WorldWideScience

Sample records for perovskite solid solutions

  1. First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions

    Science.gov (United States)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-04-01

    Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.

  2. Nanometric solid solutions of the fluorite and perovskite type crystal structures: Synthesis and properties

    Directory of Open Access Journals (Sweden)

    Snežana Bošković

    2012-09-01

    Full Text Available In this paper a short review of our results on the synthesis of nanosized CeO2, CaMnO3 and BaCeO3 solid solutions are presented. The nanopowders were prepared by two innovative methods: self propagating room temperature synthesis (SPRT and modified glycine/nitrate procedure (MGNP. Different types of solid solutions with rare earth dopants in concentrations ranging from 0–0.25 mol% were synthesized. The reactions forming solid solutions were studied. In addition, the characteristics of prepared nanopowders, phenomena during sintering and the properties of sintered samples are discussed.

  3. Structure-property relationships of new bismuth and lead oxide based perovskite ternary solid solutions

    Science.gov (United States)

    Dwivedi, Akansha

    Two new bismuth and lead oxide based perovskite ternary solid solutions, namely xBi(Zn1/2Ti1/2)O3-yPbZrO3-zPbTiO3 [xBZT-yPZ-zPT] and xBi(Mg1/2Ti1/2)O3-yBi(Zn 1/2Ti1/2)O3-zPbTiO3 [xBMT-yBZT-zPT] have been developed and their structural and electrical properties have been determined. Various characterization techniques such as X-ray diffraction, calorimetery, electron microscopy, dielectric and piezoelectric measurements have been performed to determine the details of the phase diagram, crystal structure, and domain structure. The selection of these materials is based on the hypothesis that the presence of BZT-PT (Case I ferroelectric (FE)) will increase the transition temperature of MPB systems BMT-PT (Case II FE), and PZ-PT (Case III FE), and subsequently a MPB will be observed in the ternary phase diagrams. The Case I, II, and III classification has been outlined by Stringer et al., is on the basis of the transition temperatures (TC) behavior with composition in the Bi and Pb oxide based binary systems. Several pseudobinary lines have been investigated across the xBZT-yPZ-zPT ternary phase diagram which exhibit varied TC behavior with composition, showing both Case I- and Case III-like TC trends in different regions. A MPB between rhombohedral to tetragonal phases has been located on a pseudobinary line 0.1BZT-0.9[xPT-(1-x)PZ]. Compositions near MPB exhibit mainly soft PZT-like properties with the TC around 60°C lower than the unmodified PZT near its MPB. Electrical properties are reported for the MPB composition, TC = 325°C, Pr = 35 microC/cm2, d33 = 300 pC/N and kP =0.45. Rhombohedral compositions show diffuse phase transition with small frequency dispersion, similar to relaxors. Two transition peaks in the permittivity as well as in the latent heat has been observed in some compositions near the BZT-PT binary. This leads to the speculation for the existence of miscibility gap in the solid solutions in these regions. Transmission electron microscopy (TEM

  4. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F.; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  5. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  6. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng

    2015-09-08

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications.

  7. Shell model for BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions

    Science.gov (United States)

    Vielma, J.; Jackson, D.; Roundy, D.; Schneider, G.

    2010-03-01

    Even though the composition of BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions is similar to other ferroelectric compounds, the dielectric response is unusual. Results of permittivity measurements as a function of temperature show a diffuse phase transition indicative of a weakly coupled relaxor behavior.footnotetextC. C. Huang and D. P. Cann, J. Appl. Phys. 104, 024117 (2008) To investigate the weakly coupled relaxor behavior in these materials at intermediate length scales we are developing a newly calibrated shell model based on first-principles supercell calculations of both the solid solution and its compositional endpoints. Initial results for its phase diagram will presented.

  8. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng; Ma, Chun; Wang, Hong; Hu, Weijin; Yu, Weili; Sheikh, Arif D.; Wu, Tao

    2015-01-01

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors

  9. Magnetic features in REMeO3 perovskites and their solid solutions (RE=rare-earth, Me=Mn, Cr)

    International Nuclear Information System (INIS)

    Moure, Carlos; Peña, Octavio

    2013-01-01

    Magnetic hysteresis displacement, thermal inversion of the magnetization, hysteresis loops jumps and crossing branches of hysteresis loops at low magnetic fields are reviewed. Most of these phenomena have been observed in magnetic oxide systems, particularly in perovskite-type manganites and chromites. The paper takes into account structural considerations and different geometrical parameters, such as volume or thin layers. - Highlights: ►Review of both spin reversal phenomena thermal and displacive. ► Study of the crossing branches of the magnetic hysteresis loops. ► Review of the behavior of some stepped hysteresis loops

  10. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  11. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  12. Broadly tunable metal halide perovskites for solid-state light-emission applications

    NARCIS (Netherlands)

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as

  13. Broadly tunable metal halide perovskites for solid-state light-emission applications

    OpenAIRE

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as broad tunability of bandgap, defect tolerance, high photoluminescence quantum efficiency and high emission color purity (narrow full-width at half maximum). In this review, the photophysical propert...

  14. Investigation of the hydrothermal crystallisation of the perovskite solid solution NaCe{sub 1−x}La{sub x}Ti{sub 2}O{sub 6} and its defect chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harunsani, Mohammad H. [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Woodward, David I. [Department of Physics, University of Warwick, Coventry CV4 7Al (United Kingdom); Peel, Martin D.; Ashbrook, Sharon E. [School of Chemistry, and EaStCHEM University of St. Andrews, North Haugh, St. Andrews, KY16 9ST (United Kingdom); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2013-11-15

    Perovskites of nominal composition NaCe{sub 1−x}La{sub x}Ti{sub 2}O{sub 6} (0≤x≤1) crystallise directly under hydrothermal conditions at 240 °C. Raman spectroscopy shows distortion from the ideal cubic structure and Rietveld analysis of powder X-ray and neutron diffraction reveals that the materials represent a continuous series in rhombohedral space group R3-bar c. Ce L{sub III}-edge X-ray absorption near edge structure spectroscopy shows that while the majority of cerium is present as Ce{sup 3+} there is evidence for Ce{sup 4+}. The paramagnetic Ce{sup 3+} affects the chemical shift and line width of {sup 23}Na MAS NMR spectra, which also show with no evidence for A-site ordering. {sup 2}H MAS NMR of samples prepared in D{sub 2}O shows the inclusion of deuterium, which IR spectroscopy shows is most likely to be as D{sub 2}O. The deuterium content is highest for the cerium-rich materials, consistent with oxidation of some cerium to Ce{sup 4+} to provide charge balance of A-site water. - Graphical abstract: A multi-element A-site perovskite crystallises directly from aqueous, basic solutions at 240 °C; while the paramagnetic effect of Ce{sup 3+} on the {sup 23}Na NMR shows a homogeneous solid-solution, the incorporation of A-site water is also found from {sup 2}H NMR and IR, with oxidation of some cerium to charge balance proved by XANES spectroscopy. Display Omitted - Highlights: • Direct hydrothermal synthesis allows crystallisation of a perovskite solid-solution. • XANES spectroscopy shows some oxidation of Ce{sup 3+} to Ce{sup 4+}. • The paramagnetism of Ce{sup 3+} shifts and broadens the {sup 23}Na solid-state NMR. • The perovskite materials incorporate water as an A-site defect.

  15. Residual tensile stresses and piezoelectric properties in BiFeO3-Bi(Zn1/2Ti1/2O3-PbTiO3 ternary solid solution perovskite ceramics

    Directory of Open Access Journals (Sweden)

    Weilin Zheng

    2016-08-01

    Full Text Available For low dielectric loss perovskite-structured (1-x-yBiFeO3-xBi(Zn1/2Ti1/2O3-yPbTiO3 (BF-BZT-PT (x = 0.04-0.15 and y = 0.15-0.26 ceramics in rhombohedral/tetragonal coexistent phase, structural phase transitions were studied using differential thermal analyzer combined with temperature-dependent dielectric measurement. Two lattice structural phase transitions are disclosed in various BF-BZT-PT perovskites, which is different from its membership of BiFeO3 exhibiting just one lattice structural phase transition at Curie temperature TC= 830oC. Consequently, residual internal tensile stresses were revealed experimentally through XRD measurements on ceramic pellets and counterpart powders, which are reasonably attributed to special structural phase transition sequence of BF-BZT-PT solid solution perovskites. Low piezoresponse was observed and argued extrinsically resulting from residual tensile stresses pinning ferroelectric polarization switching. Post-annealing and subsequent quenching was found effective for eliminating residual internal stresses in those BZT-less ceramics, and good piezoelectric property of d33 ≥ 28 pC/N obtained for 0.70BF-0.08BZT-0.22PT and 0.05 wt% MnO2-doped 0.70BF-0.04BZT-0.26PT ceramics with TC ≥ 640oC, while it seemed no effective for those BZT-rich BF-BZT-PT ceramics with x = 0.14 and 0.15 studied here.

  16. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2013-09-09

    Organometal trihalide perovskite based solar cells have exhibited the highest efficiencies to-date when incorporated into mesostructured composites. However, thin solid films of a perovskite absorber should be capable of operating at the highest efficiency in a simple planar heterojunction configuration. Here, it is shown that film morphology is a critical issue in planar heterojunction CH3NH3PbI3-xCl x solar cells. The morphology is carefully controlled by varying processing conditions, and it is demonstrated that the highest photocurrents are attainable only with the highest perovskite surface coverages. With optimized solution based film formation, power conversion efficiencies of up to 11.4% are achieved, the first report of efficiencies above 10% in fully thin-film solution processed perovskite solar cells with no mesoporous layer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Functional engineering of perovskite nanosheets. Impact of lead substitution on exfoliation in the solid solution RbCa{sub 2-x}Pb{sub x}Nb{sub 3}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Christian; Lotsch, Bettina V. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Department of Chemistry, University of Munich (LMU), Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), Munich (Germany); Dennenwaldt, Teresa [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland); Weber, Daniel; Duppel, Viola; Kamella, Claudia; Tuffy, Brian; Moudrakovski, Igor [Max Planck Institute for Solid State Research, Stuttgart (Germany); Podjaski, Filip [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland); Scheu, Christina [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2017-11-17

    Tuning the chemical composition and structure for targeted functionality in two-dimensional (2D) nanosheets has become a major objective in the rapidly growing area of 2D materials. In the context of photocatalysis, both miniaturization and extending the light absorption of UV active photocatalysts are major assets. Here, we investigate the solid solution between two photocatalytic systems known from literature to evolve H{sub 2} from water/methanol under UV - RbCa{sub 2}Nb{sub 3}O{sub 10} (E{sub g} = 3.7 eV) - and visible light irradiation - RbPb{sub 2}Nb{sub 3}O{sub 10} (E{sub g} = 3.0 eV) - by synthesizing hypothetical RbCa{sub 2-x}Pb{sub x}Nb{sub 3}O{sub 10}. While the calcium niobate can easily be exfoliated into individual nanosheets via cation-proton exchange and subsequent treatment with tetra-n-butylammonium hydroxide (TBAOH), the lead niobate barely yields nanosheets. Spectroscopic and microscopic analysis suggest that this is caused by volatilization of Pb during synthesis, leading to a local 3D linkage of RbPb{sub 2}Nb{sub 3}O{sub 10} perovskite units with Pb deficient units. On the one hand, this linkage progressively prevents exfoliation along with an increasing Pb content. On the other hand, introducing Pb into the perovskite blocks successively leads to bandgap narrowing, thus gradually enhancing the light harvesting capability of the solid solution. Finding a compromise between this narrowing of the bandgap and the possibility of exfoliation, visible light sensitized nanosheets can be engineered in good yield for an initial molar ratio of Ca:Pb ≥ 1:1. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Room-temperature ferromagnetism in Fe-based perovskite solid solution in lead-free ferroelectric Bi0.5Na0.5TiO3 materials

    Science.gov (United States)

    Hung, Nguyen The; Bac, Luong Huu; Trung, Nguyen Ngoc; Hoang, Nguyen The; Van Vinh, Pham; Dung, Dang Duc

    2018-04-01

    The integration of ferromagnetism in lead-free ferroelectric materials is important to fabricate smart materials for electronic devices. In this work, (1 - x)Bi0.5Na0.5TiO3 + xMgFeO3-δ materials (x = 0-9 mol%) were prepared through sol-gel method. X-ray diffraction characterization indicated that MgFeO3-δ materials existed as a well solid solution in lead-free ferroelectric Bi0.5Na0.5TiO3 materials. The rhombohedral structure of Bi0.5Na0.5TiO3 materials was distorted due to the random distribution of Mg and Fe cations into the host lattice. The reduced optical band gap and the induced room-temperature ferromagnetism were due to the spin splitting of transition metal substitution at the B-site of perovskite Bi0.5Na0.5TiO3 and the modification by A-site co-substitution. This work elucidates the role of secondary phase as solid solution in Bi0.5Na0.5TiO3 material for development of lead-free multiferroelectric materials.

  19. Magnetic features in REMeO{sub 3} perovskites and their solid solutions (RE=rare-earth, Me=Mn, Cr)

    Energy Technology Data Exchange (ETDEWEB)

    Moure, Carlos, E-mail: cmoure@icv.csic.es [Instituto de Cerámica y Vidrio, CSIC, Electroceramics Department, Kelsen No. 5, 28049 Cantoblanco, Madrid (Spain); Peña, Octavio [Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1, 35042 Rennes (France)

    2013-07-15

    Magnetic hysteresis displacement, thermal inversion of the magnetization, hysteresis loops jumps and crossing branches of hysteresis loops at low magnetic fields are reviewed. Most of these phenomena have been observed in magnetic oxide systems, particularly in perovskite-type manganites and chromites. The paper takes into account structural considerations and different geometrical parameters, such as volume or thin layers. - Highlights: ►Review of both spin reversal phenomena thermal and displacive. ► Study of the crossing branches of the magnetic hysteresis loops. ► Review of the behavior of some stepped hysteresis loops.

  20. Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids

    KAUST Repository

    Saidaminov, Makhsud I.

    2016-09-26

    So-called zero-dimensional perovskites, such as Cs4PbBr6, promise outstanding emissive properties. However, Cs4PbBr6 is mostly prepared by melting of precursors that usually leads to a coformation of undesired phases. Here, we report a simple low-temperature solution-processed synthesis of pure Cs4PbBr6 with remarkable emission properties. We found that pure Cs4PbBr6 in solid form exhibits a 45% photoluminescence quantum yield (PLQY), in contrast to its three-dimensional counterpart, CsPbBr3, which exhibits more than 2 orders of magnitude lower PLQY. Such a PLQY of Cs4PbBr6 is significantly higher than that of other solid forms of lower-dimensional metal halide perovskite derivatives and perovskite nanocrystals. We attribute this dramatic increase in PL to the high exciton binding energy, which we estimate to be ∼353 meV, likely induced by the unique Bergerhoff–Schmitz–Dumont-type crystal structure of Cs4PbBr6, in which metal-halide-comprised octahedra are spatially confined. Our findings bring this class of perovskite derivatives to the forefront of color-converting and light-emitting applications.

  1. Crossover from itinerant-electron to localized-electron behavior in Sr{sub 1-x}Ca{sub x}CrO{sub 3} perovskite solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Long Youwen; Yang Liuxiang; Lv Yuxi; Liu Qingqing; Jin Changqing [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhou Jianshi; Goodenough, John B, E-mail: ywlong@iphy.ac.cn, E-mail: Jin@iphy.ac.cn [Texas Materials Institute, University of Texas, 1 University Station, C2200, Austin, TX 78712 (United States)

    2011-09-07

    Polycrystalline samples of the perovskite family Sr{sub 1-x}Ca{sub x}CrO{sub 3} have been prepared at high pressure and temperature in steps of 1/6 over the range 0{<=}x{<=}1. Rietveld analysis shows a series of structural phase transitions from cubic to tetragonal to orthorhombic with increasing x. The cubic samples have no long-range magnetic order; the other samples become antiferromagnetically ordered below a T{sub N} that increases with x. At ambient pressure, the electric transport properties of the cubic and tetragonal phases are semiconducting with a small (meV range) activation energy that increases with x; the orthorhombic phase exhibits variable-range hopping rather than the small-polaron behavior typically found for mixed-valent, localized-electron configurations. Above a pressure P = P{sub C}, a smooth insulator-metal transition is found at a T{sub IM} that decreases with increasing P for a fixed x; P{sub C} increases with x. These phenomena are rationalized qualitatively with a {pi}*-band model having a width W{sub {pi}} that approaches crossover from itinerant-electron to localized-electron behavior as W{sub {pi}} decreases with increasing x. The smaller size of the Ca{sup 2+} ion induces the structural changes and the greater acidity of the Ca{sup 2+} ion is primarily responsible for narrowing W{sub {pi}} as x increases. (paper)

  2. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Benjia [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wheeler, Lance M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christians, Jeffrey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moore, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Harvey, Steven P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Joseph J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Barnes, Frank S. [University of Colorado; Shaheen, Sean E. [University of Colorado

    2018-03-02

    Whereas the promise of metal halide perovskite (MHP) photovoltaics (PV) is that they can combine high efficiency with solution-processability, the chemistry occurring in precursor inks is largely unexplored. Herein, we investigate the degradation of MHP solutions based on the most widely used solvents, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). For the MHP inks studied, which contain formamidinium (FA+), methylammonium (MA+), cesium (Cs+), lead (Pb2+), bromide (Br-), and iodide (I-), dramatic compositional changes are observed following storage of the inks in nitrogen in the dark. We show that hydrolysis of DMF in the precursor solution forms dimethylammonium formate, which subsequently incorporates into the MHP film to compromise the ability of Cs+ and MA+ to stabilize FA+-based MHP. The changes in solution chemistry lead to a modification of the perovskite film stoichiometry, band gap, and structure. The solid precursor salts are stable when ball-milled into a powder, allowing for the storage of large quantities of stoichiometric precursor materials.

  3. Perovskite solid solutions La0.75Bi0.25Fe1-xCrxO3: Preparation, structural, and magnetic properties

    Czech Academy of Sciences Publication Activity Database

    Ivanov, S. A.; Beran, Přemysl; Bazuev, G. V.; Tellgren, R.; Sarkar, T.; Nordblad, P.; Mathieu, R.

    2017-01-01

    Roč. 254, OCT (2017), s. 166-177 ISSN 0022-4596 R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : ceramics * electronic materials * neutron scattering * X-ray diffraction * crystal structure * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.299, year: 2016

  4. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    Science.gov (United States)

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-06

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.

  5. Field-emission from quantum-dot-in-perovskite solids.

    Science.gov (United States)

    García de Arquer, F Pelayo; Gong, Xiwen; Sabatini, Randy P; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-24

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 10 12 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  6. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    Science.gov (United States)

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  7. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  8. Anti-perovskite solid electrolyte compositions

    Science.gov (United States)

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  9. Perovskites as electrodes of solid cells in sensitive elements of oxygen ion

    International Nuclear Information System (INIS)

    Gandurska, J.; Sniezynska, I.; Marek, A.; Szwagierczak, D.; Kulawik, J.

    1997-01-01

    The perovskite family comprises many compounds used in electronic applications. In this work perovskite materials based on LaCrO 3 were investigated, destined for electrodes of solid electrolyte oxygen sensors. lanthanum chromite powders modified by calcium, strontium and aluminium were prepared by the coprecipitation-calcination technique. The powders were examined using thermal analysis, x-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Introductory studies of electromotive force of oxygen cells with yttria stabilized zirconia as solid electrolyte and perovskite-based electrodes proved that it is possible to replace expensive Pt electrodes by much cheaper perovskite ones. (author)

  10. Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids

    KAUST Repository

    Saidaminov, Makhsud I.; Almutlaq, Jawaher; Sarmah, Smritakshi P.; Dursun, Ibrahim; Zhumekenov, Ayan A.; Begum, Raihana; Pan, Jun; Cho, Nam Chul; Mohammed, Omar F.; Bakr, Osman

    2016-01-01

    more than 2 orders of magnitude lower PLQY. Such a PLQY of Cs4PbBr6 is significantly higher than that of other solid forms of lower-dimensional metal halide perovskite derivatives and perovskite nanocrystals. We attribute this dramatic increase in PL

  11. Tilts, dopants, vacancies and non-stoichiometry: Understanding and designing the properties of complex solid oxide perovskites from first principles

    Science.gov (United States)

    Bennett, Joseph W.

    Perovskite oxides of formula ABO3 have a wide range of structural, electrical and mechanical properties, making them vital materials for many applications, such as catalysis, ultrasound machines and communication devices. Perovskite solid solutions with high piezoelectric response, such as ferroelectrics, are of particular interest as they can be employed as sensors in SONAR devices. Ferroelectric materials are unique in that their chemical and electrical properties can be non-invasively and reversibly changed, by switching the bulk polarization. This makes ferroelectrics useful for applications in non-volatile random access memory (NVRAM) devices. Perovskite solid solutions with a lower piezoelectric response than ferroelectrics are important for communication technology, as they function well as electroceramic capacitors. Also of interest is how these materials act as a component in a solid oxide fuel cell, as they can function as an efficient source of energy. Altering the chemical composition of these solid oxide materials offers an opportunity to change the desired properties of the final ceramic, adding a degree of flexibility that is advantageous for a variety of applications. These solid oxides are complex, sometimes disordered systems that are a challenge to study experimentally. However, as it is their complexity which produces favorable properties, highly accurate modeling which captures the essential features of the disordered structure is necessary to explain the behavior of current materials and predict favorable compositions for new materials. Methodological improvements and faster computer speeds have made first-principles and atomistic calculations a viable tool for understanding these complex systems. Offering a combination of accuracy and computational speed, the density functional theory (DFT) approach can reveal details about the microscopic structure and interactions of complex systems. Using DFT and a combination of principles from both

  12. Thermotransport in interstitial solid solutions

    International Nuclear Information System (INIS)

    Fogel'son, R.L.

    1982-01-01

    On the basis of literature data the problem of thermotransport of impurities (H, N, O, C) in interstitial solid solutions is considered. It is shown that from experimental data on the thermotransport an important parameter of dissolved atoms can be found which characterizes atom state in these solutions-enthalpy of transport

  13. Perovskite/polymer solar cells prepared using solution process

    International Nuclear Information System (INIS)

    Rosa, E. S.; Shobih; Nursam, N. M.; Saputri, D. G.

    2016-01-01

    We report a simple solution-based process to fabricate a perovskite/polymer tandem solar cell using inorganic CH 3 NH 3 PM 3 as an absorber and organic PCBM (6,6 phenyl C61- butyric acid methyl ester) as an electron transport layer. The absorber solution was prepared by mixing the CH 3 NH 3 I (methyl ammonium iodide) with PbI 2 (lead iodide) in DMF (N,N- dimethyl formamide) solvent. The absorber and electron transport layer were deposited by spin coating method. The electrical characteristics generated from the cell under 50 mW/cm 2 at 25 °C comprised of an open circuit voltage of 0. 3 1 V, a short circuit current density of 2.53 mA/cm 2 , and a power conversion efficiency of 0.42%. (paper)

  14. Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Liu, Dianyi; Traverse, Christopher J; Chen, Pei; Elinski, Mark; Yang, Chenchen; Wang, Lili; Young, Margaret; Lunt, Richard R

    2018-01-01

    Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.

  15. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications

    NARCIS (Netherlands)

    Fang, Hong-Hua; Wang, Feng; Adjokatse, Sampson; Zhao, Ni; Even, Jacky; Loi, Maria Antonietta

    Formamidinium lead iodide (FAPbI(3)) is a newly developed hybrid perovskite that potentially can be used in high-efficiency solution-processed solar cells. Here, the temperature-dependent dynamic optical properties of three types of FAPbI(3) perovskite films (fabricated using three different

  16. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

    Science.gov (United States)

    He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O'Neil, Daniel; Szymanski, Paul; Ei-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun

    2017-07-01

    Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.

  17. Atom states and interatomic interactions in complex perovskite-like oxides. 4. Spin state of nickel(2) atoms in LaCa0.5Sr0.5NixAl1-xO4 solid solutions

    International Nuclear Information System (INIS)

    Chezhina, N.V.; Kuznetsova, I.V.

    1995-01-01

    Solid solutions of LaCa 0.5 Sr 0.5 Ni x Al 1-x O 4 (0≤x≤0.10) have been synthesized and their magnetic susceptibility in the temperature range of 77-400 K has been studied. The change in the basic state of nickel atoms in case of partial substitution of calcium for strontium atoms has been studied. The change in the basic state of nickel atoms in case of partial substitution of calcium for strontium atoms has been studied, as well as the way it affects exchange interaction in a complex oxide. It is shown that the substitution results in increase of the degree of paramagnetic atoms aggregation in solid solution. 9 refs., 2 figs., 1 tab

  18. Study of reaction sequences for formation of solid solution: 0,48 ...

    African Journals Online (AJOL)

    ... of a low concentration of ions forming the perovskite structure PZT (Pb2+, Zr4+ et Ti4+) by other ions (Zn2+, Cr3+ et Sb+5 in our study) alters the reaction sequences training of the solid solution PZT and especially the formation of intermediate phase. Keywords: PZT / Calcination / TGA / DTA / RX / Piezoelectric Ceramics ...

  19. Perovskite solid electrolytes: Structure, transport properties and fuel cell applications

    DEFF Research Database (Denmark)

    Bonanos, N.; Knight, K.S.; Ellis, B.

    1995-01-01

    Doped barium cerate perovskites, first investigated by Iwahara and co-workers, have ionic conductivities of the order of 20 mS/cm at 800 degrees C making them attractive as fuel cell electrolytes for this temperature region. They have been used to construct laboratory scale fuel cells, which...... vapour transfer in a cell in which the perovskite is exposed to wet hydrogen on both sides. The evolution of transport properties with temperature is discussed in relation to structure. Neutron diffraction studies of doped and undoped barium cerate are reported, revealing a series of phase transitions...... between ambient temperature and 1000 degrees C. The available literature on chemical stability of cerate perovskites to reduction and attack by carbon dioxide is reviewed in brief....

  20. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    Energy Technology Data Exchange (ETDEWEB)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik, E-mail: soumik.banerjee@wsu.edu

    2017-02-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  1. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    International Nuclear Information System (INIS)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik

    2017-01-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  2. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper

    2009-01-01

    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...

  3. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo

    2017-05-08

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  4. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo; Liu, Yucheng; Ren, Xiaodong; Yang, Zhou; Li, Ruipeng; Su, Hang; Yang, Xiaoming; Xu, Junzhuo; Xu, Hua; Hu, Jian-Yong; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2017-01-01

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  5. Viscosity, surface tension, density and contact angle of selected PbI2, PbCl2 and methylammonium lead halide perovskite solutions used in perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Ahmadian-Yazdi

    2018-02-01

    Full Text Available Perovskite solar cells (PSCs are currently under vigorous research and development, owing to their compelling power conversion efficiencies. PSCs are solution-processed and, therefore, are fabricated using casting and printing methods, such as spin, spray and blade coating. The coating characteristics significantly depend on the physical and rheological properties of the solutions. Thus, due to the scarcity of such properties, in this work, we report the surface tension, viscosity, density, and contact angle of selected methylammonium lead halide perovskite solutions, in order to gain insight into the behavior of the perovskite solutions and the range of such physical properties. The contact angles were measured on PEDOT:PSS and compact TiO2 (c-TiO2 substrates, commonly used as the underneath layers of the perovskite film. In total, 12 solutions of CH3NH3PbI3 and CH3NH3PbI3-xClx dissolved in common solvents, as well as solutions of PbI2, PbCl2, and CH3NH3I were tested. Among the results, it is shown that the tested perovskite solutions are Newtonian, the apparent contact angles on the mesoporous TiO2 (m-TiO2 are close to zero, on the PEDOT:PSS are around 10°, and on the c-TiO2 are around 30°. Also, contact angle hysteresis is observed in the case of the c-TiO2 substrates. Representative impact dynamics and spreading of perovskite solution droplets are also studied, to demonstrate the importance of the solution properties and process parameters on the coating process.

  6. Viscosity, surface tension, density and contact angle of selected PbI2, PbCl2 and methylammonium lead halide perovskite solutions used in perovskite solar cells

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Rahimzadeh, Amin; Chouqi, Zineb; Miao, Yihe; Eslamian, Morteza

    2018-02-01

    Perovskite solar cells (PSCs) are currently under vigorous research and development, owing to their compelling power conversion efficiencies. PSCs are solution-processed and, therefore, are fabricated using casting and printing methods, such as spin, spray and blade coating. The coating characteristics significantly depend on the physical and rheological properties of the solutions. Thus, due to the scarcity of such properties, in this work, we report the surface tension, viscosity, density, and contact angle of selected methylammonium lead halide perovskite solutions, in order to gain insight into the behavior of the perovskite solutions and the range of such physical properties. The contact angles were measured on PEDOT:PSS and compact TiO2 (c-TiO2) substrates, commonly used as the underneath layers of the perovskite film. In total, 12 solutions of CH3NH3PbI3 and CH3NH3PbI3-xClx dissolved in common solvents, as well as solutions of PbI2, PbCl2, and CH3NH3I were tested. Among the results, it is shown that the tested perovskite solutions are Newtonian, the apparent contact angles on the mesoporous TiO2 (m-TiO2) are close to zero, on the PEDOT:PSS are around 10°, and on the c-TiO2 are around 30°. Also, contact angle hysteresis is observed in the case of the c-TiO2 substrates. Representative impact dynamics and spreading of perovskite solution droplets are also studied, to demonstrate the importance of the solution properties and process parameters on the coating process.

  7. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  8. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Liu, Zhi; Grass, Michael E.; Biegalski, Michael D.; Lee, Yueh-Lin; Morgan, Dane; Christen, Hans M.; Bluhm, Hendrik; Shao-Horn, Yang

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  9. Radionuclide solubility control by solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, F.; Klinkenberg, M.; Rozov, K.; Bosbach, D. [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research - Nuclear Waste Management and Reactor Safety (IEK-6); Vinograd, V. [Frankfurt Univ. (Germany). Inst. of Geosciences

    2015-07-01

    The migration of radionuclides in the geosphere is to a large extend controlled by sorption processes onto minerals and colloids. On a molecular level, sorption phenomena involve surface complexation, ion exchange as well as solid solution formation. The formation of solid solutions leads to the structural incorporation of radionuclides in a host structure. Such solid solutions are ubiquitous in natural systems - most minerals in nature are atomistic mixtures of elements rather than pure compounds because their formation leads to a thermodynamically more stable situation compared to the formation of pure compounds. However, due to a lack of reliable data for the expected scenario at close-to equilibrium conditions, solid solution systems have so far not been considered in long-term safety assessments for nuclear waste repositories. In recent years, various solid-solution aqueous solution systems have been studied. Here we present state-of-the art results regarding the formation of (Ra,Ba)SO{sub 4} solid solutions. In some scenarios describing a waste repository system for spent nuclear fuel in crystalline rocks {sup 226}Ra dominates the radiological impact to the environment associated with the potential release of radionuclides from the repository in the future. The solubility of Ra in equilibrium with (Ra,Ba)SO{sub 4} is much lower than the one calculated with RaSO{sub 4} as solubility limiting phase. Especially, the available literature data for the interaction parameter W{sub BaRa}, which describes the non-ideality of the solid solution, vary by about one order of magnitude (Zhu, 2004; Curti et al., 2010). The final {sup 226}Ra concentration in this system is extremely sensitive to the amount of barite, the difference in the solubility products of the end-member phases, and the degree of non-ideality of the solid solution phase. Here, we have enhanced the fundamental understanding regarding (1) the thermodynamics of (Ra,Ba)SO{sub 4} solid solutions and (2) the

  10. Solid-phase synthesis of yttrium ferrites with structures of perovskite and garnet

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, E V; Shapovalov, A G; Aksel' rod, N L; Pazdnikov, I P [Ural' skij Gosudarstvennyj Univ., Sverdlovsk (USSR)

    1980-09-01

    The solid phase synthesis of yttrium ferrites having a perovskite- and garnet-like structure has been investigated in the temperature range from 800 to 1500 deg C and temper times of up to 80 hours by reaction zone simulation and magnetic phase analysis. It is shown that for conversion degrees d<0.15 the reactions are diffusion-controlled. The rate constants and effective diffusion in the formation of YFeO/sub 3/ and Y/sub 3/Fe/sub 5/O/sub 12/ have been determined.

  11. Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells.

    Science.gov (United States)

    Yang, Yang Michael; Chen, Qi; Hsieh, Yao-Tsung; Song, Tze-Bin; Marco, Nicholas De; Zhou, Huanping; Yang, Yang

    2015-07-28

    Halide perovskites (PVSK) have attracted much attention in recent years due to their high potential as a next generation solar cell material. To further improve perovskites progress toward a state-of-the-art technology, it is desirable to create a tandem structure in which perovskite may be stacked with a current prevailing solar cell such as silicon (Si) or Cu(In,Ga)(Se,S)2 (CIGS). The transparent top electrode is one of the key components as well as challenges to realize such tandem structure. Herein, we develop a multilayer transparent top electrode for perovskite photovoltaic devices delivering an 11.5% efficiency in top illumination mode. The transparent electrode is based on a dielectric/metal/dielectric structure, featuring an ultrathin gold seeded silver layer. A four terminal tandem solar cell employing solution processed CIGS and perovskite cells is also demonstrated with over 15% efficiency.

  12. First-principles studies of the local structure and relaxor behavior of Pb(Mg 1 /3Nb2 /3) O3-PbTiO3 -derived ferroelectric perovskite solid solutions

    Science.gov (United States)

    Tan, Hengxin; Takenaka, Hiroyuki; Xu, Changsong; Duan, Wenhui; Grinberg, Ilya; Rappe, Andrew M.

    2018-05-01

    We have investigated the effect of transition-metal dopants on the local structure of the prototypical 0.75 Pb (Mg1 /3Nb2 /3) O3-0.25 PbTiO3 relaxor ferroelectric. We find that these dopants give rise to very different local structure and other physical properties. For example, when Mg is partially substituted by Cu or Zn, the displacement of Cu or Zn is much larger than that of Mg and is even comparable to that of Nb. The polarization of these systems is also increased, especially for the Cu-doped solution, due to the large polarizability of Cu and Zn. As a result, the predicted maximum dielectric constant temperatures Tm are increased. On the other hand, the replacement of a Ti atom with a Mo or Tc atom dramatically decreases the displacements of the cations and the polarization, and thus, the Tm values are also substantially decreased. The higher Tm cannot be explained by the conventional argument based on the ionic radii of the cations. Furthermore, we find that Cu, Mo, or Tc doping increases the cation displacement disorder. The effect of the dopants on the temperature dispersion Δ Tm , which is the change in Tm for different frequencies, is also discussed. Our findings lay the foundation for further investigations of unexplored dopants.

  13. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  14. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    Science.gov (United States)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  15. Synthesis and characterization of a series of novel perovskite-type LaMnO.sub.3./sub./Keggin-type polyoxometalate hybrid nanomaterials for fast and selective removal of cationic dyes from aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Farhadi, S.; Mahmoudi, F.; Amini, M.M.; Dušek, Michal; Jarošová, Markéta

    2017-01-01

    Roč. 46, č. 10 (2017), s. 3252-3264 ISSN 1477-9226 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : organic dyes * polyoxometalate hybrid nanomaterials * perovskite * aqueous solutions Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.029, year: 2016

  16. Perovskites synthesis for solid oxide fuel cells; Sintese de perovsquitas para celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sibelle F.C.X.; Melo, Dulce M.A.; Pimentel, Patricia M.; Melo, Marcus A. Freitas; Martinelli, Daniele M.H. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Quimica]. E-mail: sibelle.cunha@gmail

    2008-07-01

    This work aims to study on the obtaining powders of lanthanum manganite oxides with partial substitution of La with strontium at 20% for the application as a cathode for solid oxide fuel cell, through a route of synthesis that are similar to the Pechini method, in which gelatin replaces the ethylene glycol as polymerization agent. The method highlights itself due to its simplicity, low cost and capability to obtain crystalline powders with the high purity and good stoichiometric control. The perovskite obtained were characterized by thermogravimetric analysis, X ray diffraction, electronic scanning microscopy and the superficial area by BET method. The deposition of the perovskite on electrolyte/anode system was done through the spin coating technique. The methodology used for the perovskite synthesis was very efficient, considering a monophasic material was obtained and with characteristics that were proper to the application as electrode to solid oxide fuel cells. (author)

  17. Solid-soluted content of cerium in solid solution of sphene

    International Nuclear Information System (INIS)

    Zhao Wei; Teng Yuancheng; Li Yuxiang; Ren Xuetan; Huang Junjun

    2010-01-01

    The sphene solid solution was synthesized by solid-state method,with calcium carbonate, silica, titanium dioxide, cerium oxalate and alumina as raw materials. The solid-soluted content of cerium in sphene was researched by means of X-ray diffraction (XRD), backscattering scanning electron microscopy (BSE), energy dispersive spectroscopy (EDS) and so on. The influence of A l3+ ion introduction to sphene on the solid-soluted content of cerium in sphene solid solution was studied. The results indicate that when introducing Al 3+ to sphene as electrovalence compensation, Ce 4+ could be well solidified to Ca 1-x Ce x Ti 1-2x A l2x SiO 5 , and the solid-soluted content is approximately 12.61%. With no electrovalence compensation, Ce 4+ could be solidified to Ca 1-2x Ce x TiSiO 5 , and the solid-soluted content is approximately 10.98%. The appropriate synthesis temperature of sphene solid solution is 1 260 degree C.(authors)

  18. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode

    International Nuclear Information System (INIS)

    Yang, Kaiyu; Li, Fushan; Zhang, Jianhua; Veeramalai, Chandrasekar Perumal; Guo, Tailiang

    2016-01-01

    In this work, we report an all-solution route to produce semi-transparent high efficiency perovskite solar cells (PSCs). Instead of an energy-consuming vacuum process with metal deposition, the top electrode is simply deposited by spray-coating silver nanowires (AgNWs) under room temperature using fabrication conditions and solvents that do not damage or dissolve the underlying PSC. The as-fabricated semi-transparent perovskite solar cell shows a photovoltaic output with dual side illuminations due to the transparency of the AgNWs. With a back cover electrode, the open circuit voltage increases significantly from 1.01 to 1.16 V, yielding high power conversion efficiency from 7.98 to 10.64%. (paper)

  19. Vibrational spectra of solid solution series with ordered perovskite structure

    NARCIS (Netherlands)

    Blasse, G.

    I.R. and Raman spectra are reported for the following three systems: Ba2CaMo1−xTexO6, Ba2−xSrxMgWO6 and Ba2Ca1−xMgxWO6. In the first series the internal vibrations of the M6+O6 octahedra do not influence each other. The intensity of ν1 (MoO6) is five times that of ν1 (TeO6). In the second system

  20. Superhard Rhenium/Tungsten Diboride Solid Solutions.

    Science.gov (United States)

    Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2016-11-02

    Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.

  1. Balancing electrical and optical losses for efficient Si-perovskite 4-terminal solar cells with solution processed percolation electrodes.

    KAUST Repository

    Ramírez Quiroz, César Omar

    2018-01-15

    The unprecedented efficiency upraise of perovskite-based photovoltaics has sparked the interest in semi-transparent devices, particularly for tandem structures. Despite promising reports regarding efficiency and reduced parasitic absorption, many devices still rely on processes from the gas phase, compromising both applicability and cost factors. Here, we report all-solution perovskite solar cells with improved infrared transparency ideally suited as top-cell for efficient multi-junction device configurations. We demonstrate the functionality of Copper (I) thiocyanate as antireflective layer and selective contact between the transparent conductive oxide and the perovskite as key factor. This concept allows us to fabricate an opaque device with steady state efficiency as high as 20.1%. By employing silver nanowires with robust environmental stability as bottom electrode, we demonstrate different regimes of device performance that can be described through a classical percolation model, leading to semi-transparent solar cells with efficiencies of up to 17.1%. In conjunction with the implementation of an infrared-tuned transparent conductive oxide contact deposited on UV-fused silica, we show a full device average transmittance surpassing 84% between 800 and 1100 nm (as opposed to 77% with PEDOT:PSS as selective contact). Finally, we mechanically staked optimized perovskite devices on top of high performing PERL and IBC silicon architectures. The imputed output efficiency of the 4-terminal measured perovskite-silicon solar cell was 26.7% and 25.2% for PERL-perovskite and IBC-perovskite, respectively.

  2. Balancing electrical and optical losses for efficient Si-perovskite 4-terminal solar cells with solution processed percolation electrodes.

    KAUST Repository

    Ramí rez Quiroz, Cé sar Omar; Shen, Yilei; Salvador, Michael; Forberich, Karen; Schrenker, Nadine; Spyropulos, George D.; Huemueller, Thomas; Wilkinson, Benjamin; Kirchartz, Thomas; Spiecker, Erdmann; Verlinden, Pierre J.; Zhang, Xueling; Green, Martin; Ho-Baillie, Anita Wing Yi; Brabec, Christoph J

    2018-01-01

    The unprecedented efficiency upraise of perovskite-based photovoltaics has sparked the interest in semi-transparent devices, particularly for tandem structures. Despite promising reports regarding efficiency and reduced parasitic absorption, many devices still rely on processes from the gas phase, compromising both applicability and cost factors. Here, we report all-solution perovskite solar cells with improved infrared transparency ideally suited as top-cell for efficient multi-junction device configurations. We demonstrate the functionality of Copper (I) thiocyanate as antireflective layer and selective contact between the transparent conductive oxide and the perovskite as key factor. This concept allows us to fabricate an opaque device with steady state efficiency as high as 20.1%. By employing silver nanowires with robust environmental stability as bottom electrode, we demonstrate different regimes of device performance that can be described through a classical percolation model, leading to semi-transparent solar cells with efficiencies of up to 17.1%. In conjunction with the implementation of an infrared-tuned transparent conductive oxide contact deposited on UV-fused silica, we show a full device average transmittance surpassing 84% between 800 and 1100 nm (as opposed to 77% with PEDOT:PSS as selective contact). Finally, we mechanically staked optimized perovskite devices on top of high performing PERL and IBC silicon architectures. The imputed output efficiency of the 4-terminal measured perovskite-silicon solar cell was 26.7% and 25.2% for PERL-perovskite and IBC-perovskite, respectively.

  3. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    Science.gov (United States)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  4. Fast and Sensitive Solution-Processed Visible-Blind Perovskite UV Photodetectors.

    Science.gov (United States)

    Adinolfi, Valerio; Ouellette, Olivier; Saidaminov, Makhsud I; Walters, Grant; Abdelhady, Ahmed L; Bakr, Osman M; Sargent, Edward H

    2016-09-01

    The first visible-blind UV photodetector based on MAPbCl3 integrated on a substrate exhibits excellent performance, with responsivities reaching 18 A W(-1) below 400 nm and imaging-compatible response times of 1 ms. This is achieved by using substrate-integrated single crystals, thus overcoming the severe limitations affecting thin films and offering a new application of efficient, solution-processed, visible-transparent perovskite optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microstructural features of the La1−xCaxFeO3−δ solid solutions prepared via Pechini route

    International Nuclear Information System (INIS)

    Gerasimov, E.Yu.; Isupova, L.A.; Tsybulya, S.V.

    2015-01-01

    Highlights: • La 1−x Ca x FeO (3−δ) (0 ≤ x ≤ 0.7) perovskite were prepared by Pechini method. • Planar defects in direction (1 0 1) were observed in the perovskite surface. • α-Fe 2 O 3 particles (1–10 nm) on the surface of perovskite were revealed. • Amount of α-Fe 2 O 3 particles on the perovskite surface grew with rising x values. - Abstract: Solid solutions with La 1−x Ca x FeO 3−δ (0 ≤ x ≤ 0.7) perovskite-like structure prepared via Pechini route have been investigated by using high resolution transmission electron microscopy and X-ray diffraction. Extended planar defects lying in (1 0 1) crystallographic planes and α-Fe 2 O 3 nanoparticles on the surface of perovskite microcrystals are characteristic of the samples under investigation. It was found that testing of the samples in catalytic deep CH 4 oxidation process results in partial destruction of solid solutions with formation of planar defects in the bulk and α-Fe 2 O 3 particles on the surface

  6. Solution-Processed Organic and Halide Perovskite Transistors on Hydrophobic Surfaces.

    Science.gov (United States)

    Ward, Jeremy W; Smith, Hannah L; Zeidell, Andrew; Diemer, Peter J; Baker, Stephen R; Lee, Hyunsu; Payne, Marcia M; Anthony, John E; Guthold, Martin; Jurchescu, Oana D

    2017-05-31

    Solution-processable electronic devices are highly desirable due to their low cost and compatibility with flexible substrates. However, they are often challenging to fabricate due to the hydrophobic nature of the surfaces of the constituent layers. Here, we use a protein solution to modify the surface properties and to improve the wettability of the fluoropolymer dielectric Cytop. The engineered hydrophilic surface is successfully incorporated in bottom-gate solution-deposited organic field-effect transistors (OFETs) and hybrid organic-inorganic trihalide perovskite field-effect transistors (HTP-FETs) fabricated on flexible substrates. Our analysis of the density of trapping states at the semiconductor-dielectric interface suggests that the increase in the trap density as a result of the chemical treatment is minimal. As a result, the devices exhibit good charge carrier mobilities, near-zero threshold voltages, and low electrical hysteresis.

  7. Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process.

    Science.gov (United States)

    Li, Ming-Hsien; Yeh, Hung-Hsiang; Chiang, Yu-Hsien; Jeng, U-Ser; Su, Chun-Jen; Shiu, Hung-Wei; Hsu, Yao-Jane; Kosugi, Nobuhiro; Ohigashi, Takuji; Chen, Yu-An; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2018-06-08

    The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI 2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI 2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA 2 MA n -1 Pb n I 3 n +1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI 2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI 3 perovskite grain to benefit MAPbI 3 grain growth. The device employing perovskite with PEAI/PbI 2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm -2 , and a remarkable fill factor of 80.36%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Efficient and stable solution-processed planar perovskite solar cells via contact passivation

    KAUST Repository

    Tan, Hairen; Jain, Ankit; Voznyy, Oleksandr; Lan, Xinzheng; Garcí a de Arquer, F. Pelayo; Fan, James Z.; Quintero-Bermudez, Rafael; Yuan, Mingjian; Zhang, Bo; Zhao, Yicheng; Fan, Fengjia; Li, Peicheng; Quan, Li Na; Zhao, Yongbiao; Lu, Zheng-Hong; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).

  9. Efficient and stable solution-processed planar perovskite solar cells via contact passivation

    KAUST Repository

    Tan, Hairen

    2017-02-03

    Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).

  10. Different methods to fabricate efficient planar perovskite solar cells based on solution-processing Nb2O5 as electron transporting layer

    Science.gov (United States)

    Guo, Heng; Yang, Jian; Pu, Bingxue; Zhang, Haiyan; Niu, Xiaobin

    2018-01-01

    Organo-lead perovskites as light harvesters have represented a hot field of research on high-efficiency perovskite solar cells. Previous approaches to increasing the solar cell efficiency have focused on optimization of the morphology of perovskite film. In fact, the electron transporting layer (ETL) also has a significant impact on solar cell performance. Herein, we introduce a facile and low temperature solution-processing method to deposit Nb2O5 film as ETL for PSCs. Based on Nb2O5 ETL, we investigate the effect of the annealing time for the perovskite films via different solution processing, relating it to the perovskite film morphology and its influence on the device working mechanisms. These results shed light on the origin of photovoltaic performance voltage in perovskite solar cells, and provide a path to further increase their efficiency.

  11. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange.

    Science.gov (United States)

    Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul

    2018-05-22

    The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.

  12. Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process.

    Science.gov (United States)

    Yokoyama, Takamichi; Cao, Duyen H; Stoumpos, Constantinos C; Song, Tze-Bin; Sato, Yoshiharu; Aramaki, Shinji; Kanatzidis, Mercouri G

    2016-03-03

    The development of Sn-based perovskite solar cells has been challenging because devices often show short-circuit behavior due to poor morphologies and undesired electrical properties of the thin films. A low-temperature vapor-assisted solution process (LT-VASP) has been employed as a novel kinetically controlled gas-solid reaction film fabrication method to prepare lead-free CH3NH3SnI3 thin films. We show that the solid SnI2 substrate temperature is the key parameter in achieving perovskite films with high surface coverage and excellent uniformity. The resulting high-quality CH3NH3SnI3 films allow the successful fabrication of solar cells with drastically improved reproducibility, reaching an efficiency of 1.86%. Furthermore, our Kelvin probe studies show the VASP films have a doping level lower than that of films prepared from the conventional one-step method, effectively lowering the film conductivity. Above all, with (LT)-VASP, the short-circuit behavior often obtained from the conventional one-step-fabricated Sn-based perovskite devices has been overcome. This study facilitates the path to more successful Sn-perovskite photovoltaic research.

  13. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells.

    Science.gov (United States)

    Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon

    2016-07-28

    In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm(-2)), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.

  14. Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells

    NARCIS (Netherlands)

    Pudmich, G.; Boukamp, Bernard A.; Gonzalez Cuenca, M.M.; Jungen, W.; Zipprich, W.M.; Tietz, F.

    2000-01-01

    Perovskites containing lanthanides, partially substituted by alkaline-earth elements and transition metals like Cr, Ti, Fe or Co show a very broad range of physical properties. Therefore several perovskite materials, based on lanthanum chromite and strontium titanate were synthesised and

  15. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    International Nuclear Information System (INIS)

    Wang, Fenggong; Grinberg, Ilya; Rappe, Andrew M.

    2014-01-01

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics

  16. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  17. Uranothorite solid solutions: From synthesis to dissolution

    International Nuclear Information System (INIS)

    Costin, Dan-Tiberiu

    2012-01-01

    USiO 4 coffinite appears as one of the potential phases formed in the back-end of the alteration of spent fuel, in reducing storage conditions. A study aiming to assess the thermodynamic data associated with coffinite through an approach based on the preparation of Th 1-x U x SiO 4 uranothorite solid solutions was then developed during this work. First, the preparation of uranothorite samples was successfully undertaken in hydrothermal conditions. However, the poly-phased samples systematically formed for x ≥ 0,2 underlined the kinetic hindering linked with the preparation of uranium-enriched samples, including coffinite end-member. Nevertheless, the characterization of the various samples led to confirm the formation of an ideal solid solution and allowed the constitution of a spectroscopic database. The purification of the samples was then performed by the means of different protocols based on physical (dispersion-centrifugation) or chemical (selective dissolution of secondary phases) methods. This latter led to a complete of the impurities (Th 1-y U y O 2 mixed oxide and amorphous silica) through successive washing steps in acid then basic media. Finally, dissolution experiments were undertaken on uranothorite samples (0 ≤ xexp. ≤ 0,5) and allowed pointing out the influence of composition, pH and temperature on the normalized dissolution rate of the compounds. Also, the associated thermodynamic data, such as activation energy, indicate that the reaction is controlled by surface reactions. Once the equilibrium is reached, the analogous solubility constants were determined for each composition studied, then allowing the extrapolation to coffinite value. It was then finally possible to conclude on the inversion of coffinitisation reaction with temperature. (author) [fr

  18. Hybrid perovskite resulting from the solid-state reaction between the organic cations and perovskite layers of alpha1-(Br-(CH(2))(2)-NH(3))(2)PbI(4).

    Science.gov (United States)

    Sourisseau, Sebastien; Louvain, Nicolas; Bi, Wenhua; Mercier, Nicolas; Rondeau, David; Buzaré, Jean-Yves; Legein, Christophe

    2007-07-23

    The alpha1-(Br-(CH(2))(2)-NH(3))(2)PbI(4) hybrid perovskite undergoes a solid-state transformation, that is, the reaction between the organic cations and the perovskite layers to give the new hybrid perovskite (Br-(CH(2))(2)-NH(3))(2-x)(I-(CH(2))(2)-NH(3))(x)PbBr(x)I(4-x), based on mixed halide inorganic layers. This transformation has been followed by a conventional powder X-ray diffraction system equipped with a super speed detector, and both solid-state (13)C NMR and ESI/MS measurements have been adopted in the estimation of the rate of halide substitution. The first reaction step leads to the special composition of x approximately 1 (A phase), while the complete substitution is not achieved even at elevated temperature (x(max) approximately 1.85 (B phase)). This unprecedented solid-state reaction between organic and inorganic components of a hybrid perovskite can be considered as a completely new strategy to achieve interesting hybrid perovskites.

  19. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  20. Redox-reversible perovskite ferrite cathode for high temperature solid oxide steam electrolyser

    International Nuclear Information System (INIS)

    Li, Zhe; Li, Shisong; Tseng, Chung-Jen; Tao, Shanwen; Xie, Kui

    2017-01-01

    Highlights: • Redox reversible ferrite cathode is demonstrated for solid oxide electrolyser. • Promising electrical conductivity is obtained with Pr doping in hydrogen. • High performance of steam electrolysis is achieved with ferrite cathode. - Abstract: In this work, perovskite Sr 1−x Pr x FeO 3-δ (SPF) (x = 0.02, 0.04, 0.06, 0.08 and 0.10) are investigated and employed as solid oxide steam electrolyser cathode at 800 °C. X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM) analysis together indicate that the Sr 1−x Pr x FeO 3-δ is redox reversible with a phase transition from cubic to orthorhombic structure in redox cycles. The doping of Pr in A site has remarkably enhanced the electronic conduction to 1.0–1.2 S cm −1 at intermediate temperatures in reducing atmosphere. Electrochemical measurements demonstrate that the polarization resistance with Sr 0.96 Pr 0.04 FeO 3-δ electrode shows the lowest values of 0.25 Ω cm 2 in symmetric cells in reducing atmosphere at 800 °C. Direct steam electrolysis with Sr 0.96 Pr 0.04 FeO 3-δ cathode shows a current density of 1.64 A cm −2 at 2.0 V when fed with 5%H 2 O/Ar. The hydrogen production rate reaches 4.73, 6.68, 8.35 and 10.23 mL min −1 cm −2 at 1.4, 1.6, 1.8, 2.0 V, respectively, while the highest Faraday efficiency is as high as 97.16% at 1.8 V.

  1. Local A-site layering in rare-earth orthochromite perovskites by solution synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Luke M.; Walton, Richard I. [Department of Chemistry, University of Warwick, Coventry (United Kingdom); Kashtiban, Reza J.; Sloan, Jeremy [Department of Physics, University of Warwick, Coventry (United Kingdom); Kepaptsoglou, Demie; Ramasse, Quentin M. [SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury (United Kingdom)

    2016-12-19

    Cation size effects were examined in the mixed A-site perovskites La{sub 0.5}Sm{sub 0.5}CrO{sub 3} and La{sub 0.5}Tb{sub 0.5}CrO{sub 3} prepared through both hydrothermal and solid-state methods. Atomically resolved electron energy loss spectroscopy (EELS) in the transmission electron microscope shows that while the La and Sm cations are randomly distributed, increased cation-radius variance in La{sub 0.5}Tb{sub 0.5}CrO{sub 3} results in regions of localised La and Tb layers, an atomic arrangement exclusive to the hydrothermally prepared material. Solid-state preparation gives lower homogeneity resulting in separate nanoscale regions rich in La{sup 3+} and Tb{sup 3+}. The A-site layering in hydrothermal La{sub 0.5}Tb{sub 0.5}CrO{sub 3} is randomised upon annealing at high temperature, resulting in magnetic behaviour that is dependent on synthesis route. (copyright 2016 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  2. Crystalline structure and electrical properties of Dy1-XCaXMnO3 solid solution

    Directory of Open Access Journals (Sweden)

    Durán, P.

    2002-12-01

    Full Text Available Solid solutions corresponding to the Dy1-xCaXMnO3 system, x=0.0 to 0.60 have been studied. The powders were prepared by solid state reaction of the corresponding oxides and carbonates. Sintered bodies were obtained by firing between 1250 and 1450ºC. All the compositions showed single-phased perovskite-type structure with orthorhombic symmetry and Space Group Pbnm. Increase of the CaO content leads to a monotonic decrease of the orthorhombicity factor b/a with the Ca2+ concentration up to x=0.60. All the solid solutions crystallised with the same O’-type orthorhombic perovskite structure such as pure DyMnO3. Electrical measurements have shown semiconducting behaviour for all the solid solutions. The room temperature conductivity increases monotonically with the CaO content. The 60/40 Ca/Dy composition showed a high value of the electrical conductivity and a correlative very low value of the activation energy. Thermally activated small polaron hopping mechanism controls the conductivity of these perovskite ceramics.Se han estudiado soluciones sólidas correspondientes al sistema Dy1-xCaxMnO3, x=0.0 a 0.60. Los polvos cerámicos fueron preparados por reacción en estado sólido de los correspondientes óxidos y carbonatos. Los materiales cerámicos se obtuvieron por sinterización entre 1250º y 1450ºC. Todas las composiciones fueron monofásicas y mostraron una estructura tipo perovskita, con simetría ortorrómbica y Grupo Espacial Pbnm. El aumento del contenido en CaO llevó a una disminución monótona del factor de ortorrombicidad, b/a. Todas las soluciones sólidas cristalizaron con el mismo tipo de estructura perovskita ortorrómbica O’, como la del compuesto puro DyMnO3. Las medidas eléctricas mostraron comportamiento semiconductor en todas las soluciones sólidas. La conductividad a temperatura ambiente aumenta monótonamente con el contenido de CaO. La composición 60/40 mostró un elevado valor de conductividad y un correlativo

  3. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases

    KAUST Repository

    Munir, Rahim

    2016-11-07

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  4. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases

    KAUST Repository

    Munir, Rahim; Sheikh, Arif D.; Abdelsamie, Maged; Hu, Hanlin; Yu, Liyang; Zhao, Kui; Kim, Taesoo; El Tall, Omar; Li, Ruipeng; Smilgies, Detlef M.; Amassian, Aram

    2016-01-01

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  5. The effect of physiologic aqueous solutions on the perovskite material lead-lanthanum-zirconium titanate (PLZT)

    Science.gov (United States)

    Foster, William J.; Meen, James K.; Fox, Donald A.

    2016-01-01

    Context Perovskite compounds, including Lead-Lanthanum-Zirconium Titanate (PLZT), have wide technological application because of their unique physical properties. The use of PLZT in neuro-prosthetic systems, such as retinal implants, have been discussed in a number of publications. Since inorganic lead is a retinotoxic compound that produces retinal degeneration, the long-term stability of PLZT in aqueous biological solutions must be determined. Objective We evaluated the stability and effects of prolonged immersion of a PLZT-coated crystal in a buffered balanced salt solution. Materials and Methods Scanning Electron Microscopy and Electron Dispersive Spectroscopy (EDS) using a JEOL JSM 5410 microscope equipped with EDS were utilized to evaluate the samples before and after prolonged immersion. Results We found that lead and other constituents of PLZT leached into the surrounding aqueous medium. Discussion By comparing the unit cell of PLZT with that of CaTiO3, which has been found to react with aqueous fluids, Lead is in the same site in PLZT as Ca is in CaTiO3. It is thus reasonable that PLZT will react with aqueous solutions. Conclusion The results suggest that PLZT must either be coated with a protective layer or is not appropriate for long-term in vivo or in vitro biological applications. PMID:22697294

  6. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  7. Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shu-en [Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, 430074 (China); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Alonso, Jose Antonio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Goodenough, John B. [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States)

    2010-01-01

    We have developed a Co-free solid oxide fuel cell (SOFC) based upon Fe mixed oxides that gives an extraordinary performance in test-cells with H{sub 2} as fuel. As cathode material, the perovskite Sr{sub 0.9}K{sub 0.1}FeO{sub 3-{delta}} (SKFO) has been selected since it has an excellent ionic and electronic conductivity and long-term stability under oxidizing conditions; the characterization of this material included X-ray diffraction (XRD), thermal analysis, scanning microscopy and conductivity measurements. The electrodes were supported on a 300-{mu}m thick pellet of the electrolyte La{sub 0.8}Sr{sub 0.2}Ga{sub 0.83}Mg{sub 0.17}O{sub 3-{delta}} (LSGM) with Sr{sub 2}MgMoO{sub 6} as the anode and SKFO as the cathode. The test cells gave a maximum power density of 680 mW cm{sup -2} at 800 C and 850 mW cm{sup -2} at 850 C, with pure H{sub 2} as fuel. The electronic conductivity shows a change of regime at T {approx} 350 C that could correspond to the phase transition from tetragonal to cubic symmetry. The high-temperature regime is characterized by a metallic-like behavior. At 800 C the crystal structure contains 0.20(1) oxygen vacancies per formula unit randomly distributed over the oxygen sites (if a cubic symmetry is assumed). The presence of disordered vacancies could account, by itself, for the oxide-ion conductivity that is required for the mass transport across the cathode. The result is a competitive cathode material containing no cobalt that meets the target for the intermediate-temperature SOFC. (author)

  8. Antimony doped barium strontium ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yihan, E-mail: lyhyy@mail.ustc.edu.cn [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Lu, Xiaoyong [China Anhui Key Laboratory of Low Temperature Co-fired Materials, Department of Chemistry, Huainan Normal University, Huainan, Anhui, 232001 (China); Niu, Jinan; Chen, Hui [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Ding, Yanzhi [China Anhui Key Laboratory of Low Temperature Co-fired Materials, Department of Chemistry, Huainan Normal University, Huainan, Anhui, 232001 (China); Ou, Xuemei [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Zhao, Ling [Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 (China)

    2016-05-05

    Antimony was doped to barium strontium ferrite to produce ferrite-based perovskites with a composition of Ba{sub 0.5}Sr{sub 0.5}Fe{sub 1−x}Sb{sub x}O{sub 3−δ} (x = 0.0, 0.05, 0.1) as novel cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The perovskite properties including oxygen nonstoichiometry (δ), mean valence of B-site, tolerance factors, thermal expansion coefficient (TEC) and electrical conductivity (σ) are explored as a function of antimony content. By defect chemistry analysis, the TECs decrease since the variable oxygen vacancy concentration is decreased by Sb doping, and σ decreases with x due to the reduced charge concentration of Fe{sup 4+} content. Consequently, the electrochemical performance was substantially improved and the interfacial polarization resistance was reduced from 0.213 to 0.120 Ωcm{sup 2} at 700 °C with Sb doping. The perovskite with x = 1.0 is suggested as the most promising composition as SOFC cathode material. - Highlights: • Antimony is doped to barium strontium ferrite to produce novel cathodes. • δ, TECs and σ are evaluated as a function of antimony content. • The electrochemical performance is substantially improved with antimony doping.

  9. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, Richard; Martin, Georges.

    1978-01-01

    The stability of various types of solid solutions under irradiation is studied. In this paper, observations made on AlZn solid solutions under 1 MeV electron irradiation are reported. Al-Zn was chosen as a prototype of solid solutions with a simple miscibility gap. It is shown that under appropriate irradiation conditions undersaturated AnZn solid solutions give rise to a homogeneous precipitation of coherent G.P. zones and of incoherent Zn precipitates the atomic volume of which is smaller than that of the matrix. We propose a more general treatment of solute concentration heterogeneities in solid solutions under irradiation and suggest how it might account for the nucleation of the observed phases. The growth of the observed precipitates is studied

  10. Cs 1–x Rb x PbCl 3 and Cs 1–x Rb x PbBr 3 Solid Solutions: Understanding Octahedral Tilting in Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Linaburg, Matthew R.; McClure, Eric T.; Majher, Jackson D.; Woodward, Patrick M.

    2017-04-03

    The structures of the lead halide perovskites CsPbCl3 and CsPbBr3 have been determined from X-ray powder diffraction data to be orthorhombic with Pnma space group symmetry. Their structures are distorted from the cubic structure of their hybrid analogs, CH3NH3PbX3 (X = Cl, Br), by tilts of the octahedra (Glazer tilt system a–b+a–). Substitution of the smaller Rb+ for Cs+ increases the octahedral tilting distortion and eventually destabilizes the perovskite structure altogether. To understand this behavior, bond valence parameters appropriate for use in chloride and bromide perovskites have been determined for Cs+, Rb+, and Pb2+. As the tolerance factor decreases, the band gap increases, by 0.15 eV in Cs1–xRbxPbCl3 and 0.20 eV in Cs1–xRbxPbBr3, upon going from x = 0 to x = 0.6. The band gap shows a linear dependence on tolerance factor, particularly for the Cs1–xRbxPbBr3 system. Comparison with the cubic perovskites CH3NH3PbCl3 and CH3NH3PbBr3 shows that the band gaps of the methylammonium perovskites are anomalously large for APbX3 perovskites with a cubic structure. This comparison suggests that the local symmetry of CH3NH3PbCl3 and CH3NH3PbBr3 deviate significantly from the cubic symmetry of the average structure.

  11. On calculation of lattice parameters of refractory metal solid solutions

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.

    1995-01-01

    Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs

  12. Solution based synthesis of perovskite-type oxide films and powders

    International Nuclear Information System (INIS)

    McHale, J.M. Jr.

    1995-01-01

    Conventional solid state reactions are diffusion limited processes that require high temperatures and long reaction times to reach completion. In this work, several solution based methods were utilized to circumvent this diffusion limited reaction and achieve product formation at lower temperatures. The solution methods studied all have the common goal of trapping the homogeneity inherent in a solution and transferring this homogeneity to the solid state, thereby creating a solid atomic mixture of reactants. These atomic mixtures can yield solid state products through diffusionless mechanisms. The effectiveness of atomic mixtures in solid state synthesis was tested on three classes of materials, varying in complexity. A procedure was invented for obtaining the highly water soluble salt, titanyl nitrate, TiO(NO 3 ) 2 , in crystalline form, which allowed the production of titanate materials by freeze drying. The freeze drying procedures yielded phase pure, nanocrystalline BaTiO 3 and the complete SYNROC-B phase assemblage after ten minute heat treatments at 600 C and 1,100 C, respectively. Two novel methods were developed for the solution based synthesis of Ba 2 YCu 3 O 7-x and Bi 2 Sr 2 Ca 2 Cu 3 O 10 . Thin and thick films of Ba 2 YCu 3 O 7-x and Bi 2 Sr 2 Ca 2 Cu 3 O 10 were synthesized by an atmospheric pressure, chemical vapor deposition technique. Liquid ammonia solutions of metal nitrates were atomized with a stream of N 2 O and ignited with a hydrogen/oxygen torch. The resulting flame was used to coat a substrate with superconducting material. Bulk powders of Ba 2 YCu 3 O 7-x and Bi 2 Sr 2 Ca 2 Cu 3 O 10 were synthesized through a novel acetate glass method. The materials prepared were characterized by XRD, TEM, SEM, TGA, DTA, magnetic susceptibility and electrical resistivity measurements

  13. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.

    KAUST Repository

    Xu, Jixian

    2015-05-08

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  14. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes

    Science.gov (United States)

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-05-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3- antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  15. Effects of Solution-Based Fabrication Conditions on Morphology of Lead Halide Perovskite Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Jeremy L. Barnett

    2016-01-01

    Full Text Available We present a critical review of the effects of processing conditions on the morphology of methylammonium lead iodide (CH3NH3PbI3 perovskite solar cells. Though difficult to decouple from synthetic and film formation effects, a single morphological feature, specifically grain size, has been evidently linked to the photovoltaic performance of this class of solar cells. Herein, we discuss experimental aspects of optimizing the (a temperature and time of annealing, (b spin-coating parameters, and (c solution temperature of methylammonium iodide (MAI solution.

  16. The influence of additives in the stoichiometry of hybrid lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ignasi Burgués-Ceballos

    2017-11-01

    Full Text Available We investigate the employment of carefully selected solvent additives in the processing of a commercial perovskite precursor ink and analyze their impact on the performance of organometal trihalide perovskite (CH3NH3PbI3−xClx photovoltaic devices. We provide evidence that the use of benzaldehyde can be used as an effective method to preserve the stoichiometry of the perovskite precursors in solution. Benzaldehyde based additive engineering shows to improve perovskite solid state film morphology and device performance of CH3NH3PbI3−xClx based solar cells.

  17. The influence of additives in the stoichiometry of hybrid lead halide perovskites

    Science.gov (United States)

    Burgués-Ceballos, Ignasi; Savva, Achilleas; Georgiou, Efthymios; Kapnisis, Konstantinos; Papagiorgis, Paris; Mousikou, Androniki; Itskos, Grigorios; Othonos, Andreas; Choulis, Stelios A.

    2017-11-01

    We investigate the employment of carefully selected solvent additives in the processing of a commercial perovskite precursor ink and analyze their impact on the performance of organometal trihalide perovskite (CH3NH3PbI3-xClx) photovoltaic devices. We provide evidence that the use of benzaldehyde can be used as an effective method to preserve the stoichiometry of the perovskite precursors in solution. Benzaldehyde based additive engineering shows to improve perovskite solid state film morphology and device performance of CH3NH3PbI3-xClx based solar cells.

  18. Thermal diffusivity of samarium-gadolinium zirconate solid solutions

    International Nuclear Information System (INIS)

    Pan, W.; Wan, C.L.; Xu, Q.; Wang, J.D.; Qu, Z.X.

    2007-01-01

    We synthesized samarium-gadolinium zirconate solid solutions and determined their thermal diffusivities, Young's moduli and thermal expansion coefficients, which are very important for their application in thermal barrier coatings. Samarium-gadolinium zirconate solid solutions have extremely low thermal diffusivity between 20 and 600 deg. C. The solid solutions have lower Young's moduli and higher thermal expansion coefficients than those of pure samarium and gadolinium zirconates. This combination of characteristics is promising for the application of samarium and gadolinium zirconates in gas turbines. The mechanism of phonon scattering by point defects is discussed

  19. SOLISOL-handling of solid solutions. Version 1.1

    International Nuclear Information System (INIS)

    Boerjesson, S.; Emren, A.

    1992-09-01

    SOLISOL is a C computer program designed to model geochemical reactions involving solid solutions. The program searches equilibrium concentrations of the components in the aqueous phase and the solid solution given by limited quantities of the solid solution components. The equilibrium code PHREEQE is used as a subprogram in SOLISOL. Subprograms external to PHREEQE extract information from PHREEQE results, take care of conserved properties, calculate solubilities and produce inputdata for PHREEQE. The essential idea in this process is to calculate solubilities for the components in terms of saturation indices, and give directions to PHREEQE on how to search for the equilibrium under those constraints. (au)

  20. Enhancing Performance and Uniformity of Perovskite Solar Cells via a Solution-Processed C70 Interlayer for Interface Engineering.

    Science.gov (United States)

    Zhou, Ya-Qing; Wu, Bao-Shan; Lin, Guan-Hua; Li, Yang; Chen, Di-Chun; Zhang, Peng; Yu, Ming-Yu; Zhang, Bin-Bin; Yun, Da-Qin

    2017-10-04

    Although some kinds of semiconductor metal oxides (SMOs) have been applied as electron selective layers (ESLs) for planar perovskite solar cells (PSCs), electron transfer is still limited by low electron mobility and defect film formation of SMO ESLs fabricated via low-temperature solution process. Herein, the C 70 interlayer between TiO 2 and (HC(NH 2 ) 2 PbI 3 ) x (CH 3 NH 3 PbCl 3 ) 1-x is prepared by spin-coating and low-temperature annealing for planar n-i-p PSCs. The resultant TiO 2 /C 70 ESL shows good surface morphology, efficient electron extraction, and facilitation of high-quality perovskite film formation, which can be attributed to the suitable nanosize and the superior electronic property of C 70 molecules. In comparison with pristine TiO 2 -based PSCs, the efficiency and hysteresis index are, respectively, enhanced 28% and reduced 76% by adding the C 70 interlayer between TiO 2 and perovskite on the basis of statistical data of more than 50 cells. With the main advantages of low-temperature process and optimized interface, the champion efficiency of PSCs on flexible substrates could exceed 12% in contrast with the above 18% on rigid substrate.

  1. Self-Powered, Flexible, and Solution-Processable Perovskite Photodetector Based on Low-Cost Carbon Cloth.

    Science.gov (United States)

    Sun, Haoxuan; Lei, Tianyu; Tian, Wei; Cao, Fengren; Xiong, Jie; Li, Liang

    2017-07-01

    Flexible perovskite photodetectors are usually constructed on indium-tin-oxide-coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high-performance flexible perovskite photodetector is fabricated based on low-cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro-OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as-fabricated photodetector shows a broad spectrum response from ultraviolet to near-infrared light, high responsivity, fast response speed, long-term stability, and self-powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high-performance photodetectors with low cost and self-powered capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solution based preparation of Perovskite-type oxide films and powders

    Energy Technology Data Exchange (ETDEWEB)

    McHale, Jr., James M. [Temple Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1995-04-01

    Conventional solid state reactions are diffusion limited processes that require high temperatures and long reaction times to reach completion. In this work, several solution based methods were utilized to circumvent this diffusion limited reaction and achieve product formation at lower temperatures. The solution methods studied all have the common goal of trapping the homogeneity inherent in a solution and transferring this homogeneity to the solid state, thereby creating a solid atomic mixture of reactants. These atomic mixtures can yield solid state products through "diffusionless" mechanisms. The effectiveness of atomic mixtures in solid state synthesis was tested on three classes of materials, varying in complexity. A procedure was invented for obtaining the highly water soluble salt, titanyl nitrate, TiO(NO3)2, in crystalline form, which allowed the production of titanate materials by freeze drying. The freeze drying procedures yielded phase pure, nanocrystalline BaTiO3 and the complete SYNROC-B phase assemblage after ten minute heat treatments at 600{degrees}C and 1100{degrees}C, respectively. Two novel methods were developed for the solution based synthesis of Ba2YCu3O7-x and Bi2Sr2Ca2Cu3O10. Thin and thick films of Ba2YCu3O7-x and Bi2Sr2Ca2u3O10 were synthesized by an atmospheric pressure, chemical vapor deposition technique. Liquid ammonia solutions of metal nitrates were atomized with a stream of N2O and ignited with a hydrogen/oxygen torch. The resulting flame was used to coat a substrate with superconducting material. Bulk powders of Ba2YCu3O7-x and Bi2Sr2Ca2Cu3O10 were synthesized through a novel acetate glass method. The materials prepared were

  3. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    International Nuclear Information System (INIS)

    Chavez G, L.; Hinojosa R, M.; Medina L, B.; Ringuede, A.; Cassir, M.; Vannier, R. N.

    2017-01-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi_xCo_1_-_xO_3 (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi_0_._7Co_0_._3O_3, LaNi_0_._5Co_0_._5O_3 and LaNi_0_._3Co_0_._7O_3 structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi_xCo_1_-_xO_3/YSZ (Yttria-stabilized zirconia)/LaNi_xCo_1_-_xO_3 showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi_0_._5Co_0_._5O_3, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  4. Low temperature kinetics of In-Cd solid solution decomposition

    Czech Academy of Sciences Publication Activity Database

    Pal-Val, P.P.; Pal-Val, L.N.; Ostapovets, A.A.; Vaněk, Přemysl

    2008-01-01

    Roč. 137, - (2008), s. 35-42 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z10100520 Keywords : low temperatures * In-based alloys * solid solutions * isothermal structure instability * Young's modulus * electrical resistivity * phase diagrams Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.scientific.net/3-908451-53-1/35/

  5. Synthesis and characterization of type solid solution in the binary ...

    Indian Academy of Sciences (India)

    We have investigated Bi2O3–Eu2O3 binary system by doping with Eu2O3 in the composition range from 1 to 10 mole% via solid state reactions and succeeded to stabilize -Bi2O3 ... Our experimental observations strongly suggested that oxygen deficiency type non-stoichiometry is present in doped type solid solutions.

  6. The thermodynamics and kinetics of interstitial solid solutions

    International Nuclear Information System (INIS)

    Silva, J.R.G. da.

    1976-04-01

    Studies of hydrogen metal systems where the hidrogen is disolved in a solid solution are presented. Particular items of interest are: the thermodynamics of the hydrogen-iron system; the solubility of hidrogen in super pure iron single crytals; the thermodinamic functions of hydrogen in solid solutions of Nb, Ta and V; and the solubility of hydrogen in α-manganese. The diffusion of carbon and nitrogen in BCC iron is also studied

  7. Shelf life stability comparison in air for solution processed pristine PDPP3T polymer and doped spiro-OMeTAD as hole transport layer for perovskite solar cell

    Directory of Open Access Journals (Sweden)

    Ashish Dubey

    2016-06-01

    Full Text Available This data in brief includes forward and reverse scanned current density–voltage (J–V characteristics of perovskite solar cells with PDPP3T and spiro-OMeTAD as HTL, stability testing conditions of perovskite solar cell shelf life in air for both PDPP3T and spiro-OMeTAD as HTL as per the description in Ref. [1], and individual J–V performance parameters acquired with increasing time exposed in ambient air are shown for both type of devices using PDPP3T and spiro-OMeTAD as HTL. The data collected in this study compares the device stability with time for both PDPP3T and spiro-OMeTAD based perovskite solar cells and is directly related to our research article “solution processed pristine PDPP3T polymer as hole transport layer for efficient perovskite solar cells with slower degradation” [2].

  8. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    International Nuclear Information System (INIS)

    Patinet, S.

    2009-12-01

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  9. First Principles Studies of Perovskites for Intermediate Temperature Solid Oxide Fuel Cell Cathodes

    KAUST Repository

    Salawu, Omotayo Akande

    2017-05-15

    Fundamental advances in cathode materials are key to lowering the operating temperature of solid oxide fuel cells (SOFCs). Detailed understanding of the structural, electronic and defect formation characteristics are essential for rational design of cathode materials. In this thesis we employ first principles methods to study La(Mn/Co)O3 and LnBaCo2O5+δ (Ln = Pr, Gd; δ = 0.5, 1) as cathode for SOFCs. Specifically, factors affecting the O vacancy formation and migration are investigated. We demonstrate that for LaMnO3 the anisotropy effects often neglected at high operating temperatures become relevant when the temperature is lowered. We show that this fact has consequences for the material properties and can be further enhanced by strain and Sr doping. Tensile strain promotes both the O vacancy formation and migration in pristine and Sr doped LaMnO3, while Sr doping enhances the O vacancy formation but not the migration. The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in LaCoO3 are studied. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure, but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state. For LnBaCo2O5+δ we compare the O vacancy formation in GdBaCo2O5.5 (Pmmm symmetry) and GdBaCo2O6 (P4/mmm symmetry), and the influence of Sr doping. The O vacancy formation energy is demonstrated to be smaller in the already O deficient compound. This relation is maintained under Sr doping. It turns out that Sr doping can be utilized to significantly enhance the O vacancy formation in both compounds. The observed trends are

  10. Features of solid solutions composition in magnesium with yttrium alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Tarytina, I.E.

    1983-01-01

    Additional data on features of yttrium solid solutions composition in magnesium in the course of their decomposition investigation in the case of aging are obtianed. The investigation has been carried out on the base of a binary magnesium-yttrium alloy the composition of which has been close to maximum solubility (at eutectic temperature) and magnesium-yttrium alloys additionally doped with zinc. It is shown that higher yttrium solubility in solid magnesium than it has been expected, issueing from the difference in atomic radii of these metals indicates electron yttrium-magnesium atoms interaction. In oversaturated magnesium-yttrium solid solutions at earlier decomposition stages Mg 3 Cd type ordering is observed. At aging temperatures up to 250 deg C and long exposures corresponding to highest strengthening in oversaturated magnesium yttrium solid solutions a rhombic crystal lattice phase with three symmetric orientations is formed

  11. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solutionSolid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.

  12. Direct and indirect effects of radiation on polar solid solutions

    International Nuclear Information System (INIS)

    Ershov, V.G.; Gaponova, I.S.

    1982-01-01

    Radiation-chemical decomposition of a solute is due to the direct effect of ionizing radiation on it and also to its reaction with radical-ion products of radiolysis of the solution. At low temperature, the movement of the reagents is limited, and thus it is possible to isolate and evaluate the contribution of direct and indirect effects of radiation on the solute. The present paper is devoted to an investigation of the mechanism of formation of radicals from a solute (LiNO 2 ) in a polar solid solution (CH 3 OH) under the effect of γ-radiation

  13. Solution-processed inorganic copper(I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells

    KAUST Repository

    Zhao, Kui

    2015-08-27

    CuSCN is a highly transparent, highly stable, low cost and easy to solution process HTL that is proposed as a low cost replacement to existing organic and inorganic metal oxide hole transporting materials. Here, we demonstrate hybrid organic-inorganic perovskite-based p-i-n planar heterojunction solar cells using a solution-processed copper(I) thiocyanate (CuSCN) bottom hole transporting layer (HTL). CuSCN, with its high workfunction, increases the open circuit voltage (Voc) by 0.23 V to 1.06 V as compared with devices based on the well-known poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (0.83 V), resulting in a superior power conversion efficiency (PCE) of 10.8% without any notable hysteresis. Photoluminescence measurements suggest a similar efficiency of charge transfer at HTL/perovskite interface as PEDOT:PSS. However, we observe more efficient light harvesting in the presence of CuSCN at shorter wavelengths despite PEDOT:PSS being more transparent. Further investigation of the microstructure and morphology reveals differences in the crystallographic texture of the polycrystalline perovskite film, suggesting somewhat modified perovskite growth on the surface of CuSCN. The successful demonstration of the solution-processed inorganic HTL using simple and low temperature processing routes bodes well for the development of reliable and efficient flexible p-i-n perovskite modules or for integration as a front cell in hybrid tandem solar cells.

  14. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  15. Chemical insertion in the perovskite solid solutions Pr{sub 0.5+x-y}Li{sub 0.5-3x}Bi{sub y}{open_square}{sub 2x}TiO{sub 3}: Implications on the electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, M.F., E-mail: rusonil@yahoo.com [Unidad Profesional Interdisciplinaria en Ingenieria y Tecnologias Avanzadas-Instituto Politecnico Nacional (IPN), C.P. 07340, Mexico D.F. (Mexico); Fernandez, N. [Departamento de Quimica Inorganica, Universidad de la Habana, 10400 Ciudad de la Habana (Cuba); Martinez-Sarrion, M.-L.; Mestres, L. [Departament de Quimica Inorganica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Santana, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Coyoacan 04510, Mexico D.F. (Mexico); Lewis, D.W. [Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ (United Kingdom); Ruiz-Salvador, A.R. [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana, 10400 Ciudad de la Habana (Cuba)

    2012-05-15

    Highlight: Black-Right-Pointing-Pointer Lithium insertion is related to the number of vacancies and bismuth concentration. Black-Right-Pointing-Pointer The use of Kramers-Kronig relations allows the separation of the electronic conductivities. Black-Right-Pointing-Pointer The insertion changes the samples from ionic conductors to mixed conductors. Black-Right-Pointing-Pointer Electronic conduction is via a polaron mechanism with activation energy of {approx}0.8 eV. - Abstract: Chemical insertion and de-insertion of lithium in pellet samples of the solid solutions Pr{sub 0.5+x-y}Li{sub 0.5-3x}Bi{sub y}{open_square}{sub 2x}TiO{sub 3} were studied. Two regions of the phase diagram are studied: one having constant composition of bismuth and the other of lithium. The amount of inserted lithium depends on both the number of vacancies and the amount of bismuth in the original samples. The conductivity of the samples is directly related to the amount of inserted lithium and the activation energy depends on the unit cell volume. An analysis of the electronic and ionic components of the conductivity reveals that the untreated materials are pure ionic conductors, while after Li-insertion an additional electronic conductivity (t < 10{sup -2}) occurs, due to a polaron mechanism, with an activation energy of 0.8 eV.

  16. Crystalline structure and electrical properties of solid solutions YNixMn1-xO3

    Directory of Open Access Journals (Sweden)

    Moure, C.

    1999-12-01

    Full Text Available Solid solutions belonging to the Mn-rich region of the YNiXMn1-XO3 system have been studied. The powders were prepared by solid state reaction between the corresponding oxides. Sintered ceramics were obtained by firing at 1325-1350ºC. The incorporation of 20 atomic % Ni2+ to the Yttrium manganite induces the formation of a perovskite phase, with orthorhombic symmetry. Increase of the Ni amount leads to an increase of the orthorhombicity factor b/a, up to an amount of 50 atomic % Ni2+. Above this Ni amount, a biphasic system has been observed, with the presence of unreacted Y2O3. DC electrical conductivity measurements have shown semiconducting behaviour for all the solid solutions with perovskite-type structure. The room temperature conductivity increases with Ni until ~33 atomic % Ni, and then decreases. The 50/50 Ni/Mn composition has different values of conductivity and activation energy against those corresponding to samples with lower values of that ionic ratio. Small polaron hopping mechanism controls the conductivity in these ceramics. Results are discussed as a function of the Mn3+/Mn4+ ratio for each composition.Se han estudiado las soluciones sólidas correspondientes a la región rica en Mn del sistema YNiXMn1-XO3, entre 0 y 50 atomic % Ni. Los compuestos fueron preparados por reacción en estado sólido de los óxidos correspondientes. Se sinterizaron materiales cerámicos a 1325-1350ºC. Con cantidades de 20 atomic % Ni se produce la formación de una fase con estructura de perovskita, y simetría ortorrómbica. La distorsión ortorrómbica crece con el contenido de Ni. Por encima de 50 atomic % Ni, aparece Y2O3 sin reaccionar. Las soluciones sólidas muestran semiconducción con valores de σ que aumentan con el contenido de Ni hasta ~33 atomic %, para luego decrecer, hasta x=0.5. La composición 50/50 Ni/Mn muestra un comportamiento eléctrico algo diferente. Se discuten los resultados en función de la razón Mn3+/Mn4+ para cada

  17. A novel layered perovskite cathode for proton conducting solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Xue, Xingjian [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Liu, Xingqin; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China)

    2010-02-01

    BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) exhibits adequate proton conductivity as well as sufficient chemical and thermal stability over a wide range of SOFC operating conditions, while layered SmBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+{delta}} (SBSC) perovskite demonstrates advanced electrochemical properties based on doped ceria electrolyte. This research fully takes advantage of these advanced properties and develops novel protonic ceramic membrane fuel cells (PCMFCs) of Ni-BZCY7 vertical stroke BZCY7 vertical stroke SBSC. The results show that the open-circuit potential of 1.015 V and maximum power density of 533 mW cm{sup -2} are achieved at 700 C. With temperature increase, the total cell resistance decreases, among which electrolyte resistance becomes increasingly dominant over polarization resistance. The results also indicate that SBSC perovskite cathode is a good candidate for intermediate temperature PCMFC development, while the developed Ni-BZCY7 vertical stroke BZCY7 vertical stroke SBSC cell is a promising functional material system for next generation SOFCs. (author)

  18. Solute redistribution in dendritic solidification with diffusion in the solid

    Science.gov (United States)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  19. Up-scaling perovskite solar cell manufacturing from sheet-to-sheet to roll-to-roll: challenges and solutions

    Science.gov (United States)

    Di Giacomo, Francesco; Galagan, Yulia; Shanmugam, Santhosh; Gorter, Harrie; van den Bruele, Fieke; Kirchner, Gerwin; de Vries, Ike; Fledderus, Henri; Lifka, Herbert; Veenstra, Sjoerd; Aernouts, Tom; Groen, Pim; Andrissen, Ronn

    2017-08-01

    Organometallic halide perovskite solar cells (PSCs) are extremely promising novel materials for thin-film photovoltaics, exhibiting efficiencies over 22% on glass and over 17% on foil 1, 2 . First, a sheet-to-sheet (S2S) production of PSCs and modules on 152x152 mm2 substrates was established, using a combination of sputtering, e-beam evaporation, slot die coating and thermal evaporation (average PCE of 14.6 +/- 1.3 % over 64 devices, more than 10% initial PCE on modules). Later the steps towards a roll-to-roll production will be investigated, starting from the optimization of the stack to make it compatible with a faster production at low temperature. A water based SnOx nanoparticles dispersion was used as solution processable ETL, and the deposition process was scaled-up from spin coating to R2R slot die coating on a 300 mm wide roll of PET/ITO. R2R production is often carried out in ambient atmosphere and involve the use of large volumes of materials, thus a first point is the development of a green solvent and precursor system for the perovskite layer to prevent the emission of toxic compound in the environment. The first results on device fabrication are encouraging, which allow partial R2R manufacturing of flexible PSC (R2R coating of SnOx and perovskite, S2S for Spiro-OMeTAD and gold) with stabilized PCE of 12.6%, a remarkable value for these novel devices. This result can be considered an important milestone towards the production of efficient, low cost, lightweight, flexible PSC on large area.

  20. Reduction of the Curie temperature in the multiferroic Bi5Fe1+xTi3−xO15 solid solution

    International Nuclear Information System (INIS)

    Salazar-Kuri, U; Mendoza, M E; Silva, R; Siqueiros, J M; Gervacio-Arciniega, J J

    2014-01-01

    In this work, the phase diagram of the system Bi 4 Ti 3 O 12 -BiFeO 3 in the region of the solid solution Bi 5 Fe 1+x Ti 3−x O 15 was refined. The limit of solubility was determined to be at x = 0.1. The Curie temperature (T C ) of the ferroelectric phase transition was determined by dielectric permittivity measurements at 100 kHz for the phase Bi 5 FeTi 3 O 15 as well as for the solid solution. A decrease in T C from 750 °C to 742 °C (solid solution at x = 0.1) was found. These results can be explained in terms of the perturbation of the oxygen octahedral perovskite layers resulting from the substitution of Ti 4+ by Fe 3+ ions. (paper)

  1. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Chavez G, L.; Hinojosa R, M. [Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, San Nicolas de los Garza, 66450 Nuevo Leon (Mexico); Medina L, B.; Ringuede, A.; Cassir, M. [Institut de Recherche de Chimie Paris, CNRS-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France); Vannier, R. N., E-mail: leonardo.chavezgr@uanl.edu.mx [Unite de Catalyse et de Chimie du Solide, UMR 8181 CNRS, 59655, Villeneuve d Ascq Cedex (France)

    2017-11-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi{sub x}Co{sub 1-x}O{sub 3} (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi{sub 0.7}Co{sub 0.3}O{sub 3}, LaNi{sub 0.5}Co{sub 0.5}O{sub 3} and LaNi{sub 0.3}Co{sub 0.7}O{sub 3} structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi{sub x}Co{sub 1-x}O{sub 3}/YSZ (Yttria-stabilized zirconia)/LaNi{sub x}Co{sub 1-x}O{sub 3} showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi{sub 0.5}Co{sub 0.5}O{sub 3}, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  2. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    KAUST Repository

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E; Grä tzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  3. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.

    KAUST Repository

    Kim, Hui-Seon

    2012-08-21

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.

  4. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Cascos

    2016-07-01

    Full Text Available SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2 oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2 oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features.

  5. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%

    Science.gov (United States)

    Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E.; Grätzel, Michael; Park, Nam-Gyu

    2012-01-01

    We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH3NH3)PbI3 as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI2 and deposited onto a submicron-thick mesoscopic TiO2 film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (JSC) exceeding 17 mA/cm2, an open circuit photovoltage (VOC) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH3NH3)PbI3 NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO2 film. The use of a solid hole conductor dramatically improved the device stability compared to (CH3NH3)PbI3 -sensitized liquid junction cells. PMID:22912919

  6. Effect of Non-Stoichiometric Solution Chemistry on Improving the Performance of Wide-Bandgap Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Mengjin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Donghoe [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Zhen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reid, Obadiah G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yue [University of Toledo; Song, Zhaoning [University of Toledo; Zhao, Dewei [University of Toledo; Wang, Changlei [University of Toledo; Li, Liwei [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Meng, Yuan [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Guo, Ted [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Yan, Yanfa [University of Toledo

    2017-10-18

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA0.83Cs0.17Pb(I0.6Br0.4)3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I. Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.

  7. Structure and high-piezoelectricity in lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, B.

    2002-01-01

    A review of the recent advances in the understanding of piezoelectricity in lead oxide solid solutions is presented, giving special attention to the structural aspects. It has now become clear that the very high electromechanical response in these materials is directly related to the existence of

  8. Phase segregation in cerium-lanthanum solid solutions

    NARCIS (Netherlands)

    Belliere, V.; Joorst, G; Stephan, O; de Groot, FMF; Weckhuysen, BM

    2006-01-01

    Electron energy-loss spectroscopy (EELS) in combination with scanning transmission electron microscopy ( STEM) reveals that the La enrichment at the surface of cerium-lanthanum solid solutions is an averaged effect and that segregation occurs in a mixed oxide phase. This separation occurs within a

  9. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    Battery systems based on alkali metal anodes and solid solution cathodes,i.e., cathodes based on the insertion of the alkali cation in a "host lattice,"show considerable promise for high energy density storage batteries. Thispaper discusses the interaction between battery requirements...

  10. Synthesis of new perovskite and ''tetragonal bronze'' materials with thorium

    International Nuclear Information System (INIS)

    Launay, Suzanne; Erb, Alfred; Freundlich, William

    1982-01-01

    Disclosure and crystal chemistry study of the solid solutions Th(NbO 3 ) 4 , NaNbO 3 or AgNbO 3 with perovskite structure and Th(Nb, TaO 3 ) 4 , K(Nb,Ta)O 3 with ''tetragonal tungstene bronze'' structure, ''Banana'' type [fr

  11. Synthesis of new perovskite and ''tetragonal bronze'' materials with thorium

    Energy Technology Data Exchange (ETDEWEB)

    Launay, S; Erb, A; Freundlich, W [Universite Paris-VI (France)

    1982-03-22

    Disclosure and crystal chemistry study of the solid solutions Th(NbO/sub 3/)/sub 4/, NaNbO/sub 3/ or AgNbO/sub 3/ with perovskite structure and Th(Nb, TaO/sub 3/)/sub 4/, K(Nb,Ta)O/sub 3/ with ''tetragonal tungstene bronze'' structure, ''Banana'' type.

  12. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  13. Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Serrano-Luján, Lucía; Urbina, Antonio

    2015-01-01

    the inventory for all the components employed for the two different device architectures that resemble respectively a traditional dye sensitised solar cell (DSSC) and an inverted polymer solar cell (OPV). We analyse the impacts from generation of 1 kWh of electricity and assume a lifetime of 1 year...... in the analysis and further present a sensitivity analysis with the operational lifetime as a basis. We find that the major impact comes from the preparation of the perovskite absorber layer due to the electrical energy required in the manufacture and also make the striking observation that the impact of toxic...

  14. Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells

    KAUST Repository

    Peng, Wei

    2016-03-02

    High-quality perovskite monocrystalline films are successfully grown through cavitation-triggered asymmetric crystallization. These films enable a simple cell structure, ITO/CH3NH3PbBr3/Au, with near 100% internal quantum efficiency, promising power conversion efficiencies (PCEs) >5%, and superior stability for prototype cells. Furthermore, the monocrystalline devices using a hole-transporter-free structure yield PCEs ≈6.5%, the highest among other similar-structured CH3NH3PbBr3 solar cells to date.

  15. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    International Nuclear Information System (INIS)

    Qi Jianquan; Wang Yu; Wan Pingchen; Long Tuli; Chan, Helen Lai Wah

    2005-01-01

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  16. Hydrothermal crystallization of zirconia and zirconia solid solutions

    International Nuclear Information System (INIS)

    Pyda, W.; Haberko, K.; Bucko, M.M.

    1991-01-01

    Zirconia as well as yttria-zirconia and calcia-zirconia solid-solution powders were crystallized under hydrothermal conditions from (co)precipitated hydroxides. The morphology of the power particles is strongly dependent on the crystallization conditions. The powders crystallized in a water solution of Na, K, and Li hydroxides show elongated particles of much larger sizes than those which result from the process carried out in pure water or a water solution of Na, K, or Li chlorides. The shapes of the latter particles are isometric. In this paper the growth mechanism of the elongated particles is suggested

  17. Reliable solution processed planar perovskite hybrid solar cells with large-area uniformity by chloroform soaking and spin rinsing induced surface precipitation

    Directory of Open Access Journals (Sweden)

    Yann-Cherng Chern

    2015-08-01

    Full Text Available A solvent soaking and rinsing method, in which the solvent was allowed to soak all over the surface followed by a spinning for solvent draining, was found to produce perovskite layers with high uniformity on a centimeter scale and with much improved reliability. Besides the enhanced crystallinity and surface morphology due to the rinsing induced surface precipitation that constrains the grain growth underneath in the precursor films, large-area uniformity with film thickness determined exclusively by the rotational speed of rinsing spinning for solvent draining was observed. With chloroform as rinsing solvent, highly uniform and mirror-like perovskite layers of area as large as 8 cm × 8 cm were produced and highly uniform planar perovskite solar cells with power conversion efficiency of 10.6 ± 0.2% as well as much prolonged lifetime were obtained. The high uniformity and reliability observed with this solvent soaking and rinsing method were ascribed to the low viscosity of chloroform as well as its feasibility of mixing with the solvent used in the precursor solution. Moreover, since the surface precipitation forms before the solvent draining, this solvent soaking and rinsing method may be adapted to spinless process and be compatible with large-area and continuous production. With the large-area uniformity and reliability for the resultant perovskite layers, this chloroform soaking and rinsing approach may thus be promising for the mass production and commercialization of large-area perovskite solar cells.

  18. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells

    KAUST Repository

    Mutoro, Eva; Crumlin, Ethan J.; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2011-01-01

    Surface-decoration of perovskites can strongly affect the oxygen reduction activity, and therefore is a new and promising approach to improve SOFC cathode materials. In this study, we demonstrate that a small amount of secondary phase on a (001) La 0.8Sr 0.2CoO 3-δ (LSC) surface can either significantly activate or passivate the electrode. LSC (001) microelectrodes prepared by pulsed laser deposition on a (001)-oriented yttria-stabilized zirconia (YSZ) substrate were decorated with La-, Co-, and Sr-(hydr)oxides/carbonates. "Sr"-decoration with nanoparticle coverage in the range from 50% to 80% of the LSC surface enhanced the surface exchange coefficient, k q, by an order of magnitude while "La"- decoration and "Co"-decoration led to no change and reduction in k q, respectively. Although the physical origin for the enhancement is not fully understood, results from atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy suggest that the observed k q enhancement for "Sr"-decorated surfaces can be attributed largely to catalytically active interface regions between surface Sr-enriched particles and the LSC surface. © 2011 The Royal Society of Chemistry.

  19. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  20. Investigation of samarium solubility in the magnesium based solid solution

    International Nuclear Information System (INIS)

    Rokhlin, L.L.; Padezhnova, E.M.; Guzej, L.S.

    1976-01-01

    Electric resistance measurements and microscopic analysis were used to investigate the solubility of samarium in a magnesium-based solid solution. The constitutional diagram Mg-Sm on the magnesium side is of an eutectic type with the temperature of the eutectic transformation of 542 deg C. Samarium is partly soluble in solid magnesium, the less so, the lower is the temperature. The maximum solubility of samarium in magnesium (at the eutectic transformation point) is 5.8 % by mass (0.99 at. %). At 200 deg C, the solubility of samarium in magnesium is 0.4 % by mass (0.063 at. %)

  1. Dislocation cross-slip in fcc solid solution alloys

    International Nuclear Information System (INIS)

    Nöhring, Wolfram Georg; Curtin, W.A.

    2017-01-01

    Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions. Here, the cross-slip transition path in solid solutions is calculated using atomistic methods for three representative systems of Ni-Al, Cu-Ni and Al-Mg over a range of solute concentrations. Studies using both true random alloys and their corresponding average-alloy counterparts allow for the independent assessment of the roles of (i) fluctuations in the spatial solute distribution in the true random alloy randomness and (ii) average alloy properties such as stacking fault energy. The results show that the solute fluctuations dominate the activation energy barrier, i.e. there are large sample-to-sample variations around the average activation barrier. The variations in activation barrier correlate linearly with the energy difference between the initial and final states. The distribution of this energy difference can be computed analytically in terms of the solute/dislocation interaction energies. Thus, the distribution of cross-slip activation energies can be accurately determined from a parameter-free analytic model. The implications of the statistical distribution of activation energies on the rate of cross-slip in real alloys are then identified.

  2. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  3. Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO_4 laser patterned rutile TiO_2 nanorods

    International Nuclear Information System (INIS)

    Fakharuddin, Azhar; Wali, Qamar; Rauf, Muhammad; Jose, Rajan; Palma, Alessandro L; Giacomo, Francesco Di; Casaluci, Simone; Matteocci, Fabio; Carlo, Aldo Di; Brown, Thomas M

    2015-01-01

    The past few years have witnessed remarkable progress in solution-processed methylammonium lead halide (CH_3NH_3PbX_3, X = halide) perovskite solar cells (PSCs) with reported photoconversion efficiency (η) exceeding 20% in laboratory-scale devices and reaching up to 13% in their large area perovskite solar modules (PSMs). These devices mostly employ mesoporous TiO_2 nanoparticles (NPs) as an electron transport layer (ETL) which provides a scaffold on which the perovskite semiconductor can grow. However, limitations exist which are due to trap-limited electron transport and non-complete pore filling. Herein, we have employed TiO_2 nanorods (NRs), a material offering a two-fold higher electronic mobility and higher pore-filing compared to their particle analogues, as an ETL. A crucial issue in NRs’ patterning over substrates is resolved by using precise Nd:YVO_4 laser ablation, and a champion device with η ∼ 8.1% is reported via a simple and low cost vacuum-vapor assisted sequential processing (V-VASP) of a CH_3NH_3PbI_3 film. Our experiments showed a successful demonstration of NRs-based PSMs via the V-VASP technique which can be applied to fabricate large area modules with a pin-hole free, smooth and dense perovskite layer which is required to build high efficiency devices. (paper)

  4. Solid State Structure-Reactivity Studies on Bixbyites, Fluorites and Perovskites Belonging to the Vanadate, Titanate and Cerate Families

    Science.gov (United States)

    Shafi, Shahid P.

    This thesis primarily focuses on the systematic understanding of structure-reactivity relationships in two representative systems: bixbyite and related structures as well as indium doped CeO2. Topotactic reaction routes have gained significant attention over the past two decades due to their potential to access kinetically controlled metastable materials. This has contributed substantially to the understanding of solid state reaction pathways and provided first insights into mechanisms. Contrary to the widely used ex-situ methods, in-situ techniques including powder x-ray diffraction and thermogravimetric-differential thermal analysis have been employed extensively throughout this work in order to follow the reaction pathways in real time. Detailed analysis of the AVO3 (A = In, Sc) bixbyite reactivity under oxidative conditions has been carried out and a variety of novel metastable oxygen defect phases have been identified and characterized. The novel metastable materials have oxygen deficient fluorite structures and consequently are potential ion conductors. Structural aspects of the topotactic vs. reconstructive transformations are illustrated with this model system. The structure-reactivity study of AVO3 phases was extended to AVO3 perovskite family. Based on the research methodologies and results from AVO3 bixbyite reactivity studies a generalized mechanistic oxidation pathway has been established with a non-vanadium phase, ScTiO3 bixbyite. However, there is stark contrast in terms of structural stability and features beyond this stability limit during AVO3 and ScTiO3 bixbyite reaction pathways. A series of complex reaction sequences including phase separation and phase transitions were identified during the investigation of ScTiO3 reactivity. The two-step formation pathway for the fluorite-type oxide ion conductor Ce1-xInxO2-delta (0 ≤ x ≤ 0.3) is being reported. The formation of the BaCe1-xInxO 3-delta perovskites and the subsequent CO2-capture reaction

  5. High-temperature superconductivity in solid solutions based on mixed yttrium and barium cuprate

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Kirsanov, N.A.; Makarova, O.V.; Zubkov, V.G.; Shveikin, G.P.

    1990-01-01

    The discovery of high-temperature superconductivity (T c = 30-40 K) in mixed lanthanum and alkaline earth cuprates La 2-x M x CuO 4 , where M = Ba and Ca (1-3) stimulated an extensive search for new superconducting phases based on mixed oxides of these elements. The superconducting transition temperature T c in LnBa 2 Cu 3 O 7-z phases is practically independent of the REE and lies between 90-96 K. The crystal structure of superconducting YBa 2 Cu 3 O 7-z is similar to perovskite, has orthorhombic symmetry (4,5), and is related to the lanthanum barium cuprite tetragonal defect structure La 3 Ba 3 Cu 6 O 14.1 (8). A study of possible solid solutions (SS) based on YBa 2 Cu 3 O 7-z through iso- or heterovalent substitution for Y 3+ and Ba 2+ and of their electrical properties seems warranted. In the present work, the authors report the synthesis, x-ray diffraction study, and specific electric resistivity of SS Y 1-x M x (Ba 1-y M y ') 2 Cu 3 O 7-z , where M = La, Lu, Sc, In, K, Zr, and Ce and M' = Ca, Sr, Mg, K, and La

  6. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  7. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P.; Bakr, Osman; Sargent, Edward H.

    2015-01-01

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  8. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  9. Coexistence of room temperature ferroelectricity and ferrimagnetism in multiferroic BiFeO3-Bi0.5Na0.5TiO3 solid solution

    International Nuclear Information System (INIS)

    Tian, Z.M.; Wang, C.H.; Yuan, S.L.; Wu, M.S.; Ma, Z.Z.; Duan, H.N.; Chen, L.

    2011-01-01

    Highlights: → In this study, the coexistence of ferroelectrics and ferrimagnetism have been observed at room temperature for the (1 - x)BiFeO 3 -xBi 0.5 Na 0.5 TiO 3 (x = 0.37) solid solutions. → X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. → A magnetic transition from paramagnetic (PM) to ferrimagnetic (Ferri) ordering is observed for the solution with Curie temperature T C ∼ 330 K. - Abstract: The structure, ferroelectric and magnetic properties of (1 - x)BiFeO 3 -xBi 0.5 Na 0.5 TiO 3 (x = 0.37) solid solution fabricated by a sol-gel method have been investigated. X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. Compared with pure BiFeO 3 , the coexistence of ferroelectricity and ferrimagnetism have been observed at room temperature for the solution with remnant polarization P r = 1.41 μC/cm 2 and remnant magnetization M r = 0.054 emu/g. Importantly, a magnetic transition from ferrimagnetic (FM) ordering to paramagnetic (PM) state is observed, with Curie temperature T C ∼ 330 K, being explained in terms of the suppression of cycloid spin configuration by the structural distortion.

  10. Magnetic clusters in ilmenite-hematite solid solutions

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Burton, B. P.; Rasmussen, Helge Kildahl

    2010-01-01

    We report the use of high-field 57Fe Mössbauer spectroscopy to resolve the magnetic ordering of ilmenite-hematite [xFeTiO3−(1−x)Fe2O3] solid solutions with x>0.5. We find that nanometer-sized hematite clusters exist within an ilmenite-like matrix. Although both phases are antiferromagnetically...

  11. The effect of physiologic aqueous solutions on the perovskite material lead-lanthanum-zirconium titanate (PLZT): potential retinotoxicity.

    Science.gov (United States)

    Foster, William J; Meen, James K; Fox, Donald A

    2013-03-01

    Perovskite compounds, including lead-lanthanum-zirconium titanate (PLZT), have wide technological application because of their unique physical properties. The use of PLZT in neuro-prosthetic systems, such as retinal implants, has been discussed in a number of publications. Since inorganic lead is a retinotoxic compound that produces retinal degeneration, the long-term stability of PLZT in aqueous biological solutions must be determined. We evaluated the stability and effects of prolonged immersion of a PLZT-coated crystal in a buffered balanced salt solution. Scanning Electron Microscopy and Electron Dispersive Spectroscopy (EDS) using a JEOL JSM 5410 microscope equipped with EDS were utilized to evaluate the samples before and after prolonged immersion. We found that lead and other constituents of PLZT leached into the surrounding aqueous medium. By comparing the unit cell of PLZT with that of CaTiO(3), which has been found to react with aqueous fluids, Lead is in the same site in PLZT as Ca is in CaTiO(3). It is thus reasonable that PLZT will react with aqueous solutions. The results suggest that PLZT must either be coated with a protective layer or is not appropriate for long-term in vivo or in vitro biological applications.

  12. X-Ray Characterization of Non-Equilibrium Solid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Rosdahl, Oe

    1975-07-01

    The Rudman approach to composition line broadening in X-ray diffraction patterns, originally designed for the study of diffusion in alloys, is seen to provide a basis for characterizing inhomogeneous solid solutions. Limitations, imposed on this treatment when the cell dimensions of the primary components differ by less than 0.1 A, are attributable to experimental effects such as instrument broadening. These limitations can be overcome by a rigorous numerical treatment of the measured data. Thus, separate elimination of the Kalpha{sub 2} radiation component followed by iterative deconvolution are advocated for the recovery of the intrinsic broadening. This course of action is made possible chiefly through the availability of large, fast memory computers and primary data recorded in the form of a step scan on punched paper tape. The characteristics of inhomogeneous solid solutions made available by the above treatment are the identity of closely similar, solid solution phases, the frequency distribution curve for a chosen component, and the degree of homogeneity of the X-ray sample

  13. X-Ray Characterization of Non-Equilibrium Solid Solutions

    International Nuclear Information System (INIS)

    Brown, A.; Rosdahl, Oe.

    1975-01-01

    The Rudman approach to composition line broadening in X-ray diffraction patterns, originally designed for the study of diffusion in alloys, is seen to provide a basis for characterizing inhomogeneous solid solutions. Limitations, imposed on this treatment when the cell dimensions of the primary components differ by less than 0.1 A, are attributable to experimental effects such as instrument broadening. These limitations can be overcome by a rigorous numerical treatment of the measured data. Thus, separate elimination of the Kα 2 radiation component followed by iterative deconvolution are advocated for the recovery of the intrinsic broadening. This course of action is made possible chiefly through the availability of large, fast memory computers and primary data recorded in the form of a step scan on punched paper tape. The characteristics of inhomogeneous solid solutions made available by the above treatment are the identity of closely similar, solid solution phases, the frequency distribution curve for a chosen component, and the degree of homogeneity of the X-ray sample

  14. Photocatalysis: HI-time for perovskites

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard

    2017-01-01

    Organolead halide perovskite solar absorbers demonstrate high photovoltaic efficiencies but they are notorious for their intolerance to water. Now, methylammonium lead iodide perovskites are used to harvest solar energy — in water — via photocatalytic generation of hydrogen from solutions...

  15. Bright-Emitting Perovskite Films by Large-Scale Synthesis and Photoinduced Solid-State Transformation of CsPbBr3 Nanoplatelets.

    Science.gov (United States)

    Shamsi, Javad; Rastogi, Prachi; Caligiuri, Vincenzo; Abdelhady, Ahmed L; Spirito, Davide; Manna, Liberato; Krahne, Roman

    2017-10-24

    Lead halide perovskite nanocrystals are an emerging class of materials that have gained wide interest due to their facile color tuning and high photoluminescence quantum yield. However, the lack of techniques to translate the high performance of nanocrystals into solid films restricts the successful exploitation of such materials in optoelectronics applications. Here, we report a heat-up and large-scale synthesis of quantum-confined, blue-emitting CsPbBr 3 nanoplatelets (NPLs) that self-assemble into stacked lamellar structures. Spin-coated films fabricated from these NPLs show a stable blue emission with a photoluminescence quantum yield (PLQY) of 25%. The morphology and the optoelectronic properties of such films can be dramatically modified by UV-light irradiation under ambient conditions at a high power, which transforms the self-assembled stacks of NPLs into much larger structures, such as square-shaped disks and nanobelts. The emission from the transformed thin films falls within the green spectral region with a record PLQY of 65%, and they manifest an amplified spontaneous emission with a sharp line width of 4 nm at full-width at half-maximum under femtosecond-pulsed excitation. The transformed films show stable photocurrents with a responsivity of up to 15 mA/W and response times of tens of milliseconds and are robust under treatment with different solvents. We exploit their insolubility in ethanol to fabricate green-emitting, all-solution-processed light-emitting diodes with an external quantum efficiency of 1.1% and a luminance of 590 Cd/m 2 .

  16. Low-temperature (75 °C) solid-state reaction enhanced by less-crystallized nanoporous PbI2 films for efficient CH3NH3PbI3 perovskite solar cells

    International Nuclear Information System (INIS)

    Zheng, Huifeng; Liu, Yangqiao; Sun, Jing

    2017-01-01

    Highlights: • Efficient perovskite solar cells were prepared with solid-state reaction at 75 °C. • Ln-PbI 2 is superior to c-PbI 2 when applied in low-temperature solid-state reaction. • A higher champion PCE was obtained at 75 °C (13.8%) than that of 140 °C (11.8%). • Non-radiative defects increase significantly when annealed at high temperature. - Abstract: Organohalide perovskite films are usually prepared with the solid-state reaction at a high temperature ≥100 °C, which causes the increase of non-radiative defects and decomposition of perovskite films. Here, we demonstrate it’s feasible to prepare high-quality perovskite films with the solid-state reaction method even at a temperature of 75 °C, when enhanced by less-crystallized nanoporous PbI 2 (ln-PbI 2 ) films. The replacement of compact PbI 2 (c-PbI 2 ) by ln-PbI 2 , results in a significant improvement of crystallinity of perovskite films, besides the elimination of remnant PbI 2 . As a result, ln-PbI 2 based perovskite solar cells display much higher power conversion efficiency (PCE) and better stability. Moreover, annealing duration was found to be critical for high PCE and was optimized as 60 min. Finally, with the optimal process, the champion device displayed a PCE of 13.8% and the average PCE reached 10.1% with a satisfactory deviation. Furthermore, we found annealing at high temperature (140 °C) led to a lower PCE compared with that annealed at 75 °C, because non-radiative defects increased significantly during high-temperature annealing. This work may open up a promising avenue for preparing high-quality perovskite films with the low-temperature solid-state reaction method, which is desirable for real application.

  17. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215 0 C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO 2 equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented

  18. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer.

    Science.gov (United States)

    Sun, Weihai; Li, Yunlong; Ye, Senyun; Rao, Haixia; Yan, Weibo; Peng, Haitao; Li, Yu; Liu, Zhiwei; Wang, Shufeng; Chen, Zhijian; Xiao, Lixin; Bian, Zuqiang; Huang, Chunhui

    2016-05-19

    During the past several years, methylammonium lead halide perovskites have been widely investigated as light absorbers for thin-film photovoltaic cells. Among the various device architectures, the inverted planar heterojunction perovskite solar cells have attracted special attention for their relatively simple fabrication and high efficiencies. Although promising efficiencies have been obtained in the inverted planar geometry based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) sulfonic acid ( PSS) as the hole transport material (HTM), the hydrophilicity of the PSS is a critical factor for long-term stability. In this paper, a CuOx hole transport layer from a facile solution-processed method was introduced into the inverted planar heterojunction perovskite solar cells. After the optimization of the devices, a champion PCE of 17.1% was obtained with an open circuit voltage (Voc) of 0.99 V, a short-circuit current (Jsc) of 23.2 mA cm(-2) and a fill factor (FF) of 74.4%. Furthermore, the unencapsulated device cooperating with the CuOx film exhibited superior performance in the stability test, compared to the device involving the PSS layer, indicating that CuOx could be a promising HTM for replacing PSS in inverted planar heterojunction perovskite solar cells.

  19. Synthesis and characterization of solid solutions in ABCO 4 system

    Science.gov (United States)

    Novoselov, A.; Zimina, G.; Komissarova, L.; Pajaczkowska, A.

    2006-01-01

    Formation of continuous solid solutions with a tetragonal structure of K 2NiF 4-type was investigated by direct solid-state synthesis, carbonate precipitations, the freeze-drying method and the Czochralski crystal growth technique. In the systems of SrLaAlO 4-CaLaAlO 4, SrNdAlO 4-CaNdAlO 4, SrPrAlO 4-CaPrAlO 4, SrLaAlO 4-SrLaGaO 4 and SrLaAlO 4-SrLaFeO 4 solid solutions are formed in the whole concentration range (0.0⩽ x⩽1.0) and in the systems of SrLaAlO 4-SrLaMnO 4 and SrLaAlO 4-SrLaCrO 4 in the limited compositional interval of (0.0⩽ x⩽0.20) and (0.0⩽ x⩽0.25), respectively, with composition dependency of lattice constants following Vegard's law.

  20. Novel layered perovskite GdBaCoFeO{sub 5+{delta}} as a potential cathode for proton-conducting solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Xue, Xingjian [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-05-15

    While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO{sub 2}, high thermal expansion coefficients, etc. Partial B site substitution with Fe element is expected to be able to mitigate these problems while keeping high catalyst performance. In this paper, a layered perovskite GdBaCoFeO{sub 5+{delta}} (GBCF) was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolyte of stable BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7). The button cells of Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBCF were fabricated and tested from 600 to 700 C with humidified H{sub 2} ({proportional_to}3% H{sub 2}O) as a fuel and ambient oxygen as oxidant. An open-circuit potential of 1.002 V, maximum power density of 482 mW cm{sup -2}, and a low electrode polarization resistance of 0.11 {omega}cm{sup 2} were achieved at 700 C. The experimental results indicated that the layered perovskite GBCF is a good candidate for cathode material, while the developed Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBCF cell is a promising functional material system for intermediate temperature solid oxide fuel cells. (author)

  1. On the Defect Chemistry, Electrical Properties and Electrochemical Performances As Solid Oxide Fuel Cell Cathode Materials of New La-(Sr/Vac)-Co-Ti-O Perovskites

    DEFF Research Database (Denmark)

    García-Alvarado, Flaviano; Gómez-Pérez, Alejandro; Pérez-Flores, Juan Carlos

    2015-01-01

    Perovskite-type oxides are well known materials that have been proposed as electrodes and electrolytes for solid oxide fuel cells (SOFCs). The structure, which is referred to the ABO3 stoichiometry, can accommodate many different transition metal ions in the B-site; its electronic conductivity...... materials with valuable properties for SOFCs. We have analysed the effect of La3+ by Sr2+ substitution and vacancies creation in several double perovskites, La2MTiO6 (M = Co, Ni, Cu). Defect chemistry and electrical behavior have been investigated in order to unveil the nature of charge carriers....... Electrochemical performances have been assessed through polarization resistance measurements. In this communication we present the results regarding La2SrTiO6 perovskites. La/Sr substitution in La2-xSrxCoTiO6-δ produces Co2+ to Co3+ oxidation while vacancies in La2-xCoTiO6-δ yield Co2+ oxidation for low A...

  2. Crystalline structure of the manganites solid solution RE(Me,MnO3, (RE=Gd,Er; Me=Ni,Co

    Directory of Open Access Journals (Sweden)

    Peña, O.

    2009-08-01

    Full Text Available The structural properties of the manganites solid solution RE(Me,MnO3, RE=Er,Gd, have been studied by X-ray diffraction and electric measurements. Powders were prepared by solid state reaction between the component oxides. Incorporation of Ni2+ or Co2+ on the lattice in the Mn sites leads to changes in the parameters and symmetry of the perovskite or hexagonal compounds GdMnO3 and ErMnO3 respectively. The phase transitions depend on the amount of substituted Jahn-Teller Mn3+ cations, and, therefore, of the cooperative Jahn-Teller interaction weakness. Solid solutions based on GdMnO3 perovskite compound change from O’-type to O-type orthorhombic perovskite symmetry when the Mn3+ cation amount decreases, because of the progressive substitution for Ni, Co. This transition occurs for lower amount of Ni2+ than for Co2+ cation. The Er-based solid solutions showed a different behaviour. For Ni2+ and Co2+ incorporation there are changes from hexagonal ErMnO3-type lattice to perovskite-type symmetry, for 20 at% and 30 at% respectively of substituting cations. The resultant perovskites crystallised directly in the O-type orthorhombic perovskite structure. The steric influence seems to play a secondary role, such as it can be deduced of the small variation of the Goldschmidt tolerance factor, t, for perovskite structure.

    Las propiedades estructurales de las soluciones sólidas RE(Me,MnO3, RE=Gd,Er, Me=Ni,Co, han sido estudiadas por difracción de rayos X, (DRX y medidas eléctricas. Las fases se sintetizaron por reacción en estado sólido entre los óxidos componentes. La incorporación de los cationes Ni2+ y Co2+,3+ en la red en lugar de Mn lleva a cambios en los parámetros de red y en la simetría de la perovskita, GdMnO3 o del compuesto hexagonal Er

  3. Enhanced ionic conductivity with Li{sub 7}O{sub 2}Br{sub 3} phase in Li{sub 3}OBr anti-perovskite solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi; Howard, John W.; Wang, Yonggang; Kumar, Ravhi S.; Wang, Liping [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Lü, Xujie [Center for Integrated Nanotechnologies and Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Li, Yutao [Materials Research Program and The Texas Materials Institute, University of Texas at Austin, Texas 78712 (United States); Zhao, Yusheng, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Department of Physics, South University of Science and Technology of China, Guangdong 518055 (China)

    2016-09-05

    Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.

  4. Thorium-d-metals compounds and solid solutions

    International Nuclear Information System (INIS)

    Chachkhiani, Z.B.; Chechernikov, V.I.; Chachkhiani, L.G.

    1986-01-01

    Thorium compounds with Fe, Co, Ni dependence of their magnetic properties on temperature, pressure and concentration of the second element are considered. Anomalous magnetic behaviour of alloys in the Th-Fe system is noted. Special attention is paid to compounds with CaCu 5 type hexagonal structure and their solid solutions. Th-Co-Ni specimens containing up to 25% Ni are ferromagnetics and the rest are paramagnetics. Specimens with 60% cobalt content do not display ferromagnetic properties up to 4.2 K. Hydrides of Th 7 M 3 H 30 type (M - Fe, Co, Ni) are also considered. Highly hydrogenized specimens (under high pressure) appear to be stronger ferromagnetics

  5. Np(V) carbonates in solid state and aqueous solution

    International Nuclear Information System (INIS)

    Meinrath, G.

    1994-01-01

    The solubility of NaNpO 2 CO 3 (s) in 0.1M perchlorate solution at 25 deg C in equilibrium with 1.0% CO 2 /N 2 atmosphere has been investigated as a function of pH/lg [CO 3 2- ]. The solid phase was found hexagonal with a=1008.1±0.3 pm and c=991.1±0.2 pm. A solubility product of lg Ksp(NaNpO 2 CO 3 ) = -10.22±0.02 and a formation constant of the first Np(V) carbonato species of lg β 01 = 4.52±0.02 was evaluated. For the dicarbonato species an upper limit of lg lg β 02 2 partial pressure gave evidence that carbonato species are prevailing in solutions at both 1% and 0.03% CO 2 partial pressures. (author) 26 refs.; 4 figs.; 3 tabs

  6. Structure and some magnetic properties of (BiFeO3x-(BaTiO31−x solid solutions prepared by solid-state sintering

    Directory of Open Access Journals (Sweden)

    Kowal Karol

    2015-03-01

    Full Text Available This paper presents the results of the study on structure and magnetic properties of the perovskite-type (BiFeO3x-(BaTiO31−x solid solutions. The samples differing in the chemical composition (x = 0.9, 0.8, and 0.7 were produced according to the conventional solid-state sintering method from the mixture of powders. Moreover, three different variants of the fabrication process differing in the temperatures and soaking time were applied. The results of X-ray diffraction (XRD, Mössbauer spectroscopy (MS, and vibrating sample magnetometry (VSM were collected and compared for the set of the investigated materials. The structural transformation from rhombohedral to cubic symmetry was observed for the samples with x = 0.7. With increasing of BaTiO3 concentration Mössbauer spectra become broadened reflecting various configurations of atoms around 57Fe probes. Moreover, gradual decreasing of the average hyperfine magnetic field and macroscopic magnetization were observed with x decreasing.

  7. Experimental and theoretical study of solid solution stability under irradiation

    International Nuclear Information System (INIS)

    Cauvin, Richard.

    1981-08-01

    The behavior of dilute alloys (Al-Zn, Al-Ag, Al-Si, Al-Ge and Al-Mg) under 1 MeV electron irradiation has been studied in a high voltage electron microscope. A phenomenon of homogeneous precipitation induced by irradiation in undersaturated solid solutions (Al-Zn, Al-Ag and Al-Si) has been discovered; the observed precipitates are either coherent or incoherent, but never associated with point defect sinks. The solubility limit is a function of irradiation temperature and flux; but, under irradiation, it does not behave as a true thermal solubility limit (without irradiation). The existing theories (kinetic or strictly thermodynamic) do not account for this phenomenon. It is shown that the irreversibility of the mutual recombination between trapped vacancies and mixed interstitials is the driving force of this homogeneous precipitation. Using a dilute solid solution model, we show that, under irradiation, the homogeneous stationary state, stable from a strictly thermodynamic point of view, can be unstable when the recombination reaction is taken into account. The solubility limit under irradiation is calculated with a nucleation-growth model taking account for this effect; it is proportional to the thermal solubility limit without irradiation. This model explains all the experimental observations [fr

  8. Hybrid perovskite solar cells: In situ investigation of solution-processed PbI2 reveals metastable precursors and a pathway to producing porous thin films

    KAUST Repository

    Barrit, Dounya

    2017-04-17

    The successful and widely used two-step process of producing the hybrid organic-inorganic perovskite CH3NH3PbI3, consists of converting a solution deposited PbI2 film by reacting it with CH3NH3I. Here, we investigate the solidification of PbI2 films from a DMF solution by performing in situ grazing incidence wide angle X-ray scattering (GIWAXS) measurements. The measurements reveal an elaborate sol–gel process involving three PbI2⋅DMF solvate complexes—including disordered and ordered ones—prior to PbI2 formation. The ordered solvates appear to be metastable as they transform into the PbI2 phase in air within minutes without annealing. Morphological analysis of air-dried and annealed films reveals that the air-dried PbI2 is substantially more porous when the coating process produces one of the intermediate solvates, making this more suitable for subsequent conversion into the perovskite phase. The observation of metastable solvates on the pathway to PbI2 formation open up new opportunities for influencing the two-step conversion of metal halides into efficient light harvesting or emitting perovskite semiconductors.

  9. Control of PbI2 nucleation and crystallization: towards efficient perovskite solar cells based on vapor-assisted solution process

    Science.gov (United States)

    Yang, Chongqiu; Peng, Yanke; Simon, Terrence; Cui, Tianhong

    2018-04-01

    Perovskite solar cells (PSC) have outstanding potential to be low-cost, high-efficiency photovoltaic devices. The PSC can be fabricated by numerous techniques; however, the power conversion efficiency (PCE) for the two-step-processed PSC falls behind that of the one-step method. In this work, we investigate the effects of relative humidity (RH) and dry air flow on the lead iodide (PbI2) solution deposition process. We conclude that the quality of the PbI2 film is critical to the development of the perovskite film and the performance of the PSC device. Low RH and dry air flow used during the PbI2 spin coating procedure can increase supersaturation concentration to form denser PbI2 nuclei and a more suitable PbI2 film. Moreover, airflow-assisted PbI2 drying and thermal annealing steps can smooth transformation from the nucleation stage to the crystallization stage.

  10. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems

    Science.gov (United States)

    Glynn, P.D.; Reardon, E.J.; Plummer, Niel; Busenberg, E.

    1990-01-01

    Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.

  11. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  12. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, R.; Martin, G.

    1979-01-01

    A TEM study of 1 MeV electron irradiated Al 1.9 at% Zn solid solution shows that Zn precipitates form, under irradiation at temperatures well above the Zn solvus temperature outside irradiation. The corresponding upward shift of this temperature is dose rate dependent. This new example of radiation-induced precipitation exhibits unexpected features, which are not accounted for by the available models: (1) no correlation exists between the location of the precipitates and that of the point defects sinks; (2) the precipitation of incoherent β-phase with atomic volume smaller than that of the matrix, and of coherent G.P. zones both occurs; (3) the size of the coherent β precipitates saturates at large dose. A general mechanism for solute concentration fluctuations under irradiation is proposed which qualitatively accounts for the formation of coherent G.P. zones and for the nucleation of solute clusters with more complex structures. A reanalysis of Russell's model (1977) for the growth of incoherent precipitates shows that it may qualitatively account for the observed behavior of the β phase precipitates. (Auth.)

  13. Diffuse neutron scattering study of metallic interstitial solid solutions

    International Nuclear Information System (INIS)

    Barberis, P.

    1991-10-01

    We studied two interstitial solid solutions (Ni-C(1at%) and Nb-O(2at%) and two stabilized zirconia (ZrO2-CaO(13.6mol%) and ZrO2-Y2O3(9.6mol%) by elastic diffuse neutron scattering. We used polarized neutron scattering in the case of the ferromagnetic Ni-based sample, in order to determine the magnetic perturbation induced by the C atoms. Measurements were made on single crystals in the Laboratoire Leon Brillouin (CEA-CNRS, Saclay, France). An original algorithm to deconvolve time-of-flight spectra improved the separation between elastically and inelastically scattered intensities. In the case of metallic solutions, we used a simple non-linear model, assuming that interstitials are isolated and located in octahedral sites. Results are: - in both compounds, nearest neighbours are widely displaced away from the interstitial, while next nearest neighbours come slightly closer. - the large magnetic perturbation induced by carbon in Nickel decreases with increasing distance on the three first neighbour shells and is in good agreement with the total magnetization variation. - no chemical order between solute atoms could be evidenced. Stabilized zirconia exhibit a strong correlation between chemical order and the large displacements around vacancies and dopants. (Author). 132 refs., 38 figs., 13 tabs

  14. Engineering solutions to the management of solid radioactive waste

    International Nuclear Information System (INIS)

    1991-01-01

    The management of radioactive waste, its safe handling and ultimate disposal, is of vital concern to engineers in the nuclear industry. The international conference 'Engineering Solutions to the Management of Solid Radioactive Waste', organized by the Institution of Mechanical Engineers and held in Manchester in November 1991, provided a forum for the discussion and comparison of the different methods of waste management used in Europe and America. Papers presented and discussed included: the interaction between the design of containers for low level radioactive waste and the design of a deep repository, commercial low level waste disposal sites in the United States, and the development of radioactive waste monitoring systems at the Sellafield reprocessing complex. This volume is a collection of 22 papers presented at the conference. All are indexed separately. (author)

  15. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pérez

    2012-12-01

    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  16. Crystal-chemical features of the solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Titov, V.V.; Kesler, Ya.A.; Gordeev, I.V.; Mozhaev, A.P.

    1988-04-01

    The unusual magnetic properties of the solid solutions of CuCr/sub 2/S/sub 4/ in Cu/sub 0.5/Mo/sub 0.5/Cr/sub 2/S/sub 4/ (M = Al, Ga, In) are closely related to the crystal chemistry of these compounds. Specimens for structural investigation were obtained by solid-phase synthesis in evacuated quartz capsules. X-ray phase analysis of all the compounds was made by the powder method in a DRON-1 diffractometer with Cu K..cap alpha.. filtered radiation. The experimental confirmation of the ordering of the cations in the tetrahedral sublattice of the investigated spinels was obtained by the authors from their IR absorption spectra taken in the range 400-33 cm/sup /minus/1/. The presence of seven intense absorption bands in the spectra of the specimens indicates that these materials belong to the space group F/anti/43m, i.e., that there is ordering in the A sublattice. Their investigation led them to the conclusion that in a number of cases the vibrational spectra of the crystals are more sensitive in the investigation of atomic ordering than the spectra of x-ray and neutron diffraction, in agreement with the theoretical predictions.

  17. Perovskite classification: An Excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup

    Science.gov (United States)

    Locock, Andrew J.; Mitchell, Roger H.

    2018-04-01

    Perovskite mineral oxides commonly exhibit extensive solid-solution, and are therefore classified on the basis of the proportions of their ideal end-members. A uniform sequence of calculation of the end-members is required if comparisons are to be made between different sets of analytical data. A Microsoft Excel spreadsheet has been programmed to assist with the classification and depiction of the minerals of the perovskite- and vapnikite-subgroups following the 2017 nomenclature of the perovskite supergroup recommended by the International Mineralogical Association (IMA). Compositional data for up to 36 elements are input into the spreadsheet as oxides in weight percent. For each analysis, the output includes the formula, the normalized proportions of 15 end-members, and the percentage of cations which cannot be assigned to those end-members. The data are automatically plotted onto the ternary and quaternary diagrams recommended by the IMA for depiction of perovskite compositions. Up to 200 analyses can be entered into the spreadsheet, which is accompanied by data calculated for 140 perovskite compositions compiled from the literature.

  18. Fabrication and Application of (1-x) NaCl+xKCl Solid Solution

    International Nuclear Information System (INIS)

    Kyi Kyi Lwin

    2011-12-01

    (1-X)NaCl+xKCl solid solution are prepared by the starting materials NaCl (0.9, 0.95) in equal molar ratio. The solid solutions are heat-treated at various temperature and XRD analyses are carried out for the solid solutions to examine the crystalline phase, crystallographic orientation and lattice parameters. The electrical properties of the solutions are determined by using the conductometer. The solid solutions are utilized as crystal oscillator and outcoming frequencies, capacitances and dielectric constants are also investigated.

  19. Phase formation and UV luminescence of Gd{sup 3+} doped perovskite-type YScO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yuhei; Ueda, Kazushige, E-mail: kueda@che.kyutech.ac.jp

    2016-10-15

    Synthesis of pure and Gd{sup 3+}doped perovskite-type YScO{sub 3} was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd{sup 3+} doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO{sub 3} formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO{sub 3}. Because Gd{sup 3+} ions were also dissolved into the single C-type phase in Gd{sup 3+} doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase. - Graphical abstract: A pure perovskite-type YScO{sub 3} phase was successfully synthesized by a polymerized complex (PC) method. The perovskite-type YScO{sub 3} was generated through a solid solution of C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} with drastic change of morphology. The PC method enabled a preparation of the single phase of the perovskite-type YScO{sub 3} at lower temperature and in shorter heating time. Gd{sup 3+} doped perovskite-type YScO{sub 3} was found to show a strong sharp UV emission at 314 nm. - Highlights: • Pure YScO{sub 3} phase was successfully synthesized by polymerized complex (PC) method. • Pure perovskite-type YScO{sub 3} phase was generated from pure C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} one. • YScO{sub 3} was obtained at lower temperature and

  20. Solution properties of solid and liquid potassium-indium alloys

    International Nuclear Information System (INIS)

    Takenaka, T.; Saboungi, M.L.

    1987-01-01

    It was recently shown by a combination of electrical resistivity, thermodynamic, and structural measurements that equiatomic alloys formed between K or Na and either Bi, Sb, Te, or Pb show pronounced deviations from ordinary metallic behavior and from ideal solution behavior, e.g., small values for the electrical conductivity and sharp peaks for the Darken excess stability function. Physical explanation of this behavior has been advanced on the basis of the formation of complex structural species similar to those reported for the corresponding solid alloys. The authors have chosen K-In alloys for several reasons. Phase diagram considerations coupled with small electronegativity differences between K and In would lead one to predict small deviations from ideal behavior, thus, this system would be suitable to test for oddities in alloy solution behavior in systems which deviate little from ideal behavior. Others have demonstrated that the position of the peak in the electrical resistivity changed in going from Li to Na and to K in the following sequence X/sub In/ ≅ 0.25, 0.40, and 0.50, respectively. The thermodynamic properties of these alloys would be expected to present similar trends

  1. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    Science.gov (United States)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  2. Thermoelectric Properties of the Perovskite-Type Oxide SrTi1-xNbxO3 Synthesized by Solid-State Reaction Method

    Science.gov (United States)

    Khan, Tamal Tahsin; Ur, Soon-Chul

    2018-05-01

    The perovskite-type oxide materials SrTi1-xNbxO3 (X = .02, 0.03, 0.04, 0.05 and 0.06) were synthesized by the conventional solid-state reaction method and the thermoelectric properties in terms of Nb doping at the B-site in the oxides were investigated in this study. The formation of single phase cubic perovskite structure was confirmed by the powder X-ray diffraction analysis. Negative conduction is shown in this materials system. The absolute value of Seebeck coefficient increased with increasing temperature over the measured temperature. The electrical conductivity decreased monotonically with increasing temperature, showing degenerating conduction behavior. The thermal conductivity, k, generally decreased with increasing temperature. The power factor increased with increasing Nb-doping level up to 5.0 mol% and hence the dimensionless figure of merit ZT, increased up to 5.0 mol%. The maximum ZT value was observed for SrTi0.95Nb0.05O3 at 873 K.

  3. Purification of uranothorite solid solutions from polyphase systems

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, Nicolas, E-mail: nicolas.clavier@icsm.fr [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France); Szenknect, Stéphanie; Costin, Dan Tiberiu; Mesbah, Adel; Ravaux, Johann [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France); Poinssot, Christophe [CEA/DEN/DRCP/DIR, Site de Marcoule – Bât. 400, BP 17171, 30207 Bagnols/Cèze cedex (France); Dacheux, Nicolas [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Purification of Th{sub 1−x}U{sub x}SiO{sub 4} uranothorites from oxide mixture was investigated. •Repetition of centrifugation steps was discarded due to poor recovery yields. •Successive washings in acid and basic media allowed the elimination of oxide secondary phases. •Structural and microstructural characterization of the purified samples was provided. -- Abstract: The mineral coffinite, nominally USiO{sub 4}, and associated Th{sub 1−x}U{sub x}SiO{sub 4} uranothorite solid solutions are of great interest from a geochemical point of view and in the case of the direct storage of spent nuclear fuels. Nevertheless, they clearly exhibit a lack in the evaluation of their thermodynamic data, mainly because of the difficulties linked with their preparation as pure phases. This paper thus presents physical and chemical methods aiming to separate uranothorite solid solutions from oxide additional phases such as amorphous SiO{sub 2} and nanometric crystallized Th{sub 1−y}U{sub y}O{sub 2}. The repetition of centrifugation steps envisaged in first place was rapidly dropped due to poor recovery yields, to the benefit of successive washings in acid then basic media. Under both static and dynamic flow rates (i.e. low or high rate of leachate renewal), ICP-AES (Inductively Coupled Plasma – Atomic Emission Spectroscopy) analyses revealed the systematic elimination of Th{sub 1−y}U{sub y}O{sub 2} in acid media and of SiO{sub 2} in basic media. Nevertheless, two successive steps were always needed to reach pure samples. On this basis, a first cycle performed in static conditions was chosen to eliminate the major part of the accessory phases while a second one, in dynamic conditions, allowed the elimination of the residual impurities. The complete purification of the samples was finally evidenced through the characterization of the samples by the means of PXRD (Powder X-Ray Diffraction), SEM (Scanning Electron

  4. Sustainable solutions for solid waste management in Southeast Asian countries

    International Nuclear Information System (INIS)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-01-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  5. Impact of vacancy-solute clusters on the aging of α-Fe solid solutions

    International Nuclear Information System (INIS)

    Schuler, Thomas

    2015-01-01

    Understanding and monitoring the aging of steels under vacancy supersaturation is a challenge of great practical interest for many industrial groups, and most of all for those related to nuclear energy. These steels always contain interstitial solutes, either as alloying elements or as impurities, and vacancies (V) that are equilibrium structural defects of materials. We have chosen the Fe-V -X system (X = C, N or O) as a model system for ferritic steels. Vacancy-solute clusters are likely to form in such systems because, despite the very low concentrations of their components, these cluster show very high attractive bonding. First of all, we have been working on the computation of intrinsic equilibrium properties of individual clusters, both thermodynamic (free binding energies) and kinetic (mobilities, dissociation coefficients, and their relationship with continuum diffusion) properties. Thanks to this atomic-scale characterization procedure, we have been able to highlight various effects of these clusters on a macroscopic system containing different cluster types: increase of solute solubility limits and total vacancy concentrations, flux couplings between interstitial solutes and vacancies, acceleration of solute precipitation kinetics and precipitate dissolution by solid solution stabilization due to vacancies. These results would not have been obtained without the development and/or extension of analytical methods in statistical physics which are able to describe cluster's components and their interactions at the atomic scale. Finally, we have also been working on cavities in α-iron, the study of which requires a different approach. Our study highlights the impact of the atomic discrete lattice on the equilibrium shape of cavities, and describes various kinetic mechanisms of these objects at the atomic scale. (author) [fr

  6. Solid on liquid deposition, a review of technological solutions

    OpenAIRE

    Homsy, Alexandra; Laux, Edith; Jeandupeux, Laure; Charmet, Jérôme; Bitterli, Roland; Botta, Chiara; Rebetez, Yves; Banakh, Oksana; Keppner, Herbert

    2015-01-01

    Solid-on-liquid deposition (SOLID) techniques are of great interest to the MEMS and NEMS (Micro- and Nano Electro Mechanical Systems) community because of potential applications in biomedical engineering, on-chip liquid trapping, tunable micro-lenses, and replacements of gate oxides. However, depositing solids on liquid with subsequent hermetic sealing is difficult because liquids tend to have a lower density than solids. Furthermore, current systems seen in nature lack thermal, mechanical or...

  7. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    Science.gov (United States)

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  8. Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures

    Science.gov (United States)

    Gröting, Melanie; Albe, Karsten

    2014-02-01

    In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTiO3 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3-CaTiO3 and Na1/2Bi1/2TiO3-BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.

  9. Self-Functionalization Behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Ciro, John; Ramírez, Daniel; Mejía Escobar, Mario Alejandro; Montoya, Juan Felipe; Mesa, Santiago; Betancur, Rafael; Jaramillo, Franklin

    2017-04-12

    Fabrication of solution-processed perovskite solar cells (PSCs) requires the deposition of high quality films from precursor inks. Frequently, buffer layers of PSCs are formed from dispersions of metal oxide nanoparticles (NPs). Therefore, the development of trustable methods for the preparation of stable colloidal NPs dispersions is crucial. In this work, a novel approach to form very compact semiconducting buffer layers with suitable optoelectronic properties is presented through a self-functionalization process of the nanocrystalline particles by their own amorphous phase and without adding any other inorganic or organic functionalization component or surfactant. Such interconnecting amorphous phase composed by residual nitrate, hydroxide, and sodium ions, proved to be fundamental to reach stable colloidal dispersions and contribute to assemble the separate crystalline nickel oxide NPs in the final film, resulting in a very homogeneous and compact layer. A proposed mechanism behind the great stabilization of the nanoparticles is exposed. At the end, the self-functionalized nickel oxide layer exhibited high optoelectronic properties enabling perovskite p-i-n solar cells as efficient as 16.6% demonstrating the pertinence of the presented strategy to obtain high quality buffer layers processed in solution at room temperature.

  10. Comparative solution and solid-phase glycosylations toward a disaccharide library

    DEFF Research Database (Denmark)

    Agoston, K.; Kröger, Lars; Agoston, Agnes

    2009-01-01

    A comparative study on solution-phase and solid-phase oligosaccharide synthesis was performed. A 16-member library containing all regioisomers of Glc-Glc, Glc-Gal, Gal-Glc, and Gal-Gal disaccharides was synthesized both in solution and on solid phase. The various reaction conditions for different...

  11. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  12. The calcium oxide influence on formation of manganese, calcium pyrovanadate solid solutions

    International Nuclear Information System (INIS)

    Vatolin, N.A.; Volkova, P.I.; Sapozhnikova, T.V.; Ovchinnikova, L.A.

    1988-01-01

    The X-ray graphic, derivatographic, microscopic and chemical methods are used to study solid solutions of manganese, calcium pyrovanadates containing 1-10 mass% CaO and the products of interaction of reprocessing charges of vanadium-containing converter slags intended for he formation of manganese and calcium pyrovanadates with additions of calcium oxide within 10-90 mass%. It is established that in the case of 1-6 mass% CaO content in manganese pyrovanadate solid interstitial solutions appear, while at 6-20 mass% CaO - solid substitution solutions form. The results of calculating elementary cell parameters as well as melting temperatures and pyrovanadate solid solution solubility depending on CaO content are presented. The best solubility of introduction solid solutions during vanadium extraction according to the lime technology is found

  13. Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface

    Energy Technology Data Exchange (ETDEWEB)

    Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moore, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christians, Jeffrey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beard, Matthew C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Joseph J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dunfield, Sean P. [University of Colorado; Fabian, David M. [University of California Irvine; Dixon, Alex G. [University of Colorado; Dou, Benjia [University of Colorado; Ardo, Shane [University of California Irvine; Shaheen, Sean E. [University of Colorado

    2018-04-24

    Standard layer-by-layer solution processing methods constrain lead-halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet-visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer. Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.

  14. Atomistic Modeling of Cation Diffusion in Transition Metal Perovskites La1-xSrxMnO3+/-δfor Solid Oxide Fuel Cell Cathodes Applications

    Science.gov (United States)

    Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry

    Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.

  15. Remarkable Strontium B-Site Occupancy in FerroelectricPb(Zr1-xTix)O3 Solid Solutions Doped with Cryolite-Type StrontiumNiobate

    Energy Technology Data Exchange (ETDEWEB)

    Feltz, A.; Schmidt-Winkel, P.; Schossman, M.; Booth, C.H.; Albering, J.

    2007-04-26

    New high-performance ferroelectric materials based on Pb(Zr{sub 1-x}Ti{sub x})O{sub 3} (PZT) that are doped with cryolite-type strontium niobate (SNO, Sr{sub 4}(Sr{sub 2-2y/3}Nb{sub 2+2y/3})O{sub 11+y}V{sub 0,1-y} with 0 {le} y {le} 1), hence denoted PZT:SNO, and their microscopic structure are described. The combination of exceptional piezoelectric properties, i.e. a piezoelectric strain constant of d{sub 33} {approx} 760 pm/V, with excellent stability and degradation resistance makes ferroelectric PZT:SNO solid solutions very attractive for use in novel and innovative piezoelectric actuator and transducer applications. Extended X-ray absorption fine-structure (EXAFS) analyses of PZT:SNO samples revealed that {approx}10 % of the Sr cations occupy the nominal B-sites of the perovskite-type PZT host lattice. This result was supported by EXAFS analyses of both a canonical SrTiO{sub 3} perovskite and two SNO model and reference compounds. Fit models that do not account for Sr cations on B-sites were ruled out. A clear Sr-Pb peak in Fourier transformed EXAFS data visually confirmed this structural model. The generation of temporary oxygen vacancies and the intricate defect chemistry induced by SNO-doping of PZT are crucial for the exceptional materials properties exhibited by PZT:SNO materials.

  16. A Local Composition Model for Paraffinic Solid Solutions

    DEFF Research Database (Denmark)

    Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar

    1996-01-01

    The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....

  17. Variations of force constants, M-O distances and bond order in solid solutions between Ba/sub 2/MgUO/sub 6/ and Ba/sub 2/MgWO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Fadini, A [Tuebingen Univ. (Germany, F.R.). Inst. fuer Chemie

    1977-12-01

    In solid solutions between the 1:1 ordered perovskites Ba/sub 2/MgUO/sub 6/ and Ba/sub 2/MgWO/sub 6/ (system Ba/sub 2/MgUsub(1-x)Wsub(x)O/sub 6/) the force constants of the UO/sub 6/ and WO/sub 6/ octahedras are variied. The valence force constants fsub(MO) tend to adjust for each x. The bond order and the M-O distances are reported as well.

  18. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C

    Science.gov (United States)

    Li, Mengran; Zhao, Mingwen; Li, Feng; Zhou, Wei; Peterson, Vanessa K.; Xu, Xiaoyong; Shao, Zongping; Gentle, Ian; Zhu, Zhonghua

    2017-01-01

    The slow activity of cathode materials is one of the most significant barriers to realizing the operation of solid oxide fuel cells below 500 °C. Here we report a niobium and tantalum co-substituted perovskite SrCo0.8Nb0.1Ta0.1O3−δ as a cathode, which exhibits high electroactivity. This cathode has an area-specific polarization resistance as low as ∼0.16 and ∼0.68 Ω cm2 in a symmetrical cell and peak power densities of 1.2 and 0.7 W cm−2 in a Gd0.1Ce0.9O1.95-based anode-supported fuel cell at 500 and 450 °C, respectively. The high performance is attributed to an optimal balance of oxygen vacancies, ionic mobility and surface electron transfer as promoted by the synergistic effects of the niobium and tantalum. This work also points to an effective strategy in the design of cathodes for low-temperature solid oxide fuel cells. PMID:28045088

  19. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    Science.gov (United States)

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Synthesis and characterization of the double perovskite BaSrCoFe{sub 1}-{sub x}Ni{sub x}O{sub 5.5} like cathode for solid oxide fuel cells; Sintesis y caracterizacion de la doble perovskita BaSrCoFe{sub 1}-{sub x}Ni{sub x}O{sub 5.5} como catodo para celdas SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado F, J.; Avalos R, L.; Viramontes G, G. [Universidad Michoacana de San Nicolas de Hidalgo, Facultad de Ingenieria Electrica, Santiago Tapia 403, Morelia 58030, Michoacan (Mexico); Reyes R, A. [Centro de Investigacion en Materiales Avanzados, Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109, Chihuahua (Mexico)

    2013-08-01

    Have been synthesized via sol-gel method and characterized by X-ray diffraction, electrical conductivity and thermal expansion coefficient, new material composites BaSrCoFe{sub 1{sub x}}Ni{sub x}O{sub 5.5} (double perovskite type) with the addition of Ni in solid solution Ni{sub x} (x = 0.025, 0.05, 0.075, 0.1 and 0.2), as alternative cathodes for solid oxide fuel cells of intermediate temperature (Sofc-It). X-ray diffraction confirmed the formation of the tetragonal structure perovskite phase BaSrCoFe{sub 1}-{sub x}Ni{sub x}O{sub 5.5}, with the presence of small peaks identified in 2{theta} values below 30 degrees as BaCO{sub 3} and CoFe{sub 2}O{sub 4}. The electrical conductivity increases with the temperature between 350-470 degrees C and then decreases due to the loss of oxygen in the net, which causes differences in conductivity. Semiconductor behavior was obtained in all compositions. Thermal expansion coefficient determination, showed a linear dependence inversely proportional to the concentration of Ni. Our results of electrical conductivity and thermal expansion coefficient, reach to the conclusion that the cathodes between 0.1 and 0.2 Ni, have the greatest possibility for application in Sofc-It. (Author)

  1. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    International Nuclear Information System (INIS)

    Jie, J.C.; Wang, H.W.; Zou, C.M.; Wei, Z.J.; Li, T.J.

    2014-01-01

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al 12 Mg 17 phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solution appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β

  2. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    International Nuclear Information System (INIS)

    Ma, Duancheng; Friák, Martin; Pezold, Johann von; Raabe, Dierk; Neugebauer, Jörg

    2015-01-01

    We propose an approach for the computationally efficient and quantitatively accurate prediction of solid-solution strengthening. It combines the 2-D Peierls–Nabarro model and a recently developed solid-solution strengthening model. Solid-solution strengthening is examined with Al–Mg and Al–Li as representative alloy systems, demonstrating a good agreement between theory and experiments within the temperature range in which the dislocation motion is overdamped. Through a parametric study, two guideline maps of the misfit parameters against (i) the critical resolved shear stress, τ 0 , at 0 K and (ii) the energy barrier, ΔE b , against dislocation motion in a solid solution with randomly distributed solute atoms are created. With these two guideline maps, τ 0 at finite temperatures is predicted for other Al binary systems, and compared with available experiments, achieving good agreement

  3. Face-centered-cubic Nb-Si solid solutions produced by picosecond pulsed laser quenching

    International Nuclear Information System (INIS)

    Wang, W.K.; Spaepen, F.

    1985-01-01

    Face-centered-cubic Nb/sub 100-x/Si/sub x/ solid solutions (10 2 . The lattice parameters of these solutions suggest that the solute atoms can be interstitial or substitutional, probably as a result of a change in the quenching conditions

  4. Zero-Dimensional Cs4PbBr6 Perovskite Nanocrystals

    KAUST Repository

    Zhang, Yuhai

    2017-02-09

    Perovskite nanocrystals (NCs) have become leading candidates for solution-processed optoelectronics applications. While substantial work has been published on 3-D perovskite phases, the NC form of the zero-dimensional (0-D) phase of this promising class of materials remains elusive. Here we report the synthesis of a new class of colloidal semiconductor NCs based on Cs4PbBr6, the 0-D perovskite, enabled through the design of a novel low-temperature reverse microemulsion method with 85% reaction yield. These 0-D perovskite NCs exhibit high photoluminescence quantum yield (PLQY) in the colloidal form (PLQY: 65%), and, more importantly, in the form of thin film (PLQY: 54%). Notably, the latter is among the highest values reported so far for perovskite NCs in the solid form. Our work brings the 0-D phase of perovskite into the realm of colloidal NCs with appealingly high PLQY in the film form, which paves the way for their practical application in real devices.

  5. Organohalide Perovskites for Solar Energy Conversion.

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  6. Oxyfluoride Chemistry of Layered Perovskite Compounds

    Directory of Open Access Journals (Sweden)

    Yoshihiro Tsujimoto

    2012-03-01

    Full Text Available In this paper, we review recent progress and new challenges in the area of oxyfluoride perovskite, especially layered systems including Ruddlesden-Popper (RP, Dion-Jacobson (DJ and Aurivillius (AV type perovskite families. It is difficult to synthesize oxyfluoride perovskite using a conventional solid-state reaction because of the high chemical stability of the simple fluoride starting materials. Nevertheless, persistent efforts made by solid-state chemists have led to a major breakthrough in stabilizing such a mixed anion system. In particular, it is known that layered perovskite compounds exhibit a rich variety of O/F site occupation according to the synthesis used. We also present the synthetic strategies to further extend RP type perovskite compounds, with particular reference to newly synthesized oxyfluorides, Sr2CoO3F and Sr3Fe2O5+xF2−x (x ~ 0.44.

  7. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  8. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  9. Synthesis of (U,Zr)C solid solutions under exothermic conditions

    International Nuclear Information System (INIS)

    Wang, L.L.; Moore, H.G.; Gladson, J.W.

    1993-01-01

    The reactions of forming (U,Zr)C solid solutions from their elemental components or similarly less stable reactants such as UC 2 are strongly exothermic due to the high stability of these solid solutions. A simple approach of utilizing this heat of formation energy to assist the solid solution reaction process is to intimately mix the less stable reactant powders and then pressed them into a compact. The compact is then heated to the ignition temperature of the reaction. The feasibility of this reaction method to synthesize (U,Zr)C solid solutions has been demonstrated in this study. The preliminary results also show that both the initial composition and the heating rate have a significant effect on the nature of the reaction process. As expected the degree of powder mixing was also found to affect the completeness of the reaction

  10. Colloidal quantum dot solids for solution-processed solar cells

    KAUST Repository

    Yuan, Mingjian; Liu, Mengxia; Sargent, Edward H.

    2016-01-01

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally

  11. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    Czech Academy of Sciences Publication Activity Database

    Ma, D.; Friák, Martin; von Pezold, J.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 85, FEB (2015), s. 53-66 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Solid-solution strengthening * DFT * Peierls–Nabarro model * Ab initio * Al alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.058, year: 2015

  12. Formation of solid solution during mutual diffusion of tungsten and molybdenum in the process of sintering

    International Nuclear Information System (INIS)

    Timofeeva, A.A.; Bulat, I.B.; Voronin, Yu.V.; Fedoseev, G.K.; Karasev, V.M.

    1984-01-01

    A process of a solid solution homogenization during sintering of W-15Mo and W-5Mo alloys is studied by the methods of density measurements, analysis of the X-ray lines physical broadening and determination of crystalline lattice constant. Study of the process of solid solution formation under conditions of powder composite sintering is shown to be conducted with account of peculiarities of tungsten and molybdenum mutual diffusion in the investigated temperature range of concentrations

  13. Thermal expansion studies on uranium-neodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Venkata Krishnan, R.; Antony, M.P.; Nagarajan, K.

    2012-01-01

    Uranium-Neodymium mixed oxides solid solutions (U 1-y Nd y ) O 2 (y=0.2-0.95) were prepared by combustion synthesis using citric acid as fuel. Structural characterization and computation of lattice parameter was carried out from room temperature X-ray diffraction measurements. Single-phase fluorite structure was observed up to y=0.80. For solid solutions with y>0.80 additional Nd 2 O 3 lines were visible

  14. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  15. Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches

    Science.gov (United States)

    Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.

    2017-12-01

    Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.

  16. Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route

    Science.gov (United States)

    Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won

    2017-04-01

    Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.

  17. High Performance Proton-Conducting Solid Oxide Fuel Cells with a Layered Perovskite GdBaCuCoO5+ x Cathode

    Science.gov (United States)

    Zhang, Xiaozhen; Jiang, Yuhua; Hu, Xuebing; Sun, Liangliang; Ling, Yihan

    2018-03-01

    Proton-conducting solid oxide fuel cell (H-SOFC) based on layered perovskite type GdBaCuCoO5+x (GBCC) cathode was fabricated with in situ drop-coating BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte membrane. The influences of Cu doping into Co sites of GdBaCo2O5+ x on the electrical conductivity and conduction mechanism, thermal expansion property and electrochemical performance of cathode materials and corresponding single cell were investigated. Results show that the electrical conductivity decreased and the conduction mechanism would gradually transform to the semiconductor-like behavior. A high maximum power density of 480 mW cm-2 was obtained for the anode supported NiO-BZCY/NiO-BZCY/BZCY/GBCC single cells with wet H2 fuel at 700 °C. The corresponding polarization resistance was as low as 0.17 Ω cm2. The excellent electrochemical performance of as-prepared single cell indicates that GBCC is a good candidate of cathode materials for H-SOFCs.

  18. Nanoparticles of La0.8Ca0.2Fe0.8Ni0.2O3-δ perovskite for solid oxide fuel cell application

    International Nuclear Information System (INIS)

    Ortiz-Vitoriano, N.; Ruiz de Larramendi, I.; Gil de Muro, I.; Ruiz de Larramendi, J.I.; Rojo, T.

    2010-01-01

    Polycrystalline samples of La 0.8 Ca 0.2 Fe 0.8 Ni 0.2 O 3-δ (LCFN) with perovskite type structure have been prepared by combustion, freeze drying, citrate-gel process and liquid mix method. The analysis of X-ray powder diffraction indicated that the samples were single phase and crystallized in an orthorhombic (space group, Pnma no. 62) structure. Transmission electron microscopy (TEM) analysis on the synthesized powder at 600 o C by liquid mix method showed clusters of 150 nm formed by nanoparticles of 20 nm. Electrochemical performance of LCFN cathodes, which are used for intermediate temperature solid oxide fuel cells, were investigated. The polarization resistance was studied using two different electrolytes: Y-doped zirconia (YSZ) and Sm-doped ceria (SDC). The dc four-probe measurement exhibits a total electrical conductivity, over 100 S cm -1 at T ≥ 600 o C, pointing out that strontium can be substituted for the cheaper calcium cation without destroying the electrochemical properties. Experimental results indicate that nanoparticles have more advantages in terms of smaller particle size and better electrochemical performance.

  19. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  20. Ligand-Stabilized Reduced-Dimensionality Perovskites

    KAUST Repository

    Quan, Li Na; Yuan, Mingjian; Comin, Riccardo; Voznyy, Oleksandr; Beauregard, Eric M.; Hoogland, Sjoerd; Buin, Andrei; Kirmani, Ahmad R.; Zhao, Kui; Amassian, Aram; Kim, Dong Ha; Sargent, Edward H.

    2016-01-01

    Metal halide perovskites have rapidly advanced thin film photovoltaic performance; as a result, the materials’ observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions; and these drive an increased formation energy and should therefore improve material stability. Here we report the reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieved the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

  1. Ligand-Stabilized Reduced-Dimensionality Perovskites

    KAUST Repository

    Quan, Li Na

    2016-02-03

    Metal halide perovskites have rapidly advanced thin film photovoltaic performance; as a result, the materials’ observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions; and these drive an increased formation energy and should therefore improve material stability. Here we report the reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieved the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

  2. Contribution to the study of the structure of silver krypton solid solutions; Contribution a l'etude de la structure des solutions solides argent-krypton

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Tullairet, J; Delaplace, J; Antolin-Baudier, J; Adda, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [French] Les solutions solides argent, krypton, realisees par decharges electrique ont ete etudiees par Rayons X, resistivite electrique et microscopie electronique en transmission. Les mesures de parametre cristallin et de resistivite residuelle ont montre que le comportement de l'atome de krypton est tres different de celui des autres elements de la classification periodique en solution dans l'argent. La restauration du parametre cristallin et de la resistivite electrique en fonction de la temperature a ete etudiee. (auteurs)

  3. Precipitation of Nd-Ca carbonate solid solution at 25 degrees C

    International Nuclear Information System (INIS)

    Carroll, S.A.

    1993-01-01

    The formation of a Nd-Ca carbonate solid solution was studied by monitoring the reactions of calcite with aqueous Nd, orthorhombic NdOHCO 3 (s) with aqueous Ca, and calcite with hexagonal Nd-carbonate solid phase as a function of time at 25 degrees C and controlled pCO 2 (g). All experiments reached steady state after 200 h of reaction. The dominant mechanism controlling the formation of the solid solution was precipitation of a Nd-Ca carbonate phase from the bulk solution as individual crystals or at the orthorhombic NdOHCO 3 (s)-solution interface. The lack of Nd adsorption or solid solution at the calcite-solution interface suggests that the solid solution was orthorhombic and may be modeled as a mixture of orthorhombic NdOHCO 3 (s) and aragonite. Orthorhombic NdOHCO 3 (s) was determined to be the stable Nd-carbonate phase in the Nd-CO 2 -H 2 O system at pCO 2 (g) 0.1 atmospheres at 25 degrees C. The equilibrium constant corrected to zero ionic strength for orthorhombic NdOHCO 3 (s) solubility is 10 10.41(±0.29) for the following: NdOHCO 3 (s) + 3H + = Nd 3+ + CO 2 (g) + H 2 O. Results are discussed in relation to radioactive waste disposal by burial, and specifically in relation to americium chemistry

  4. Multiferroic properties in NdFeO3-PbTiO3 solid solutions

    Science.gov (United States)

    Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.

  5. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells

    Science.gov (United States)

    Lan, Rong; Cowin, Peter I.; Sengodan, Sivaprakash; Tao, Shanwen

    2016-08-01

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3-δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3-δ (SFCN) exhibits a conductivity of 63 Scm-1and 60 Scm-1 at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3-δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3-δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3-δ as the cathode achieved a power density of 423 mWcm-2 at 700 °C indicating that SFCN is a promising anode for SOFCs.

  6. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer.

    Science.gov (United States)

    Kim, Jong H; Liang, Po-Wei; Williams, Spencer T; Cho, Namchul; Chueh, Chu-Chen; Glaz, Micah S; Ginger, David S; Jen, Alex K-Y

    2015-01-27

    An effective approach to significantly increase the electrical conductivity of a NiOx hole-transporting layer (HTL) to achieve high-efficiency planar heterojunction perovskite solar cells is demonstrated. Perovskite solar cells based on using Cu-doped NiOx HTL show a remarkably improved power conversion efficiency up to 15.40% due to the improved electrical conductivity and enhanced perovskite film quality. General applicability of Cu-doped NiOx to larger bandgap perovskites is also demonstrated in this study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Municipal solid waste management. Strategies and technologies for sustainable solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, C.; Hellweg, S.; Stucki, S. (eds.)

    2002-10-01

    The way municipal solid waste is handled greatly determines its impact on the local as well as the global environment. New technologies habe emerged for the treatment of waste, for the recovery of raw materials and energy, and for safe final disposal. The environmental performance of technologies, their social acceptance and their economic viability are key issues to be considered in sustainable waste management. This book provides an overview of current practices in waste management and a synthesis of new developments achieved through interdisciplinary discussions of recent research results. (orig.)

  8. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  9. Subdiffusion kinetics of nanoprecipitate growth and destruction in solid solutions

    Science.gov (United States)

    Sibatov, R. T.; Svetukhin, V. V.

    2015-06-01

    Based on fractional differential generalizations of the Ham and Aaron-Kotler precipitation models, we study the kinetics of subdiffusion-limited growth and dissolution of new-phase precipitates. We obtain the time dependence of the number of impurities and dimensions of new-phase precipitates. The solutions agree with the Monte Carlo simulation results.

  10. Solution-Processed Ultrathin TiO2 Compact Layer Hybridized with Mesoporous TiO2 for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Jeong, Inyoung; Park, Yun Hee; Bae, Seunghwan; Park, Minwoo; Jeong, Hansol; Lee, Phillip; Ko, Min Jae

    2017-10-25

    The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO 2 ETLs fabricated by depositing compact TiO 2 (c-TiO 2 ) and mesoporous TiO 2 (mp-TiO 2 ) in sequence exhibit resistive losses due to the contact resistance at the c-TiO 2 /mp-TiO 2 interface and the series resistance arising from the intrinsically low conductivity of TiO 2 . Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO 2 layer hybridized with mp-TiO 2 , which is fabricated by performing one-step spin-coating of a mp-TiO 2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO 2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.

  11. Influence of isotopic disorder on solid state amorphization and polyamorphism in solid H2O -D2O solutions

    Science.gov (United States)

    Gromnitskaya, E. L.; Danilov, I. V.; Lyapin, A. G.; Brazhkin, V. V.

    2015-10-01

    We present a low-temperature and high-pressure ultrasonic study of elastic properties of isotopic H2O-D2O solid solutions, comparing their properties with those of the isotopically pure H2O and D2O ices. Measurements were carried out for solid state amorphization (SSA) from 1h to high-density amorphous (HDA) ice upon compression up to 1.8 GPa at 77 K and for the temperature-induced (77 -190 K ) u-HDA (unrelaxed HDA) → e-HDA (expanded HDA) → low-density amorphous (LDA )→1 c cascade of ice transformations near room pressure. There are many similarities in the elasticity behaviour of H2O ,D2O , and H2O-D2O solid solutions, including the softening of the shear elastic modulus as a precursor of SSA and the HDA →LDA transition. We have found significant isotopic effects during H/D substitution, including elastic softening of H2O -D2O solid solutions with respect to the isotopically pure ices in the case of the bulk moduli of ices 1c and 1h and for both bulk and shear elastic moduli of HDA ice at high pressures (>1 GPa ) . This softening is related to the configurational isotopic disorder in the solid solutions. At low pressures, the isotope concentration dependence of the elastic moduli of u-HDA ice changes remarkably and becomes monotonic with pronounced change of the bulk modulus (≈20 %) .

  12. The complex synthesis and solid state chemistry of ceria-lanthana solid solutions prepared via a hexamethylenetetramine precipitation

    International Nuclear Information System (INIS)

    Fleming, P.G.; Holmes, J.D.; Otway, D.J.; Morris, M.A.

    2011-01-01

    Mixed oxide solid solutions are becoming ever more commercially important across a range of applications. However, their synthesis can be problematical. Here, we show that ceria-lanthana solid solutions can be readily prepared via simple precipitation using hexamethylenetetramine. However, the solution chemistry can be complex, which results in the precipitated particles having a complex structure and morphology. Great care must be taken in both the synthesis and characterisation to quantify the complexity of the product. Even very high heat treatments were not able to produce highly homogeneous materials and X-ray diffractions reveals the non-equilibrium form of particles prepared in this way. Unexpected crystal structures are revealed including a new metastable cubic La 2 O 3 phase. - Graphical abstract: The suggested mechanism for the formation of dual fluorite phase particles, where Step 1 corresponds to room temperature aging, Step 2; heating the solution to 90 deg. C, Step 3; cooling of the solution to room temperature, Step 4; calcination to 500 deg. C, Step 5; calcination to 700 deg. C and Step 6; calcination to 1300 deg. C. The terminology of e.g. La 1-x Ce x (OH) 3 is used to indicate the formation of a mixed oxy-hydroxy participate rather than a definitive assignment of stoichiometry. Similarly, La 1-y Ce y O 2 only implies a mixed solid solution. Highlights: → Mol% of prepared Ce-La oxides did not follow that of reactant mol%. → Complex reaction pathway found to be dependent on metal solution concentrations. → At certain concentrations core shell particles were found to form. → A reaction model was produced based on cationic solubility. → Report lanthana solubility higher than previously reported in CeO 2 .

  13. Colloidal quantum dot solids for solution-processed solar cells

    KAUST Repository

    Yuan, Mingjian

    2016-02-29

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.

  14. Thermal conductivities of (ZrxPu(1-x)/2Am(1-x)/2)N solid solutions

    International Nuclear Information System (INIS)

    Nishi, Tsuyoshi; Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo

    2011-01-01

    The thermal conductivity of Zr-based transuranium (TRU) nitride solid solutions is important for designing subcritical cores in nitride-fueled ADS. Some results have been reported concerning the thermal conductivities of (Zr,Pu)N. However, there have been no experimental data on the thermal conductivities of Zr-based nitride solid solutions containing MA. In this study, the authors prepared sintered samples of (Zr x Pu (1-x)/2 Am (1-x)/2) N (x=0.0, 0.58, 0.80) solid solutions. The thermal diffusivity and heat capacity of (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions were measured using a laser flash method and drop calorimetry, respectively. Thermal conductivities were determined from the measured thermal diffusivities, heat capacities and bulk densities over a temperature range of 473 to 1473 K. The thermal conductivities of (Zr 0.58 Pu 0.21 Am 0.21 )N and (Zr 0.80 Pu 0.10 Am 0.10 )N solid solutions were found to be higher than that of (Pu 0.5 Am 0.5 )N due to the high thermal conductivity of ZrN as the principal component, although they were lower than that of ZrN due to the impurifying effect of the transuranium elements. Thus, the thermal conductivities of (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions increased with increasing ZrN concentration. Moreover, in order to help to promote the design study of nitride-fueled ADS, the thermal conductivity of the (Zr x Pu (1-x)/2 Am (1-x)/2) N solid solutions were fitted to an equation using the least squares method. (author)

  15. Solid-state synthesis in the system Na0.8NbyW1-yO3 with 0≤y≤0.4: A new phase, Na0.5NbO2.75, with perovskite-type structure

    International Nuclear Information System (INIS)

    Debnath, Tapas; Ruescher, Claus H.; Gesing, Thorsten M.; Koepke, Juergen; Hussain, Altaf

    2008-01-01

    Series of compounds in the system Na x Nb y W 1-y O 3 were prepared according to the appropriate molar ratio of Na 2 WO 4 , WO 3 , WO 2 and Nb 2 O 5 with x=0.80 and 0.0≤y≤0.4 at 600 deg. C in evacuated silica glass tubes. These compounds were investigated by X-ray powder diffraction, optical microscopy, microprobe analysis, Raman and optical microspectroscopy. A y-dependent separation into three distinct coloured crystallites with cubic perovskite-type structures is observed: (i) red-orange crystallites with composition Na x WO 3 with slightly decreasing x (i.e. 0.8-0.72) with increasing nominal y, (ii) bluish solid solution of composition Na x Nb y W 1-y O 3 and (iii) white crystallites of a new phase having defect perovskite-type structure with composition Na 0.5 NbO 2.75 . - Graphical abstract: Optical micrograph of a polished sample of nominal composition Na 0.8 Nb 0.4 W 0.6 O 3 showing a mixture of three different coloured crystals: red, light blue and white. The scale bar is 30 μm

  16. The lanthanum gallate-based mixed conducting perovskite ceramics

    Science.gov (United States)

    Politova, E. D.; Stefanovich, S. Yu.; Aleksandrovskii, V. V.; Kaleva, G. M.; Mosunov, A. V.; Avetisov, A. K.; Sung, J. S.; Choo, K. Y.; Kim, T. H.

    2005-01-01

    The structure, microstructure, dielectric, and transport properties of the anion deficient perovskite solid solutions (La,Sr)(Ga,Mg,M)O3- with M=Fe, Ni have been studied. Substitution of iron and nickel for gallium up to about 20 and 40 at.% respectively, leads to the perovskite lattice contraction due to the cation substitutions by the transition elements. The transition from pure ionic to mixed ionic-electronic conductivity was observed for both the systems studied. Both the enhancement of total conductivity and increasing in the thermal expansion coefficient values has been proved to correlate with the increasing amount of weakly bounded oxygen species in the Fe or Ni-doped ceramics. The oxygen ionic conductivity has been estimated from the kinetic experiments using the dc-conductivity and dilatometry methods under the condition of the stepwise change of the atmosphere from nitrogen to oxygen.

  17. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    Science.gov (United States)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self

  18. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  19. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T. Yen, E-mail: YenLe@science.ru.nl; Hendriks, A. Jan

    2014-08-15

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  20. Sequential deposition as a route to high-performance perovskite-sensitized solar cells

    KAUST Repository

    Burschka, Julian

    2013-07-10

    Following pioneering work, solution-processable organic-inorganic hybrid perovskites - such as CH 3 NH 3 PbX 3 (X = Cl, Br, I) - have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films using a mixture of PbX 2 and CH 3 NH 3 X in a common solvent. However, the uncontrolled precipitation of the perovskite produces large morphological variations, resulting in a wide spread of photovoltaic performance in the resulting devices, which hampers the prospects for practical applications. Here we describe a sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film. PbI 2 is first introduced from solution into a nanoporous titanium dioxide film and subsequently transformed into the perovskite by exposing it to a solution of CH 3 NH 3 I. We find that the conversion occurs within the nanoporous host as soon as the two components come into contact, permitting much better control over the perovskite morphology than is possible with the previously employed route. Using this technique for the fabrication of solid-state mesoscopic solar cells greatly increases the reproducibility of their performance and allows us to achieve a power conversion efficiency of approximately 15 per cent (measured under standard AM1.5G test conditions on solar zenith angle, solar light intensity and cell temperature). This two-step method should provide new opportunities for the fabrication of solution-processed photovoltaic cells with unprecedented power conversion efficiencies and high stability equal to or even greater than those of today\\'s best thin-film photovoltaic devices. © 2013 Macmillan Publishers Limited. All rights reserved.

  1. Infrared reflectivity of the solid solutions LaNi1-xFexO3 (0.00≤x≤1.00)

    International Nuclear Information System (INIS)

    Massa, N.E.; Falcon, H.; Salva, H.; Carbonio, R.E.

    1997-01-01

    We report temperature-dependent far- and midinfrared reflectivity spectra of LaNi (1-x) Fe x O 3 solid solutions that span the passage from LaFeO 3 , a room-temperature antiferromagnetic insulator, to LaNiO 3 , a known metal oxide. Light Ni doping creates defects that induce extra bands assigned to electronic transitions within the insulating gap. An incipient Drude term emerges in the reflectivity spectrum of LaNi 0.39 Fe 0.61 O 3 together with subbands that contribute to the electronic background. At these concentrations the dielectric response shows a picture in which the spectral weigh switches over toward far-infrared frequencies while phonon features develop strong antiresonances near longitudinal-optical modes. Further increment of carriers produces phonon screening and the development of a reflectivity tail that extends beyond 1 eV. We assign extra-non-Drude terms in the 700 endash 4000cm -1 frequency region to transitions due to intrinsic defects. While the increment in reflectivity at far-infrared frequencies is evident for Fe concentrations well above the insulator-metal transition (x∼0.30), the spectral features of a metal oxide, with phonons mostly screened, are found for x=0.23. These metallic spectra show an absorption dip at ∼650cm -1 that is traced to the perovskite symmetric stretching longitudinal mode. Electron-phonon interactions are thus present in solid solutions even when the numbers of effective carriers are those of a metal. This characterization is also supported by the observation of weak reflectivity dips in LaNiO 3 that have a direct correspondence to longitudinal-optical mode frequencies of the insulating phases of our series. We infer that strong electron-phonon interactions play a role in the conductivity of those solid solutions and are likely related to polaron formation and carrier phonon-assisted hopping motion. (Abstract Truncated)

  2. Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells.

    Science.gov (United States)

    He, Qiqi; Yao, Kai; Wang, Xiaofeng; Xia, Xuefeng; Leng, Shifeng; Li, Fan

    2017-12-06

    Flexible perovskite solar cells (PSCs) using plastic substrates have become one of the most attractive points in the field of thin-film solar cells. Low-temperature and solution-processable nanoparticles (NPs) enable the fabrication of semiconductor thin films in a simple and low-cost approach to function as charge-selective layers in flexible PSCs. Here, we synthesized phase-pure p-type Cu-doped NiO x NPs with good electrical properties, which can be processed to smooth, pinhole-free, and efficient hole transport layers (HTLs) with large-area uniformity over a wide range of film thickness using a room-temperature solution-processing technique. Such a high-quality inorganic HTL allows for the fabrication of flexible PSCs with an active area >1 cm 2 , which have a power conversion efficiency over 15.01% without hysteresis. Moreover, the Cu/NiO x NP-based flexible devices also demonstrate excellent air stability and mechanical stability compared to their counterpart fabricated on the pristine NiO x films. This work will contribute to the evolution of upscaling flexible PSCs with a simple fabrication process and high device performances.

  3. Development of n- and p-type Doped Perovskite Single Crystals Using Solid-State Single Crystal Growth (SSCG) Technique

    Science.gov (United States)

    2017-10-09

    for AGG should be minimal. For this purpose, the seeds for AGG may also be provided externally. This process is called the solid-state single...bonding process . Figure 31 shows (a) the growth of one large single crystal from one small single crystal seed as well as (b) the growth of one...one bi-crystal seed : One large bi-crystal can be grown from one small bi-crystal by SSCG process . Fig. 32. Diffusion bonding process for

  4. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0solid solutions and the gaseous oxygen by thermal gravimetric analysis at 600 degrees Celsius has shown that these solutions have not a ideal behaviour. A thermodynamic model where the point defects of solutions are included describe them the best. It becomes then possible to know the variations of the concentrations of the point defects in terms of temperature, oxygen pressure and zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0

  5. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    KAUST Repository

    Xia, Chuan

    2017-01-06

    An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.

  6. Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Zhenzi, E-mail: zzjing@tongji.edu.cn [Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian [Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Jin, Fangming [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2017-05-15

    Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6–5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite. - Highlights: •Pure pollucite barely exists in nature due to coexistence of Cs and Na. •Pollucite, analcime and their solid solutions could be hydrothermally synthesized. •Most formed solid solutions were found to have similar properties to pollucite. •Even coexistence in nature, pollucite favors to form due to site preference for Cs over Na.

  7. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  8. Cutting solid figures by plane - analytical solution and spreadsheet implementation

    Science.gov (United States)

    Benacka, Jan

    2012-07-01

    In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.

  9. Soil solid-phase controls lead activity in soil solution.

    Science.gov (United States)

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  10. Ab initio identified design principles of solid-solution strengthening in Al

    International Nuclear Information System (INIS)

    Ma Duancheng; Friák, Martin; Pezold, Johann von; Raabe, Dierk; Neugebauer, Jörg

    2013-01-01

    Solid-solution strengthening in six Al–X binary systems is investigated using first-principle methods. The volumetric mismatch parameter and the solubility enthalpy per solute were calculated. We derive three rules for designing solid-solution strengthened alloys: (i) the solubility enthalpy per solute is related to the volumetric mismatch by a power law; (ii) for each annealing temperature, there exists an optimal solute–volume mismatch to achieve maximum strength; and (iii) the strengthening potential of high volumetric mismatch solutes is severely limited by their low solubility. Our results thus show that the thermodynamic properties of the system (here Al–X alloys) set clear upper bounds to the achievable strengthening effects owing to the reduced solubility with increasing volume mismatch. (paper)

  11. Thermodynamic properties of solid solutions in the system Ag2S–Ag2Se

    International Nuclear Information System (INIS)

    Pal’yanova, G.A.; Chudnenko, K.V.; Zhuravkova, T.V.

    2014-01-01

    We have summarized experimental data on the phase diagram of the system Ag 2 S–Ag 2 Se. Standard thermodynamic functions of four solid solutions in this system have been calculated using the model of regular and subregular solutions: a restricted fcc solid solution γ-Ag 2 S-Ag 2 S 1−x Se x (x 2 S–Ag 2 Se, monoclinic solid solution (α) from Ag 2 S to Ag 2 S 0.4 Se 0.6 , and orthorhombic solid solution (α) from Ag 2 S 0.3 Se 0.7 to the Ag 2 Se. G mix and S mix have been evaluated using the subregular model for asymmetric solution for the region Ag 2 S 0.4 Se 0.6 –Ag 2 S 0.3 Se 0.7 . The thermodynamic data can be used for modeling in complex natural systems and in matters of semiconductor materials

  12. Regularities in electroconductivity and thermo-emf in systems of binary continuous solid solutions of metals

    International Nuclear Information System (INIS)

    Vedernikov, M.V.; Dvunitkin, V.G.; Zhumagulov, A.

    1978-01-01

    Given are new experimental data about specific electric resistance of 10 systems of binary continuous solid metal solutions at the temperatures of 293 and 4.2 K: Cr-V, Mo-Nb, Mo-V, Cr-Mo, Nb-V, Ti-Zr, Hf-Zr, Hf-Ti, Sc-Zr, Sc-Hf. For the first time a comparative analysis of all available data on the resistance dependence on the composition of systems of continuous solid solutions, which covers 21 systems, is carried out. The ''resistance-composition'' dependence for such alloy systems is found to be of two types. The dependence of the first type is characteristic of the systems, formed by two isoelectronic metals, the dependence of the second type - for the systems, formed by non-isoelectronic metals. Thermo-emf of each type of solid solutions differently depends on their compositions

  13. High-temperature electromass transfer in the perovskite La-Sr-Ga-Fe-Mg-O ceramics

    International Nuclear Information System (INIS)

    Aleksandrovskij, V.V.; Kaleva, G.M.; Mosunov, A.V.; Politova, E.D.; Stefanovich, S.Yu.; Avetistov, A.K.; Venskovskij, N.U.

    2001-01-01

    Physicochemical mechanism of oxygen-ion transfer in perovskite-like solid solutions within La-Sr-Ga-Fe-Mg-O system was studied using kinetic dependences of oxygen deficit at variation of gas medium composition. One discusses relation between the phenomenon of mass loss, linear deformation and conducting features of a ceramic material. Oxygen-ion transfer was determined to proceed by vacancy jumping mechanism. On the basis of data on dielectric relaxation in lanthanum gallate base solid solutions one obtained new evidences of vacancy correlation under high temperature [ru

  14. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...

  15. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  16. A Moessbauer study on the photolysis of potassium trisoxalatoferrate(III) in solid and solutions

    International Nuclear Information System (INIS)

    Sato, H.; Tominaga, T.

    1977-01-01

    The photolysis of potassium trisoxalatoferrate(III) in solid and aqueous solutions was studied by Moessbauer spectroscopy. A ferrous species was mainly detected as an intermediate product in the photoirradiated solutions. A tentative mechanism was proposed for the overall reactions in and after the photolysis of this compound. The Moessbauer spectra were measured with a Hitachi AA-40 or Shimadzu MEG-2 Moessbauer spectrometer against Co-57 in copper foil. Acrylic holders (32 mm in diameter) were used for measurements of solutions: the irradiated solution was quickly frozen before measurement by adding it dropwise into the acrylic holder which had been cooled with liquid nitrogen or dry-ice. (T.I.)

  17. Enhancement of photovoltaic performance of flexible perovskite solar cells by means of ionic liquid interface modification in a low temperature all solution process

    Science.gov (United States)

    Chu, Weijing; Yang, Junyou; Jiang, Qinghui; Li, Xin; Xin, Jiwu

    2018-05-01

    The quality of interface between the electron transport layer (ETL) and perovskite is very crucial to the photovoltaic performance of a flexible perovskite solar cell fabricated under low-temperature process. This work demonstrates a room temperature ionic liquid modification strategy to the interface between ZnO layer and MAPbI3 film for high performance flexible perovskite solar cells based on a PET substrate. [BMIM]BF4 ionic liquid modification can significantly improve the surface quality and wettability of the ZnO ETL, thus greatly increase the charge mobility of ZnO ETL and improve the crystalline of perovskite film based on it. Moreover, the dipolar polarization layer among the ZnO ETL with perovskite, built by modification, can adjust the energy level between the ZnO ETL and perovskite and facilitates the charge extraction. Therefore, an overall power conversion efficiency (PCE) of 12.1% have been achieved under standard illumination, it increases by 1.4 times of the flexible perovskite solar cells on a pristine ZnO ETL.

  18. A thermodynamic model for solid solutions and its application to the C-Fe-Co, C-Fe-Ni and Mn-Cr-Pt solid dilutions

    International Nuclear Information System (INIS)

    Tao, D.P.

    2004-01-01

    Based on the free volume theory and the lattice model, the partition functions of pure solids and their mixtures were expressed. This resulted in the establishment of a thermodynamic model for solid solutions. The model naturally combines the excess entropy and excess enthalpy of a solution by means of new expressions of the configurational partition functions of solids and their mixtures derived from statistical thermodynamics, which is approximate to real solid solutions, that is S E ≠0 (V E ≠0) and H E ≠0. It can describe the thermodynamic properties of partially miscible systems and predict the thermodynamic properties in a multicomponent solid solution system using only the related binary infinite dilute activity coefficients. The predicted activity coefficients from the model are in good agreement with the experimental data of the ternary solid dilutions. This shows that the prediction effect of the proposed model is of better stability and reliability because it has a good physical basis

  19. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially

  20. Light refractive index in indium phosphide and InP-containing solid solutions

    International Nuclear Information System (INIS)

    Yas'kov, A.D.

    1983-01-01

    Spectral and temperatUre dependences of the InP and Gasub(x)Insub(1-x)P refractive indexes in the range of 0.98-1.3 μm are measured. The obtained in this case and published earlier experimental data on refractive index dispersion of the InP and solid solutions with its participation are generalized within the framework of a simple model approach based on a consecutiVe account of measured parameters of zone structure with the solid solution composition

  1. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  2. Specific features of kinetics of He3-He4 solid solution transformations at superlow temperatures

    International Nuclear Information System (INIS)

    Mikheev, V.A.; Majdanov, V.A.; Mikhin, N.P.

    1986-01-01

    The NMR data on the phase transition kinetics of 3 He- 4 He solid solutions at T=100 mK are considered. Studied are solid helium samples of a molecular volume of 20.55 cm 2 /mol with a 3 He content of 0.54 %. An unusually long phase transition time is found which is dependent on the prehistory of sample. The spin diffusion of 3 He in the transformated solution concentrated phase is found to be of a quasi-one-dimensional nature with the diffusion coefficient value typical of liquid

  3. Characterization of solid-solution interface by potentiometric titration and electrophoretic mobility

    International Nuclear Information System (INIS)

    Lindecker, C.; Drot, R.; Fourest, B.; Simoni, E.

    1999-01-01

    The study of nuclear waste storage in deep geological sites involves the understanding of processes which could produce a possible dispersion or retention of radioelements. The dispersion of solid particles in aqueous solution is consequently important to be characterized. In this bi-phased system it is necessary to determine the characteristics of the solid-solution interface. The method used of this study is the techniques of potentiometric titration applied to heterogeneous systems. The material studied were phosphate matrices which were synthesized in the laboratory. The dependence of their surface change upon the nature of the electrolytes was investigated

  4. Decomposition features of a supersaturated solid solution in the Mg-3.3 wt. % Yb alloy

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Kajgorodova, L.I.; Sukhanov, V.D.; Dobatkina, T.V.

    2007-01-01

    Methods of electron microscopy, hardness measuring and X-ray diffraction analysis are applied to study decomposition kinetics for a supersaturated solid solution in a Mg-3.3 mas. % alloy on aging within a temperature range of 150-225 deg C. The mechanism of supersaturation solid solution decomposition is revealed along with the nature of phases precipitated at various stages of aging: on incomplete and extended aging as well as at maximum hardness. The types of structural constituents responsible for changes of hardness on aging are determined [ru

  5. Direct measurements of the enthalpy of solution of solid solute in supercritical fluids: study on the CO2-naphthalene system.

    Science.gov (United States)

    Zhang, X; Han, B; Zhang, J; Li, H; He, J; Yan, H

    2001-10-01

    A setup for a calorimeter for simultaneously measuring the solubility and the solution enthalpy of solid solutes in supercritical fluids (SCFs) has been established. The enthalpy of solution of naphthalene in supercritical CO2 was measured at 308.15 K in the pressure range from 8.0-11.0 MPa. It was found that the enthalpy of solution (deltaH) was negative in the pressure range from 8.0 to 9.5 MPa, and the absolute value decreased with increasing pressure. In this pressure range, the dissolution of the solute was enthalpy driven. However, the deltaH became positive at pressures higher than 9.5 MPa, and the dissolution was entropy driven. Monte Carlo simulation was performed to analyze the local structural environment of the solvated naphthalene molecules in supercritical CO2 under the experimental conditions for the calorimetric measurements. By combining the enthalpy data and the simulation results, it can be deduced that the energy level of CO2 in the high compressible region is higher than that at higher pressures, which results in the large negative enthalpy of solution and the larger degree of solvent-solute clustering in the high compressible region.

  6. Diffusion kinetics and spinodal decay of quasi-equilibrium solid solutions

    International Nuclear Information System (INIS)

    Zakharov, M.A.

    2000-01-01

    Phenomenological theory for rearrangement of solid solutions with the hierarchy of the component atomic mobilities is elaborated in the approximation of the local equilibrium. The hydrodynamic stage of the evolution of these solutions is studied as a sequence of quasi-equilibrium states characterized by implementation of some conditions of the total equilibrium. On the basis of separation of fast and slow constituents of diffusion and on the basis of the method of reduced description one derived equation for evolution of separations of fast components in quasi-equilibrium solid solutions at the arbitrary stages of rearrangement in terms of the generalized lattice model taking account of the proper volumes of the components. The conditions of the stability of quasi-equilibrium solutions to the spinodal decomposition are determined and the equations of metastability boundaries of such systems are derived [ru

  7. On the Synthesis and Optical Characterization of Zero-Dimensional-Networked Perovskites

    KAUST Repository

    Almutlaq, Jawaher

    2017-04-26

    The three-dimensional perovskites are known for their wide range of interesting properties including spectral tunability, charge carrier mobility, solution-based synthesis and many others. Such properties make them good candidates for photovoltaics and photodetectors. Low-dimensional perovskites, on the other hand, are good as light emitters due to the quantum confinement originating from their nanoparticle size. Another class of low-dimensional perovskites, also called low-dimensional-networked perovskites (L-DN), is recently reemerging. Those interesting materials combine the advantages of the nanocrystals and the stability of the bulk. For example, zero-dimensional-networked perovskite (0-DN), a special class of perovskites and the focus of this work, consists of building blocks of isolated lead-halide octahedra that could be synthesized into mm-size single crystal without losing their confinement. This thesis focuses on the synthesis and investigation of the optical properties of the 0-DN perovskites through experimental, theoretical and computational tools. The recent discovery of the retrograde solubility of the perovskites family (ABX3), the basis of the inverse temperature crystallization (ITC), inspired the reinvestigation of the low-dimensional-networked perovskites. The results of the optical characterization showed that the absorption and the corresponding PL spectra were successfully tuned to cover the visible spectrum from 410 nm for Cs4PbCl6, to 520 nm and 700 m for Cs4PbBr6 and Cs4PbI6, respectively. Interestingly, the exciton binding energies (Eb) of the 0-DNs were found to be in the order of few hundred meV(s), at least five times larger than their three-dimensional counterpart. Such high Eb is coupled with a few nanoseconds lifetime and ultimately yielded a high photoluminesce quantum yield (PLQY). In fact, the PLQY of Cs4PbBr6 powder showed a record of 45%, setting a new benchmark for solid-state luminescent perovskites. Computational methods

  8. Tackling pseudosymmetry problems in electron backscatter diffraction (EBSD) analyses of perovskite structures

    Science.gov (United States)

    Mariani, Elisabetta; Kaercher, Pamela; Mecklenburgh, Julian; Wheeler, John

    2016-04-01

    Perovskite minerals form an important mineral group that has applications in Earth science and emerging alternative energy technologies, however crystallographic quantification of these minerals with electron backscatter diffraction (EBSD) is not accurate due to pseudosymmetry problems. The silicate perovskite Bridgmanite, (Mg,Fe)SiO3, is understood to be the dominant phase in the Earth's lower mantle. Gaining insight into its physical and rheological properties is therefore vital to understand the dynamics of the Earth's deep interior. Rock deformation experiments on analogue perovskite phases, for example (Ca,Sr)TiO3, combined with quantitative microstructural analyses of the recovered samples by EBSD, yield datasets that can reveal what deformation mechanisms may dominate the flow of perovskite in the lower mantle. Additionally, perovskite structures have important technological applications as new, suitable cathodes for the operation of more efficient and environmentally-friendly solid oxide fuel cells (SOFC). In recent years they have also been recognised as a potential substitute for silicon in the next generation of photovoltaic cells for the construction of economic and energy efficient solar panels. EBSD has the potential to be a valuable tool for the study of crystal orientations achieved in perovskite substrates as crystal alignment has a direct control on the properties of these materials. However, perovskite structures currently present us with challenges during the automated indexing of Kikuchi bands in electron backscatter diffraction patterns (EBSPs). Such challenges are represented by the pseudosymmetric character of perovskites, where atoms are subtly displaced (0.005 nm to 0.05 nm) from their higher symmetry positions. In orthorhombic Pbnm perovskites, for example, pseudosymmetry may be evaluated from the c/a unit cell parameter ratio, which is very close to 1. Two main types of distortions from the higher symmetry structure are recognised: a

  9. Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Tao, N [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hong, Y [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Lu, J [LASMIS, University of Technology of Troyes, 10000, Troyes (France); Lu, K [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2005-11-21

    Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.

  10. Cementation of the solid radioactive waste with polymer-cement solutions using the method of impregnation

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    Cementation of solid radioactive waste (SRW), i.e. inclusion of solid radioactive waste into cement matrix without cavities - is one of the main technological processes used for conditioning low and intermediate level radioactive waste. At FSUE 'Radon' the industrialized method of impregnation has been developed and since 2003 has been using for cementation of solid radioactive waste. The technology is that the polymer-cement solution, having high penetrating properties, is supplied under pressure through a tube to the bottom of the container in which solid radioactive waste has preliminarily been placed. The polymer-cement solution is evenly moving upwards through the channels between the particles of solid radioactive waste, fills the voids in the bulk volume of the waste and hardens, forming a cement compound, the amount of which is equal to the original volume. The aim of the investigation was a selection of a cement solution suitable for SRW impregnation (including fine particles) without solution depletion and bottom layers stuffing. It has been chosen a polymer: PHMG (polyhexamethylene-guanidine), which is a stabilizing and water-retaining component of the cement solution. The experiments confirm that the polymer increases the permeability of the cement solution by a 2-2.5 factor, the viscosity by a 1.2 factor, the stability of the consistency by a 1.5-1.7 factor, and extends the operating range of the W/C ratio to 0.5-1.1. So it is possible to penetrate a volume of SRW bigger by a 1.5-2.0 factor. It has been proved, that PHMG polymer increases strength and frost-resistance of the final compounds by a 1.8-2.7 factor, and contributes to fast strength development at the beginning of hardening and it decreases Cs-137 leashing rate by a 1.5-2 factor

  11. Patterning of Perovskite Single Crystals

    KAUST Repository

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  12. Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions

    International Nuclear Information System (INIS)

    Hinatsu, Y.; Fujino, T.

    1988-01-01

    Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions with fluorite structure were measured from 4.2 K to room temperature. An antiferromagnetic transition was observed for all the solid solutions examined in this study (y ≤ 0.33). The Neel temperature of the oxygen-hypostoichiometric solid solutions (x 2 solid solutions, but different from that of (U,Th)O 2 solid solutions. The effective magnetic moment decreased with increasing calcium concentration, which indicates the oxidation of uranium in the solid solutions. From the analysis of the magnetic susceptibility data, it was found that the oxidation state of uranium was either tetravalent or pentavalent. The Neel temperature of the hyperstoichiometric solid solutions (x > 0) did not change appreciably with calcium concentrations. From the comparison of the magnetic susceptibility data of the hypostoichiometric solid solutions with those of the hyperstoichiometric solid solutions, the effect of oxygen vacancies is more significant than that of interstitial oxygens on the decrease of magnetic interactions between uranium ions

  13. Investigation of Different Colloidal Porous Silicon Solutions and Their Composite Solid Matrix Rods by Optical Techniques

    Science.gov (United States)

    Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah

    2018-03-01

    Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.

  14. Designing pseudocubic perovskites with enhanced nanoscale polarization

    Energy Technology Data Exchange (ETDEWEB)

    Levin, I. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Laws, W. J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Wang, D. [Department of Materials Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom; Reaney, I. M. [Department of Materials Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom

    2017-11-20

    A crystal-chemical framework has been proposed for the design of pseudocubic perovskites with nanoscale ferroelectric order, and its applicability has been demonstrated using a series of representative solid solutions that combined ferroelectric (K0.5Bi0.5TiO3, BaTiO3, and PbTiO3) and antiferroelectric (Nd-substituted BiFeO3) end members. The pseudocubic structures obtained in these systems exhibited distortions that were coherent on a scale ranging from sub-nanometer to tens of nanometers, but, in all cases, the macroscopic distortion remained unresolvable even if using high-resolution X-ray powder diffraction. Different coherence lengths for the local atomic displacements account for the distinctly different dielectric, ferroelectric, and electromechanical properties exhibited by the samples. The guidelines identified provide a rationale for chemically tuning the coherence length to obtain the desired functional response.

  15. Influence of Ce 0.68 Zr 0.32 O 2 solid solution on depositing ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 1. Influence of Ce0.68Zr0.32O2 solid solution on depositing -alumina washcoat on FeCrAl foils. Mei-Qing Shen Li-Wei Jia Wen-Long Zhou Jun Wang Ying Huang. Composites Volume 29 Issue 1 February 2006 pp 73-76 ...

  16. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    Science.gov (United States)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  17. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  18. Thermal expansion of TRU nitride solid solutions as fuel materials for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2009-01-01

    The lattice thermal expansion of the transuranium nitride solid solutions was measured to investigate the composition dependence. The single-phase solid solution samples of (Np 0.55 Am 0.45 )N, (Pu 0.59 Am 0.41 )N, (Np 0.21 Pu 0.52 Am 0.22 Cm 0.05 )N and (Pu 0.21 Am 0.18 Zr 0.61 )N were prepared by carbothermic nitridation of the respective transuranium dioxides and nitridation of Zr metal through hydride. The lattice parameters were measured by the high temperature X-ray diffraction method from room temperature up to 1478 K. The linear thermal expansion of each sample was determined as a function of temperature. The average thermal expansion coefficients over the temperature range of 293-1273 K for the solid solution samples were 10.1, 11.5, 10.8 and 8.8 x 10 -6 K -1 , respectively. Comparison of these values with those for the constituent nitrides showed that the average thermal expansion coefficients of the solid solution samples could be approximated by the linear mixture rule within the error of 2-3%.

  19. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  20. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  1. Solution and solid-phase halogen and C-H hydrogen bonding to perrhenate.

    Science.gov (United States)

    Massena, Casey J; Riel, Asia Marie S; Neuhaus, George F; Decato, Daniel A; Berryman, Orion B

    2015-01-28

    (1)H NMR spectroscopic and X-ray crystallographic investigations of a 1,3-bis(4-ethynyl-3-iodopyridinium)benzene scaffold with perrhenate reveal strong halogen bonding in solution, and bidentate association in the solid state. A nearly isostructural host molecule demonstrates significant C-H hydrogen bonding to perrhenate in the same phases.

  2. Fine interstitial clusters as recombinators in decomposing solid solutions under irradiation

    International Nuclear Information System (INIS)

    Trushin, Yu.V.

    1991-01-01

    Behaviour of interstitial clusters and their roll in processes of radiation swelling of metals are described. It is shown that occurrence of coherent advanced precipitations during decomposition of solid solutions under irradiation leads to matrix supersaturation over interstitial atoms. This enhances recombination of unlike defects due to vacancy precipitation on fine interstitial clusters. Evaluation of cluster sizes was conducted

  3. Bridging phases at the morphotropic boundaries of lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, Beatriz; Cox, DE

    2006-01-01

    Ceramic solid solutions of PbZr1-xTixO3 (PZT) with compositions x similar or equal to 0.50 are well-known for their extraordinarily large piezoelectric responses. The latter are highly anisotropic, and it was recently shown that, for the rhombohedral compositions (x less than or similar to 0.5), the

  4. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

    Science.gov (United States)

    Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

    2011-01-01

    The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

  5. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  6. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  7. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-01-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991

  8. Mild solution-processed metal-doped TiO2 compact layers for hysteresis-less and performance-enhanced perovskite solar cells

    Science.gov (United States)

    Liang, Chao; Li, Pengwei; Zhang, Yiqiang; Gu, Hao; Cai, Qingbin; Liu, Xiaotao; Wang, Jiefei; Wen, Hua; Shao, Guosheng

    2017-12-01

    TiO2 is extensively used as electron-transporting material on perovskite solar cells (PSCs). However, traditional TiO2 processing method needs high annealing temperature (>450 °C) and pure TiO2 suffers from low electrical mobility and poor conductivity. In this study, a general one-pot solution-processed method is devised to grow uniform crystallized metal-doped TiO2 thin film as large as 15 × 15 cm2. The doping process can be controlled effectively via a series of doping precursors from niobium (V), tin (IV), tantalum (V) to tungsten (VI) chloride. As far as we know, this is so far the lowest processing temperature for metal-doped TiO2 compact layers, as low as 70 °C. The overall performance of PSCs employing the metal-doped TiO2 layers is significantly improved in term of hysteresis effect, short circuit current, open-circuit voltage, fill factor, power conversion efficiency, and device stability. With the insertion of metal ions into TiO2 lattice, the corresponding CH3NH3PbI3 PSC leads to a ∼25% improved PCE of over 16% under irradiance of 100 mW cm-2 AM1.5G sunlight, compared with control device. The results indicate that this mild solution-processed metal-doped TiO2 is an effective industry-scale way for fabricating hysteresis-less and high-performance PSCs.

  9. Geochemical and numerical modelling of interactions between solid solutions and an aqueous solution. Extension of a reactive transport computer code called Archimede and application to reservoirs diagenesis; Modelisation geochimique et numerique des interactions entre des solutions solides et une solution aqueuse: extension du logiciel de reaction-transport archimede et application a la diagenese des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nourtier-Mazauric, E.

    2003-03-15

    This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)

  10. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  11. Failure criterion effect on solid production prediction and selection of completion solution

    Directory of Open Access Journals (Sweden)

    Dariush Javani

    2017-12-01

    Full Text Available Production of fines together with reservoir fluid is called solid production. It varies from a few grams or less per ton of reservoir fluid posing only minor problems, to catastrophic amount possibly leading to erosion and complete filling of the borehole. This paper assesses solid production potential in a carbonate gas reservoir located in the south of Iran. Petrophysical logs obtained from the vertical well were employed to construct mechanical earth model. Then, two failure criteria, i.e. Mohr–Coulomb and Mogi–Coulomb, were used to investigate the potential of solid production of the well in the initial and depleted conditions of the reservoir. Using these two criteria, we estimated critical collapse pressure and compared them to the reservoir pressure. Solid production occurs if collapse pressure is greater than pore pressure. Results indicate that the two failure criteria show different estimations of solid production potential of the studied reservoir. Mohr–Coulomb failure criterion estimated solid production in both initial and depleted conditions, where Mogi–Coulomb criterion predicted no solid production in the initial condition of reservoir. Based on Mogi–Coulomb criterion, the well may not require completion solutions like perforated liner, until at least 60% of reservoir pressure was depleted which leads to decrease in operation cost and time.

  12. Thermodynamics of CoAl2O4-CoGa2O4 solid solutions

    International Nuclear Information System (INIS)

    Lilova, Kristina I.; Navrotsky, Alexandra; Melot, Brent C.; Seshadri, Ram

    2010-01-01

    CoAl 2 O 4 , CoGa 2 O 4 , and their solid solution Co(Ga z Al 1-z ) 2 O 4 have been studied using high temperature oxide melt solution calorimetry in molten 2PbO.B 2 O 3 at 973 K. There is an approximately linear correlation between lattice parameters, enthalpy of formation from oxides, and the Ga content. The experimental enthalpy of mixing is zero within experimental error. The cation distribution parameters are calculated using the O'Neill and Navrotsky thermodynamic model. The enthalpies of mixing calculated from these parameters are small and consistent with the calorimetric data. The entropies of mixing are calculated from site occupancies and compared to those for a random mixture of Ga and Al ions on octahedral site with all Co tetrahedral and for a completely random mixture of all cations on both sites. Despite a zero heat of mixing, the solid solution is not ideal in that activities do not obey Raoult's Law because of the more complex entropy of mixing. - Graphical abstract: Measured enthalpies of mixing of CoAl 2 O 4 -CoGa 2 O 4 solid solutions are close to zero but entropies of mixing reflect the complex cation distribution, so the system is not an ideal solution.

  13. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

    Science.gov (United States)

    Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  14. Current state in adsorption from multicomponent solutions of nonelectrolytes on solids

    International Nuclear Information System (INIS)

    Borowko, M.; Jaroniec, M.

    1983-01-01

    This paper surveys the research carried out on the adsorption from multicomponent liquid mixtures of nonelectrolytes on solids with emphasis on the work performed by the authors. The consistent theoretical treatment of adsorption from concentrated and dilute multicomponent solutions and its application to the liquid adsorption chromatography with the mixed mobile phase are presented. This treatment involved nonideality of the bulk and surface phases, energetic heterogeneity of the adsorbent surface and it may be extended to multilayer adsorption from solutions. The multicomponent liquid/solid adsorption systems, studied experimentally, are reviewed. Many of them have been examined by means of the equations derived for liquid adsorption on heterogeneous surfaces. These studies are summarized in this paper. Moreover, the model studies illustrating the influence of solution nonideality and adsorbent heterogeneity on the excess adsorption isotherms and the distribution coefficient are discussed. (orig.)

  15. Development of perovskite cathodes for solid oxide fuel cells (SOFC); Desenvolvimento de catodos de perovskitas para celula a combustivel solido de eletrolito solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica], e-mail: joelma@iq.unesp.br; Pereira, J.T.; Saeki, M.J. [UNESP, Bauru, SP (Brazil). Faculdade de Ciencias

    2006-07-01

    Solid Oxide Fuel Cells (SOFC) are energy conversion systems of great interest for industrial applications because they present a high efficiency for energy generation and several advantages for the environment. In this work, perovskite type oxides La{sub 085}Sr{sub 0,15}MnO{sub 3}, La{sub 0,7} Sr{sub 0,3}MnO{sub 3}, La{sub 0,6}Sr{sub 0,4}MnO{sub 3}, La{sub 0,85}Sr{sub 0,15}CoO{sub 3}, La{sub 0,7}Sr{sub 0,3}CoO{sub 3}, La{sub 0,6}Sr{sub 0,4}CoO{sub 3}, La{sub 0.6}Sr{sub 0,4}Fe{sub 0,8}Co{sub 0,2}O{sub 3} e La{sub 0.6}Sr{sub 0,4}Fe{sub 0,4}Co{sub 0,6}O{sub 3} were prepared by a polymeric method with the purpose of using them as cathodes in SOFCs. The electrochemical cell was mounted utilizing YSZ (ZrO{sub 2} - 8 mol%Y{sub 2}O{sub 3}) disks as electrolyte, where a paste containing Pt was calcined onto one face while the other one was covered with the oxide materials synthesized ('screen printing'). The oxide materials prepared were characterized by X-ray diffraction, transmission electronic microscopy and thermogravimetry. The oxygen reduction reaction was studied by taking polarization curves in oxygen and/or air (800 deg C a 950 deg C). The best performance was obtained for 15 {mu}m thickness electrodes La{sub 0.6}Sr{sub 0,4}MnO{sub 3} and La{sub 0.6}Sr{sub 0,4}MnO{sub 3} with addition of dispersed Pt. (author)

  16. Large intragrain magnetoresistance above room temperature in the double perovskite Ba2FeMoO6

    International Nuclear Information System (INIS)

    Maignan, A.; Raveau, B.; Martin, C.; Hervieu, M.

    1999-01-01

    Large intragrain magnetoresistance (MR) in the ordered double perovskite, Ba 2 FeMo 6 , is shown for the first time. The latter appears near T c (340 K), i.e., above room temperature. This effect originates from a double-exchange-like mechanism, based on antiferromagnetic coupling of localized high spin 3d 5 Fe 3+ , and itinerant 4d 1 Mo 5+ species. Besides this bulk MR, low field tunneling MR at lower temperatures (T 2 FeMoO 6 . Such a coexistence of both effects, intragrain and intergrain magnetoresistance, might extend to all members of this double perovskite family, suggesting the possibility of optimizing the MR for working at room temperature in a low magnetic field, by tuning the T c of solid solutions of such perovskites

  17. Kinetics of oxygen reduction in perovskite cathodes for solid oxide fuel cells: A combined modeling and experimental approach

    Science.gov (United States)

    Miara, Lincoln James

    Solid oxide fuel cells (SOFCs) have the potential to replace conventional stationary power generation technologies; however, there are major obstacles to commercialization, the most problematic of which is poor cathode performance. Commercialization of SOFCs will follow when the mechanisms occurring at the cathode are more thoroughly understood and adapted for market use. The catalytic reduction of oxygen occurring in SOFC cathodes consists of many elementary steps such as gas phase diffusion, chemical and/or electrochemical reactions which lead to the adsorption and dissociation of molecular oxygen onto the cathode surface, mass transport of oxygen species along the surface and/or through the bulk of the cathode, and full reduction and incorporation of the oxygen at the cathode/electrolyte two or three phase boundary. Electrochemical impedance spectroscopy (EIS) is the main technique used to identify the occurrence of these different processes, but when this technique is used without an explicit model describing the kinetics it is difficult to unravel the interdependence of each of these processes. The purpose of this dissertation is to identify the heterogeneous reactions occurring at the cathode of an SOFC by combining experimental EIS results with mathematical models describing the time dependent behavior of the system. This analysis is performed on two different systems. In the first case, experimental EIS results from patterned half cells composed of Ca-doped lanthanum manganite (LCM)| yttria-doped ZrO2 (YSZ) are modeled to investigate the temperature and partial pressure of oxygen, pO2, dependence of oxygen adsorption/dissociation onto the LCM surface, surface diffusion of atomic oxygen, and electrochemical reduction and incorporation of the oxygen into the electrolyte in the vicinity of the triple phase boundary (TPB). This model determines the time-independent state-space equations from which the Faradaic admittance transfer function is obtained. The

  18. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    Science.gov (United States)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  19. Thermodynamic characteristics of systems with solid solutions composed of crystal hydrates of lanthanide and yttrium chlorides, at 250C. III. Systems of Roozeboom's type IV, with restricted solid solutions

    International Nuclear Information System (INIS)

    Sokolova, N.P.

    1983-01-01

    The values of the activity, the activity coefficients, the free energy of mixing and the excess free energy of mixing have been calculated for CeCl 3 -LnCl 3 -H 2 O systems (where Ln identical with Sm, Gd, Dy, Ho, Er, Y) containing solid solutions of types IV and IVa. It is shown that the stability of the solid solutions decreases with increasing difference between the radii of the cations of cerium and the second lanthanide, which enter into the composition of the components of the solid solutions. The factors determining the composition of a liquid solution corresponding to the eutonic point are specified

  20. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Hamad ur

    2016-07-01

    Nickel and cobalt-based superalloys with a γ-γ{sup '} microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ{sup '} phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  1. Solid solution strengthening and diffusion in nickel- and cobalt-based superalloys

    International Nuclear Information System (INIS)

    Rehman, Hamad ur

    2016-01-01

    Nickel and cobalt-based superalloys with a γ-γ ' microstructure are known for their excellent creep resistance at high temperatures. Their microstructure is engineered using different alloying elements, that partition either to the fcc γ matrix or to the ordered γ ' phase. In the present work the effect of alloying elements on their segregation behaviour in nickel-based superalloys, diffusion in cobalt-based superalloys and the temperature dependent solid solution strengthening in nickel-based alloys is investigated. The effect of dendritic segregation on the local mechanical properties of individual phases in the as-cast, heat treated and creep deformed state of a nickel-based superalloy is investigated. The local chemical composition is characterized using Electron Probe Micro Analysis and then correlated with the mechanical properties of individual phases using nanoindentation. Furthermore, the temperature dependant solid solution hardening contribution of Ta, W and Re towards fcc nickel is studied. The room temperature hardening is determined by a diffusion couple approach using nanoindentation and energy dispersive X-ray analysis for relating hardness to the chemical composition. The high temperature properties are determined using compression strain rate jump tests. The results show that at lower temperatures, the solute size is prevalent and the elements with the largest size difference with nickel, induce the greatest hardening consistent with a classical solid solution strengthening theory. At higher temperatures, the solutes interact with the dislocations such that the slowest diffusing solute poses maximal resistance to dislocation glide and climb. Lastly, the diffusion of different technically relevant solutes in fcc cobalt is investigated using diffusion couples. The results show that the large atoms diffuse faster in cobalt-based superalloys similar to their nickel-based counterparts.

  2. phase formation and thermal stability of fcc (fluorite) Ce1-xTbxO2-d solid solutions

    NARCIS (Netherlands)

    de Vries, Karel Jan; de Vries, K.J.; Meng, G.Y.

    1998-01-01

    Ce1−xTbxO2−δ solid solutions (x = 0.3, 0.4, and 0.5) were synthesized by a coprecipitation method, using ammonia. The formation process of the solid solutions was studied as a function of temperature up to 1200°C by X-ray diffraction, thermogravimetric analysis, and differential scanning

  3. Ionic thermocurrents and ionic conductivity of solid solutions of SrF2 and YbF3

    NARCIS (Netherlands)

    Meuldijk, J.; Hartog, den H.W.

    1983-01-01

    We report dielectric [ionic thermocurrent (!TC)] experiments and ionic conductivity of cubic solid solutions of the type Sr1-xYbxF2+x. These combined experiments provide us with new information concerning the ionic conductivity mechanisms which play an important role in solid solutions Sr1-xRxF2+x

  4. Local structure of Th1-xMO2 solid solutions (M = U, Pu)

    International Nuclear Information System (INIS)

    Hubert, S.; Heisbourg, G.; Moisy, Ph.; Dacheux, N.; Purans, J.E.

    2004-01-01

    X-ray absorption spectroscopy of Th 1-x U x O 2 and Th 1-x Pu x O 2 solid solutions was carried out on the Th, U L 3 -edges, and Pu L 3 edge to study the local structure environment of actinide mixed oxides. Various compositions of Th 1-x M x O 2 solid solutions have been prepared through the coprecipitation of the mixed oxalates from chloride or nitrate solutions: x = 0.11, 0.24, 0.37, 0.53, 0.67, 0.81, 0.91 and 1 for Th 1-x U x O 2 , and x = 0.13, 0.32, 0.66 and 1 for Th 1-x Pu x O 2 . They were characterized using X- ray diffraction. XRD analysis allowed to confirm that the variation of the lattice parameters varies linearly with the composition between the end members, suggesting that the atomic volume was conserved regardless of the details of the local distortions of the lattice, following the Vegard's law. Extending X-ray absorption fine structure (EXAFS) provides a direct characterization of the local distortions present in solid solutions. We found that opposite to the lattice parameter obtained by XRD, the interatomic distances given by EXAFS do not follow completely to neither the Vegard's law nor the virtual crystal approximation (VCA). However, the average lattice parameter obtained from EXAFS data for the first and the second shells agrees well with the one calculated from XRD data. (authors)

  5. Studies on Al-Mg solid solutions using electrical resistivity and microhardness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A.; Afify, N.; El-Halawany, S.M.; Mossad, A. [Assiut Univ. (Egypt). Dept. of Physics

    1999-08-01

    Al-C at% Mg alloys (C = 0.82, 1.84, 3.76, 5.74 and 12.18) have been selected for this study. From the electrical resistivity measurements it is concluded that the resistivity increment of Al-Mg alloys (in a solid solution state) is proportional to the atomic fractional constituents (Mg and Al) as {delta}{rho}{sub all} = 64.66 c(1-c) {mu}{omega} cm. In addition, both the temperature coefficient of resistivity, {alpha}{sub all} and the relaxation time of the free electrons {tau}{sub all} in the alloys diminish with increasing the solute Mg concentration. The increase of the scattering power, {eta}, with increasing C is interpreted to be due to the contribution of electron-impurity scattering. The percentage increase due to electron-impurity scattering per one atomic percent Mg has been determined as 12.99%. The Debye temperature {theta} decreases as the Mg concentration increases. The microhardness results showed that the solid solution hardening obeys the relation {delta}HV{sub s} = 135.5C{sup 0.778} MPa which is comparable to the theory of solid solution hardening for all alloys; {delta}HV{sub s} {approx} C{sup 0.5-0.67} MPa. (orig.)

  6. Influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells

    International Nuclear Information System (INIS)

    Wang, Mao; Shi, Chengwu; Zhang, Jincheng; Wu, Ni; Ying, Chao

    2015-01-01

    In this paper, the influence of PbCl 2 content in PbI 2 solution of DMF on the absorption, crystal phase and morphology of lead halide thin films was systematically investigated and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The result revealed that the various thickness lead halide thin film with the small sheet-like, porous morphology and low crystallinity can be produced by adding PbCl 2 powder into PbI 2 solution of DMF as a precursor solution. The planar perovskite solar cell based on the 300-nm-thick CH 3 NH 3 PbI 3−x Cl x thin film by the precursor solution with the mixture of 0.80 M PbI 2 and 0.20 M PbCl 2 exhibited the optimum photoelectric conversion efficiency of 10.12% along with an open-circuit voltage of 0.93 V, a short-circuit photocurrent density of 15.70 mA cm −2 and a fill factor of 0.69. - Graphical abstract: The figure showed the surface and cross-sectional SEM images of lead halide thin films using the precursor solutions: (a) 0.80 M PbI 2 , (b) 0.80 M PbI 2 +0.20 M PbCl 2 , (c) 0.80 M PbI 2 +0.40 M PbCl 2 , and (d) 0.80 M PbI 2 +0.60 M PbCl 2 . With the increase of the PbCl 2 content in precursor solution, the size of the lead halide nanosheet decreased and the corresponding thin films gradually turned to be porous with low crystallinity. - Highlights: • Influence of PbCl 2 content on absorption, crystal phase and morphology of thin film. • Influence of perovskite film thickness on photovoltaic performance of solar cell. • Lead halide thin film with small sheet-like, porous morphology and low crystallinity. • Planar solar cell with 300 nm-thick perovskite thin film achieved PCE of 10.12%.

  7. EPR of gamma irradiated solid sucrose and UV spectra of its solution. An attempt for calibration of solid state/EPR dosimetry

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Karakirova, Y.

    2007-01-01

    A simple new approach for independent calibration of solid state/EPR (SS/EPR) dosimetry system is reported. It is based on the fact that: (i) gamma-irradiation of solid sucrose (sugar) induces stable EPR detectable free radicals accompanied by UV detectable brown colour stable in the solid state and in solution; (ii) both the EPR intensity of gamma-irradiated solid sucrose and its solution UV absorbance linearly depend on the absorbed dose high energy radiation and may be independently used for dosimetric purpose; (iii) UV spectrometers are calibrated. The correlation between EPR response and absorbed dose radiation of solid sucrose and UV absorption of its solutions is used in the present communication for calibration purpose. The procedure of sucrose extraction from sucrose-paraffin dosimeters is described. The calibration procedure may be applied to any other (alanine, self-calibrated, etc.) SS/EPR dosimeters, simultaneously irradiated with sucrose

  8. Solution-Grown CsPbBr3 /Cs4 PbBr6 Perovskite Nanocomposites: Toward Temperature-Insensitive Optical Gain.

    Science.gov (United States)

    Wang, Yue; Yu, Dejian; Wang, Zeng; Li, Xiaoming; Chen, Xiaoxuan; Nalla, Venkatram; Zeng, Haibo; Sun, Handong

    2017-09-01

    With regards to developing miniaturized coherent light sources, the temperature-insensitivity in gain spectrum and threshold is highly desirable. Quantum dots (QDs) are predicted to possess a temperature-insensitive threshold by virtue of the separated electronic states; however, it is never observed in colloidal QDs due to the poor thermal stability. Besides, for the classical II-VI QDs, the gain profile generally redshifts with increasing temperature, plaguing the device chromaticity. Herein, this paper addresses the above two issues simultaneously by embedding ligands-free CsPbBr 3 nanocrystals in a wider band gap Cs 4 PbBr 6 matrix by solution-phase synthesis. The unique electronic structures of CsPbBr 3 nanocrystals enable temperature-insensitive gain spectrum while the lack of ligands and protection from Cs 4 PbBr 6 matrix ensure the thermal stability and high temperature operation. Specifically, a color drift-free stimulated emission irrespective of temperature change (20-150 °C) upon two-photon pumping is presented and the characteristic temperature is determined to be as high as ≈260 K. The superior gain properties of the CsPbBr 3 /Cs 4 PbBr 6 perovskite nanocomposites are directly validated by a vertical cavity surface emitting laser operating at temperature as high as 100 °C. The results shed light on manipulating optical gain from the advantageous CsPbBr 3 nanocrystals and represent a significant step toward the temperature-insensitive frequency-upconverted lasers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    Science.gov (United States)

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  10. Structural, electrical and multiferroic characteristics of thermo-mechanically fabricated BiFeO3-(BaSr)TiO3 solid solutions

    Science.gov (United States)

    Behera, C.; Choudhary, R. N. P.; Das, Piyush R.

    2018-05-01

    A solid solution consisting of two perovskite compounds (BiFeO3 and (BaSr)TiO3) of chemical composition (Bi1/2Ba1/4Sr1/4)(Fe1/2Ti1/2)O3 has been fabricated in the low dimensional regime by thermo-mechanical (ball milling and heating) approach. The effect of particle size on the structural, micro-structural, relative permittivity, switching (ferroelectric and magnetic) and conduction phenomena of the material has been studied using various experimental techniques such as x-rays diffraction, transmission and scanning electron microscopy, ferroelectric and magnetic hysteresis, dynamic magneto-electric coupling measurement and impedance spectroscopy techniques. All the above extracted properties are found to be particle size dependent. The first order magneto-electric coupling constant is found to be 2.56, 6.6 and 8.7 mV cm‑1.Oe for 30, 60 and 90 h milled calcined (hmc) sample respectively. As the above micro/nano-material with different particle size, has a high relative dielectric constant and low tangent loss, it can be used for some multifunctional devices including capacity energy storage device in nano-electronics.

  11. Giant asymmetry of separation and homogenization processes in solid 3He-4He solutions

    International Nuclear Information System (INIS)

    Grigor'ev, V.N.; Majdanov, V.A.; Penzev, A.A.; Polev, A.V.; Rubets, S.P.; Rudavskij, Eh.Ya.; Rybalko, A.S.; Syrnikov, E.V.

    2005-01-01

    The kinetics of the processes of separation and homogenization of solid 3 He- 4 He solutions is compared by using the precision barometry. The experiments were made with the initial specimens of three types: weak 3 He- 4 He and 4 He- 3 He solutions and concentrated 3 He- 4 He ones. It is found that the homogenization rate at the initial stage may be more than 500 times higher that the rate of separation. This is the case for all types of the solutions studied. The appreciable rate of phase separation in the concentrated solutions where, according to the modern concepts, impurity atoms in quantum crystals should be localized, suggests that in such conditions there is a new unknown mechanism of mass-transfer, while the fast homogenization points to a nondiffusion nature of the process

  12. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal

    2016-10-06

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  13. Generalized trends in the formation energies of perovskite oxides

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Calle-Vallejo, Federico; Mogensen, Mogens Bjerg

    2013-01-01

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied...... elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we...... extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site...

  14. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal; Dursun, Ibrahim; Priante, Davide; Saidaminov, Makhsud I.; Ng, Tien Khee; Bakr, Osman; Ooi, Boon S.

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  15. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  16. The investigation of solid solutions thin interlayers in CdS/CdTe film heterosystems

    International Nuclear Information System (INIS)

    Khrypunov, G.; Boyko, B.; Chernykh, O.

    1999-01-01

    The photo-response spectral dependence of ITO/CdTe/Au/Cu and ITO/CdS/CdTe/Au/Cu film heterosystems were investigated. At illuminations ITO/CdS/CdTe/Au/Cu heterosystems on ITO side a photo-response maximum was observed for photon absorption with a wavelength of 0.87 μm that is stipulated by formation of CdS x Te 1-x solid solutions interlayer with band gap width less than in CdTe layer. By use optical measurement transmittance spectra was selected a spectral photosensitivity interval appropriate to the contribution of non-equilibrium charge carriers generated in solid solutions interlayer by photon absorption with energy less than CdTe film band gap

  17. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    International Nuclear Information System (INIS)

    Zhang, Yanwen; Wang, Lumin; Caro, Alfredo; Weber, William J.; Univ. of Tennessee, Knoxville, TN

    2015-01-01

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys

  18. Calorimetric measurements on plutonium rich (U,Pu)O2 solid solutions

    International Nuclear Information System (INIS)

    Kandan, R.; Babu, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2008-01-01

    Enthalpy increments of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 were measured using a high-temperature differential calorimeter by employing the method of inverse drop calorimetry in the temperature range 956-1803 K. From the fit equations for the enthalpy increments, other thermodynamic functions such as heat capacity, entropy and Gibbs energy function have been computed in the temperature range 298-1800 K. The results are presented and compared with the data available in the literature. The results indicate that the enthalpies of U (1-y) Pu y O 2 solid solutions with y = 0.45, 0.55 and 0.65 obey the Neumann-Kopp's molar additivity rule

  19. Influence of chemical heterogeneity of solid solutions on brittleness in chromium steels

    International Nuclear Information System (INIS)

    Madyanov, S.A.; Sedov, V.K.; Apaev, B.A.

    1985-01-01

    The role of chemical heterogeneity of solid solutions in formation of mechanical properties of Kh09, Kh15, Kh20, Kh19N2G5T chromium steels has been investigated. It is established that besides the known regioA of chemical heterogeneity in the vicinity of 475 deg C exists a high-temperature region (1000-1050 deg C), where maximum heteroge=- neity of chromium distribution in solid solution, is observed. Both types of chemical heterogeneity cause essential hardening of alloys, which becomes apparent in abrupt change of capability to microplastic deformation The mechanism of occurrence of the given temper brittleness consists in carbon diffusion into microvolunes enriched in carbide-forming elements

  20. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  1. Microstructure and Mechanical Strengths of Metastable FCC Solid Solutions in Al-Ce-Fe System

    OpenAIRE

    A., Inoue; H., Yamaguchi; M., Kikuchi; T., Masumoto; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research

    1990-01-01

    A metastable fcc solid solution (SS) with high mechanical strengths and good bending ductility was found to be formed in rapidly solidified Al-Ce-Fe alloys containing the solute elements below about 6 at%. The SS consists of equiaxed grains with a size of about 2μm and contains a high density of internal defects. The highest hardness (H_v) and tensile fracture strengtn (σ_f) are 440 and 860 MPa in the as-quenched state and remain almost unchanged up to about 600 K for 1 h, though fine compoun...

  2. Photoelectrochemical properties of CdSesub(x)Tesub(1-x) semiconducting solid solutions

    International Nuclear Information System (INIS)

    Kolbasov, G.Ya.; Karpov, I.I.; Pavelets, A.M.; Khanat, L.N.

    1985-01-01

    Photoelectrochemical properties of polycrystalline films of solid solutions CdSesub(x)Tesub(1-x) at x=0.5-0.8 are studied. Films from 5 to 30 μm thickness had hexagonal or mixed cubic and hexogonal structures depending on the compositions. All compositions had the electron type of conductivity. Alkali solutions of Na 2 S and S were used as electrolyte. Polarization characteristics of the CdSesub(0.5)Tesub(0.5) photoelectrode, curves of spectral dependence of photo electrochemical current and of the changes of photo-e.m.f. on electrode potential are plotted

  3. Phase transitions in solid Kr-CH4 solutions and rotational excitations in phase II

    International Nuclear Information System (INIS)

    Bagatskii, M.I.; Mashchenko, D.A.; Dudkin, V.V.

    2007-01-01

    The heat capacity C p of solid Kr-n CH 4 solutions with the CH 4 concentrations n=0.82, 0.86, 0.90 as well as solutions with n=0.90, 0.95 doped with 0.002 O 2 impurity has been investigated under equilibrium vapor pressure over the internal 1-24 K. The (T,n)-phase diagram was refined and the region of two-phase states was determined for Kr-n CH 4 solid solutions. The contribution of the rotational subsystem, C r ot, to the heat capacity of the solutions has been separated. Analysis of C r ot(T) at T 1 and E 2 between the tunnel levels of the A-, T- and A-, E--nuclear-spin species of CH 4 molecules in the orientationally ordered subsystem, and to determine the effective energy gaps E 1 between lowest levels of the A- and T- species. The relations τ(n) and E 1 (n) stem from changes of the effective potential field caused as the replacement of CH 4 molecules by Kr atoms at sites of the ordered sublattices. The effective gaps E L between a group of tunnel levels of the ground-state liberation state and the nearest group of excited levels of the liberation state of the ordered CH 4 molecules in the solutions with n=0.90 (E L =52 K) and 0.95 (E L =55 K) has been estimated

  4. Tensometrical properties of volumetric crystals of germanium-silicon solid solutions irradiated by fast electrons

    International Nuclear Information System (INIS)

    Abbasov, Sh.M.

    2002-01-01

    Full Text: In the present work the tensometrical properties of Ge1-xSix solid solution monocrystal contended of up to 15 at. % Si were investigated. The radiation-proof strain gauges of researched crystals were made. For this purpose the site was cutted out from a sample, perpendicularly or in parallel of a crystal axes. After polishing the samples had thickness of 30-40 microns, and length of 2 mm

  5. First-principles investigations of solid solution strengthening in Al alloys

    OpenAIRE

    Ma, Duancheng

    2012-01-01

    Any material properties, in principle, can be reproduced or predicted by performing firstprinciples calculations. Nowadays, however, we are dealing with complex alloy compositions and processes. The complexities cannot be fully described by first-principles, because of the limited computational power. The primary objective of this study is to investigate an important engineering problem, solid solution strengthening, in a simplified manner. The simplified scheme should allow fast and reliable...

  6. Studying the Super-cooled Solid Solution Breakdown of V-1341 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Yu. A. Puchkov

    2017-01-01

    Full Text Available Deformable alloys of the Al-Mg-Si system are widely used in aviation industry, rocket engineering, shipbuilding, as well as on railway and highway transport. These alloys are characterized by high stamping ability, weld-ability, and machinability with a comparatively high strength and corrosion resistance in a heat-strengthened state. A promising alloy of the Al-Mg-Si system with increased structural strength and manufacturability is on par with foreign analogues in properties is the V-1341 alloy [1, 2].The properties of heat-treatable aluminum alloys strongly depend on the cooling rate of the product during quenching [3-12], which determines the structure and level of residual stresses. Decrease in structural strength, tendency to pitting and inter-crystalline corrosion with slow cooling from the quenching temperature is caused by formation of coarse unequiaxed precipitate, precipitates-free zones, and also by decreasing proportion of inclusions of the strengthening phase [3-12].Thus, the relevant task is to study the effect of isothermal quenching modes on the structure of deformable V-1341 aluminum alloy thermally hardened.The paper studies the impact of isothermal time in quenching on the composition and morphology of breakdown products of the V-1341 alloy solid solution. It is shown that at isothermal time under the solid solution breakdown, at first on the dispersoid surface and then in the solid solution are formed and grow large needle-like crystals of the β'-phase which are structural concentrators of stresses. An increasing isothermal time leads to decreasing solid solution super-saturation by doping elements and vacancies. This leads to a decrease in the fraction of the coherent finely dispersed hardening β '' phase, and also to an increase in the width of the precipitates-free zone.

  7. Long-term behavior of refractory thorium-plutonium dioxide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Claparede, Laurent, E-mail: laurent.claparede@umontpellier.fr [ICSM, UMR 5257 CNRS/CEA/Univ. Montpellier/ENSCM, Site de Marcoule, Bât. 426, BP 17171, 30207 Bagnols/Cèze (France); Guigue, Mireille [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France); Jouan, Gauthier [CEA, Nuclear Energy Division, DTEC Department, BP 17171, 30207 Bagnols/Cèze (France); Nadah, Nassima [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France); Dacheux, Nicolas [ICSM, UMR 5257 CNRS/CEA/Univ. Montpellier/ENSCM, Site de Marcoule, Bât. 426, BP 17171, 30207 Bagnols/Cèze (France); Moisy, Philippe [CEA, Nuclear Energy Division, RadioChemistry & Processes Department, BP 17171, 30207 Bagnols/Cèze (France)

    2017-01-15

    The long-term behavior of Th{sub 0.87}Pu{sub 0.13}O{sub 2} was examined in nitric acid concentrations. The normalized dissolution rates after 3380 days, range from (1.4 ± 0.2) × 10{sup −6} g m{sup −2} d{sup −1} in 5 M HNO{sub 3} down to (3.2 ± 0.4) × 10{sup −8} g m{sup −2} d{sup −1} in 10{sup −3} M HNO{sub 3}, which confirms the high chemical durability of this solid solution. The amounts of plutonium measured in solution lead to 0.9% and 2.1% of dissolved solid in 1 M and 5 M HNO{sub 3}, respectively. In such conditions, the time required to reach the full dissolution of the material varies from 430 years (5 M HNO{sub 3}) to 18,000 years (10{sup −3} M HNO{sub 3}). Moreover, the partial order related to the proton activity (n = 0.45 ± 0.03) suggests that the dissolution is mainly driven by surface reactions occurring at the solid/liquid interface. The characterization of the leached samples by SEM shows small microstructural modifications (i.e. detachment of crystallites) and the absence of neoformed phase while from PXRD, the unit cell parameter and crystallite size are not significantly affected. - Highlights: • Leaching tests of Th{sub 0.87}Pu{sub 0.13}O{sub 2} were performed for 9 years in several nitric acid solutions. • The high chemical durability of thorium-plutonium oxide solid solutions was confirmed. • The solubility of plutonium(IV) was not controlled by the precipitation of plutonium tetrahydroxide in these experiments.

  8. Mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2000-02-03

    A new class of binary mesoporous yttria-zirconia (YZ) and ternary mesoporous metal-YZ materials (M = electroactive Ni/Pt) is presented here that displays the highest surface area of any known form of yttria-stabilized zirconia. These mesoporous materials form as solid solutions and retain their structural integrity to 800 C, which bodes well for their possible utilization in fuel cells. (orig.)

  9. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating

    International Nuclear Information System (INIS)

    Kubalova, L.M.; Sviridov, I.A.; Vasilyeva, O.Ya.; Fadeeva, V.I.

    2007-01-01

    X-ray diffractometry and Moessbauer spectroscopy study of Fe 50 Al 25 Si 25 and Fe 50 Al 25 Ge 25 alloys obtained by mechanical alloying (MA) of elementary powders was carried out. Phase transformation during heating of synthesized products was studied using differential scanning calorimetry (DSC). After 2.5 h of MA monophase alloys containing bcc Fe(Al, Ge) solid solutions Fe(Al, Si) are formed. Fe(Al, Si) is partially ordered B2 type and Fe(Al, Ge) is completely disordered. DSC curves of synthesized alloys displayed the presence of exothermal peaks caused by phase transformation. The metastable Fe(Al, Si) solid solution transformed into FeAl 1-x Si x (B2) and FeSi 1-x Al x (B20) equilibrium phases. The Fe(Al, Ge) solid solution transformed into equilibrium phases through intermediate stage of Fe 6 Ge 3 Al 2 metastable phase formation. The Fe 6 Ge 3 Al 2 phase dissociated into three equilibrium phases: FeAl 1-x Ge x (B2), χ-Fe 6 Ge 5 and η-Fe 13 (Ge, Al) 8 (B8 2 ). The structure of Fe 6 Ge 3 Al 2 was calculated by Rietveld method, the distribution of Al and Ge in the elementary cell and its parameters were calculated. Moessbauer study showed that Fe(Al, Si) and Fe(Al, Ge) solid solutions are paramagnetic. In the equilibrium state the alloy containing Si is also paramagnetic while the alloy with Ge showed ferromagnetic properties

  10. Electron paramagnetic resonance response and magnetic interactions in ordered solid solutions of lithium nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Azzoni, C.B. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica ' Alessandro Volta' , Universita di Pavia, Pavia (Italy); Paleari, A. [Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita di Milano, Milan (Italy); Massarotti, V.; Capsoni, D. [Dipartimento di Chimica-Fisica, Universita di Pavia, Pavia (Italy)

    1996-09-23

    EPR data of ordered solid solutions of lithium nickel oxides are reported as a function of the lithium content. The features of the signal and the EPR centre density are analysed by a model of dynamical trapping of holes in [(Ni{sup 2+}-O-Ni{sup 2+})-h{sup +}] complexes. The possible origin of the interactions responsible for the magnetic ordering and some features of the transport properties are also discussed. (author)

  11. Contribution to the study of the structure of silver krypton solid solutions

    International Nuclear Information System (INIS)

    Levy, V.; Tullairet, J.; Delaplace, J.; Antolin-Baudier, J.; Adda, Y.

    1964-01-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [fr

  12. Small interstitial clusters as opposite defect recombinators in decomposing solid solutions under irradiation

    International Nuclear Information System (INIS)

    Orlov, A.N.; Trushin, Yu.V.

    1988-01-01

    An attempt was made to make allowance for the role of binary and ternary interstitials in the kinetics of radiation point defects both in the presence and in the absence of coherent preseparation. It is shown that in solid solutions, decomposing under irradiation, recombination with binary and ternary interstitials proceeds more quickly than directly, and this difference is more pronounced (from 2 up to 20 time growth) due to defect flow for preseparation at the stage of coherent preseparation formation

  13. Solid solution inhomogeneity in DC-cast AlMn(Fe,Si) ingots

    International Nuclear Information System (INIS)

    Lakner, J.; Kovacs-Csetenyi, E.; Lal, K.

    1990-01-01

    The aim of this work was to characterize the structure in cast state of the AlMn1 alloy containing different Fe and Si concentration. The casting parameters were intended to keep constant and the effect of impurities was studied. The inhomogeneity along the diameter of cast billet was characterized by the dendrite arm spacing and by the solid solution content. To explain the results the model developed for binary AlFe and AlMn alloys was applied

  14. Decomposition of supersaturated solid solutions Mg-Ho and Mg-Gd

    International Nuclear Information System (INIS)

    Sukhanov, V.D.; Dobromyslov, A.V.; Rokhlin, L.L.; Dobatkina, T.V.

    2002-01-01

    Methods of electron microscopy and X-ray diffraction analysis are applied to study ageing magnesium base alloys with holmium and gadolinium. It is shown that the precipitation of supersaturated Mg base solid solutions goes through several subsequent stages and is accompanied by a considerable precipitation hardening effect at the stage of metastable phase precipitation. The influence of aging time and temperature on precipitation kinetics is established [ru

  15. Photophysical processes study for poly (P-substituted styrenes) in solid films and in solutions

    International Nuclear Information System (INIS)

    Al-Hakeem, I.A.

    1985-01-01

    In this work, the absorption and emission spectra of poly (P-NN dimethyl amino styrene), poly (P-Fluoro Styrene), poly (P-CH2OCH3 styrene), poly (P-Methyl (styrene), poly(P-Tertiary butyl styrene) have been studied in solid films and solutions. The effect of added dimethylterph-thalate as a quencher to the fluorescence emission of the polymers used in this work were studied.(5 tabs., 39 figs., 60 refs.)

  16. Raman spectra of the solid-solution between Rb sub 2 La sub 2 Ti sub 3 O sub 1 sub 0 and RbCa sub 2 Nb sub 3 O sub 1 sub 0

    CERN Document Server

    Kim, H J; Yun, H S

    2001-01-01

    A site preference of niobium atom in Rb sub 2 sub - sub x La sub 2 Ti sub 3 sub - sub x Nb sub x O sub 1 sub 0 (0.0<=x<=1.0) and RbLa sub 2 sub - sub x Ca sub x Ti sub 2 sub - sub x Nb sub 1 sub + sub x O sub 1 sub 0 (0.0<=x<= 2.0), which are the solid-solutions between Rb sub 2 La sub 2 Ti sub 3 O sub 1 sub 0 are RbCa sub 2 Nb sub 3 O sub 1 sub 0 , has been investigated by Raman spectroscopy. The Raman spectra of Rb sub 2 sub - sub x La sub 2 Ti sub 3 sub - sub x Nb sub x O sub 1 sub 0 (0.0<=x<=1.0) gave an evidence that niobium atoms substituted for titanium atoms preferably occupy the highly distorted outer octahedral sites rather than the central ones in triple-octahedral perovskite layers. In contrast, the Raman spectra of RbLa sub 2 sub - sub x Ca sub x Ti sub 2 sub - sub x Nb sub 1 sub + sub x O sub 1 sub 0 (0.0<=x<= 2.0) showed no clear information for the cationic arrangement in perovskite slabs. This difference indicated that a site preference of niobium atoms is observed onl...

  17. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-01

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  18. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology.

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-10

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  19. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    Santos, Sydney F.; Huot, Jacques

    2009-01-01

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr 1.2 (FeV) x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr 1.2 (FeV) 0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  20. Vaporization study on vanadium-oxygen solid solution by mass spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over vanadium-oxygen solid solution (0.001 ≤ O/V ≤ 0.145) were measured by mass-spectrometric method in the temperature range of 1,855 ∼ 2,117 K. The main vapor species were observed to be V(g) and VO(g). The vapor pressure of V(g) is higher than that of VO(g) over the solid solutions with all O/V ratios except for O/V = 0.145. The vapor pressure of V(g) is nearly independent of O/V ratio. The vapor pressure of VO(g) decreases with decreasing O/V ratio. The oxygen partial pressure was calculated as a function of temperature and O/V ratio from the vapor pressures of V(g) and VO(g), from which the partial molar enthalpy and entropy of oxygen in the solid solution were determined. The partial molar enthalpy of oxygen was observed to be independent of composition, suggesting the presence of very weak interaction between interstitial oxygens. The compositional dependence of the partial molar entropy of oxygen can be explained by assuming the occupation of the octahedral site in bcc vanadium lattice by the interstitial oxygens. The excess partial molar entropy of oxygen was compared with the value derived from the sum of the contributions from the volume expansion, electronic heat capacity and vibrational terms. (author)

  1. CSBB-ConeExclusion, adapting structure based solution virtual screening to libraries on solid support.

    Science.gov (United States)

    Shave, Steven; Auer, Manfred

    2013-12-23

    Combinatorial chemical libraries produced on solid support offer fast and cost-effective access to a large number of unique compounds. If such libraries are screened directly on-bead, the speed at which chemical space can be explored by chemists is much greater than that addressable using solution based synthesis and screening methods. Solution based screening has a large supporting body of software such as structure-based virtual screening tools which enable the prediction of protein-ligand complexes. Use of these techniques to predict the protein bound complexes of compounds synthesized on solid support neglects to take into account the conjugation site on the small molecule ligand. This may invalidate predicted binding modes, the linker may be clashing with protein atoms. We present CSBB-ConeExclusion, a methodology and computer program which provides a measure of the applicability of solution dockings to solid support. Output is given in the form of statistics for each docking pose, a unique 2D visualization method which can be used to determine applicability at a glance, and automatically generated PyMol scripts allowing visualization of protein atom incursion into a defined exclusion volume. CSBB-ConeExclusion is then exemplarically used to determine the optimum attachment point for a purine library targeting cyclin-dependent kinase 2 CDK2.

  2. Studies on thermal expansion and XPS of urania-thoria solid solutions

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Panneerselvam, G.; Bera, Santanu; Narasimhan, S.V.; Vasudeva Rao, P.R.

    2000-01-01

    The thermal expansion characteristics of polycrystalline (U y Th 1-y )O 2 solid solutions with y=0.13, 0.55 and 0.91 were determined in the temperature range from 298 to 1973 K by means of X-ray diffraction technique. For these temperatures, the average linear thermal expansion coefficients for (U 0.13 Th 0.87 )O 2 , (U 0.55 Th 0.45 )O 2 and (U 0.91 Th 0.09 )O 2 are 1.033x10 -5 , 1.083x10 -5 and 1.145x10 -5 K -1 , respectively. The measured thermal expansion values were compared with those calculated by applying the equations for linear thermal expansion of pure urania and thoria. It was shown that the stoichiometric (U, Th)O 2 solid solutions are almost ideal at least up to 2000 K. The binding energies of U 4f 7/2 and Th 4f 7/2 electrons of (U 0.1 Th 0.9 )O 2 , (U 0.25 Th 0.75 )O 2 , (U 0.50 Th 0.50 )O 2 , (U 0.75 Th 0.25 )O 2 and (U 0.90 Th 0.10 )O 2 were experimentally determined by X-ray photoelectron spectroscopy. The result showed the presence of only U 4+ and Th 4+ chemical states in the stoichiometric urania-thoria solid solutions

  3. Existence of a solid solution from brucite to {beta}-Co(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [LEMA, UMR 6157 CNRS - CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 Blois (France); Delorme, F.; Autret-Lambert, C. [LEMA, UMR 6157 CNRS - CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 Blois (France); Seron, A.; Jean-Prost, V. [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 Orleans Cedex 2 (France)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A solid solution exist between Mg(OH){sub 2} and {beta}-Co(OH){sub 2}. Black-Right-Pointing-Pointer Synthesis has been performed through an easy and fast coprecipitation route. Black-Right-Pointing-Pointer No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH){sub 2}) and {beta}-Co(OH){sub 2}, all the compositions are possible. The solid solution Mg{sub 1-x}Co{sub x}(OH){sub 2} has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg-Co mixed oxide with all possible cationic ratios.

  4. Existence of a solid solution from brucite to β-Co(OH)2

    International Nuclear Information System (INIS)

    Giovannelli, F.; Delorme, F.; Autret-Lambert, C.; Seron, A.; Jean-Prost, V.

    2012-01-01

    Highlights: ► A solid solution exist between Mg(OH) 2 and β-Co(OH) 2 . ► Synthesis has been performed through an easy and fast coprecipitation route. ► No long range-ordering of the cations occurs. -- Abstract: This study shows that between brucite (Mg(OH) 2 ) and β-Co(OH) 2 , all the compositions are possible. The solid solution Mg 1−x Co x (OH) 2 has been synthesized by an easy and fast coprecipitation route and characterized by XRD and TEM. Single phase powders have been obtained. The particles exhibit platelets morphology with a size close to one hundred nanometers. XRD analysis shows an evolution of the cell parameters when x increases and demonstrates that no ordering of the cations occurs. However, extra reflections on TEM electron diffraction patterns seem to indicate that local ordering can exist. The compounds issued from this solid solution could be good candidates as precursors in order to obtain Mg–Co mixed oxide with all possible cationic ratios.

  5. Solid solutions of hydrogen uranyl phosphate and hydrogen uranyl arsenate. A family of luminescent, lamellar hosts

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Rosenthal, G.L.; Ellis, A.B.

    1988-01-01

    Hydrogen uranyl phosphate, HUO 2 PO 4 x 4H 2 O (HUP), and hydrogen uranyl arsenate, HUO 2 AsO 4 x 4H 2 O (HUAs), form solid solutions of composition HUO 2 (PO 4 ) 1-x (AsO 4 )x (HUPAs), representing a family of lamellar, luminescent solids that can serve as hosts for intercalation chemistry. The solids are prepared by aqueous precipitation reactions from uranyl nitrate and mixtures of phosphoric and arsenic acids; thermogravimetric analysis indicates that the phases are tetrahydrates, like HUP and HUAs. Powder x-ray diffraction data reveal the HUPAs solids to be single phases whose lattice constants increase with X, in rough accord with Vegard's law Spectral shifts observed for the HUPAs samples. Emission from the solids is efficient (quantum yields of ∼ 0.2) and long-lived (lifetimes of ∼ 150 μs), although the measured values are uniformly smaller than those of HUP and HUAs; unimolecular radiative and nonradiative rate constants for excited-state decay of ∼ 1500 and 5000 s -1 , respectively, have been calculated for the compounds. 18 refs., 5 figs., 2 tabs

  6. Origin of giant dielectric permittivity and weak ferromagnetic behavior in (1−xLaFeO3−xBaTiO3 (0.0 ≤ x ≤ 0.25 solid solutions

    Directory of Open Access Journals (Sweden)

    T. Sreenivasu

    2016-12-01

    Full Text Available The solid solutions of (1−x LaFeO3–xBaTiO3 (0.0≤x≤0.25 have been synthesized successfully by the conventional solid-state reaction method. Room temperature (RT X-ray diffraction studies reveal the stabilization of orthorhombic phase with Pbnm space group. Complete solubility in the perovskite series was demonstrated up to x=0.25. The dielectric permittivity shows colossal dielectric constant (CDC at RT. The doping of BaTiO3 in LaFeO3 exhibit pronounced CDC up to a composition x=0.15, further it starts to decrease. The frequency-dependent dielectric loss exhibits polaronic conduction, which can attribute to presence of multiple valence of iron. The relaxation frequency and polaronic conduction mechanism was shifted towards RT as function of x. Moreover, large magnetic moment with weak ferromagnetic behavior is observed in doped LaFeO3 solid solution, which might be the destruction of spin cycloid structure due to insertion of Ti in Fe–O–Fe network of LaFeO3.

  7. Perovskite-Perovskite Homojunctions via Compositional Doping.

    Science.gov (United States)

    Dänekamp, Benedikt; Müller, Christian; Sendner, Michael; Boix, Pablo P; Sessolo, Michele; Lovrincic, Robert; Bolink, Henk J

    2018-05-11

    One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite-perovskite homojunctions have not been reported. Here we present a perovskite-perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI 2 , obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is confirmed by infrared spectroscopy, which allows us to determine the MA content in the films. We analyzed the resulting thin-film junction by cross-sectional scanning Kelvin probe microscopy (SKPM) and found a contact potential difference (CPD) of 250 mV between the two differently doped perovskite layers. Planar diodes built with the perovskite-perovskite homojunction show the feasibility of our approach for implementation in devices.

  8. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Waysbort, Daniel [Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100 (Israel); McGarvey, David J. [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)], E-mail: david.mcgarvey@us.army.mil; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M. [SAIC, P.O. Box 68, Gunpowder Branch, Aberdeen Proving Ground, MD 21010 (United States); Durst, H. Dupont [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green{sup TM}, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO{sub 4}{sup -2}) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t{sub 1/2} {<=} 4 min), 1:10 for HD (t{sub 1/2} < 2 min with molybdate), and 1:10 for GD (t{sub 1/2} < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  9. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    International Nuclear Information System (INIS)

    Waysbort, Daniel; McGarvey, David J.; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M.; Durst, H. Dupont

    2009-01-01

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green TM , has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO 4 -2 ) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t 1/2 ≤ 4 min), 1:10 for HD (t 1/2 1/2 < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD

  10. Analysis of the perovskite structure LaxSr1-xCryMn1-yO3-δ with potential application as an anode for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado Flores, J.J.

    2017-07-01

    Solid oxide fuel cells (SOFC) are complex devices that offer great advantages over conventional manner in which electrical energy is produced. Many of these advantages revolve around the environmental impact and particularly energy efficiency. However, progress in the field of these devices operating at high temperatures require the continuous search for new materials with advanced properties, optimization in manufacturing, cutting edge technologies for the processing of its main components (anode-electrolyte-cathode-seal) and low manufacturing costs. Here, the perovskite structure material LaxSr1-xCryMn1-yO3-δ (LSCM) is efficient, stable redox environments, has low manufacturing cost and is optimized for SOFC applications. Its properties compare favorably with the compound Ni/YSZ using hydrogen as a fuel; and when methane is used, it requires only 3% moisture to prevent carbon formation, which is much lower compared to when used Ni/YSZ (50% moisture). The LSCM material allows a SOFC cell operate at intermediate temperatures around 700°C. This article provides a brief review of the excellent properties and potential presented by this perovskite. (Author)

  11. Analysis of cathode materials of perovskite structure for solid oxide fuel cells, sofc s; Analisis de materiales catodicos de estructura perovskita para celdas de combustible de oxido solido, sofcs

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado F, J.; Espino V, J.; Avalos R, L. [Universidad Michoacana de San Nicolas de Hidalgo, Facultad de Ingenieria Quimica, Santiago Tapia 403, Morelia, Michoacan (Mexico)

    2015-07-01

    Fuel cells directly and efficiently convert the chemical energy of a fuel into electrical energy. Of the various types of fuel cells, the solid oxide (Sofc), combine the advantages in environmentally benign energy generation with fuel flexibility. However, the need for high operating temperatures (800 - 1000 grades C) has resulted in high costs and major challenges in relation to the compatibility the cathode materials. As a result, there have been significant efforts in the development of intermediate temperature Sofc (500 - 700 grades C). A key obstacle for operation in this temperature range is the limited activity of traditional cathode materials for electrochemical reduction oxygen. In this article, the progress of recent years is discussed in cathodes for Sofc perovskite structure (ABO{sub 3}), more efficient than the traditionally used La{sub 1-x}Sr{sub x}MnO{sub 3-δ} (LSM) or (La, Sr) CoO{sub 3}. Such is the case of mixed conductors (MIEC) double perovskite structure (A A B{sub 2}O{sub 5+δ}) using different doping elements as La, Sr, Fe, Ti, Cr, Sm, Co, Cu, Pr, Nd, Gd, dy, Mn, among others, which could improve the operational performance of existing cathode materials, promoting the development of optimized intermediate temperature Sofc designs. (Author)

  12. Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains.

    Science.gov (United States)

    Hou, Xian; Huang, Sumei; Ou-Yang, Wei; Pan, Likun; Sun, Zhuo; Chen, Xiaohong

    2017-10-11

    A high-quality perovskite film with interconnected perovskite grains was obtained by incorporating terephthalic acid (TPA) additive into the perovskite precursor solution. The presence of TPA changed the crystallization kinetics of the perovskite film and promoted lateral growth of grains in the vicinity of crystal boundaries. As a result, sheet-shaped perovskite was formed and covered onto the bottom grains, which made some adjacent grains partly merge together to form grains-interconnected perovskite film. Perovskite solar cells (PSCs) with TPA additive exhibited a power conversion efficiency (PCE) of 18.51% with less hysteresis, which is obviously higher than that of pristine cells (15.53%). PSCs without and with TPA additive retain 18 and 51% of the initial PCE value, respectively, aging for 35 days exposed to relative humidity 30% in air without encapsulation. Furthermore, MAPbI 3 film with TPA additive shows superior thermal stability to the pristine one under 100 °C baking. The results indicate that the presence of TPA in perovskite film can greatly improve the performance of PSCs as well as their moisture resistance and thermal stability.

  13. O3 perovskite ceramic

    Indian Academy of Sciences (India)

    The prepared sample remains as double phases with the perovskite struc- ture. The structure ... Ferroelectric oxides with perovskite structure are the subject of many investigations. ... in optical devices and heterojunction solar cells. 1765 ...

  14. Study of the sintering process and the formation of a (Th, U) O2 solid solution

    International Nuclear Information System (INIS)

    Tomasi, Roberto

    1979-01-01

    The effect of some variables in the (Th, U) O 2 sintering process and solid solution formation was studied. ThO 2 , U 3 O 8 and UO 2 powder were prepared. The ThO 2 powders were obtained by calcination of thorium at 500 and 750 deg C; the U 3 O 8 powders were derived from the calcination of ADU at 660 and 750 deg C; the UO 2 powder were prepared from ADU and from ATCU. The different characteristics of these materials were determined by measurements of surface area, by scanning electron microscopy, tap density tests, X-ray diffractometry and by measurements of the O/U ratios. The oxide mixtures were chosen in order to produce a final composition with 10 w/o of UO 2 . A mixture of thorium oxalate and ADU was also prepared by calcining these salts in air at 700 deg C, in order to obtain certain amount of solid solution prior to sintering. The sintering operations were developed in an argon atmosphere at temperatures between 1400 and 1700 deg C, during interval varying from 1 to 4 hours. The effect of the mixture characteristics on the sintering process and solid solution formation were studied considering the results of densification, microstructure development and X-ray diffractometry. The ThO 2 powder characteristics have a main effect on the mixtures compactability and sinterability, the higher calcining temperatures increasing the green density, but decreasing the final density of the sintered pellets. In the sintering of mixtures containing U 3 O 3 , this oxide is reduced to UO 2 and it is possible to obtain pellets with density and microstructures similar to those produced from mixtures containing UO 2 . But if oxygen in excess is present during sintering, the process is affected, occurring exaggerated grain growth. The densification results were related to the Coble's kinetics equation for second stage of sintering, valid for bulk diffusion, grain boundary acting as vacancy sinks. The sintering activation energy is independent from the powder starting

  15. Effects of solvent and chelating agent on synthesis of solid oxide fuel cell perovskite, La0.8Sr0.2CrO3-δ

    International Nuclear Information System (INIS)

    Lee, Byoung I.; Gupta, Ravindra K.; Whang, Chin M.

    2008-01-01

    Effects of solvent and chelating agent on synthesis of La 0.8 Sr 0.2 CrO 3-δ perovskite are reported. Samples are synthesized using a solvent (ethylene glycol or 2-methoxyethanol) and a chelating agent (acetylacetone, citric acid or ethylene diamine tetraacetic acid) by polymeric-gel method, and characterized by X-ray diffractometry and Fourier-transform infrared spectroscopy. Citric acid to metal cations molar ratio (Rc) is varied for ethylene glycol-citric acid system. Samples are mainly orthorhombic perovskite. SrCrO 4 is appeared as a secondary phase and found to be the lowest for ethylene glycol-citric acid combination with Rc equal to 7. Crystallographic parameters of perovskite phase are determined and compared with those of LaCrO 3 . A mechanism employing a partial-charge model, chelating effect and solvent-cage effect is proposed to explain the results. Effect of sintering temperature on phase, relative density and morphology of samples prepared using ethylene glycol and citric acid (Rc = 7) is also reported

  16. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells.

    Science.gov (United States)

    Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping

    2012-10-01

    It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)

    Science.gov (United States)

    Schuler, Thomas; Nastar, Maylise

    2016-06-01

    We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.

  18. [Mechanism of gold solid extraction from aurocyanide solution using D3520 resin impregnated with TRPO].

    Science.gov (United States)

    Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong

    2014-02-01

    Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.

  19. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  20. Decay property of regularity-loss type for solutions in elastic solids with voids

    KAUST Repository

    Djouamai, Leila; Said-Houari, Belkacem

    2014-01-01

    In this paper, we consider the Cauchy problem for a system of elastic solids with voids. First, we show that a linear porous dissipation leads to decay rates of regularity-loss type of the solution. We show some decay estimates for initial data in Hs(R)∩L1(R). Furthermore, we prove that by restricting the initial data to be in Hs(R)∩L1,γ(R) and γ. ∈. [0, 1], we can derive faster decay estimates of the solution. Second, we show that by adding a viscoelastic damping term, then we gain the regularity of the solution and obtain the optimal decay rate. © 2013 Elsevier Ltd.

  1. Large-scale fluctuations in the diffusive decomposition of solid solutions

    International Nuclear Information System (INIS)

    Karpov, V.G.; Grimsditch, M.

    1995-01-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L∼(na) -1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered

  2. Large-scale fluctuations in the diffusive decomposition of solid solutions

    Science.gov (United States)

    Karpov, V. G.; Grimsditch, M.

    1995-04-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.

  3. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The effects of additives on the microstructure and sinterability of molybdenum oxide - study of related solid solutions

    International Nuclear Information System (INIS)

    Kassem, M.

    2006-01-01

    This study focuses on the phase transformation induced during mixing a fixed quantity of MoO 3 with various concentration of V 2 O 5 , Bn 2 O 5 , Al 2 O 3 and pure aluminium. These concentrations are 2, 3, 4, 5, 10, 20, 40 and 50%. Employing several physical techniques such as x-ray powder diffraction, FTIR and DTA, different solid solution were identified. Also the compressibility and sintering of these solid solutions have been studied via the variation of the density of pellets prepared from these solid solutions (Author)

  5. Influence of hydrostatic pressure on BCC-lattice parameter in molybdenum, niobium and vanadium with rhenium solid solutions

    International Nuclear Information System (INIS)

    Smol'yaninova, Eh.A.; Stribuk, E.K.; Tyavlovskij, V.I.

    1987-01-01

    Data on the effect of 1.8GPa hydrostatic pressure on bcc lattice parameters of solid solutions in Mo-Re, Nb-Re, V-re systems are presented. It is shown that after the application hydrostatic pressure a decrease in bcc lattice parameter is observed and the greatest change in the lattice parameter takes place in bcc of solid solutions in the Nb-Re system (DELTA A ∼ 0.0035 nm). Analysis of the experimental data obtained on the basis of calculations made for packing density change in the above-mentioned solid solutions under the pressure is carried out

  6. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency.

    Science.gov (United States)

    Ameen, Sadia; Rub, Malik Abdul; Kosa, Samia A; Alamry, Khalid A; Akhtar, M Shaheer; Shin, Hyung-Shik; Seo, Hyung-Kee; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja

    2016-01-08

    The recent advances in perovskite solar cells (PSCs) created a tsunami effect in the photovoltaic community. PSCs are newfangled high-performance photovoltaic devices with low cost that are solution processable for large-scale energy production. The power conversion efficiency (PCE) of such devices experienced an unprecedented increase from 3.8 % to a certified value exceeding 20 %, demonstrating exceptional properties of perovskites as solar cell materials. A key advancement in perovskite solar cells, compared with dye-sensitized solar cells, occurred with the replacement of liquid electrolytes with solid-state hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), which contributed to enhanced PCE values and improved the cell stability. Following improvements in the perovskite crystallinity to produce a smooth, uniform morphology, the selective and efficient extraction of positive and negative charges in the device dictated the PCE of PSCs. In this Review, we focus mainly on the HTMs responsible for hole transport and extraction in PSCs, which is one of the essential components for efficient devices. Here, we describe the current state-of-the-art in molecular engineering of hole-transporting materials that are used in PSCs and highlight the requisites for market-viability of this technology. Finally, we include an outlook on molecular engineering of new functional HTMs for high efficiency PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bin, E-mail: kongbin@buaa.edu.cn; Jia, Lina, E-mail: jialina@buaa.edu.cn; Su, Linfen, E-mail: sulinfen@mse.buaa.edu.cn; Guan, Kai, E-mail: guankai@mse.buaa.edu.cn; Weng, Junfei, E-mail: wengjf@mse.buaa.edu.cn; Zhang, Hu, E-mail: zhanghu@buaa.edu.cn

    2015-07-15

    Controlling the elements content in the niobium solid solution (Nb{sub SS}) is significant for the better comprehensive performance of Nb-silicide-based alloys. In this paper, the effects of minor Si on the microstructures and room temperature fracture toughness of Nb–(0/0.5/1/2)Si–27.63Ti–12.92Cr–2.07Al–1.12Hf (at%, unless stated otherwise) solid solution alloys were investigated. The alloys were processed by vacuum arc-casting (AC), and then heat treated (HT) at 1425 °C for 10 h. In HT alloys, Nb{sub SS} grains are refined gradually with the increase of Si content. Meanwhile, the volume fraction of Cr{sub 2}Nb and silicides phases precipitates increases. The fracture toughness of HT alloys decreases at first but then increases in the range of 0 to 2% Si, because it is a combinatorial process of positive and negative effects caused by the addition of Si. The refinement of Nb{sub SS} grains displays positive effect on fracture toughness, while the increase of solid solubility of Si in Nb{sub SS} and brittle Cr{sub 2}Nb and Nb-silicides precipitate phases display negative effect.

  8. Nanostructured sodium lithium niobate and lithium niobium tantalate solid solutions obtained by controlled crystallization of glass

    International Nuclear Information System (INIS)

    Radonjic, L.; Todorovic, M.; Miladinovic, J.

    2005-01-01

    Transparent, nanostructured glass ceramics based on ferroelectric solid solutions of the type Na 1-x Li x NbO 3 (in very narrow composition regions for x = 0.12 and 0.93) and LiNb 1-y Ta y O 3 (y = 0.5 unlimited solid solubility), can be obtained by controlled crystallization of glass. The parent glass samples were prepared by conventional melt-quenching technique. Heat-treatment of the parent glasses was performed at the various temperatures, for the same time. The glass structure evolution during the controlled crystallization was examined by FT-IR spectroscopy analysis. Crystalline phases were identified by X-ray diffraction analysis and SEM was used for microstructure characterization. Densities of the crystallized glasses were measured by Archimedean principle. The capacitance and dielectric loss tangent were measured at a frequency of 1 kHz, at the room temperature. It was found that in the all investigated systems crystallize solid solutions Na 1-x Li x NbO 3 and LiNb 1-y Ta y O 3 in the glassy matrix, have crystal size on nanoscale (less than 100 nm), which is one of requirements to get a transparent glass ceramic that could be a good ferroelectric material regarding to the measured properties

  9. Excess Gibbs energy for six binary solid solutions of molecularly simple substances

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, L J; Staveley, L A.K.

    1985-01-01

    In this paper we apply the method developed in a previous study of Ar + CH/sub 4/ to the evaluation of the excess Gibbs energy G /SUP E.S/ for solid solutions of two molecularly simple components. The method depends on combining information on the excess Gibbs energy G /SUP E.L/ for the liquid mixture of the two components with a knowledge of the (T, x) solid-liquid phase diagram. Certain thermal properties o the pure substances are also needed. G /SUP E.S/ has been calculated for binary mixtures of Ar + Kr, Kr + CH/sub 4/, CO + N/sub 2/, Kr + Xe, Ar + N/sub 2/, and Ar + CO. In general, but not always, the solid mixtures are more non-ideal than the liquid mixtures of the same composition at the same temperature. Except for the Kr + CH/sub 4/ system, the ratio r = G /SUP E.S/ /G /SUP E.L/ is larger the richer the solution in the component with the smaller molecules.

  10. B-site substituted solid solutions on the base of sodium-bismuth titanate

    Directory of Open Access Journals (Sweden)

    V. M. Ishchuk

    2016-12-01

    Full Text Available The paper presents results of studies of the formation of phases during the solid-state synthesis in the [(Na0.5Bi0.50.80Ba0.20](Ti1–yByO3 system of solid solutions with B-site substitutions. The substitutions by zirconium, tin and ion complexes (In0.5Nb0.5 and (Fe0.5Nb0.5 have been studied. It has been found that the synthesis is a multi-step process associated with the formation of a number of intermediate phases (depending on the compositions and calcination temperatures. Single-phase solid solutions have been produced at the calcination temperatures in the interval 1000–1100∘C. An increase in the substituting ions concentration leads to a linear increase of the crystal cell size. At the same time, the tolerance factor gets reduced boosting the stability of the antiferroelectric phase as compared to that of the ferroelectric phase.

  11. Plasma Glow Discharge as a Tool for Surface Modification of Catalytic Solid Oxides: A Case Study of La0.6Sr0.4Co0.2Fe0.8O3−δ Perovskite

    Directory of Open Access Journals (Sweden)

    Yanxiang Zhang

    2016-09-01

    Full Text Available Performance of solid oxide fuel cells (SOFCs is hindered by the sluggish catalytic kinetics on the surfaces of cathode materials. It has recently been reported that improved electrochemical activity of perovskite oxides can be obtained with the cations or the oxides of some metallic elements at the surface. Here, we used a cost-effective plasma glow charge method as a generic tool to deposit nano-size metallic particles onto the surface of SOFC materials. Ni nano-scale patterns were successfully coated on the La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF surface. The microstructure could be well controlled. The kinetics of oxygen exchange on the modified LSCF surface was promoted significantly, confirmed by electrical conductivity relaxation (ECR measurement.

  12. Synthesis, characterization and thermal expansion studies on ThO2-SmO1.5 solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.

    2008-01-01

    Full text: A highly homogeneous Th 1-x Sm x O 2 ; 0 ≤ x ≤ 0.8 solid solutions were synthesized by co-precipitation technique and the co-precipitated samples were sintered at 1473 K. Compositions of the solid solutions were characterized by standard wet-chemical analysis. X-ray diffraction measurements were performed in the sintered pellets for structural analysis, lattice parameter calculation and determination of solid solubility of SmO 1.5 in ThO 2 matrix. Bulk and theoretical densities of solid solutions were also determined. A fluorite structure was observed for ThO 2 -SmO 1.5 solid solutions with 0-55.2 mol % SmO 1.5 . Their thermal expansion coefficients were measured using high temperature X-ray diffraction technique. The mean linear thermal expansivity, αm for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mole percent of SmO 1.5 were determined in the temperature range 298 to 2000 K for the first time. The mean linear thermal expansion coefficients for ThO 2 -SmO 1.5 solid solutions are 10.47x10 -6 K -1 , 11.16x10 -6 K -1 and 11.45x10 -6 K -1 , respectively. The percentage linear thermal expansion in this temperature range, for ThO 2 -SmO 1.5 solid solutions containing 17.9, 41.7 and 52.0 mol % SmO 1.5 are 1.82,1.94 and 1.99 respectively. It is suggested that the solid solutions are stable up to 2000 K. It is also suggested that the effect and nature of the dopant are the important parameters influenced in the thermal expansion of the ThO 2

  13. Low-temperature (75 °C) solid-state reaction enhanced by less-crystallized nanoporous PbI{sub 2} films for efficient CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huifeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Liu, Yangqiao, E-mail: yqliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Suzhou Institute of SICCAS (Shanghai Institute of Ceramics, Chinese Academy of Sciences), 238 North Changchun Road, Taicang 215499, Jiangsu Province (China); Sun, Jing, E-mail: jingsun@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2017-05-31

    Highlights: • Efficient perovskite solar cells were prepared with solid-state reaction at 75 °C. • Ln-PbI{sub 2} is superior to c-PbI{sub 2} when applied in low-temperature solid-state reaction. • A higher champion PCE was obtained at 75 °C (13.8%) than that of 140 °C (11.8%). • Non-radiative defects increase significantly when annealed at high temperature. - Abstract: Organohalide perovskite films are usually prepared with the solid-state reaction at a high temperature ≥100 °C, which causes the increase of non-radiative defects and decomposition of perovskite films. Here, we demonstrate it’s feasible to prepare high-quality perovskite films with the solid-state reaction method even at a temperature of 75 °C, when enhanced by less-crystallized nanoporous PbI{sub 2} (ln-PbI{sub 2}) films. The replacement of compact PbI{sub 2} (c-PbI{sub 2}) by ln-PbI{sub 2}, results in a significant improvement of crystallinity of perovskite films, besides the elimination of remnant PbI{sub 2}. As a result, ln-PbI{sub 2} based perovskite solar cells display much higher power conversion efficiency (PCE) and better stability. Moreover, annealing duration was found to be critical for high PCE and was optimized as 60 min. Finally, with the optimal process, the champion device displayed a PCE of 13.8% and the average PCE reached 10.1% with a satisfactory deviation. Furthermore, we found annealing at high temperature (140 °C) led to a lower PCE compared with that annealed at 75 °C, because non-radiative defects increased significantly during high-temperature annealing. This work may open up a promising avenue for preparing high-quality perovskite films with the low-temperature solid-state reaction method, which is desirable for real application.

  14. Conducting Layered Organic-inorganic Halides Containing -Oriented Perovskite Sheets.

    Science.gov (United States)

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m -oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  15. Dissolution of britholites and monazite / brabantite solid solutions doped with actinides; Etude de la dissolution de britholites et de solutions solides monazite / brabantite dopees avec des actinides

    Energy Technology Data Exchange (ETDEWEB)

    Du Fou De Kerdaniel, E

    2007-12-15

    In the field of the radwaste storage in underground repository, several matrices were considered as promising ceramics for the specific immobilization of actinides. Two of them, britholites and monazite/ brabantite solid solution, have been considered during this work. In order to examine the dissolution mechanisms occurring at the solid liquid interface, several leaching experiments have been conducted on (Ln{sup III}PO{sub 4} ), brabantite (Ca{sup II}An{sup IV}(PO{sub 4}){sub 2}: An = Th, U) and britholites (Ca{sub 9}Nd{sub 0.5}An{sub 0.5}{sup IV} (PO{sub 4}){sub 4.5}(SiO{sub 4}){sub 1.5}F{sub 2}: An = Th, U). Some steady experiments, performed in under saturation conditions for various pH and temperature conditions allowed to evaluate the long term behaviour of such matrices through their chemical durability. On the contrary, the thermodynamic equilibria were examined through the leaching experiments performed near the saturation conditions. By the way, various secondary phases, precipitated onto the surface of altered samples have been identified and characterized. Among them, the (Nd, Ca, Th) - rhabdophane, novelly prepared in over- saturation experiments for a thorium weight loading lower than 11 % appeared to be metastable. Indeed, it turns into TPHPH (Th{sub 2}(PO{sub 4}){sub 2}HPO{sub 4}.H{sub 2}O) and Nd - rhabdophane (NdPO{sub 4}.1/2H{sub 2}O) when increasing leaching time. (author)

  16. Perovskites synthesis to SOFC anodes

    International Nuclear Information System (INIS)

    Wendler, L.P.; Chinelatto, A.L.; Chinelatto, A.S.A.; Ramos, K.

    2012-01-01

    Perovskite structure materials containing lanthanum have been widely applied as solid oxide fuel cells (SOFCs) electrodes, due to its electrical properties. Was investigated the obtain of the perovskite structure LaCr 0,5 Ni 0,5 O 3 , by Pechini method, and its suitability as SOFC anode. The choice of this composition was based on the stability provided by chromium and the catalytic properties of nickel. After preparing the resins, the samples were calcined at 300 deg C, 600 deg C, 700 deg C and 850 deg C. The resulting powders were characterized by X-ray diffraction to determine the existing phases. Furthermore, were performed other analysis, like X-ray fluorescence, He pycnometry, specific surface area by BET isotherm and scanning electronic microscopy (author)

  17. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  18. An ordered metallic glass solid solution phase that grows from the melt like a crystal

    International Nuclear Information System (INIS)

    Chapman, Karena W.; Chupas, Peter J.; Long, Gabrielle G.; Bendersky, Leonid A.; Levine, Lyle E.; Mompiou, Frédéric; Stalick, Judith K.; Cahn, John W.

    2014-01-01

    We report structural studies of an Al–Fe–Si glassy solid that is a solid solution phase in the classical thermodynamic sense. We demonstrate that it is neither a frozen melt nor nanocrystalline. The glass has a well-defined solubility limit and rejects Al during formation from the melt. The pair distribution function of the glass reveals chemical ordering out to at least 12 Å that resembles the ordering within a stable crystalline intermetallic phase of neighboring composition. Under isothermal annealing at 305 °C the glass first rejects Al, then persists for approximately 1 h with no detectable change in structure, and finally is transformed by a first-order phase transition to a crystalline phase with a structure that is different from that within the glass. It is possible that this remarkable glass phase has a fully ordered atomic structure that nevertheless possesses no long-range translational symmetry and is isotropic

  19. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  20. Four Thermochromic o-Hydroxy Schiff Bases of α-Aminodiphenylmethane: Solution and Solid State Study

    Directory of Open Access Journals (Sweden)

    Marija Zbačnik

    2017-01-01

    Full Text Available More than a hundred years after the first studies of the photo- and thermochromism of o-hydroxy Schiff bases (imines, it is still an intriguing topic that fascinates several research groups around the world. The reasons for such behavior are still under investigation, and this work is a part of it. We report the solution-based and mechanochemical synthesis of four o-hydroxy imines derived from α-aminodiphenylmethane. The thermochromic properties were studied for the single crystal and polycrystalline samples of the imines. The supramolecular impact on the keto-enol tautomerism in the solid state was studied using SCXRD and NMR, while NMR spectroscopy was used for the solution state. All four imines are thermochromic, although the color changes of the single crystals are not as strong as of the polycrystalline samples. One of the imines shows negative thermochromism, and that one is in keto-amine tautomeric form, both in the solid state as in solution.

  1. Effect of ionizing radiation on solid and water solution Penicillin G

    International Nuclear Information System (INIS)

    Ben Salem, I.; Amine, Kh.M.; Mabrouk, Y.; Saidi, M.; Mezni, M; Boulila, N; Hafez, E

    2015-01-01

    Penicillin G is a conventional antibiotic used for treatment of different kinds of infectious diseases. Due to its huge quantity production and resistance to biodegradability, this molecule has been a serious concern for clinicians and environmentalists. In this study, the effect of ionizing radiation on the penicillin G powder and in water solution was investigated. The Nuclear Magnetic Resonance (NMR) and fourier transform infrared spectroscopy (FTIR) analysis showed that the ionizing radiation at 50 kGy has no effect on the integrity of solid Penicillin G. The anti-microbial assays revealed that the activity of irradiated solid Penicillin G did not reduce and was stable after storage for one month. Ionizing radiation at 50 kGy led to degradation of water solution Penicillin G. The complete disappear of peaks observed in the control sample confirmed the broken of β-lactam ring, the decarboxylation and cleavage of the thiazolidine ring. The product issued from the irradiation of Penicillin G, was completely removed by the bacterium Cupriavidus.metallidurans. Thus, the ionizing irradiation followed by a biological treatment was very effective method for removing of Penicillin G antibiotics residuals from water solution.

  2. Synthesis and properties of γ-Ga2O3-Al2O3 solid solutions

    Science.gov (United States)

    Afonasenko, T. N.; Leont'eva, N. N.; Talzi, V. P.; Smirnova, N. S.; Savel'eva, G. G.; Shilova, A. V.; Tsyrul'nikov, P. G.

    2017-10-01

    The textural and structural properties of mixed oxides Ga2O3-Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3-Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3-Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3-Al2O3.

  3. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  4. NaIrO3-A pentavalent post-perovskite

    International Nuclear Information System (INIS)

    Bremholm, M.; Dutton, S.E.; Stephens, P.W.; Cava, R.J.

    2011-01-01

    Sodium iridium (V) oxide, NaIrO 3, was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO 3 , the much-studied structural analog of the high-pressure post-perovskite phase of MgSiO 3 . Among the oxide post-perovskites, NaIrO 3 is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO 6 octahedra separated by layers of NaO 8 bicapped trigonal prisms. NaIrO 3 shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides. -- Graphical abstract: Sodium iridium(V) oxide, NaIrO 3 , synthesized by a high pressure solid state method and recovered to ambient conditions is found to crystallize as the post-perovskite structure and is the first example of a pentavalent ABO 3 post-perovskite. Research highlights: → NaIrO 3 post-perovskite stabilized by pressure. → First example of a pentavalent oxide post-perovskite. → Non-metallic and non-magnetic behavior of NaIrO 3 .

  5. The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites

    International Nuclear Information System (INIS)

    Cui, Yajuan; Fang, Ruimei; Shang, Hongyan; Shi, Zhonghua; Gong, Maochu; Chen, Yaoqiang

    2015-01-01

    Highlights: • The crystallite size of precipitate increases as the precipitation temperature rises. • The stack of large crystallite can form nanoparticles with big pore size. • Big pore sizes are advantageous to improve the thermal stability. • Phase segregation is restricted in CZ solid solution precipitated at 70 °C. • The reducibility and OSC of the solid solution precipitated at 70 °C are improved. - Abstract: The ceria–zirconia composites (CZ) with a Ce/Zr mass ratio of 1/1 were synthesized by a back-titration method, in which the influence of precipitation temperature on the properties of ceria–zirconia precipitates was investigated. The resulting precipitation and mixed oxides at different precipitation temperatures were then characterized by a range of techniques, including textural properties, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR) as well as oxygen storage capacity (OSC) measurement. The results revealed that ceria–zirconia composites were formed as solid solution and such structure is favored of thermostability and texture properties. In particular, the composite CZ-70 synthesized at 70 °C exhibited prominent thermostability with a surface area of 32 m 2 /g as well as a pore volume of 0.15 cc/g after aging treatment at 1000 °C for 5 h. And this was found to be associated with the wider pore size distribution which maybe owed to the formation of large crystal at the primary stage of precipitation. Additionally, the composite CZ-70 showed excellent reduction property and OSC benefiting from stable texture and structure

  6. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A [INSTM RU at the Department of Chemistry of the University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Mattei, G; Mazzoldi, P [Department of Physics, CNISM and University of Padova, via Marzolo 8, 35131 Padova (Italy); Paz, E; Palomares, F J [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Cavigli, L, E-mail: cesar.dejulian@unifi.it [Department of Physics-LENS, University of Florence, via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO{sub 2} matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  7. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    International Nuclear Information System (INIS)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A; Mattei, G; Mazzoldi, P; Paz, E; Palomares, F J; Cavigli, L

    2010-01-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO 2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  8. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Science.gov (United States)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  9. Atomic mean-square displacements and the critical-voltage effect in cubic solid solutions

    International Nuclear Information System (INIS)

    Shirley, C.G.; Fisher, R.M.

    1979-01-01

    The critical-voltage phenomena observed in high-voltage electron microscope images of bend contours as well as in corresponding Kikuchi or convergent-beam diffraction patterns provide sensitive methods of determining submicroscopic alloy parameters such as Debye temperatures, short-range order, and atomic scattering factors. Only a very limited number of critical voltages can be observed in metal crystals in the voltage range usually available, 100 to 1200 kV, so that quantitative interpretation of the data must be based on a few-parameter model which incorporates all the pertinent factors. A satisfactory two-parameter model has been developed which can be used to interpret or compute the critical voltages of substitutional solid solutions as functions of composition, temperature and short-range order. In the alloy systems Fe-Cr, Ni-Au, Cu-Au and Cu-Al, sufficient critical voltage data are available to derive the model parameters which pertain to atomic bonding in the lattice. In addition to atomic scattering amplitudes, the critical voltage depends strongly on the atomic mean-square displacements. The static contribution to the mean-square displacements is large in alloys with large atomic-radius disparity, and is especially sensitive to short-range order in f.c.c. solid solutions. Well-defined best estimates for the model parameters are used to predict the critical voltage and its sensitivity to composition, temperature and short-range order for a large number of solid solutions. Systems for which critical-voltage studies may be of considerable interest are indicated. (author)

  10. Method for single crystal growth of photovoltaic perovskite material and devices

    Science.gov (United States)

    Huang, Jinsong; Dong, Qingfeng

    2017-11-07

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  11. Calculations of oscillation spectra of disordered interstitial solid solutions of vanadium-oxygen system

    International Nuclear Information System (INIS)

    Danilkin, S.A.

    1978-01-01

    The frequency spectra calculation of disordered solid interstitial solutions of a vanadium-oxygen system for oxygen concentration of 5.9% and 15.8% (V 16 O and V 16 O 3 ) is carried out. The axially-symmetric model of crystal lattice dinamics with consideration of vanadium-oxygen and vanadium-vanadium interactions up to the second coordination sphere is used. On the whole, the obtained spectra are in qualitative agreement with experiment and reflect correctly all the changes in frequency spectra of pure vanadium on doping with oxygen

  12. The role of solid-solution strengthening in the development of alloys for HTR applications

    International Nuclear Information System (INIS)

    Dean, A.V.

    1978-09-01

    In this paper the fundamental factors (lattice distortion, stacking fault energy and diffusion rates) which contribute to solid-solution strengthening are examined and used as a basis for indicating the composition of alloys likely to posses the highest strength at elevated temperatures. Alloys based on Ni-Cr-W-Mo should possess the best properties but alloys based on Ni-Cr-Nb-Ti are also recommended for further study. The effect of alloy composition on corrosion resistance has been excluded from this examination but it should be possible to adjust alloy composition in order to optimise corrosion resistance. (orig./IHOE) [de

  13. Growth of binary solid solution single crystals and calculation of melt surface displacement velocity

    International Nuclear Information System (INIS)

    Agamaliyev, Z.A.; Tahirov, V.I.; Hasanov, Z.Y.; Quliyev, A.F.

    2007-01-01

    A binary solid solution single crystal growth method has been worked out. Cylinder feeding alloy with complex content distribution and truncated cone crucible are used. Second component distribution coefficient is more than unit. Content distribution along grown crystal is found by solving continuity equation. After reaching dynamic equilibrium state second component concentration in grown crystal is saturated the value of which is less than the average ona in the feeding alloy. Using the method Ge-Si perfect single crystals has been grown. Calculation method of melt surface displacement velocity has been offered as well

  14. Formation of solid solutions on the boundary of zinc oxidezinc telluride heterojunction

    International Nuclear Information System (INIS)

    Tsurkan, A.E.; Buzhor, L.V.

    1987-01-01

    Distribution of ZnO x Te 1-x alloy composition on the interface of zinc oxide-zinc telluride heterojunction depending on the production conditions is investigated. A regularity in the formation of an extended area with constant alloy composition is detected. The regularity is explained by the fact that electric Peltier field conditioned by contact of two heterogeneous semiconductors participates in the solid solution formation process. Peltier field levels off the composition at the end length section. So, a possibility of creating a section with the assigned minor thickness alloy constant composition controlled in the interface of heterojunction occurs

  15. A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.

    Science.gov (United States)

    Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin

    2018-02-14

    Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.

  16. The X-ray electronic spectra of TiC-NbC solid solution

    International Nuclear Information System (INIS)

    Cherkashenko, V.M.; Ezhov, A.V.; Nazarova, S.Z.; Kurmaev, Eh.Z.; Nojmann, M.

    2001-01-01

    X-ray photoelectronic spectra of inner levels and valency lands in TiC-NbC solid solutions were studied. Results of combining TiL α -, NbL β2.15 -, CK α - X-ray emission spectra and photoelectronic spectra of valency bands in one energy scale in reference to the Fermi level were analyzed. It is shown that a change in crystal lattice parameters, as well as charge redistribution between titanium and niobium atoms, produce a strong effect on electronic structure formation in the mixed carbides mentioned [ru

  17. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    DEFF Research Database (Denmark)

    Bialy, Agata; Jensen, Peter Bjerre; Blanchard, Didier

    2015-01-01

    with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained...... with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides...

  18. Local structure in the disordered solid solution of cis- and trans-perinones

    DEFF Research Database (Denmark)

    Teteruk, Jaroslav L.; Glinnemann, Juergen; Heyse, Winfried

    2016-01-01

    preferred local arrangements, ordering lengths, and probabilities for the arrangement of neighbouring molecules. The superposition of the atomic positions of all energetically favourable calculated models corresponds well with the experimentally determined crystal structures, explaining not only the atomic....... The crystal structure of the solid solution was determined by single-crystal X-ray analysis. Extensive lattice-energy minimizations with force-field and DFT-D methods were carried out on combinatorially complete sets of ordered models. For the disordered systems, local structures were calculated, including...

  19. Photoluminescence study in solid solutions of CdMgMnTe semimagnetic semiconductors

    International Nuclear Information System (INIS)

    Kusraev, Yu.G.; Averkieva, G.K.

    1993-01-01

    Luminescence and resonant Raman scattering in quaternary solid solutions of CdMgMnTe semimagnetic semiconductors are investigated. It is shown that the intensity and position of the luminescence band, conditioned by the 4 T 1 --> 6 A 1 optical transitions in the Mn d-shell, depend on the local crystal environment. Temperature variations of the photoluminescence spectra are interpreted on the base of a model of electron excitation energy transport from Mn 2+ to different recombination centers. In the resonant Raman scattering spectrum were observed three longitudinal vibrational modes with energies near to phonon energies of corresponding binary compounds

  20. Study of valence of cerium and praseodymium ions in Pr1-xCexO2 solid solutions

    International Nuclear Information System (INIS)

    Gartsman, K.G.; Kartenko, N.F.; Melekh, B.T.

    1990-01-01

    Effect of preparation conditions of Pr 1-x Ce x O 2 solid solutions on Ce and Pr ion valence within Pr 1-x Ce x O 2 system is studied. The data obtained enable to conclude that praseodymium may depending on annealing conditions change its state from Pr 3+ to Pr 4+ , while Ce 4+ is stable in Pr 1-x Ce x O 2 solid solutions

  1. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  2. Microstructural and microchemical studies of phase stability in V-O solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Chanchal, E-mail: chanchal@igcar.gov.in [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India); Singh, Akash [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India); Basu, Joysurya [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India); Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh (India); Ramachandran, Divakar; Mohandas, E [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam 603102, Tamil Nadu (India)

    2017-02-15

    Over the last couple of decades vanadium and V-based alloys have received significant attention as a potential structural material for fusion power applications because of their favourable mechanical properties under irradiation and at elevated temperatures. They are also considered as the advanced options of storage materials for hydrogen and its isotopes. However, the higher affinity of V for O, C and N poses critical challenges in its engineering applications since they lead to degradation of mechanical properties. They can further interact with the matrix to produce metallic oxy-carbo-nitride precipitates. To a certain limit, these precipitates are beneficial and can be exploited to enhance the mechanical behaviour of the alloy through suitable microstructural design. However, this requires a prior knowledge of the interaction between the alloy and the impurity solutes. In the present work vanadium specific experiments have been designed and carried out to bring out the V-interstitial solute interaction by charging oxygen in the near surface region of vanadium. Microstructural and microchemical behaviour of the V-O solid solution has been studied through HRTEM (high resolution transmission electron microscopy) and HAADF (high angle annular dark field) coupled with EELS. Quantitative electron microscopy has been carried out to study structural modification of the alloy in atomic level caused by O charging. - Highlights: •Controlled experiments were carried out in pulsed laser ablation set-up to promote V-O interaction. • As a consequence of O dissolution, V transformed into a bct structure which is otherwise a bcc structure. •In V-O solid solution, dissolved O in the V matrix introduces significant amount of lattice strain. • Present work can be extended for introducing interstitial O in other pure transition metals and their alloys.

  3. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    KAUST Repository

    Moore, David T.

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt\\'s anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films. © 2014 Author(s).

  4. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    David T. Moore

    2014-08-01

    Full Text Available The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  5. Disappearance of superconductivity in the solid solution between (Ca4Al2O6)(Fe2As2) and (Ca4Al2O6)(Fe2P2) superconductors.

    Science.gov (United States)

    Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira

    2012-09-19

    The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.

  6. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang

    2018-01-01

    Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.

  7. Complexon Solutions in Freon for Decontamination of Solids and SNF Treatment

    International Nuclear Information System (INIS)

    Kamachev, V.; Shadrin, A.; Murzin, A.

    2008-01-01

    Full text of publication follows: The possibility of using complexon solutions in supercritical and compressed carbon dioxide for decontamination of solid surfaces and for spent nuclear fuel (SNF) treatment was demonstrated in the works of Japanese, Russian and American researchers. The obtained data showed that the use of complexon solutions in carbon dioxide sharply decreases the volume of secondary radioactive wastes because it can be easily evaporated, purified and recycled. Moreover, high penetrability of carbon dioxide allows decontamination of surfaces with complex shape. However, one of the disadvantages of carbon dioxide is its high working pressure (10-20 MPa for supercritical CO 2 and 7 MPa for compressed CO 2 ). Moreover, in case of SNF treatment, carbon dioxide solvent will be contaminated with 14 C, which in the course of SNF dissolution in CO 2 containing TBP*HNO 3 adduct stage will be oxidized into CO 2 . These main disadvantages can be eliminated by using complexon solutions in ozone-friendly Freon HFC-134a for decontamination and SNF treatment. Our experimental data for real contaminated materials showed that the decontamination factor for complexon solutions in liquid Freon HFC-134a at 1,2 MPa and 25 deg. C is close to that attained in carbon dioxide. Moreover, the possibility of SNF treatment in Freon HFC-134a was demonstrated in trials using real SNF and its imitators. (authors)

  8. Lattice parameters and electrical resistivity of Ceria-Yttria solid solutions

    International Nuclear Information System (INIS)

    Rey, Jose Fernando Queiruga

    2002-01-01

    Ce0 2 :u mol% Y 2 O 3 (u=0, 4, 6, 8, 10 and 12) solid solutions were prepared by the conventional powder mixture technique. The main purposes of this work are: the study of the dependence of the lattice parameter of the Ceria cubic phase on the Yttria content, comparing the experimental data with data calculated according to the existing theoretical models; to determine the dependence of the ionic conductivity on the Yttria content; and to study the stability of the cubic fluorite phase after extensive thermal treatments (aging) of the Ceria-Yttria specimens. The results show that the lattice parameter of the solid solutions follows the Vegard's law and can be described by the two reported theoretical models. The 8 mol% Yttria-doped Ceria was found to present the largest value of ionic conductivity. Preliminary results show that a large decrease is found for only 1 h aging at 700 deg C and that the ionic conductivity decreases for ceramic specimens aged for times up to 10 h. (author)

  9. Combined solid state and solution NMR studies of α,ε-15N labeled bovine rhodopsin

    International Nuclear Information System (INIS)

    Werner, Karla; Lehner, Ines; Dhiman, Harpreet Kaur; Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald; Klein-Seetharaman, Judith; Khorana, H. Gobind

    2007-01-01

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of α,ε- 15 N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state 13 C, 15 N-REDOR and HETCOR experiments of all possible 13 C' i-1 carbonyl/ 15 N i -tryptophan isotope labeled amide pairs, and H/D exchange 1 H, 15 N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone 15 N nuclei and partially to their bound protons. 1 H, 15 N chemical shift assignment was achieved for indole side chains of Trp35 1.30 and Trp175 4.65 . 15 N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175 4.65 at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin

  10. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R.; Chen, Long-Qing (Penn); (Xian Jiaotong); (CIW); (Simon); (TRS Techn); (Wollongong)

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  11. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.

    Science.gov (United States)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R; Chen, Long-Qing

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50-80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  12. Local structural relaxation around Co2+ along the hardystonite-Co-åkermanite melilite solid solution

    Science.gov (United States)

    Ardit, Matteo; Cruciani, Giuseppe; Dondi, Michele

    2012-10-01

    Six pure compounds belonging to the hardystonite (Ca2ZnSi2O7)-Co-åkermanite (Ca2CoSi2O7) solid solution were investigated by the combined application of X-ray powder diffraction and electronic absorption spectroscopy. Structural refinements of the XRPD data revealed a negative excess volume of mixing due to the single isovalent substitution of Co for Zn in the tetrahedral site. In agreement with the diffraction data, deconvolution of the optical spectra showed a progressive decreasing of the crystal field strength parameter 10 Dq moving toward the Co-åkermanite end-member, meaning that the local cobalt-oxygen bond distance, Co}}{-}{{O}}rangle^{{local}} , increased along the join with the amount of cobalt. The calculated structural relaxation coefficient around the fourfold coordinated Co2+ in the Ca2(Zn1- x Co x )Si2O7 join was ɛ = 0.69, very far from the one predicted by the Vegard's law ( ɛ = 0) and at variance with ɛ = 0.47 previously found for tetrahedrally coordinated Co2+ in gahnite-Co-aluminate spinel solid solution. This difference is consistent with the largest constraints existing on the spinel structure, based on cubic closest packing, compared to the more flexible layered melilite structure.

  13. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszkiewicz, Marek, E-mail: mpietraszkiewicz@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Dutkiewicz, Grzegorz; Borowiak, Teresa [Adam Mickiewicz University, Faculty of Chemistry, Department of Crystallography, Grunwaldzka 6, 60-780 Poznań (Poland); Kaczmarek, Anna M. [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium); Van Deun, Rik, E-mail: rik.vandeun@ugent.be [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium)

    2016-02-15

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu{sup 3+} to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip){sub 3}. The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  14. Multiple Multidentate Halogen Bonding in Solution, in the Solid State, and in the (Calculated) Gas Phase.

    Science.gov (United States)

    Jungbauer, Stefan H; Schindler, Severin; Herdtweck, Eberhardt; Keller, Sandro; Huber, Stefan M

    2015-09-21

    The binding properties of neutral halogen-bond donors (XB donors) bearing two multidentate Lewis acidic motifs toward halides were investigated. Employing polyfluorinated and polyiodinated terphenyl and quaterphenyl derivatives as anion receptors, we obtained X-ray crystallographic data of the adducts of three structurally related XB donors with tetraalkylammonium chloride, bromide, and iodide. The stability of these XB complexes in solution was determined by isothermal titration calorimetry (ITC), and the results were compared to X-ray analyses as well as to calculated binding patterns in the gas phase. Density functional theory (DFT) calculations on the gas-phase complexes indicated that the experimentally observed distortion of the XB donors during multiple multidentate binding can be reproduced in 1:1 complexes with halides, whereas adducts with two halides show a symmetric binding pattern in the gas phase that is markedly different from the solid state structures. Overall, this study demonstrates the limitations in the transferability of binding data between solid state, solution, and gas phase in the study of complex multidentate XB donors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California

    Science.gov (United States)

    Alpers, Charles N.; Nordstrom, D. Kirk; Ball, J.W.

    1989-01-01

    Because of the common occurrence of 15 to 25 mole percent hydronium substitution on the alkali site in jarosites, it is necessary to consider the hydronium content of jarosites in any attempt at rigorous evaluation of jarosite solubility or of the saturation state of natural waters with respect to jarosite. A Gibbs free energy of 3293.5±2.1 kJ mol-1 is recommended for a jarosite solid solution of composition K.77Na.03(H3O).20Fe3(SO4)2(OH)6. Solubility determinations for a wider range of natural and synthetic jarosite solid solutions will be necessary to quantify the binary and ternary mixing parameters in the (K-Na-H3O) system. In the absence of such studies, molar volume data for endmember minerals indicate that the K-H3O substitution in jarosite is probably closer to ideal mixing than either the Na-K or Na-H3O substitution.

  16. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    International Nuclear Information System (INIS)

    Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina; Dutkiewicz, Grzegorz; Borowiak, Teresa; Kaczmarek, Anna M.; Van Deun, Rik

    2016-01-01

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu 3+ to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip) 3 . The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  17. Perovskite Nanocrystals as a Color Converter for Visible Light Communication

    KAUST Repository

    Dursun, Ibrahim; Shen, Chao; Parida, Manas R.; Pan, Jun; Sarmah, Smritakshi P.; Priante, Davide; AlYami, Noktan; Liu, Jiakai; Saidaminov, Makhsud I.; Alias, Mohd Sharizal; Abdelhady, Ahmed L.; Ng, Tien Khee; Mohammed, Omar F.; Ooi, Boon S.; Bakr, Osman

    2016-01-01

    Visible light communication (VLC) is an emerging technology that uses light-emitting diodes (LEDs) or laser diodes for simultaneous illumination and data communication. This technology is envisioned to be a major part of the solution to the current bottlenecks in data and wireless communication. However, the conventional lighting phosphors that are typically integrated with LEDs have limited modulation bandwidth and thus cannot provide the bandwidth required to realize the potential of VLC. In this work, we present a promising light converter for VLC by designing solution-processed CsPbBr3 perovskite nanocrystals (NCs) with a conventional red phosphor. The fabricated CsPbBr3 NCs phosphor-based white light converter exhibits an unprecedented modulation bandwidth of 491 MHz, which is ~ 40 times greater than that of conventional phosphors, and the capability to transmit a high data rate of up to 2 Gbit/s. Moreover, this perovskite enhanced white light source combines ultrafast response characteristics with a high color rendering index of 89 and a low correlated color temperature of 3236 K, thereby enabling dual VLC and solid-state lighting functionalities.

  18. Perovskite Nanocrystals as a Color Converter for Visible Light Communication

    KAUST Repository

    Dursun, Ibrahim

    2016-05-31

    Visible light communication (VLC) is an emerging technology that uses light-emitting diodes (LEDs) or laser diodes for simultaneous illumination and data communication. This technology is envisioned to be a major part of the solution to the current bottlenecks in data and wireless communication. However, the conventional lighting phosphors that are typically integrated with LEDs have limited modulation bandwidth and thus cannot provide the bandwidth required to realize the potential of VLC. In this work, we present a promising light converter for VLC by designing solution-processed CsPbBr3 perovskite nanocrystals (NCs) with a conventional red phosphor. The fabricated CsPbBr3 NCs phosphor-based white light converter exhibits an unprecedented modulation bandwidth of 491 MHz, which is ~ 40 times greater than that of conventional phosphors, and the capability to transmit a high data rate of up to 2 Gbit/s. Moreover, this perovskite enhanced white light source combines ultrafast response characteristics with a high color rendering index of 89 and a low correlated color temperature of 3236 K, thereby enabling dual VLC and solid-state lighting functionalities.

  19. All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Md. Samiul Islam, E-mail: samiul-phy@ru.ac.bd; Nakamura, Takahiro; Sato, Shunichi [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (Japan)

    2015-06-15

    Formation of Rh–Pd–Pt solid-solution alloy nanoparticles (NPs) by femtosecond laser irradiation of aqueous solution in the presence of polyvinylpyrrolidone (PVP) or citrate as a stabilizer was studied. It was found that the addition of surfactant (PVP or citrate) significantly contributed to reduce the mean size of the particles to 3 nm for PVP and 10 nm for citrate, which was much smaller than that of the particles fabricated without any surfactants (20 nm), and improved the dispersion state as well as the colloidal stability. The solid-solution formation of the Rh–Pd–Pt alloy NPs was confirmed by the XRD results that the diffraction pattern was a single peak, which was found between the positions corresponding to each pure Rh, Pd, and Pt NPs. Moreover, all the elements were homogeneously distributed in every particle by STEM-EDS elemental mapping, strongly indicating the formation of homogeneous solid-solution alloy. Although the Rh–Pd–Pt alloy NPs fabricated with PVP was found to be Pt rich by EDS observation, the composition of NPs fabricated with citrate almost exactly preserved the feeding ratio of ions in the mixed solution. To our best knowledge, these results demonstrated for the first time, the formation of all-proportional solid-solution Rh–Pd–Pt alloy NPs with well size control.

  20. 3He release characteristics of metal tritides and scandium--tritium solid solutions

    International Nuclear Information System (INIS)

    Perkins, W.G.; Kass, W.J.; Beavis, L.C.

    1976-01-01

    Tritides of such metals as Sc, Ti, and Er are useful materials for determining the effects of He accumulation in metallic solids, for example, CTR first wall materials. Such effects include lattice strain and gross deformation which are related to 3 He retention and ultimate release. Long term gas release studies have indicated that, during the early life of a metal ditritide, a large fraction of the 3 He is retained in the solid. At more advanced ages, the 3 He release rate becomes comparable to the generation rate. Statistical analysis of the data indicates that the acceleration in 3 He release rate depends on accumulated 3 He concentration rather than strictly on age. 3 He outgassing results are presented for thin films of ScT 2 , TiT 2 , and ErT 2 , and the critical 3 He concentrations are discussed in terms of a percolation model. Phase transformations which occur on tritide formation cast some doubt on the validity of extrapolating results obtained for metal tritides to predictions regarding the accumulation of helium in metals. Sc is unique among the early transition and rare-earth metals in that the metal exhibits a very high room temperature T solubility (T/Sc = 0.4) with no phase transformation. Indeed, even the lattice parameters of the hcp Sc lattice are only minimally changed by T solution. Single crystal ScT/sub 0.3/ samples in two crystallographic orientations were obtained. Using a very sensitive technique, 3 He emission was measured from both these samples, as well as from fine-grained thin film Sc--T solid solution samples (ScT/sub 0.3-0.4/). The fine-grained film samples release 3 He at 2-3 percent of the generation rate, while the emission rate from the single-crystal samples is approximately 0.05 percent of the generation rate, indicating a strong grain size effect

  1. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    Benbow, Steven; Watson, Claire; Savage, David

    2005-11-01

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  2. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  3. Impact of Ultrathin C60 on Perovskite Photovoltaic Devices.

    Science.gov (United States)

    Liu, Dianyi; Wang, Qiong; Traverse, Christopher J; Yang, Chenchen; Young, Margaret; Kuttipillai, Padmanaban S; Lunt, Sophia Y; Hamann, Thomas W; Lunt, Richard R

    2018-01-23

    Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C 60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C 60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.

  4. Structures and Phase Transitions in Ordered Double Perovskites

    International Nuclear Information System (INIS)

    Kennedy, Brendan; Zhou, Qingdi; Cheah, Melina

    2005-01-01

    Full text: The basic perovskite structure is ubiquitous in the study of metal oxides, yet very few oxides actually adopt the archetypal cubic structure. The perovskite structure is based on corner sharing octahedra and in most cases cooperative rotations of successive octahedra lower the symmetry of the perovskite structure. Solid State Chemists have been fascinated by these distortions for many years, not only for their intrinsic interest but also to understand how these distortions control the electronic and magnetic properties of perovskite oxides. In this presentation we will describe the use of high-resolution powder diffraction methods to unravel the temperature and composition dependence of the structures in two series of double perovskites, Sr 1-x A x NiWO 6 (A = Ba, Ca) where there is essentially complete ordering of Ni and W cations and in Sr 1-x Ca x CrNbO 6 where there is extensive disorder of the Cr and Nb cations. (authors)

  5. Layered perovskite PrBa0.5Sr0.5CoCuO5+δ as a cathode for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Wang, Biao; Long, Guohui; Ji, Yuan; Pang, Mingjun; Meng, Xiangwei

    2014-01-01

    Highlights: • A single-phase layered-perovskite PrBa 0.5 Sr 0.5 CoCuO 5+δ (PBSCCu) is prepared by the EDTA–citrate complexing method. • PBSCCu cathode has a good chemical compatible with GDC electrolyte. • Partial substitution of Cu for Co can efficiently lower the thermal expansion coefficient. • Performances of PrBa 0.5 Sr 0.5 CoCuO 5+δ cathode based on Gd 0.1 Ce 0.9 O 1.95 electrolyte is reported firstly. - Abstract: Layered perovskite PrBa 0.5 Sr 0.5 CoCuO 5+δ (PBSCCo) oxide is synthesized by EDTA–citrate complexing method and investigated as a novel cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). X-ray diffraction results show that PBSCCo is chemical compatible with Gd 0.1 Ce 0.9 O 1.95 (GDC) electrolyte below 950 °C. The thermal expansion coefficient of PBSCCo is 17.58 × 10 −6 K −1 between 30 °C and 900 °C. The maximum electrical conductivity of PBSCCo is 483 S cm −1 at 325 °C. The polarization resistance of PBSCCo cathode on GDC electrolyte is as low as 0.06 Ω cm 2 at 800 °C. The maximum power density of the electrolyte-supported single cell with PBSCCo cathode achieves 521 mW cm −2 at 800 °C. Preliminary results indicate that PBSCCo is a potential cathode material for application in IT-SOFCs

  6. Effect of Internal Pressure and Temperature on Phase Transitions in Perovskite Oxides: The Case of the Solid Oxide Fuel Cell Cathode Materials of the La2-xSrxCoTiO6 Series.

    Science.gov (United States)

    Gómez-Pérez, Alejandro; Hoelzel, Markus; Muñoz-Noval, Álvaro; García-Alvarado, Flaviano; Amador, Ulises

    2016-12-19

    The symmetry of the room-temperature (RT) structure of title compounds La 2-x Sr x CoTiO 6-δ changes with x, from P2 1 /n (0 ≤ x ≤ 0.2) to Pnma (0.3 ≤ x ≤ 0.5) and to R3̅c (0.6 ≤ x ≤ 1). For x = 1 the three pseudocubic cell parameters become very close suggesting a transition to a cubic structure for higher Sr contents. Similar phase transitions were expected to occur on heating, paralleling the effect of internal pressure induced by substitution of La 3+ by Sr 2+ . However, only some of these aforementioned transitions have been thermally induced. The symmetry-adapted modes formalism is used in the structural refinements and fitting of neutron diffraction data recorded from RT to 1273 K. Thus, for x = 1, the out-of-phase tilting of the BO 6 octahedra vanishes progressively on heating, and a cubic structure with Pm3̅m symmetry is found at 1073 K. For lower Sr contents this transition is predicted to occur far above the temperature limit of common experimental setups. The analysis of the evolution of the perovskite tolerance factor, t-factor, with both Sr content and temperature indicates that temperature has a limited ability to release structural stress and thus to enable transitions to more symmetric phases. This is particularly true when compared to the effect of internal pressure induced by substitution of La by Sr. The existence of phase transitions in materials for solid oxide fuel cells that are usually exposed to heating-cooling cycles may have a detrimental effect. This work suggests strategies to stabilize the high-symmetry high-temperature phase of perovskite oxides through internal-pressure chemically induced.

  7. MANAGEMENT OF SOLID WASTE GENERATED BY THE INTEGRATED STEELWORKS ACTIVITY AND SOLUTIONS TO REDUCE THE ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Anişoara CIOCAN

    2010-05-01

    Full Text Available The development of steel industry is subject to solve major problems arising from industry-nature relationship, strictly targeted on pollution control and protection of natural resources and energy. In this paper we discussed about the management of solid waste generated by an integrated steelwork located near a major urban area and the adopted solutions for the reduction of environmental impact. There are summarized technical solutions that are currently applied and were proposed some solutions that can be applied in accordance with the environmental legislations. The new solutions are proposed for integrated management of solid wastes in accordance with: the exact quantification (quantitative, qualitative and the generation sources of emissions and solid wastes; controlled storage; minimization of the wastes and its harmfulness; transformation of the wastes into valuable by-products used directly by the company in a subsequent process, or by external down-stream user.

  8. Iron site occupancies in magnetite-ulvospinel solid solution: A new approach using XMCD

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, C. I.; Henderson, C. M. B.; Telling, N. D.; Pattrick, R. A.D.; Vaughan, D. J.; Charnock, J. M.; Arenholz, E.; Tuna, F.; Coker, V.S.; Laan, G. van der

    2009-06-22

    Ordering of Fe{sup 3+} and Fe{sup 2+} between octahedral (Oh) and tetrahedral (Td) sites in synthetic members of the magnetite (Fe{sub 3}O{sub 4}) - ulvoespinel (Fe{sub 2}TiO{sub 4}) solid-solution series was determined using Fe L{sub 2,3}-edge X-ray magnetic circular dichroism (XMCD) coupled with electron microprobe and chemical analysis, Ti L-edge spectroscopy, Fe K-edge EXAFS and XANES, Fe{sub 57} Moessbauer spectroscopy, and unit cell parameters. Microprobe analysis, cell edges and chemical FeO determinations showed that the bulk compositions of the samples were stoichiometric magnetite-ulvoespinel solid-solutions. Surface sensitive XMCD showed that the surfaces of these oxide minerals were more sensitive to redox conditions and some samples required re-equilibration with suitable solid-solid buffers. Detailed site-occupancy analysis of these samples gave XMCD-Fe{sup 2+}/Fe{sup 3+} ratios very close to stoichiometric values. L{sub 2,3}-edge spectroscopy showed that Ti{sup 4+} was restricted to Oh sites. XMCD results showed that significant Fe{sup 2+} only entered Td when the Ti content was > 0.40 apfu while Fe{sup 2+} in Oh increased from 1 a.p.f.u in magnetite to a maximum of {approx}1.4 apfu in USP45. As the Ti content increased from this point, the steady increase in Fe{sup 2+} in Td sites was clearly observable in the XMCD spectra, concurrent with a slow decrease in Fe{sup 2+} in Oh sites. Calculated magnetic moments showed a steady decrease from magnetite (4.06 {mu}{sub B}) to USP45 (1.5 {mu}{sub B}) and then a slower decrease towards the value for ulvoespinel (0 {mu}{sub B}). Two of the synthesized samples were also partially maghemitized by re-equilibrating with an oxidizing Ni-NiO buffer and XMCD showed that Fe{sup 2+} oxidation only occurred at Oh sites, with concomitant vacancy formation restricted to this site. This study shows the advantage of using XMCD as a direct measurement of Fe oxidation state in these complex magnetic spinels. These results

  9. Research and demonstration results for a new "Double-Solution" technology for municipal solid waste treatment.

    Science.gov (United States)

    Erping, Li; Haoyun, Chen; Yanyang, Shang; Jun, Pan; Qing, Hu

    2017-11-01

    In this paper, the pyrolysis characteristics of six typical components in municipal solid waste (MSW) were investigated through a TG-FTIR combined technique and it was concluded that the main pyrolysis process of the biomass components (including food residues, sawdust and paper) occurred at 150-600°C. The main volatiles were multi-component gas including H 2 O, CO 2 , and CO. The main pyrolysis temperatures of three artificial products (PP, PVC and leather) was ranged from 200to 500°C. The wavelength of small molecule gases (CH 4 , CO 2 and CO) and the the chemical bonds (CO and CC) were observed in the infrared spectrum Based on the pyrolysis temperature interval and volatile constituent, a new "double-solution" process of pyrolysis and oxygen-enrichment decomposition MSW was designed. To achieve this process, a double-solution project was built for the direct treatment of MSW (10t/d). The complete setup of equipment and analysis of the byproducts has been reported in this paper to indicate the performance of this process. Energy balance and economic benefits were analysed for the process supporting. It was successfully demonstrated that the double-solution process was the environmentally friendly alternative method for MSW treatment in Chinese rural areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Theoretical multi-physics approaches to solid-solution strengthening of Al

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Duancheng; Friak, Martin; Raabe, Dierk; Neugebauer, Joerg [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2009-07-01

    The strengthening of soft metallic materials has a long tradition and is an important metallurgical topic since the time when ancient smiths forged the first swords. Intense materials research revealed a combination of three mechanisms as decisive for solid-solution strengthening phenomena: (i) the size mismatch of components (Mott and Nabarro's parelastic concept), (ii) the elastic modulus mismatch of atoms (Fleischer's dielastic contribution), and (iii) the concentration of solutes (statistical concept of Friedel and Labusch). Combining density functional theory calculations and linear-elasticity theory, the key parameters that are essential for the classical strengthening theories are determined in order to test them and identify their possible validity limits. The strengthening of fcc aluminium is chosen as an example and a series of binary systems Al-X (with X=Ca,Sr,Ir,Li,Mg,Cu) was considered. Comparing our results with those obtained by applying classical theories we find clear deviations. These deviations originate from non-classical lattice distortions due to the size mismatch of solute atoms in their first coordination shells.

  11. Crystal structure and lithium ion conductivity of A-site deficient perovskites La1/3-xLi3xTaO3

    International Nuclear Information System (INIS)

    Mizumoto, Katsuyoshi; Hayashi, Shinsuke

    1997-01-01

    The crystal structure and lithium ion conductivity of La 1/3-x Li 3x TaO 3 solid solutions with the A-site deficient perovskite structure have been studied. Single phase solid solutions were obtained in the range of x=0 to 1/6. Change from tetragonal to cubic structure and decrease in the lattice volume were observed with increasing the x value. The maximum conductivity obtained was 7 x 10 -3 S·m -1 at x=0.06. The composition-dependence on the carrier concentration was calculated and compared with conductivity data. (author)

  12. Impact of Interfacial Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Cho, An-Na; Park, Nam-Gyu

    2017-10-09

    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hybrid Perovskite Thin Film Formation: From Lab Scale Spin Coating to Large Area Blade Coating

    KAUST Repository

    Munir, Rahim

    2017-11-22

    Our reliance on semiconductors is on the rise with the ever growing use of electronics in our daily life. Organic-inorganic hybrid lead halide perovskites have emerged as a prime alternative to current standard and expensive semiconductors because of its use of abundant elements and the ease of solution processing. This thesis has shed light on the ink-to-solid conversion during the one-step solution process of hybrid perovskite formulations from DMF. We utilize a suite of in situ diagnostic probes including high speed optical microscopy, optical reflectance and absorbance, and grazing incidence wide angle x-ray scattering (GIWAXS), all performed during spin coating, to monitor the solution thinning behavior, changes in optical absorbance, and nucleation and growth of crystalline phases of the precursor and perovskite. The starting formulation experiences solvent-solute interactions within seconds of casting, leading to the formation of a wet gel with nanoscale features visible by in situ GIWAXS. The wet gel subsequently gives way to the formation of ordered precursor solvates (equimolar iodide and chloride solutions) or disordered precursor solvates (equimolar bromide or 3:1 chloride), depending upon the halide and MAI content. The ordered precursor solute phases are stable and retain the solvent for long durations, resulting in consistent conversion behavior to the perovskite phase and solar-cell performance. In this thesis, we develop a firm understanding of the solvent engineering process in which an anti-solvent is used during the coating process through the solvent mixture of GBL and DMSO in different ratios. It has been shown that solvent engineering produce pin hole-free films, justifying its wide adoption across the field. We then translate our learnings from the lab scale spin coating process to the industrial friendly blade coating process. Here we compare the ink solidification and film formation mechanisms of CH3NH3PbI3 in solutions we used to

  14. High strength Ni based composite reinforced by solid solution W(Al) obtained by powder metallurgy

    International Nuclear Information System (INIS)

    Zhao Bo; Zhu Changjun; Ma Xianfeng; Zhao Wei; Tang Huaguo; Cai Shuguang; Qiao Zhuhui

    2007-01-01

    The solid-solution-particle reinforced W(Al)-Ni composites were successfully fabricated by using mechanical alloying (MA) and hot-pressing (HP) technique when the content of Ni is between 45 wt% and 55 wt%. Besides, samples of various original component ratio of Al 50 W 50 to Ni have been fabricated, and the corresponding microcomponents and mechanical properties such as microhardness, ultimate tensile strength and elongation were characterized and discussed. The optimum ultimate tensile strength under the experiment conditions is 1868 MPa with elongation of 10.21% and hardness of 6.62 GPa. X-ray diffraction (XRD), FE-SEM and energy dispersive analysis of X-rays (EDS) were given to analysis the components and morphology of the composite bulk specimens

  15. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, MoO2

    Directory of Open Access Journals (Sweden)

    Felipe Legorreta-García

    2015-05-01

    Full Text Available The synthesis of Fe3+, Mo4+ and Y3+ fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD, scanning electron microscopy (SEM and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe3+, Mo4+ and Y3+ ions in the zirconia tetragonal monophase, even after calcinations.

  16. Structural parameters of polyethylenes obtained using a palladium catalyst: dilute solution and solid state studies

    International Nuclear Information System (INIS)

    Meneghetti, Simoni Plentz; Lutz, Pierre J.; Duval, M.; Kress, Jacky; Lapp, A.

    2001-01-01

    Polyethylenes were obtained using palladium catalyst [(Ar N=C(Me)-C(Me)=N Ar) Pd(CH 2 ) 3 (COOMe)] + BAr' 4 - (VERSIPOL TM ); Ar2,6-i-Pr 2 -C 6 H 3 and Ar'3,5-(CF 3 ) 2 -C 6 H 3 . The combination of dilute solution and solid state characterization of these polyethylenes revealed strong differences between structural parameters of samples prepared under almost identical conditions except ethylene pressure (6, 3 and 1 bar). These differences can be explained by the fact that samples prepared at 6 bar are almost linear, with only a few short branches, whereas those synthesized at 1 bar are highly branched or even hyper branched. (author)

  17. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, Mo)O {sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Legorreta-Garcia, F.; Esperanza Hernandez-Cruz, L.; Villanueva-Ibanez, M.; Flores-Gonzalez, M. A.

    2015-10-01

    The synthesis of Fe{sup 3}+, Mo{sup 4+} and Y{sup 3+} fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM) results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe{sup 3+}, Mo{sup 4+} and Y{sup 3+} ions in the zirconia tetragonal monophase, even after calcinations. (Author)

  18. Dielectric properties of lead orthovanadate and orthophosphate and some solid solutions on theirs basis

    International Nuclear Information System (INIS)

    Dudnik, E.F.; Sinyakov, E.V.; Gene, V.V.

    1977-01-01

    The dielectric properties of the monocrystals of the ferroelastics Pb 3 (PO 4 ) 2 and Pb 3 (VO 4 ) 2 were investigated. The dependencies of dielectric permeability and double refraction upon temperature were measured. The domain structure and the effect of pressure upon it were studied. The influence of BaO, CaO and Cr 2 O 3 additions upon the properties of Pb 3 (V 4 ) 2 monocrystals and upon the system of monocrystalline solid solutions of Pb 3 (VO 4 ) 2 - Pb 3 (PO 4 ) 2 was also examined. Similar to the case of usual segnetoelectrics, introduction of additions into segnetoelastic crystals was found to lead to spreading of the phase transition

  19. Internal friction and dislocation collective pinning in disordered quenched solid solutions

    Science.gov (United States)

    D'Anna, G.; Benoit, W.; Vinokur, V. M.

    1997-12-01

    We introduce the collective pinning of dislocations in disordered quenched solid solutions and calculate the macroscopic mechanical response to a small dc or ac applied stress. This work is a generalization of the Granato-Lücke string model, able to describe self-consistently short and long range dislocation motion. Under dc applied stress the long distance dislocation creep has at the microscopic level avalanche features, which result in a macroscopic nonlinear "glassy" velocity-stress characteristic. Under ac conditions the model predicts, in addition to the anelastic internal friction relaxation in the high frequency regime, a linear internal friction background which remains amplitude-independent down to a crossover frequency to a strongly nonlinear internal friction regime.

  20. Synthesis, solid and solution studies of paraquat dichloride calixarene complexes. Molecular modelling

    International Nuclear Information System (INIS)

    Garcia S, I.; Ramirez, F. M.

    2010-01-01

    The interaction of the herbicide paraquat dichloride (P Q, substrate) with p-tert-butylcalix arenas (L, receptor) was investigated in both the solution and solid states. The isolated paraquat calixarene complexes were characterised by UV-visible, 1 H NMR, ESI-Ms, Luminescence and IR spectroscopies and elemental analysis. The stoichiometry of complexes 1 and 2 was 1:1 (1 herbicide: 1 calixarene) and both revealed a biexponential luminescence decay with lifetimes depending on the size and the conformational particularity of the calixarenes. Molecular modelling suggested that both calixarenes interact with the herbicide through cation-π interaction. P Q in included in the p-tert butylcalix a rene cavity, a situation favoured by its pinched conformation in polar solvent while it is partially included in the p-tert butylcalix a rene cavity because of its in-out cone conformation. The theoretical results, in particular using Mopac procedures, were in agreement with the experimental findings. (Author)

  1. Synthesis, solid and solution studies of paraquat dichloride calixarene complexes. Molecular modelling

    Energy Technology Data Exchange (ETDEWEB)

    Garcia S, I.; Ramirez, F. M., E-mail: flor.ramirez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    The interaction of the herbicide paraquat dichloride (P Q, substrate) with p-tert-butylcalix arenas (L, receptor) was investigated in both the solution and solid states. The isolated paraquat calixarene complexes were characterised by UV-visible, {sup 1}H NMR, ESI-Ms, Luminescence and IR spectroscopies and elemental analysis. The stoichiometry of complexes 1 and 2 was 1:1 (1 herbicide: 1 calixarene) and both revealed a biexponential luminescence decay with lifetimes depending on the size and the conformational particularity of the calixarenes. Molecular modelling suggested that both calixarenes interact with the herbicide through cation-{pi} interaction. P Q in included in the p-tert butylcalix a rene cavity, a situation favoured by its pinched conformation in polar solvent while it is partially included in the p-tert butylcalix a rene cavity because of its in-out cone conformation. The theoretical results, in particular using Mopac procedures, were in agreement with the experimental findings. (Author)

  2. Double crystal X-ray analysis of phosphorus precipitation in supersaturated Si-P solid solutions

    International Nuclear Information System (INIS)

    Servidori, M.; Zini, Q.; Dal Monte, C.

    1983-01-01

    The physical nature of the electrically inactive phosphorus in silicon is investigated by double crystal X-ray diffraction measurements. This analysis is performed on laser annealed supersaturated samples, doped by ion implantation up to 5 x 10 21 cm -3 . After isothermal heat treatments, these solid solutions show marked reductions in the electrically active phosphorus concentration. In particular, 850 0 C heatings give rise to a carrier concentration which corresponds to the phosphorus solubility in equilibrium with the inactive dopant. This dopant is characterized by means of lattice strain measurements: they are found consistent with the presence of perfectly coherent cubic SiP precipitates. This result is in agreement with the one obtained in preceeding works by electrical measurements and transmission electron microscopy observations and contradicts the hypothesis that the excess dopant atoms are, at least in part, charged point defects (E-centres). (author)

  3. Measurement test on creep strain rate of uranium-zirconium solid solutions

    International Nuclear Information System (INIS)

    Ogata, Takanari; Akabori, Mitsuo; Ogawa, Toru

    1996-11-01

    In order to measure creep strain rate of a small specimen of U-Zr solid solution, authors proposed an estimation method which was based upon the stress relaxation after compression. It was applied to measurement test on creep strain rate of the U-10wt%Zr specimen in the temperature range of 757 to 911degC. It may be concluded that the proposed method is valid, provided that the strain is within the appropriate range and that sufficient amount of the load decrement is observed. The obtained creep rate of U-10wt%Zr alloy indicated significantly smaller value, compared to the experimental data for pure U metal and evaluated data for U-Pu-Zr alloy. However, more careful measurement is desired in future since the present data are thought to be influenced by the precipitations included in the specimen. (author)

  4. Magnetic and electrical properties in BaNiS2-type solid solutions

    International Nuclear Information System (INIS)

    Irizawa, Akinori; Yoshimura, Kazuyoshi; Kosuge, Koji

    2000-01-01

    The magnetic and electrical properties are reported in the new solid solutions BaCo 1-x Cu x S 2 and BaNi 1-x Fe x S 2 . Both compounds show spin-glass-like behavior, although the type of spin frustrations is different with each other. BaCo 1-x Cu x S 2 shows a competition type spin-glass behavior with reentrant phenomenon from antiferromagnetic to spin-glass at low temperatures. BaNi 1-x Fe x S 2 shows a dilute type spin-glass behavior together with super-paramagnetic properties. The temperature variation of 57 Fe Moessbauer spectra in BaNi 0.8 Fe 0.2 S 2 is explicable in a framework of cluster-glass. (author)

  5. Variable valence of praseodymium in rare-earth oxide solid solutions

    International Nuclear Information System (INIS)

    Kravchinskaya, M.V.; Merezhinskii, K.Y.; Tikhonov, P.A.

    1986-01-01

    Solid solutions of elevated praseodymium oxide content have interesting electrical properties, making them the basis for the manufacture of high-temperature electrically conducting materials. Establishment of the composition-structure-valence state relationships enables control of the material properties. The authors performed investigations using a thermogravimetric apparatus with an electronic microbalance of type EM-5-3M, and using x-ray phase analysis of powders (DRON-1 diffractometer, CuK /SUB alpha/ -radiation). The authors also studied the kinetics of praseodymium oxidation with a thermogravimetric apparatus under isothermal conditions. Evaluation of the results with the equation of Kolmogorov, Erofeev, and Avraam indicates that the process is limited by the chemical oxidation of praseodymium and not by diffusion

  6. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    Science.gov (United States)

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  7. Theoretical study on phase coexistence in ferroelectric solid solutions near the tricritical point

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoyan, E-mail: luxy@hit.edu.cn, E-mail: dzk@psu.edu; Li, Hui [Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, Limei [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Cao, Wenwu [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-04-07

    Phase coexistence in ferroelectric solid solutions near the tricritical point has been theoretically analyzed by using the Landau-Devonshire theory. Results revealed that different phases having similar potential wells could coexist in a narrow composition range near the tricritical point in the classical Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} system. The potential barrier between potential wells increases with the decrease of temperature. Coexisting phases or different domains of the same phase can produce adaptive strains to maintain atomic coherency at the interfaces or domain walls. Such compatibility strains have influence on the energy potential as well as the stability of relative phases, leading to the appearance of energetically unfavorable monoclinic phases. Those competing and coexisting phases also construct an easy phase transition path with small energy barrier in between, so that very small stimuli can produce large response in compositions near the morphotropic phase boundary, especially near the tricritical point.

  8. Theoretical study on phase coexistence in ferroelectric solid solutions near the tricritical point

    International Nuclear Information System (INIS)

    Lu, Xiaoyan; Li, Hui; Zheng, Limei; Cao, Wenwu

    2015-01-01

    Phase coexistence in ferroelectric solid solutions near the tricritical point has been theoretically analyzed by using the Landau-Devonshire theory. Results revealed that different phases having similar potential wells could coexist in a narrow composition range near the tricritical point in the classical Pb(Zr 1−x Ti x )O 3 system. The potential barrier between potential wells increases with the decrease of temperature. Coexisting phases or different domains of the same phase can produce adaptive strains to maintain atomic coherency at the interfaces or domain walls. Such compatibility strains have influence on the energy potential as well as the stability of relative phases, leading to the appearance of energetically unfavorable monoclinic phases. Those competing and coexisting phases also construct an easy phase transition path with small energy barrier in between, so that very small stimuli can produce large response in compositions near the morphotropic phase boundary, especially near the tricritical point

  9. Distribution of rare-earths in solid solution crandalita- goyazita of Sapucaia (Bonito-Para)

    International Nuclear Information System (INIS)

    Costa, M.L. da; Melo Costa, W.A. de

    1987-01-01

    The Crandallite are predominant in the lateritic phosphates of Sapucaia, in the form of the solid solution Crandallite (Cn)- Goyazite (Gz)-Florencite (Fl). The Crandallite-Goyazite is predominant, where the maximum proportion of Florencite is Cn 60 Cz 34.8 Fl 5.2 - This proportion of Florencite is relatively high for laterites, and for this case having up to 1,374% weight of TR 2 O 3 in the total sample. The light rare elements are predominant over the heavy ores, and are illustrated in the distribution curve normalized for the chondrites. This curve is partially comparable with the curve for Apatite presents slight negative anomaly for the element Europium, and slight positive anomaly for The elements Thulium. The geochemical caracteristics for the rare earths in this group allow the prediction for the original rock for the laterites. (author) [pt

  10. Paramagnetic properties of the (U1-xTbx)Co2Ge2 solid solutions

    International Nuclear Information System (INIS)

    Kuznietz, Moshe; Pinto, Haim; Ettedgui, Hanania

    1995-01-01

    Polycrystalline (U 1-x Tb x )Co 2 Ge 2 solid solutions have the ThCr 2 Si 2 -type crystal structure and order antiferromagnetically. AC-susceptibility at 80-295 K yields paramagnetic Curie temperatures θ=-350±50, -15±5, -50±15, -12±5, and -80±5 K, and effective magnetic moments μ eff =4.5, 5.9, 7.3, 8.5, and 12.0 (±0.5)μ B , for samples with x=0, 0.25, 0.50, 0.75 and 1, respectively. The high μ eff values are related to occurrence of paramagnetic moments on U, Tb and Co, of which only U and Tb moments order magnetically. ((orig.))

  11. Molecular behavior of zero-dimensional perovskites

    KAUST Repository

    Yin, Jun

    2017-12-16

    Low-dimensional perovskites offer a rare opportunity to investigate lattice dynamics and charge carrier behavior in bulk quantum-confined solids, in addition to them being the leading materials in optoelectronic applications. In particular, zero-dimensional (0D) inorganic perovskites of the Cs4PbX6 (X = Cl, Br, or I) kind have crystal structures with isolated lead halide octahedra [PbX6]4− surrounded by Cs+ cations, allowing the 0D crystals to exhibit the intrinsic properties of an individual octahedron. Using both experimental and theoretical approaches, we studied the electronic and optical properties of the prototypical 0D perovskite Cs4PbBr6. Our results underline that this 0D perovskite behaves akin to a molecule, demonstrating low electrical conductivity and mobility as well as large polaron binding energy. Density functional theory calculations and transient absorption measurements of Cs4PbBr6 perovskite films reveal the polaron band absorption and strong polaron localization features of the material. A short polaron lifetime of ~2 ps is observed in femtosecond transient absorption experiments, which can be attributed to the fast lattice relaxation of the octahedra and the weak interactions among them.

  12. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Palaniappan, Kumaranand [Los Alamos National Laboratory; Laocharoensuk, Rawiwan [National Science and Technology Center, Thailand; Smith, Nickolaus A. [Los Alamos National Laboratory; Dickerson, Robert M. [Los Alamos National Laboratory; Casson, Joanna L. [Los Alamos National Laboratory; Baldwin, Jon K. [Los Alamos National Laboratory

    2012-06-07

    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth

  13. Investigating the effect of compression on solute transport through degrading municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Woodman, N.D., E-mail: n.d.woodman@soton.ac.uk; Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2014-11-15

    Highlights: • The influence of compression on MSW flushing was evaluated using 13 tracer tests. • Compression has little effect on solute diffusion times in MSW. • Lithium tracer was conservative in non-degrading waste but not in degrading waste. • Bromide tracer was conservative, but deuterium was not. - Abstract: The effect of applied compression on the nature of liquid flow and hence the movement of contaminants within municipal solid waste was examined by means of thirteen tracer tests conducted on five separate waste samples. The conservative nature of bromide, lithium and deuterium tracers was evaluated and linked to the presence of degradation in the sample. Lithium and deuterium tracers were non-conservative in the presence of degradation, whereas the bromide remained effectively conservative under all conditions. Solute diffusion times into and out of less mobile blocks of waste were compared for each test under the assumption of dominantly dual-porosity flow. Despite the fact that hydraulic conductivity changed strongly with applied stress, the block diffusion times were found to be much less sensitive to compression. A simple conceptual model, whereby flow is dominated by sub-parallel low permeability obstructions which define predominantly horizontally aligned less mobile zones, is able to explain this result. Compression tends to narrow the gap between the obstructions, but not significantly alter the horizontal length scale. Irrespective of knowledge of the true flow pattern, these results show that simple models of solute flushing from landfill which do not include depth dependent changes in solute transport parameters are justified.

  14. Dissolution of britholites and monazite / brabantite solid solutions doped with actinides

    International Nuclear Information System (INIS)

    Du Fou De Kerdaniel, E.

    2007-12-01

    In the field of the radwaste storage in underground repository, several matrices were considered as promising ceramics for the specific immobilization of actinides. Two of them, britholites and monazite/ brabantite solid solution, have been considered during this work. In order to examine the dissolution mechanisms occurring at the solid liquid interface, several leaching experiments have been conducted on (Ln III PO 4 ), brabantite (Ca II An IV (PO 4 ) 2 : An = Th, U) and britholites (Ca 9 Nd 0.5 An 0.5 IV (PO 4 ) 4.5 (SiO 4 ) 1.5 F 2 : An = Th, U). Some steady experiments, performed in under saturation conditions for various pH and temperature conditions allowed to evaluate the long term behaviour of such matrices through their chemical durability. On the contrary, the thermodynamic equilibria were examined through the leaching experiments performed near the saturation conditions. By the way, various secondary phases, precipitated onto the surface of altered samples have been identified and characterized. Among them, the (Nd, Ca, Th) - rhabdophane, novelly prepared in over- saturation experiments for a thorium weight loading lower than 11 % appeared to be metastable. Indeed, it turns into TPHPH (Th 2 (PO 4 ) 2 HPO 4 .H 2 O) and Nd - rhabdophane (NdPO 4 .1/2H 2 O) when increasing leaching time. (author)

  15. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Bialy, Agata [Amminex Emissions Technology A/S, Gladsaxevej 363, 2860 Soeborg (Denmark); Jensen, Peter B. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, Fysikvej 311, DK-2800 Kgs. Lyngby (Denmark); Blanchard, Didier [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Vegge, Tejs, E-mail: teve@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Quaade, Ulrich J., E-mail: ujq@amminex.com [Amminex Emissions Technology A/S, Gladsaxevej 363, 2860 Soeborg (Denmark)

    2015-01-15

    Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba{sub x}Sr{sub (1−x)}Cl{sub 2} mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH{sub 3}){sub 8}Cl{sub 2}. - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl{sub 2} in SrCl{sub 2} yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures.

  16. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  17. Oxygen permeability of perovskite-type BaBi1-xLaxO3-δ

    International Nuclear Information System (INIS)

    Yaremchenko, A.A.; Kharton, V.V.; Viskup, A.P.; Naumovich, E.N.; Samokhval, V.V.

    1998-01-01

    Oxygen permeability, electrical conductivity, and thermal expansion of BaBi 1-x La x O 3-δ (x = 0, 0.2, and 0.4) perovskite-like solid solutions have been found to decrease with lanthanum content. Thermal expansion coefficients of the ceramics are (11.9--12.8) x 10 -6 K -1 . Oxygen transport through the BaBi(La)O 3-δ dense ceramic membranes within the membrane thickness range of 0.6 < d < 1.2 mm has been shown to be limited by both bulk ionic conductivity and surface exchange rate

  18. Charge disproportionation in Fe/sup 4 + -/oxides with perovskite-type structures

    Energy Technology Data Exchange (ETDEWEB)

    Takano, M; Nakanishi, N [Konan Univ., Kobe (Japan). Faculty of Science; Takeda, Y; Naka, S [Nagoya Univ. (Japan)

    1979-01-01

    For a further examination and elaboration of our simple charge disproportionation model for Fe/sup 4 +/-oxides, 2Fe/sup 4 +/..-->..Fe/sup 3 +/ + Fe/sup 5 +/, two series of solid solutions Casub(1-x)Srsub(x)FeO/sub 3/ and Srsub(1-x)Lasub(x)FeO/sub 3/ with the perovskite structure have been studied. The Moessbauer spectrum of Srsub(0,5)Lasub(0.5)FeO/sub 3/ at 4 K clearly indicates the disproportionation. For both series of oxides, the disproportionation seems to set in at the Tsub(N).

  19. High-temperature, Knudsen cell-mass spectroscopic studies on lanthanum oxide/uranium dioxide solid solutions

    International Nuclear Information System (INIS)

    Sunder, S.; McEachern, R.; LeBlanc, J.C.

    2001-01-01

    Knudsen cell-mass spectroscopic experiments were carried out with lanthanum oxide/uranium oxide solid solutions (1%, 2% and 5% (metal at.% basis)) to assess the volatilization characteristics of rare earths present in irradiated nuclear fuel. The oxidation state of each sample used was conditioned to the 'uranium dioxide stage' by heating in the Knudsen cell under an atmosphere of 10% CO 2 in CO. The mass spectra were analyzed to obtain the vapour pressures of the lanthanum and uranium species. It was found that the vapour pressure of lanthanum oxide follows Henry's law, i.e., its value is directly proportional to its concentration in the solid phase. Also, the vapour pressure of lanthanum oxide over the solid solution, after correction for its concentration in the solid phase, is similar to that of uranium dioxide. (authors)

  20. Smooth and robust solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer problems

    KAUST Repository

    Yan, Yan

    2015-01-01

    We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial

  1. 3He release characteristics of metal tritides and scandium--tritium solid solutions

    International Nuclear Information System (INIS)

    Perkins, W.G.; Kass, W.J.; Beavis, L.C.

    1975-01-01

    Tritides of such metals as scandium, titanium, and erbium are useful materials for determining the effects of helium accumulation in metallic solids, for example, CTR first wall materials. Such effects include lattice strain and gross deformation, as reported elsewhere, which are related to 3 He retention and ultimate release. Long term gas release studies have indicated that, during the early life of a metal ditritide, a large fraction of the 3 He is retained in the solid. At more advanced ages (2 to 4 years, depending on the parent metal), the 3 He release rate becomes comparable to the generation rate. Statistical analysis of the data indicates that the acceleration in 3 He release rate depends on accumulated 3 He concentration rather than strictly on age. 3 He outgassing results are presented for thin films of ScT 2 , TiT 2 , and ErT 2 , and the critical 3 He concentrations are discussed in terms of a percolation model. Phase transformations which occur on tritide formation cast some doubt on the validity of extrapolating results obtained for metal tritides to predictions regarding the accumulation of helium in metals. Scandium is unique among the early transition and rare-earth metals in that the metal exhibits a very high room temperature tritium solubility (T/Sc = 0.4) with no phase transformation. Indeed, even the lattice parameters of the hcp scandium lattice are only minimally changed by tritium solution, and we have succeeded in obtaining single crystal ScT 0 . 3 samples in two crystallographic orientations. Using a very sensitive technique, we have measured 3 He emission from both these samples, as well as from fine-grained thin film scandium-tritium solid solution samples (ScT 0 . 3 - 0 . 4 ). The fine-grained film samples release 3 He at 2 to 3 percent of the generation rate, while the emission rate from the single-crystal samples is approximately 0.05 percent of the generation rate, indicating a strong grain size effect

  2. High temperature thermodynamics of H2 and D2 in titanium, and in dilute titanium oxygen solid solutions

    International Nuclear Information System (INIS)

    Dantzer, P.

    1983-01-01

    The Tian Calvet microcalorimetric method has been improved in order to determine ΔH-barsub(H)(D), the partial molar enthalpy of mixing of hydrogen (deuterium) in the Ti-H 2 (D 2 ) solid systems for compositions 0 2 solid solutions (y = (O/Ti)) at 745 K. The combined calorimetric and equilibrium method allows a precise evaluation of the partial molar entropies. The results of this study differ substantially from earlier published data. (author)

  3. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  4. XAFS spectroscopic study of uranyl coordination in solids and aqueous solution

    International Nuclear Information System (INIS)

    Thompson, H.A.; Brown, G.E. Jr.; Parks, G.A.

    1997-01-01

    To evaluate the ability of X-ray absorption fine structure (XAFS) spectroscopy to elucidate the coordination environment of U 6+ at the solid-water interface, we conducted an in-depth analysis of experimental XAFS data from U 6+ solid and solution model compounds. Using the ab initio XAFS code FEFF6, we calculated phase-shift and amplitude functions for fitting experimental data. The code FEFF6 does a good job of reproducing experimental data and is particularly valuable for providing phase-shift and amplitude functions for neighboring atoms whose spectral contributions are difficult to isolate from experimental data because of overlap of Fourier transform features. In solid-phase model compounds at ambient temperature, we were able to fit spectral contributions from axial O (1.8 Angstrom), equatorial O (2.2-2.5 Angstrom), N (2.9 Angstrom), C (2.9 Angstrom), Si (3.2 Angstrom), P (3.6 Angstrom), distant 0 (4.3 Angstrom), and U (4.0, 4.3, 4.9, and 5.2 Angstrom) atoms. Contributions from N, C, Si, P, distant O, and distant U (4.9 and 5.2 Angstrom) are weak and therefore might go undetected in a sample of unknown composition. Lowering the temperature to 10 K extends detection of U neighbors to 7.0 Angstrom. The ability to detect these atoms suggests that XAFS might be capable of discerning inner-sphere U sorption at solid aluminosilicate-water interfaces. XAFS should definitely detect multinuclear U complexes and precipitates. Multiple-scattering paths are minor contributors to uranyl XAFS beyond k = 3 Angstrom -1 . Allowing shell-dependent disorder parameters (σ 2 ) to vary, we observed narrow ranges of σ 2 values for similar shells of neighboring atoms. Knowledge of these ranges is necessary to constrain the fit of XAFS spectra for unknowns. Finally, we found that structures reported in the literature for uranyl diacetate and rutherfordine are not completely correct. 50 refs., 6 figs., 2 tabs

  5. Dispersion of dielectric permittivity and magnetic properties of solid solution PZT–PFT

    Directory of Open Access Journals (Sweden)

    Skulski Ryszard

    2015-09-01

    Full Text Available In this paper we present the results of investigations into ceramic samples of solid solution (1-x(PbZr0.53Ti0.47O3- x(PbFe0.5Ta0.503 (i.e. (1-xPZT-xPFT with x = 0.25, 0.35 and 0.45. We try to find the relation between the character of dielectric dispersion at various temperatures and the composition of this solution. We also describe the magnetic properties of investigated samples. With increasing the content of PFT also mass magnetization and mass susceptibility increase (i.e. magnetic properties are more pronounced at every temperature. The temperature dependences of mass magnetization and re­ciprocal of mass susceptibility have similar runs for all the compositions. However, our magnetic investigations exhibit weak antiferromagnetic ordering instead of the ferromagnetic one at room temperature. We can also say that up to room tempera­ture any magnetic phase transition has not occurred. It may be a result of the conditions of the technological process during producing our PZT-PFT ceramics.

  6. Evolution of microstructures in nickel solid solution fatigued at high temperature: occurence of an intragranular cavitation

    International Nuclear Information System (INIS)

    Arnaud, B.

    1986-06-01

    We studied by T.E.M. the microstructures appearing in Nickel solid solution fatigued in push-pull between 0.4 Tm and 0.6 Tm (Tm=melting temperature), the maximum amplitude of stress was imposed: +- 100 MPa, three frequencies were used: 1.25 Hz, 2.5 Hz and 10 Hz. In Ni 6% at Ge the structure of dislocations evolves continuously with the number of cycles: homogeneous distribution of dislocations, cell structure, then development of sub-grains 5 times as big as the cell; these sub-grains are not stable, they break up into cells. This succession of structures suggests a cyclic evolution. The cavities appear for number of cycles greater than a threshold number depending on the temperature and the frequency. The cavities are not distributed uniformly, they are located in zone. According to the conditions of sollicitation, the shape (equiaxe of small stick) and the distribution (uniform, in band, in crown) of the cavities fluctuate. This cavitation exists equally in other materials (Ni 4% at Si, Ni). This intra-granular cavitation has been observed in the same domain of temperatures as the domain of swelling in the same material under bombardment with ions Ni + . Due to this similitude we searched for a segregation of solute (like the induced precipitation by irradiation) but this phenomenon did not occur with our experimental conditions [fr

  7. A new variable temperature solution-solid interface scanning tunneling microscope.

    Science.gov (United States)

    Jahanbekam, Abdolreza; Mazur, Ursula; Hipps, K W

    2014-10-01

    We present a new solution-solid (SS) interface scanning tunneling microscope design that enables imaging at high temperatures with low thermal drift and with volatile solvents. In this new design, distinct from the conventional designs, the entire microscope is surrounded in a controlled-temperature and controlled-atmosphere chamber. This allows users to take measurements at high temperatures while minimizing thermal drift. By incorporating an open solution reservoir in the chamber, solvent evaporation from the sample is minimized; allowing users to use volatile solvents for temperature dependent studies at high temperatures. The new design enables the user to image at the SS interface with some volatile solvents for long periods of time (>24 h). An increase in the nonlinearity of the piezoelectric scanner in the lateral direction as a function of temperature is addressed. A temperature dependent study of cobalt(II) octaethylporphyrin (CoOEP) at the toluene/Au(111) interface has been performed with this instrument. It is demonstrated that the lattice parameters remain constant within experimental error from 24 °C to 75 °C. Similar quality images were obtained over the entire temperature range. We report the unit cell of CoOEP at the toluene/Au(111) interface (based on two molecules per unit cell) to be A = (1.36 ± 0.04) nm, B = (2.51 ± 0.04) nm, and α = 97° ± 2°.

  8. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions

    Directory of Open Access Journals (Sweden)

    Hongwei Deng

    2010-11-01

    Full Text Available One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M, and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  9. Fabrication and performance of all-solid-state chloride sensors in synthetic concrete pore solutions.

    Science.gov (United States)

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.

  10. Training Course of Experimental Chemistry in the Nuclear Fuel Cycle: Solid State and Solution Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju hyeong; Park, Kwangheon; Kim, Tae hoon; Park, Hyoung gyu; Kim, Jisu [Kyunghee University, Yongin (Korea, Republic of); Song, Hyuk jin [Dongguk University, Gyeongju (Korea, Republic of); Lee, Chan ki; Kang, Do kyu; Jeong, Hyeon jun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    In this experimental study program in Tohoku University, basic experiments were done by the participants. First one is the hydrogen reduction experiment of the mixture of UO{sub 2} and ZrO{sub 2}. Second one is to observe microscopic structure of solid solution of UO{sub 2} and ZrO{sub 2} using SEM/EDX and XRD system, simulated fuel debris. Third one is milking process of {sup 239}Np from {sup 243}Am by solvent extraction using Tri-n-Octylamine (TOA). Last one is solvent extraction in PUREX by the simulated mixed aqueous solution of U, {sup 85}Sr and {sup 239}Np which is represented minor actinide elements included in the spent nuclear fuel. Uranium is separated from aqueous phase to organic phase during solvent extraction procedure using TBP and dodecane. Also, neptunium can be extracted to organic phase as nitric acid concentration change. The extraction behavior of neptunium is different by oxidation state in aqueous phase. The behavior of neptunium is represented as a combined form of these oxidation states in experiment. Therefore, because the oxidation states of neptunium can be controlled by controlling the concentration of nitric acid, the extractability of neptunium can be controlled.

  11. High dielectric constant observed in (1 − x)Ba(Zr0.07Ti0.93)O3–xBa(Fe0.5Nb0.5)O3 binary solid-solution

    International Nuclear Information System (INIS)

    Kruea-In, Chatchai; Eitssayeam, Sukum; Pengpat, Kamonpan; Rujijanagul, Gobwute

    2012-01-01

    Binary solid-solutions of the (1 − x)Ba(Zr 0.07 Ti 0.93 )O 3 –xBa(Fe 0.5 Nb 0.5 O 3 ) system, with 0.1 ≤ x ≤ 0.9,were fabricated via a solid-state processing technique. X-ray diffraction analysis revealed that all samples exhibited a single perovskite phase. The BaFe 0.5 Nb 0.5 O 3 also promoted densification and grain growth of the system. Dielectric measurements showed that all samples displayed a relaxor like behavior. The x = 0.1 sample presented a dielectric-frequency and temperature with low loss tangent ( 0.2 samples, the dielectric data showed a broad dielectric constant–temperature curve with a giant dielectric characteristic. In addition, a high dielectric constant > 50,000 (at 10 kHz and temperature > 150 °C) was observed for the x = 0.9 sample.

  12. Perovskite phases in the systems AO-SE/sub 2/O/sub 3/-UO/sub 2,x/ with A=alkaline earth metal and SE=rare earths, La, and Y. VII. The systems Ba/sub 2/CaUO/sub 6/-Ba/sub 2/Gd/sub 0. 67/UO/sub 6/ and Ba/sub 2/CaUO/sub 6/-Ba/sub 2/Y/sub 0. 67/UO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Seemann, I; Schittenhelm, H J [Tuebingen Univ. (F.R. Germany). Institut fuer Anorganische Chemie

    1976-05-01

    The ordered perovskite Ba/sub 2/CaUO/sub 6/ forms a solid solution series with Ba/sub 2/Gdsub(0.67)UO/sub 6/ and Ba/sub 2/Ysub(0.67)UO/sub 6/, respectively. The deviations from the ideal behaviour are studied by X-ray, diffuse reflectance and vibrational methods.

  13. Perovskite phases in the systems AO-SE/sub 2/O/sub 3/-UO/sub 2,x/ with A=alkaline earth metal and SE=rare earths, La, and Y. IX. The systems Ba/sub 2/SrUO/sub 6/-Ba/sub 2/Gd/sub 0. 67/UO/sub 6/ and Ba/sub 2/SrUO/sub 6/-Ba/sub 2/Y/sub 0. 67/UO/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Seemann, I [Tuebingen Univ. (F.R. Germany). Inst. fuer Anorganische Chemie I

    1976-07-01

    The ordered perovskite Ba/sub 2/SrUO/sub 6/ forms a solid solution series with Ba/sub 2/Gdsub(0.67)UO/sub 6/ and Ba/sub 2/Ysub(0.67)UO/sub 6/ respectively. The deviations from the ideal behaviour are studied by X-ray, diffuse reflectance and vibrational methods.

  14. Photocatalytic hydrogen production over solid solutions between BiFeO{sub 3} and SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lingwei; Lv, Meilin [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Liu, Gang [Shenyang National laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Xu, Xiaoxiang, E-mail: xxxu@tongji.edu.cn [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China)

    2017-01-01

    Graphical abstract: We have successfully prepared a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions. These materials own strong visible light absorption and demonstrate appealing photocatalytic activity under both full range and visible light irradiation. - Highlights: • Band gap values can be tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. • Photocatalytic activity is greatly improved after constituting solid solutions. • Photocatalytic activity is influenced by surface area and light absorption. • Fe plays an important role for band gap reduction and catalytic activity. - Abstract: Constituting solid solutions has been an appealing means to gain control over various physicochemical properties. In this work, we synthesized a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions and systematically explored their structural, optical and photocatalytic properties. Our results show that all solid solutions crystallize in a primitive cubic structure and their band gap values can be easily tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. Photocatalytic hydrogen production under both full range and visible light irradiation is greatly improved after forming solid solutions. The highest hydrogen production rate obtained is ∼180 μmol/h under full range irradiation (λ ≥ 250 nm) and ∼4.2 μmol/h under visible light irradiation (λ ≥ 400 nm), corresponding to apparent quantum efficiency ∼2.28% and ∼0.10%, respectively. The activity is found to be strongly influenced by surface area and light absorption. Theoretical calculation suggests that Fe contributes to the formation of spin-polarized bands in the middle of original band gap and is responsible for the band gap reduction and visible light photocatalytic activity.

  15. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu

    2017-03-13

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  16. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu; Voznyy, Oleksandr; Walters, Grant; Fan, James Z.; Liu, Min; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  17. Monocrystalline halide perovskite nanostructures for optoelectronic applications

    NARCIS (Netherlands)

    Khoram, P.

    2018-01-01

    Halide perovskites are a promising class of materials for incorporation in optoelectronics with higher efficiency and lower cost. The solution processability of these materials provides unique opportunities for simple nanostructure fabrication. In the first half of the thesis (chapter 2 and 3) we

  18. Random lasing actions in self-assembled perovskite nanoparticles

    Science.gov (United States)

    Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2016-05-01

    Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

  19. Perovskite Solar Cell

    Indian Academy of Sciences (India)

    Organic–inorganic halide perovskite, a newcomerin the solar cell industry has proved its potential forincreasing efficiency rapidly from 3.8% in 2009 to 22.1% in2016. High efficiency, flexibility, and cell architecture of theemerging hybrid halide perovskite have caught the attentionof researchers and technologists in the field.

  20. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium.

    Science.gov (United States)

    Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert

    2017-06-01

    Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Review of Solid-Solution Models of High-Entropy Alloys Based on Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    Fuyang Tian

    2017-11-01

    Full Text Available Similar to the importance of XRD in experiments, ab initio calculations, as a powerful tool, have been applied to predict the new potential materials and investigate the intrinsic properties of materials in theory. As a typical solid-solution material, the large degree of uncertainty of high-entropy alloys (HEAs results in the difficulty of ab initio calculations application to HEAs. The present review focuses on the available ab initio based solid-solution models (virtual lattice approximation, coherent potential approximation, special quasirandom structure, similar local atomic environment, maximum-entropy method, and hybrid Monte Carlo/molecular dynamics and their applications and limits in single phase HEAs.

  2. Deep and shallow acceptor levels in solid solutions Pb0.98Sm0.02S

    International Nuclear Information System (INIS)

    Hasanov, H.A.; Rahimov, R.Sh.

    2010-01-01

    It is well known that the metal vacancies the energy levels of which take place between permitted energies of valency band, are the main acceptor centers in the led salts and solid solutions on their base. The aim of the given paper is founding of character of acceptor levels in single crystals Pb 0 .98Sm 0 .02S with low concentrations of charge carrier. The deep and shallow acceptor levels are found at investigation of Hall effect in Pb 0 .98Sm 0 .02S solid solution with character of low concentrations of charge carriers in crystals

  3. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    Science.gov (United States)

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  4. Neutron diffraction radiation of solid solution of carbon and hydrogen in the α-titanium in the homogeneity domain

    International Nuclear Information System (INIS)

    Mirzaev, B.B.; Khidirov, I.; Mukhtarova, N.N.

    2005-01-01

    In the work by the neutron-graph the homogeneity domain of the introduction solid solution TiC x H y is determined. The sample neutron grams have been taken on the neutron diffractometer (λ=.1085 nm) installed at the thermal column of the WWR-SM reactor (INF AN RUz). For the phase analysis and estimation of solid solutions homogeneity the X-ray graph was used. X-ray grams were taken on the X-ray diffractometer DRON-3M with use of CuK α radiation (λ=0.015418 nm)

  5. Thermoelectric properties of Bi2Te3-Bi2Se3 solid solutions prepared by attrition milling and hot pressing

    International Nuclear Information System (INIS)

    Lee, Go-Eun; Kim, Il-Ho; Choi, Soon-Mok; Lim, Young-Soo; Seo, Won-Seon; Park, Jae-Soung; Yang, Seung-Ho

    2014-01-01

    Bi 2 Te 3-y Se y (y = 0.15 - 0.6) solid solutions were prepared by attrition milling and hot pressing. The lattice constants decreased with increasing Se content, indicating that the Se atoms were successfully substituted into the Te sites. All specimens exhibited n-type conduction, and their electrical resistivities increased slightly with increasing temperature. With increasing Se content, the Seebeck coefficients increased while the thermal conductivity decreased due to the increase in phonon scattering. The maximum figure of merit obtained was 0.63 at 440 K for the undoped Bi 2 Te 2.4 Se 0.6 solid solution.

  6. Specific features of kinetics of He/sup 3/-He/sup 4/ solid solution transformations at superlow temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, V A; Majdanov, V A; Mikhin, N P

    1986-06-01

    The NMR data on the phase transition kinetics of /sup 3/He-/sup 4/He solid solutions at T=100 mK are considered. Studied are solid helium samples of a molecular volume of 20.55 cm/sup 2//mol with a /sup 3/He content of 0.54%. An unusually long phase transition time is found which is dependent on the prehistory of sample. The spin diffusion of /sup 3/He in the transformated solution concentrated phase is found to be of a quasi-one-dimensional nature with the diffusion coefficient value typical of liquid.

  7. The lanthanum gallate-based mixed conducting perovskite ceramics

    International Nuclear Information System (INIS)

    Politova, E.D.; Stefanovich, S.Yu.; Aleksandrovskii, V.V.; Kaleva, G.M.; Mosunov, A.V.; Avetisov, A.K.; Sung, J.S.; Choo, K.Y.; Kim, T.H.

    2005-01-01

    The structure, microstructure, dielectric, and transport properties of the anion deficient perovskite solid solutions (La,Sr)(Ga,Mg,M)O 3-δ with M=Fe, Ni have been studied. Substitution of iron and nickel for gallium up to about 20 and 40 at.% respectively, leads to the perovskite lattice contraction due to the cation substitutions by the transition elements. The transition from pure ionic to mixed ionic-electronic conductivity was observed for both the systems studied. Both the enhancement of total conductivity and increasing in the thermal expansion coefficient values has been proved to correlate with the increasing amount of weakly bounded oxygen species in the Fe or Ni-doped ceramics. The oxygen ionic conductivity has been estimated from the kinetic experiments using the dc-conductivity and dilatometry methods under the condition of the stepwise change of the atmosphere from nitrogen to oxygen. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. The lanthanum gallate-based mixed conducting perovskite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Politova, E.D.; Stefanovich, S.Yu.; Aleksandrovskii, V.V.; Kaleva, G.M.; Mosunov, A.V.; Avetisov, A.K. [L.Ya. Karpov Institute of Physical Chemistry, Vorontsovo pole 10, 105064 Moscow (Russian Federation); Sung, J.S.; Choo, K.Y.; Kim, T.H. [Korea Institute of Energy Research, 71-2 Jang-dong Yooseong, Daejeon (Korea)

    2005-01-01

    The structure, microstructure, dielectric, and transport properties of the anion deficient perovskite solid solutions (La,Sr)(Ga,Mg,M)O{sub 3-{delta}} with M=Fe, Ni have been studied. Substitution of iron and nickel for gallium up to about 20 and 40 at.% respectively, leads to the perovskite lattice contraction due to the cation substitutions by the transition elements. The transition from pure ionic to mixed ionic-electronic conductivity was observed for both the systems studied. Both the enhancement of total conductivity and increasing in the thermal expansion coefficient values has been proved to correlate with the increasing amount of weakly bounded oxygen species in the Fe or Ni-doped ceramics. The oxygen ionic conductivity has been estimated from the kinetic experiments using the dc-conductivity and dilatometry methods under the condition of the stepwise change of the atmosphere from nitrogen to oxygen. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Strongly correlated perovskite fuel cells

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  10. Generalized trends in the formation energies of perovskite oxides.

    Science.gov (United States)

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  11. Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency.

    Science.gov (United States)

    Yu, Yu; Yang, Songwang; Lei, Lei; Cao, Qipeng; Shao, Jun; Zhang, Sheng; Liu, Yan

    2017-02-01

    Most antisolvents employed in previous research were miscible with perovskite precursor solution. They always led to fast formation of perovskite even if the intermediate stage existed, which was not beneficial to obtain high quality perovskite films and made the formation process less controllable. In this work, a novel ethyl ether/n-hexane mixed antisolvent (MAS) was used to achieve high nucleation density and slow down the formation process of perovskite, producing films with improved orientation of grains and ultrasmooth surfaces. These high quality films exhibited efficient charge transport at the interface of perovskite/hole transport material and perovskite solar cells based on these films showed greatly improved performance with the best power conversion efficiency of 17.08%. This work also proposed a selection principle of MAS and showed that solvent engineering by designing the mixed antisolvent system can lead to the fabrication of high-performance perovskite solar cells.

  12. Microwave-Synthesized Tin Oxide Nanocrystals for Low-Temperature Solution-Processed Planar Junction Organo-Halide Perovskite Solar Cells

    KAUST Repository

    Abulikemu, Mutalifu

    2017-03-25

    Tin oxide has been demonstrate to possess outstanding optoelectronic properties such as optical transparency and high electron mobility, therefore, it was successfully utilized as electron transporting layer in various kind of solar cells. In this study, for the first time, highly dispersible SnO2 nanoparticles were synthesized by microwave-assisted non-aqueous sol-gel route in an organic medium. Ethanol dispersion of the as-prepared nanoparticles was used to cast an uniform thin layer of SnO2 without the aid of aggregating agent and at low temperatures. Organohalide perovskite solar cells were fabricated using SnO2 as electron transporting layer. Morphological and spectroscopic investigations, in addition to the good photoconversion efficiency obtained evidenced that nanoparticles synthesized by this route have optimal properties such small size and crystallinity to form a continuous film, furthermore, this method allows high reproducibility and scalability of the film deposition process.

  13. Microwave-Synthesized Tin Oxide Nanocrystals for Low-Temperature Solution-Processed Planar Junction Organo-Halide Perovskite Solar Cells

    KAUST Repository

    Abulikemu, Mutalifu; Neophytou, Marios; Barbe, Jeremy; Tietze, Max Lutz; El Labban, Abdulrahman; Anjum, Dalaver H.; Amassian, Aram; McCulloch, Iain; Del Gobbo, Silvano

    2017-01-01

    Tin oxide has been demonstrate to possess outstanding optoelectronic properties such as optical transparency and high electron mobility, therefore, it was successfully utilized as electron transporting layer in various kind of solar cells. In this study, for the first time, highly dispersible SnO2 nanoparticles were synthesized by microwave-assisted non-aqueous sol-gel route in an organic medium. Ethanol dispersion of the as-prepared nanoparticles was used to cast an uniform thin layer of SnO2 without the aid of aggregating agent and at low temperatures. Organohalide perovskite solar cells were fabricated using SnO2 as electron transporting layer. Morphological and spectroscopic investigations, in addition to the good photoconversion efficiency obtained evidenced that nanoparticles synthesized by this route have optimal properties such small size and crystallinity to form a continuous film, furthermore, this method allows high reproducibility and scalability of the film deposition process.

  14. Structural, magnetic, and dielectric properties of solid solutions between BiMnO{sub 3} and YMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belik, Alexei A., E-mail: Alexei.BELIK@nims.go.jp

    2017-02-15

    Bi{sub 1−x}Y{sub x}MnO{sub 3} (0.1≤x≤0.9) solid solutions were prepared by the high-pressure high-temperature method at 6 GPa and 1573 K. They crystallize in the GdFeO{sub 3}-type perovskite structure with the Pnma symmetry. Crystal structures of Bi{sub 0.9}Y{sub 0.1}MnO{sub 3} and Bi{sub 0.5}Y{sub 0.5}MnO{sub 3} are studied by synchrotron X-ray powder diffraction at room temperature. Only one Néel temperature, T{sub N}, is found in samples with 0.1≤x≤0.9 in comparison with two Néel temperatures observed in YMnO{sub 3} (T{sub N}=29 and 39 K). Samples with 0.5≤x≤0.9 have almost constant T{sub N}=44 K, while T{sub N} starts to increase linearly for other compositions: T{sub N}=46 K for x=0.3, T{sub N}=58 K for x=0.2, and T{sub N}=68 K for x=0.1. Field-induced transitions from canted-antiferromagnetic states to antiferromagnetic states are detected at about 30 kOe for x=0.2 and 70 kOe for x=0.1. Dielectric constant increases below T{sub N} in samples with 0.5≤x≤1, while it decreases below T{sub N} in samples with 0.1≤x≤0.3. Our data suggest that a magnetic structure changes near x=0.4. By extrapolation, we could estimate lattice parameters (a=5.9221 Å, b=7.5738 Å, and c=5.4157 Å) and T{sub N}=79 K for a hypothetical Pnma modification of BiMnO{sub 3}. - Graphical abstract: Bi{sub 1−x}Y{sub x}MnO{sub 3} solid solutions were prepared in the whole compositional range by the high-pressure method. Magnetic and dielectric data suggest that a magnetic structure changes near x=0.4. No ferroelectric properties were found. - Highlights: • Orthorhombic Bi{sub 1−x}Y{sub x}MnO{sub 3} solid solutions are prepared by the high-pressure method. • Structural, magnetic, and dielectric properties are studied. • One Néel temperature is found in all the samples. • T{sub N}=44 K for x=0.5–0.9, 46 K for x=0.3, 58 K for x=0.2, and 68 K for x=0.1. • No ferroelectricity is observed.

  15. Solution and solid-state electrochemiluminescence of a fac-tris(2-phenylpyridyl)iridium(III)-cored dendrimer

    International Nuclear Information System (INIS)

    Reid, Ellen F.; Burn, Paul L.; Lo, Shih-Chun; Hogan, Conor F.

    2013-01-01

    The solution phase and solid-state electrochemistry and electrochemiluminescence (ECL) of an iridium(III) complex-cored dendrimeric analogue of Ir(ppy) 3 , (G1pIr), are reported. The solid-state electrochemistry and solid-state ECL of Ir(ppy) 3 itself is also described for the first time. In solution phase, the dendrimer displays greater immunity to oxygen quenching in photoluminescence (PL) experiments and exhibits greater ECL efficiency compared to the parent Ir(ppy) 3 core under the same conditions, despite a lower photoluminescence quantum yield. It is proposed that the dendrons which effectively shield the core from PL quenching interactions in the solid-state counteract the effects of parasitic side-reactions during the solution ECL experiments. Electroactive and ECL-active solid-state films of both Ir(ppy) 3 and G1pIr were produced by drop-coating on boron doped diamond electrodes. Films of Ir(ppy) 3 produced stable co-reactant ECL. However, films of G1pIr produced lower than expected ECL intensity. This was attributed to poorer charge transport and the lipophilicity of the film limiting the rate of interaction with the co-reactant required for formation of the excited state

  16. Preparation and characterization of the La0.57Li0.30TiO3 (LLTO, x = 0.1) perovskite for solid state pH sensor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.B.; Andreeta, M.R.B.; Souza, D.M.P.F. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Full text: Lithium lanthanum titanates (Lix La2/3-xTiO3 with x = 0.1 or LLTO) have been studied in the last decade as an alternative to the development of new in situ pH sensors in different harsh environments. Despite the widespread possibilities of applications, the development of synthesis and processing routes of LLTO remains a challenging issue due of the structural complexity of this perovskite system. The standard solid state route for the powder and ceramics synthesis of the LLTO compound, employed as pH sensor devices, is based on multiple calcinations and grinding steps. This route ensures a higher degree of crystallinity and better electrical response in comparison with the sol-gel one [4]. The present work aims to establish an overview of the difficulties founded to obtain the single phase compound using a two step thermal treatment process powder synthesis, followed by ceramic sintering, as an alternative to the time consuming standard route (multiple thermal treatments). In the two step thermal treatment route, the powders were prepared by solid state oxide mixing method, calcinated at 850°C/4h, followed by a single thermal treatment at 1100 °C/12h. After each thermal treatment the powder was re-homogenized in vibratory mill. The powders obtained by the proposed new route were pressed isostatically at 200 MPa and sintered at temperatures varying from 1150 to 1350 °C/6h. All samples were characterized by X-ray diffraction, scanning electron microscopy and impedance spectroscopy. The single phase was obtained by both routes and ceramics up to 98 % of theoretical density were obtained by the two step process. Conductivities up to of 10-3 S/cm were obtained in ceramics prepared by the new route (sintered at 1250 °C). These results are in very good agreement with the ones reported in the literature, achieved by standard preparation method. (author)

  17. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  18. Numerical Simulation of Solid Combustion with a Robust Conjugate-Gradient Solution for Pressure

    National Research Council Canada - National Science Library

    Wang, Yi-Zun

    2002-01-01

    A Bi-Conjugate Gradient method (Bi-CGSTAB) is studied and tested for solid combustion in which the gas and solid phases are coupled by a set of conditions describing mass, momentum and heat transport across the interface...

  19. Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation

    Science.gov (United States)

    Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang

    2016-01-01

    Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.

  20. Community Solutions to Solid Waste Pollution. Operation Waste Watch: The New Three Rs for Elementary School. Grade 6. [Second Edition.

    Science.gov (United States)

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    This publication, the last in a series of seven for elementary schools, is an environmental education curriculum guide with a focus on waste management issues. It contains a unit of exercises selected for sixth grade students focusing on community solutions to solid waste pollution. Waste management activities included in this unit seek to…