowing the detection and simultaneous analysis of hundreds or thousands of metabolites from different matrices, has recently gained high interest in food traceability. Here, metabolomics analysis of phenolic compounds profiles was successfully applied for the first time to V. ×tahitensis to deepen our knowledge of vanilla metabolome, focusing on phenolics compounds, for traceability purposes. Phenolics were screened through a quadrupole-time-of-flight mass spectrometer coupled to a UHPLC liquid chromatography system, and 260 different compounds were clearly evidenced and subjected to different statistical analysis in order to enable the discrimination of the samples based on their origin. Eighty-eight and twenty three compounds, with a prevalence of flavonoids, resulted to be highly discriminant through ANOVA and Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA respectively. Volcano plot analysis and pairwise comparisons were carried out to determine those compounds, mainly responsible for the differences among samples as a consequence of either origin or cultivar. The samples from PNG were clearly different from the Tahitian samples that were further divided in two different groups based on

  5. Phenolic Profiling for Traceability of Vanilla ×tahitensis.

    Science.gov (United States)

    Busconi, Matteo; Lucini, Luigi; Soffritti, Giovanna; Bernardi, Jamila; Bernardo, Letizia; Brunschwig, Christel; Lepers-Andrzejewski, Sandra; Raharivelomanana, Phila; Fernandez, Jose A

    2017-01-01

    Vanilla is a flavoring recovered from the cured beans of the orchid genus Vanilla . Vanilla × tahitensis is traditionally cultivated on the islands of French Polynesia, where vanilla vines were first introduced during the nineteenth century and, since the 1960s, have been introduced to other Pacific countries such as Papua New Guinea (PNG), cultivated and sold as "Tahitian vanilla," although both sensory properties and aspect are different. From an economic point of view, it is important to ensure V . × tahitensis traceability and to guarantee that the marketed product is part of the future protected designation of the origin "Tahitian vanilla" (PDO), currently in progress in French Polynesia. The application of metabolomics, allowing the detection and simultaneous analysis of hundreds or thousands of metabolites from different matrices, has recently gained high interest in food traceability. Here, metabolomics analysis of phenolic compounds profiles was successfully applied for the first time to V . × tahitensis to deepen our knowledge of vanilla metabolome, focusing on phenolics compounds, for traceability purposes. Phenolics were screened through a quadrupole-time-of-flight mass spectrometer coupled to a UHPLC liquid chromatography system, and 260 different compounds were clearly evidenced and subjected to different statistical analysis in order to enable the discrimination of the samples based on their origin. Eighty-eight and twenty three compounds, with a prevalence of flavonoids, resulted to be highly discriminant through ANOVA and Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) respectively. Volcano plot analysis and pairwise comparisons were carried out to determine those compounds, mainly responsible for the differences among samples as a consequence of either origin or cultivar. The samples from PNG were clearly different from the Tahitian samples that were further divided in two different groups based on the different

  6. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil

    Directory of Open Access Journals (Sweden)

    Lopez-Miranda Jose

    2010-04-01

    Full Text Available Abstract Background Previous studies have shown that acute intake of high-phenol virgin olive oil reduces pro-inflammatory, pro-oxidant and pro-thrombotic markers compared with low phenols virgin olive oil, but it still remains unclear whether effects attributed to its phenolic fraction are exerted at transcriptional level in vivo. To achieve this goal, we aimed at identifying expression changes in genes which could be mediated by virgin olive oil phenol compounds in the human. Results Postprandial gene expression microarray analysis was performed on peripheral blood mononuclear cells during postprandial period. Two virgin olive oil-based breakfasts with high (398 ppm and low (70 ppm content of phenolic compounds were administered to 20 patients suffering from metabolic syndrome following a double-blinded, randomized, crossover design. To eliminate the potential effect that might exist in their usual dietary habits, all subjects followed a similar low-fat, carbohydrate rich diet during the study period. Microarray analysis identified 98 differentially expressed genes (79 underexpressed and 19 overexpressed when comparing the intake of phenol-rich olive oil with low-phenol olive oil. Many of these genes seem linked to obesity, dyslipemia and type 2 diabetes mellitus. Among these, several genes seem involved in inflammatory processes mediated by transcription factor NF-κB, activator protein-1 transcription factor complex AP-1, cytokines, mitogen-activated protein kinases MAPKs or arachidonic acid pathways. Conclusion This study shows that intake of virgin olive oil based breakfast, which is rich in phenol compounds is able to repress in vivo expression of several pro-inflammatory genes, thereby switching activity of peripheral blood mononuclear cells to a less deleterious inflammatory profile. These results provide at least a partial molecular basis for reduced risk of cardiovascular disease observed in Mediterranean countries, where virgin olive

  7. Brown beer vinegar: A potentially functional product based on its phenolic profile and antioxidant activity

    Directory of Open Access Journals (Sweden)

    Mudura Elena

    2018-01-01

    Full Text Available The aim of the present study was to create a functional, enriched in polyphenols and free of alcohol product obtained by acetic fermentation of beer. Beer and vinegar were tested first for their phenolic content and antioxidant activity, by the Folin Ciocalteu and the free radical scavenging activity by the 1,1-diphenyl-2-picrylhydrazyl free-radical scavenging assay, respectively. Then, the separation and identification of the 30 phenolic compounds was realized by high-performance liquid chromatography coupled with positive electrospray ionisation and diode array detection (HPLC-DAD–ESI(+-MS analysis. Identification of the phenolic compounds data was realized based on the UV spectra of each compound. Based on a calibration curve (R2 = 0.9985, the amounts of the phenolic compounds, expressed as mg cathechin equivalents (CE/L, were calculated. The total phenolic content of the beer and vinegar samples determined using Folin–Ciocalteu reagent were of 428.9±1.58 and 661.5±7.69 mg GAE L-1, respectively, which contributed to the high antioxidant activity in the vinegar sample of 82.18 %. Statistically significant differences were observed after acetic fermentation between each parameter (p < 0.05. Brown beer vinegar represents a rich source of polyphenols and phenolic derivatives, compared to beer. By its increased phenolic content and antioxidant activity, brown beer vinegar could be considered another source of valuable compounds to beer, which could also be of interest in special diets.

  8. Musa paradisiaca stem juice as a source of peroxidase and ligninperoxidase.

    Science.gov (United States)

    Vernwal, S K; Yadav, R S; Yadav, K D

    2000-10-01

    Musa paradisiaca stem juice has been shown to contain peroxidase activity of the order of 0.1 enzyme unit/ml. The Km values of this peroxidase for the substrates guaiacol and hydrogen peroxide are 2.4 and 0.28 mM respectively. The pH and temperature optima are 4.5 and 62.5 degrees C respectively. Like other peroxidases, it follows double displacement type mechanism. At low pH, Musa paradisiaca stem juice exhibits ligninperoxidase type activity. The pH optimum for ligninperoxidase type activity is 2.0 and the temperature optimum is 24 degrees C. The Km values for veratryl alcohol and n-propanol are 66 and 78 microM respectively.

  9. Methodologies for the Extraction of Phenolic Compounds from Environmental Samples: New Approaches

    Directory of Open Access Journals (Sweden)

    Cristina Mahugo Santana

    2009-01-01

    Full Text Available Phenolic derivatives are among the most important contaminants present in the environment. These compounds are used in several industrial processes to manufacture chemicals such as pesticides, explosives, drugs and dyes. They also are used in the bleaching process of paper manufacturing. Apart from these sources, phenolic compounds have substantial applications in agriculture as herbicides, insecticides and fungicides. However, phenolic compounds are not only generated by human activity, but they are also formed naturally, e.g., during the decomposition of leaves or wood. As a result of these applications, they are found in soils and sediments and this often leads to wastewater and ground water contamination. Owing to their high toxicity and persistence in the environment, both, the US Environmental Protection Agency (EPA and the European Union have included some of them in their lists of priority pollutants. Current standard methods of phenolic compounds analysis in water samples are based on liquid–liquid extraction (LLE while Soxhlet extraction is the most used technique for isolating phenols from solid matrices. However, these techniques require extensive cleanup procedures that are time-intensive and involve expensive and hazardous organic solvents, which are undesirable for health and disposal reasons. In the last years, the use of news methodologies such as solid-phase extraction (SPE and solid-phase microextraction (SPME have increased for the extraction of phenolic compounds from liquid samples. In the case of solid samples, microwave assisted extraction (MAE is demonstrated to be an efficient technique for the extraction of these compounds. In this work we review the developed methods in the extraction and determination of phenolic derivatives in different types of environmental matrices such as water, sediments and soils. Moreover, we present the new approach in the use of micellar media coupled with SPME process for the

  10. Frequency of anti thyroid peroxidase antibody in patients of vitiligo

    International Nuclear Information System (INIS)

    Zhokhar, A.; Shaikh, Z.I.

    2013-01-01

    Objective: The objective of this study was to compare the frequency of anti thyroid peroxidase antibody in patients suffering from vitiligo with healthy control group. Type of Study: Case control study. Settings: Dermatology Department, Military Hospital, Rawalpindi, from 20th March 2010 to 20th July 2011. Material and Methods: Fifty clinically diagnosed patients of vitiligo, age = 18 yrs and both genders with no history of thyroid disease, past or current use of drugs for thyroid disorder or thyroid surgery were included as cases (Group A). Fifty healthy individuals with no evidence of vitiligo or thyroid disorder on history and physical examination and with no family history of vitiligo, matched for age and gender with cases, were included as control (Group B). Serum anti thyroid peroxidase (anti TPO) antibodies were measured using enzyme linked immunosorbent assay (ELISA) in both cases and control. Results: Eight (16%) patients in Group A were anti-thyroid peroxidase antibody positive and forty two (84%) patients were negative while one (2%) patient was anti-thyroid peroxidase antibody positive in Group B and forty nine (98%) patients were negative (p = 0.001). Conclusion: Anti TPO antibody is significantly more common in patients of vitiligo as compared to general population. (author)

  11. Efficient Enzymatic Synthesis of Phenolic Ester by Increasing Solubility of Phenolic Acids in Ionic Liquids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    Compounds from phenolic acid family are well known natural antioxidants, but the application of phenolic acids as antioxidants in industry is limited due to the relatively low solubility in oil-based media. The properties of phenolic acids can be modified through enzymatic lipophilization...... and modified phenolic acids will have amphiphilic property, therefore they can be localized at oil-water or water-oil phase where oxidation is considered to occur frequently. It had been reported that immobilized Candida Antarctica lipase B was the most effective biocatalyst for the various esterification...... reactions, and it had been widely used for esterification of various phenolic acids with fatty alcohol or triglycerides. However, the conversion of phenolic acids is low due to low solubility in hydrophobic solvents and hindrance effect of unsaturated side chain towards the enzyme. Our studies show...

  12. Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles

    Science.gov (United States)

    Wu, Haohao; Liu, Yi; Li, Meng; Chong, Yu; Zeng, Mingyong; Lo, Y. Martin; Yin, Jun-Jie

    2015-02-01

    Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates.Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the

  13. Platelet crossmatch tests using radiolabelled staphylococcal protein A or peroxidase anti-peroxidase in alloimmunised patients

    International Nuclear Information System (INIS)

    Yam, P.; Petz, L.D.; Scott, E.P.; Santos, S.

    1984-01-01

    Refractoriness to random-donor platelets as a result of alloimmunization remains a major problem in long-term platelet transfusion therapy despite the use of HLA-matched platelets. A study has been made of two methods for detection of platelet associated IgG as platelet crossmatch tests for the selection of platelet donors. These methods use radiolabelled staphylococcal protein A( 125 I-SPA) and peroxidase anti-peroxidase (PAP), respectively. One hundred and ten crossmatch tests using 125 I-SPA were performed retrospectively in 18 alloimmunized patients. The results indicated that the predictive value of a positive or a negative test was 87%; the sensitivity was 73% and the specificity was 95%. Results with the PAP test were similar. The HLA types were known for 48 donor-recipient pairs. With few exceptions, there was a correlation between the results of the platelet crossmatch tests and the effectiveness of platelet transfusion regardless of the degree of HLA match. These results indicate that platelet crossmatch tests may be valuable even when closely HLA matched donors are not available. A large-scale prospective study is warranted, particularly in highly immunized patients. (author)

  14. Biosynthesis of nanoparticles of metals and metalloids by basidiomycetes. Preparation of gold nanoparticles by using purified fungal phenol oxidases.

    Science.gov (United States)

    Vetchinkina, Elena P; Loshchinina, Ekaterina A; Vodolazov, Ilya R; Kursky, Viktor F; Dykman, Lev A; Nikitina, Valentina E

    2017-02-01

    The work shows the ability of cultured Basidiomycetes of different taxonomic groups-Lentinus edodes, Pleurotus ostreatus, Ganoderma lucidum, and Grifola frondosa-to recover gold, silver, selenium, and silicon, to elemental state with nanoparticles formation. It examines the effect of these metal and metalloid compounds on the parameters of growth and accumulation of biomass; the optimal cultivation conditions and concentrations of the studied ion-containing compounds for recovery of nanoparticles have been identified. Using the techniques of transmission electron microscopy, dynamic light scattering, X-ray fluorescence and X-ray phase analysis, the degrees of oxidation of the bioreduced elements, the ζ-potential of colloidal solutions uniformity, size, shape, and location of the nanoparticles in the culture fluid, as well as on the surface and the inside of filamentous hyphae have been determined. The study has found the part played by homogeneous chromatographically pure fungal phenol-oxidizing enzymes (laccases, tyrosinases, and Mn-peroxidases) in the recovery mechanism with formation of electrostatically stabilized colloidal solutions. A hypothetical mechanism of gold(III) reduction from HAuCl 4 to gold(0) by phenol oxidases with gold nanoparticles formation of different shapes and sizes has been introduced.

  15. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds.

    Science.gov (United States)

    Slatnar, Ana; Klancar, Urska; Stampar, Franci; Veberic, Robert

    2011-11-09

    Fresh figs were subjected to two different drying processes: sun-drying and oven-drying. To assess their effect on the nutritional and health-related properties of figs, sugars, organic acids, single phenolics, total phenolics, and antioxidant activity were determined before and after processing. Samples were analyzed three times in a year, and phenolic compounds were determined using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). In figs, monomer sugars predominate, which is important nutritional information, and the content of sugars as well as organic acids in fresh figs was lower than in dried fruits. However, the best sugar/organic acid ratio was measured after the sun-drying process. Analysis of individual phenolic compounds revealed a higher content of all phenolic groups determined after the oven-drying process, with the exception of cyanidin-3-O-rutinoside. Similarly, higher total phenolic content and antioxidant activity were detected after the drying process. With these results it can be concluded that the differences in analyzed compounds in fresh and dried figs are significant. The differences between the sun-dried and oven-dried fruits were determined in organic acids, sugars, chlorogenic acid, catechin, epicatechin, kaempferol-3-O-glucoside, luteolin-8-C-glucoside, and total phenolic contents. The results indicate that properly dried figs can be used as a good source of phenolic compounds.

  16. A putative peroxidase cDNA from turnip and analysis of the encoded protein sequence.

    Science.gov (United States)

    Romero-Gómez, S; Duarte-Vázquez, M A; García-Almendárez, B E; Mayorga-Martínez, L; Cervantes-Avilés, O; Regalado, C

    2008-12-01

    A putative peroxidase cDNA was isolated from turnip roots (Brassica napus L. var. purple top white globe) by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Total RNA extracted from mature turnip roots was used as a template for RT-PCR, using a degenerated primer designed to amplify the highly conserved distal motif of plant peroxidases. The resulting partial sequence was used to design the rest of the specific primers for 5' and 3' RACE. Two cDNA fragments were purified, sequenced, and aligned with the partial sequence from RT-PCR, and a complete overlapping sequence was obtained and labeled as BbPA (Genbank Accession No. AY423440, named as podC). The full length cDNA is 1167bp long and contains a 1077bp open reading frame (ORF) encoding a 358 deduced amino acid peroxidase polypeptide. The putative peroxidase (BnPA) showed a calculated Mr of 34kDa, and isoelectric point (pI) of 4.5, with no significant identity with other reported turnip peroxidases. Sequence alignment showed that only three peroxidases have a significant identity with BnPA namely AtP29a (84%), and AtPA2 (81%) from Arabidopsis thaliana, and HRPA2 (82%) from horseradish (Armoracia rusticana). Work is in progress to clone this gene into an adequate host to study the specific role and possible biotechnological applications of this alternative peroxidase source.

  17. CDNA cloning, characterization and expression of an endosperm-specific barley peroxidase

    DEFF Research Database (Denmark)

    Rasmussen, Søren Kjærsgård; Welinder, K.G.; Hejgaard, J.

    1991-01-01

    A barley peroxidase (BP 1) of pI ca. 8.5 and M(r) 37000 has been purified from mature barley grains. Using antibodies towards peroxidase BP 1, a cDNA clone (pcR7) was isolated from cDNA expression library. The nucleotide sequence of pcR7 gave a derived amino acid sequence identical to the 158 C...

  18. Phenol oxidation with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ramiez Cortina, R.C.; Hernadez Perez, I. [Univ. Autonoma Metropolitana - Azcapotzalco, Div. de CBI, Dept. de Energia, Azcapotzalco (Mexico); Ortiz Lozoya, C.E. [Univ. Autonoma Metropolitana - Azcapotzalco, Div. de CBI, Dept. de Energia, Azcapotzalco (Mexico)]|[Inst. Mexicano del Petroleo (Mexico); Alonso Gutierrez, M.S. [Inst. National Polytechnique, ENSCT, Lab. of Chimie Agro-Industrielle, Toulouse (France)

    2003-07-01

    In this work the process application of advanced oxidation is investigated with hydrogen peroxide, for the phenol destruction. The experiments were carried out in a glass reactor of 750 mL. Three phenol concentrations were studied (2000, 1000 and 500 ppm) being oxidized with H{sub 2}O{sub 2} (1, 2 and 3 M). The tests of oxidation had a reaction time of 48 h at ambient temperature and pressure. The phenol degradation was determined as COD at different reaction times and intermediate oxidation products were analyzed by chromatography. The results of this study show that it is possible to degrade phenol (1000 ppm) until 90% with H{sub 2}O{sub 2} 2M. Being achieved the best efficiency with a good molar relationship of H{sub 2}O{sub 2}/phenol. Intends a reaction outline in the degradation of the phenol. (orig.)

  19. Impact of processing on the bioavailability and vascular effects of blueberry (poly)phenols.

    Science.gov (United States)

    Rodriguez-Mateos, Ana; Del Pino-García, Raquel; George, Trevor W; Vidal-Diez, Alberto; Heiss, Christian; Spencer, Jeremy P E

    2014-10-01

    Blueberries are a rich source of flavonoids and phenolic acids. Currently, little information is available regarding the impact of processing on the bioavailability and the bioactivity of blueberry (poly)phenols. In a randomized, controlled crossover trial, ten healthy volunteers consumed (a) blueberry-containing baked products, (b) an unprocessed blueberry drink containing the same amount of freeze-dried blueberry powder as used in the baked products, and (c) matched control baked products. Endothelial function was measured as flow-mediated dilation (FMD) and plasma samples taken at baseline and at 1, 2, 4, and 6 h postconsumption. Although processing did not significantly change the total (poly)phenolic amount, the processed products contained significantly less anthocyanins (-42%), more chlorogenic acid (23%), no flavanol nonamers or decamers, and significantly more flavanol dimers and trimers (36% and 28%, respectively). FMD increased after 1, 2, and 6 h consumption of the baked products to a similar degree as the unprocessed blueberries, despite significant differences in the levels of individual plasma metabolites. No changes were observed after the consumption of the control product. Careful processing can preserve important biological activities of blueberries despite changing the blueberry (poly)phenol composition and plasma metabolite profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Saleh Abu-Lafi

    2017-01-01

    Full Text Available The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW. The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.

  1. Obtenção de nova fonte de peroxidase de folha de Copaifera langsdorffii Desf. com alta atividade Obtention of a new source of peroxidase from Copaifera langsdorffii leaf, Desf. with high activity

    Directory of Open Access Journals (Sweden)

    Hermelinda Penha Freire Maciel

    2006-12-01

    Full Text Available Objetivou-se neste trabalho extrair peroxidase de folha de Copaifera langsdorffii (COP, medir sua atividade, compará-la com a peroxidase de raiz forte (Horseradish peroxidase - HRP e determinar o pH ótimo, a melhor solução extratora e o efeito de aditivos sobre a atividade da COP. Os resultados mostraram que a COP atingiu 81,6% da atividade de HRP e a faixa de pH ótimo foi de 5,5 a 6,0. A melhor solução extratora da enzima foi o tampão fosfato de sódio 50 mM, pH 6,0 e o melhor aditivo foi o PVPP. Concluindo, a COP apresenta atividade mais alta que outras peroxidases de diferentes fontes citadas na literatura.The purpose of this work was to extract peroxidase from Copaifera langsdorffii leaves (COP, measure its activity, compare it to that of Horseradish peroxidase and determine the optimum pH, the best extraction solution and the effect of additives on the COP activity. The results showed that COP has 81.6% of the activity of HRP and an optimum pH range between 5.5-6.0. The best extraction solution was a sodium phosphate buffer 50 mM, pH 6.0 and the best additive was PVPP. In conclusion, COP presents higher activity than peroxidases from different sources reported in the literature.

  2. Crystallization and preliminary X-ray analysis of a bifunctional catalase-phenol oxidase from Scytalidium thermophilum

    International Nuclear Information System (INIS)

    Sutay Kocabas, Didem; Pearson, Arwen R.; Phillips, Simon E. V.; Bakir, Ufuk; Ogel, Zumrut B.; McPherson, Michael J.; Trinh, Chi H.

    2009-01-01

    The bifunctional enzyme catalase-phenol oxidase from S. thermophilum was crystallized by the hanging-drop vapour-diffusion method in space group P2 1 and diffraction data were collected to 2.8 Å resolution. Catalase-phenol oxidase from Scytalidium thermophilum is a bifunctional enzyme: its major activity is the catalase-mediated decomposition of hydrogen peroxide, but it also catalyzes phenol oxidation. To understand the structural basis of this dual functionality, the enzyme, which has been shown to be a tetramer in solution, has been purified by anion-exchange and gel-filtration chromatography and has been crystallized using the hanging-drop vapour-diffusion technique. Streak-seeding was used to obtain larger crystals suitable for X-ray analysis. Diffraction data were collected to 2.8 Å resolution at the Daresbury Synchrotron Radiation Source. The crystals belonged to space group P2 1 and contained one tetramer per asymmetric unit

  3. Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes.

    Science.gov (United States)

    Small, A L; McFall-Ngai, M J

    1999-03-15

    An enzyme with similarities to myeloperoxidase, the antimicrobial halide peroxidase in mammalian neutrophils, occurs abundantly in the light organ tissue of Euprymna scolopes, a squid that maintains a beneficial association with the luminous bacterium Vibrio fischeri. Using three independent assays typically applied to the analysis of halide peroxidase enzymes, we directly compared the activity of the squid enzyme with that of human myeloperoxidase. One of these methods, the diethanolamine assay, confirmed that the squid peroxidase requires halide ions for its activity. The identification of a halide peroxidase in a cooperative bacterial association suggested that this type of enzyme can function not only to control pathogens, but also to modulate the interactions of host animals with their beneficial partners. To determine whether the squid peroxidase functions under both circumstances, we examined its distribution in a variety of host tissues, including those that typically interact with bacteria and those that do not. Tissues interacting with bacteria included those that have specific cooperative associations with bacteria (i.e., the light organ and accessory nidamental gland) and those that have transient nonspecific interactions with bacteria (i.e., the gills, which clear the cephalopod circulatory system of invading microorganisms). These bacteria-associated tissues were compared with the eye, digestive gland, white body, and ink-producing tissues, which do not typically interact directly with bacteria. Peroxidase enzyme assays, immunocytochemical localization, and DNA-RNA hybridizations showed that the halide-dependent peroxidase is consistently expressed in high concentration in tissues that interact bacteria. Elevated levels of the peroxidase were also found in the ink-producing tissues, which are known to have enzymatic pathways associated with antimicrobial activity. Taken together, these data suggest that the host uses a common biochemical response to

  4. Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation

    CERN Document Server

    Fortin, Jean-Francois

    2013-01-01

    An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry-breaking arises both from a hidden sector and dynamically.

  5. Construction of a horseradish peroxidase resistant toward hydrogen peroxide by saturation mutagenesis.

    Science.gov (United States)

    Asad, Sedigheh; Dastgheib, Seyed Mohammad Mehdi; Khajeh, Khosro

    2016-11-01

    Horseradish peroxidase (HRP) with a variety of potential biotechnological applications is still isolated from the horseradish root as a mixture of different isoenzymes with different biochemical properties. There is an increasing demand for preparations of high amounts of pure enzyme but its recombinant production is limited because of the lack of glycosylation in Escherichia coli and different glycosylation patterns in yeasts which affects its stability parameters. The goal of this study was to increase the stability of non-glycosylated enzyme, which is produced in E. coli, toward hydrogen peroxide via mutagenesis. Asparagine 268, one of the N-glycosylation sites of the enzyme, has been mutated via saturation mutagenesis using the megaprimer method. Modification and miniaturization of previously described protocols enabled screening of a library propagated in E. coli XJb (DE3). The library of mutants was screened for stability toward hydrogen peroxide with azinobis (ethylbenzthiazoline sulfonate) as a reducing substrate. Asn268Gly mutant, the top variant from the screening, exhibited 18-fold increased stability toward hydrogen peroxide and twice improved thermal stability compared with the recombinant HRP. Moreover, the substitution led to 2.5-fold improvement in the catalytic efficiency with phenol/4-aminoantipyrine. Constructed mutant represents a stable biocatalyst, which may find use in medical diagnostics, biosensing, and bioprocesses. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  6. Kinetic mechanism and nucleotide specificity of NADH peroxidase

    International Nuclear Information System (INIS)

    Stoll, V.S.; Blanchard, J.S.

    1988-01-01

    NADH peroxidase is a flavoprotein isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide-dependent reduction of hydrogen peroxide to water. Initial velocity, product, and dead-end inhibition studies have been performed at pH 7.5 and support a ping-pong kinetic mechanism. In the absence of hydrogen peroxide, both transhydrogenation between NADH and thioNAD, and isotope exchange between [ 14 C]NADH and NAD, have been demonstrated, although in both these experiments, the maximal velocity of nucleotide exchange was less than 1.5% the maximal velocity of the peroxidatic reaction. We propose that NADH binds tightly to both oxidized and two-electron reduced enzyme. NADH oxidation proceeds stereospecifically with the transfer of the 4S hydrogen to enzyme, and then, via exchange, to water. No primary tritium kinetic isotope effect was observed, and no statistically significant primary deuterium kinetic isotope effects on V/K were determined, although primary deuterium kinetic isotope effects on V were observed in the presence and absence of sodium acetate. NADH peroxidase thus shares with other flavoprotein reductases striking kinetic, spectroscopic, and stereochemical similarities. On this basis, we propose a chemical mechanism for the peroxide cleaving reaction catalyzed by NADH peroxidase which involves the obligate formation of a flavinperoxide, and peroxo bond cleavage by nucleophilic attack by enzymatic dithiols

  7. Production of bifunctional proteins by Aspergillus awamori: Llama variable heavy chain antibody fragment (V-HH) R9 coupled to Arthromyces ramosus peroxidase (ARP)

    NARCIS (Netherlands)

    Joosten, V.; Roelofs, M.S.; Dries, van den N.; Goosen, T.; Verrips, C.T.; Hondel, van den C.A.M.J.J.; Lokman, B.C.

    2005-01-01

    The Arthromyces ramosus peroxidase gene (arp) was genetically fused to either the 5'- or 3'-terminal ends of the gene encoding llama variable heavy chain antibody fragment V-HH R9, resulting in the fusion expression cassettes ARP-R9 or R9-ARP. Aspergillus awamori transformants were obtained which

  8. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.

    Science.gov (United States)

    Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M

    1991-02-15

    The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.

  9. Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing.

    Science.gov (United States)

    Wang, Quanbo; Xu, Nan; Gui, Zhen; Lei, Jianping; Ju, Huangxian; Yan, Feng

    2015-10-07

    To efficiently regulate the catalytic activity of the peroxidase mimic hemin, this work designs a double-stranded DNA probe containing an intermolecular dimer of hemin, whose peroxidase activity can be activated by a DNA strand displacement reaction. The double-stranded probe is prepared by annealing two strands of hemin labelled DNA oligonucleotides. Using the fluorescent oxidation product of tyramine by H2O2 as a tracing molecule, the low peroxidase activity of the hemin dimer ensures a low fluorescence background. The strand displacement reaction of the target DNA dissociates the hemin dimer and thus significantly increases the catalytic activity of hemin to produce a large amount of dityramine for fluorescence signal readout. Based on the strand displacement regulated peroxidase activity, a simple and sensitive homogeneous fluorescent DNA sensing method is proposed. The detection can conveniently be carried out in a 96-well plate within 20 min with a detection limit of 0.18 nM. This method shows high specificity, which can effectively distinguish single-base mismatched DNA from perfectly matched target DNA. The DNA strand displacement regulated catalytic activity of hemin has promising application in the determination of various DNA analytes.

  10. Relationship between red wine grades and phenolics. 1. Tannin and total phenolics concentrations.

    Science.gov (United States)

    Mercurio, Meagan D; Dambergs, Robert G; Cozzolino, Daniel; Herderich, Markus J; Smith, Paul A

    2010-12-08

    Measuring chemical composition is a common approach to support decisions about allocating foods and beverages to grades related to market value. Red wine is a particularly complex beverage, and multiple compositional attributes are needed to account for its sensory properties, including measurement of key phenolic components such as anthocyanins, total phenolics, and tannin, which are related to color and astringency. Color has been shown to relate positively to red wine grade; however, little research has been presented that explores the relationship between astringency-related components such as total phenolic or tannin concentration and wine grade. The aim of this research has been to investigate the relationship between the wine grade allocations of commercial wineries and total phenolic and tannin concentrations, respectively, in Australian Shiraz and Cabernet Sauvignon wines. Total phenolic and tannin concentrations were determined using the methyl cellulose precipitable (MCP) tannin assay and then compared to wine grade allocations made by winemaker panels during the companies' postvintage allocation process. Data were collected from wines produced by one Australian wine company over the 2005, 2006, and 2007 vintages and by a further two companies in 2007 (total wines = 1643). Statistical analysis revealed a positive trend toward higher wine grade allocation and wines that had higher concentrations of both total phenolics and tannin, respectively. This research demonstrates that for these companies, in general, Cabernet Sauvignon and Shiraz wines allocated to higher market value grades have higher total phenolics and higher tannin concentrations and suggests that these compositional parameters should be considered in the development of future multiparameter decision support systems for relevant commercial red wine grading processes. In addition, both tannin and total phenolics would ideally be included because although, in general, a positive relationship

  11. Calorimetric studies of the thermal denaturation of cytochrome c peroxidase

    International Nuclear Information System (INIS)

    Kresheck, G.C.; Erman, J.E.

    1988-01-01

    Two endotherms are observed by differential scanning calorimetry during the thermal denaturation of cytochrome c peroxidase at pH 7.0. The transition midpoint temperatures (t/sub m/) were 43.9 +- 1.4 and 63.3 +- 1.6 0 C, independent of concentration. The two endotherms were observed at all pH values between 4 and 8, with the transition temperatures varying with pH. Precipitation was observed between pH 4 and 6, and only qualitative data are presented for this region. The thermal unfolding of cytochrome c peroxidase was sensitive to the presence and ligation state of the heme. Only a single endotherm was observed for the unfolding of the apoprotein, and this transition was similar to the high-temperature transition in the holoenzyme. Addition of KCN to the holoenzyme increases the midpoint of the high-temperature transition whereas the low-temperature transition was increased upon addition of KF. Binding of the natural substrate ferricytochrome c to the enzyme increases the low-temperature transition by 4.8 +- 1.3 0 C but has no effect on the high-temperature transition at pH 7. The presence of cytochrome c peroxidase decreases the stability of cytochrome c, and both proteins appear to unfold simultaneously. The results are discussed in terms of the two domains evident in the X-ray crystallographic structure of cytochrome c peroxidase

  12. Structure-activity relationships and molecular docking of thirteen synthesized flavonoids as horseradish peroxidase inhibitors.

    Science.gov (United States)

    Mahfoudi, Reguia; Djeridane, Amar; Benarous, Khedidja; Gaydou, Emile M; Yousfi, Mohamed

    2017-10-01

    For the first time, the structure-activity relationships of thirteen synthesized flavonoids have been investigated by evaluating their ability to modulate horseradish peroxidase (HRP) catalytic activity. Indeed, a modified spectrophotometrically method was carried out and optimized using 4-methylcatechol (4-MC) as peroxidase co-substrate. The results show that these flavonoids exhibit a great capacity to inhibit peroxidase with Ki values ranged from 0.14±0.01 to 65±0.04mM. Molecular docking has been achieved using Auto Dock Vina program to discuss the nature of interactions and the mechanism of inhibition. According to the docking results, all the flavonoids have shown great binding affinity to peroxidase. These molecular modeling studies suggested that pyran-4-one cycle acts as an inhibition key for peroxidase. Therefore, potent peroxidase inhibitors are flavonoids with these structural requirements: the presence of the hydroxyl (OH) group in 7, 5 and 4' positions and the absence of the methoxy (O-CH 3 ) group. Apigenin contributed better in HRP inhibitory activity. The present study has shown that the studied flavonoids could be promising HRP inhibitors, which can help in developing new molecules to control thyroid diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The reactivity of natural phenols

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2009-11-30

    This review surveys physicochemical data of natural phenols published in recent years. The structures of some compounds of this class are given. A complete set of the dissociation energies of the O-H bonds for 71 natural phenols is presented. Kinetic characteristics of the reactions of peroxyl, alkyl and thiyl radicals with natural phenols, exchange reactions of phenoxyl radicals with phenols and reactions of phenoxyl radicals with lipids, hydroperoxides, cysteine and ascorbic acid are compiled and described systematically. The reactivity of phenols in radical reactions and the factors that determine the reactivity (the enthalpy of reaction, triplet repulsion, the electronegativities of atoms at the reaction centre, the presence of pi-electrons adjacent to the reaction centre, the radii of atoms at the reaction centre, steric hindrance, the force constants of the reacting bonds) are discussed. An important role of hydrogen bonding between surrounding molecules and the OH groups of natural phenols in decreasing their reactivities is noted.

  14. Bromination of Phenol

    Science.gov (United States)

    Talbot, Christopher

    2013-01-01

    This "Science note" examines the bromination of phenol, a reaction that is commonly taught at A-level and IB (International Baccalaureate) as an example of electrophilic substitution. Phenol undergoes bromination with bromine or bromine water at room temperature. A white precipitate of 2,4,6-tribromophenol is rapidly formed. This…

  15. UVA, UVB and UVC Light Enhances the Biosynthesis of Phenolic Antioxidants in Fresh-Cut Carrot through a Synergistic Effect with Wounding

    Directory of Open Access Journals (Sweden)

    Bernadeth B. Surjadinata

    2017-04-01

    Full Text Available Previously, we found that phenolic content and antioxidant capacity (AOX in carrots increased with wounding intensity. It was also reported that UV radiation may trigger the phenylpropanoid metabolism in plant tissues. Here, we determined the combined effect of wounding intensity and UV radiation on phenolic compounds, AOX, and the phenylalanine ammonia-lyase (PAL activity of carrots. Accordingly, phenolic content, AOX, and PAL activity increased in cut carrots with the duration of UVC radiation, whereas whole carrots showed no increase. Carrot pies showed a higher increase compared to slices and shreds. Phenolics, AOX, and PAL activity also increased in cut carrots exposed to UVA or UVB. The major phenolics were chlorogenic acid and its isomers, ferulic acid, and isocoumarin. The type of UV radiation affected phenolic profiles. Chlorogenic acid was induced by all UV radiations but mostly by UVB and UVC, ferulic acid was induced by all UV lights to comparable levels, while isocoumarin and 4,5-diCQA was induced mainly by UVB and UVC compared to UVA. In general, total phenolics correlated linearly with AOX for all treatments. A reactive oxygen species (ROS mediated hypothetical mechanism explaining the synergistic effect of wounding and different UV radiation stresses on phenolics accumulation in plants is herein proposed.

  16. Peroxidase activity in Raphanus sativus and its relationship with soil heavy metals

    International Nuclear Information System (INIS)

    Alipour, H.; Zare Myvan, H.; Sharifi, M.

    2009-01-01

    Today heavy metals are important environmental pollutants which generated from human activities and are one of the most important environmental stresses that cause molecular damages to plants through reactive oxygen species formation such as H2O2. Heavy metals are absorbed and accumulated by plants thus are absorbed by human bodies through the food chain. Raphanus sativus is a herbaceous plant within the Brassicaceae family that has different varieties and is used as a food plant in different parts of Iran. Peroxidase is one of the most important enzyme in oxidoreductase super family that can metabolize H2O2. In this research we studied some growth parameters, peroxidase activity and their relationships with heavy metal content and other soil factors in three different populations of radish collected from Sari, Semnan and south of Tehran. After harvesting the plants shoots and roots Peroxidase activity was assayed spectrophotometrically at 470 nm. Our results showed total heavy metal content of shomal 3 station soil and radish plants was higher than other stations, so plants collected from this station had lowest root and shoot lengths, fresh weights, dry weights, protein content and leaf collrophyll content. The peroxidase activity in both leaves and roots of these plants was higher than plants of other stations Therefore our results showed that with increasing heavy metal concentrations in soils peroxidase activity increased.

  17. Techniques for Analysis of Plant Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Thomas H. Roberts

    2013-02-01

    Full Text Available Phenolic compounds are well-known phytochemicals found in all plants. They consist of simple phenols, benzoic and cinnamic acid, coumarins, tannins, lignins, lignans and flavonoids. Substantial developments in research focused on the extraction, identification and quantification of phenolic compounds as medicinal and/or dietary molecules have occurred over the last 25 years. Organic solvent extraction is the main method used to extract phenolics. Chemical procedures are used to detect the presence of total phenolics, while spectrophotometric and chromatographic techniques are utilized to identify and quantify individual phenolic compounds. This review addresses the application of different methodologies utilized in the analysis of phenolic compounds in plant-based products, including recent technical developments in the quantification of phenolics.

  18. Coagulation-Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater.

    Science.gov (United States)

    Perdigón-Melón, J A; Carbajo, J B; Petre, A L; Rosal, R; García-Calvo, E

    2010-09-15

    A coupled coagulation-Fenton process was applied for the treatment of cosmetic industry effluents. In a first step, FeSO(4) was used as coagulant and the non-precipitated Fe(2+) remaining in dissolution was used as catalyst in the further Fenton process. In the coagulation process a huge decrease in total organic carbon (TOC) was achieved, but the high concentration of phenol derivatives was not diminished. The decrease in TOC in the coagulation step significantly reduces the amount of H(2)O(2) required in the Fenton process for phenol depletion. The coupled process, using a H(2)O(2) dose of only 2 g l(-1), reduced TOC and total phenol to values lower than 40 and 0.10 mg l(-1), respectively. The short reaction period (less than 15 min) in TOC and phenol degradation bodes well for improving treatment in a continuous regime. The combination of both processes significantly reduced the ecotoxicity of raw effluent and markedly increased its biodegradability, thus allowing easier treatment by the conventional biological units in conventional sewage treatment plants (STPs). Copyright 2010 Elsevier B.V. All rights reserved.

  19. Conversion of hydroxycinnamic acids into volatile phenols in a synthetic medium and in red wine by Dekkera bruxellensis

    Directory of Open Access Journals (Sweden)

    Maria João Cabrita

    2012-03-01

    Full Text Available The conversion of p-coumaric acid, ferulic acid, and caffeic acid into 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in a synthetic medium and in a red wine. Liquid chromatography (HPLC-DAD was used to quantify the phenolic acids, and gas chromatography (GC coupled to a FID detector was used to quantify volatile phenols using a novel analytical methodology that does not require sample derivatization. Identification was achieved by gas chromatography-mass detection (GC-MS. The results show that phenolic acids concentration decreases while volatile phenols concentration increases. The proportion of caffeic acid taken up by Dekkera bruxellensis is lower than that for p-coumaric or ferulic acid; therefore less 4-ethylcatechol is formed. More important, 4-ethylcathecol synthesis by Dekkera bruxellensis in wine has never been demonstrated so far. These results contribute decisively to a better understanding of the origin of the volatile phenols in wines. The accumulation of these compounds in wine is nowadays regarded as one of the key factors of quality control.

  20. Phenolics and Plant Allelopathy

    Directory of Open Access Journals (Sweden)

    De-An Jiang

    2010-12-01

    Full Text Available Phenolic compounds arise from the shikimic and acetic acid (polyketide metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.

  1. Phenolic Profiles and Contribution of Individual Compounds to Antioxidant Activity of Apple Powders.

    Science.gov (United States)

    Raudone, Lina; Raudonis, Raimondas; Liaudanskas, Mindaugas; Viskelis, Jonas; Pukalskas, Audrius; Janulis, Valdimaras

    2016-05-01

    Apples (Malus domestica L.) are the most common source of phenolic compounds in northern European diet. Besides pectins, dietary fibers, vitamins, and oligosaccharides they contain phenolic compounds of different classes. Apple powders are convenient functional forms retaining significant amounts of phenolic antioxidants. In this study reducing and radical scavenging profiles of freeze-dried powders of "Aldas,ˮ "Auksis,ˮ "Connel Red,ˮ "Ligol,ˮ "Lodel,ˮ and "Rajkaˮ were determined and phenolic constituents were identified using ultra high-performance liquid chromatography coupled to quadrupole and time-of-flight mass spectrometers. A negative ionization mode was applied and seventeen compounds: phenolic acids (coumaroylquinic, chlorogenic), flavonoids (quercetin derivatives), and procyanidin derivatives (B1, B2, and C1) were identified in all tested apple samples. Total values of Trolox equivalents varied from 7.72 ± 0.32 up to 20.02 ± 0.52 and from 11.10 ± 0.57 up to 21.42 ± 0.75 μmol/g of dry weight of apple powder in FRAP (ferric reducing antioxidant power) and ABTS (2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) postcolumn assays, respectively. The greatest Trolox equivalent values were determined for apples of "Aldasˮ cultivar. Chlorogenic acid and procyanidin C1 were the most significant contributors to total reducing and radical scavenging activity in all apple cultivars tested, therefore they could be considered as markers of antioxidant activity. © 2016 Institute of Food Technologists®

  2. Polyphenol oxidase and peroxidase in different sugarcane cultivars, in Presidente Prudente region; Polifenoloxidases e peroxidase em diferentes variedades de cana-de-acucar na regiao de Presidente Prudente

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Tadeu A.; Gomes, Danilo B.; Marques, Patricia A.A.; Alves, Vagner C. [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil). Curso de Agronomia], Emails: tmarques@unoeste.br, pmarques@unoeste.br, vagner@unoeste.br

    2009-07-01

    The objective in present work was compare three sugarcane cultivars (RB 72-454, RB 86-7515, IAC 86-2480), evaluating the content of polyphenoloxidase and peroxidase. These determinations had aimed at to detect possible differences between varieties thus and being to differentiate them with regard to the products most interesting to be elaborated, ethanol production or sugar production. The varieties had presented differences of behavior for studied enzymes. The activity of polyphenoloxidase was superior the activity of peroxidase. The enzyme peroxidase was presented in bigger indices in the dry and cold periods. The enzyme polyphenoloxidase was presented well changeable, but with strong trend of bigger values in the rainy periods. It can be said that distinct periods for the best use of the varieties in the sugar production or alcohol exist. (author)

  3. Bioavailability of dietary phenolic compounds: Review

    Directory of Open Access Journals (Sweden)

    Erick Gutiérrez-Grijalva Paul Gutiérrez-Grijalva

    2015-12-01

    Full Text Available Phenolic compounds are ubiquitous in plant-based foods. High dietary intake of fruits, vegetables and cereals is related to a decreased rate in chronic diseases. Phenolic compounds are thought to be responsible, at least in part, for those health effects. Nonetheless, phenolic compounds bioaccessibility and biotransformation is often not considered in these studies; thus, a precise mechanism of action of phenolic compounds is not known. In this review we aim to present a comprehensive knowledge of the metabolic processes through which phenolic compounds go after intake.

  4. In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae) are a Source of Antioxidant Phenolics.

    Science.gov (United States)

    Contreras, Rodrigo A; Köhler, Hans; Pizarro, Marisol; Zúiga, Gustavo E

    2015-04-09

    The antioxidant activity and phenolic composition of six in vitro cultured blueberry seedlings were determined. Extracts were prepared in 85% ethanol from 30 days old in vitro cultured plants and used to evaluate the antioxidant capacities that included Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazin (DPPH•) scavenging ability, total polyphenols (TP) and the partial phenolic composition performed by high performance liquid chromatography with diode array detector (HPLC-DAD), liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS (ESI-QqQ)). All ethanolic extracts from in vitro blueberry cultivars displayed antioxidant activity, with Legacy, Elliott and Bluegold cultivars being the most active. In addition, we observed a positive correlation between phenolic content and antioxidant activity. Our results suggest that the antioxidant activity of the extracts is related to the content of chlorogenic acid myricetin, syringic acid and rutin, and tissue culture of blueberry seedlings is a good tool to obtain antioxidant extracts with reproducible profile of compounds.

  5. In Vitro Cultivars of Vaccinium corymbosum L. (Ericaceae are a Source of Antioxidant Phenolics

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Contreras

    2015-04-01

    Full Text Available The antioxidant activity and phenolic composition of six in vitro cultured blueberry seedlings were determined. Extracts were prepared in 85% ethanol from 30 days old in vitro cultured plants and used to evaluate the antioxidant capacities that included Ferric reducing antioxidant power (FRAP and 1,1-diphenyl-2-picrylhydrazin (DPPH• scavenging ability, total polyphenols (TP and the partial phenolic composition performed by high performance liquid chromatography with diode array detector (HPLC-DAD, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS (ESI-QqQ. All ethanolic extracts from in vitro blueberry cultivars displayed antioxidant activity, with Legacy, Elliott and Bluegold cultivars being the most active. In addition, we observed a positive correlation between phenolic content and antioxidant activity. Our results suggest that the antioxidant activity of the extracts is related to the content of chlorogenic acid myricetin, syringic acid and rutin, and tissue culture of blueberry seedlings is a good tool to obtain antioxidant extracts with reproducible profile of compounds.

  6. Metal-Mediated Couplings of Primary Alcohols with Amines and Carbohydrates

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    . The reaction is proposed to proceed by initial dehydrogenation of the alcohol to the aldehyde, which stays coordinated to the ruthenium centre. Then, nucleophilic attack of the amine affords the hemiaminal, which is released from ruthenium and converted into the imine. Project 2: Tin-mediated regioselective 6...... from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex. The successful method development and application of a convenient and direct (one step) synthesis of imines from alcohols and amines is described. The developed method provides quick andextended access to structurally...... and amines have been coupled in the presence of the catalyst to afford the corresponding imines in moderate to good yields. Optically pure amines gave the corresponding imines without any sign of racemization. Moreover, the one-pot diastereoselective addition of different organometallic reagents to the imine...

  7. Blueberry Phenolics Reduce Gastrointestinal Infection of Patients with Cerebral Venous Thrombosis by Improving Depressant-Induced Autoimmune Disorder via miR-155-Mediated Brain-Derived Neurotrophic Factor

    Science.gov (United States)

    Xu, Ning; Meng, Hao; Liu, Tianyi; Feng, Yingli; Qi, Yuan; Zhang, Donghuan; Wang, Honglei

    2017-01-01

    Cerebral venous thrombosis (CVT) often causes human depression, whereas depression-induced low immunity makes the patients susceptible to gastrointestinal infection. Blueberry possesses antidepressant properties which may improve autoimmunity and reduce gastrointestinal infection. Brain-derived neurotrophic factor (BDNF) performs antidepressant function and can be regulated by miR-155, which may be affected by blueberry. To explore the possible molecular mechanism, blueberry compounds were analyzed by high-performance liquid chromatography. Activity of compounds was tested by using HT22 cells. The present study tested 124 patients with CVT-induced mild-to-moderate depressive symptoms (Center for Epidemiologic Studies—Depression Scale [CES-D] ≥16) and gastrointestinal infection. Patients were randomly assigned to blueberry extract group (BG, received 10 mg blueberry extract daily) and placebo group (PG, received 10 mg placebo daily). After 3 months, depression, gastrointestinal infection and lipid profiles were investigated. Serum miR-155 and BDNF were measured using real-time quantitative polymerase chain reaction and or Western Blot. Blueberry treatment improved depressive symptoms and lipid profiles, and also reduced gastrointestinal infection in the BG group (P blueberry extracts were the main phenolic acids with 0.18, 0.85, 0.26, 0.72, 0.66, 0.4,1, and 1.92 mg/g of gentisic acid, chlorogenic acid, [2]-epicatechin, p-coumaric acid, benzoic acid, p-anisic acid, and quercetin in blueberry extracts, respectively. Phenolics in blueberry are possible causal agents in improving antidepressant activity and reducing gastrointestinal infection. Administration of blueberry increased BDNF expression and miR-155. Blueberry cannot affect BDNF level when miR-155 is overexpressed or inhibited. Phenolics from blueberry reduced gastrointestinal infection of patients with CVT by improving antidepressant activity via upregulation of miR-155-mediated BDNF. PMID:29230173

  8. Cleavage and synthesis function of high and low redox potential laccases towards 4-morpholinoaniline and aminated as well as chlorinated phenols.

    Science.gov (United States)

    Hahn, Veronika; Mikolasch, Annett; Schauer, Frieder

    2014-02-01

    Laccases are able to mediate both cleavage and synthesis processes. The basis for this dual reaction capability lies in the property of the enzyme laccase to oxidize phenolic, and to some extent non-phenolic substances, to reactive radicals which can undergo on the one hand separations of small substitutents or large molecule parts from the parent compound and on the other hand coupling reactions with other radicals or molecules which are not themselves oxidizable by laccase. The cleavage of the non-phenolic compound 4-morpholinoaniline as well as the deamination of 4-aminophenol and the dechlorination of 4-chlorophenol resulted in the formation of 1,4-hydroquinone which is immediately oxidized by laccase to 1,4-benzoquinone. The formation of the 1,4-hydroquinone/1,4-benzoquinone is the rate limiting step for the synthesis of the heteromolecular dimers and trimers composed of 1,4-benzoquinone and one or two molecules of morpholine. In addition to the synthesis of new compounds from the cleavage products, 4-morpholinoaniline polymerized probably via azo groups and C-N bonds to a homomolecular dimer and trimer. Similarities and differences in cleavage and synthesis reactions catalyzed by the low redox potential laccase of Myceliophthora thermophila (0.46 V) and the high redox potential laccase of Pycnoporus cinnabarinus (0.79 V) were determined. In addition, the dependency of the cleavage and synthesis efficiencies on the (a) structure and redox potential of the laccase, (b) structure and redox potential of the substrate, (c) pH value of the buffer used, (d) incubation temperature, (e) solvent concentration, and (f) laccase activity is discussed in general.

  9. Valence and lowest Rydberg electronic states of phenol investigated by synchrotron radiation and theoretical methods

    Energy Technology Data Exchange (ETDEWEB)

    Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt; Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Univ. Lille, UMR 8523–Physique des Lasers Atomes et Molécules, F-59000 Lille (France); CNRS, UMR 8523, F-59000 Lille (France); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Śmiałek, M. A. [Department of Control and Power Engineering, Faculty of Ocean Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk (Poland); Department of Physical Sciences, The Open University, Walton Hall, MK7 6AA Milton Keynes (United Kingdom); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Brunger, M. J. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-07-21

    We present the experimental high-resolution vacuum ultraviolet (VUV) photoabsorption spectra of phenol covering for the first time the full 4.3–10.8 eV energy-range, with absolute cross sections determined. Theoretical calculations on the vertical excitation energies and oscillator strengths were performed using time-dependent density functional theory and the equation-of-motion coupled cluster method restricted to single and double excitations level. These have been used in the assignment of valence and Rydberg transitions of the phenol molecule. The VUV spectrum reveals several new features not previously reported in the literature, with particular reference to the 6.401 eV transition, which is here assigned to the 3sσ/σ{sup ∗}(OH)←3π(3a″) transition. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of phenol in the earth’s atmosphere (0–50 km).

  10. Properties of catalase-peroxidase lacking its C-terminal domain

    International Nuclear Information System (INIS)

    Baker, Ruletha D.; Cook, Carma O.; Goodwin, Douglas C.

    2004-01-01

    Catalase-peroxidases have a two-domain structure. The N-terminal domain contains the bifunctional active site, but the function of the C-terminal domain is unknown. We produced catalase-peroxidase containing only its N-terminal domain (KatG Nterm ). Removal of the C-terminal domain did not result in unexpected changes in secondary structure as evaluated by CD, but KatG Nterm had neither catalase nor peroxidase activity. Partial recovery of both activities was achieved by incubating KatG Nterm with the separately expressed and isolated KatG C-terminal domain. Spectroscopic measurements revealed a shift in heme environment from a mixture of high-spin species (wtKatG) to exclusively hexacoordinate, low-spin (KatG Nterm ). Moreover, a >1000-fold lower k on for CN - binding was observed for KatG Nterm . EPR spectra for KatG Nterm and the results of site-specific substitution of active site histidines suggested that the distal histidine was the sixth ligand. Thus, one important role for the C-terminal domain may be to support the architecture of the active site, preventing heme ligation by this catalytically essential residue

  11. Fusarium Infection Causes Phenolic Accumulations and Hormonal Disorders in Orobanche spp.

    Science.gov (United States)

    Aybeke, Mehmet

    2017-12-01

    The physiological effects of Fusarium oxysporum on in-root parasitic weed, Orobanche spp. (broomrape) with references to change in plant hormones and secondary plant constituents were investigated. The levels of IAA, GA, ABA and JA in the experimental group were significantly lower than those in the control group, while the level of SA was higher in the experimental group. In secondary metabolic studies, the quantities of various phenols were measured in the two groups and catechin, syringic acid and p-coumaric acid amounts were significantly higher in the experimental group than in the control group, unlike gallic acid which have a lower amount. Consequently, in the light of all data, it was concluded that Fusarium oxysporum (1) causes heavy hormonal disorder, (2) triggered only SA-mediated defense and (3) induced intensively accumulation of phenolic substances in orobanche. Fusarium oxysporum causes lethal physiological damage on Orobanche spp.

  12. Occurrence and properties of Petunia peroxidase a

    NARCIS (Netherlands)

    Hendriks, T.

    1989-01-01

    Peroxidases are probably the most extensively studied enzymes in higher plants. Various isoenzymes occur as soluble proteins in the apoplast and in the vacuole, or are bound to membranes and cell walls. Their occurrence is often organ-specific and developmentally controlled, and there is

  13. Purification and characterization of peroxidase from avocado (Persea americana Mill, cv. Hass).

    Science.gov (United States)

    Rojas-Reyes, José O; Robles-Olvera, Victor; Carvajal-Zarrabal, Octavio; Castro Matinez, Claudia; Waliszewski, Krzysztof N; Aguilar-Uscanga, María Guadalupe

    2014-07-01

    Avocado (Persea americana Mill, cv. Hass) fruit ranks tenth in terms of the most important products for Mexico. Avocado products are quite unstable due to the presence of oxidative enzymes such as polyphenol oxidase and peroxidase. The present study is to characterize the activity of purified avocado peroxidase from avocado in order to ascertain the biochemical and kinetic properties and their inhibition conditions. Purification was performed by Sephacryl S 200 HR gel filtration chromatography and its estimated molecular weight was 40 kDa. The zymogram showed an isoelectric point of 4.7. Six substrates were tested in order to ascertain the affinity of the enzyme for these substrates. The purified peroxidase was found to have low Km (0.296 mM) and high catalytic efficiency (2688 mM(-1) s(-1)) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), optimum activity being reached at 51°C, pH 3.8. The addition of dithiothreitol, β-mercaptoethanol, ascorbic acid, sodium azide, L-cysteine and Tween-20 had high inhibitory effects, while metals ions such as Cu(+), Fe(2+) and Mn(2+) had weak inhibitory activity on purified avocado peroxidase. The purified avocado peroxidase exhibits high inhibition (Ki = 0.37 µM) with 1.97 µM n-propyl gallate using ABTS as substrate at 51°C, pH 3.8 for 10 min. © 2013 Society of Chemical Industry.

  14. Purification, characterization and stability of barley grain peroxidase BP1, a new type of plant peroxidase

    DEFF Research Database (Denmark)

    Rasmussen, Christine B; Henriksen, Anette; Abelskov, A. Katrine

    1997-01-01

    peroxidase isoenzyme C (HRP C). However, when measuring the specific activity of BP 1 at pH 4.0 in the presence of 1 mM CaCl2, the enzyme was as competent as HRP C at neutral pH towards a variety of substrates (mM mg(-1) min(-1)): coniferyl alcohol (930+/-48), caffeic acid (795+/-53), ABTS (2,2(1)-azino...

  15. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    International Nuclear Information System (INIS)

    Chevremont, A.-C.; Farnet, A.-M.; Coulomb, B.; Boudenne, J.-L.

    2012-01-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO 2 . - Highlights: ► We test UV-LEDs as an urban wastewater tertiary treatment. ► UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. ► Coupled wavelengths have the most efficient bactericidal effect. ► Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  16. MacA is a second cytochrome c peroxidase of Geobacter sulfurreducens.

    Science.gov (United States)

    Seidel, Julian; Hoffmann, Maren; Ellis, Katie E; Seidel, Antonia; Spatzal, Thomas; Gerhardt, Stefan; Elliott, Sean J; Einsle, Oliver

    2012-04-03

    The metal-reducing δ-proteobacterium Geobacter sulfurreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulfurreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS(-2) as an electron donor. The observed K(M) was 38.5 ± 3.7 μM H(2)O(2) and v(max) was 0.78 ± 0.03 μmol of H(2)O(2)·min(-1)·mg(-1), resulting in a turnover number k(cat) = 0.46 · s(-1). In contrast, no Fe(III) reductase activity was observed. MacA was found to display electrochemical properties similar to other bacterial diheme peroxidases, in addition to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergoes conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein, the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation.

  17. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  18. Octyl Phenol Synthesis Using Natural Clays

    Directory of Open Access Journals (Sweden)

    S. Casuscelli

    2000-03-01

    Full Text Available A series of clay minerals, HB, NB and Al-PILC have been studied in the alkylation reactions of 2-octanol with phenol at 180°C, under conditions of alcohol/phenol = 1 (mole ratio and W/FAo °= 64,27 ghmol-1. The selectivity of Al-PILC was 77,12% for octyl phenol and 16,5% for dioctyl phenol.

  19. Interactions of carbon nanotubes and/or graphene with manganese peroxidase during biodegradation of endocrine disruptors and triclosan.

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Lai, Cui; Zhang, Chang; Xu, Piao; Yan, Min; Xiong, Weiping

    2017-10-01

    Molecular-level biodegradation processes of bisphenol A (BPA), nonylphenol (NP) and triclosan (TCS) mediated by manganese peroxidase (MnP) were investigated with and without single-walled carbon nanotube (SWCNT) and/or graphene (GRA). Although the incorporation of SWCNT, GRA or their combination (SWCNT+GRA) did not break up the complexes composed of manganese peroxidase (MnP) and these substrates, they had different effects on the native contacts between the substrates and MnP. GRA tended to decrease the overall stability of the binding between MnP and its substrates. SWCNT or SWCNT+GRA generally had a minor impact on the mean binding energy between MnP and its substrates. We detected some sensitive residues from MnP that were dramatically disturbed by the GRA, SWCNT or SWCNT+GRA. Nanomaterials changed the number and behavior of water molecules adjacent to both MnP and its substrates, which was not due to the destruction of H-bond network formed by sensitive regions and water molecules. The present results are useful for understanding the molecular basis of pollutant biodegradation affected by the nanomaterials in the environment, and are also helpful in assessing the risks of these materials to the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression

    Directory of Open Access Journals (Sweden)

    Merino Fuencisla

    2010-10-01

    Full Text Available Abstract Background Verticillium dahliae is a fungal pathogen that infects a wide range of hosts. The only known genes for resistance to Verticillium in the Solanaceae are found in the tomato (Solanum lycopersicum Ve locus, formed by two linked genes, Ve1 and Ve2. To characterize the resistance response mediated by the tomato Ve gene, we inoculated two nearly isogenic tomato lines, LA3030 (ve/ve and LA3038 (Ve/Ve, with V. dahliae. Results We found induction of H2O2 production in roots of inoculated plants, followed by an increase in peroxidase activity only in roots of inoculated resistant plants. Phenylalanine-ammonia lyase (PAL activity was also increased in resistant roots 2 hours after inoculation, while induction of PAL activity in susceptible roots was not seen until 48 hours after inoculation. Phenylpropanoid metabolism was also affected, with increases in ferulic acid, p-coumaric acid, vanillin and p-hydroxybenzaldehyde contents in resistant roots after inoculation. Six tomato PAL cDNA sequences (PAL1 - PAL6 were found in the SolGenes tomato EST database. RT-PCR analysis showed that these genes were expressed in all organs of the plant, albeit at different levels. Real-time RT-PCR indicated distinct patterns of expression of the different PAL genes in V. dahliae-inoculated roots. Phylogenetic analysis of 48 partial PAL cDNAs corresponding to 19 plant species grouped angiosperm PAL sequences into four clusters, suggesting functional differences among the six tomato genes, with PAL2 and PAL6 presumably involved in lignification, and the remaining PAL genes implicated in other biological processes. An increase in the synthesis of lignins was found 16 and 28 days after inoculation in both lines; this increase was greater and faster to develop in the resistant line. In both resistant and susceptible inoculated plants, an increase in the ratio of guaiacyl/syringyl units was detected 16 days after inoculation, resulting from the lowered amount

  1. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses.

    Science.gov (United States)

    Li, Shi-Weng; Zeng, Xiao-Ying; Leng, Yan; Feng, Lin; Kang, Xiao-Hu

    2018-06-08

    In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl 2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl 2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl 2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl 2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl 2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl 2 but reduced by mannitol. CdCl 2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl 2 or mannitol was applied together with IBA, IBA counteracted the CdCl 2 - or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Phytochemical phenolics in organically grown vegetables.

    Science.gov (United States)

    Young, Janice E; Zhao, Xin; Carey, Edward E; Welti, Ruth; Yang, Shie-Shien; Wang, Weiqun

    2005-12-01

    Fruit and vegetable intake is inversely correlated with risks for several chronic diseases in humans. Phytochemicals, and in particular, phenolic compounds, present in plant foods may be partly responsible for these health benefits through a variety of mechanisms. Since environmental factors play a role in a plant's production of secondary metabolites, it was hypothesized that an organic agricultural production system would increase phenolic levels. Cultivars of leaf lettuce, collards, and pac choi were grown either on organically certified plots or on adjacent conventional plots. Nine prominent phenolic agents were quantified by HPLC, including phenolic acids (e. g. caffeic acid and gallic acid) and aglycone or glycoside flavonoids (e. g. apigenin, kaempferol, luteolin, and quercetin). Statistically, we did not find significant higher levels of phenolic agents in lettuce and collard samples grown organically. The total phenolic content of organic pac choi samples as measured by the Folin-Ciocalteu assay, however, was significantly higher than conventional samples (p lettuce and collards, the organic system provided an increased opportunity for insect attack, resulting in a higher level of total phenolic agents in pac choi.

  3. Evaluation of Crude Oil Biodegradation Efficiency and Peroxidase ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Increase in biomass enhanced degradation efficiency above 80 % after 10 days for all concentration of crude oil studied. Peroxidase ... compounds by various bacteria and fungi (Gianfreda et al, 1999) ... into a clean plastic container. Microbial.

  4. Peroxidase-Mimicking Nanozyme with Enhanced Activity and High Stability Based on Metal-Support Interactions.

    Science.gov (United States)

    Li, Zhihao; Yang, Xiangdong; Yang, Yanbing; Tan, Yaning; He, Yue; Liu, Meng; Liu, Xinwen; Yuan, Quan

    2018-01-09

    Peroxidase-mimicking nanozymes offer unique advantages in terms of high stability and low cost over natural peroxidase for applications in bioanalysis, biomedicine, and the treatment of pollution. However, the design of high-efficiency peroxidase-mimicking nanozymes remains a great challenge. In this study, we adopted a structural-design approach through hybridization of cube-CeO 2 and Pt nanoparticles to create a new peroxidase-mimicking nanozyme with high efficiency and excellent stability. Relative to pure cube-CeO 2 and Pt nanoparticles, the as-hybridized Pt/cube-CeO 2 nanocomposites display much improved activities because of the strong metal-support interaction. Meanwhile, the nanocomposites also maintain high catalytic activity after long-term storage and multiple recycling. Based on their excellent properties, Pt/cube-CeO 2 nanocomposites were used to construct high-performance colorimetric biosensors for the sensitive detection of metabolites, including H 2 O 2 and glucose. Our findings highlight opportunities for the development of high-efficiency peroxidase-mimicking nanozymes with potential applications such as diagnostics, biomedicine, and the treatment of pollution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Uricase-free on-demand colorimetric biosensing of uric acid enabled by integrated CoP nanosheet arrays as a monolithic peroxidase mimic.

    Science.gov (United States)

    He, Yanfang; Qi, Fei; Niu, Xiangheng; Zhang, Wenchi; Zhang, Xifeng; Pan, Jianming

    2018-08-27

    In clinical diagnosis, monitoring of uric acid (UA) is generally realized by combining uricase with natural peroxidase. The use of bio-enzymes, however, shadows some highlights of these methods due to their vulnerable activities against environments. Herein, we report a novel biosensor for the natural enzyme-free colorimetric detection of UA by using CoP nanosheet arrays grown on Ni foam (NF) as a monolithic peroxidase mimic. The integrated nanozyme can be put into and taken out from reaction systems conveniently with only tweezers, making it possible for on-demand analysis. As demonstrated, the obtained CoP/NF exhibits outstanding peroxidase-like activity to trigger the oxidation reaction of colorless 3,3'5,5'-tetramethylbenzidine (TMB) to a blue product (TMBox) mediated by H 2 O 2 . It is found that the blue TMBox can be reduced to colorless TMB again by UA selectively, thus the presence of UA in solutions will suppress the color reaction of TMB. Based on this principle, an uricase-free biosensor is developed for the photometric determination of UA, providing a wide detection range of 1-200 μM and a limit of detection down to 1.0 μM. In addition, the fabricated biosensor can be applied for measuring UA in clinical samples with merits of simple operation and good reliability, exhibiting its great promise in clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Cloning and characterization of an ascorbate peroxidase gene ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-05-29

    May 29, 2012 ... Real-time quantitative polymerase chain reaction was used to explore expression patterns of. MaAPX1 in ... and the activity of a number of enzymatic systems, including ... peroxidase (APX), glutathione reductase and catalase.

  7. The glucose oxidase-peroxidase assay for glucose

    Science.gov (United States)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  8. 21 CFR 864.7675 - Leukocyte peroxidase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte peroxidase test. 864.7675 Section 864.7675 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7675 Leukocyte...

  9. Guaiacol Peroxidase Zymography for the Undergraduate Laboratory

    Science.gov (United States)

    Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M.; Kurz, Liliana

    2014-01-01

    This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically…

  10. Sorption of phenol and phenol derivatives in hydrotalcite; Sorcion de fenol y derivados de fenol en hidrotalcita

    Energy Technology Data Exchange (ETDEWEB)

    Avina G, E I

    2002-07-01

    One of the main problems in Mexico and in the World is the waste water pollution of a great variety of industrial processes by organic compounds. Among those ones the phenol compounds which are highly toxic, refractories (to the chemical degradation) and poorly biodegradable. This is due in a large extent to the problem created by the accelerated increase in the environmental pollution in the cities and industrial centers. The phenol compounds are used in a great variety of industries such as the production of resins, plasticizers, antioxidants, pesticides, colourings, disinfectants, etc. These phenol compounds are specially harmful, since they have repercussions on the flora of plants of biological treatment of water affecting its operation. The main objective of this work is to evaluate the capacities of phenol detention and its derivatives in an hydrotalcite type compound and diminishing with it the presence in water, in this case, of solutions prepared in the laboratory. In order to analyse this elimination process was used a methodology based in the carrying out in batch experiments and in the elaboration of a sorption isotherm. It is worth pointing out that this work was realized at laboratory scale, at relatively high phenol concentration ratio. With the obtained results when the sorption properties are evaluated the calcined hydrotalcite (HTC) for detaining phenol and p-chloro phenol it was observed that it is detained greater quantity of p-chloro phenol than phenol in the HTC. The detention of these phenol compounds in the HTC is due to the memory effect by the hydrotalcite regeneration starting from the oxides which are formed by the burning material. (Author)

  11. A Comprehensive Study on Chlorella pyrenoidosa for Phenol Degradation and its Potential Applicability as Biodiesel Feedstock and Animal Feed.

    Science.gov (United States)

    Das, Bhaskar; Mandal, Tapas K; Patra, Sanjukta

    2015-07-01

    The present work evaluates the phenol degradative performance of microalgae Chlorella pyrenoidosa. High-performance liquid chromatography (HPLC) analysis showed that C. pyrenoidosa degrades phenol completely up to 200 mg/l. It could also metabolize phenol in refinery wastewater. Biokinetic parameters obtained are the following: growth kinetics, μ max (media) > μ max (refinery wastewater), K s(media) refinery wastewater), K I(media) > K I(refinery wastewater); degradation kinetics, q max (media) > q max (refinery wastewater), K s(media) refinery wastewater), K I(media) > K I(refinery wastewater). The microalgae could cometabolize the alkane components present in refinery wastewater. Fourier transform infrared (FTIR) fingerprinting of biomass indicates intercellular phenol uptake and breakdown into its intermediates. Phenol was metabolized as an organic carbon source leading to higher specific growth rate of biomass. Phenol degradation pathway was elucidated using HPLC, liquid chromatography-mass spectrometry (LC-MS) and ultraviolet-visible (UV-visible) spectrophotometry. It involved both ortho- and meta-pathway with prominence of ortho-pathway. SEM analysis shows that cell membrane gets wrinkled on phenol exposure. Phenol degradation was growth and photodependent. Infrared analysis shows increased intracellular accumulation of neutral lipids opening possibility for utilization of spent biomass as biodiesel feedstock. The biomass after lipid extraction could be used as protein supplement in animal feed owing to enhanced protein content. The phenol remediation ability coupled with potential applicability of the spent biomass as biofuel feedstock and animal feed makes it a potential candidate for an environmentally sustainable process.

  12. Isolation and characterization of phenol degrading yeast.

    Science.gov (United States)

    Patel, Riddhi; Rajkumar, Shalini

    2009-04-01

    A phenol degrading yeast isolate was identified and characterized from the soil sample collected from a landfill site, in Ahmedabad, India, by plating the soil dilutions on Sabouraud's Dextrose Agar. The microscopic studies and biochemical tests indicated the isolate to be Saccharomyces cerevisiae. The phenol degrading potential of the isolate was measured by inoculation of pure culture in the mineral medium containing various phenol concentrations ranging from 100 to 800 mg l(-1 )and monitoring phenol disappearance rate at regular intervals of time. Growth of the isolate in mineral medium with various phenol concentrations was monitored by measuring the turbidity (OD(600) nm). The results showed that the isolated yeast was tolerant to phenol up to 800 mg(-1). The phenol degradation ranged from 8.57 to 100% for the concentration of phenol from 800 mg l(-1 )to 200 mg l(-1), respectively. ((c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  13. Spirituality, infertility-related stress, and quality of life in Brazilian infertile couples: Analysis using the actor-partner interdependence mediation model.

    Science.gov (United States)

    Casu, Giulia; Ulivi, Giulia; Zaia, Victor; Fernandes Martins, Maria do Carmo; Parente Barbosa, Caio; Gremigni, Paola

    2018-04-01

    Infertility has a stressful impact on both partners, with adverse effects on the quality of life of infertile couples. Spirituality is a meaning-based strategy that can protect couples against infertility's negative impact on quality of life, but analysis of this mediator relationship in infertile couples has not been reported. We adopted a dyadic approach and used the actor-partner interdependence mediation model to examine whether and how women's and men's spirituality was associated with their own and their partners' infertility-related stress and quality of life. In 2014, 152 infertile couples starting their first fertility treatment at a private clinic in Brazil were recruited and completed self-reports of spirituality, infertility-related stress, and quality of life. Results indicated that women's and men's level of spirituality was positively associated with their own quality of life directly and indirectly, by reducing their own infertility-related stress. Their spirituality was associated with an increase in their partners' quality of life only indirectly, by reducing their partners' infertility-related stress. Findings highlight the importance of assessing and promoting spirituality as a coping resource that infertile women and men might use to deal with the stress of infertility and reduce its adverse effects on quality of life. © 2018 Wiley Periodicals, Inc.

  14. Role of H2O2 in the photo-transformation of phenol in artificial and natural seawater

    International Nuclear Information System (INIS)

    Calza, Paola; Campra, Laura; Pelizzetti, Ezio; Minero, Claudio

    2012-01-01

    In previous works, it was observed that phenol photo-induced transformation in natural seawater (NSW) mediated by natural photosensitizers occurs and leads to the formation of numerous hydroxylated, condensed, halogenated and nitroderivatives. Irradiation of NSW added with phenol and iron species had provided the enhanced formation of several halophenols, suggesting a central role played by iron species on the phenol halogenation in marine water. In this paper, we focus on hydrogen peroxide, another key photosensitizer, and its interaction with iron species. The ability of Fe(II)/Fe(III) and H 2 O 2 species to act as photo-sensitizers towards the transformation of organic compounds in seawater was investigated under simulated solar radiation. Light activation is necessary to induce the transformation of phenol, as no degradation occurs in the dark when either H 2 O 2 or iron/H 2 O 2 are initially added to artificial seawater (ASW). Fe(II) is easily transformed into Fe(III), assessing that a Fenton reaction (dark, Fe(II)/H 2 O 2 ) does not take place in marine environment, in favour of a photo-activated reaction involving Fe(III) and H 2 O 2 . When NSW is spiked with H 2 O 2 and Fe(III), halophenols' and nitrophenols' concentration decreases and completely disappears at high hydrogen peroxide concentration. Since Fe(II) and Fe(III) in spiked seawater induce an enhanced formation of haloderivatives, an excess of hydrogen peroxide act as scavenger towards the photo-produced chloro/bromo radicals, so hindering halogenation process in seawater. Hence, even if hydrogen peroxide efficiently induces the ·OH radical formation, and could then promote the phenol phototransformation, nevertheless it is negligibly involved in the production of the intermediates formed during phenol photolysis in seawater, whose formation is necessarily linked to other photosensitizer species. - Highlights: ► Hydrogen peroxide-mediated solar-driven transformations of pollutant in seawater are

  15. Dietary phenolics as anti-mutagens and inhibitors of tobacco-related DNA adduction in the urothelium of smokers.

    Science.gov (United States)

    Malaveille, C; Hautefeuille, A; Pignatelli, B; Talaska, G; Vineis, P; Bartsch, H

    1996-10-01

    Human urine is known to contain substances that strongly inhibit bacterial mutagenicity of aromatic and heterocyclic amines in vitro. The biological relevance of these anti-mutagens was examined by comparing levels of tobacco-related DNA adducts in exfoliated urothelial cells from smokers with the anti-mutagenic activity in corresponding 24-h urine samples. An inverse relationship was found between the inhibition of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-mutagenicity by urine extracts in vitro and two DNA adduct measurements: the level of the putatively identified N-(deoxyguanosine-8-yl)-4-aminobiphenyl adduct and the total level of all tobacco-smoke-related carcinogen adducts including those probably derived from PhIP. Urinary anti-mutagenicity in vitro appears thus to be a good indicator of the anti-genotoxicity exerted by substances excreted in urine, that protect the bladder mucosal cells (and possibly other cells) against DNA damage. These substances appear to be dietary phenolics and/or their metabolites because (i) the anti-mutagenic activity of urine extracts (n = 18) was linearly related to their content in phenolics; (ii) the concentration ranges of these substances in urine extracts were similar to those of various plant phenols (quercetin, isorhamnetin and naringenin) for which an inhibitory effect on the liver S9-mediated mutagenicity of PhIP was obtained; (iii) treatment of urines with beta-glucuronidase and arylsulfatase enhanced both anti-mutagenicity and the levels of phenolics in urinary extracts; (iv) urinary extracts inhibited noncompetitively the liver S9-mediated mutagenicity of PhIP as did quercetin, used as a model phenolics. Several structural features of the flavonoids were identified as necessary for the inhibition of PhIP and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxiline mutagenicity. Fractionation by reverse-phase HPLC and subsequent analysis of two urinary extracts, showed the presence of several anti

  16. Electronic Energy Levels and Band Alignment for Aqueous Phenol and Phenolate from First Principles.

    Science.gov (United States)

    Opalka, Daniel; Pham, Tuan Anh; Sprik, Michiel; Galli, Giulia

    2015-07-30

    Electronic energy levels in phenol and phenolate solutions have been computed using density functional theory and many-body perturbation theory. The valence and conduction bands of the solvent and the ionization energies of the solutes have been aligned with respect to the vacuum level based on the concept of a computational standard hydrogen electrode. We have found significant quantitative differences between the generalized-gradient approximation, calculations with the HSE hybrid functional, and many-body perturbation theory in the G0W0 approximation. For phenol, two ionization energies below the photoionization threshold of bulk water have been assigned in the spectrum of Kohn-Sham eigenvalues of the solution. Deprotonation to phenolate was found to lift a third occupied energy level above the valence band maximum of the solvent which is characterized by an electronic lone pair at the hydroxyl group. The second and third ionization energies of phenolate were found to be very similar and explain the intensity pattern observed in recent experiments using liquid-microjet photoemission spectroscopy.

  17. Towards uncovering the roles of switchgrass peroxidases in plant processes

    Directory of Open Access Journals (Sweden)

    Aaron eSaathoff

    2013-06-01

    Full Text Available Herbaceous perennial plants selected as potential biofuel feedstocks had been understudied at the genomic and functional genomic levels. Recent investments, primarily by the U.S. Department of Energy, have led to the development of a number of molecular resources for bioenergy grasses, such as the partially annotated genome for switchgrass (Panicum virgatum L., and some related diploid species. In its current version, the switchgrass genome contains 65,878 gene models arising from the A and B genomes of this tetraploid grass. The availability of these gene sequences provides a framework to exploit transcriptomic data obtained from next generation sequencing platforms to address questions of biological importance. One such question pertains to discovery of genes and proteins important for biotic and abiotic stress responses, and how these components might affect biomass quality and stress response in plants engineered for a specific end purpose. It can be expected that production of switchgrass on marginal lands will expose plants to diverse stresses, including herbivory by insects. Class III plant peroxidases have been implicated in many developmental responses such as lignification and in the adaptive responses of plants to insect feeding. Here, we have analyzed the class III peroxidases encoded by the switchgrass genome, and have mined available transcriptomic datasets to develop a first understanding of the expression profiles of the class III peroxidases in different plant tissues. Lastly, we have identified switchgrass peroxidases that appear to be orthologs of enzymes shown to play key roles in lignification and plant defense responses to hemipterans.

  18. NMR analysis of lignins in CAD-deficient plants. Part 1, Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins

    Science.gov (United States)

    Hoon Kim; John Ralph; Fachuang Lu; Sally A. Ralph; Alain-M. Boudett; John J. MacKay; Ronald R. Sederoff; Takashi Ito; Shingo Kawai; Hideo Ohashi; Takayoshi Higuchi

    2003-01-01

    Peroxidase/H2O2-mediated radical coupling of 4-hydroxycinnamaldehydes produces 8–O–4-, 8–5-, and 8–8-coupled dehydrodimers as has been documented earlier, as well as the 5-5-coupled dehydrodimer. The 8–5- dehydrodimer is however produced kinetically in its cyclic phenylcoumaran form at neutral pH. Synthetic polymers produced from mixtures of hydroxycinnamaldehydes and...

  19. Phenolic compounds from the roots of Valeriana officinalis var. latifolia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng-Cheng; Ran, Xin-Hui; Luo, Huai-Rong; Liu, Yu-Qing; Zhou Jun [State Key Laboratory of Phytochemistry and Plant Resources in West China. Kunming Institute of Botany, Chinese Academy of Sciences (China); Ma, Qing-Yun; Zhao, You-Xing, E-mail: zhoujun3264@yahoo.com.cn, E-mail: zhaoyouxing@itbb.org.cn [Key Laboratory of Biology and Genetic Resources of Tropical Crops. Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology. Chinese Academy of Tropical Agriculture Sciences (China)

    2013-09-15

    A new benzofuran neolignan, dihydrodehydrodiconiferyl alcohol 9-isovalerate, along with ten known phenolic compounds, olivil, pinoresinol, 8-hydroxypinoresinol, pinorespiol, 8-hydroxy- 7-epipinoresinol, trans-p-hydroxyphenyl- propenoic acid, cis-p-hydroxyphenyl-propenoic acid, ferulic acid, isoferulic acid and isovanillin were isolated from the roots of Valeriana officinalis var. latifolia. Their structures and configurations were elucidated on the basis of spectroscopic methods. The inhibitory activity for acetylcholinesterase (AChE) and enhancing activity on nerve growth factor (NGF)-mediated neurite outgrowth in PC12 cells of dihydrodehydrodiconiferyl alcohol 9-isovaterate and olivil were evaluated. (author)

  20. Phenolic compounds from the roots of Valeriana officinalis var. latifolia

    International Nuclear Information System (INIS)

    Wang, Peng-Cheng; Ran, Xin-Hui; Luo, Huai-Rong; Liu, Yu-Qing; Zhou Jun; Ma, Qing-Yun; Zhao, You-Xing

    2013-01-01

    A new benzofuran neolignan, dihydrodehydrodiconiferyl alcohol 9-isovalerate, along with ten known phenolic compounds, olivil, pinoresinol, 8-hydroxypinoresinol, pinorespiol, 8-hydroxy- 7-epipinoresinol, trans-p-hydroxyphenyl- propenoic acid, cis-p-hydroxyphenyl-propenoic acid, ferulic acid, isoferulic acid and isovanillin were isolated from the roots of Valeriana officinalis var. latifolia. Their structures and configurations were elucidated on the basis of spectroscopic methods. The inhibitory activity for acetylcholinesterase (AChE) and enhancing activity on nerve growth factor (NGF)-mediated neurite outgrowth in PC12 cells of dihydrodehydrodiconiferyl alcohol 9-isovaterate and olivil were evaluated. (author)

  1. Mechanism of microsomal metabolism of benzene to phenol

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, J.A.; Freeman, J.P.; Potter, D.W.; Mitchum, R.K.; Evans, F.E.

    1985-05-01

    The mechanism of microsomal hydroxylation of benzene to phenol has been studied by examining the microsomal metabolism of the specifically deuterated derivative 1,3,5-(/sub 2/H/sup 3/)benzene. Evidence for the formation of the following four products was obtained: 2,3,5-(/sub 2/H/sup 3/)phenol, 3,5-(/sub 2/H/sup 2/)phenol, 2,4,6-(/sub 2/H/sup 3/)phenol, and 2,4-(/sub 2/H/sup 2/)phenol. The presence of 2,3,5-(2H3)phenol and 2,4-(/sub 2/H/sup 2/)phenol shows that, in the microsomal metabolism of benzene to phenol, a NIH shift had occurred. A deuterium isotope effect (kH/kD) of approximately 4 was detected in both the meta- and para-deuterated phenols. This finding indicates that cyclohexadienone, formed either by isomerization of the epoxide or directly from the enzyme-substrate complex, is a major intermediate in the metabolism of benzene to phenol.

  2. In Vitro Ion Chelating, Antioxidative Mechanism of Extracts from Fruits and Barks of Tetrapleura tetraptera and Their Protective Effects against Fenton Mediated Toxicity of Metal Ions on Liver Homogenates

    Directory of Open Access Journals (Sweden)

    Bruno Moukette Moukette

    2015-01-01

    Full Text Available The aim of the present study was to investigate the antioxidant activity and protective potential of T. tetraptera extracts against ion toxicity. The antioxidant activity of the extracts was investigated spectrophotometrically against several radicals (1,1-diphenyl-2-picrylhydrazyl (DPPH•, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS•, hydroxyl radical (HO•, and nitric oxide (NO•, followed by the ferric reducing power, total phenols, flavonoid, and flavonol contents. The effects of the extracts on catalase (CAT, superoxide dismutase (SOD, and peroxidase activities were also determined using the standard methods as well as the polyphenol profile using HPLC. The results showed that the hydroethanolic extract of T. tetraptera (CFH has the lowest IC50 value with the DPPH, ABTS, OH, and NO radicals. The same extract also exhibited the significantly higher level of total phenols (37.24 ± 2.00 CAE/g dried extract; flavonoids (11.36 ± 1.88 QE/g dried extract; and flavonols contents (3.95 ± 0.39 QE/g dried extract. The HPLC profile of T. tetraptera revealed that eugenol (958.81 ± 00 mg/g DW, quercetin (353.78 ± 00 mg/g DW, and rutin (210.54 ± 00 mg/g DW were higher in the fruit than the bark extracts. In conclusion, extracts from T. tetraptera may act as a protector against oxidative mediated ion toxicity.

  3. Amperometric carbohydrate antigen 19-9 immunosensor based on three dimensional ordered macroporous magnetic Au film coupling direct electrochemistry of horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Chen, Xiaojun, E-mail: chenxj_njut@126.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Tang, Yin [Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang 215600 (China); Ge, Lingna; Guo, Buhua [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Yao, Cheng, E-mail: yaochengnjut@163.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China)

    2014-03-01

    Highlights: • Three dimensional ordered macroporous magnetic electrode was newly used in electrochemical immunosensor. • The large surface area of macroporous magnetic electrode could improve the immobilized amount of antibody. • Au nanoparticles functionalized SBA-15 was used to immobilize enzyme labeled Ab₂ and enzyme. • Macroporous magnetic electrode and Au nanoparticles composite facilitated the direct electron transfer of enzyme. • The immunoassay avoided adding electron transfer mediator, simplifying the procedure. Abstract: A sandwich-type electrochemical immunosensor for the detection of carbohydrate antigen 19-9 (CA 19-9) antigen based on the immobilization of primary antibody (Ab₁) on three dimensional ordered macroporous magnetic (3DOMM) electrode, and the direct electrochemistry of horseradish peroxidase (HRP) that was used as both the label of secondary antibody (Ab₂) and the blocking reagent. The 3DOMM electrode was fabricated by introducing core–shell Au–SiO₂@Fe₃O₄ nanospheres onto the surface of three dimensional ordered macroporous (3DOM) Au electrode via the application of an external magnet. Au nanoparticles functionalized SBA-15 (Au@SBA-15) was conjugated to the HRP labeled secondary antibody (HRP-Ab₂) through the Au–SH or Au–NH₃⁺ interaction, and HRP was also used as the block reagent. The formation of antigen–antibody complex made the combination of Au@SBA-15 and 3DOMM exhibit remarkable synergistic effects for accelerating direct electron transfer (DET) between HRP and the electrode. Under the optimal conditions, the DET current signal increased proportionally to CA 19-9 concentration in the range of 0.05 to 15.65 U mL⁻¹ with a detection limit of 0.01 U mL⁻¹. Moreover, the immunosensor showed high selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from

  4. Chlorine dioxide as phenol and H2S scavenger - formation of halogenated phenols and subsequent environmental risk

    Energy Technology Data Exchange (ETDEWEB)

    Melbye, Alf G.; Faksness, Liv-Guri; Knudsen, Boerre Leif

    2006-03-15

    Formation of halogenated phenols as side products from treatment of produced water with aqueous chlorine dioxide has been investigated. The literature describes formation of halogenated hydrocarbons in effluent treatment using chlorine, hypochlorite and chlorine dioxide. A new chlorine dioxide product, originally intended as a H2S scavenger in the oil and gas industry, has been tested both as a phenol scavenger and H2S-scavenger for produced water applications. The concern about the possible formation of halogenated by-products initiated laboratory testing of chlorine dioxide as phenol and H2S scavenger for produced water applications. The tests also included synthetic matrixes containing phenols, and the tests show that halogenated phenols, mainly brominated species, are found in produced water after treatment with chlorine dioxide. Due to potential environmental risk from halogenated organic contaminants, the use of chlorine dioxide as phenol and H2S scavenger is not recommended. (Author)

  5. Purification and Characterization of Polyphenol Oxidase, Peroxidase and Lipoxygenase from Freshly Cut Lettuce (L. sativa

    Directory of Open Access Journals (Sweden)

    Vural Gökmen

    2011-01-01

    Full Text Available Enzymatic reactions taking place in minimally processed vegetables are considered as a major problem, because they adversely affect sensorial and nutritional quality. Polyphenol oxidase (PPO, peroxidase (POD and lipoxygenase (LOX from lettuce were purified on a column packed with positively charged diethylaminoethyl (DEAE cellulose by applying pH gradient elution from pH=4.0 to 9.0. The main purified fractions (PPO1 and PPO4, POD1 and POD2, LOX1 and LOX2 were characterized for enzyme concentration-reaction rate relationship, thermal stability, pH activity and kinetic parameters. Kinetic properties of each isoform were considerably different. Cysteine was found as the most effective inhibitor of both fractions of PPO. Kinetic parameters of lettuce POD were presented using guaiacol at various H2O2 concentrations. β-carotene directly influences lettuce LOX in the reaction medium available for the catalytic conversion of linoleic acid into hydroperoxides. Ascorbic and oxalic acids appear as effective PPO inhibitors, protecting phenolic compounds against oxidation in lettuce. Understanding the characteristics of deteriorative enzymes becomes important to maintain suitable conditions for fresh-like quality of lettuce. The results can be useful to keep the nutritional quality of minimally processed lettuce during shelf-life.

  6. A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds.

    Science.gov (United States)

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Al-Mahasneh, Majdi A; Almajwal, Ali; Gammoh, Sana; Ereifej, Khalil; Johargy, Ayman; Alli, Inteaz

    2017-03-01

    Over the last two decades, separation, identification and measurement of the total and individual content of phenolic compounds has been widely investigated. Recently, the presence of a wide range of phenolic compounds in oil-bearing plants has been shown to contribute to their therapeutic properties, including anti-cancer, anti-viral, anti-oxidant, hypoglycemic, hypo-lipidemic, and anti-inflammatory activities. Phenolics in oil-bearing plants are now recognized as important minor food components due to several organoleptic and health properties, and they are used as food or sources of food ingredients. Variations in the content of phenolics in oil-bearing plants have largely been attributed to several factors, including the cultivation, time of harvest and soil types. A number of authors have suggested that the presence phenolics in extracted proteins, carbohydrates and oils may contribute to objectionable off flavors The objective of this study was to review the distribution, identification and occurrence of free and bound phenolic compounds in oil-bearing plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Degradation of disperse dye from textile effluent by free and immobilized Cucurbita pepo peroxidase

    Science.gov (United States)

    Boucherit, N.; Abouseoud, M.; Adour, L.

    2012-06-01

    Disperse dyes constitute the largest group of dyes used in local textile industry. This work evaluates the potential of the Cucurbita peroxidase(C-peroxidase) extracted from courgette in the decolourization of disperse dye in free and immobilized form. The optimal conditions for immobilization of C-peroxidase in Ca-alginate were identified. The immobilization was optimized at 2%(w/v) of sodium alginate and 0.2 M of calcium chloride. After optimization of treatment parameters, the results indicate that at pH 2, dye concentration: 80 mg/L(for FCP) and 180 mg/L(for ICP), H2O2 dose: 0,02M (for FCP) and 0,12M(for ICP), the decolourization by free and immobilized C-peroxidase were 72.02% and 69.71 % respectively. The degradation pathway and the metabolic products formed after the degradation were also predicted using UV-vis spectroscopy analysis.

  8. Graphene-palladium nanowires based electrochemical sensor using ZnFe2O4-graphene quantum dots as an effective peroxidase mimic.

    Science.gov (United States)

    Liu, Weiyan; Yang, Hongmei; Ma, Chao; Ding, Ya-nan; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2014-12-10

    We proposed an electrochemical DNA sensor by using peroxidase-like magnetic ZnFe2O4-graphene quantum dots (ZnFe2O4/GQDs) nanohybrid as a mimic enzymatic label. Aminated graphene and Pd nanowires were successively modified on glassy carbon electrode, which improved the electronic transfer rate as well as increased the amount of immobilized capture ssDNA (S1). The nanohybrid ZnFe2O4/GQDs was prepared by assembling the GQDs on the surface of ZnFe2O4 through a photo-Fenton reaction, which was not only used as a mimic enzyme but also as a carrier to label complementary ssDNA (S3). By synergistically integrating highly catalytically activity of nano-sized GQDs and ZnFe2O4, the nanohybrid possessed highly-efficient peroxidase-like catalytic activity which could produce a large current toward the reduction of H2O2 for signal amplification. Thionine was used as an excellent electron mediator. Compared with traditional enzyme labels, the mimic enzyme ZnFe2O4/GQDs exhibited many advantages such as environment friendly and better stability. Under the optimal conditions, the approach provided a wide linear range from 10(-16) to 5×10(-9) M and low detection limit of 6.2×10(-17) M. The remarkable high catalytic capability could allow the nanohybrid to replace conventional peroxidase-based assay systems. The new, robust and convenient assay systems can be widely utilized for the identification of other target molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.

    Science.gov (United States)

    Arnold, William A; Oueis, Yan; O'Connor, Meghan; Rinaman, Johanna E; Taggart, Miranda G; McCarthy, Rachel E; Foster, Kimberley A; Latch, Douglas E

    2017-03-22

    Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E 1 ), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E 1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

  10. Dyospiros kaki phenolics inhibit colitis and colon cancer cell proliferation, but not gelatinase activities.

    Science.gov (United States)

    Direito, Rosa; Lima, Ana; Rocha, João; Ferreira, Ricardo Boavida; Mota, Joana; Rebelo, Patrícia; Fernandes, Adelaide; Pinto, Rui; Alves, Paula; Bronze, Rosário; Sepodes, Bruno; Figueira, Maria-Eduardo

    2017-08-01

    Polyphenols from persimmon (Diospyros kaki) have demonstrated radical-scavenging and antiinflammatory activities; however, little is known about the effects of persimmon phenolics on inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Therefore, we aimed in this work to characterize the antiinflammatory and antiproliferative effects of a persimmon phenolic extract (80% acetone in water), using an in vivo model of experimental colitis and a model of cancer cell invasion. Our results show, for the first time, a beneficial effect of a persimmon phenolic extract in the attenuation of experimental colitis and a potential antiproliferative effect on cultured colon cancer cells. Administration of persimmon phenolic extract to mice with TNBS-induced colitis led to a reduction in several functional and histological markers of colon inflammation, namely: attenuation of colon length decrease, reduction of the extent of visible injury (ulcer formation), decrease in diarrhea severity, reduced mortality rate, reduction of mucosal hemorrhage and reduction of general histological features of colon inflammation. In vitro studies also showed that persimmon phenolic extract successfully impaired cell proliferation and invasion in HT-29 cells. Further investigation showed a decreased expression of COX-2 and iNOS in the colonic tissue of colitis mice, two important mediators of intestinal inflammation, but there was no inhibition of the gelatinase MMP-9 and MMP-2 activities. Given the role of inflammatory processes in the progression of CRC and the important link between inflammation and cancer, our results highlight the potential of persimmon polyphenols as a pharmacological tool in the treatment of patients with IBD. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.

    Directory of Open Access Journals (Sweden)

    Christoph Hemetsberger

    Full Text Available The corn smut Ustilago maydis establishes a biotrophic interaction with its host plant maize. This interaction requires efficient suppression of plant immune responses, which is attributed to secreted effector proteins. Previously we identified Pep1 (Protein essential during penetration-1 as a secreted effector with an essential role for U. maydis virulence. pep1 deletion mutants induce strong defense responses leading to an early block in pathogenic development of the fungus. Using cytological and functional assays we show that Pep1 functions as an inhibitor of plant peroxidases. At sites of Δpep1 mutant penetrations, H₂O₂ strongly accumulated in the cell walls, coinciding with a transcriptional induction of the secreted maize peroxidase POX12. Pep1 protein effectively inhibited the peroxidase driven oxidative burst and thereby suppresses the early immune responses of maize. Moreover, Pep1 directly inhibits peroxidases in vitro in a concentration-dependent manner. Using fluorescence complementation assays, we observed a direct interaction of Pep1 and the maize peroxidase POX12 in vivo. Functional relevance of this interaction was demonstrated by partial complementation of the Δpep1 mutant defect by virus induced gene silencing of maize POX12. We conclude that Pep1 acts as a potent suppressor of early plant defenses by inhibition of peroxidase activity. Thus, it represents a novel strategy for establishing a biotrophic interaction.

  12. Horseradish peroxidase-nanoclay hybrid particles of high functional and colloidal stability.

    Science.gov (United States)

    Pavlovic, Marko; Rouster, Paul; Somosi, Zoltan; Szilagyi, Istvan

    2018-08-15

    Highly stable dispersions of enzyme-clay nanohybrids of excellent horseradish peroxidase activity were developed. Layered double hydroxide nanoclay was synthesized and functionalized with heparin polyelectrolyte to immobilize the horseradish peroxidase enzyme. The formation of a saturated heparin layer on the platelets led to charge inversion of the positively charged bare nanoclay and to highly stable aqueous dispersions. Great affinity of the enzyme to the surface modified platelets resulted in strong horseradish peroxidase adsorption through electrostatic and hydrophobic interactions as well as hydrogen bonding network and prevented enzyme leakage from the obtained material. The enzyme kept its functional integrity upon immobilization and showed excellent activity in decomposition of hydrogen peroxide and oxidation of an aromatic compound in the test reactions. In addition, remarkable long term functional stability of the enzyme-nanoclay hybrid was observed making the developed colloidal system a promising antioxidant candidate in biomedical treatments and industrial processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Expression, purification and characterization of a peroxidase from ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... from a cDNA library, which was generated from root tissue of Tamarix hispida that was exposed to ... enzymes, peroxidase (POD) plays an important role in .... ThPOD1 protein under various conditions, 3 month old T. hispida.

  14. Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts

    Science.gov (United States)

    Junfeng Feng; Chung-yun Hse; Kui Wang; Zhongzhi Yang; Jianchun Jiang; Junming Xu

    2017-01-01

    Phenolic compounds derived from biomass are important feedstocks for the sustainable production of hydrocarbon biofuels. Hydrodeoxygenation is an effective process to remove oxygen-containing functionalities in phenolic compounds. This paper reported a simple method for producing hydrocarbons by liquefying biomass and upgrading liquefied products. Three phenolic...

  15. Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase

    Czech Academy of Sciences Publication Activity Database

    Rothschild, N.; Novotný, Čeněk; Šašek, Václav; Dosoretz, C. G.

    2002-01-01

    Roč. 31, - (2002), s. 627-633 ISSN 0141-0229 Institutional research plan: CEZ:AV0Z5020903 Keywords : lignin * peroxidase * heme peroxidase Subject RIV: EE - Microbiology, Virology Impact factor: 1.773, year: 2002

  16. [Isolation and purification of Mn-peroxidase from Azospirillum brasilense Sp245].

    Science.gov (United States)

    Kupriashina, M A; Selivanov, N Iu; Nikitina, V E

    2012-01-01

    Homogenous Mn-peroxidase of a 26-fold purity grade was isolated from a culture of Azospirillum brasilense Sp245 cultivated on a medium containing 0.1 mM pyrocatechol. The molecular weight of the enzyme is 43 kD as revealed by electrophoresis in SDS-PAAG. It was shown that the use of pyrocatechol and 2,2'-azino-bis(3-ethylbenzotiazoline-6-sulfonate) at concentrations of 0.1 and I mM as inductors increased the Mn-peroxidase activity by a factor of 3.

  17. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chevremont, A.-C., E-mail: anne-celine.chevremont@imbe.fr [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France); Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Farnet, A.-M. [Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Coulomb, B.; Boudenne, J.-L. [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France)

    2012-06-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO{sub 2}. - Highlights: Black-Right-Pointing-Pointer We test UV-LEDs as an urban wastewater tertiary treatment. Black-Right-Pointing-Pointer UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. Black-Right-Pointing-Pointer Coupled wavelengths have the most efficient bactericidal effect. Black-Right-Pointing-Pointer Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  18. The impact of drying techniques on phenolic compound, total phenolic content and antioxidant capacity of oat flour tarhana.

    Science.gov (United States)

    Değirmencioğlu, Nurcan; Gürbüz, Ozan; Herken, Emine Nur; Yıldız, Aysun Yurdunuseven

    2016-03-01

    In this study, the changes in phenolic composition, total phenolic content, and antioxidant capacity of tarhanas supplemented with oat flour (OF) at the levels of 20-100% (w/w) after three drying treatments (sun-, oven-, and microwave drying) were investigated. A total of seventeen phenolic standards have been screened in tarhanas, and the most abundant flavonol and phenolic acid compounds were kaempferol (23.62mg/g) and 3-hydroxy-4-metoxy cinnamic acid (9.60mg/g). The total phenolic content amount gradually increased with the addition of OF to tarhana, but decidedly higher total phenolic content was found in samples oven dried at 55°C as compared with other methods. The microwave- and oven dried tarhana samples showed higher TEACDPPH and TEACABTS values than those dried with the other methods, respectively, in higher OF amounts. Consequently, oven- and microwave-drying can be recommended to retain the highest for phenolic compounds as well as maximal antioxidant capacity in OF supplemented tarhana samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Electrochemical removal of phenol from oil refinery wastewater.

    Science.gov (United States)

    Abdelwahab, O; Amin, N K; El-Ashtoukhy, E-S Z

    2009-04-30

    This study explores the possibility of using electrocoagulation to remove phenol from oil refinery waste effluent using a cell with horizontally oriented aluminum cathode and a horizontal aluminum screen anode. The removal of phenol was investigated in terms of various parameters namely: pH, operating time, current density, initial phenol concentration and addition of NaCl. Removal of phenol during electrocoagulation was due to combined effect of sweep coagulation and adsorption. The results showed that, at high current density and solution pH 7, remarkable removal of 97% of phenol after 2h can be achieved. The rate of electrocoagulation was observed to increase as the phenol concentration decreases; the maximum removal rate was attained at 30 mg L(-1) phenol concentration. For a given current density using an array of closely packed Al screens as anode was found to be more effective than single screen anode, the percentage phenol removal was found to increase with increasing the number of screens per array. After 2h of electrocoagulation, 94.5% of initial phenol concentration was removed from the petroleum refinery wastewater. Energy consumption and aluminum Electrode consumption were calculated per gram of phenol removed. The present study shows that, electrocoagulation of phenol using aluminum electrodes is a promising process.

  20. Solid Polymer Electrolytes Derived from Polyphenols

    National Research Council Canada - National Science Library

    Filler, Robert

    1998-01-01

    In the Phase-I study, Tech Drive synthesized several phenol monomers. Two of these monomers, one of which is new, were converted to phenolic polymers by enzymatic means, using horseradish peroxidase and hydrogen peroxide...

  1. Phenolic Extracts from Clerodendrum volubile Leaves Inhibit Cholinergic and Monoaminergic Enzymes Relevant to the Management of Some Neurodegenerative Diseases.

    Science.gov (United States)

    Oboh, Ganiyu; Ogunruku, Omodesola O; Oyeleye, Sunday I; Olasehinde, Tosin A; Ademosun, Ayokunle O; Boligon, Aline Augusti

    2017-05-04

    This study investigated the inhibitory effects of phenolic-rich extracts from Clerodendrum volubile leaves on cholinergic [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] and monoaminergic [monoamine oxidase (MAO)] enzymes' activities and pro-oxidants [Fe 2+ and quinolinic acid-(QA)] induced lipid peroxidation in rats brain homogenates in vitro. Free phenolic extracts (FPE) and bound phenolic extracts (BPE) were obtained via solvent extraction, and the total phenol and flavonoid contents were evaluated. The phenolic constituents of the extracts were also determined using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). Our findings revealed that FPE had higher AChE (2.06 μg/mL), BChE (2.79 μg/mL), and MAO (2.81 μg/mL) inhibitory effects than BPE [AChE, 2.80 μg/mL; BChE, 3.40 μg/mL; MAO, 3.39 μg/mL]. Furthermore, FPE also had significantly (P rich extracts from C. volubile could be part of the mechanism of actions behind its use for memory/cognitive function as obtained in folklore. However, FPE exhibited significantly higher enzymes, inhibitory and antioxidant potentials than BPE.

  2. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H2O2.

    Science.gov (United States)

    Kathiresan, Meena; English, Ann M

    2017-02-01

    We recently reported that cytochrome c peroxidase (Ccp1) functions as a H 2 O 2 sensor protein when H 2 O 2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (Cyc II ), determines whether Ccp1 acts as a H 2 O 2 sensor or peroxidase. For H 2 O 2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H 2 O 2 in the absence of Cyc II to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H 2 O 2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H 2 O 2 shuts down heterolytic cleavage of H 2 O 2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H 2 O 2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O 2 reactivity.

  3. Appraisal of Total Phenol, Flavonoid Contents, and Antioxidant Potential of Folkloric Lannea coromandelica Using In Vitro and In Vivo Assays

    Directory of Open Access Journals (Sweden)

    Tekeshwar Kumar

    2015-01-01

    Full Text Available The aim of this study was to determine the impending antioxidant properties of different extracts of crude methanolic extract (CME of leaves of Lannea coromandelica (L. coromandelica and its two ethyl acetate (EAF and aqueous (AqF subfractions by employing various established in vitro systems and estimation of total phenolic and flavonoid content. The results showed that extract and fractions possessed strong antioxidant activity in vitro and among them, EAF had the strongest antioxidant activity. EAF was confirmed for its highest phenolic content, total flavonoid contents, and total antioxidant capacity. The EAF was found to show remarkable scavenging activity on 2,2-diphenylpicrylhydrazyl (DPPH (EC50 63.9 ± 0.64 µg/mL, superoxide radical (EC50 8.2 ± 0.12 mg/mL, and Fe2+ chelating activity (EC50 6.2 ± 0.09 mg/mL. Based on our in vitro results, EAF was investigated for in vivo antioxidant assay. Intragastric administration of the EAF can significantly increase levels of superoxide dismutase (SOD, catalase (CAT, glutathione (GSH, and glutathione peroxidase (GSH-Px levels, and decrease malondialdehyde (MDA content in the liver and kidney of CCl4-intoxicated rats. These new evidences show that L. coromandelica bared antioxidant activity.

  4. Phenolic profiling of Portuguese propolis by LC-MS spectrometry: uncommon propolis rich in flavonoid glycosides.

    Science.gov (United States)

    Falcão, Soraia I; Vale, Nuno; Gomes, Paula; Domingues, Maria R M; Freire, Cristina; Cardoso, Susana M; Vilas-Boas, Miguel

    2013-01-01

    Propolis is a chemically complex resinous substance collected by honeybees (Apis mellifera) from tree buds, comprising plant exudates, secreted substances from bee metabolism, pollen and waxes. Its chemical composition depends strongly on the plant sources available around the beehive, which have a direct impact in the quality and bioactivity of the propolis. Being as Portugal is a country of botanical diversity, the phenolic characterisation of propolis from the different regions is a priority. Extensive characterisation of the phenolic composition of Portuguese propolis from different continental regions and islands. Forty propolis ethanolic extracts were analysed extensively by liquid chromatography with diode-array detection coupled to electrospray ionisation tandem mass spectrometry (LC-DAD-ESI-MS(n) ). Seventy-six polyphenols were detected in the samples and two groups of propolis were established: the common temperate propolis, which contained the typical poplar phenolic compounds such as flavonoids and their methylated/esterified forms, phenylpropanoid acids and their esters, and an uncommon propolis type with an unusual composition in quercetin and kaempferol glycosides - some of them never described in propolis. The method allowed the establishment of the phenolic profile of Portuguese propolis from different geographical locations, and the possibility to use some phenolic compounds, such as kaempferol-dimethylether, as geographical markers. Data suggest that other botanical species in addition to poplar trees can be important sources of resins for Portuguese propolis. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Purification and characterization of an intracellular peroxidase from Streptomyces cyaneus.

    OpenAIRE

    Mliki, A; Zimmermann, W

    1992-01-01

    An intracellular peroxidase (EC 1.11.1.7) from Streptomyces cyaneus was purified to homogeneity. The enzyme had a molecular weight of 185,000 and was composed of two subunits of equal size. It had an isoelectric point of 6.1. The enzyme had a peroxidase activity toward o-dianisidine with a Km of 17.8 microM and a pH optimum of 5.0. It also showed catalase activity with a Km of 2.07 mM H2O2 and a pH optimum of 8.0. The purified enzyme did not catalyze C alpha-C beta bond cleavage of 1,3-dihydr...

  6. The role of nitrite and nitrate ions as photosensitizers in the phototransformation of phenolic compounds in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Calza, P., E-mail: paola.calza@unito.it [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Vione, D. [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Universita degli Studi di Torino, Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Novelli, A. [Max Planck Institute for Chemistry, 55128 Mainz (Germany); Pelizzetti, E.; Minero, C. [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy)

    2012-11-15

    Nitrite and nitrate are known to be involved in photochemical processes occurring in natural waters. In this study we have investigated the role played by these photosensitizers towards the transformation of xenobiotic organic matter in marine water, with the goal of assessing the typical transformation routes induced in seawater by irradiated nitrite/nitrate. For this purpose, phenol was chosen as model molecule. Phenol transformation was investigated under simulated solar radiation in the presence of nitrite (in the range of 1 Multiplication-Sign 10{sup -5}-1 Multiplication-Sign 10{sup -2} M) or nitrate ions, in pure water at pH 8, in artificial seawater (containing same dissolved salts as seawater but no organic matter), and in natural seawater. In all experiments, phenol degradation rate and formation of intermediates were assessed. As expected, phenol disappearance rate decreased with decreasing nitrite concentration and was slightly reduced by the presence of chloride. Other salts present in artificial seawater (e.g. HCO{sub 3}{sup -}, CO{sub 3}{sup 2-} and Br{sup -}) had a more marked effect on phenol transformation. Analysis of intermediates formed in the different matrices under study showed generation of hydroxyl-, nitro- and chloroderivatives of phenol, to a different extent depending on experimental conditions. 1,4-Benzoquinone prevailed in all cases, nitroderivatives were only formed with nitrite but were not detected in nitrate-spiked solutions. Competition was observed between halogenation and nitration of phenol, with variable outcome depending on nitrite concentration. The most likely reason is competition between nitrating and halogenating species for reaction with the phenoxyl radical. A kinetic model able to justify the occurrence of different intermediates under the adopted conditions is presented and discussed. -- Highlights: Black-Right-Pointing-Pointer Nitrite and nitrate-mediated solar-driven transformations of pollutant in seawater were

  7. The role of nitrite and nitrate ions as photosensitizers in the phototransformation of phenolic compounds in seawater

    International Nuclear Information System (INIS)

    Calza, P.; Vione, D.; Novelli, A.; Pelizzetti, E.; Minero, C.

    2012-01-01

    Nitrite and nitrate are known to be involved in photochemical processes occurring in natural waters. In this study we have investigated the role played by these photosensitizers towards the transformation of xenobiotic organic matter in marine water, with the goal of assessing the typical transformation routes induced in seawater by irradiated nitrite/nitrate. For this purpose, phenol was chosen as model molecule. Phenol transformation was investigated under simulated solar radiation in the presence of nitrite (in the range of 1 × 10 −5 –1 × 10 −2 M) or nitrate ions, in pure water at pH 8, in artificial seawater (containing same dissolved salts as seawater but no organic matter), and in natural seawater. In all experiments, phenol degradation rate and formation of intermediates were assessed. As expected, phenol disappearance rate decreased with decreasing nitrite concentration and was slightly reduced by the presence of chloride. Other salts present in artificial seawater (e.g. HCO 3 − , CO 3 2− and Br − ) had a more marked effect on phenol transformation. Analysis of intermediates formed in the different matrices under study showed generation of hydroxyl-, nitro- and chloroderivatives of phenol, to a different extent depending on experimental conditions. 1,4-Benzoquinone prevailed in all cases, nitroderivatives were only formed with nitrite but were not detected in nitrate-spiked solutions. Competition was observed between halogenation and nitration of phenol, with variable outcome depending on nitrite concentration. The most likely reason is competition between nitrating and halogenating species for reaction with the phenoxyl radical. A kinetic model able to justify the occurrence of different intermediates under the adopted conditions is presented and discussed. -- Highlights: ► Nitrite and nitrate-mediated solar-driven transformations of pollutant in seawater were studied. ► Phenol degradation rate and formation of intermediates were assessed

  8. Induction of 33-kD and 60-kD peroxidases during ethylene-induced senescence of cucumber cotyledons

    International Nuclear Information System (INIS)

    Abeles, F.B.; Dunn, L.J.; Morgens, P.; Callahan, A.; Dinterman, R.E.; Schmidt, J.

    1988-01-01

    Ethylene enhanced the senescence of cucumber (Cucumis sativus L. cv Poinsett 76) cotyledons. The effect of 10 microliters per liter ethylene was inhibited by 1 millimolar silver thiosulfate, an inhibitor of ethylene action. An increase in proteins with molecular weights of 33 to 30 kilodaltons and lower molecular weights (25, 23, 20, 16, 12 and 10 kilodaltons) were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels after ethylene enhanced senescence. The measurement of DNase and RNase activity in gels indicated that these new proteins were not nucleases. Two proteins from ethylene-treated cotyledons were purified on the basis of their association with a red chromaphore and subsequently were identified as peroxidases. The molecular weights and isoelectric points (pI) of two of these peroxidases were 33 kilodaltons (cationic, pI = 8.9) and 60 kilodaltons (anionic, pI = 4.0). The observation that [ 35 S]Na 2 SO 4 was incorporated into these proteins during ethylene-enhanced senescence suggests that these peroxidases represent newly synthesized proteins. Antibodies to the 33-kilodalton peroxidase precipitated two in vitro translation products from RNA isolated from ethylene-treated but not from control cucumber seedlings. This indicates that the increase in 33-kilodalton peroxidase activity represents de novo protein synthesis. Both forms of peroxidase degraded chlorophyll in vitro, which is consistent with the hypothesis that peroxidases have catabolic or scavenging functions in senescent tissues

  9. Interlayer exchange coupling in Er|Tb superlattices mediated by short range incommensurate Er order

    International Nuclear Information System (INIS)

    Pfuhl, E; Brueckel, T; Voigt, J; Mattauch, S; Korolkov, D

    2010-01-01

    We study the magnetic correlations in Er|Tb superlattices by means of off-specular scattering of polarized neutrons. We show here the co-existence of inhomogeneous magnetic states: i) ferromagnetic order of moments within the Tb layers below 230 K (FM), correlation length of about 10 bilayer, ii) an incommensurate modulated magnetic order, restricted to single Er layers and iii) antiferromagnetic coupling of ferromagnetic layers below 70K (AFC). Polarised off-specular neutron scattering under grazing incidence reveals that i) magnetic fluctuations appear when the sample is cooled below 70 K, ii) these fluctuations lead to AFC, when the sample is cooled to 10 K, which iii) persists, when the sample is subsequently heated up to 45 K, while the order is not present during the cooling cycle. Also the short range incommensurate order changes accordingly, implying that the magnetic order in the Er layers mediates the interlayer coupling between ferromagnetic Tb layers.

  10. Non-Dioxin-Like Polychlorinated Biphenyls Inhibit G-Protein Coupled Receptor-Mediated Ca2+ Signaling by Blocking Store-Operated Ca2+ Entry.

    Directory of Open Access Journals (Sweden)

    Se-Young Choi

    Full Text Available Polychlorinated biphenyls (PCBs are ubiquitous pollutants which accumulate in the food chain. Recently, several molecular mechanisms by which non-dioxin-like (NDL PCBs mediate neurodevelopmental and neurobehavioral toxicity have been elucidated. However, although the G-protein coupled receptor (GPCR is a significant target for neurobehavioral disturbance, our understanding of the effects of PCBs on GPCR signaling remains unclear. In this study, we investigated the effects of NDL-PCBs on GPCR-mediated Ca2+ signaling in PC12 cells. We found that ortho-substituted 2,2',6-trichlorinated biphenyl (PCB19 caused a rapid decline in the Ca2+ signaling of bradykinin, a typical Gq- and phospholipase Cβ-coupled GPCR, without any effect on its inositol 1,4,5-trisphosphate production. PCB19 reduced thapsigargin-induced sustained cytosolic Ca2+ levels, suggesting that PCB19 inhibits SOCE. The abilities of other NDL-PCBs to inhibit store-operated Ca2+ entry (SOCE were also examined and found to be of similar potencies to that of PCB19. PCB19 also showed a manner equivalent to that of known SOCE inhibitors. PCB19-mediated SOCE inhibition was confirmed by demonstrating the ability of PCB19 to inhibit the SOCE current and thapsigargin-induced Mn2+ influx. These results imply that one of the molecular mechanism by which NDL-PCBs cause neurobehavioral disturbances involves NDL-PCB-mediated inhibition of SOCE, thereby interfering with GPCR-mediated Ca2+ signaling.

  11. Determination of synthetic phenolic antioxidants in cake by hplc/dad after mixed micelle-mediated cloud point extraction

    International Nuclear Information System (INIS)

    Wang, P.; Liu, C.

    2013-01-01

    A mixed micelle-mediated cloud point extraction (MMCPE) system was developed for the extraction and preconcentration of four synthetic phenolic antioxidants (SPAs) (propyl gallate (PG), tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA) and octyl gallate (OG) ) in cake. The mixture of two kinds of non-ionic surfactants polyoxy ethylene nonyl phenyl ether (NP-7) and polyoxy ethylene nonyl phenyl ether (NP-9) was utilized as a suitable micellar medium for preconcentration and extraction of SPAs. The surfactant-rich phase was then analyzed by high performance liquid chromatography-diode array detection (HPLC-DAD). The effect of different parameters such as concentration of surfactants, proportion of NP-7 and NP-9, equilibration time and temperature on the cloud point extraction (CPE) was carefully optimized. Under the studied conditions, four SPAs were successfully separated within 12 min. The relative standard deviations (RSD, n=6) were 1.2-2.0% and the limits of detection (LOD) were 1.5 ng mL-1 for PG, 3.6 ng mL-1 for TBHQ, 2.9 ng mL-1 for BHA, and 0.8 ng mL-1 for OG, respectively. Recoveries of the SPAs in spiked cake samples were in the range of 92% to 99%. The MMCPE method showed potential advantage for the preconcentration of the SPAs, with enrichment factor of 25. Moreover, the method is simple, has high sensitivity, consumes much less solvent, and has significant advantage in extraction efficiency compared to traditional CPE methods. (author)

  12. Molecular Modeling of Peroxidase and Polyphenol Oxidase: Substrate Specificity and Active Site Comparison

    Directory of Open Access Journals (Sweden)

    Lalida Shank

    2010-09-01

    Full Text Available Peroxidases (POD and polyphenol oxidase (PPO are enzymes that are well known to be involved in the enzymatic browning reaction of fruits and vegetables with different catalytic mechanisms. Both enzymes have some common substrates, but each also has its specific substrates. In our computational study, the amino acid sequence of grape peroxidase (ABX was used for the construction of models employing homology modeling method based on the X-ray structure of cytosolic ascorbate peroxidase from pea (PDB ID:1APX, whereas the model of grape polyphenol oxidase was obtained directly from the available X-ray structure (PDB ID:2P3X. Molecular docking of common substrates of these two enzymes was subsequently studied. It was found that epicatechin and catechin exhibited high affinity with both enzymes, even though POD and PPO have different binding pockets regarding the size and the key amino acids involved in binding. Predicted binding modes of substrates with both enzymes were also compared. The calculated docking interaction energy of trihydroxybenzoic acid related compounds shows high affinity, suggesting specificity and potential use as common inhibitor to grape ascorbate peroxidase and polyphenol oxidase.

  13. Assessment of Behavior of Rice Root Peroxidase in the Presence of Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammadzade

    2016-01-01

    Full Text Available Background Silver Nanoparticles (AgNPs can change proteins function and structure. The increased production and high surface reactivity of silver nanoparticles, has interested researchers to study the interactions of these particles with biomolecules. Objectives The present study aimed to show the effects of AgNPs on rice plant root peroxidase enzyme and the interaction quality between silver nanoparticles and the enzyme. Materials and Methods Extracted peroxidase enzyme of rice plant root was treated by AgNPs at concentrations of 0, 20, 40, 80, 100mg/L for 2, 7 and 24 hours. The experiment was done with 15 treatments for measuring the peroxidase enzyme activity using the spectrophotometry method at a wavelength of 470. Results Low concentrations of AgNPs and short incubation times can have the maximum positive impact on the peroxidase activity, and in the present study the highest activity was seen at a concentration of 40 mg/L and two hours of incubation time. Conclusions This study suggests that changes of enzyme activity can occur as a result of the effect of silver nanoparticles on enzyme conformation, increase of reactive environment pH, and amount of substrate and enzyme stability.

  14. Prediction of two-dimensional electron gas mediated magnetoelectric coupling at ferroelectric PbTiO3/SrTiO3 heterostructures

    Science.gov (United States)

    Wei, Lan-ying; Lian, Chao; Meng, Sheng

    2017-05-01

    First-principles calculations predict the emergence of magnetoelectric coupling mediated by two-dimensional electron gas (2DEG) at the ferroelectric PbTiO3/SrTiO3 heterostructure. Free electrons endowed by naturally existing oxygen vacancies in SrTiO3 are driven to the heterostructure interface under the polarizing field of ferroelectric PbTiO3 to form a 2DEG. The electrons are captured by interfacial Ti atoms, which surprisingly exhibits ferromagnetism even at room temperature with a small critical density of ˜15.5 μ C /cm2 . The ferroelectricity-controlled ferromagnetism mediated by interfacial 2DEG shows strong magnetoelectric coupling strength, enabling convenient control of magnetism by electric field and vice versa. The PbTiO3/SrTiO3 heterostructure is cheap, easily grown, and controllable, promising future applications in low-cost spintronics and information storage at ambient condition.

  15. Determination of Phenolic Acids and Flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique

    Directory of Open Access Journals (Sweden)

    Hung-Ju Chen

    2011-12-01

    Full Text Available A liquid chromatography-tandem mass spectrometry method (LC-MS/MS was developed for the determination of phenolic acids and flavonoids in a medicinal Chinese herb Taraxacum formosanum Kitam. Initially, both phenolic acids and flavonoids were extracted with 50% ethanol in a water-bath at 60 °C for 3 h and eventually separated into acidic fraction and neutral fraction by using a C18 cartridge. A total of 29 compounds were separated within 68 min by employing a Gemini C18 column and a gradient solvent system of 0.1% formic acid and acetonitrile at a flow rate of 1.0 mL/min. Based on the retention behavior as well as absorption and mass spectra, 19 phenolic acids and 10 flavonoids were identified and quantified in T. formosanum, with the former ranging from 14.1 μg/g to 10,870.4 μg/g, and the latter from 9.9 μg/g to 325.8 μg/g. For further identification of flavonoids, a post-column derivatization method involving shift reagents such as sodium acetate or aluminum chloride was used and the absorption spectral characteristics without or with shift reagents were compared. An internal standard syringic acid was used for quantitation of phenolic acids, whereas (± naringenin was found suitable for quantitation of flavonoids. The developed LC-MS/MS method showed high reproducibility, as evident from the relative standard deviation (RSD values for intra-day and inter-day variability being 1.0–6.8% and 2.0–7.7% for phenolic acids and 3.7–7.4% and 1.5–8.1% for flavonoids, respectively, and thus may be applied for simultaneous determination of phenolic acids and flavonoids in Chinese herb and nutraceuticals.

  16. Graphene–palladium nanowires based electrochemical sensor using ZnFe2O4–graphene quantum dots as an effective peroxidase mimic

    International Nuclear Information System (INIS)

    Liu, Weiyan; Yang, Hongmei; Ma, Chao; Ding, Ya-nan; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2014-01-01

    Highlights: • The nanohybrid ZnFe 2 O 4 /GQDs was developed by assembling the GQDs on the ZnFe 2 O 4 through a photo-Fenton reaction. • The ZnFe 2 O 4 /GQDs exhibited higher peroxidase-like activity and better stability than each individual and HRP. • An electrochemical sensor was fabricated using ZnFe 2 O 4 /GQDs nanohybrid as a mimic enzymatic to detect DNA. • Graphene and Pd nanowires were modified on the glassy carbon electrode, which improved the electronic transfer rate. - Abstract: We proposed an electrochemical DNA sensor by using peroxidase-like magnetic ZnFe 2 O 4 –graphene quantum dots (ZnFe 2 O 4 /GQDs) nanohybrid as a mimic enzymatic label. Aminated graphene and Pd nanowires were successively modified on glassy carbon electrode, which improved the electronic transfer rate as well as increased the amount of immobilized capture ssDNA (S1). The nanohybrid ZnFe 2 O 4 /GQDs was prepared by assembling the GQDs on the surface of ZnFe 2 O 4 through a photo-Fenton reaction, which was not only used as a mimic enzyme but also as a carrier to label complementary ssDNA (S3). By synergistically integrating highly catalytically activity of nano-sized GQDs and ZnFe 2 O 4 , the nanohybrid possessed highly-efficient peroxidase-like catalytic activity which could produce a large current toward the reduction of H 2 O 2 for signal amplification. Thionine was used as an excellent electron mediator. Compared with traditional enzyme labels, the mimic enzyme ZnFe 2 O 4 /GQDs exhibited many advantages such as environment friendly and better stability. Under the optimal conditions, the approach provided a wide linear range from 10 −16 to 5 × 10 −9 M and low detection limit of 6.2 × 10 −17 M. The remarkable high catalytic capability could allow the nanohybrid to replace conventional peroxidase-based assay systems. The new, robust and convenient assay systems can be widely utilized for the identification of other target molecules

  17. Copper(I) mediated cross-coupling of amino acid derived organozinc reagents with acid chlorides

    DEFF Research Database (Denmark)

    Hjelmgaard, Thomas; Tanner, David Ackland

    2006-01-01

    This paper describes the development of a straightforward experimental protocol for copper-mediated cross-coupling of amino acid derived beta-amido-alkylzinc iodides 1 and 3 with a range of acid chlorides. The present method uses CuCN center dot 2LiCl as the copper source and for organozinc reagent...... 1 the methodology appears to be limited to reaction with more stable acid chlorides, providing the desired products in moderate yields. When applied to organozinc reagent 3, however, the protocol is more general and provides the products in good yields in all but one of the cases tested....

  18. Biological activity of anthocyanins and their phenolic degradation products and metabolites in human vascular endothelial cells

    OpenAIRE

    Edwards, Michael

    2013-01-01

    Human, animal, and in vitro data indicate significant vasoprotective activity of anthocyanins. However, few studies have investigated the activity of anthocyanin degradation products and metabolites which are likely to mediate bioactivity in vivo. The present thesis therefore examined the vascular bioactivity in vitro of anthocyanins, their phenolic degradants, and the potential for interactions between dietary bioactive compounds. Seven treatment compounds (cyanidin-, peonidin-, petunidin- &...

  19. Activity of Mn-Oxidizing Peroxidases of Ganoderma lucidum Depending on Cultivation Conditions

    Directory of Open Access Journals (Sweden)

    Jasmina Ćilerdžić

    2015-11-01

    Full Text Available Trunks and stumps of various deciduous species act as natural habitats for Ganoderma lucidum. The chemical composition of their cell wall affects the development of fungal ligninolytic enzyme system as well as its ability to degrade lignin from the plant cell wall. Additionally, numerous compounds structurally similar to lignin can be degraded by the G. lucidum enzyme system which could take important roles in various biotechnological processes. The laccases, which are the dominant enzymes synthesized by G. lucidum, have been studied more extensively than the Mn-oxidizing peroxidases. Therefore, this study aimed to create the dynamics profile of Mn-oxidizing peroxidases activities in four G. lucidum strains, classifying and determining their properties depending on the cultivation type and plant residue as a carbon source in the medium, as well as to establish whether intraspecific variety exists. The findings suggest that submerged cultivation appeared to be a more appropriate cultivation type for enzyme activities compared with solid-state cultivation, and oak sawdust was a better carbon source than wheat straw. Under the optimum conditions, on day 14, G. lucidum BEOFB 431 was characterized by the highest levels of both Mn-dependent and Mn-independent peroxidase activities (4795.5 and 5170.5 U/L, respectively. Strain, cultivation type, and carbon source were factors that affected the profiles of Mn-oxidizing peroxidases isoenzymes.

  20. Decolorization of direct dyes using peroxidase from raphanus sativus (F04 SL)

    International Nuclear Information System (INIS)

    Bhatti, H.N.; Kalsoom, U.; Habib, A.

    2012-01-01

    An acidic peroxidase was isolated and partially purified from Raphanus sativus. The purified enzyme was characterized in terms of kinetics and thermodynamic aspects. Finally the enzyme was assessed to see its potential for decolorization of direct dyes. The specific activity of Raphanus sativus peroxidase increased from 44.77 to 65.20 U/mg of protein using 80 % ammonium sulphate precipitation. The optimum pH and temperature of the enzyme was 4 and 55 deg. C respectively. The activation energy of Raphanus sativus peroxidase was 25.44 kJ/mol and average value of Km was 0.25 mM. The activation energy of thermal denaturation of Raphanus sativus peroxidase was 17.79 kJ/mol. It was observed that with an increase in temperature, there was decrease in a half life and enthalpy, which showed that the enzyme was unstable at higher temperature. A maximum decolorization of 97 and 77 % was observed for Solar Blue A and Solar Flavine 5G at pH 4 and temperature 50 deg. C respectively. It was observed that % decolorization of both the dyes increased with an increase in enzyme units and incubation time. H/sub 2/O/sub 2/ dose of 0.8 mM for Solar Blue A and 0.7 mM for Solar Flavine 5G was sufficient for the maximum dye degradation. (author)

  1. Iron Oxide-Cobalt Nanocatalyst for O-tert-Boc Protection and O-Arylation of Phenols

    Directory of Open Access Journals (Sweden)

    Vilas B. Gade

    2018-04-01

    Full Text Available Efficient and general protocols for the O-tert-boc protection and O-arylation of phenols were developed in this paper using a recyclable magnetic Fe3O4-Co3O4 nanocatalyst (Nano-Fe-Co, which is easily accessible via simple wet impregnation techniques in aqueous mediums from inexpensive precursors. The results showed the catalysts were well characterized by XRD (X-ray Diffraction, ICP-AES (Inductive Coupled Plasma Atomic Emission Spectroscopy, TEM (Transmission Electron Microscopy, TOF-SIMS (Time-Of-Flight Secondary Ion Mass Spectrometry and XPS (X-ray Photoelectron Spectroscopy. The O-tert-boc protection and O-arylation of phenols was accomplished in good to excellent yields (85–95% and the catalyst was reusable and recyclable with no loss of catalytic activity for at least six repetitions.

  2. Experimental design for extraction and quantification of phenolic compounds and organic acids in white "Vinho Verde" grapes.

    Science.gov (United States)

    Dopico-García, M S; Valentão, P; Guerra, L; Andrade, P B; Seabra, R M

    2007-01-30

    An experimental design was applied for the optimization of extraction and clean-up processes of phenolic compounds and organic acids from white "Vinho Verde" grapes. The developed analytical method consisted in two steps: first a solid-liquid extraction of both phenolic compounds and organic acids and then a clean-up step using solid-phase extraction (SPE). Afterwards, phenolic compounds and organic acids were determined by high-performance liquid chromatography (HPLC) coupled to a diode array detector (DAD) and HPLC-UV, respectively. Plackett-Burman design was carried out to select the significant experimental parameters affecting both the extraction and the clean-up steps. The identified and quantified phenolic compounds were: quercetin-3-O-glucoside, quercetin-3-O-rutinoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin, kaempferol and epicatechin. The determined organic acids were oxalic, citric, tartaric, malic, shikimic and fumaric acids. The obtained results showed that the most important variables were the temperature (40 degrees C) and the solvent (acid water at pH 2 with 5% methanol) for the extraction step and the type of sorbent (C18 non end-capped) for the clean-up step.

  3. Astringency is a trigeminal sensation that involves the activation of G protein-coupled signaling by phenolic compounds.

    Science.gov (United States)

    Schöbel, Nicole; Radtke, Debbie; Kyereme, Jessica; Wollmann, Nadine; Cichy, Annika; Obst, Katja; Kallweit, Kerstin; Kletke, Olaf; Minovi, Amir; Dazert, Stefan; Wetzel, Christian H; Vogt-Eisele, Angela; Gisselmann, Günter; Ley, Jakob P; Bartoshuk, Linda M; Spehr, Jennifer; Hofmann, Thomas; Hatt, Hanns

    2014-07-01

    Astringency is an everyday sensory experience best described as a dry mouthfeel typically elicited by phenol-rich alimentary products like tea and wine. The neural correlates and cellular mechanisms of astringency perception are still not well understood. We explored taste and astringency perception in human subjects to study the contribution of the taste as well as of the trigeminal sensory system to astringency perception. Subjects with either a lesion or lidocaine anesthesia of the Chorda tympani taste nerve showed no impairment of astringency perception. Only anesthesia of both the lingual taste and trigeminal innervation by inferior alveolar nerve block led to a loss of astringency perception. In an in vitro model of trigeminal ganglion neurons of mice, we studied the cellular mechanisms of astringency perception. Primary mouse trigeminal ganglion neurons showed robust responses to 8 out of 19 monomeric phenolic astringent compounds and 8 polymeric red wine polyphenols in Ca(2+) imaging experiments. The activating substances shared one or several galloyl moieties, whereas substances lacking the moiety did not or only weakly stimulate responses. The responses depended on Ca(2+) influx and voltage-gated Ca(2+) channels, but not on transient receptor potential channels. Responses to the phenolic compound epigallocatechin gallate as well as to a polymeric red wine polyphenol were inhibited by the Gαs inactivator suramin, the adenylate cyclase inhibitor SQ, and the cyclic nucleotide-gated channel inhibitor l-cis-diltiazem and displayed sensitivity to blockers of Ca(2+)-activated Cl(-) channels. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products.

    Science.gov (United States)

    Ramirez-Ambrosi, M; Abad-Garcia, B; Viloria-Bernal, M; Garmon-Lobato, S; Berrueta, L A; Gallo, B

    2013-11-05

    A new, rapid, selective and sensitive ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-DAD-ESI-Q-ToF-MS) strategy using automatic and simultaneous acquisition of exact mass at high and low collision energy, MS(E), has been developed to obtain polyphenolic profile of apples, apple pomace and apple juice from Asturian cider apples in a single run injection of 22 min. MS(E) spectral data acquisition overcomes chromatographic co-elution problems, performing simultaneous collection of precursor ions as well as other ions produced as a result of their fragmentation, which allows resolving complex spectra from mixtures of precursor ions in an unsupervised way and eases their interpretation. Using this technique, 52 phenolic compounds of five different classes were readily characterized in these apple extracts in both positive and negative ionization modes. The spectral data for phenolic compounds obtained using this acquisition mode are comparable to those obtained by conventional LC-MS/MS as exemplified in this work. Among the 52 phenolic compounds identified in this work, 2 dihydrochalcones and 3 flavonols have been tentatively identified for the first time in apple products. Moreover, 2 flavanols, 4 dihydrochalcones, 9 hydroxycinnamic acids and 4 flavonols had not been previously reported in apple by ToF analysis to our knowledge. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Biological removal of phenol from wastewaters: a mini review

    Science.gov (United States)

    Pradeep, N. V.; Anupama, S.; Navya, K.; Shalini, H. N.; Idris, M.; Hampannavar, U. S.

    2015-06-01

    Phenol and its derivatives are common water pollutants and include wide variety of organic chemicals. Phenol poisoning can occur by skin absorption, inhalation, ingestion and various other methods which can result in health effects. High exposures to phenol may be fatal to human beings. Accumulation of phenol creates toxicity both for flora and fauna. Therefore, removal of phenol is crucial to perpetuate the environment and individual. Among various treatment methods available for removal of phenols, biodegradation is environmental friendly. Biological methods are gaining importance as they convert the wastes into harmless end products. The present work focuses on assessment of biological removal (biodegradation) of phenol. Various factors influence the efficiency of biodegradation of phenol such as ability of the microorganism, enzymes involved, the mechanism of degradation and influencing factors. This study describes about the sources of phenol, adverse effects on the environment, microorganisms involved in the biodegradation (aerobic and anaerobic) and enzymes that polymerize phenol.

  6. A peroxidase gene expressed during early developmental stages of the parasitic plant Orobanche ramosa.

    Science.gov (United States)

    González-Verdejo, Clara Isabel; Barandiaran, Xabier; Moreno, Maria Teresa; Cubero, José Ignacio; Di Pietro, Antonio

    2006-01-01

    Broomrapes (Orobanche spp.) are holoparasitic weeds that cause devastating losses in many economically important crops. The molecular mechanisms that control the early stages of host infection in Orobanche are poorly understood. In the present study, the role of peroxidase has been examined during pre-infection growth and development of O. ramosa, using an in vitro model system. Peroxidase activity was histochemically localized at the tips of actively growing radicles and nascent attachment organs. Addition of exogenous catalase resulted in a significant reduction in the apical growth rate of the radicle. The prx1 gene encoding a putative class III peroxidase was cloned from a cDNA library of O. ramosa and was found to be expressed specifically during the early stages of the parasitic life cycle. The exogenous addition of sucrose resulted in significantly reduced prx1 transcript levels and in a dramatic change in radicle development from polarized apical growth to isotropic growth and the formation of tubercle-like structures. The results indicate an important role of peroxidases during the early parasitic stages of Orobanche.

  7. Peroxidase activity in roots of arracacha affected by pH and temperature = Atividade da peroxidase em raízes de batata-baroa afetada pelo pH e temperatura

    Directory of Open Access Journals (Sweden)

    Luciana Nunes Menolli

    2011-07-01

    Full Text Available In this paper, roots of arracacha (Arracacia xanthorrhyza Bancroft were stored at 5ºC to induce chilling injury symptoms and stress-related peroxidase activity. Later, peroxidase kinetic activity was determined in different pH and temperature conditions. For this, soluble crude extract was sequentially saturated with ammonium sulfate, obtaining a semi-purified enzyme solution used for the analysis. Activity of peroxidase induced by the chilling at 5oC was determined from pH 2.5 to 9.0 and at temperature ranging from 10 to80oC. The peroxidase had higher activity when the reaction occurred between pH 5.5 and 6.0 and at temperature of 30oC. Complete inactivation of the activity was observed in pH 2.5 after 60 minutes of pre-incubation or at 60oC for 10 minutes or alternatively at 70oCafter 5 minutes of pre-incubation. The enzyme is more susceptible to inactivation in acid than alkaline pHs or alternatively using heat treatment.Neste trabalho, raízes de batata-baroa (Arracacia xanthorrhiza Bancroft foram armazenadas a 5oC para induzir injúria por frio e expressar atividade da peroxidase de estresse. Posteriormente, a cinética de atividade foi determinada em diferentes condições depHs e temperatura. Para isto, extrato solúvel da raiz foi sequencialmente saturado com sulfato de amônio, obtendo-se uma preparação semi-purificada para a análise enzimática. Atividade peroxidativa induzida pela temperatura de armazenamento de 5oC foideterminada em pHs de 2,5 a 9,0 e a temperaturas de 10 a 80oC. A atividade da peroxidase foi maior quando a reação foi realizada nos pHs de 5,5 e 6,0 e temperatura de 30oC. A inativação completa da enzima ocorreu em pH de 2,5 após 60 min. de pré-incubação ou a60oC por 10 min., e alternativamente a 70oC após 5 min. de pré-incubação. A enzima foi mais susceptível à inativação em pH ácido do que alcalino, podendo também ser inativada pelo tratamento de calor.

  8. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Science.gov (United States)

    Wang, Liwei; Wang, Xinfeng; Gu, Rongrong; Wang, Hao; Yao, Lan; Wen, Liang; Zhu, Fanping; Wang, Weihao; Xue, Likun; Yang, Lingxiao; Lu, Keding; Chen, Jianmin; Wang, Tao; Zhang, Yuanghang; Wang, Wenxing

    2018-03-01

    Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain) in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m-3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m-3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  9. [Production, absorption and excretion of phenols in intestinal obstruction].

    Science.gov (United States)

    Kawamoto, M

    1986-11-01

    In intestinal obstruction, phenols were produced in the distended loop proximal to obstruction by enteric bacteria. Clinically, in 17 cases of non-strangulated intestinal obstruction, phenols were detected in 15 cases and mean concentration of phenols was 4.2 +/- 9.7 micro g/ml(mean +/- 1 SD). In the fraction of phenols, p-cresol was detected in 15 cases and mean concentration was 3.8 +/- 7.7 and phenol was detected in 4 cases and mean concentration was 0.5 +/- 2.6. Phenols were decreased as clinical improvement of intestinal obstruction. Enteric bacteria in enteric juice ranged from 10(4) to 10(10)/ml and its change paralleled to phenols concentration. Mean urinary concentration of phenols in intestinal obstruction was increased to 297 +/- 415 mg/day compared to control (less than 50 mg/day). Its change also paralleled to phenols concentration in enteric juice. Closed ileal loop was made in dogs and phenols were infused in the loop. Phenols were increased in the portal vein 5 min after the infusion and in the femoral vein 60 min after the infusion. Phenols, which was thought to be toxic to the host, were proved to be produced in the distended intestine and excreted from the kidney.

  10. Oyster mushrooms ( Pleurotus ) are useful for utilizing lignocellulosic ...

    African Journals Online (AJOL)

    The biodegradation and bioconversion of agro wastes (lignin, cellulose and hemicellulose) could have vital implication in cleaning our environment. The bioprocessing of lignin depends on the potent lignocellulolytic enzymes such as phenol oxidases (laccase) or heme peroxidases (lignin peroxidase (LiP), manganese ...

  11. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay.

    Science.gov (United States)

    Vallverdú-Queralt, Anna; Regueiro, Jorge; Martínez-Huélamo, Miriam; Rinaldi Alvarenga, José Fernando; Leal, Leonel Neto; Lamuela-Raventos, Rosa M

    2014-07-01

    Herbs and spices have long been used to improve the flavour of food without being considered as nutritionally significant ingredients. However, the bioactive phenolic content of these plant-based products is currently attracting interest. In the present work, liquid chromatography coupled to high-resolution/accurate mass measurement LTQ-Orbitrap mass spectrometry was applied for the comprehensive identification of phenolic constituents of six of the most widely used culinary herbs (rosemary, thyme, oregano and bay) and spices (cinnamon and cumin). In this way, up to 52 compounds were identified in these culinary ingredients, some of them, as far as we know, for the first time. In order to establish the phenolic profiles of the different herbs and spices, accurate quantification of the major phenolics was performed by multiple reaction monitoring in a triple quadrupole mass spectrometer. Multivariate statistical treatment of the results allowed the assessment of distinctive features among the studied herbs and spices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Thylakoid-bound ascorbate peroxidase increases resistance to salt ...

    African Journals Online (AJOL)

    Reactive oxygen species (ROS) are cellular indicators of stress. In plants, they function as secondary messengers in response to environmental stress. Ascorbate peroxidase (APX) is an important enzyme directly involved in the scavenging of ROS. In this study, we aimed at identifying the function of the Brassica napus ...

  13. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase.

    Science.gov (United States)

    Lin, Lianzhu; Yang, Qingyun; Zhao, Kun; Zhao, Mouming

    2018-07-01

    Adlay bran free phenolic extract has been previously demonstrated to possess potent xanthine oxidase (XOD) inhibitory activity. The aims of this study were to characterize the free phenolic profile of adlay bran and investigate the structure-activity relationship, underlying mechanism and interaction of phenolic acids as XOD inhibitors. A total of twenty phenolics including ten phenolic acids, two coumarins, two phenolic aldedhyes and six flavonoids were identified in a phenolic compound-guided separation by UPLC-QTOF-MS/MS. Adlay bran free phenolic extract possessed strong XOD inhibitory activity related to hydroxycinnamic acids with methoxyl groups. The hydrogen bonding and hydrophobic interactions were the main forces in the binding of adlay phenolics to XOD. Sinapic acid, identified in adlay bran for the first time, possessed strong XOD inhibitory activity in a mixed non-competitive manner, and synergistic effects with other adlay phenolic acids at low concentrations, and would be a promising agent for preventing and treating hyperuricemia. Copyright © 2018. Published by Elsevier Ltd.

  14. Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi

    International Nuclear Information System (INIS)

    Singh, Anchal; Rathaur, Sushma

    2005-01-01

    Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass ∼20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/μg of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite

  15. Mutagenicity testing in the Salmonella typhimurium assay of phenolic compounds and phenolic fractions obtained from smokehouse smoke condensates.

    Science.gov (United States)

    Pool, B L; Lin, P Z

    1982-08-01

    Smokehouse smoke, which is used for flavouring meat products, was investigated for its mutagenic activity in the Salmonella typhimurium assay. We were chiefly concerned with the fractions free of polycyclic aromatic hydrocarbons but containing phenol compounds, which are responsible for the preservative and aromatizing properties of the smoke. The most abundantly occurring phenol compounds (phenol, cresols, 2,4-dimethylphenol, brenzcatechine, syringol, eugenol, vanilline and guaiacol) gave negative results when they were tested for mutagenicity at five concentrations up to 5000 micrograms/plate, with and without S-9 mix, using five strains of S. typhimurium. Even when phenol was further investigated in a variety of test conditions, no induction of his+ revertants was observed. When smokehouse smoke was condensed and fractionated the majority of the various phenolic fractions also gave negative results when tested at five concentrations using five strains of S. typhimurium. However there was a slight increase in the number of revertants in a few cases. The presence in the phenolic fractions of very small amounts of mutagenic impurities, the nature of which needs further investigation, cannot be excluded. These results support the further development of non-hazardous smoke-aroma preparations, based on the phenolic components of smokehouse smoke.

  16. Mutagenicity testing in the Salmonella typhimurium assay of phenolic compounds and phenolic fractions obtained from smokehouse smoke condensates

    Energy Technology Data Exchange (ETDEWEB)

    Pool, B.L.; Lin, P.Z.

    1982-08-01

    Smokehouse smoke, which is used for flavouring meat products, was investigated for its mutagenic activity in the Salmonella typhimurium assay. We were chiefly concerned with the fractions free of polycyclic aromatic hydrocarbons but containing phenol compounds, which are responsible for the preservative and aromatizing properties of the smoke. The most abundantly occurring phenol compounds (phenol, cresols, 2,4-dimethylphenol, brenzcatechine, syringol, eugenol, vanilline and guaiacol) gave negative results when they were tested for mutagenicity at five concentrations up to 5000 micrograms/plate, with and without S-9 mix, using five strains of S. typhimurium. Even when phenol was further investigated in a variety of test conditions, no induction of his+ revertants was observed. When smokehouse smoke was condensed and fractionated the majority of the various phenolic fractions also gave negative results when tested at five concentrations using five strains of S. typhimurium. However there was a slight increase in the number of revertants in a few cases. The presence in the phenolic fractions of very small amounts of mutagenic impurities, the nature of which needs further investigation, cannot be excluded. These results support the further development of non-hazardous smoke-aroma preparations, based on the phenolic components of smokehouse smoke.

  17. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase.

    Science.gov (United States)

    Hammel, K E; Mozuch, M D; Jensen, K A; Kersten, P J

    1994-11-15

    Oxidative C alpha-C beta cleavage of the arylglycerol beta-aryl ether lignin model 1-(3,4-dimethoxy-phenyl)-2-phenoxypropane-1,3-diol (I) by Phanerochaete chrysosporium lignin peroxidase in the presence of limiting H2O2 was enhanced 4-5-fold by glyoxal oxidase from the same fungus. Further investigation showed that each C alpha-C beta cleavage reaction released 0.8-0.9 equiv of glycolaldehyde, a glyoxal oxidase substrate. The identification of glycolaldehyde was based on 13C NMR spectrometry of reaction product obtained from beta-, gamma-, and beta,gamma-13C-substituted I, and quantitation was based on an enzymatic NADH-linked assay. The oxidation of glycolaldehyde by glyoxal oxidase yielded 0.9 oxalate and 2.8 H2O2 per reaction, as shown by quantitation of oxalate as 2,3-dihydroxyquinoxaline after derivatization with 1,2-diaminobenzene and by quantitation of H2O2 in coupled spectrophotometric assays with veratryl alcohol and lignin peroxidase. These results suggest that the C alpha-C beta cleavage of I by lignin peroxidase in the presence of glyoxal oxidase should regenerate as many as 3 H2O2. Calculations based on the observed enhancement of LiP-catalyzed C alpha-C beta cleavage by glyoxal oxidase showed that approximately 2 H2O2 were actually regenerated per cleavage of I when both enzymes were present. The cleavage of arylglycerol beta-aryl ether structures by ligninolytic enzymes thus recycles H2O2 to support subsequent cleavage reactions.

  18. Preconception and prenatal urinary concentrations of phenols and birth size of singleton infants born to mothers and fathers from the Environment and Reproductive Health (EARTH) study.

    Science.gov (United States)

    Messerlian, Carmen; Mustieles, Vicente; Minguez-Alarcon, Lidia; Ford, Jennifer B; Calafat, Antonia M; Souter, Irene; Williams, Paige L; Hauser, Russ

    2018-05-01

    Although pregnancy concentrations of some phenols have been associated with infant size at birth, there is limited data on the effect of preconception exposure. We aimed to examine paternal and maternal preconception and maternal prenatal urinary phenol concentrations in relation to birth weight and head circumference. We evaluated 346 singletons born to 346 mothers and 184 fathers (184 couples) from a prospective preconception cohort of subfertile couples from the Environment and Reproductive Health (EARTH) Study in Boston, USA. We used multiple urine samples collected before the index pregnancy in both men and women to estimate mean preconception urinary benzophenone-3, triclosan, butylparaben, propylparaben, methylparaben, or ethylparaben concentrations. We also estimated mean maternal prenatal urinary phenol concentrations by averaging trimester-specific urine samples. Birth weight and head circumference were abstracted from delivery records. We estimated the association of natural log-phenol concentrations with birth outcomes using multivariable linear regression models, adjusting for known confounders. In adjusted models, each log-unit increase in paternal preconception benzophenone-3 concentration was associated with a 137 g increase in birth weight (95% CI: 60, 214). Additional adjustment for prenatal benzophenone-3 concentration strengthened this association. None of the maternal preconception phenol concentrations were associated with birth weight. However, maternal prenatal triclosan concentrations were associated with a 38 g decrease in birth weight (95% CI: -76, 0). Few associations were observed between phenols and head circumference except for a decrease of 0.27 cm (95% CI: -54, 0) in relation to maternal preconception methylparaben concentration. Although our findings should be interpreted in light of inherent study limitations, these results suggest potential evidence of associations between some paternal or maternal phenol concentrations and

  19. Activity of the C-terminal-dependent vacuolar sorting signal of horseradish peroxidase C1a is enhanced by its secondary structure.

    Science.gov (United States)

    Matsui, Takeshi; Tabayashi, Ayako; Iwano, Megumi; Shinmyo, Atsuhiko; Kato, Ko; Nakayama, Hideki

    2011-02-01

    Plant class III peroxidase (PRX) catalyzes the oxidation and oxidative polymerization of a variety of phenolic compounds while reducing hydrogen peroxide. PRX proteins are classified into apoplast type and vacuole type based on the absence or the presence of C-terminal propeptides, which probably function as vacuolar sorting signals (VSSs). In this study, in order to improve our understanding of vacuole-type PRX, we analyzed regulatory mechanisms of vacuolar sorting of a model vacuole-type PRX, the C1a isozyme of horseradish (Armoracia rusticana) (HRP C1a). Using cultured transgenic tobacco cells and protoplasts derived from horseradish leaves, we characterized HRP C1a's VSS, which is a 15 amino acid C-terminal propeptide (C15). We found that the C-terminal hexapeptide of C15 (C6), which is well conserved among vacuole-type PRX proteins, forms the core of the C-terminal-dependent VSS. We also found that the function of C6 is enhanced by the remaining N-terminal part of C15 which probably folds into an amphiphilic α-helix.

  20. Glutathione peroxidase mimic ebselen improves glucose-stimulated insulin secretion in murine islets.

    Science.gov (United States)

    Wang, Xinhui; Yun, Jun-Won; Lei, Xin Gen

    2014-01-10

    Glutathione peroxidase (GPX) mimic ebselen and superoxide dismutase (SOD) mimic copper diisopropylsalicylate (CuDIPs) were used to rescue impaired glucose-stimulated insulin secretion (GSIS) in islets of GPX1 and(or) SOD1-knockout mice. Ebselen improved GSIS in islets of all four tested genotypes. The rescue in the GPX1 knockout resulted from a coordinated transcriptional regulation of four key GSIS regulators and was mediated by the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)-mediated signaling pathways. In contrast, CuDIPs improved GSIS only in the SOD1 knockout and suppressed gene expression of the PGC-1α pathway. Islets from the GPX1 and(or) SOD1 knockout mice provided metabolically controlled intracellular hydrogen peroxide (H2O2) and superoxide conditions for the present study to avoid confounding effects. Bioinformatics analyses of gene promoters and expression profiles guided the search for upstream signaling pathways to link the ebselen-initiated H2O2 scavenging to downstream key events of GSIS. The RNA interference was applied to prove PGC-1α as the main mediator for that link. Our study revealed a novel metabolic use and clinical potential of ebselen in rescuing GSIS in the GPX1-deficient islets and mice, along with distinct differences between the GPX and SOD mimics in this regard. These findings highlight the necessities and opportunities of discretional applications of various antioxidant enzyme mimics in treating insulin secretion disorders. REBOUND TRACK: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Regina Brigelius-Flohe, Vadim Gladyshev, Dexing Hou, and Holger Steinbrenner.

  1. A peroxidase related to the mammalian antimicrobial protein myeloperoxidase in the Euprymna-Vibrio mutualism.

    Science.gov (United States)

    Weis, V M; Small, A L; McFall-Ngai, M J

    1996-11-26

    Many animal-bacteria cooperative associations occur in highly modified host organs that create a unique environment for housing and maintaining the symbionts. It has been assumed that these specialized organs develop through a program of symbiosis-specific or -enhanced gene expression in one or both partners, but a clear example of this process has been lacking. In this study, we provide evidence for the enhanced production of an enzyme in the symbiotic organ of the squid Euprymna scolopes, which harbors a culture of the luminous bacterium Vibrio fischeri. Our data show that this enzyme has a striking biochemical similarity to mammalian myeloperoxidase (MPO; EC 1.11.17), an antimicrobial dianisidine peroxidase that occurs in neutrophils. MPO and the squid peroxidase catalyze the same reaction, have similar apparent subunit molecular masses, and a polyclonal antibody to native human MPO specifically localized a peroxidase-like protein to the bacteria-containing regions of the symbiotic organ. We also provide evidence that a previously described squid cDNA encodes the protein (LO4) that is responsible for the observed dianisidine peroxidase activity. An antibody made against a fragment of LO4 immunoprecipiated dianisidine peroxidase activity from extracts of the symbiotic organ, and reacted against these extracts and human MPO in Western blot analysis. These data suggest that related biochemical mechanisms for the control of bacterial number and growth operate in associations that are as functionally diverse as pathogenesis and mutualism, and as phylogenetically distant as molluscs and mammals.

  2. Compositional differences in the phenolics compounds of ...

    African Journals Online (AJOL)

    This study evaluates phenolic composition of commercial and experimental wines derived from bunch (Vitis vinifera) and muscadine (Vitis rotundifolia) grapes to determine compositional differences in phenolics. HPLC analysis of wines showed that majority of phenolic compounds eluted during the first 30 min. Of the red ...

  3. Identification and genetic characterization of phenol- degrading ...

    African Journals Online (AJOL)

    SAURABH

    2013-02-20

    Feb 20, 2013 ... this paper, we reported about the new strain of Acinetobacter sp. ... characteristics of an efficient phenol-degrading microorganism. ... compounds are widespread in the environment. The problem is compounded by the fact that phenol is toxic, ... The phenol biodegradation ability of this bacterium was.

  4. Chemistry and health of olive oil phenolics.

    Science.gov (United States)

    Cicerale, Sara; Conlan, Xavier A; Sinclair, Andrew J; Keast, Russell S J

    2009-03-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, and certain types of cancer. The apparent health benefits have been partially attributed to the dietary consumption of virgin olive oil by Mediterranean populations. Most recent interest has focused on the biologically active phenolic compounds naturally present in virgin olive oils. Studies (human, animal, in vivo and in vitro) have shown that olive oil phenolics have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, and antimicrobial activity. Presumably, regular dietary consumption of virgin olive oil containing phenolic compounds manifests in health benefits associated with a Mediterranean diet. This paper summarizes current knowledge on the physiological effects of olive oil phenolics. Moreover, a number of factors have the ability to affect phenolic concentrations in virgin olive oil, so it is of great importance to understand these factors in order to preserve the essential health promoting benefits of olive oil phenolic compounds.

  5. Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste.

    Science.gov (United States)

    Khatoon, Nazia; Jamal, Asif; Ali, Muhammad Ishtiaq

    2018-01-05

    Fungal metabolites are playing an immense role in developing various sustainable waste treatment processes. The present study aimed at production and characterization of fungal lignin peroxidase (EC 1.11.1.14) with a potential to degrade Polyvinyl Chloride. Optimization studies revealed that the maximum enzyme production occurred at a temperature 25°C, pH 5 in the 4th week of the incubation period with fungal strain. Enzyme assay was performed to find out the dominating enzyme in the culture broth. The molecular weight of the enzyme was found to be 46 kDa. Partially purified lignin peroxidase from Phanerocheate chrysosporium was used for the degradation of PVC films. A significant reduction in the weight of PVC film was observed (31%) in shake flask experiment. FTIR spectra of the enzyme-treated plastic film revealed structural changes in the chemical composition, indicating a specific peak at 2943 cm -1 that corresponded to alkenyl C-H stretch. Moreover, deterioration on the surface of PVC films was confirmed by Scanning Electron Microscopy tracked through activity assay for the lignin peroxidase. Extracellular lignin peroxidases from P. chrysosporium play a significant role in the degradation of complex polymeric compounds like PVC.

  6. Polyamines, peroxidase and proteins involved in the senescence ...

    African Journals Online (AJOL)

    Senescence is the natural aging process at the cellular level or range of phenomena associated with this process. The objective of this review was to show the involvement of substances that may be related to senescence in plants, such as polyamines, peroxidase and proteins. These substances were related with the ...

  7. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    GREGO

    2006-12-18

    Dec 18, 2006 ... enzymes in plant and its resistance to heat has been reported by a ... sintered glass funnel and washed with cold acetone under low vacuum ... Peroxidase activity was determined by measuring the colour deve- lopment at ...

  8. Electrochemical remediation of the phenol contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Lazareva, E.V. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study phenol migration induced by electric current is multiple analyze, because determine the governing factor of electrokinetic remediation is one more problem. The governing factor of phenol removal can be electroosmotic water transport, ionic migration or phenol destruction caused by electrolysis or oxidizing agents. Therefore research objective was study mechanism of removal phenol from soils with different mineral composition. To answer on set issue should be studied the effectiveness of electrochemcial remediation for contaminated soil and determination electrokinetic characteristics of interaction clay's particles with phenol solution. (orig.)

  9. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    Science.gov (United States)

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase. © 2014 The Authors.

  10. Effect of caffeine on peroxidase activity and gamma-ray-induced oxic and anoxic damage in Hordeum vulgare

    International Nuclear Information System (INIS)

    Balachandran, R.; Kesavan, P.C.

    1978-01-01

    The influence of caffeine during and after gamma radiation of barley seeds was studied using seedling injury and peroxidase activity as parameters. The radiation-induced stimulation of peroxidase activity is evident in eight-day only seedlings but not in embryos (i.e. immediately after irradiation). Caffeine present during irradiation of seeds soaked in oxygenated water diminishes seedling injury and also reduces the peroxidase activity to the level observed in eight-day old seedlings of unirradiated seeds. Caffeine, however, produces just the opposite effect (i.e. enhances the seedling injury and peroxidase activity of eight-day old seedlings) when applied during irradiation of seeds soaked in oxygen-free water. There is no evidence that caffeine effects enzyme activity under in vitro conditions. (author)

  11. The effect of ultraviolet treatment on enzymatic activity and total phenolic content of minimally processed potato slices.

    Science.gov (United States)

    Teoh, Li Shing; Lasekan, Ola; Adzahan, Noranizan Mohd; Hashim, Norhashila

    2016-07-01

    In this work, potato slices were exposed to different doses of UV-C irradiation (i.e. 2.28, 6.84, 11.41, and 13.68 kJ m -2 ) with or without pretreatment [i.e. ascorbic acid and calcium chloride (AACCl) dip] and stored at 4 ± 1 °C. Changes in enzymatic activities of polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia lyase (PAL), as well as total phenolic content (TPC) were investigated after 0, 3, 7 and 10 days of storage. Results showed that untreated and UV-C treated potato slices at 13.68 kJ m -2 dosage level showed significantly higher PPO, POD and PAL activities. Conversely, untreated potato slices showed the lowest TPC during storage period. Potato slices subjected to AACCl dip plus UV-C at 6.84 kJ m -2 produced lower PPO, POD and PAL activities, as well as maintained a high TPC during storage.

  12. Peroxidase activity of the rat blood at prolonged intake of 137Cs

    Directory of Open Access Journals (Sweden)

    Yu. P. Grynevych

    2013-03-01

    Full Text Available Investigated peroxidase activity of blood white nonlinear rats-males by daily oral administration of 15 kBq 137Cs by chemiluminescence. Discovered oscillatory nature of the changes chemiluminescent indicators peroxi-dase oxidation of blood, the maximum deviation of the control are registered during the 4th and 60th days, and the minimum at the 1st, 7th and 135th days. Recovering kinetic parameters CL does not occur within 135 days of ob-servation (the 90th day of the completion of the introduction of radioactive cesium.

  13. Antidepressant-like activity of red wine phenolic extracts in repeated corticosterone-induced depression mice via BDNF/TrkB/CREB signaling pathway

    Directory of Open Access Journals (Sweden)

    Jia Ying

    2016-01-01

    Full Text Available The aim of this study was to investigate the antidepressant-like effect of red wine phenolic extracts in mouse model exposed to exogenous corticosterone. The results showed that 3-week corticosterone injections caused depression-like behavior in mice, as indicated by the significant decrease in sucrose consumption and increase immobility time in the forced swim test. Red wine phenolic extracts treatment significantly reduced serum corticosterone levels. Moreover, it was found that red wine phenolic extract increased the brain-derived neurotrophic factor protein (BNDF and Tropomyosin-related kinase B (TrkB phosphorylation and cAMP-responsive element binding protein (CREB phosphorylation levels in the hippocampus and prefrontal cortex. However, K252a, an inhibitor of TrkB, completely abolished those antidepressant-like effects. These results suggested that the red wine phenolic extracts produce an antidepressant-like effect in corticosterone-treated mice, at least in part, which is possibly mediated by modulating hypothalamic-pituitary-adrenal (HPA axis, BDNF, TrkB and CREB phosphorylation levels in the brain region of mice.

  14. Iodine-Mediated Intramolecular Dehydrogenative Coupling: Synthesis of N-Alkylindolo[3,2-c]- and -[2,3-c]quinoline Iodides.

    Science.gov (United States)

    Volvoikar, Prajesh S; Tilve, Santosh G

    2016-03-04

    An I2/TBHP-mediated intramolecular dehydrogenative coupling reaction is developed for the synthesis of a library of medicinally important 5,11-dialkylindolo[3,2-c]quinoline salts and 5,7-dimethylindolo[2,3-c]quinoline salts. The annulation reaction is followed by aromatization to yield tetracycles in good yield. This protocol is also demonstrated for the synthesis of the naturally occurring isocryptolepine in salt form.

  15. [Cell surface peroxidase--generator of superoxide anion in wheat root cells under wound stress].

    Science.gov (United States)

    Chasov, A V; Gordon, L Kh; Kolesnikov, O P; Minibaeva, F V

    2002-01-01

    Development of wound stress in excised wheat roots is known to be accompanied with an increase in reactive oxygen species (ROS) production, fall of membrane potential, release of K+ from cells, alkalization of extracellular solution, changes in respiration and metabolism of structural lipids. Dynamics of superoxide release correlates with changes in other physiological parameters, indicating the cross-reaction of these processes. Activity of peroxidase in extracellular solution after a 1 h incubation and removal of roots was shown to be stimulated by the range of organic acids, detergents, metals, and to be inhibited by cyanide. Superoxide production was sensitive to the addition of Mn2+ and H2O2. Increase in superoxide production correlates with the enhancement of peroxidase activity at the application of organic acids and detergents. The results obtained indicate that cell surface peroxidase is one of the main generators of superoxide in wounded wheat root cells. Different ways of stimulation of the ROS producing activity in root cells is supposed. By controlling superoxide and hydrogen peroxide formation, the cell surface peroxidase can control the adaptation processes in stressed plant cells.

  16. Inhibition of lignin-derived phenolic compounds to cellulase.

    Science.gov (United States)

    Qin, Lei; Li, Wen-Chao; Liu, Li; Zhu, Jia-Qing; Li, Xia; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Lignin-derived phenolic compounds are universal in the hydrolysate of pretreated lignocellulosic biomass. The phenolics reduce the efficiency of enzymatic hydrolysis and increase the cost of ethanol production. We investigated inhibition of phenolics on cellulase during enzymatic hydrolysis using vanillin as one of the typical lignin-derived phenolics and Avicel as cellulose substrate. As vanillin concentration increased from 0 to 10 mg/mL, cellulose conversion after 72-h enzymatic hydrolysis decreased from 53 to 26 %. Enzyme deactivation and precipitation were detected with the vanillin addition. The enzyme concentration and activity consecutively decreased during hydrolysis, but the inhibition degree, expressed as the ratio of the cellulose conversion without vanillin to the conversion with vanillin (A 0 /A), was almost independent on hydrolysis time. Inhibition can be mitigated by increasing cellulose loading or cellulase concentration. The inhibition degree showed linear relationship with the vanillin concentration and exponential relationship with the cellulose loading and the cellulase concentration. The addition of calcium chloride, BSA, and Tween 80 did not release the inhibition of vanillin significantly. pH and temperature for hydrolysis also showed no significant impact on inhibition degree. The presence of hydroxyl group, carbonyl group, and methoxy group in phenolics affected the inhibition degree. Besides phenolics concentration, other factors such as cellulose loading, enzyme concentration, and phenolic structure also affect the inhibition of cellulose conversion. Lignin-blocking agents have little effect on the inhibition effect of soluble phenolics, indicating that the inhibition mechanism of phenolics to enzyme is likely different from insoluble lignin. The inhibition of soluble phenolics can hardly be entirely removed by increasing enzyme concentration or adding blocking proteins due to the dispersity and multiple binding sites of phenolics

  17. Determination of phenolic compounds using high-performance liquid chromatography with Ce4+-Tween 20 chemiluminescence detection

    International Nuclear Information System (INIS)

    Cui Hua; Zhou Jian; Xu Feng; Lai Chunze; Wan Guohui

    2004-01-01

    A novel method for the simultaneous determination of phenolic compounds such as salicylic acid, resorcinol, phloroglucinol, p-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, and m-nitrophenol by high-performance liquid chromatography (HPLC) coupled with chemiluminescence (CL) detection was developed. The procedure was based on the chemiluminescent enhancement by phenolic compounds of the cerium(IV)-Tween 20 system in a sulfuric acid medium. The separation was carried out with an isocratic elution or with a gradient elution using a mixture of methanol and 1.5% acetic acid. For six phenolic compounds, the detection limits (3σ) were in the range 1.40-5.02 ng/ml and the relative standard deviations (n=11) for the determination of 0.1 μg/ml compounds were in the range 1.9-2.9%. The CL reaction was well compatible with the mobile phase of HPLC, no baseline drift often occurred in HPLC-CL detection was observed with a gradient elution. The method has been successfully applied to the determination of salicylic acid and resorcinol in Dermatitis Clear Tincture and p-hydroxybenzoic acid in apple juices

  18. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    Science.gov (United States)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  19. Molecular cloning and characterization of a new peroxidase gene ...

    African Journals Online (AJOL)

    length cDNA of O.violaceus peroxidase gene (OvRCI, GenBank. Acc. No. AY428037) was 1220 bp and contained an 1128 bp open reading frame encoding a protein of 375 amino acids. Homology analysis and molecular modeling revealed that ...

  20. Composition, physicochemical properties and thermal inactivation kinetics of polyphenol oxidase and peroxidase from coconut (Cocos nucifera) water obtained from immature, mature and overly-mature coconut.

    Science.gov (United States)

    Tan, Thuan-Chew; Cheng, Lai-Hoong; Bhat, Rajeev; Rusul, Gulam; Easa, Azhar Mat

    2014-01-01

    Composition, physicochemical properties and enzyme inactivation kinetics of coconut water were compared between immature (IMC), mature (MC) and overly-mature coconuts (OMC). Among the samples studied, pH, turbidity and mineral contents for OMC water was the highest, whereas water volume, titratable acidity, total soluble solids and total phenolics content for OMC water were the lowest. Maturity was found to affect sugar contents. Sucrose content was found to increase with maturity, and the reverse trend was observed for fructose and glucose. Enzyme activity assessment showed that polyphenol oxidase (PPO) in all samples was more heat resistant than peroxidase (POD). Compared to IMC and MC, PPO and POD from OMC water showed the lowest thermal resistance, with D83.3°C=243.9s (z=27.9°C), and D83.3°C=129.9s (z=19.5°C), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Evaluation of peroxidases from roots of Cyperus hermaphroditus as enzymatic mechanisms in phenanthrene oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero Zuniga, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico). Environmental Protection Management Office; Rodriguez Dorantes, A.M. [Lab. Fisiologia Vegetal, Escuela Nacional de Ciencias Biologicas, Mexico City (Mexico). Depto Botanica

    2006-07-01

    Although phenanthrene is not mutagenic or carcinogenic, it has been shown to be toxic to aquatic organisms. This study evaluated in-vitro phenanthrene oxidation by peroxidases from radical extracts of Cyperus hermaphroditus plants. The characterization of oxidation products of phenanthrene related to the induction of root peroxidases was also examined. Concentrated ethanol stock of phenanthrene solution was added to the mineral solution of each plant container. The total radical biomass was placed in 4.5 ml of an ionic solution to analyze the enzymatic activity of the extracellular peroxidases. The total protein for each experiment was quantified by the Bradford method. Extracellular peroxidases activity was measured using the spectrophotometric method. The amount of radical biomass was quantified as high in the 80 and 120 ppm phenanthrene treatments relative to the control plants. It was suggested that the nature of the Cyperaceae roots combined with the high-octanol water coefficient and a low water solubility for phenanthrene may have facilitated the stabilization of the contaminant towards the roots. The ability of Cyperus hermaphroditus to immobilize phenanthrene through its adhesion was encouraged by the conditions of the hydroponic culture system. The adsorption of phenanthrene was increased with the time of exposure to the contaminant due to the greater total root mass. The study also showed the transformation of phenanthrene by radical extracts of Cyperus hermaphroditus containing guaiacol peroxidases with 12 per cent residual phenanthrene in the in vitro assays. The spectrophotometric analysis confirmed that the enzymatic systems are responsible for the phytotransformation of the pollutant. 9 refs., 2 tabs., 5 figs.

  2. The effect of acid rain stress on chlorophyll, peroxidase of the conservation of rare earth elements

    International Nuclear Information System (INIS)

    Chongling, Y.; Yetang, H.; Xianke, Y.; Shunzhen, F.; Shanql, W.

    1998-01-01

    Full text: Based on pot experiment, the effect of acid rain stress on chlorophyll, peroxidase of wheat, the relationship of them and the conservation of rare earth elements has been studied. The result showed: stress of acid rain resulted in decrease of chlorophyll content and a/b values, chlorophyll a/b value and chlorophyll content is positive correlation with pH value of acid rain: peroxidase activity was gradually rise with pH value decrease, which indirectly increased decomposition intensity of chlorophyll. Decreased content and a/b value of chlorophyll further speeded blade decay affected the transport and transformation of light energy and metabolism of carbohydrates. After being treated by rare earth elements content and pH value of chlorophyll and peroxidase activity could be relatively stable. Therefore, under lower acidity condition, rare earth elements can influence the effect of acid rain on chlorophyll and peroxidase activity of wheat

  3. Biobleaching chemistry of laccase-mediator systems on high-lignin-content kraft pulps

    International Nuclear Information System (INIS)

    Chakar, F.S.; Ragauskas, A.J.

    2004-01-01

    A high-lignin-content softwood kraft pulp was reacted with laccase in the presence of 1-hydroxybenzotriazole (HBT), N-acetyl-N-phenylhydroxylamine (NHA), and violuric acid (VA). The biodelignification response with violuric acid was superior to both 1-hydroxybenzotriazole and N-acetyl-N-phenylhydroxylamine. NMR analysis of residual lignins isolated before and after the biobleaching treatments revealed that the latter material was highly oxidized and that the magnitude of structural changes was most pronounced with the laccase - violuric acid biobleaching system. An increase in the content of carboxylic acid groups and a decrease in methoxyl groups were noted with all three laccase-mediator systems. The oxidation biobleaching pathway is directed primarily towards noncondensed C5 phenolic lignin functional structures for all three laccase-mediated systems. The laccase - violuric acid system was also reactive towards C5-condensed phenolic lignin structures. (author)

  4. Visual and quantitative determination of dopamine based on CoxFe3−xO4 magnetic nanoparticles as peroxidase mimetics

    International Nuclear Information System (INIS)

    Niu, Xiaoying; Xu, Yinyin; Dong, Yalei; Qi, Liye; Qi, Shengda; Chen, Hongli; Chen, Xingguo

    2014-01-01

    Graphical abstract: Co x Fe 3−x O 4 was proved to possess higher peroxidase-like activity comparing with Fe 3 O 4 MNPs. It could effectively catalyze the reaction between 3,3,5,5-tetramethylbenzidine (TMB) and H 2 O 2 under 40 °C within 15 min. So this proposed method was used for measuring dopamine. The color variation was very obvious on visual observation, which offered a convenient approach to detect DA by naked eye. -- Highlights: • The Co x Fe 3−x O 4 MNPs were firstly prepared by a simple coprecipitation method. • Co x Fe 3−x O 4 MNPs could effectively catalyze the reaction between TMB and H 2 O 2 . • This colorimetric analytical method was convenient, economic and speedy. • The method had been applied to detection of DA in Shan Yao and human serum sample. -- Abstract: In this study, cobalt doped magnetic composite nanoparticles (Co x Fe 3−x O 4 MNPs) were firstly prepared through a simple and convenient coprecipitation approach. The characterization results from EDX, ICP-AES, TEM, XRD and XPS showed that the cobalt atoms might be located in the lattice position instead of the part of iron atoms. Co x Fe 3−x O 4 MNPs possessed higher peroxidase-like activity comparing with Fe 3 O 4 MNPs, although they were similar in crystal structure, size distribution and morphology. The as-prepared nanomaterials could effectively catalyze the reaction between 3,3,5,5-tetramethylbenzidine (TMB) and H 2 O 2 under 40 °C within 15 min. Dopamine (DA) has some reducibility due to the existence of phenol hydroxyl group, which results in it can consume H 2 O 2 and cause the blue shallowing of the reaction solution between H 2 O 2 and TMB. A visual, sensitive and simple colorimetric method based on Co x Fe 3−x O 4 MNPs as peroxidase mimetics was developed for detecting DA. Good linear relationship and recoveries for DA were obtained from 0.6 to 8.0 μM and 98.7 to 101.0%, respectively. The limit of detection (LOD) of the proposed method was calculated as 0

  5. Rapid and direct spectrophotometric method for kinetics studies and routine assay of peroxidase based on aniline diazo substrates.

    Science.gov (United States)

    Mirazizi, Fatemeh; Bahrami, Azita; Haghbeen, Kamahldin; Shahbani Zahiri, Hossein; Bakavoli, Mehdi; Legge, Raymond L

    2016-12-01

    Peroxidases are ubiquitous enzymes that play an important role in living organisms. Current spectrophotometrically based peroxidase assay methods are based on the production of chromophoric substances at the end of the enzymatic reaction. The ambiguity regarding the formation and identity of the final chromophoric product and its possible reactions with other molecules have raised concerns about the accuracy of these methods. This can be of serious concern in inhibition studies. A novel spectrophotometric assay for peroxidase, based on direct measurement of a soluble aniline diazo substrate, is introduced. In addition to the routine assays, this method can be used in comprehensive kinetics studies. 4-[(4-Sulfophenyl)azo]aniline (λmax = 390 nm, ɛ = 32 880 M(-1) cm(-1) at pH 4.5 to 9) was introduced for routine assay of peroxidase. This compound is commercially available and is indexed as a food dye. Using this method, a detection limit of 0.05 nmol mL(-1) was achieved for peroxidase.

  6. Intimate Partner Violence, Sexual Autonomy and Postpartum STD Prevention Among Young Couples: A Mediation Analysis.

    Science.gov (United States)

    Willie, Tiara C; Callands, Tamora A; Kershaw, Trace S

    2018-03-01

    The transition to parenthood is a stressful time for young couples and can put them at risk for acquiring STDs. Mechanisms underlying this risk-particularly, intimate partner violence (IPV) and sexual autonomy-have not been well studied. Between 2007 and 2011, a prospective cohort study of the relationships and health of pregnant adolescents and their male partners recruited 296 couples at four hospital-based obstetrics and gynecology clinics in the U.S. Northeast; participants were followed up six and 12 months after the birth. Structural equation modeling identified associations among IPV at baseline and six months, sexual autonomy at six months and STD acquisition at 12 months. Mediating effects of sexual autonomy were tested via bootstrapping. Females were aged 14-21, and male partners were 14 or older. For females, IPV victimization at baseline was positively associated with the likelihood of acquiring a postpartum STD (coefficient, 0.4); level of sexual autonomy was inversely associated with the likelihood of acquiring an STD and of having a male partner who acquired one by the 12-month follow-up (-0.4 for each). For males, IPV victimization at baseline was negatively correlated with a female partner's sexual autonomy (-0.3) and likelihood of acquiring an STD (-0.7); victimization at six months was positively related to a partner's sexual autonomy (0.2). Sexual autonomy did not mediate these relationships. Females' sexual autonomy appears to protect against postpartum STDs for both partners. Future research should explore the efficacy of IPV-informed approaches to improving women's sexual and reproductive health. Copyright © 2018 by the Guttmacher Institute.

  7. Simple quantification of phenolic compounds present in the minor fraction of virgin olive oil by LC-DAD-FLD.

    Science.gov (United States)

    Godoy-Caballero, M P; Acedo-Valenzuela, M I; Galeano-Díaz, T

    2012-11-15

    This paper presents the results of the study on the extraction, identification and quantification of a group of important phenolic compounds in virgin olive oil (VOO) samples, obtained from olives of various varieties, by liquid chromatography coupled to UV-vis and fluorescence detection. Sixteen phenolic compounds belonging to different families have been identified and quantified spending a total time of 25 min. The linearity was examined by establishing the external standard calibration curves. Four order linear ranges and limits of detection ranging from 0.02 to 0.6 μg mL(-1) and 0.006 to 0.3 μg mL(-1) were achieved using UV-vis and fluorescence detection, respectively. Regarding the real samples, for the determination of the phenolic compounds in higher concentrations (hydroxytyrosol and tyrosol) a simple liquid-liquid extraction with ethanol was used to make the sample compatible with the mobile phase. Recovery values close to 100% were obtained. However, a previous solid phase extraction with Diol cartridges was necessary to concentrate and separate the minor phenolic compounds of the main interferences. The parameters affecting this step were carefully optimized and, after that, recoveries near 80-100% were obtained for the rest of the studied phenolic compounds. Also, the limits of detection were improved 15 times. Finally, the standard addition method was carried out for each of the analytes and no matrix effect was found, so the quantification of the 16 phenolic compounds from different monovarietal VOO was carried out by using the corresponding external standard calibration plot. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Directory of Open Access Journals (Sweden)

    L. Wang

    2018-03-01

    Full Text Available Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m−3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m−3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  9. Phenol degradation by advanced Fenton process in combination with ultrasonic irradiation

    Directory of Open Access Journals (Sweden)

    F.Z. Yehia

    2015-03-01

    Full Text Available In this study, a successful degradation of phenol was achieved by means of coupling nano-sized zero-valent iron (NZVI, H2O2 and 20 kHz ultrasound irradiation. The effect of H2O2 concentration, initial pH, ultrasonic irradiation time and NZVI addition on the degradation efficiency was investigated and the kinetics of the process was discussed. The results showed that the degradation rate increased by increasing the H2O2 concentration and the irradiation time but decreased with the increase of the initial pH value. These results clearly indicate that the degradation of phenol is intensified in the presence of NZVI and H2O2, which can be attributed to enhanced production of ·−OH radicals in the system. The degradation rate in the presence of NZVI was faster than in its absence. Thus, an appropriate selection of operating conditions will lead to an economical and highly efficient technology with eventual large-scale commercial applications for the degradation of organic pollutants in aqueous effluents.

  10. General gauge mediation

    International Nuclear Information System (INIS)

    Meade, Patrick; Seiberg, Nathan; Shih, David

    2009-01-01

    We give a general definition of gauge mediated supersymmetry breaking which encompasses all the known gauge mediation models. In particular, it includes both models with messengers as well as direct mediation models. A formalism for computing the soft terms in the generic model is presented. Such a formalism is necessary in strongly-coupled direct mediation models where perturbation theory cannot be used. It allows us to identify features of the entire class of gauge mediation models and to distinguish them from specific signatures of various subclasses. (author)

  11. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    Science.gov (United States)

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  12. Content of Phenolic Compounds and Antioxidant Capacity in Fruits of Apricot Genotypes

    Directory of Open Access Journals (Sweden)

    Helena Skutkova

    2010-09-01

    Full Text Available Research on natural compounds is increasingly focused on their effects on human health. In this study, we were interested in the evaluation of nutritional value expressed as content of total phenolic compounds and antioxidant capacity of new apricot (Prunus armeniaca L. genotypes resistant against Plum pox virus (PPV cultivated on Department of Fruit Growing of Mendel University in Brno. Fruits of twenty one apricot genotypes were collected at the onset of consumption ripeness. Antioxidant capacities of the genotypes were determined spectrometrically using DPPH• (1,1-diphenyl-2-picryl-hydrazyl free radicals scavenging test, TEAC (Trolox Equivalent Antioxidant Capacity, and FRAP (Ferric Reducing Antioxidant Powermethods. The highest antioxidant capacities were determined in the genotypes LE-3228 and LE-2527, the lowest ones in the LE-985 and LE-994 genotypes. Moreover, close correlation (r = 0.964 was determined between the TEAC and DPPH assays. Based on the antioxidant capacity and total polyphenols content, a clump analysis dendrogram of the monitored apricot genotypes was constructed. In addition, we optimized high performance liquid chromatography coupled with tandem electrochemical and spectrometric detection and determined phenolic profile consisting of the following fifteen phenolic compounds: gallic acid, 4-aminobenzoic acid, chlorogenic acid, ferulic acid, caffeic acid, procatechin, salicylic acid, p-coumaric acid, the flavonols quercetin and quercitrin, the flavonol glycoside rutin, resveratrol, vanillin, and the isomers epicatechin, (–- and (+- catechin.

  13. Phenolic characterization and variability in leaves, stems and roots of Micro-Tom and patio tomatoes, in response to nitrogen limitation.

    Science.gov (United States)

    Larbat, Romain; Paris, Cédric; Le Bot, Jacques; Adamowicz, Stéphane

    2014-07-01

    Phenolics are implicated in the defence strategies of many plant species rendering their concentration increase of putative practical interest in the field of crop protection. Little attention has been given to the nature, concentration and distribution of phenolics within vegetative organs of tomato (Solanum lycopersicum. L) as compared to fruits. In this study, we extensively characterized the phenolics in leaves, stems and roots of nine tomato cultivars using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS(n)) and assessed the impact of low nitrogen (LN) availability on their accumulation. Thirty-one phenolics from the four sub-classes, hydroxycinnamoyl esters, flavonoids, anthocyanins and phenolamides were identified, five of which had not previously been reported in these tomato organs. A higher diversity and concentration of phenolics was found in leaves than in stems and roots. The qualitative distribution of these compounds between plant organs was similar for the nine cultivars with the exception of Micro-Tom because of its significantly higher phenolic concentrations in leaves and stems as compared to roots. With few exceptions, the influence of the LN treatment on the three organs of all cultivars was to increase the concentrations of hydroxycinnamoyl esters, flavonoids and anthocyanins and to decrease those of phenolamides. This impact of LN was greater in roots than in leaves and stems. Nitrogen nutrition thus appears as a means of modulating the concentration and composition of organ phenolics and their distribution within the whole plant. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs

    Directory of Open Access Journals (Sweden)

    B. Ramesh Kumar

    2017-12-01

    Full Text Available Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases. The role of herbal medicines in improving human health is gaining popularity over the years, which also increases the need for safety and efficiency of these products. Green leafy vegetables (GLVs are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system. Highly selective, susceptible and versatile analytical techniques are necessary for extraction, identification, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectrometry methods are used for qualitative and quantitative analysis of phenolic compounds. The online coupling of liquid chromatography with mass spectrometry (LC–MS has become a useful tool in the metabolic profiling of plant samples. In this review, the separation and identification of phenolic acids and flavonoids from GLVs by LC–MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques. It concludes with the advantages of the combination of these two methods and prospects. Keywords: Green leafy vegetables, Phenolic acids, Flavonoids, HPLC, ESI-MS

  15. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hansol; Ryu, Keungarp [University of Ulsan, Ulsan (Korea, Republic of); Kwon, Oyul [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2015-09-15

    Various substituted phenols and phenylenediamines were enzymatically polymerized by horseradish peroxidase in 80% (v/v) organic solvents-aqueous buffer (100 mM sodium acetate, pH 5) mixtures with H{sub 2}O{sub 2} as the oxidant. The thermal stability of the polymers was investigated by thermogravimetric analysis (TGA) and represented by the char yield (wt% of the initial polymer mass) after being heated at 800 .deg. C. Poly(p-phenylphenol) had the highest thermal stability among the synthesized polymers with a char yield of 47 wt%. The polymers containing amino groups such as poly(p-aminophenol) and polyphenylenediamines were also shown to possess high thermal stabilities. The activation energies for the thermal degradation of the polymers determined by derivative thermogravimetric analysis (DTG) using Horowitz-Metzger's pseudo-first-order kinetics were in the range between 23-65 kJ/mol and comparable to those of the chemically synthesized polymers. Dynamic structural changes of the enzymatically synthesized polymers upon heating were studied by differential scanning calorimetry (DSC). The DSC curves of poly(p-phenylphenol) showed a broad exothermic peaks between 150-250 .deg. C, indicating that the polymer undergoes complex structural transitions in the temperature range. On the other hand, the DSC curves of the poly(p-aminophenol) and the poly(p-phenylenediamine) which contain amino groups showed strong sharp endothermic peaks near 150 .deg. C, implying that these polymers possess homogeneous oriented structures which undergo a concerted structural disintegration upon heating.

  16. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase

    International Nuclear Information System (INIS)

    Park, Hansol; Ryu, Keungarp; Kwon, Oyul

    2015-01-01

    Various substituted phenols and phenylenediamines were enzymatically polymerized by horseradish peroxidase in 80% (v/v) organic solvents-aqueous buffer (100 mM sodium acetate, pH 5) mixtures with H 2 O 2 as the oxidant. The thermal stability of the polymers was investigated by thermogravimetric analysis (TGA) and represented by the char yield (wt% of the initial polymer mass) after being heated at 800 .deg. C. Poly(p-phenylphenol) had the highest thermal stability among the synthesized polymers with a char yield of 47 wt%. The polymers containing amino groups such as poly(p-aminophenol) and polyphenylenediamines were also shown to possess high thermal stabilities. The activation energies for the thermal degradation of the polymers determined by derivative thermogravimetric analysis (DTG) using Horowitz-Metzger's pseudo-first-order kinetics were in the range between 23-65 kJ/mol and comparable to those of the chemically synthesized polymers. Dynamic structural changes of the enzymatically synthesized polymers upon heating were studied by differential scanning calorimetry (DSC). The DSC curves of poly(p-phenylphenol) showed a broad exothermic peaks between 150-250 .deg. C, indicating that the polymer undergoes complex structural transitions in the temperature range. On the other hand, the DSC curves of the poly(p-aminophenol) and the poly(p-phenylenediamine) which contain amino groups showed strong sharp endothermic peaks near 150 .deg. C, implying that these polymers possess homogeneous oriented structures which undergo a concerted structural disintegration upon heating.

  17. Phenolics, Antiradical Assay and Cytotoxicity of Processed Mango ...

    African Journals Online (AJOL)

    Phenolics, Antiradical Assay and Cytotoxicity of Processed Mango ( Mangifera indica ) and Bush Mango ( Irvingia gabonensis ) Kernels. ... Nigerian Food Journal ... Phenolic constituents (total phenols, flavonoids, tannins, and anthocyanins), comparative antiradical potency and cytotoxicity of processed mango (Mangifera ...

  18. Preferential hydroxylation over epoxidation catalysis by a horseradish peroxidase mutant: a cytochrome P450 mimic.

    Science.gov (United States)

    de Visser, Sam P

    2007-10-25

    Density functional theory calculations are presented on the catalytic properties of a horseradish peroxidase mutant whereby the axial nitrogen atom is replaced by phosphorus. This mutant has never been studied experimentally and only one theoretical report on this system is known (de Visser, S. P. J. Phys. Chem. B 2006, 110, 20759-20761). Thus, a one-atom substitution in horseradish peroxidase changes the properties of the catalytic center of the enzyme to more cytochrome P450-type qualities. In particular, the phosphorus-substituted horseradish peroxidase mutant reacts with substrates via a unique reactivity pattern, whereby alkanes are regioselectively hydroxylated even in the presence of a double bond. Reaction barriers of propene epoxidation and hydroxylation are almost identical to ones observed for a cytochrome P450 catalyst and significantly higher than those obtained for a horseradish peroxidase catalyst. It is shown that the regioselectivity difference is entropy and thermally driven and that the electron-transfer processes that occur during the reaction mechanism follow cytochrome P450-type patterns in the hydroxylation reaction.

  19. The Evolution of Total Phenolic Compounds and Antioxidant Activities during Ripening of Grapes (Vitis vinifera L., cv. Tempranillo Grown in Semiarid Region: Effects of Cluster Thinning and Water Deficit

    Directory of Open Access Journals (Sweden)

    Inmaculada Garrido

    2016-11-01

    Full Text Available A study was made of how water status (rainfed vs. irrigated and crop load (no cluster thinning vs. cluster thinning can together affect the grapes of Vitis vinifera cv. Tempranillo vines growing in a semiarid zone of Extremadura (Spain. The grapes were monitored at different stages of ripening, measuring the peroxidase (POX and superoxide dismutase (SOD antioxidant activities and the phenolic content (flavonoids and phenylpropanoids, together with other parameters. The irrigation regime was adjusted to provide 100% of crop evapotranspiration (ETc. The findings confirmed previous results that both thinning and water deficit advance ripening, while irrigation and high crop load (no thinning lengthen the growth cycle. The SOD activity remained practically constant throughout ripening in the thinned treatments and was always lower than in the unthinned treatments, an aspect which could have been the cause of the observed greater level of lipid peroxidation in the water deficit, thinned treatment. The nonspecific peroxidase activity was very low, especially in the thinned treatments. The effect of thinning was enhanced when combined with water deficit, inducing increases in phenylpropanoids and, above all, flavonoids at the harvest stage of ripening, while leaving the polyphenol oxidase activity (PPO unaffected.

  20. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses

    Science.gov (United States)

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2015-01-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101