WorldWideScience

Sample records for perovskite oxide-based heterostructure

  1. High ionic conductivity in confined bismuth oxide-based heterostructures

    Directory of Open Access Journals (Sweden)

    Simone Sanna

    2016-12-01

    Full Text Available Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3 exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure δ-Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made of alternative layers of δ-Bi2O3 and Yttria Stabilized Zirconia (YSZ, deposited by pulsed laser deposition. The resulting [δ-Bi2O3/YSZ] heterostructures are found to be stable over a wide temperature range (500-750 °C and exhibits stable high ionic conductivity over a long time comparable to the value of the pure δ-Bi2O3, which is approximately two orders of magnitude higher than the conductivity of YSZ bulk.

  2. High ionic conductivity in confined bismuth oxide-based heterostructures

    DEFF Research Database (Denmark)

    Sanna, Simone; Esposito, Vincenzo; Christensen, Mogens

    2016-01-01

    Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3) exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure -Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made...... of alternative layers of δ-Bi2O3 and Yttria Stabilized Zirconia (YSZ), deposited by pulsed laser deposition. The resulting [δ-Bi2O3=YSZ] heterostructures are found to be stable over a wide temperature range (500-750 °C) and exhibits stable high ionic conductivity over a long time comparable to the value...... of the pure δ-Bi2O3, which is approximately two orders of magnitude higher than the conductivity of YSZ bulk....

  3. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    International Nuclear Information System (INIS)

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A.; Somov, P. A.; Terukov, E. I.

    2015-01-01

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics

  4. Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures.

    Science.gov (United States)

    Zhang, Jing; Zhong, Zhicheng; Guan, Xiangxiang; Shen, Xi; Zhang, Jine; Han, Furong; Zhang, Hui; Zhang, Hongrui; Yan, Xi; Zhang, Qinghua; Gu, Lin; Hu, Fengxia; Yu, Richeng; Shen, Baogen; Sun, Jirong

    2018-05-15

    Grouping different transition metal oxides together by interface engineering is an important route toward emergent phenomenon. While most of the previous works focused on the interface effects in perovskite/perovskite heterostructures, here we reported on a symmetry mismatch-driven spin reorientation toward perpendicular magnetic anisotropy in perovskite/brownmillerite heterostructures, which is scarcely seen in tensile perovskite/perovskite heterostructures. We show that alternately stacking perovskite La 2/3 Sr 1/3 MnO 3 and brownmillerite LaCoO 2.5 causes a strong interface reconstruction due to symmetry discontinuity at interface: neighboring MnO 6 octahedra and CoO 4 tetrahedra at the perovskite/brownmillerite interface cooperatively relax in a manner that is unavailable for perovskite/perovskite interface, leading to distinct orbital reconstructions and thus the perpendicular magnetic anisotropy. Moreover, the perpendicular magnetic anisotropy is robust, with an anisotropy constant two orders of magnitude greater than the in-plane anisotropy of the perovskite/perovskite interface. The present work demonstrates the great potential of symmetry engineering in designing artificial materials on demand.

  5. Reversible modulation of CsPbBr3 perovskite nanocrystal/gold nanoparticle heterostructures.

    Science.gov (United States)

    Chen, Shanshan; Lyu, Danya; Ling, Tao; Guo, Weiwei

    2018-04-19

    A facile strategy is illustrated to reversibly modulate CsPbBr3 perovskite nanocrystal/Au nanoparticle heterostructures with the reversible formation and fragmentation of gold nanoparticles anchored to the corners and surface of CsPbBr3 perovskite nanocrystals. The modulation process was performed under ambient conditions and could be conducted for cycles.

  6. Interfacial coupling and polarization of perovskite ABO3 heterostructures

    Science.gov (United States)

    Wu, Lijun; Wang, Zhen; Zhang, Bangmin; Yu, Liping; Chow, G. M.; Tao, Jing; Han, Myung-Geun; Guo, Hangwen; Chen, Lina; Plummer, E. W.; Zhang, Jiandi; Zhu, Yimei

    2017-02-01

    Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. In this article, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) films and La0.67Sr0.33MnO3 (LSMO) films of various thicknesses on SrTiO3 (STO) substrate. In particular, using atomically resolved imaging and electron energy-loss spectroscopy (EELS), we measured interface related local lattice distortion, BO6 octahedral rotation and cation-anion displacement induced polarization. In the very thin PSMO film, an unexpected interface-induced ferromagnetic polaronic insulator phase was observed during the cubic-to-tetragonal phase transition of the substrate STO, due to the enhanced electron-phonon interaction and atomic disorder in the film. On the other hand, for the very thin LSMO films we observed a remarkably deep polarization in non-ferroelectric STO substrate near the interface. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by an electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties of transition metal oxides.

  7. Studies of oxide-based thin-layered heterostructures by X-ray scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France)]. E-mail: olivier.durand@thalesgroup.com; Rogers, D. [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Universite de Technologie de Troyes, 10-12 rue Marie Curie, 10010 (France); Teherani, F. Hosseini [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Andrieux, M. [LEMHE, ICMMOCNRS-UMR 8182, Universite d' Orsay, Batiment 410, 91410 Orsay (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-06-04

    Some X-ray scattering methods (X-ray reflectometry and Diffractometry) dedicated to the study of thin-layered heterostructures are presented with a particular focus, for practical purposes, on the description of fast, accurate and robust techniques. The use of X-ray scattering metrology as a routinely working non-destructive testing method, particularly by using procedures simplifying the data-evaluation, is emphasized. The model-independent Fourier-inversion method applied to a reflectivity curve allows a fast determination of the individual layer thicknesses. We demonstrate the capability of this method by reporting X-ray reflectometry study on multilayered oxide structures, even when the number of the layers constitutive of the stack is not known a-priori. Fast Fourier transform-based procedure has also been employed successfully on high resolution X-ray diffraction profiles. A study of the reliability of the integral-breadth methods in diffraction line-broadening analysis applied to thin layers, in order to determine coherent domain sizes, is also reported. Examples from studies of oxides-based thin-layers heterostructures will illustrate these methods. In particular, X-ray scattering studies performed on high-k HfO{sub 2} and SrZrO{sub 3} thin-layers, a (GaAs/AlOx) waveguide, and a ZnO thin-layer are reported.

  8. Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain.

    Science.gov (United States)

    Shao, Yuchuan; Liu, Ye; Chen, Xiaolong; Chen, Chen; Sarpkaya, Ibrahim; Chen, Zhaolai; Fang, Yanjun; Kong, Jaemin; Watanabe, Kenji; Taniguchi, Takashi; Taylor, André; Huang, Jinsong; Xia, Fengnian

    2017-12-13

    Recently, two-dimensional (2D) organic-inorganic perovskites emerged as an alternative material for their three-dimensional (3D) counterparts in photovoltaic applications with improved moisture resistance. Here, we report a stable, high-gain phototransistor consisting of a monolayer graphene on hexagonal boron nitride (hBN) covered by a 2D multiphase perovskite heterostructure, which was realized using a newly developed two-step ligand exchange method. In this phototransistor, the multiple phases with varying bandgap in 2D perovskite thin films are aligned for the efficient electron-hole pair separation, leading to a high responsivity of ∼10 5 A W -1 at 532 nm. Moreover, the designed phase alignment method aggregates more hydrophobic butylammonium cations close to the upper surface of the 2D perovskite thin film, preventing the permeation of moisture and enhancing the device stability dramatically. In addition, faster photoresponse and smaller 1/f noise observed in the 2D perovskite phototransistors indicate a smaller density of deep hole traps in the 2D perovskite thin film compared with their 3D counterparts. These desirable properties not only improve the performance of the phototransistor, but also provide a new direction for the future enhancement of the efficiency of 2D perovskite photovoltaics.

  9. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    Science.gov (United States)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  10. Synthesis of Freestanding Single-crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-soluble Layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Di; Baek, David J.; Hong, Seung Sae; Kourkoutis, Lena F.; Hikita, Yasuyuki; Hwang, Harold Y.

    2016-08-22

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr3Al2O6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr3Al2O6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.

  11. Pyroelectric response of perovskite heterostructures incorporating conductive oxide electrodes

    Science.gov (United States)

    Tipton, Charles Wesley, IV

    2000-10-01

    The use of imaging technologies has become pervasive in many applications as the demand for situational awareness information has increased over the last decade. No better example of the integration of these technologies can be found than that of infrared or thermal imaging. This dissertation, in the field of thermal imaging, has been motivated by the desire to advance the technology of uncooled, thin-film pyroelectric sensors and focuses on the materials and structures from which the detector elements will be built. This work provides a detailed study of the pyroelectric response of the La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O (LPL) structure. The LPL structure was chosen based on the needs of thin film detectors, the unique properties of the conductive oxide La-Sr-Co-O (LSCO), and the broad applicability of the Pb-La-Zr-Ti-O (PLZT) material system. Epitaxial heterostructures were grown by pulsed laser deposition on single-crystal oxide substrates. Using the oxygen pressure during cooling and heating of the LSCO layer as a key variable, we have been able to produce structures that have a pronounced internal field in the as-grown state. In these capacitors, where the bottom electrode has a large concentration of oxygen vacancies, we have discovered very large pyroelectric responses that are 10 to 30 times larger than expected of PLZT-based pyroelectric materials (typical values are 20 to 40 nCcm-2K -1). The enhanced pyroelectric responses are very repeatable, stable over time, and distinctly different from responses attributed to thermally stimulated currents. Detailed positron annihilation spectroscopy measurements reveal that there is indeed an oxygen concentration gradient across the capacitor. Based on the results of this study, I will present an analysis of the enhanced pyroelectric response. Although the enhanced response has been correlated with high concentrations of oxygen vacancies in the PLZT film and LSCO electrodes, the mechanism by which the large

  12. Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures

    Directory of Open Access Journals (Sweden)

    Jacky Even

    2014-01-01

    Full Text Available Potentialities of density functional theory (DFT based methodologies are explored for photovoltaic materials through the modeling of the structural and optoelectronic properties of semiconductor hybrid organic-inorganic perovskites and GaAs/GaP heterostructures. They show how the properties of these bulk materials, as well as atomistic relaxations, interfaces, and electronic band-lineups in small heterostructures, can be thoroughly investigated. Some limitations of available standard DFT codes are discussed. Recent improvements able to treat many-body effects or based on density-functional perturbation theory are also reviewed in the context of issues relevant to photovoltaic technologies.

  13. Structure-property relationships of new bismuth and lead oxide based perovskite ternary solid solutions

    Science.gov (United States)

    Dwivedi, Akansha

    Two new bismuth and lead oxide based perovskite ternary solid solutions, namely xBi(Zn1/2Ti1/2)O3-yPbZrO3-zPbTiO3 [xBZT-yPZ-zPT] and xBi(Mg1/2Ti1/2)O3-yBi(Zn 1/2Ti1/2)O3-zPbTiO3 [xBMT-yBZT-zPT] have been developed and their structural and electrical properties have been determined. Various characterization techniques such as X-ray diffraction, calorimetery, electron microscopy, dielectric and piezoelectric measurements have been performed to determine the details of the phase diagram, crystal structure, and domain structure. The selection of these materials is based on the hypothesis that the presence of BZT-PT (Case I ferroelectric (FE)) will increase the transition temperature of MPB systems BMT-PT (Case II FE), and PZ-PT (Case III FE), and subsequently a MPB will be observed in the ternary phase diagrams. The Case I, II, and III classification has been outlined by Stringer et al., is on the basis of the transition temperatures (TC) behavior with composition in the Bi and Pb oxide based binary systems. Several pseudobinary lines have been investigated across the xBZT-yPZ-zPT ternary phase diagram which exhibit varied TC behavior with composition, showing both Case I- and Case III-like TC trends in different regions. A MPB between rhombohedral to tetragonal phases has been located on a pseudobinary line 0.1BZT-0.9[xPT-(1-x)PZ]. Compositions near MPB exhibit mainly soft PZT-like properties with the TC around 60°C lower than the unmodified PZT near its MPB. Electrical properties are reported for the MPB composition, TC = 325°C, Pr = 35 microC/cm2, d33 = 300 pC/N and kP =0.45. Rhombohedral compositions show diffuse phase transition with small frequency dispersion, similar to relaxors. Two transition peaks in the permittivity as well as in the latent heat has been observed in some compositions near the BZT-PT binary. This leads to the speculation for the existence of miscibility gap in the solid solutions in these regions. Transmission electron microscopy (TEM

  14. Perovskite-based heterostructures integrating ferromagnetic-insulating La0.1Bi0.9MnO3

    Science.gov (United States)

    Gajek, M.; Bibes, M.; Barthélémy, A.; Varela, M.; Fontcuberta, J.

    2005-05-01

    We report on the growth of thin films and heterostructures of the ferromagnetic-insulating perovskite La0.1Bi0.9MnO3. We show that the La0.1Bi0.9MnO3 perovskite grows single phased, epitaxially, and with a single out-of-plane orientation either on SrTiO3 substrates or onto strained La2/3Sr1/3MnO3 and SrRuO3 ferromagnetic-metallic buffer layers. We discuss the magnetic properties of the La0.1Bi0.9MnO3 films and heterostructures in view of their possible potential as magnetoelectric or spin-dependent tunneling devices.

  15. Core–shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-01-01

    To achieve highly efficient mesoscopic perovskite solar cells (PSCs), the structure and properties of an electron transport layer (ETL) or material (ETM) have been shown to be of supreme importance. Particularly, the core-shell heterostructured mesoscopic ETM architecture has been recognized as a successful electrode design, because of its large internal surface area, superior light-harvesting efficiency and its ability to achieve fast charge transport. Here we report the successful fabrication of a hysteresis-free, 15.3% efficient PSC using vertically aligned ZnO nanorod/TiO2 shell (ZNR/TS) core-shell heterostructured ETMs for the first time. We have also added a conjugated polyelectrolyte polymer into the growth solution to promote the growth of high aspect ratio (AR) ZNRs and substantially improve the infiltration of the perovskite light absorber into the ETM. The PSCs based on the as-synthesized core-shell ZnO/TiO2 heterostructured ETMs exhibited excellent performance enhancement credited to the superior light harvesting capability, larger surface area, prolonged charge-transport pathways and lower recombination rate. The unique ETM design together with minimal hysteresis introduces core-shell ZnO/TiO2 heterostructures as a promising mesoscopic electrode approach for the fabrication of efficient PSCs. This journal is © The Royal Society of Chemistry.

  16. Electrocatalysis of oxygen electrode reactions by some perovskite oxides based on lanthanum manganate

    International Nuclear Information System (INIS)

    Raj, I.A.; Rao, K.V.; Venkatesan, V.K.

    1984-01-01

    In recent years, several electrocatalyst materials based on platinum, silver, tungsten bronzes, spinels, metal chelates, etc., have been studied for use as oxygen diffusion electrodes in alkaline fuel cells, secondary metal-air batteries, and water electrolyzers. However, virtually all catalysts of commercial importance are semiconducting transition metal oxides. The various oxide catalysts that have been studied can be grouped under mixed oxides, spinels, and perovskites

  17. Monitoring non-pseudomorphic epitaxial growth of spinel/perovskite oxide heterostructures by reflection high-energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Schütz, P.; Pfaff, F.; Scheiderer, P.; Sing, M.; Claessen, R. [Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany)

    2015-02-09

    Pulsed laser deposition of spinel γ-Al{sub 2}O{sub 3} thin films on bulk perovskite SrTiO{sub 3} is monitored by high-pressure reflection high-energy electron diffraction (RHEED). The heteroepitaxial combination of two materials with different crystal structures is found to be inherently accompanied by a strong intensity modulation of bulk diffraction patterns from inelastically scattered electrons, which impedes the observation of RHEED intensity oscillations. Avoiding such electron surface-wave resonance enhancement by de-tuning the RHEED geometry allows for the separate observation of the surface-diffracted specular RHEED signal and thus the real-time monitoring of sub-unit cell two-dimensional layer-by-layer growth. Since these challenges are essentially rooted in the difference between film and substrate crystal structure, our findings are of relevance for the growth of any heterostructure combining oxides with different crystal symmetry and may thus facilitate the search for novel oxide heterointerfaces.

  18. Polar and Nonpolar Gallium Nitride and Zinc Oxide based thin film heterostructures Integrated with Sapphire and Silicon

    Science.gov (United States)

    Gupta, Pranav

    This dissertation work explores the understanding of the relaxation and integration of polar and non-polar of GaN and ZnO thin films with Sapphire and silicon substrates. Strain management and epitaxial analysis has been performed on wurtzitic GaN(0001) thin films grown on c-Sapphire and wurtzitic non-polar a-plane GaN(11-20) thin films grown on r-plane Sapphire (10-12) by remote plasma atomic nitrogen source assisted UHV Pulsed Laser Deposition process. It has been established that high-quality 2-dimensional c-axis GaN(0001) nucleation layers can be grown on c-Sapphire by PLD process at growth temperatures as low as ˜650°C. Whereas the c-axis GaN on c-sapphire has biaxially negative misfit, the crystalline anisotropy of the a-plane GaN films on r-Sapphire results in compressive and tensile misfits in the two major orthogonal directions. The measured strains have been analyzed in detail by X-ray, Raman spectroscopy and TEM. Strain relaxation in GaN(0001)/Sapphire thin film heterostructure has been explained by the principle of domain matched epitaxial growth in large planar misfit system and has been demonstrated by TEM study. An attempt has been made to qualitatively understand the minimization of free energy of the system from the strain perspective. Analysis has been presented to quantify the strain components responsible for the compressive strain observed in the GaN(0001) thin films on c-axis Sapphire substrates. It was also observed that gallium rich deposition conditions in PLD process lead to smoother nucleation layers because of higher ad-atom mobility of gallium. We demonstrate near strain relaxed epitaxial (0001) GaN thin films grown on (111) Si substrates using TiN as intermediate buffer layer by remote nitrogen plasma assisted UHV pulsed laser deposition (PLD). Because of large misfits between the TiN/GaN and TiN/Si systems the TIN buffer layer growth occurs via nucleation of interfacial dislocations under domain matching epitaxy paradigm. X-ray and

  19. Interfacial Interactions in Monolayer and Few-Layer SnS/CH3 NH3 PbI3 Perovskite van der Waals Heterostructures and Their Effects on Electronic and Optical Properties.

    Science.gov (United States)

    Li, Jian-Cai; Wei, Zeng-Xi; Huang, Wei-Qing; Ma, Li-Li; Hu, Wangyu; Peng, Ping; Huang, Gui-Fang

    2018-02-05

    A high light-absorption coefficient and long-range hot-carrier transport of hybrid organic-inorganic perovskites give huge potential to their composites in solar energy conversion and environmental protection. Understanding interfacial interactions and their effects are paramount for designing perovskite-based heterostructures with desirable properties. Herein, we systematically investigated the interfacial interactions in monolayer and few-layer SnS/CH 3 NH 3 PbI 3 heterostructures and their effects on the electronic and optical properties of these structures by density functional theory. It was found that the interfacial interactions in SnS/CH 3 NH 3 PbI 3 heterostructures were van der Waals (vdW) interactions, and they were found to be insensitive to the layer number of 2D SnS sheets. Interestingly, although their band gap decreased upon increasing the layer number of SnS, the near-gap electronic states and optical absorption spectra of these heterostructures were found to be strikingly similar. This feature was determined to be critical for the design of 2D layered SnS-based heterostructures. Strong absorption in the ultraviolet and visible-light regions, type II staggered band alignment at the interface, and few-layer SnS as an active co-catalyst make 2D SnS/CH 3 NH 3 PbI 3 heterostructures promising candidates for photocatalysis, photodetectors, and solar energy harvesting and conversion. These results provide first insight into the nature of interfacial interactions and are useful for designing hybrid organic-inorganic perovskite-based devices with novel properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interface engineering of CsPbBr3/TiO2 heterostructure with enhanced optoelectronic properties for all-inorganic perovskite solar cells

    Science.gov (United States)

    Qian, Chong-Xin; Deng, Zun-Yi; Yang, Kang; Feng, Jiangshan; Wang, Ming-Zi; Yang, Zhou; Liu, Shengzhong Frank; Feng, Hong-Jian

    2018-02-01

    Interface engineering has become a vital method in accelerating the development of perovskite solar cells in the past few years. To investigate the effect of different contacted surfaces of a light absorber with an electron transporting layer, TiO2, we synthesize CsPbBr3/TiO2 thin films with two different interfaces (CsBr/TiO2 and PbBr2/TiO2). Both interfacial heterostructures exhibit enhanced visible light absorption, and the CsBr/TiO2 thin film presents higher absorption than the PbBr2/TiO2 interface, which is attributed to the formation of interface states and the decreased interface bandgap. Furthermore, compared with the PbBr2/TiO2 interface, CsBr/TiO2 solar devices present larger output short circuit current and shorter photoluminescence decay time, which indicates that the CsBr contacting layer with TiO2 can better extract and separate the photo-induced carriers. The first-principles calculations confirm that, due to the existence of staggered gap (type II) offset junction and the interface states, the CsBr/TiO2 interface can more effectively separate the photo-induced carriers and thus drive the electron transfer from the CsPbBr3 perovskite layer to the TiO2 layer. These results may be beneficial to exploit the potential application of all-inorganic perovskite CsPbBr3-based solar cells through the interface engineering route.

  1. Hybrid Organic-Inorganic Perovskite Photodetectors.

    Science.gov (United States)

    Tian, Wei; Zhou, Huanping; Li, Liang

    2017-11-01

    Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Heterostructures and quantum devices

    CERN Document Server

    Einspruch, Norman G

    1994-01-01

    Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical en

  3. Rational Strategies for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  4. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling

    NARCIS (Netherlands)

    Liao, Zhaoliang; Huijben, Mark; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R.J.; van Aert, S.; Verbeeck, J.; van Tendeloo, G.; Held, K.; Sawatzky, G.A.; Koster, Gertjan; Rijnders, Augustinus J.H.M.

    2016-01-01

    Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized

  5. Interface-engineered oxygen octahedral coupling in manganite heterostructures

    Science.gov (United States)

    Huijben, M.; Koster, G.; Liao, Z. L.; Rijnders, G.

    2017-12-01

    Control of the oxygen octahedral coupling (OOC) provides a large degree of freedom to manipulate physical phenomena in complex oxide heterostructures. Recently, local tuning of the tilt angle has been found to control the magnetic anisotropy in ultrathin films of manganites and ruthenates, while symmetry control can manipulate the metal insulator transition in nickelate thin films. The required connectivity of the octahedra across the heterostructure interface enforces a geometric constraint to the 3-dimensional octahedral network in epitaxial films. Such geometric constraint will either change the tilt angle to retain the connectivity of the corner shared oxygen octahedral network or guide the formation of a specific symmetry throughout the epitaxial film. Here, we will discuss the control of OOC in manganite heterostructures by interface-engineering. OOC driven magnetic and transport anisotropies have been realized in LSMO/NGO heterostructures. Competition between the interfacial OOC and the strain further away from the interface leads to a thickness driven sharp transition of the anisotropic properties. Furthermore, octahedral relaxation leading to a change of p-d hybridization driven by interfacial OOC appears to be the strongest factor in thickness related variations of magnetic and transport properties in epitaxial LSMO films on NGO substrates. The results unequivocally link the atomic structure near the interfaces to the macroscopic properties. The strong correlation between a controllable oxygen network and the functionalities will have significant impact on both fundamental research and technological application of correlated perovskite heterostructures. By controlling the interfacial OOC, it is possible to pattern in 3 dimensions the magnetization to achieve non-collinear magnetization in both in-plane and out of plane directions, thus making the heterostructures promising for application in orthogonal spin transfer devices, spin oscillators, and low

  6. Perovskite-Perovskite Homojunctions via Compositional Doping.

    Science.gov (United States)

    Dänekamp, Benedikt; Müller, Christian; Sendner, Michael; Boix, Pablo P; Sessolo, Michele; Lovrincic, Robert; Bolink, Henk J

    2018-05-11

    One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite-perovskite homojunctions have not been reported. Here we present a perovskite-perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI 2 , obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is confirmed by infrared spectroscopy, which allows us to determine the MA content in the films. We analyzed the resulting thin-film junction by cross-sectional scanning Kelvin probe microscopy (SKPM) and found a contact potential difference (CPD) of 250 mV between the two differently doped perovskite layers. Planar diodes built with the perovskite-perovskite homojunction show the feasibility of our approach for implementation in devices.

  7. O3 perovskite ceramic

    Indian Academy of Sciences (India)

    The prepared sample remains as double phases with the perovskite struc- ture. The structure ... Ferroelectric oxides with perovskite structure are the subject of many investigations. ... in optical devices and heterojunction solar cells. 1765 ...

  8. Metastable honeycomb SrTiO_3/SrIrO_3 heterostructures

    International Nuclear Information System (INIS)

    Anderson, T. J.; Ryu, S.; Podkaminer, J. P.; Ma, Y.; Eom, C. B.; Zhou, H.; Xie, L.; Irwin, J.; Rzchowski, M. S.; Pan, X. Q.

    2016-01-01

    Recent theory predictions of exotic band topologies in (111) honeycomb perovskite SrIrO_3 layers sandwiched between SrTiO_3 have garnered much attention in the condensed matter physics and materials communities. However, perovskite SrIrO_3 film growth in the (111) direction remains unreported, as efforts to synthesize pure SrIrO_3 on (111) perovskite substrates have yielded films with monoclinic symmetry rather than the perovskite structure required by theory predictions. In this study, we report the synthesis of ultra-thin metastable perovskite SrIrO_3 films capped with SrTiO_3 grown on (111) SrTiO_3 substrates by pulsed laser deposition. The atomic structure of the ultra-thin films was examined with scanning transmission electron microscopy (STEM), which suggests a perovskite layering distinct from the bulk SrIrO_3 monoclinic phase. In-plane 3-fold symmetry for the entire heterostructure was confirmed using synchrotron surface X-ray diffraction to measure symmetry equivalent crystal truncation rods. Our findings demonstrate the ability to stabilize (111) honeycomb perovskite SrIrO_3, which provides an experimental avenue to probe the phenomena predicted for this material system.

  9. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  10. Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene.

    Science.gov (United States)

    Guerra, Valentino L P; Kovaříček, Petr; Valeš, Václav; Drogowska, Karolina; Verhagen, Tim; Vejpravova, Jana; Horák, Lukáš; Listorti, Andrea; Colella, Silvia; Kalbáč, Martin

    2018-02-15

    The emission of light in two-dimensional (2-D) layered hybrid organic lead halide perovskites, namely (R-NH 3 ) 2 PbX 4 , can be effectively tuned using specific building blocks for the perovskite formation. Herein this behaviour is combined with a non-covalent graphene functionalization allowing excellent selectivity and spatial resolution of the perovskite film growth, promoting the formation of hybrid 2-D perovskite : graphene heterostructures with uniform coverage of up to centimeter scale graphene sheets and arbitrary shapes down to 5 μm. Using cryo-Raman microspectroscopy, highly resolved spectra of the perovskite phases were obtained and the Raman mapping served as a convenient spatially resolved technique for monitoring the distribution of the perovskite and graphene constituents on the substrate. In addition, the stability of the perovskite phase with respect to the thermal variation was inspected in situ by X-ray diffraction. Finally, time-resolved photoluminescence characterization demonstrated that the optical properties of the perovskite films grown on graphene are not hampered. Our study thus opens the door to smart fabrication routes for (opto)-electronic devices based on 2-D perovskites in contact with graphene with complex architectures.

  11. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  12. Electronic properties of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Einevoll, G.T.

    1991-02-01

    Ten papers on the electronic properties of semiconductors and semiconductor heterostructures constitute the backbone of this thesis. Four papers address the form and validity of the single-band effective mass approximation for semiconductor heterostructures. In four other papers properties of acceptor states in bulk semiconductors and semiconductor heterostructures are studied using the novel effective bond-orbital model. The last two papers deal with localized excitions. 122 refs

  13. Hierarchical oxide-based composite nanostructures for energy, environmental, and sensing applications

    Science.gov (United States)

    Gao, Pu-Xian; Shimpi, Paresh; Cai, Wenjie; Gao, Haiyong; Jian, Dunliang; Wrobel, Gregory

    2011-02-01

    Self-assembled composite nanostructures integrate various basic nano-elements such as nanoparticles, nanofilms and nanowires toward realizing multifunctional characteristics, which promises an important route with potentially high reward for the fast evolving nanoscience and nanotechnology. A broad array of hierarchical metal oxide based nanostructures have been designed and fabricated in our research group, involving semiconductor metal oxides, ternary functional oxides such as perovskites and spinels and quaternary dielectric hydroxyl metal oxides with diverse applications in efficient energy harvesting/saving/utilization, environmental protection/control, chemical sensing and thus impacting major grand challenges in the area of materials and nanotechnology. Two of our latest research activities have been highlighted specifically in semiconductor oxide alloy nanowires and metal oxide/perovskite composite nanowires, which could impact the application sectors in ultraviolet/blue lighting, visible solar absorption, vehicle and industry emission control, chemical sensing and control for vehicle combustors and power plants.

  14. Resistance switching memory in perovskite oxides

    International Nuclear Information System (INIS)

    Yan, Z.B.; Liu, J.-M.

    2015-01-01

    The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms. In this review, we first introduce the general characteristics of the resistance switching effects, the operation methods and the storage media. Then, the experimental evidences of conductive filaments, the transport and switching mechanisms, and the memory performances and enhancing methods of perovskite oxide based filamentary RRAM cells have been summarized and discussed. Subsequently, the switching mechanisms and the performances of the uniform RRAM cells associating with the carrier trapping/detrapping and the ferroelectric polarization switching have been discussed. Finally, the advices and outlook for further investigating the resistance switching and enhancing the memory performances are given

  15. Topological properties and correlation effects in oxide heterostructures

    Science.gov (United States)

    Okamoto, Satoshi

    2015-03-01

    Transition-metal oxides (TMOs) have long been one of the main subjects of material science because of their novel functionalities such as high-Tc superconductivity in cuprates and the colossal magnetoresistance effect in manganites. In recent years, we have seen tremendous developments in thin film growth techniques with the atomic precision, resulting in the discovery of a variety of electronic states in TMO heterostructures. These developments motivate us to explore the possibility of novel quantum states of matter such as topological insulators (TIs) in TMO heterostructures. In this talk, I will present our systematic theoretical study on unprecedented electronic states in TMO heterostructures. An extremely simple but crucial observation is that, when grown along the [111] crystallographic axis, bilayers of perovskite TMOs form buckled honeycomb lattices of transition-metal ions, similar to graphene. Thus, with the relativistic spin-orbit coupling and proper band filling, two-dimensional TI states or spin Hall insulators are anticipated. Based on tight-binding modeling and density-functional theory calculations, possible candidate materials for TIs are identified. By means of the dynamical-mean-field theory and a slave-boson mean field theory, correlation effects, characteristics of TMOs, are also examined. I will further discuss future prospects in topological phenomena in TMO heterostructures and related systems. The author thanks D. Xiao, W. Zhu, Y. Ran, R. Arita, Y. Nomura and N. Nagaosa for their fruitful discussions and collaboration. This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  16. Perovskite Solar Cell

    Indian Academy of Sciences (India)

    Organic–inorganic halide perovskite, a newcomerin the solar cell industry has proved its potential forincreasing efficiency rapidly from 3.8% in 2009 to 22.1% in2016. High efficiency, flexibility, and cell architecture of theemerging hybrid halide perovskite have caught the attentionof researchers and technologists in the field.

  17. Developing Efficient Charge-Selective Interfacial Materials for Polymer and Perovskite Solar Cells

    Science.gov (United States)

    2016-01-25

    planar heterojunction perovskite solar cells Among the developed inorganic p-type HTL for PVSCs, nickel oxide (NiOx) has attracted the most...solution processable, doped transition metal oxide -based hole-transporting interlayer (HTL) to significantly improve the photovoltaic performance and...public release: distribution unlimited. PVSC device architectures developed so far, the planar heterojunction configuration attracts particular

  18. Future applications of heterostructures

    Science.gov (United States)

    König, Ulf

    1996-01-01

    In this review the status and future of heterostructure devices is discussed. The author concentrates on III/V and Si/SiGe. Performance and applications are folded to the data and expectations of the micro- and opto-electronic market and to the traditional Si-mainstream. New trends, i.e. the SIA-roadmap, are checked how heterodevices can fit in. Only the most attractive candidates for applications are considered, i.e. the heterobipolar-, the hetero field effect-transistors, the resonant tunnel diode and to a less extent, some optoelectronic devices. Considered figures of merit are frequencies, transconductance, noise at high and low frequencies, threshold voltage, power delay, threshold current and quantum efficiencies. It is pointed out how to optimize those by material and design. Extrapolations to the future potential of heterodevices are made, just taking the claimed scaling of lateral dimensions into consideration. Field of applications are presented, where heterodevices offer exclusive qualities, i.e. high frequency transmission and sensors, and new mixed systems. In the case of logic the trend goes to nanoscaled devices and ICs targeting nanoelectronics beyond traditional electronics. Heterostructure layers allow a vertical nanoscaling and thus give an additional degree of freedom for designing and optimation. It is an attractive challenge for scientists and engineers to solve the related technological problems like thin, low thermal budget oxides, like defect free buffer layers etc. Special attention is put on Si/SiGe, which is now on an upswing in electronics and photonics.

  19. Lateral topological crystalline insulator heterostructure

    Science.gov (United States)

    Sun, Qilong; Dai, Ying; Niu, Chengwang; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2017-06-01

    The emergence of lateral heterostructures fabricated by two-dimensional building blocks brings many exciting realms in material science and device physics. Enriching available nanomaterials for creating such heterostructures and enabling the underlying new physics is highly coveted for the integration of next-generation devices. Here, we report a breakthrough in lateral heterostructure based on the monolayer square transition-metal dichalcogenides MX2 (M  =  W, X  =  S/Se) modules. Our results reveal that the MX2 lateral heterostructure (1S-MX2 LHS) can possess excellent thermal and dynamical stability. Remarkably, the highly desired two-dimensional topological crystalline insulator phase is confirmed by the calculated mirror Chern number {{n}\\text{M}}=-1 . A nontrivial band gap of 65 meV is obtained with SOC, indicating the potential for room-temperature observation and applications. The topologically protected edge states emerge at the edges of two different nanoribbons between the bulk band gap, which is consistent with the mirror Chern number. In addition, a strain-induced topological phase transition in 1S-MX2 LHS is also revealed, endowing the potential utilities in electronics and spintronics. Our predictions not only introduce new member and vitality into the studies of lateral heterostructures, but also highlight the promise of lateral heterostructure as appealing topological crystalline insulator platforms with excellent stability for future devices.

  20. High T(sub c) superconductor/ferroelectric heterostructures

    Science.gov (United States)

    Ryder, Daniel F., Jr.

    1994-12-01

    Thin films of the ferroelectric perovskite, Ba(x) Sr(1-x) TiO3 (BST), were deposited on superconducting (100)YBa2Cu3O(x)(YBCO)/ (100)Yttria-stabilized zirconia(YSZ) substrates and (100)Si by ion-beam sputtering. Microstructural and compositional features of the ceramic bilayer were assessed by a combination of x-ray diffraction (XRD) and scanning electron microscopy. The films were smooth and featureless, and energy dispersive x-ray spectroscopy (EDX) data indicated that film composition closely matched target composition. XRD analysis showed that films deposited on YBCO substrates were highly c-axis textured, while the films deposited on (100)Si did not exhibit any preferred growth morphology. The superconducting properties of the YBCO substrate layer were maintained throughout the processing stages and, as such, it was demonstrated that ion beam sputtering is a viable method for the deposition of Ferroelectric/YBCO heterostructures.

  1. Ferroelectric ultrathin perovskite films

    Science.gov (United States)

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  2. Entropy in halide perovskites

    Science.gov (United States)

    Katan, Claudine; Mohite, Aditya D.; Even, Jacky

    2018-05-01

    Claudine Katan, Aditya D. Mohite and Jacky Even discuss the possible impact of various entropy contributions (stochastic structural fluctuations, anharmonicity and lattice softness) on the optoelectronic properties of halide perovskite materials and devices.

  3. Perovskites keep on giving

    Science.gov (United States)

    2018-05-01

    Whether you like exploring the mysteries of light-matter interactions, playing with a versatile chemical platform, or developing the most efficient devices, metal halide perovskites could be the materials for you.

  4. Two-Dimensional CH₃NH₃PbI₃ Perovskite: Synthesis and Optoelectronic Application.

    Science.gov (United States)

    Liu, Jingying; Xue, Yunzhou; Wang, Ziyu; Xu, Zai-Quan; Zheng, Changxi; Weber, Bent; Song, Jingchao; Wang, Yusheng; Lu, Yuerui; Zhang, Yupeng; Bao, Qiaoliang

    2016-03-22

    Hybrid organic-inorganic perovskite materials have received substantial research attention due to their impressively high performance in photovoltaic devices. As one of the oldest functional materials, it is intriguing to explore the optoelectronic properties in perovskite after reducing it into a few atomic layers in which two-dimensional (2D) confinement may get involved. In this work, we report a combined solution process and vapor-phase conversion method to synthesize 2D hybrid organic-inorganic perovskite (i.e., CH3NH3PbI3) nanocrystals as thin as a single unit cell (∼1.3 nm). High-quality 2D perovskite crystals have triangle and hexagonal shapes, exhibiting tunable photoluminescence while the thickness or composition is changed. Due to the high quantum efficiency and excellent photoelectric properties in 2D perovskites, a high-performance photodetector was demonstrated, in which the current can be enhanced significantly by shining 405 and 532 nm lasers, showing photoresponsivities of 22 and 12 AW(-1) with a voltage bias of 1 V, respectively. The excellent optoelectronic properties make 2D perovskites building blocks to construct 2D heterostructures for wider optoelectronic applications.

  5. nomalous Interface and Surface Strontium Segregation in (La1-ySry)2CoO4 /La1-xSrxCoO3- Heterostructured Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenxing [Massachusetts Institute of Technology (MIT); Yacoby, Yuzhak [Massachusetts Institute of Technology (MIT); Gadre, Milind [Massachusetts Institute of Technology (MIT); Lee, Yueh-Lin [Massachusetts Institute of Technology (MIT); Hong, W. [Harvard University; Zhou, Hua [Argonne National Laboratory (ANL); Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Adler, Stuart [University of Washington; Morgan, Dane [University of Wisconsin, Madison; Shao-Horn, Yang [Massachusetts Institute of Technology (MIT)

    2014-01-01

    Heterostructured materials have shown unusual physiochemical properties at the interfaces such as two dimensional electron gas systems, high-temperature superconductivity, and enhanced catalysis. Here we report the first atomic-scale evidence of the microscopic structure of a perovskite/Ruddlesden-Popper heterostructure (having La1-xSrxCoO3- /(La1-ySry)2CoO4 ), and anomalous strontium segregation at the interface and in the Ruddlesden-Popper structure using direct X-ray methods combined with ab initio calculations. The remarkably enhanced activity of such heterostructured surfaces relative to bulk perovskite and Ruddlesden-Popper oxides previously shown for oxygen electrocatalysis at elevated temperatures can be attributed to reduced thermodynamic penalty of oxygen vacancies in the oxide structure associated with Sr segregation observed in the heterostructure. Our findings provide insights for the design of highly active catalysts for energy conversion and storage applications.

  6. Heterostructures of transition metal dichalcogenides

    KAUST Repository

    Amin, Bin

    2015-08-24

    The structural, electronic, optical, and photocatalytic properties of out-of-plane and in-plane heterostructures of transition metal dichalcogenides are investigated by (hybrid) first principles calculations. The out-of-plane heterostructures are found to be indirect band gap semiconductors with type-II band alignment. Direct band gaps can be achieved by moderate tensile strain in specific cases. The excitonic peaks show blueshifts as compared to the parent monolayer systems, whereas redshifts occur when the chalcogen atoms are exchanged along the series S-Se-Te. Strong absorption from infrared to visible light as well as excellent photocatalytic properties can be achieved.

  7. Favorable ultraviolet photoelectric effects in TbMnO3/Nb-SrTiO3 heterostructures

    KAUST Repository

    Jin, Kexin

    2014-12-01

    The rectifying properties and ultraviolet photoelectric effects in TbMnO3/Nb-doped SrTiO3 heterostructures have been investigated. The ideality factors and the diffusion voltages obtained from the current-voltage curves nonlinearly decrease with increasing the temperature. It is observed that the maximum photovoltaic values of the heterostructure irradiated by the 365 nm (2.6 mW/mm2) and 248 nm (0.71 mJ/mm2) lights are about 0.121 V and 0.119 V at T=300 K, respectively. The relations between the relaxation of photovoltages after the irradiation and the power intensity are revealed. These results suggest the potential applications in the development of ultraviolet detectors using oxides-based heterostructures.

  8. Escher-like quasiperiodic heterostructures

    International Nuclear Information System (INIS)

    Barriuso, A G; Monzon, J J; Sanchez-Soto, L L; Costa, A F

    2009-01-01

    Quasiperiodic heterostructures present unique structural, electronic and vibrational properties, connected to the existence of incommensurate periods. We go beyond previous schemes, such as Fibonacci or Thue-Morse, based on substitutional sequences, by introducing construction rules generated by tessellations of the unit disc by regular polygons. We explore some of the properties exhibited by these systems. (fast track communication)

  9. Escher-like quasiperiodic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Barriuso, A G; Monzon, J J; Sanchez-Soto, L L [Departamento de Optica, Facultad de Fisica, Universidad Complutense, 28040 Madrid (Spain); Costa, A F [Departamento de Matematicas Fundamentales, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain)

    2009-05-15

    Quasiperiodic heterostructures present unique structural, electronic and vibrational properties, connected to the existence of incommensurate periods. We go beyond previous schemes, such as Fibonacci or Thue-Morse, based on substitutional sequences, by introducing construction rules generated by tessellations of the unit disc by regular polygons. We explore some of the properties exhibited by these systems. (fast track communication)

  10. X = S, Se, Te) heterostructures

    KAUST Repository

    Zhang, Qingyun; Schwingenschlö gl, Udo

    2018-01-01

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional GaX/MX2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between GaX and MX2 is found to result in Rashba splitting at the valence

  11. Textured perovskite cells

    NARCIS (Netherlands)

    Deelen, J. van; Tezsevin, Y.; Barink, M.

    2017-01-01

    Most research of texturization of solar cells has been devoted to Si based cells. For perovskites, it was assumed that texturization would not have much of an impact because of the relatively low refractive indexes lead to relatively low reflection as compared to the Si based cells. However, our

  12. General Considerations of the Electrostatic Boundary Conditions in Oxide Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Takuya

    2011-08-19

    When the size of materials is comparable to the characteristic length scale of their physical properties, novel functionalities can emerge. For semiconductors, this is exemplified by the 'superlattice' concept of Esaki and Tsu, where the width of the repeated stacking of different semiconductors is comparable to the 'size' of the electrons, resulting in novel confined states now routinely used in opto-electronics. For metals, a good example is magnetic/non-magnetic multilayer films that are thinner than the spin-scattering length, from which giant magnetoresistance (GMR) emerged, used in the read heads of hard disk drives. For transition metal oxides, a similar research program is currently underway, broadly motivated by the vast array of physical properties that they host. This long-standing notion has been recently invigorated by the development of atomic-scale growth and probe techniques, which enables the study of complex oxide heterostructures approaching the precision idealized in Fig. 1(a). Taking the subset of oxides derived from the perovskite crystal structure, the close lattice match across many transition metal oxides presents the opportunity, in principle, to develop a 'universal' heteroepitaxial materials system. Hand-in-hand with the continual improvements in materials control, an increasingly relevant challenge is to understand the consequences of the electrostatic boundary conditions which arise in these structures. The essence of this issue can be seen in Fig. 1(b), where the charge sequence of the sublayer 'stacks' for various representative perovskites is shown in the ionic limit, in the (001) direction. To truly 'universally' incorporate different properties using different materials components, be it magnetism, ferroelectricity, superconductivity, etc., it is necessary to access and join different charge sequences, labelled here in analogy to the designations 'group IV, III-V, II

  13. Control of tunneling in heterostructures

    International Nuclear Information System (INIS)

    Volokhov, V M; Tovstun, C A; Ivlev, B

    2007-01-01

    A tunneling current between two rectangular potential wells can be effectively controlled by applying an external ac field. A variation of the ac frequency by 10% may lead to the suppression of the tunneling current by two orders of magnitude, which is a result of quantum interference under the action of the ac field. This effect of destruction of tunneling can be used as a sensitive control of tunneling current across nanosize heterostructures

  14. Epitaxial stabilization of ordered Pd–Fe structures on perovskite substrates

    Energy Technology Data Exchange (ETDEWEB)

    Harton, Renee M., E-mail: reneehar@umich.edu [Department of Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109 (United States); Stoica, Vladimir A. [Department of Materials Science and Engineering, Pennsylvania State University, 201 Old Main, University Park, PA 16802 (United States); Clarke, Roy [Department of Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109 (United States)

    2017-05-01

    We report the fabrication of epitaxial ferromagnetic Pd{sub 3}Fe thin films on SrTiO{sub 3}(001) substrates by promoting the interdiffusion of an Fe/Pd multilayer heterostructure using thermal annealing. Prior to annealing, the results of in-situ Reflection High-Energy Electron Diffraction characterization suggest that each Fe and Pd layer exhibited an in-plane epitaxial relationship with the SrTiO{sub 3}(001) substrate. X-Ray diffraction and magneto-optic Kerr effect characterization, conducted post-annealing, demonstrate that the film composition is majority Pd{sub 3}Fe and exhibits in-plane magnetization reversal with a moderate coercive field of ≈760 Oe. This demonstration of an ordered atomic layer heterostructure grown on a perovskite substrate suggests a route to epitaxial interfacial structures which can achieve strain-assisted magnetic switching.

  15. Correlated electronic properties of different SrIrO{sub 3}/SrTiO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kraberger, Gernot J.; Aichhorn, Markus [Institute of Theoretical and Computational Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2016-07-01

    Strontium iridates are materials that combine strong electronic correlations with pronounced spin-orbit coupling, giving rise to fascinating physical properties. Strategies to purposefully influence and design these materials are a crucial step to further advance this field. A highly promising candidate for achieving this goal is the formation of heterostructures with other materials. Motivated by this quest, we perform calculations within the DFT+DMFT framework to investigate how the geometry of heterostructures of perovskite SrIrO{sub 3} with SrTiO{sub 3} influences their correlated electronic structure. We explore the differences between (001)- and (111)-stacked heterostructures, where the latter are particularly interesting because they form buckled honeycomb lattices that have non-trivial topological properties. For the (001)-heterostructures the effect of varying the thickness of the SrIrO{sub 3} layers, and thus their effective dimensionality, are studied. As an important ingredient we have to consider the effect of lattice distortions - in the form of a rotation of the oxygen cages - on the electronic correlations. We argue how the interplay of all these factors together allows a targeted modification of the electronic properties of the material.

  16. Rational Design and Nanoscale Integration of Multi-Heterostructures as Highly Efficient Photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xiangfeng [Univ. of California, Los Angeles, CA (United States)

    2017-11-03

    The central goal of this project is to design and synthesize complex multi-hetero-nanostructures and fundamental investigation of their potential as efficient and robust photocatalysts. Specifically, the project aims to develop a nanoscale light-harvesting antenna that can efficiently convert solar photon energy into excited electrons and holes, and integrate such antenna with efficient redox nanocatalysts that can harness the photo-generated carriers for productive electrochemical processes. Focusing on this central goal, we have investigated several potential light-harvesting antennas including: silicon nanowires, nitrogen-doped TiO2 nanowires and the emerging perovskite materials. We also devoted considerable effort in developing electrocatalysts including: hydrogen evolution reaction (HER) catalysts, oxygen evolution reaction (OER) catalysts and oxygen reduction reaction catalysts (ORR). In previous annual reports, we have described our effort in the synthesis and photoelectrochemical properties of silicon, TiO2, perovskite-based materials and heterostructures. Here, we focus our discussion on the recent effort in investigating charge transport dynamics in organolead halide perovskites, as well as carbon nanostructure and platinum nanostructure-based electrocatalysts for energy conversion and storage.

  17. Long wave polar modes in semiconductor heterostructures

    CERN Document Server

    Trallero-Giner, C; García-Moliner, F; Garc A-Moliner, F; Perez-Alvarez, R; Garcia-Moliner, F

    1998-01-01

    Long Wave Polar Modes in Semiconductor Heterostructures is concerned with the study of polar optical modes in semiconductor heterostructures from a phenomenological approach and aims to simplify the model of lattice dynamics calculations. The book provides useful tools for performing calculations relevant to anyone who might be interested in practical applications. The main focus of Long Wave Polar Modes in Semiconductor Heterostructures is planar heterostructures (quantum wells or barriers, superlattices, double barrier structures etc) but there is also discussion on the growing field of quantum wires and dots. Also to allow anyone reading the book to apply the techniques discussed for planar heterostructures, the scope has been widened to include cylindrical and spherical geometries. The book is intended as an introductory text which guides the reader through basic questions and expands to cover state-of-the-art professional topics. The book is relevant to experimentalists wanting an instructive presentatio...

  18. Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface

    Energy Technology Data Exchange (ETDEWEB)

    Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moore, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christians, Jeffrey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beard, Matthew C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Joseph J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dunfield, Sean P. [University of Colorado; Fabian, David M. [University of California Irvine; Dixon, Alex G. [University of Colorado; Dou, Benjia [University of Colorado; Ardo, Shane [University of California Irvine; Shaheen, Sean E. [University of Colorado

    2018-04-24

    Standard layer-by-layer solution processing methods constrain lead-halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet-visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer. Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.

  19. OPENING ADDRESS: Heterostructures in Semiconductors

    Science.gov (United States)

    Grimmeiss, Hermann G.

    1996-01-01

    Good morning, Gentlemen! On behalf of the Nobel Foundation, I should like to welcome you to the Nobel Symposium on "Heterostructures in Semiconductors". It gives me great pleasure to see so many colleagues and old friends from all over the world in the audience and, in particular, to bid welcome to our Nobel laureates, Prof. Esaki and Prof. von Klitzing. In front of a different audience I would now commend the scientific and technological importance of heterostructures in semiconductors and emphatically emphasise that heterostructures, as an important contribution to microelectronics and, hence, information technology, have changed societies all over the world. I would also mention that information technology is one of the most important global key industries which covers a wide field of important areas each of which bears its own character. Ever since the invention of the transistor, we have witnessed a fantastic growth in semiconductor technology, leading to more complex functions and higher densities of devices. This development would hardly be possible without an increasing understanding of semiconductor materials and new concepts in material growth techniques which allow the fabrication of previously unknown semiconductor structures. But here and today I will not do it because it would mean to carry coals to Newcastle. I will therefore not remind you that heterostructures were already suggested and discussed in detail a long time before proper technologies were available for the fabrication of such structures. Now, heterostructures are a foundation in science and part of our everyday life. Though this is certainly true, it is nevertheless fair to say that not all properties of heterostructures are yet understood and that further technologies have to be developed before a still better understanding is obtained. The organisers therefore hope that this symposium will contribute not only to improving our understanding of heterostructures but also to opening new

  20. Segmented Thermoelectric Oxide-based Module

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Linderoth, Søren

    for a more stable high temperature material. In this study, thermoelectric properties from 300 to 1200 K of Ca0.9Y0.1Mn1-xFexO3 for 0 ≤ x ≤ 0.25 were systematically investigated in term of Y and Fe co-doping at the Ca- and Mn-sites, respectively. It was found that with increasing the content of Fe doping......-performance segmented oxide-based module comprising of 4-unicouples using segmentation of the half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 and the misfit-layered cobaltite Ca3Co4O9+δ as the p-leg and 2% Al-doped ZnO as the n-leg was successfully fabricated and characterized. The results (presented in Chapter 5) show...... result, although a slight degradation tendency could be observed after 48 hours of operating in air. Nevertheless, the total conversion efficiency of this segmented module is still low less than 2%, and needs to be further improved. A degradation mechanism was observed, which attributed to the increase...

  1. Graphyne–graphene (nitride) heterostructure as nanocapacitor

    International Nuclear Information System (INIS)

    Bhattacharya, Barnali; Sarkar, Utpal

    2016-01-01

    Highlights: • Binding energy of heterostructures indicates the exothermic nature. • Increasing electric field enhances charge and energy stored in the system. • The external electric fields amplify the charge transfer between two flakes. • The capacitance value gets saturated above a certain electric field. - Abstract: A nanoscale capacitor composed of heterostructure derived from finite size graphyne flake and graphene (nitride) flake has been proposed and investigated using density functional theory (DFT). The exothermic nature of formation process of these heterostructures implies their stability. Significant charge transfer between two flakes generates permanent dipole in this heterostructures. The amount of charge transfer is tunable under the application of external electric field which enhances their applicability in electronics. We have specifically focused on the capacitive properties of different heterostructure composed of graphyne flake and graphene (nitride) flake, i.e., graphyne/graphene, graphyne/h-BN, graphyne/AlN, graphyne/GaN. The charge stored by each flake, energy storage, and capacitance are switchable under external electric field. Thus, our modeled heterostructures are a good candidate as nanoscale capacitor and can be used in nanocircuit. We found that the charge stored by each flake, energy storage, and capacitance value are highest for graphyne/GaN heterostructures.

  2. Graphyne–graphene (nitride) heterostructure as nanocapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Barnali; Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com

    2016-10-20

    Highlights: • Binding energy of heterostructures indicates the exothermic nature. • Increasing electric field enhances charge and energy stored in the system. • The external electric fields amplify the charge transfer between two flakes. • The capacitance value gets saturated above a certain electric field. - Abstract: A nanoscale capacitor composed of heterostructure derived from finite size graphyne flake and graphene (nitride) flake has been proposed and investigated using density functional theory (DFT). The exothermic nature of formation process of these heterostructures implies their stability. Significant charge transfer between two flakes generates permanent dipole in this heterostructures. The amount of charge transfer is tunable under the application of external electric field which enhances their applicability in electronics. We have specifically focused on the capacitive properties of different heterostructure composed of graphyne flake and graphene (nitride) flake, i.e., graphyne/graphene, graphyne/h-BN, graphyne/AlN, graphyne/GaN. The charge stored by each flake, energy storage, and capacitance are switchable under external electric field. Thus, our modeled heterostructures are a good candidate as nanoscale capacitor and can be used in nanocircuit. We found that the charge stored by each flake, energy storage, and capacitance value are highest for graphyne/GaN heterostructures.

  3. Perovskite Oxide Thin Film Growth, Characterization, and Stability

    Science.gov (United States)

    Izumi, Andrew

    Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials. Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough

  4. Band gap and mobility of epitaxial perovskite BaSn1 -xHfxO3 thin films

    Science.gov (United States)

    Shin, Juyeon; Lim, Jinyoung; Ha, Taewoo; Kim, Young Mo; Park, Chulkwon; Yu, Jaejun; Kim, Jae Hoon; Char, Kookrin

    2018-02-01

    A wide band-gap perovskite oxide BaSn O3 is attracting much attention due to its high electron mobility and oxygen stability. On the other hand, BaHf O3 was recently reported to be an effective high-k gate oxide. Here, we investigate the band gap and mobility of solid solutions of BaS n1 -xH fxO3 (x =0 -1 ) (BSHO) as a basis to build advanced perovskite oxide heterostructures. All the films were epitaxially grown on MgO substrates using pulsed laser deposition. Density functional theory calculations confirmed that Hf substitution does not create midgap states while increasing the band gap. From x-ray diffraction and optical transmittance measurements, the lattice constants and the band-gap values are significantly modified by Hf substitution. We also measured the transport properties of n -type La-doped BSHO films [(Ba ,La ) (Sn ,Hf ) O3 ] , investigating the feasibility of modulation doping in the BaSn O3/BSHO heterostructures. The Hall measurement data revealed that, as the Hf content increases, the activation rate of the La dopant decreases and the scattering rate of the electrons sharply increases. These properties of BSHO films may be useful for applications in various heterostructures based on the BaSn O3 system.

  5. Structural Properties of Ferroelectric Perovskites

    National Research Council Canada - National Science Library

    Vanderbilt, David

    1998-01-01

    Under this research grant, we carried out realistic first-principles computer calculations of the ground-state and finite-temperature structural and dielectric properties of cubic perovskite materials...

  6. Thermal response in van der Waals heterostructures

    KAUST Repository

    Gandi, Appala; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2016-01-01

    We solve numerically the Boltzmann transport equations of the phonons and electrons to understand the thermoelectric response in heterostructures of M2CO2 (M: Ti, Zr, Hf) MXenes with transition metal dichalcogenide monolayers. Low frequency optical

  7. Impurity-induced states in superconducting heterostructures

    Science.gov (United States)

    Liu, Dong E.; Rossi, Enrico; Lutchyn, Roman M.

    2018-04-01

    Heterostructures allow the realization of electronic states that are difficult to obtain in isolated uniform systems. Exemplary is the case of quasi-one-dimensional heterostructures formed by a superconductor and a semiconductor with spin-orbit coupling in which Majorana zero-energy modes can be realized. We study the effect of a single impurity on the energy spectrum of superconducting heterostructures. We find that the coupling between the superconductor and the semiconductor can strongly affect the impurity-induced states and may induce additional subgap bound states that are not present in isolated uniform superconductors. For the case of quasi-one-dimensional superconductor/semiconductor heterostructures we obtain the conditions for which the low-energy impurity-induced bound states appear.

  8. Wave mechanics applied to semiconductor heterostructures

    International Nuclear Information System (INIS)

    Bastard, G.

    1990-01-01

    This book examines the basic electronic and optical properties of two dimensional semiconductor heterostructures based on III-V and II-VI compounds. The book explores various consequences of one-dimensional size-quantization on the most basic physical properties of heterolayers. Beginning with basic quantum mechanical properties of idealized quantum wells and superlattices, the book discusses the occurrence of bound states when the heterostructure is imperfect or when it is shone with near bandgap light

  9. Multifunctional optoelectronic devices based on perovskites

    KAUST Repository

    Saidaminov, Makhsud I.; Bakr, Osman

    2017-01-01

    Embodiments of the present disclosure provide methods of growing halide films (e.g., single crystal halide perovskites or multi-crystal halide perovskites) on a structure, dual-mode photodetectors, methods of use, and the like.

  10. Photocatalysis: HI-time for perovskites

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard

    2017-01-01

    Organolead halide perovskite solar absorbers demonstrate high photovoltaic efficiencies but they are notorious for their intolerance to water. Now, methylammonium lead iodide perovskites are used to harvest solar energy — in water — via photocatalytic generation of hydrogen from solutions...

  11. Multifunctional optoelectronic devices based on perovskites

    KAUST Repository

    Saidaminov, Makhsud I.

    2017-10-19

    Embodiments of the present disclosure provide methods of growing halide films (e.g., single crystal halide perovskites or multi-crystal halide perovskites) on a structure, dual-mode photodetectors, methods of use, and the like.

  12. Interfacial B-site atomic configuration in polar (111) and non-polar (001) SrIrO3/SrTiO3 heterostructures

    Science.gov (United States)

    Anderson, T. J.; Zhou, H.; Xie, L.; Podkaminer, J. P.; Patzner, J. J.; Ryu, S.; Pan, X. Q.; Eom, C. B.

    2017-09-01

    The precise control of interfacial atomic arrangement in ABO3 perovskite heterostructures is paramount, particularly in cases where the subsequent electronic properties of the material exhibit geometrical preferences along polar crystallographic directions that feature inevitably complex surface reconstructions. Here, we present the B-site interfacial structure in polar (111) and non-polar (001) SrIrO3/SrTiO3 interfaces. The heterostructures were examined using scanning transmission electron microscopy and synchrotron-based coherent Bragg rod analysis. Our results reveal the preference of B-site intermixing across the (111) interface due to the polarity-compensated SrTiO3 substrate surface prior to growth. By comparison, the intermixing at the non-polar (001) interface is negligible. This finding suggests that the intermixing may be necessary to mitigate epitaxy along heavily reconstructed and non-stoichiometric (111) perovskite surfaces. Furthermore, this preferential B-site configuration could allow the geometric design of the interfacial perovskite structure and chemistry to selectively engineer the correlated electronic states of the B-site d-orbital.

  13. Interfacial B-site atomic configuration in polar (111 and non-polar (001 SrIrO3/SrTiO3 heterostructures

    Directory of Open Access Journals (Sweden)

    T. J. Anderson

    2017-09-01

    Full Text Available The precise control of interfacial atomic arrangement in ABO3 perovskite heterostructures is paramount, particularly in cases where the subsequent electronic properties of the material exhibit geometrical preferences along polar crystallographic directions that feature inevitably complex surface reconstructions. Here, we present the B-site interfacial structure in polar (111 and non-polar (001 SrIrO3/SrTiO3 interfaces. The heterostructures were examined using scanning transmission electron microscopy and synchrotron-based coherent Bragg rod analysis. Our results reveal the preference of B-site intermixing across the (111 interface due to the polarity-compensated SrTiO3 substrate surface prior to growth. By comparison, the intermixing at the non-polar (001 interface is negligible. This finding suggests that the intermixing may be necessary to mitigate epitaxy along heavily reconstructed and non-stoichiometric (111 perovskite surfaces. Furthermore, this preferential B-site configuration could allow the geometric design of the interfacial perovskite structure and chemistry to selectively engineer the correlated electronic states of the B-site d-orbital.

  14. Multiferroicity in oxide thin films and heterostructures

    International Nuclear Information System (INIS)

    Glavic, Artur

    2012-01-01

    In this work a variety of different systems of transition metal oxides ABO 3 (perovskite materials, where B stands for a transition metal and A for a rare earth element) were produced as thin films and heterostructures and analyzed for the structural, magnetic and ferroelectric properties. For the epitaxial film preparation mostly pulse laser deposition (PLD) was applied. For one series high pressure oxide sputter deposition was used as well. The bulk multiferroics TbMnO 3 and DyMnO 3 , which develop their electric polarization due to a cycloidal magnetic order, have been prepared as single layers with thicknesses between 2 and 200 nm on YAlO 3 substrates using PLD and sputter deposition. The structural characterization of the surfaces and crystal structure where performed using X-ray reflectometry and diffraction, respectively. These yielded low surface roughness and good epitaxial growth. The magnetic behavior was macroscopically measured with SQUID magnetometry and microscopically with polarized neutron diffraction and resonant magnetic X-ray scattering. While all investigated samples showed antiferromagnetic order, comparable with the collinear magnetic phase of their bulk materials, only the sputter deposited samples exhibited the multiferroic low temperature cycloidal order. The investigation of the optical second harmonic generation in a TbMnO 3 sample could proof the presence of a ferroelectric order in the low temperature phase. The respective transition temperatures of the thin films have been very similar to those of the bulk materials. In contrast an increase in the rare earth ordering temperature has been observed, which reduces the Mn order slightly, an effect not known from bulk TbMnO 3 crystals. The coupling of the antiferromagnetic order in TbMnO 3 to ferromagnetic layers of LaCoO 3 was investigated in super-lattices containing 20 bilayers produced with PLD on the same substrates. The SQUID magnetometry yielded a strong influence of the

  15. Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy

    Science.gov (United States)

    Kindsmüller, A.; Schmitz, C.; Wiemann, C.; Skaja, K.; Wouters, D. J.; Waser, R.; Schneider, C. M.; Dittmann, R.

    2018-04-01

    The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.

  16. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  17. 2D Vertical Heterostructures for Novel Tunneling Device Applications

    Science.gov (United States)

    2017-03-01

    2D Vertical Heterostructures for Novel Tunneling Device Applications Philip M. Campbell, Christopher J. Perini, W. Jud Ready, and Eric M. Vogel...School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA, USA 30332 Abstract: Vertical heterostructures...digital logic, signal processing, analog-to-digital conversion, and high-frequency communications, vertical heterostructure tunneling devices have

  18. Stability Issues on Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2015-11-01

    Full Text Available Organo lead halide perovskite materials like methylammonium lead iodide (CH3NH3PbI3 and formamidinium lead iodide (HC(NH22PbI3 show superb opto-electronic properties. Based on these perovskite light absorbers, power conversion efficiencies of the perovskite solar cells employing hole transporting layers have increased from 9.7% to 20.1% within just three years. Thus, it is apparent that perovskite solar cell is a promising next generation photovoltaic technology. However, the unstable nature of perovskite was observed when exposing it to continuous illumination, moisture and high temperature, impeding the commercial development in the long run and thus becoming the main issue that needs to be solved urgently. Here, we discuss the factors affecting instability of perovskite and give some perspectives about further enhancement of stability of perovskite solar cell.

  19. Patterning of Perovskite Single Crystals

    KAUST Repository

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  20. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  1. Multilayer heterostructures and their manufacture

    Science.gov (United States)

    Hammond, Scott R; Reese, Matthew; Rupert, Benjamin; Miedaner, Alexander; Curtis, Clavin; Olson, Dana; Ginley, David S

    2015-11-04

    A method of synthesizing multilayer heterostructures including an inorganic oxide layer residing on a solid substrate is described. Exemplary embodiments include producing an inorganic oxide layer on a solid substrate by a liquid coating process under relatively mild conditions. The relatively mild conditions include temperatures below 225.degree. C. and pressures above 9.4 mb. In an exemplary embodiment, a solution of diethyl aluminum ethoxide in anhydrous diglyme is applied to a flexible solid substrate by slot-die coating at ambient atmospheric pressure, and the diglyme removed by evaporation. An AlO.sub.x layer is formed by subjecting material remaining on the solid substrate to a relatively mild oven temperature of approximately 150.degree. C. The resulting AlO.sub.x layer exhibits relatively high light transmittance and relatively low vapor transmission rates for water. An exemplary embodiment of a flexible solid substrate is polyethylene napthalate (PEN). The PEN is not substantially adversely affected by exposure to 150.degree. C

  2. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  3. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.; Yang, Y.; Zhao, Y.L., E-mail: sdyulong@cumt.edu.cn; Che, M.; Zhu, L.; Gu, X.Q.; Qiang, Y.H., E-mail: yhqiang@cumt.edu.cn

    2017-03-15

    Highlights: • Perovskite films were post-treated by DMF/CBZ, DMSO/CBZ, or GBL/CBZ blend solvents. • This process could repair pinholes and enhance coverage in perovskite film. • This technique could modify charge transfer process at TiO{sub 2}/perovskite interface. - Abstract: A homogenous perovskite thin film with high coverage is a determining factor for high performance perovskite solar cells. Unlike previous pre-treatments aiming at perovskite precursor, we proposed a simple method to modify the morphology of perovskite films by post-treatment process using mixed solvents of N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or 1,4-butyrolactone (GBL) with chlorobenzene (CBZ) in this paper. As good solvent of perovskite, DMF, DMSO, and GBL could dissolve the formed perovskite film. Meanwhile, CBZ, anti-solvent of perovskite film, could decrease the dissolving capacity of these good solvents. Therefore, the perovskite film coverage might be improved by the partial dissolution and recrystallization after solvent post-treatment process. Electrochemical impedance spectrometry (EIS) and time-resolved photoluminescence (TRPL) indicated that this post-treatment process could enhance charge transfer at TiO{sub 2}/perovskite interface. Finally, the conversion efficiency increased from 10.10% to 11.82%, 11.68%, and 10.66% using perovskite films post-treated by DMF/CBZ, DMSO/CBZ, and GBL/CBZ blend solvents, respectively.

  4. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    Science.gov (United States)

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  5. Systems and methods for scalable perovskite device fabrication

    Science.gov (United States)

    Huang, Jinsong; Dong, Qingfeng; Sao, Yuchuan

    2017-02-28

    Continuous processes for fabricating a perovskite device are described that include using a doctor blade for continuously forming a perovskite layer and using a conductive tape lamination process to form an anode or a cathode layer on the perovskite device.

  6. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  7. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    grain surfaces have also been proposed to act as tunnel barriers in Sr2FeMoO6. ... these double perovskites, a gradual decrease in the low-field MR and saturation ... simultaneously, and therefore serious material engineering was needed.

  8. Vibrational spectra of ordered perovskites

    NARCIS (Netherlands)

    Corsmit, A.F.; Hoefdraad, H.E.; Blasse, G.

    1972-01-01

    The vibrational spectra of the molecular M6+O6 (M = Mo, Te, W) group in ordered perovskites of the type Ba2M2+M6+O6 are reported. These groups have symmetry Oh, whereas their site symmetry is also Oh. An assignment of the internal vibrations is presented.

  9. Thermochromic halide perovskite solar cells

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  10. Thermochromic halide perovskite solar cells.

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  11. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    2015-05-28

    May 28, 2015 ... Tunnelling magnetoresistance (TMR) in polycrystalline double perovskites has been an important research topic for more than a decade now, where the nature of the insulating tunnel barrier is the core issue of debate. Other than the nonmagnetic grain boundaries as conventional tunnel barriers, intragrain ...

  12. Perovskite catalysts for oxidative coupling

    Science.gov (United States)

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  13. Planar-integrated single-crystalline perovskite photodetectors

    KAUST Repository

    Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L.; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H.; Bakr, Osman

    2015-01-01

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals

  14. Ligand-Stabilized Reduced-Dimensionality Perovskites

    KAUST Repository

    Quan, Li Na; Yuan, Mingjian; Comin, Riccardo; Voznyy, Oleksandr; Beauregard, Eric M.; Hoogland, Sjoerd; Buin, Andrei; Kirmani, Ahmad R.; Zhao, Kui; Amassian, Aram; Kim, Dong Ha; Sargent, Edward H.

    2016-01-01

    Metal halide perovskites have rapidly advanced thin film photovoltaic performance; as a result, the materials’ observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions; and these drive an increased formation energy and should therefore improve material stability. Here we report the reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieved the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

  15. Ligand-Stabilized Reduced-Dimensionality Perovskites

    KAUST Repository

    Quan, Li Na

    2016-02-03

    Metal halide perovskites have rapidly advanced thin film photovoltaic performance; as a result, the materials’ observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions; and these drive an increased formation energy and should therefore improve material stability. Here we report the reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieved the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

  16. Cerium luminescence in nd0 perovskites

    International Nuclear Information System (INIS)

    Setlur, A.A.; Happek, U.

    2010-01-01

    The luminescence of Ce 3+ in perovskite (ABO 3 ) hosts with nd 0 B-site cations, specifically Ca(Hf,Zr)O 3 and (La,Gd)ScO 3 , is investigated in this report. The energy position of the Ce 3+ excitation and emission bands in these perovskites is compared to those of typical Al 3+ perovskites; we find a Ce 3+ 5d 1 centroid shift and Stokes shift that are larger versus the corresponding values for the Al 3+ perovskites. It is also shown that Ce 3+ luminescence quenching is due to Ce 3+ photoionization. The comparison between these perovskites shows reasonable correlations between Ce 3+ luminescence quenching, the energy position of the Ce 3+ 5d 1 excited state with respect to the host conduction band, and the host composition. - Graphical abstract: Ce 3+ decay times versus temperature for perovskites with nd 0 B-site cations.

  17. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c. depos...

  18. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications

    Institute of Scientific and Technical Information of China (English)

    Yiliu Wang; Xun Guan; Dehui Li; Hung-Chieh Cheng; Xidong Duan; Zhaoyang Lin; Xiangfeng Duan

    2017-01-01

    Orgaruc-inorganic hybrid halide perovskites,such as CH3NH3PbI3,have emerged as an exciting class of materials for solar photovoltaic applications;however,they are currently plagued by insufficient environmental stability.To solve this issue,all-inorganic halide perovskites have been developed and shown to exhibit significantly improved stability.Here,we report a single-step chemical vapor deposition growth of cesium lead halide (CsPbX3) microcrystals.Optical microscopy studies show that the resulting perovskite crystals predominantly adopt a square-platelet morphology.Powder X-ray diffraction (PXRD) studies of the resulting crystals demonstrate a highly crystalline nature,with CsPbC13,CsPbBr3,and CsPbI3 showing tetragonal,monoclinic,and orthorhombic phases,respectively.Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies show that the resulting platelets exhibit well-faceted structures with lateral dimensions of the order of 10-50 μm,thickness around 1 μm,and ultra-smooth surface,suggesting the absence of obvious grain boundaries and the single-crystalline nature of the individual microplatelets.Photoluminescence (PL) images and spectroscopic studies show a uniform and intense emission consistent with the expected band edge transition.Additionally,PL images show brighter emission around the edge of the platelets,demonstrating a wave-guiding effect in high-quality crystals.With a well-defined geometry and ultra-smooth surface,the square platelet structure can function as a whispering gallery mode cavity with a quality factor up to 2,863 to support laser emission at room temperature.Finally,we demonstrate that such microplatelets can be readily grown on a variety of substrates,including silicon,graphene,and other two-dimensional materials such as molybdenum disulfide,which can readily allow the construction of heterostructure optoelectronic devices,including a graphene/perovskite/ graphene vertically-stacked photodetector with

  19. Perovskites synthesis to SOFC anodes

    International Nuclear Information System (INIS)

    Wendler, L.P.; Chinelatto, A.L.; Chinelatto, A.S.A.; Ramos, K.

    2012-01-01

    Perovskite structure materials containing lanthanum have been widely applied as solid oxide fuel cells (SOFCs) electrodes, due to its electrical properties. Was investigated the obtain of the perovskite structure LaCr 0,5 Ni 0,5 O 3 , by Pechini method, and its suitability as SOFC anode. The choice of this composition was based on the stability provided by chromium and the catalytic properties of nickel. After preparing the resins, the samples were calcined at 300 deg C, 600 deg C, 700 deg C and 850 deg C. The resulting powders were characterized by X-ray diffraction to determine the existing phases. Furthermore, were performed other analysis, like X-ray fluorescence, He pycnometry, specific surface area by BET isotherm and scanning electronic microscopy (author)

  20. Heterostructures based on inorganic and organic van der Waals systems

    International Nuclear Information System (INIS)

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-01-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS 2 heterostructures for memory devices; graphene/MoS 2 /WSe 2 /graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors

  1. New type of in-gap states at a spinel/perovskite interface: combined resonant soft x-ray photoemission spectroscopy and first-principles study.

    Science.gov (United States)

    Borisov, Vladislav; Schuetz, Philipp; Pfaff, Florian; Scheiderer, Philipp; Dudy, Lenart; Zapf, Michael; Gabel, Judith; Christensen, Dennis Valbjorn; Chen, Yunzhong; Pryds, Nini; Strocov, Vladimir; Rogalev, Victor; Schlueter, Christoph; Lee, Tien-Lin; Jeschke, Harald O.; Valenti, Roser; Sing, Michael; Claessen, Ralph

    Oxygen vacancies in oxide heterostructures create a plethora of electronic phenomena not observed in the stoichiometric systems. In this talk we will discuss the presence of a new type of in-gap states at the spinel/perovskite γ-Al2O3/SrTiO3 interface, as observed in soft x-ray resonant photoemission spectroscopy. Based on ab initio calculations and crystal-field analysis of different atomic environments, we identify the origin of this behavior and we argue on the possible origin of the extraordinarily high electron mobility measured in this heterostructure. This work was financially supported by the Deutsche Forschungsgemeinschaft SFB/TR 49 and SFB 1170.

  2. Anomalous Interface and Surface Strontium Segregation in (La 1– y Sr y ) 2 CoO 4±δ /La 1– x Sr x CoO 3−δ Heterostructured Thin Films

    KAUST Repository

    Feng, Zhenxing

    2014-03-20

    Heterostructured oxides have shown unusual electrochemical properties including enhanced catalytic activity, ion transport, and stability. In particular, it has been shown recently that the activity of oxygen electrocatalysis on the Ruddlesden-Popper/perovskite (La1-ySr y)2CoO4±δ/La1-xSr xCoO3-δ heterostructure is remarkably enhanced relative to the Ruddlesden-Popper and perovskite constituents. Here we report the first atomic-scale structure and composition of (La1-ySr y)2CoO4±δ/La1-xSr xCoO3-δ grown on SrTiO3. We observe anomalous strontium segregation from the perovskite to the interface and the Ruddlesden-Popper phase using direct X-ray methods as well as with ab initio calculations. Such Sr segregation occurred during the film growth, and no significant changes were found upon subsequent annealing in O2. Our findings provide insights into the design of highly active catalysts for oxygen electrocatalysis. © 2014 American Chemical Society.

  3. Anomalous Interface and Surface Strontium Segregation in (La 1– y Sr y ) 2 CoO 4±δ /La 1– x Sr x CoO 3−δ Heterostructured Thin Films

    KAUST Repository

    Feng, Zhenxing; Yacoby, Yizhak; Gadre, Milind J.; Lee, Yueh-Lin; Hong, Wesley T.; Zhou, Hua; Biegalski, Michael D.; Christen, Hans M.; Adler, Stuart B.; Morgan, Dane; Shao-Horn, Yang

    2014-01-01

    Heterostructured oxides have shown unusual electrochemical properties including enhanced catalytic activity, ion transport, and stability. In particular, it has been shown recently that the activity of oxygen electrocatalysis on the Ruddlesden-Popper/perovskite (La1-ySr y)2CoO4±δ/La1-xSr xCoO3-δ heterostructure is remarkably enhanced relative to the Ruddlesden-Popper and perovskite constituents. Here we report the first atomic-scale structure and composition of (La1-ySr y)2CoO4±δ/La1-xSr xCoO3-δ grown on SrTiO3. We observe anomalous strontium segregation from the perovskite to the interface and the Ruddlesden-Popper phase using direct X-ray methods as well as with ab initio calculations. Such Sr segregation occurred during the film growth, and no significant changes were found upon subsequent annealing in O2. Our findings provide insights into the design of highly active catalysts for oxygen electrocatalysis. © 2014 American Chemical Society.

  4. A review of nano-optics in metamaterial hybrid heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, Western University, London N6G 3K7 (Canada)

    2014-03-31

    We present a review for the nonlinear nano-optics in quantum dots doped in a metamaterial heterostructure. The heterostructure is formed by depositing a metamaterial on a dielectric substrate and ensemble of noninteracting quantum dots are doped near the heterostructure interface. It is shown that there is enhancement of the second harmonic generation due to the surface plasmon polaritons field present at the interface.

  5. Preparation of PZT/YBCO/YAlO heterostructure thin films by KrF excimer laser ablation

    International Nuclear Information System (INIS)

    Ebihara, Kenji; Kurogi, Hiromitsu; Yamagata, Yukihiko; Ikegami, Tomoaki; Grishin, A.M.

    1998-01-01

    The perovskite oxide YBa 2 Cu 3 O 7-x (YBCO) and Pb(Zr x Ti 1-x )O 3 (PZT) thin films have been deposited for superconducting-ferroelectric devices. KrF excimer laser ablation technique was used at the deposition conditions of 200--600 mTorr O 2 , 2-3J/cm 2 and 5--10 Hz operation frequency. Heterostructures of PZT-YBCO-YAlO 3 :Nd show the zero resistivity critical temperature of 82 K and excellent ferroelectric properties of remnant polarization 32 microC/cm 2 , coercive force of 80 kV/cm and dielectric constant 800. Cycling fatigue characteristics and leakage current are also discussed

  6. Vertical-Cavity In-plane Heterostructures: Physics and Applications

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2015-01-01

    We show that the in-plane heterostructures realized in vertical cavities with high contrast grating(HCG) reflector enables exotic configurations of heterostructure and photonic wells. In photonic crystal heterostructures forming a photonic well, the property of a confined mode is determined...... by the well width and barrier height. We show that in vertical-cavity in-plane heterostructures, anisotropic dispersion curvatures plays a key role as well, leading to exotic effects such as a photonic well with conduction band like well and a valence band like barrier. We investigate three examples...

  7. Thermal response in van der Waals heterostructures

    KAUST Repository

    Gandi, Appala

    2016-11-21

    We solve numerically the Boltzmann transport equations of the phonons and electrons to understand the thermoelectric response in heterostructures of M2CO2 (M: Ti, Zr, Hf) MXenes with transition metal dichalcogenide monolayers. Low frequency optical phonons are found to occur as a consequence of the van der Waals bonding, contribute significantly to the thermal transport, and compensate for the reduced contributions of the acoustic phonons (increased scattering cross-sections in heterostructures), such that the thermal conductivities turn out to be similar to those of the bare MXenes. Our results indicate that the important superlattice design approach of thermoelectrics (to reduce the thermal conductivity) may be effective for two-dimensional van der Waals materials when used in conjunction with intercalation. © 2016 IOP Publishing Ltd.

  8. Superconducting cuprate heterostructures for hot electron bolometers

    Science.gov (United States)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  9. Superconducting cuprate heterostructures for hot electron bolometers

    International Nuclear Information System (INIS)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-01-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La 2−x Sr x CuO 4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV∼γI 3 , with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g e−ph ≈1 W/K cm 2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity

  10. Ultrafast strain engineering in complex oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Paul; Caviglia, Andrea; Hu, Wanzheng; Bromberger, Hubertus; Singla, Rashmi; Mitrano, Matteo; Hoffmann, Matthias C.; Kaiser, Stefan; Foerst, Michael [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Scherwitzl, Raoul; Zubko, Pavlo; Gariglio, Sergio; Triscone, Jean-Marc [Departement de Physique de la Matiere Condensee, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneve 4, Geneva (Switzerland); Cavalleri, Andrea [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Department of Physics, Clarendon Laboratory, University of Oxford (United Kingdom)

    2012-07-01

    The mechanical coupling between the substrate and the thin film is expected to be effective on the ultrafast timescale, and could be exploited for the dynamic control of materials properties. Here, we demonstrate that a large-amplitude mid-infrared field, made resonant with a stretching mode of the substrate, can switch the electronic properties of a thin film across an interface. Exploiting dynamic strain propagation between different components of a heterostructure, insulating antiferromagnetic NdNiO{sub 3} is driven through a prompt, five-order-of-magnitude increase of the electrical conductivity, with resonant frequency and susceptibility that is controlled by choice of the substrate material. Vibrational phase control, extended here to a wide class of heterostructures and interfaces, may be conductive to new strategies for electronic phase control at THz repetition rates.

  11. Multiple scattering theory for superconducting heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ujfalussy, Balazs [Wigner Research Centre for Physics, Budapest (Hungary)

    2016-07-01

    We generalize the screened Korringa-Kohn-Rostoker method for solving the corresponding Kohn-Sham-Bogoliubov-de Gennes equations for surfaces and interfaces. As an application of the theory, we study the quasiparticle spectrum of Au overlayers on a Nb(100) host. We find that within the superconducting gap region, the quasiparticle spectrum consists of Andreev bound states with a dispersion which is closely connected to the underlying electronic structure of the overlayer. We also find that the spectrum has a strongly k-dependent induced gap. The properties of the gap are discussed in relation to the thickness of the overlayer, and it is shown that certain states do not participate in the Andreev scattering process. From the thickness dependence of the gap size we calculate the superconducting critical temperature of Au/Nb(100) heterostructures what we compare with with experiments. Moreover, predictions are made for similar heterostructures of other compounds.

  12. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F.; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  13. Oxyfluoride Chemistry of Layered Perovskite Compounds

    Directory of Open Access Journals (Sweden)

    Yoshihiro Tsujimoto

    2012-03-01

    Full Text Available In this paper, we review recent progress and new challenges in the area of oxyfluoride perovskite, especially layered systems including Ruddlesden-Popper (RP, Dion-Jacobson (DJ and Aurivillius (AV type perovskite families. It is difficult to synthesize oxyfluoride perovskite using a conventional solid-state reaction because of the high chemical stability of the simple fluoride starting materials. Nevertheless, persistent efforts made by solid-state chemists have led to a major breakthrough in stabilizing such a mixed anion system. In particular, it is known that layered perovskite compounds exhibit a rich variety of O/F site occupation according to the synthesis used. We also present the synthetic strategies to further extend RP type perovskite compounds, with particular reference to newly synthesized oxyfluorides, Sr2CoO3F and Sr3Fe2O5+xF2−x (x ~ 0.44.

  14. Non-collinear magnetism in multiferroic perovskites.

    Science.gov (United States)

    Bousquet, Eric; Cano, Andrés

    2016-03-31

    We present an overview of the current interest in non-collinear magnetism in multiferroic perovskite crystals. We first describe the different microscopic mechanisms giving rise to the non-collinearity of spins in this class of materials. We discuss, in particular, the interplay between non-collinear magnetism and ferroelectric and antiferrodistortive distortions of the perovskite structure, and how this can promote magnetoelectric responses. We then provide a literature survey on non-collinear multiferroic perovskites. We discuss numerous examples of spin cantings driving weak ferromagnetism in transition metal perovskites, and of spin-induced ferroelectricity as observed in the rare-earth based perovskites. These examples are chosen to best illustrate the fundamental role of non-collinear magnetism in the design of multiferroicity.

  15. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  16. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  17. Proximity effects in topological insulator heterostructures

    International Nuclear Information System (INIS)

    Li Xiao-Guang; Wu Guang-Fen; Zhang Gu-Feng; Culcer Dimitrie; Zhang Zhen-Yu; Chen Hua

    2013-01-01

    Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. (topical review - low-dimensional nanostructures and devices)

  18. Graphene diamond-like carbon films heterostructure

    International Nuclear Information System (INIS)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-01-01

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications

  19. Voltage control of magnetism in multiferroic heterostructures.

    Science.gov (United States)

    Liu, Ming; Sun, Nian X

    2014-02-28

    Electrical tuning of magnetism is of great fundamental and technical importance for fast, compact and ultra-low power electronic devices. Multiferroics, simultaneously exhibiting ferroelectricity and ferromagnetism, have attracted much interest owing to the capability of controlling magnetism by an electric field through magnetoelectric (ME) coupling. In particular, strong strain-mediated ME interaction observed in layered multiferroic heterostructures makes it practically possible for realizing electrically reconfigurable microwave devices, ultra-low power electronics and magnetoelectric random access memories (MERAMs). In this review, we demonstrate this remarkable E-field manipulation of magnetism in various multiferroic composite systems, aiming at the creation of novel compact, lightweight, energy-efficient and tunable electronic and microwave devices. First of all, tunable microwave devices are demonstrated based on ferrite/ferroelectric and magnetic-metal/ferroelectric composites, showing giant ferromagnetic resonance (FMR) tunability with narrow FMR linewidth. Then, E-field manipulation of magnetoresistance in multiferroic anisotropic magnetoresistance and giant magnetoresistance devices for achieving low-power electronic devices is discussed. Finally, E-field control of exchange-bias and deterministic magnetization switching is demonstrated in exchange-coupled antiferromagnetic/ferromagnetic/ferroelectric multiferroic hetero-structures at room temperature, indicating an important step towards MERAMs. In addition, recent progress in electrically non-volatile tuning of magnetic states is also presented. These tunable multiferroic heterostructures and devices provide great opportunities for next-generation reconfigurable radio frequency/microwave communication systems and radars, spintronics, sensors and memories.

  20. Synthesis, structural characterization and dielectric properties of Nb doped BaTiO3/SiO2 core–shell heterostructure

    International Nuclear Information System (INIS)

    Cernea, M.; Vasile, B.S.; Boni, A.; Iuga, A.

    2014-01-01

    Highlights: • Optimal parameters for preparation by sol–gel of core–shell (BT-Nb 0.005 )/SiO 2 are presented in this paper. • Single crystalline BT-Nb 0.005 /SiO 2 core–shell composite with ∼34 nm shell thick was prepared. • The core–shell ceramic exhibits good dielectric properties and ferroelectric characteristics. -- Abstract: Perovskite complex ceramic oxides, BaTiO 3 doped with 0.5 mol%Nb 2 O 5 and then nanocoated with SiO 2 (abbreviated as BT-Nb 0.005 /SiO 2 ) was successful prepared using conventional sol–gel processing. Phase composition, particle morphology, structure, and electric properties of BT-Nb 0.005 core and BT-Nb 0.005 /SiO 2 core–shell were examined and compared, using X-ray diffraction, transmission electron microscopy and, dielectric and ferroelectric measurements. Core–shell composite with well-defined perovskite tetragonal phase of BaTiO 3 was achieved. Furthermore, single crystalline BT-Nb 0.005 /SiO 2 core–nanoshell heterostructure with ∼34 nm shell thick was prepared, which is a novelty in ferroelectrics field. The ferroelectric quality of BT-Nb 0.005 has suffered an alteration when the (BT-Nb 0.005 )/SiO 2 core–shell heterostructure was realized. One-dimensional BT-Nb 0.005 /SiO 2 core–shell heterostructure exhibits an improvement of dielectric losses and a decrease of dielectric constant, compared to uncoated BT-Nb 0.005 . The (BT-Nb 0.005 )/SiO 2 core–shell material could be interesting for application in the composite capacitors

  1. Exchange bias coupling in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/BiFeO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Huijben, Mark; Chu, Ying-Hao; Martin, Lane W.; Seidel, Jan; Balke, Nina; Gajek, Martin; Yang, Chan-Ho; Yu, Pu; Holcomb, Micky; Ramesh, Ramamoorthy [Department of Physics and Department of Materials Science and Engineering, University of California, Berkeley (United States)

    2008-07-01

    Heterostructures based on perovskite transition-metal oxides have attracted much attention because of the possibility of tuning the magnetic and electronic properties of thin films through interface effects such as exchange interactions, charge transfer, and epitaxial strain. The development and understanding of multiferroic materials such as BiFeO{sub 3}, have piqued the interest with the promise of coupling between order parameters such as ferroelectricity and antiferromagnetism. In this study we investigate the magnetic properties in ferromagnetic-antiferromagnetic multiferroic heterostructures by using atomic scale controlled growth through laser-MBE in combination with real-time RHEED monitoring. We will show the controlled coupling at the interfaces in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/BiFeO{sub 3} heterostructures. This coupling behavior is investigated by structural measurements, such as X-ray reciprocal space mapping to clarify strained states, and magnetic measurements to gain a deeper fundamental understanding of the interactions at these interfaces. The interface coupling displays a strong enhancement in the coercivity of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} layer and a large shift in the magnetization hysteresis loops, indicating the existence of exchange bias coupling.

  2. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    Science.gov (United States)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  3. Direct Observation of Room-Temperature Stable Magnetism in LaAlO3/SrTiO3 Heterostructures.

    Science.gov (United States)

    Yang, Ming; Ariando; Zhou, Jun; Asmara, Teguh Citra; Krüger, Peter; Yu, Xiao Jiang; Wang, Xiao; Sanchez-Hanke, Cecilia; Feng, Yuan Ping; Venkatesan, T; Rusydi, Andrivo

    2018-03-21

    Along with an unexpected conducting interface between nonmagnetic insulating perovskites LaAlO 3 and SrTiO 3 (LaAlO 3 /SrTiO 3 ), striking interfacial magnetisms have been observed in LaAlO 3 /SrTiO 3 heterostructures. Interestingly, the strength of the interfacial magnetic moment is found to be dependent on oxygen partial pressures during the growth process. This raises an important, fundamental question on the origin of these remarkable interfacial magnetic orderings. Here, we report a direct evidence of room-temperature stable magnetism in a LaAlO 3 /SrTiO 3 heterostructure prepared at high oxygen partial pressure by using element-specific soft X-ray magnetic circular dichroism at both Ti L 3,2 and O K edges. By combining X-ray absorption spectroscopy at both Ti L 3,2 and O K edges and first-principles calculations, we qualitatively ascribe that this strong magnetic ordering with dominant interfacial Ti 3+ character is due to the coexistence of LaAlO 3 surface oxygen vacancies and interfacial (Ti Al -Al Ti ) antisite defects. On the basis of this new understanding, we revisit the origin of the weak magnetism in LaAlO 3 /SrTiO 3 heterostructures prepared at low oxygen partial pressures. Our calculations show that LaAlO 3 surface oxygen vacancies are responsible for the weak magnetism at the interface. Our result provides direct evidence on the presence of room-temperature stable magnetism and a novel perspective to understand magnetic and electronic reconstructions at such strategic oxide interfaces.

  4. Perovskite Solar Cells: Progress and Advancements

    Directory of Open Access Journals (Sweden)

    Naveen Kumar Elumalai

    2016-10-01

    Full Text Available Organic–inorganic hybrid perovskite solar cells (PSCs have emerged as a new class of optoelectronic semiconductors that revolutionized the photovoltaic research in the recent years. The perovskite solar cells present numerous advantages include unique electronic structure, bandgap tunability, superior charge transport properties, facile processing, and low cost. Perovskite solar cells have demonstrated unprecedented progress in efficiency and its architecture evolved over the period of the last 5–6 years, achieving a high power conversion efficiency of about 22% in 2016, serving as a promising candidate with the potential to replace the existing commercial PV technologies. This review discusses the progress of perovskite solar cells focusing on aspects such as superior electronic properties and unique features of halide perovskite materials compared to that of conventional light absorbing semiconductors. The review also presents a brief overview of device architectures, fabrication methods, and interface engineering of perovskite solar cells. The last part of the review elaborates on the major challenges such as hysteresis and stability issues in perovskite solar cells that serve as a bottleneck for successful commercialization of this promising PV technology.

  5. Oxygen permeation modelling of perovskites

    NARCIS (Netherlands)

    van Hassel, Bart A.; van Hassel, B.A.; Kawada, Tatsuya; Sakai, Natsuko; Yokokawa, Harumi; Dokiya, Masayuki; Bouwmeester, Henricus J.M.

    1993-01-01

    A point defect model was used to describe the oxygen nonstoichiometry of the perovskites La0.75Sr0.25CrO3, La0.9Sr0.1FeO3, La0.9Sr0.1CoO3 and La0.8Sr0.2MnO3 as a function of the oxygen partial pressure. Form the oxygen vacancy concentration predicte by the point defect model, the ionic conductivity

  6. Phonon model of perovskite thermal capacity

    International Nuclear Information System (INIS)

    Kesler, Ya.A.; Poloznikova, M.Eh.; Petrov, K.I.

    1983-01-01

    A model for calculating the temperature curve of thermal capacity of perovskite family crystals on the basis of vibrational spectra is proposed. Different representatives of the perovskite family: cubic SrTiO 3 , tetragonal BaTiO 3 and orthorbombic CaTiO 3 and LaCrO 3 are considered. The total frequency set is used in thermal capacity calcUlations. Comparison of the thermal capacity values of compounds calculated on the basis of the proposed model with the experimental values shows their good agreement. The method is also recommended for other compounds with the perovskite-like structure

  7. Photovoltaic Effect of 2D Homologous Perovskites

    International Nuclear Information System (INIS)

    Jung, Mi-Hee

    2017-01-01

    Highlights: • The mixed perovskite was prepared by exposure of MAI gas on the BAPbI_4 film. • The increased dimensional perovskite shows a smaller band gap than 2D perovskite. • The mixed perovskite system shows the vertical crystal orientation. • The mixed perovskite cell exhibits the higher Jsc and FF than 2D perovskite cell. - Abstract: The controlled growth of mixed dimensional perovskite structures, (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1, through the introduction of CH_3NH_3I molecule vapor into the two-dimensional perovskite C_6H_5CH_2NH_3PbI_4 structure and its application in photovoltaic devices is reported. The dimensionality of (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 is controlled using the exposure time to the CH_3NH_3I vapor on the C_6H_5CH_2NH_3PbI_4 perovskite film. As the stacking of the lead iodide lattice increases, the crystallographic planes of the inorganic perovskite compound exhibit vertical growth in order to facilitate efficient charge transport. Furthermore, the devices have a smaller band gap, which offers broader absorption and the potential to increase the photocurrent density in the solar cell. As a result, the photovoltaic device based on the (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 perovskite exhibits a power conversion efficiency of 5.43% with a short circuit current density of 14.49 mA cm"−"2, an open circuit voltage of 0.85 V, and a fill factor of 44.30 for the best power conversion efficiency under AM 1.5G solar irradiation (100 mW cm"−"2), which is significantly higher than the 0.34% of the pure two-dimensional BAPbI_4 perovskite-based solar cell.

  8. Calculated optical absorption of different perovskite phases

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2015-01-01

    We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...... of perovskites the solar light absorption efficiency varies greatly depending not only on bandgap size and character (direct/indirect) but also on the dipole matrix elements. The oxides exhibit generally a fairly weak absorption efficiency due to indirect bandgaps while the most efficient absorbers are found...... in the classes of oxynitride and organometal halide perovskites with strong direct transitions....

  9. Strongly correlated perovskite fuel cells

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  10. Exciton broadening in WS2 /graphene heterostructures

    International Nuclear Information System (INIS)

    Hill, Heather M.; Rigosi, Albert F.; Raja, Archana

    2017-01-01

    Here, we have used optical spectroscopy to observe spectral broadening of WS 2 exciton reflectance peaks in heterostructures of monolayer WS 2 capped with mono- to few-layer graphene. The broadening is found to be similar for the A and B excitons and on the order of 5–10 meV. No strong dependence on the number of graphene layers was observed within experimental uncertainty. The broadening can be attributed to charge- and energy-transfer processes between the two materials, providing an observed lower bound for the corresponding time scales of 65 fs.

  11. Neutral Color Semitransparent Microstructured Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.; Burlakov, Victor M.; Goriely, Alain; Snaith, Henry J.

    2014-01-01

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form

  12. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng; Ma, Chun; Wang, Hong; Hu, Weijin; Yu, Weili; Sheikh, Arif D.; Wu, Tao

    2015-01-01

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors

  13. Perovskites As Electrocatalysts for Alkaline Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; De La Osa Puebla, Ana Raquel; Jensen, Jens Oluf

    2014-01-01

    such as X-ray diffraction, electrical conductivity, scanning electron microscopy (SEM), energy dispersive microscopy (EDX) and rotating disk electrode. The perovskites tested in this work were both produced by a ball-milling technique and by an auto-combustion synthesis, which appeared to be a fast...... and robust method for synthesis of perovskites with various chemical compositions1. The electrochemical performance of the materials was tested through pellet pressing of the perovskite powders. This involved in some case a time consuming preparation process. Furthermore the technique should show...... the adequate reproducibility.2 In this work we show the development of the method, which was further used to compare the activity of various electrocatalysts (Figures 1,2). The electrocatalytic activity of all prepared perovskites was tested in 1M KOH at 80 °C, using an ink consisting of potassium exchanged...

  14. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.; Bakr, Osman; Kamat, Prashant V.

    2016-01-01

    To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice

  15. Scalable fabrication of perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe; Yang, Mengjin; Berry, Joseph J.; van Hest, Maikel F. A. M.; Zhu, Kai

    2018-03-27

    Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discuss common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.

  16. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.; Hoogland, Sjoerd; Adachi, Michael M.; Kanjanaboos, Pongsakorn; Wong, Chris T. O.; McDowell, Jeffrey J.; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J.; Sargent, Edward H.

    2014-01-01

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  17. Thermodynamic stability and kinetics of perovskite dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, H W; Bancroft, G M; Fyfe, W S; Karkhanis, S N; Nishijima, A [Western Ontario Univ., London (Canada); Shin, S [National Chemical Lab. for Industry, Tsukuba (Japan)

    1981-01-29

    Perovskite, a SYNROC host mineral for nuclear wastes, is thermodynamically unstable in natural waters and in association with common minerals. Leach experiments demonstrate that CaTiO/sub 3/ (perovskite), SrTiO/sub 3/ and BaTiO/sub 3/ are as reactive as some silicate glasses below 100/sup 0/C, but leach much more slowly than glasses above 100/sup 0/C.

  18. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  19. Magnetic and Transport Properties of Heterostructured Films of Prussian Blue Analogues and Manganites

    Science.gov (United States)

    Quintero, P. A.; Jeen, H.; Knowles, E. S.; Biswas, A.; Meisel, M. W.; Andrus, M. J.; Talham, D. R.

    2011-03-01

    The magnetic and transport properties of heterostructured films consisting of Prussian blue analogues, Aj M' k [M(CN)6 ]l . n H2 O (M' M-PBA), where A is an alkali ion and M' ,M are transition metals, and manganites have been studied. Specifically, NiCr-PBA and CoFe-PBA films of ~ 100 ~nm thickness have been deposited on perovskite (La 1-y Pr y)0.67 Ca 0.33 Mn O3 (LPCMO) manganese films of ~ 30 ~nm thickness. The effect of the ferromagnetic NiCr-PBA, Tc ~ 70 ~K, and the photo-controllable ferrimagnetic CoFe-PBA, Tc ~ 20 ~K, on the I-V properties of the LPCMO will be reported, where special attention will be given to the changes of the transition temperatures of the ferromagnetic metallic (FMM) and the charge-ordered insulating (COI) phases in the LPCMO substrate. ** Supported by NSF DMR-0701400 (MWM), DMR-0804452 (AB), DMR-1005581 (DRT), DMR-0654118 (NHMFL), and by scholarship from the Organization of American States (PAQ). D.M.~Pajerowski et al., J.~Am.~Chem. Soc. 132 (2010) 4058.

  20. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng

    2015-09-08

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications.

  1. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    Science.gov (United States)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  2. Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains.

    Science.gov (United States)

    Hou, Xian; Huang, Sumei; Ou-Yang, Wei; Pan, Likun; Sun, Zhuo; Chen, Xiaohong

    2017-10-11

    A high-quality perovskite film with interconnected perovskite grains was obtained by incorporating terephthalic acid (TPA) additive into the perovskite precursor solution. The presence of TPA changed the crystallization kinetics of the perovskite film and promoted lateral growth of grains in the vicinity of crystal boundaries. As a result, sheet-shaped perovskite was formed and covered onto the bottom grains, which made some adjacent grains partly merge together to form grains-interconnected perovskite film. Perovskite solar cells (PSCs) with TPA additive exhibited a power conversion efficiency (PCE) of 18.51% with less hysteresis, which is obviously higher than that of pristine cells (15.53%). PSCs without and with TPA additive retain 18 and 51% of the initial PCE value, respectively, aging for 35 days exposed to relative humidity 30% in air without encapsulation. Furthermore, MAPbI 3 film with TPA additive shows superior thermal stability to the pristine one under 100 °C baking. The results indicate that the presence of TPA in perovskite film can greatly improve the performance of PSCs as well as their moisture resistance and thermal stability.

  3. Photonic slab heterostructures based on opals

    Science.gov (United States)

    Palacios-Lidon, Elisa; Galisteo-Lopez, Juan F.; Juarez, Beatriz H.; Lopez, Cefe

    2004-09-01

    In this paper the fabrication of photonic slab heterostructures based on artificial opals is presented. The innovated method combines high-quality thin-films growing of opals and silica infiltration by Chemical Vapor Deposition through a multi-step process. By varying structure parameters, such as lattice constant, sample thickness or refractive index, different heterostructures have been obtained. The optical study of these systems, carried out by reflectance and transmittance measurements, shows that the prepared samples are of high quality further confirmed by Scanning Electron Microscopy micrographs. The proposed novel method for sample preparation allows a high control of the involved structure parameters, giving the possibility of tunning their photonic behavior. Special attention in the optical response of these materials has been addressed to the study of planar defects embedded in opals, due to their importance in different photonic fields and future technological applications. Reflectance and transmission measurements show a sharp resonance due to localized states associated with the presence of planar defects. A detailed study of the defect mode position and its dependance on defect thickness and on the surrounding photonic crystal is presented as well as evidence showing the scalability of the problem. Finally, it is also concluded that the proposed method is cheap and versatile allowing the preparation of opal-based complex structures.

  4. Organic p-n heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Kowarik, Stefan [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hinderhofer, Alexander; Gerlach, Alexander; Schreiber, Frank [Institut fuer Angewandte Physik, Tuebingen (Germany); Osso, Oriol [MATGAS 2000 A.I.E., Esfera UAB, Barcelona (Spain); Wang, Cheng; Hexemer, Alexander [Advanced Light Source, Berkeley, CA (United States)

    2009-07-01

    For many applications of organic semiconductors two components such as e.g. n and p-type layers are required, and the morphology of such heterostructures is crucial for their performance. Pentacene (PEN) is one of the most promising p-type molecular semiconductors and recently perfluoro-pentacene (PFP) has been identified as a good electron conducting material for complementary circuits with PEN. We use soft and hard X-ray reflectivity measurements, scanning transmission X-ray microscopy (STXM) and atomic force microscopy for structural investigations of PFP-PEN heterostructures. The chemical contrast between PEN and PFP in STXM allows us to determine the lateral length scales of p and n domains in a bilayer. For a superlattice of alternating PFP and PEN layers grown by organic molecular beam deposition, X-ray reflectivity measurements demonstrate good structural order. We find a superlattice reflection that varies strongly when tuning the X-ray energy around the fluorine edge, demonstrating that there are indeed alternating PFP and PEN layers.

  5. Highly Confined Electronic and Ionic Conduction in Oxide Heterostructures

    DEFF Research Database (Denmark)

    Pryds, Nini

    2015-01-01

    The conductance confined at the interface of complex oxide heterostructures provides new opportunities to explore nanoelectronic as well as nanoionic devices. In this talk I will present our recent results both on ionic and electronic conductivity at different heterostructures systems. In the first...... unattainable for Bi2O3-based materials, is achieved[1]. These confined heterostructures provide a playground not only for new high ionic conductivity phenomena that are sufficiently stable but also uncover a large variety of possible technological perspectives. At the second part, I will discuss and show our...

  6. Oxygen perovskites with tetravalent neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G; Kristen, H [Freiburg Univ. (Germany, F.R.)

    1979-09-01

    Neodymium could be stabilized by incorporating it in host-lattices with the perovskite structure. BaCeO/sub 3/, BaPrO/sub 3/, BaThO/sub 3/, and BaZrO/sub 3/ have been used for host-lattices. The samples were prepared by heating the corresponding oxides on air and at 1250-1400 /sup 0/C. X-ray diffraction and chemical analysis showed that Nd(IV) has been stabilized in different rates by these four host-lattices. BaCeO/sub 3/ is able to incorporate Nd(IV) up to 30%. BaPrO/sub 3/ up to 18%, BaThO/sub 3/ up to 17% and BaZrO/sub 3/ up to 4%.

  7. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications

    DEFF Research Database (Denmark)

    Arandiyan, Hamidreza; Wang, Yuan; Sun, Hongyu

    2018-01-01

    This feature article summarizes the recent progress in porous perovskite oxides as advanced catalysts for both energy conversion applications and various heterogeneous reactions. Recently, research has been focused on specifically designing porous perovskite materials so that large surface areas ...

  8. Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage.

    Science.gov (United States)

    Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok; Braly, Ian L; Liang, Po-Wei; Hillhouse, Hugh W; Jen, Alex K-Y

    2017-09-01

    Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C 60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors.

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-11

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  10. Fano resonance in anodic aluminum oxide based photonic crystals.

    Science.gov (United States)

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  11. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications

    Directory of Open Access Journals (Sweden)

    Meng Meng Lin

    2010-02-01

    Full Text Available Iron oxide-based nanomagnets have attracted a great deal of attention in nanomedicine over the past decade. Down to the nanoscale, superparamagnetic iron oxide nanoparticles can only be magnetized in the presence of an external magnetic field, which makes them capable of forming stable colloids in a physio-biological medium. Their superparamagnetic property, together with other intrinsic properties, such as low cytotoxicity, colloidal stability, and bioactive molecule conjugation capability, makes such nanomagnets ideal in both in-vitro and in-vivo biomedical applications. In this review, a chemical, physical, and biological synthetic approach to prepare iron oxide-based nanomagnets with different physicochemical properties was illustrated and compared. The growing interest in iron oxide-based nanomagnets with multifunctionalities was explored in cancer diagnostics and treatment, focusing on their combined roles in a magnetic resonance contrast agent, hyperthermia, and magnetic force assisted drug delivery. Iron oxides as magnetic carriers in gene therapy were reviewed with a focus on the sophisticated design and construction of magnetic vectors. Finally, the iron oxide-based nanomagnet also represents a very promising tool in particle/cell interfacing in controlling cellular functionalities, such as adhesion, proliferation, differentiation, and cell patterning, in stem cell therapy and tissue engineering applications. Meng Meng Lin received a BSc in biotechnology at the University of Hong Kong, China in 2004 and an MSc in biomedical nanotechnology at Newcastle University, UK, in 2005. She is currently working toward her PhD at the Institute of Science and Technology in Medicine, Keele University, UK. She was a visiting student at the Royal Institute of Technology, Sweden, in 2006. Her research interests include nanoparticles preparation, cell/nanomaterials interface, and cancer-oriented drug delivery. Hyung-Hwan Kim received an MSc degree in

  12. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  13. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  14. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  15. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei; Comin, Riccardo; Xu, Jixian; Ip, Alexander H.; Sargent, Edward H.

    2015-01-01

    -based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability

  16. Ge/Si core/multi shell heterostructure FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

    2010-01-01

    Concentric heterostructured materials provide numerous design opportunities for engineering strain and interfaces, as well as tailoring energy band-edge combinations for optimal device performance. Key to the realization of such novel device concepts is the complete understanding and full control over their growth, crystal structure, and hetero-epitaxy. We report here on a new route for synthesizing Ge/Si core/multi-shell heterostructure nanowires that eliminate Au seed diffusion on the nanowire sidewalls by engineering the interface energy density difference. We show that such control over core/shell synthesis enable experimental realization of heterostructure FET devices beyond those available in the literature with enhanced transport characteristics. We provide a side-by-side comparison on the transport properties of Ge/Si core/multi-shell nanowires grown with and without Au diffusion and demonstrate heterostructure FETs with drive currents that are {approx} 2X higher than record results for p-type FETs.

  17. Quantum engineering of transistors based on 2D materials heterostructures

    Science.gov (United States)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  18. Engineering charge transport by heterostructuring solution-processed semiconductors

    Science.gov (United States)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  19. Ionic conductivity in oxide heterostructures: the role of interfaces

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available Rapidly growing attention is being directed to the investigation of ionic conductivity in oxide film heterostructures. The main reason for this interest arises from interfacial phenomena in these heterostructures and their applications. Recent results revealed that heterophase interfaces have faster ionic conduction pathways than the bulk or homophase interfaces. This finding can open attractive opportunities in the field of micro-ionic devices. The influence of the interfaces on the conduction properties of heterostructures is becoming increasingly important with the miniaturization of solid-state devices, which leads to an enhanced interface density at the expense of the bulk. This review aims to describe the main evidence of interfacial phenomena in ion-conducting film heterostructures, highlighting the fundamental and technological relevance and offering guidelines to understanding the interface conduction mechanisms in these structures.

  20. Organic heterostructures based on arylenevinylene oligomers deposited by MAPLE

    Czech Academy of Sciences Publication Activity Database

    Socol, M.; Preda, N.; Vacareanu, L.; Grigoras, M.; Socol, G.; Mihailescu, I. N.; Stanculescu, F.; Jelínek, Miroslav; Stanculescu, A.; Stoicanescu, M.

    2014-01-01

    Roč. 302, May (2014), s. 216-222 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : organic heterostructures * MAPLE * oligomer * optoelectronica Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  1. Superthin Solar Cells Based on AIIIBV/Ge Heterostructures

    Science.gov (United States)

    Pakhanov, N. A.; Pchelyakov, O. P.; Vladimirov, V. M.

    2017-11-01

    A comparative analysis of the prospects of creating superthin, light-weight, and highly efficient solar cells based on AIIIBV/InGaAs and AIIIBV/Ge heterostructures is performed. Technological problems and prospects of each variant are discussed. A method of thinning of AIIIBV/Ge heterostructures with the use of an effective temporary carrier is proposed. The method allows the process to be performed almost with no risk of heterostructure fracture, thinning of the Ge junction down to several tens of micrometers (or even several micrometers), significant enhancement of the yield of good structures, and also convenient and reliable transfer of thinned solar cells to an arbitrary light and flexible substrate. Such a technology offers a possibility of creating high-efficiency thin and light solar cells for space vehicles on the basis of mass-produced AIIIBV/Ge heterostructures.

  2. Quantum engineering of transistors based on 2D materials heterostructures.

    Science.gov (United States)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  3. Variable electronic properties of lateral phosphorene-graphene heterostructures.

    Science.gov (United States)

    Tian, Xiaoqing; Liu, Lin; Du, Yu; Gu, Juan; Xu, Jian-Bin; Yakobson, Boris I

    2015-12-21

    Phosphorene and graphene have a tiny lattice mismatch along the armchair direction, which can result in an atomically sharp in-plane interface. The electronic properties of the lateral heterostructures of phosphorene/graphene are investigated by the first-principles method. Here, we demonstrate that the electronic properties of this type of heterostructure can be highly tunable by the quantum size effects and the externally applied electric field (Eext). At strong Eext, Dirac Fermions can be developed with Fermi velocities around one order smaller than that of graphene. Undoped and hydrogen doped configurations demonstrate three drastically different electronic phases, which reveal the strongly tunable potential of this type of heterostructure. Graphene is a naturally better electrode for phosphorene. The transport properties of two-probe devices of graphene/phosphorene/graphene exhibit tunnelling transport characteristics. Given these results, it is expected that in-plane heterostructures of phosphorene/graphene will present abundant opportunities for applications in optoelectronic and electronic devices.

  4. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.; Vaezi, Abolhassan; Manchon, Aurelien; Kim, Eun-Ah

    2016-01-01

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather

  5. Organic heterostructures deposited by MAPLE on AZO substrate

    Science.gov (United States)

    Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Stanculescu, F.; Iftimie, S.; Girtan, M.; Popescu-Pelin, G.; Socol, G.

    2017-09-01

    Organic heterostructures based on poly(3-hexylthiophene) (P3HT) and fullerene (C60) as blends or multilayer were deposited on Al:ZnO (AZO) by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The AZO layers were obtained by Pulsed Laser Deposition (PLD) on glass substrate, the high quality of the films being reflected by the calculated figure of merit. The organic heterostructures were investigated from morphological, optical and electrical point of view by atomic force microscopy (AFM), UV-vis spectroscopy, photoluminescence (PL) and current-voltage (I-V) measurements, respectively. The increase of the C60 content in the blend heterostructure has as result a high roughness. Compared with the multilayer heterostructure, those based on blends present an improvement in the electrical properties. Under illumination, the highest current value was recorded for the heterostructure based on the blend with the higher C60 amount. The obtained results showed that MAPLE is a useful technique for the deposition of the organic heterostructures on AZO as transparent conductor electrode.

  6. Photoluminescence measurements of ZnO heterostructures

    International Nuclear Information System (INIS)

    Adachi, Yutaka; Sakaguchi, Isao; Ohashi, Naoki; Haneda, Hajime; Ryoken, Haruki; Takenaka, Tadashi

    2003-01-01

    ZnO thin films were grown on TbAlO 3 single crystal substrates by pulsed laser deposition. In photoluminescence (PL) measurements, strong emissions from TbAlO 3 were observed with the emission from ZnO when the film thickness was less than 100 nm. The relationship between the ZnO film thickness and the emission intensity from TbAlO 3 was investigated in order to determine the penetration depth of excitation light. Information on the heterostructures ranging from the surface to a depth of 300 nm was obtained by PL measurements in this study, and the absorption coefficient for a wavelength of 325 nm was estimated to be 1.31x10 5 cm -1 . (author)

  7. Rashba-Edelstein Magnetoresistance in Metallic Heterostructures.

    Science.gov (United States)

    Nakayama, Hiroyasu; Kanno, Yusuke; An, Hongyu; Tashiro, Takaharu; Haku, Satoshi; Nomura, Akiyo; Ando, Kazuya

    2016-09-09

    We report the observation of magnetoresistance originating from Rashba spin-orbit coupling (SOC) in a metallic heterostructure: the Rashba-Edelstein (RE) magnetoresistance. We show that the simultaneous action of the direct and inverse RE effects in a Bi/Ag/CoFeB trilayer couples current-induced spin accumulation to the electric resistance. The electric resistance changes with the magnetic-field angle, reminiscent of the spin Hall magnetoresistance, despite the fact that bulk SOC is not responsible for the magnetoresistance. We further found that, even when the magnetization is saturated, the resistance increases with increasing the magnetic-field strength, which is attributed to the Hanle magnetoresistance in this system.

  8. Molecular behavior of zero-dimensional perovskites

    KAUST Repository

    Yin, Jun

    2017-12-16

    Low-dimensional perovskites offer a rare opportunity to investigate lattice dynamics and charge carrier behavior in bulk quantum-confined solids, in addition to them being the leading materials in optoelectronic applications. In particular, zero-dimensional (0D) inorganic perovskites of the Cs4PbX6 (X = Cl, Br, or I) kind have crystal structures with isolated lead halide octahedra [PbX6]4− surrounded by Cs+ cations, allowing the 0D crystals to exhibit the intrinsic properties of an individual octahedron. Using both experimental and theoretical approaches, we studied the electronic and optical properties of the prototypical 0D perovskite Cs4PbBr6. Our results underline that this 0D perovskite behaves akin to a molecule, demonstrating low electrical conductivity and mobility as well as large polaron binding energy. Density functional theory calculations and transient absorption measurements of Cs4PbBr6 perovskite films reveal the polaron band absorption and strong polaron localization features of the material. A short polaron lifetime of ~2 ps is observed in femtosecond transient absorption experiments, which can be attributed to the fast lattice relaxation of the octahedra and the weak interactions among them.

  9. Hybrid Perovskites: Prospects for Concentrator Solar Cells.

    Science.gov (United States)

    Lin, Qianqian; Wang, Zhiping; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2018-04-01

    Perovskite solar cells have shown a meteoric rise of power conversion efficiency and a steady pace of improvements in their stability of operation. Such rapid progress has triggered research into approaches that can boost efficiencies beyond the Shockley-Queisser limit stipulated for a single-junction cell under normal solar illumination conditions. The tandem solar cell architecture is one concept here that has recently been successfully implemented. However, the approach of solar concentration has not been sufficiently explored so far for perovskite photovoltaics, despite its frequent use in the area of inorganic semiconductor solar cells. Here, the prospects of hybrid perovskites are assessed for use in concentrator solar cells. Solar cell performance parameters are theoretically predicted as a function of solar concentration levels, based on representative assumptions of charge-carrier recombination and extraction rates in the device. It is demonstrated that perovskite solar cells can fundamentally exhibit appreciably higher energy-conversion efficiencies under solar concentration, where they are able to exceed the Shockley-Queisser limit and exhibit strongly elevated open-circuit voltages. It is therefore concluded that sufficient material and device stability under increased illumination levels will be the only significant challenge to perovskite concentrator solar cell applications.

  10. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  11. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  12. Ordering phenomena in transition-metal-oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Frano Pereira, Alex Manuel

    2014-01-27

    This doctoral work presents a study of ordered ground states of transition metal oxide compounds and multilayers using resonant elastic soft x-ray scattering. The technique has developed over the last decades and become especially useful when sample sizes are limited like the case of nanometer-scale films and superlattices. By scattering with photon energies on resonance with the element's electronic transitions, it is an element-specific, sensitive tool providing a combination of spectroscopic and spatial information. The thesis is divided into two central topics. The first part focuses on the investigation of perovskite-type, rare-earth nickelate heterostructures. X-rays tuned to the Ni L{sub 3}-edge were used to unveil unprecedented diffraction evidence of long range magnetic order in LaNiO{sub 3}-RXO{sub 3} (RXO{sub 3} = LaAlO{sub 3}, DyScO{sub 3}) superlattices. We report on the appearance of magnetic order in such systems with a propagation vector of Q{sub SDW} = ((1)/(4),(1)/(4),l) in pseudocubic notation, similar to bulk rare earth nickelates with R ≠ La. With LaNiO{sub 3} being paramagnetic in its bulk form, the magnetic Bragg peak is only present in superlattices where the thickness of the LaNiO{sub 3} layers approaches the 2-dimensional limit. Besides the thickness dependence, the magnetic order was probed on samples grown on varying strain-inducing substrates. Azimuthal scans around Q{sub SDW} were done to determine the orientation of the spin spiral under these different conditions. We will explain how the reorientation of the spins can be understood by the magneto-crystalline anisotropy which is determined by the relative occupation of the Ni d-orbitals via spin-orbit coupling. First steps towards control of the spin spiral's orientation will be outlined, and along with the high remanent conductivity found in the magnetic spiral state, an outlook for metallic antiferromagnetic spintronics will be discussed. The second part of this thesis

  13. Ordering phenomena in transition-metal-oxide heterostructures

    International Nuclear Information System (INIS)

    Frano Pereira, Alex Manuel

    2014-01-01

    This doctoral work presents a study of ordered ground states of transition metal oxide compounds and multilayers using resonant elastic soft x-ray scattering. The technique has developed over the last decades and become especially useful when sample sizes are limited like the case of nanometer-scale films and superlattices. By scattering with photon energies on resonance with the element's electronic transitions, it is an element-specific, sensitive tool providing a combination of spectroscopic and spatial information. The thesis is divided into two central topics. The first part focuses on the investigation of perovskite-type, rare-earth nickelate heterostructures. X-rays tuned to the Ni L 3 -edge were used to unveil unprecedented diffraction evidence of long range magnetic order in LaNiO 3 -RXO 3 (RXO 3 = LaAlO 3 , DyScO 3 ) superlattices. We report on the appearance of magnetic order in such systems with a propagation vector of Q SDW = ((1)/(4),(1)/(4),l) in pseudocubic notation, similar to bulk rare earth nickelates with R ≠ La. With LaNiO 3 being paramagnetic in its bulk form, the magnetic Bragg peak is only present in superlattices where the thickness of the LaNiO 3 layers approaches the 2-dimensional limit. Besides the thickness dependence, the magnetic order was probed on samples grown on varying strain-inducing substrates. Azimuthal scans around Q SDW were done to determine the orientation of the spin spiral under these different conditions. We will explain how the reorientation of the spins can be understood by the magneto-crystalline anisotropy which is determined by the relative occupation of the Ni d-orbitals via spin-orbit coupling. First steps towards control of the spin spiral's orientation will be outlined, and along with the high remanent conductivity found in the magnetic spiral state, an outlook for metallic antiferromagnetic spintronics will be discussed. The second part of this thesis will address the observation of charge density

  14. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Hong, Wesley T.; Biegalski, Michael D.; Christen, Hans M.; Liu, Zhi; Bluhm, Hendrik; Shao-Horn, Yang

    2013-01-01

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  15. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  16. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  17. Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Liu, Dianyi; Traverse, Christopher J; Chen, Pei; Elinski, Mark; Yang, Chenchen; Wang, Lili; Young, Margaret; Lunt, Richard R

    2018-01-01

    Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.

  18. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  19. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  20. Perovskite Solar Cells—Towards Commercialization

    International Nuclear Information System (INIS)

    Ono, Luis K.; Park, Nam-Gyu; Zhu, Kai; Huang, Wei; Qi, Yabing

    2017-01-01

    The Symposium ES1, Perovskite Solar Cells - Towards Commercialization, held at the 2017 Materials Research Society (MRS) Spring Meeting in Phoenix, Arizona (April 17-21, 2017) received ~200 abstracts. The 23 invited talks and 72 contributed oral presentations as well as 3 poster presentation sessions were organized into 13 principal themes according to the contents of the received abstracts. This Energy Focus article provides a concise summary of the opinions from the scientists and engineers who participated in this symposium regarding the recent progresses, challenges, and future directions for perovskite solar cells as well as other optoelectronic devices.

  1. Research Update: Luminescence in lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ajay Ram Srimath Kandada

    2016-09-01

    Full Text Available Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  2. Partial oxidation of 2-propanol on perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Sumathi, R.; Viswanathan, B.; Varadarajan, T.K. [Indian Inst. of Tech., Madras (India). Dept. of Chemistry

    1998-12-31

    Partial oxidation of 2-propanol was carried out on AB{sub 1-x}B`{sub x}O{sub 3} (A=Ba, B=Pb, Ce, Ti; B`=Bi, Sb and Cu) type perovskite oxides. Acetone was the major product observed on all the catalysts. All the catalysts underwent partial reduction during the reaction depending on the composition of the reactant, nature of the B site cation and the extent of substitution at B site. The catalytic activity has been correlated with the reducibility of the perovskite oxides determined from Temperature Programmed Reduction (TPR) studies. (orig.)

  3. Large polarons in lead halide perovskites

    OpenAIRE

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3 ? framewor...

  4. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-01-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991

  5. Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step.

    Science.gov (United States)

    Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2018-02-08

    Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.

  6. DX centers in indium aluminum arsenide heterostructures

    Science.gov (United States)

    Sari, Huseyin

    DX centers are point defects observed in many n-type doped III-V compound semi conductors. They have unique properties, which include large differences between their optical and thermal ionization energies, and a temperature dependence of the capture cross-sections. As a result of these properties DX centers exhibit a reduction in free carrier concentration and a large persistent photoconductivity (PPC) effect. DX centers also lead to a shift in the threshold voltage of modulation doped field effect transistors (MODFET) structures, at low temperatures. Most of the studies on this defect have been carried out on the Ga xAl1-xAs material system. However, to date there is significantly less work on DX centers in InxAl1-xAs compounds. This is partly due to difficulties associated with the growth of defect free materials other than lattice matched In0.52Al 0.48As on InP and partly because the energy level of the DX center is in resonance with the conduction band in In0.52Al0.48As. The purpose of this dissertation is to extend the DX center investigation to InAlAs compounds, primarily in the indirect portion of the InAlAs bandgap. In this work the indium composition dependence of the DX centers in In xAl1-xAs/InyGa1-yAs-based heterostructure is studied experimentally. Different InxAl 1-xAs epitaxial layers with x = 0.10, x = 0.15, x = 0.20, and x = 0.34 in a MODFET-like heterostructure were grown by Molecular Beam Epitaxy (MBE) on (001) GaAs substrates. In order to compensate the lattice mismatch between epitaxial layers and their substrates, step-graded buffer layers with indium composition increments of x = 0.10, every 2000 A, were used. For the samples grown with different indium contents Hall measurements as a function of both temperature and different cooling biases were performed in order to determine their carrier concentrations. A self consistent Poisson-Schrodinger numerical software is used to model the heterostructures. With the help of this numerical model

  7. Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport

    Science.gov (United States)

    Xiao, Ke; Cui, Can; Wang, Peng; Lin, Ping; Qiang, Yaping; Xu, Lingbo; Xie, Jiangsheng; Yang, Zhengrui; Zhu, Xiaodong; Yu, Xuegong; Yang, Deren

    2018-02-01

    In the fabrication of high efficiency organic-inorganic metal halide perovskite solar cells (PSCs), an additional interface modifier is usually applied for enhancing the interface passivation and carrier transport. In this paper, we develop an innovative method with in-situ growth of one-dimensional perovskite nanowire (1D PNW) network triggered by Lewis amine over the perovskite films. To our knowledge, this is the first time to fabricate PSCs with shape-controlled perovskite surface morphology, which improved power conversion efficiency (PCE) from 14.32% to 16.66% with negligible hysteresis. The amine molecule can passivate the trap states on the polycrystalline perovskite surface to reduce trap-state density. Meanwhile, as a fast channel, the 1D PNWs would promote carrier transport from the bulk perovskite film to the electron transport layer. The PSCs with 1D PNW modification not only exhibit excellent photovoltaic performances, but also show good stability with only 4% PCE loss within 30 days in the ambient air without encapsulation. Our results strongly suggest that in-situ grown 1D PNW network provides a feasible and effective strategy for nanostructured optoelectronic devices such as PSCs to achieve superior performances.

  8. Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells.

    Science.gov (United States)

    Zhou, Wenke; Zhao, Yicheng; Zhou, Xu; Fu, Rui; Li, Qi; Zhao, Yao; Liu, Kaihui; Yu, Dapeng; Zhao, Qing

    2017-09-07

    Due to light-induced effects in CH 3 NH 3 -based perovskites, such as ion migration, defects formation, and halide segregation, the degradation of CH 3 NH 3 -based perovskite solar cells under maximum power point is generally implicated. Here we demonstrated that the effect of light-enhanced ion migration in CH 3 NH 3 PbI 3 can be eliminated by inorganic Cs substitution, leading to an ultrastable perovskite solar cell. Quantitatively, the ion migration barrier for CH 3 NH 3 PbI 3 is 0.62 eV under dark conditions, larger than that of CsPbI 2 Br (0.45 eV); however, it reduces to 0.07 eV for CH 3 NH 3 PbI 3 under illumination, smaller than that for CsPbI 2 Br (0.43 eV). Meanwhile, photoinduced halide segregation is also suppressed in Cs-based perovskites. Cs-based perovskite solar cells retained >99% of the initial efficiency (10.3%) after 1500 h of maximum power point tracking under AM1.5G illumination, while CH 3 NH 3 PbI 3 solar cells degraded severely after 50 h of operation. Our work reveals an uncovered mechanism for stability improvement by inorganic cation substitution in perovskite-based optoelectronic devices.

  9. First-principles investigation of the electronic states at perovskite and pyrite hetero-interfaces

    KAUST Repository

    Nazir, Safdar

    2012-09-01

    Oxide heterostructures are attracting huge interest in recent years due to the special functionalities of quasi two-dimensional quantum gases. In this thesis, the electronic states at the interface between perovskite oxides and pyrite compounds have been studied by first-principles calculations based on density functional theory. Optimization of the atomic positions are taken into account, which is considered very important at interfaces, as observed in the case of LaAlO3/SrTiO3. The creation of metallic states at the interfaces thus is explained in terms of charge transfer between the transition metal and oxygen atoms near the interface. It is observed that with typical thicknesses of at least 10-12 °A the gases still extend considerably in the third dimension, which essentially determines the magnitude of quantum mechanical effects. To overcome this problem, we propose incorporation of highly electronegative cations (such as Ag) in the oxides. A fundamental interest is also the thermodynamic stability of the interfaces due to the possibility of atomic intermixing in the interface region. Therefore, different cation intermixed configurations are taken into account for the interfaces aiming at the energetically stable state. The effect of O vacancies is also discussed for both polar and non-polar heterostructures. The interface metallicity is enhanced for the polar system with the creation of O vacancies, while the clean interface at the non-polar heterostructure exhibits an insulating state and becomes metallic in presence of O vacancy. The O vacancy formation energies are calculated and explained in terms of the increasing electronegativity and effective volume of A the side cation. Along with these, the electronic and magnetic properties of an interface between the ferromagnetic metal CoS2 and the non-magnetic semiconductor FeS2 is investigated. We find that this contact shows a metallic character. The CoS2 stays quasi half metallic at the interface, while the

  10. Improved perovskite phototransistor prepared using multi-step annealing method

    Science.gov (United States)

    Cao, Mingxuan; Zhang, Yating; Yu, Yu; Yao, Jianquan

    2018-02-01

    Organic-inorganic hybrid perovskites with good intrinsic physical properties have received substantial interest for solar cell and optoelectronic applications. However, perovskite film always suffers from a low carrier mobility due to its structural imperfection including sharp grain boundaries and pinholes, restricting their device performance and application potential. Here we demonstrate a straightforward strategy based on multi-step annealing process to improve the performance of perovskite photodetector. Annealing temperature and duration greatly affects the surface morphology and optoelectrical properties of perovskites which determines the device property of phototransistor. The perovskite films treated with multi-step annealing method tend to form highly uniform, well-crystallized and high surface coverage perovskite film, which exhibit stronger ultraviolet-visible absorption and photoluminescence spectrum compare to the perovskites prepared by conventional one-step annealing process. The field-effect mobilities of perovskite photodetector treated by one-step direct annealing method shows mobility as 0.121 (0.062) cm2V-1s-1 for holes (electrons), which increases to 1.01 (0.54) cm2V-1s-1 for that treated with muti-step slow annealing method. Moreover, the perovskite phototransistors exhibit a fast photoresponse speed of 78 μs. In general, this work focuses on the influence of annealing methods on perovskite phototransistor, instead of obtains best parameters of it. These findings prove that Multi-step annealing methods is feasible to prepared high performance based photodetector.

  11. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Molecular behavior of zero-dimensional perovskites

    KAUST Repository

    Yin, Jun; Maity, Partha; de Bastiani, Michele; Dursun, Ibrahim; Bakr, Osman; Bredas, Jean-Luc; Mohammed, Omar F.

    2017-01-01

    -dimensional (0D) inorganic perovskites of the Cs4PbX6 (X = Cl, Br, or I) kind have crystal structures with isolated lead halide octahedra [PbX6]4− surrounded by Cs+ cations, allowing the 0D crystals to exhibit the intrinsic properties of an individual octahedron

  13. Elastic softness of hybrid lead halide perovskites

    KAUST Repository

    Ferreira, A. C.; Lé toublon, A.; Paofai, S.; Raymond, S.; Ecolivet, C.; Rufflé , B.; Cordier, S.; Katan, C.; Saidaminov, Makhsud I.; Zhumekenov, A. A.; Bakr, Osman; Even, J.; Bourges, Ph.

    2018-01-01

    scattering, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr3, FAPbBr3, MAPbI3 and α-FAPbI3 (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear

  14. Combustion synthesis and characterization of porous perovskite ...

    Indian Academy of Sciences (India)

    TECS

    But those perovskite-structural complex oxides produced via ... and cobalt nitrates in a desired molar ratio were dis- solved in a ... At pH 6-7 (ammonia adjustor), ... areas were measured by nitrogen adsorption-desorp- .... The obtained oxide.

  15. High performance magnetocaloric perovskites for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bahl, Christian R. H.; Velazquez, David; Nielsen, Kaspar K.

    2012-01-01

    We have applied mixed valance manganite perovskites as magnetocaloric materials in a magnetic refrigeration device. Relying on exact control of the composition and a technique to process the materials into single adjoined pieces, we have observed temperature spans above 9 K with two materials...

  16. Tilts and Ionic Shifts in Rhombohedral Perovskites

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    We make a comparative analysis of rhombohedral perovskites (ABO3) with/without oxygen rotations and ionic shifts, within the framework of a generalised effective field approach. We analyse available data on LaAlO3 and LiTaO3 and new data on Zr-rich PZT, examples of three different ways of structural

  17. Hybrid solar cells : Perovskites under the Sun

    NARCIS (Netherlands)

    Loi, Maria Antonietta; Hummelen, Jan C.

    2013-01-01

    Mixed-halide organic–inorganic hybrid perovskites are reported to display electron–hole diffusion lengths over 1 μm. This observation provides important insight into the charge-carrier dynamics of this class of semiconductors and increases the expectations for highly efficient and cheap solar cells.

  18. Calculated optical absorption of different perovskite phases

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Ivano E. [Center for Atomic-scale Materials Design; Department of Physics; Technical University of Denmark; DK 2800, Kongens Lyngby; Denmark; Thygesen, Kristian S. [Center for Atomic-scale Materials Design; Department of Physics; Technical University of Denmark; DK 2800, Kongens Lyngby; Denmark; Jacobsen, Karsten W. [Center for Atomic-scale Materials Design; Department of Physics; Technical University of Denmark; DK 2800, Kongens Lyngby; Denmark

    2015-01-01

    We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden–Popper and Dion–Jacobson phases) with a bandgap in the visible part of the solar spectrum.

  19. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-11-02

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  20. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele; Yin, Jun; Birowosuto, Muhammad D.; Lo, Shu-Zee A.; Gurzadyan, Gagik G.; Bruno, Annalisa; Bredas, Jean-Luc; Soci, Cesare

    2017-01-01

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  1. Spontaneous emission enhancement of colloidal perovskite nanocrystals

    Science.gov (United States)

    Yang, Zhili; Waks, Edo

    Halide perovskite semiconductors have emerged as prominent photovoltaic materials since their high conversion efficiency and promising light emitting materials in optoelectronics. In particular, easy-to-fabricated colloidal perovskite nanocrystals based on CsPbX3 quantum dots has been intensively investigated recently. Their luminescent wavelength could be tuned precisely by their chemical composition and size of growth. This opens new applications including light-emitting diodes, optical amplifiers and lasing since their promising performance as emitters. However, this potentially high-efficient emitter and gain material has not been fully investigated and realized in integrated photonic structures. Here we demonstrate Purcell enhancement effect of CsPbBr3 perovskite nanocrystals by coupling to an optimized photonic crystal nanobeam cavity as a first crucial step towards realization of integrated on-chip coherent light source with low energy consumption. We show clearly highly-enhanced photoluminescent spectrum and an averaged Purcell enhancement factor of 2.9 is achieved when they are coupled to nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our lifetime measurement. Our success in enhancement of emission from CsPbX3 perovskite nanocrystals paves the way towards the realization of efficient light sources for integrated optoelectronic devices with low energy consumption.

  2. Monocrystalline halide perovskite nanostructures for optoelectronic applications

    NARCIS (Netherlands)

    Khoram, P.

    2018-01-01

    Halide perovskites are a promising class of materials for incorporation in optoelectronics with higher efficiency and lower cost. The solution processability of these materials provides unique opportunities for simple nanostructure fabrication. In the first half of the thesis (chapter 2 and 3) we

  3. Proximity coupling in superconductor-graphene heterostructures

    Science.gov (United States)

    Lee, Gil-Ho; Lee, Hu-Jong

    2018-05-01

    This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable 2D platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given.

  4. Superconducting heterostructures: from antipinning to pinning potentials

    International Nuclear Information System (INIS)

    Carreira, S J; Chiliotte, C; Bekeris, V; Rosen, Y J; Monton, C; Schuller, Ivan K

    2014-01-01

    We study vortex lattice dynamics in a heterostructure that combines two type-II superconductors: a niobium film and a dense triangular array of submicrometric vanadium (V) pillars. Magnetic ac susceptibility measurements reveal a sudden increase in ac penetration, related to an increase in vortex mobility above a magnetic field, H ∗ (T), that decreases linearly with temperature. Additionally, temperature independent matching effects that occur when the number of vortices in the sample is an integer of the number of V pillars, strongly reduce vortex mobility, and were observed for the first and second matching fields, H 1 and H 2 . The angular dependence of H 1 , H 2 and H ∗ (T) shows that matching is determined by the normal applied field component, while H ∗ (T) is independent of the applied field orientation. This important result identifies H ∗ (T) with the critical field boundary for the normal to superconducting transition of V pillars. Below H ∗ (T), superconducting V pillars repel vortices, and the array becomes an ‘antipinning’ landscape that is more effective in reducing vortex mobility than the ‘pinning’ landscape of the normal V sites above H ∗ (T). Matching effects are observed both below and above H ∗ (T), implying the presence of ordered vortex configurations for ‘antipinning’ or ‘pinning’ arrays. (paper)

  5. Vortex jump behavior in coupled nanomagnetic heterostructures

    International Nuclear Information System (INIS)

    Zhang, S.; Phatak, C.; Petford-Long, A. K.; Heinonen, O.

    2014-01-01

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. The work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications

  6. Odd-frequency pairing in superconducting heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Golubov, A A [Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Tanaka, Y [Department of Applied Physics, Nagoya University, Nagoya, 464-8603 (Japan); Asano, Y [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Tanuma, Y [Institute of Physics, Kanagawa University, 3-7-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: a.golubov@utwente.nl

    2009-04-22

    We review the theory of odd-frequency pairing in superconducting heterostructures, where an odd-frequency pairing component is induced near interfaces. A general description of the superconducting proximity effect in a normal metal or a ferromagnet attached to an unconventional superconductor (S) is given within quasiclassical kinetic theory for various types of symmetry state in S. Various possible symmetry classes in a superconductor are considered which are consistent with the Pauli principle: even-frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity (ETO) state, odd-frequency spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity (OSO) state. As an example, we consider a junction between a diffusive normal metal (DN) and a p-wave superconductor (even-frequency spin-triplet odd-parity symmetry), where the pairing amplitude in DN belongs to an odd-frequency spin-triplet even-parity symmetry class. We also discuss the manifestation of odd-frequency pairing in conventional superconductor/normal (S/N) proximity systems and its relation to the classical McMillan-Rowell oscillations.

  7. Graphene/black phosphorus heterostructured photodetector

    Science.gov (United States)

    Xu, Jiao; Song, Young Jae; Park, Jin-Hong; Lee, Sungjoo

    2018-06-01

    Graphene photodetectors exhibit a low photoresponsivity due to their weak light absorbance. In this study, we fabricated a graphene/black phosphorus (BP) heterostructure, in which the multilayer BP flake with a ∼0.3 eV direct band gap functions as an enhanced light-absorption material. Further, the photoexcited electrons are trapped in the trap states of the BP, which creates a photogating effect and causes holes to flow into the graphene layer driven by the built-in potential between BP and graphene. The photocarrier lifetime is therefore prolonged by trapping, and as a result of the high carrier mobility of graphene, the holes that transfer into the graphene channel can travel through the circuit before they recombine with trapped electrons. These combined effects result in a high photoresponsivity: 55.75 A/W at λ = 655 nm, 1.82 A/W at λ = 785 nm, and 0.66 A/W at λ = 980 nm.

  8. Odd-frequency pairing in superconducting heterostructures .

    Science.gov (United States)

    Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.

    2007-03-01

    We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.

  9. Vortex jump behavior in coupled nanomagnetic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.; Phatak, C., E-mail: cd@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Petford-Long, A. K. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208 (United States); Heinonen, O. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208-3112 (United States)

    2014-11-24

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. The work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.

  10. Quantum and field effects of oxide heterostructures

    DEFF Research Database (Denmark)

    Trier, Felix

    . In these multi-plexed devices, several inputs aretranslated into several outputs through the multiple physical functionalities.A highly prominent example of such an oxide interface is the one between LaAlO3 and SrTiO3. Although both LaAlO3 and SrTiO3 in the bulk are electrically insulating and non-magnetic......, their interface nonetheless shows attractive properties such as metallic conductivity, superconductivity and ferro magnetism.This thesis will provide an extensive review of the literature concerning the interface metal found in LaAlO3/SrTiO3 as well as in other SrTiO3-based hetero structures. Through this review...... in two different SrTiO3-based heterostructures. Here, it is shown that the interface between amorphous-LaAlO3 and SrTiO3 is superconducting with a larger critical transition temperature than that in LaAlO3/SrTiO3. For γ-Al2O3/SrTiO3 it is shown that non-volatile bipolar resistance switching is possible...

  11. Barrier inhomogeneities at vertically stacked graphene-based heterostructures.

    Science.gov (United States)

    Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2014-01-21

    The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.

  12. Electron scattering times in ZnO based polar heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Falson, J., E-mail: j.falson@fkf.mpg.de [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Kozuka, Y. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Smet, J. H. [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Arima, T. [Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-08-24

    The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10{sup 6} cm{sup 2}/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors.

  13. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    Science.gov (United States)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  14. Photonic Heterostructures with Properties of Ferroelectrics and Light Polarizers

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Draginda, Yu A [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-11-15

    The optical and electro-optical properties of a new type of photonic heterostructure composed of alternating ferroelectric molecular layers and optically anisotropic layers of another material are considered. A numerical simulation of the real prototype of this heterostructure, which can be prepared by the Langmuir-Blodgett method from layers of a ferroelectric copolymer (polyvinylidene fluoride trifluoroethylene) and an azo dye with photoinduced optical anisotropy, has been performed. It is shown that this heterostructure has pronounced polarization optical properties and yields a significant change in the polarization state of light at the photonic band edges in the ranges of the maximum density of photon states. The latter property can be used to obtain an enhanced electro-optic effect at small spectral shifts of the photonic band (the latter can be provided by the piezoelectric effect in ferroelectric layers).

  15. First-principles approach for superconducting slabs and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Csire, Gabor [Wigner Research Centre for Physics, Budapest (Hungary)

    2016-07-01

    We present a fully ab-initio method to calculate the transition temperature for superconducting slabs and heterostructures. In the case of thin superconductor layers the electron-phonon interaction may change significantly. Therefore we calculate the layer dependent phonon spectrum to determine the layer dependence of the electron-phonon coupling for such systems. The phonon spectrum is than coupled to the Kohn-Sham-Bogoliubov-de Gennes equation via the McMillan-Hopfield parameter, and it is solved self-consistently. The theory is applied to niobium slabs and niobium-gold heterostructures. Based on these calculations we investigate both the dependence of the superconducting transition temperature on the thickness of superconducting slabs and the inverse proximity effect observed in thin superconducting heterostructures.

  16. Conducting Layered Organic-inorganic Halides Containing -Oriented Perovskite Sheets.

    Science.gov (United States)

    Mitzi, D B; Wang, S; Feild, C A; Chess, C A; Guloy, A M

    1995-03-10

    Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m -oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

  17. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    Science.gov (United States)

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal

    2016-10-06

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  19. Generalized trends in the formation energies of perovskite oxides

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Calle-Vallejo, Federico; Mogensen, Mogens Bjerg

    2013-01-01

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied...... elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we...... extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site...

  20. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal; Dursun, Ibrahim; Priante, Davide; Saidaminov, Makhsud I.; Ng, Tien Khee; Bakr, Osman; Ooi, Boon S.

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  1. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir

    2018-03-30

    Metal-halide perovskite materials are highly attractive materials for optoelectronic applications. However, the instability of perovskite materials caused by moisture and heat-induced degradation impairs future prospects of using these materials. Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation under PbBr2 rich condition. We find that these post-synthesized 2D perovskite-related material films exhibit excellent stability against humidity and high photoluminescence quantum yield. We believe that our results provide a new synthetic method to generate stable 2D perovskite-related materials that could be applicable for light emitting device applications.

  2. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-04-11

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  3. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    International Nuclear Information System (INIS)

    Wang, Fenggong; Grinberg, Ilya; Rappe, Andrew M.

    2014-01-01

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics

  4. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  5. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries

    Science.gov (United States)

    Fenton, Julie L.; Steimle, Benjamin C.; Schaak, Raymond E.

    2018-05-01

    Complex heterostructured nanoparticles with precisely defined materials and interfaces are important for many applications. However, rationally incorporating such features into nanoparticles with rigorous morphology control remains a synthetic bottleneck. We define a modular divergent synthesis strategy that progressively transforms simple nanoparticle synthons into increasingly sophisticated products. We introduce a series of tunable interfaces into zero-, one-, and two-dimensional copper sulfide nanoparticles using cation exchange reactions. Subsequent manipulation of these intraparticle frameworks yielded a library of 47 distinct heterostructured metal sulfide derivatives, including particles that contain asymmetric, patchy, porous, and sculpted nanoarchitectures. This generalizable mix-and-match strategy provides predictable retrosynthetic pathways to complex nanoparticle features that are otherwise inaccessible.

  6. Fabrication of colloidal crystal heterostructures by a room temperature floating self-assembly method

    International Nuclear Information System (INIS)

    Wang Aijun; Chen Shengli; Dong Peng

    2011-01-01

    Highlights: → Opal colloidal crystal heterostructure of several square centimeters in area was fabricated within only tens of minutes. → A fabricated colloidal crystal heterostructure was composed of a PS opal and a TiO 2 inverse opal crystal films. → The photonic heterostructure had two photonic-band gaps. → The relative position of the two photonic-band gaps can be controlled by the size of PS microspheres used to fabricate the photonic heterostructure. - Abstract: Photonic crystal heterostructures were fabricated through a room temperature floating self-assembly (RTFSA) method recently developed by our research group. Applying this method, opal colloidal crystal heterostructures of several square centimeters in area were fabricated within tens of minutes without special facilities, and a heterostructure composed of a PS opal and a TiO 2 inverse opal crystal films was fabricated. SEM image of the PS opal-TiO 2 inverse opal heterostructure showed the ordered growth of the top opal film of the heterostructure was hardly disturbed by the cracks in the TiO 2 inverse opal film. The UV-vis transmission spectra indicated that the photonic heterostructures had two photonic-band gaps, and the relative position of two photonic-band gaps can be controlled by the size of PS microspheres used to fabricated the photonic heterostructures.

  7. Perovskite type nanopowders and thin films obtained by chemical methods

    Directory of Open Access Journals (Sweden)

    Viktor Fruth

    2010-09-01

    Full Text Available The review presents the contribution of the authors, to the preparation of two types of perovskites, namely BiFeO3 and LaCoO3, by innovative methods. The studied perovskites were obtained as powders, films and sintered bodies. Their complex structural and morphological characterization is also presented. The obtained results have underlined the important influence of the method of preparation on the properties of the synthesized perovskites.

  8. Atomic Scale Chemical and Structural Characterization of Ceramic Oxide Heterostructure Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R. K.

    2003-04-16

    The research plan was divided into three tasks: (a) growth of oxide heterostructures for interface engineering using standard thin film deposition techniques, (b) atomic level characterization of oxide heterostructure using such techniques as STEM-2 combined with AFM/STM and conventional high-resolution microscopy (HRTEM), and (c) property measurements of aspects important to oxide heterostructures using standard characterization methods, including dielectric properties and dynamic cathodoluminescence measurements. Each of these topics were further classified on the basis of type of oxide heterostructure. Type I oxide heterostructures consisted of active dielectric layers, including the materials Ba{sub x}Sr{sub 1-x}TiO{sub 3} (BST), Y{sub 2}O{sub 3} and ZrO{sub 2}. Type II heterostructures consisted of ferroelectric active layers such as lanthanum manganate and Type III heterostructures consist of phosphor oxide active layers such as Eu-doped Y{sub 2}O{sub 3}.

  9. High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF3

    International Nuclear Information System (INIS)

    Shirako, Y.; Shi, Y.G.; Aimi, A.; Mori, D.; Kojitani, H.; Yamaura, K.; Inaguma, Y.; Akaogi, M.

    2012-01-01

    NaNiF 3 perovskite was found to transform to post-perovskite at 16–18 GPa and 1273–1473 K. The equilibrium transition boundary is expressed as P (GPa)=−2.0+0.014×T (K). Structure refinements indicated that NaNiF 3 perovskite and post-perovskite have almost regular NiF 6 octahedra consistent with absence of the first-order Jahn–Teller active ions. Both NaNiF 3 perovskite and post-perovskite are insulators. The perovskite underwent a canted antiferromagnetic transition at 156 K, and the post-perovskite antiferromagnetic transition at 22 K. Magnetic exchange interaction of NaNiF 3 post-perovskite is smaller than that of perovskite, reflecting larger distortion of Ni–F–Ni network and lower dimension of octahedral arrangement in post-perovskite than those in perovskite. - Graphical abstract: Perovskite–post-perovskite transition in NaNiF 3 at high pressure Highlights: ► NaNiF 3 perovskite (Pv) transforms to post-perovskite (pPv) at 16 GPa and 1300 K. ► The equilibrium transition boundary is expressed as P (GPa)=−2.0+0.014 T (K). ► Antiferromagnetic transition occurs at 156 K in Pv and 22 K in pPv.

  10. Development of Perovskite-Type Materials for Thermoelectric Application

    Directory of Open Access Journals (Sweden)

    Tingjun Wu

    2018-06-01

    Full Text Available Oxide perovskite materials have a long history of being investigated for thermoelectric applications. Compared to the state-of-the-art tin and lead chalcogenides, these perovskite compounds have advantages of low toxicity, eco-friendliness, and high elemental abundance. However, because of low electrical conductivity and high thermal conductivity, the total thermoelectric performance of oxide perovskites is relatively poor. Variety of methods were used to enhance the TE properties of oxide perovskite materials, such as doping, inducing oxygen vacancy, embedding crystal imperfection, and so on. Recently, hybrid perovskite materials started to draw attention for thermoelectric application. Due to the low thermal conductivity and high Seebeck coefficient feature of hybrid perovskites materials, they can be promising thermoelectric materials and hold the potential for the application of wearable energy generators and cooling devices. This mini-review will build a bridge between oxide perovskites and burgeoning hybrid halide perovskites in the research of thermoelectric properties with an aim to further enhance the relevant performance of perovskite-type materials.

  11. Impact of Ultrathin C60 on Perovskite Photovoltaic Devices.

    Science.gov (United States)

    Liu, Dianyi; Wang, Qiong; Traverse, Christopher J; Yang, Chenchen; Young, Margaret; Kuttipillai, Padmanaban S; Lunt, Sophia Y; Hamann, Thomas W; Lunt, Richard R

    2018-01-23

    Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C 60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C 60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.

  12. Synthesis and electrochemical properties of tin oxide-based composite by rheological technique

    International Nuclear Information System (INIS)

    He Zeqiang; Li Xinhai; Xiong Lizhi; Wu Xianming; Xiao Zhuobing; Ma Mingyou

    2005-01-01

    Novel rheological technique was developed to synthesize tin oxide-based composites. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscopy and electrochemical methods. The particles of tin oxide-based materials form an inactive matrix. The average size of the particles is about 150 nm. The material delivers a charge capacity of more than 570 mAh g -1 . The capacity loss per cycle is about 0.15% after being cycled 30 times. The good electrochemical performance indicates that this kind of tin oxide-based material is promising anode for lithium-ion battery

  13. Organohalide Perovskites for Solar Energy Conversion.

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  14. Post-perovskite transitions in CaB4+O3 at high pressure

    International Nuclear Information System (INIS)

    Akaogi, M; Shirako, Y; Kojitani, H; Takamori, S; Yamaura, K; Takayama-Muromachi, E

    2010-01-01

    High-pressure phase transitions in CaRhO 3 were examined using a multianvil apparatus up to 27 GPa and 1930 o C. CaRhO 3 perovskite transforms to post-perovskite via a monoclinic intermediate phase with increasing pressure. Volume changes for the transitions of perovskite - intermediate phase and of intermediate phase - post-perovskite are -1.1 and -0.7 %, respectively. CaRhO 3 post-perovskite is the fourth quenchable post-perovskite oxide found so far. By high-temperature calorimetric experiments, enthalpy of the perovskite - post-perovskite transition in CaRuO 3 was measured as 15.2±3.3 kJ/mol. Combining the datum with those of CaIrO 3 , it is shown that CaIrO 3 perovskite is energetically less stable than CaRuO 3 perovskite. This is consistent with the fact that orthorhombic distortion of CaIrO 3 perovskite is larger than CaRuO 3 , as indicated with the tilt-angle of octahedral framework of perovskite structure. The transition pressure from perovskite to post-perovskite in CaBO 3 (B = Ru, Rh, Ir) increases almost linearly with decreasing the tilt-angle, suggesting that the perovskite - post-perovskite transition may result from instability of the perovskite structure with pressure.

  15. Polarization tunable photogenerated carrier transfer of CH3NH3PbI3/polyvinylidene fluoride heterostructure

    Science.gov (United States)

    Yang, Kang; Deng, Zun-Yi; Feng, Hong-Jian

    2017-10-01

    The integration of ferroelectrics and organic-inorganic halide perovskites could be a promising way to facilitate the separation of electron-hole pairs and charge extraction for the application of solar cells. To explore the effect of the external ferroelectric layer on the CH3NH3PbI3 (MAPbI3) side, we perform first-principles calculations to study the charge transfer properties of the MAPbI3/polyvinylidene fluoride (PVDF) heterostructure. Our calculations demonstrate that the ferroelectric polarization pointing to the PVDF side can clearly facilitate the separation of photo-induced carriers and enhance charge extraction from MAPbI3, while opposite polarization direction hinders the charge extraction and collection. Notably, the carrier behavior at the interface is strongly tuned by the electric field associated with the ferroelectric polarization. In addition, excited state simulation confirms the tunable charge transfer of the MAPbI3/PVDF heterojunction. Therefore, the polarization-driven charge transfer mechanism provides a route for fabricating the ferroelectrics-based high-efficiency photovoltaics and switchable diode devices.

  16. What makes the difference in perovskite titanates?

    Science.gov (United States)

    Bussmann-Holder, Annette; Roleder, Krystian; Ko, Jae-Hyeon

    2018-06-01

    We have investigated in detail the lattice dynamics of five different perovskite titanates ATiO3 (A = Ca, Sr, Ba, Pb, Eu) where the A sites are occupied by +2 ions. In spite of the largely ionic character of these ions, the properties of these compounds differ substantially. They range from order/disorder like, to displacive ferroelectric, quantum paraelectric, and antiferromagnetic. All compounds crystallize in the cubic structure at high temperature and undergo structural phase transitions to tetragonal symmetry, partly followed by further transitions to lower symmetries. Since the TiO6 moiety is the essential electronic and structural unit, the question arises, what makes the significant difference between them. It is shown that the lattice dynamics of these compounds are very different, and that mode-mode coupling effects give rise to many distinct properties. In addition, the oxygen ion nonlinear polarizability plays a key role since it dominates the anharmonicity of these perovskites and determines the structural instability.

  17. Elastic softness of hybrid lead halide perovskites

    KAUST Repository

    Ferreira, A. C.

    2018-01-26

    Much recent attention has been devoted towards unravelling the microscopic optoelectronic properties of hybrid organic-inorganic perovskites (HOP). Here we investigate by coherent inelastic neutron scattering spectroscopy and Brillouin light scattering, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr3, FAPbBr3, MAPbI3 and α-FAPbI3 (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants caracterized by a very soft shear modulus C44. Further, a tendency towards an incipient ferroelastic transition is observed in FAPbBr3. We observe a systematic lower sound group velocity in the technologically important iodide-based compounds compared to the bromide-based ones. The findings suggest that low thermal conductivity and hot phonon bottleneck phenomena are expected to be enhanced by low elastic stiffness, particularly in the case of the ultrasoft α-FAPbI3.

  18. Perovskite Materials: Solar Cell and Optoelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [ORNL; Geohegan, David B [ORNL; Xiao, Kai [ORNL

    2017-01-01

    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure, and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.

  19. Electronic and optical properties of diamond/organic semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gajewski, Wojciech; Garrido, Jose; Niedermeier, Martin; Stutzmann, Martin [Walter Schottky Institute, TU Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Williams, Oliver; Haenen, Ken [Institute for Materials Research, University of Hasselt, Wetenschapspark 1, BE-3590 Diepenbeek (Belgium)

    2007-07-01

    Different diamond substrates (single crystalline: SCD, poly-crystalline: PCD and nano-crystalline: NCD) were used to investigate the electronic and optical properties of the diamond/organic semiconductor heterostructures. Layers of a poly[ethynyl-(2-decyloxy-5methoxy)benzene] - PEB, pentacene and 4-nitro-biphenyl-4-diazonium cations - Ph-Ph-NO{sub 2} were prepared by spin coating, thermal evaporation and grafting, respectively. The measurements of the electronic transport along the organic layer were performed using a Hg probe as well as Hall effect measurements in the temperature range 70-400 K. The I-V characteristics of the B-doped diamond/organic semiconductor heterostructures were measured at room temperature by means of the Hg probe. Undoped IIa and undoped PCD films were used for a study of the optical and optoelectronic properties of prepared heterostructures. The influence of the organic layer homogeneity and layer thickness on the optical properties will be discussed. Furthermore, preliminary data on perpendicular and parallel transport in the heterostructures layer will be reported.

  20. Surface- and interface-engineered heterostructures for solar hydrogen generation

    Science.gov (United States)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  1. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.; Coates, Nelson E.; Yee, Shannon K.

    2017-11-28

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  2. The dielectric genome of van der Waals heterostructures

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Latini, Simone; Thygesen, Kristian Sommer

    2015-01-01

    , the hybridization of quantum plasmons in large graphene/hBN heterostructures, and to demonstrate the intricate effect of substrate screening on the non-Rydberg exciton series in supported WS2. The dielectric building blocks for a variety of 2D crystals are available in an open database together with the software...... for solving the coupled electrodynamic equations....

  3. Tunable emergent heterostructures in a prototypical correlated metal

    Science.gov (United States)

    Fobes, D. M.; Zhang, S.; Lin, S.-Z.; Das, Pinaki; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Harriger, L. W.; Ehlers, G.; Podlesnyak, A.; Bewley, R. I.; Sazonov, A.; Hutanu, V.; Ronning, F.; Batista, C. D.; Janoschek, M.

    2018-05-01

    At the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge2. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions3, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom4. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures5. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting6 and electronic nematic textures7 in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.

  4. IZO deposited by PLD on flexible substrate for organic heterostructures

    Science.gov (United States)

    Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Rasoga, O.; Stanculescu, F.; Socol, G.

    2017-05-01

    In:ZnO (IZO) thin films were deposited on flexible plastic substrates by pulsed laser deposition (PLD) method. The obtained layers present adequate optical and electrical properties competitive with those based on indium tin oxide (ITO). The figure of merit (9 × 10-3 Ω-1) calculated for IZO layers demonstrates that high quality coatings can be prepared by this deposition technique. A thermal annealing (150 °C for 1 h) or an oxygen plasma etching (6 mbar for 10 min.) were applied to the IZO layers to evaluate the influence of these treatments on the properties of the transparent coatings. Using vacuum evaporation, organic heterostructures based on cooper phthalocyanine (CuPc) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) were deposited on the untreated and treated IZO layers. The optical and electrical properties of the heterostructures were investigated by UV-Vis, FTIR and current-voltage ( I- V) measurements. For the heterostructure fabricated on IZO treated in oxygen plasma, an improvement in the current value with at least one order of magnitude was evidenced in the I- V characteristics recorded in dark conditions. Also, an increase in the current value for the heterostructure deposited on untreated IZO layer can be achieved by adding an organic layer such as tris-8-hydroxyquinoline aluminium (Alq3).

  5. Photosensitive heterostructures made of sulfonamide zinc phthalocyanine and organic semiconductor

    Czech Academy of Sciences Publication Activity Database

    Lutsyk, P.; Vertsimakha, Ya.; Nešpůrek, Stanislav; Pomaz, I.

    2011-01-01

    Roč. 535, - (2011), s. 18-29 ISSN 1542-1406 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterostructure * reversal of sign in photovoltage spectra * sulphonamide-substituted phthalocyanine Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.580, year: 2011

  6. Photopatterning of heterostructured polymer Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Li Tiesheng; Mitsuishi, Masaya; Miyashita, Tokuji

    2008-01-01

    Heterostructured polymer Langmuir-Blodgett (LB) film prepared by using poly(N-dodecylacrylamide-co-t-butyl 4-vinylphenyl carbonate) (p(DDA-tBVPC53)) and poly(N-neopentyl methacrylamide-co-9-anthrylmethyl methacrylate) (p(nPMA-AMMA10)) polymer LB films which can act as photogenerator layers were investigated. Patterns with a resolution of 0.75 μm were obtained on heterostructured polymer LB films composed of 4 layers of p(nPMA-AMMA10) LB film (top layers) and 40 layers of p(DDA-tBVPC53) LB film (under layers) on a silicon wafer by deep UV irradiation followed by development with 1% tetramethylammonium hydroxide aqueous solution. The sensitivity of the heterostructured polymer LB films was improved without loss of the resolution compared with p(DDA-tBVPC53) LB film. The etch resistance of the heterostructured polymer LB films was sufficiently good to allow patterning of a copper film suitable for photomask fabrication

  7. Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.

    Science.gov (United States)

    Pateras, Anastasios; Park, Joonkyu; Ahn, Youngjun; Tilka, Jack A; Holt, Martin V; Reichl, Christian; Wegscheider, Werner; Baart, Timothy A; Dehollain, Juan Pablo; Mukhopadhyay, Uditendu; Vandersypen, Lieven M K; Evans, Paul G

    2018-05-09

    Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 -4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.

  8. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  9. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.

    Science.gov (United States)

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-25

    We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

  10. Dynamics of photoinduced degradation of perovskite photovoltaics

    DEFF Research Database (Denmark)

    Khenkin, M. V.; Anoop, K. M.; Visoly-Fischer, I.

    2018-01-01

    The operational stability of perovskite solar cells (PSCs) remains a limiting factor in their commercial implementation. We studied the long-term outdoor stability of ITO/SnO2/Cs0.05((CH3NH3)0.15(CH(NH2)2)0.85)0.95PbI2.55Br0.45/spiro-OMeTAD/Au cells, as well as the dynamics of their degradation...

  11. Magnetotransport in doped manganate perovskites (invited) (abstract)

    International Nuclear Information System (INIS)

    Sun, J.Z.; Krusin-Elbaum, L.; Gupta, A.; Xiao, G.; Duncombe, P.R.; Gallagher, W.J.; Parkin, S.S.

    1997-01-01

    Recent progress in oxide perovskite thin-film technology has led to the discovery of a large negative magnetoresistance at room temperature in the doped manganate perovskite thin films. For applications such as magnetic-field sensing, the saturation magnetic field for large magnetoresistance has to be significantly lowered. The magnetic and transport properties of the doped manganates involve a curious magnetic-field scale, on the order of 1 endash 10 T. Upon the application of a field on this scale, the magnetoresistance saturates, and a significant broadening of the temperature-dependent magnetization is seen. An understanding of the materials physics that underlie such behavior can point to new ways of lowering the saturation field in this class of materials. We argue that this characteristic field is suggestive of an inhomogeneous magnetic state in the system. We will discuss the basic phenomena and physics of magnetotransport in this class of materials. We will also report the successful fabrication of a trilayer thin-film pillar structure made using the doped manganate perovskites in which a magnetoresistance change by about a factor of 2 was observed at temperatures below 100 K in a field less than 200 Oe, proving that large magnetoresistance in low field can be obtained in these materials. copyright 1997 American Institute of Physics

  12. Modified titanate perovskites in photocatalytic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Wlodarczak, M.; Ludwiczak, M.; Laniecki, M. [A. Mickiewicz Univ. (Poland)

    2010-07-01

    Received materials have structure of perovskite, what was shown by XRD diffraction patterns. Perovskite structure is present in all samples with strontium, barium and one sample with calcium. Moreover, received barium and strontium titanate are very similar to pattern materials. XRD results show, that temperature 500 C is too low to create perovskite structure in CaTiO{sub 3}. However, it is high enough in case of SrTiO{sub 3} and BaTiO{sub 3}. One regularity is obvious, surface area increases for samples calcined in lower temperature. There is a connection between surface area and dispersion of platinum. Both of them reach the greatest value to the calcium titanate. Catalytic activity was shown by all of received samples. Measurable values were received to samples calcined in 700 C. Calcium titanate had the best catalytic activity, both an amount of hydrogen and a ratio of hydrogen to platinum. There is one regularity to all samples, the ration of hydrogen to platinum increase when amount of platinum decrease. (orig.)

  13. PbBr3 Perovskite Crystals

    KAUST Repository

    Wei, Tzu-Chiao

    2018-01-31

    Researchers have recently revealed that hybrid lead halide perovskites exhibit ferroelectricity, which is often associated with other physical characteristics, such as a large nonlinear optical response. In this work, the nonlinear optical properties of single crystal inorganic–organic hybrid perovskite CH3NH3PbBr3 are studied. By exciting the material with a 1044 nm laser, strong two-photon absorption-induced photoluminescence in the green spectral region is observed. Using the transmission open-aperture Z-scan technique, the values of the two-photon absorption coefficient are observed to be 8.5 cm GW−1, which is much higher than that of standard two-photon absorbing materials that are industrially used in nonlinear optical applications, such as lithium niobate (LiNbO3), LiTaO3, KTiOPO4, and KH2PO4. Such a strong two-photon absorption effect in CH3NH3PbBr3 can be used to modulate the spectral and spatial profiles of laser pulses, as well as to reduce noise, and can be used to strongly control the intensity of incident light. In this study, the superior optical limiting, pulse reshaping, and stabilization properties of CH3NH3PbBr3 are demonstrated, opening new applications for perovskites in nonlinear optics.

  14. Light-trapping in perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Qing Guo Du

    2016-06-01

    Full Text Available We numerically demonstrate enhanced light harvesting efficiency in both CH3NH3PbI3 and CH(NH22PbI3-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH3NH3PbI3 perovskite solar cells, the maximum achievable photocurrent density (MAPD reaches 25.1 mA/cm2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm2 and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH22PbI3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm2, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH22PbI3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.

  15. Magnetic field effects in hybrid perovskite devices

    Science.gov (United States)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  16. Surface Restructuring of Hybrid Perovskite Crystals

    KAUST Repository

    Banavoth, Murali

    2016-11-07

    Hybrid perovskite crystals have emerged as an important class of semiconductors because of their remarkable performance in optoelectronics devices. The interface structure and chemistry of these crystals are key determinants of the device\\'s performance. Unfortunately, little is known about the intrinsic properties of the surfaces of perovskite materials because extrinsic effects, such as complex microstructures, processing conditions, and hydration under ambient conditions, are thought to cause resistive losses and high leakage current in solar cells. We reveal the intrinsic structural and optoelectronic properties of both pristinely cleaved and aged surfaces of single crystals. We identify surface restructuring on the aged surfaces (visualized on the atomic-scale by scanning tunneling microscopy) that lead to compositional and optical bandgap changes as well as degradation of carrier dynamics, photocurrent, and solar cell device performance. The insights reported herein clarify the key variables involved in the performance of perovskite-based solar cells and fabrication of high-quality surface single crystals, thus paving the way toward their future exploitation in highly efficient solar cells.

  17. Light-trapping in perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qing Guo, E-mail: duqi0001@e.ntu.edu.sg [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); Institute of High Performance Computing, A* STAR, Singapore, 138632 (Singapore); Shen, Guansheng [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); John, Sajeev [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); Department of Physics, Soochow University, Suzhou (China)

    2016-06-15

    We numerically demonstrate enhanced light harvesting efficiency in both CH{sub 3}NH{sub 3}PbI{sub 3} and CH(NH{sub 2}){sub 2}PbI{sub 3}-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm{sup 2}, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm{sup 2}) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH{sub 2}){sub 2}PbI{sub 3} based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm{sup 2}, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH{sub 2}){sub 2}PbI{sub 3} based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.

  18. Large polarons in lead halide perovskites

    Science.gov (United States)

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3− frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]− sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility. PMID:28819647

  19. Lattice effects on ferromagnetism in perovskite ruthenates

    Science.gov (United States)

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  20. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir; Lee, Kwangjae; Dursun, Ibrahim; Alamer, Badriah Jaber; Wu, Zhennan; Alarousu, Erkki; Mohammed, Omar F.; Cho, Namchul; Bakr, Osman

    2018-01-01

    . Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation

  1. Progress, challenges and perspectives in flexible perovskite solar cells

    NARCIS (Netherlands)

    Di Giacomo, F.; Fakharuddin, A.; Jose, R.; Brown, T.M.

    2016-01-01

    Perovskite solar cells have attracted enormous interest since their discovery only a few years ago because they are able to combine the benefits of high efficiency and remarkable ease of processing over large areas. Whereas most of research has been carried out on glass, perovskite deposition and

  2. On the luminescence of perovskite type rare earth gallates

    International Nuclear Information System (INIS)

    Jianmei, Y.; Qingyuan, W.; Shuzhen, L.; Lianren, S.; Mingyu, C.

    1985-01-01

    It has been reported that perovskite type lanthanum gallates may be a good host material for laser and luminescence, but in the rare earth gallates studied, the numbers of perovskite type are less than that of the garnet type and there is less report on their spectroscopic properties in the literature. In this paper synthesis and spectroscopic properties of these compounds are studied

  3. Bandgap calculations and trends of organometal halide perovskites

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2014-01-01

    Energy production from the Sun requires a stable efficient light absorber. Promising candidates in this respect are organometal perovskites (ABX3), which have been intensely investigated during the last years. Here, we have performed electronic structure calculations of 240 perovskites composed...

  4. Temperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite

    NARCIS (Netherlands)

    Gelvez Rueda, M.C.; Renaud, N.; Grozema, F.C.

    2017-01-01

    The fundamental opto-electronic properties of organic-inorganic hybrid perovskites are strongly affected by their structural parameters. These parameters are particularly critical in formamidinium lead iodide (FAPbI3), in which its large structural disorder leads to a non-perovskite

  5. NREL Research Pushes Perovskites Closer to Market | News | NREL

    Science.gov (United States)

    even get close-to the above-20% efficiencies dominated by silicon solar panels. NREL researcher Kai Zhu ; Perovskites have a couple of major benefits over silicon solar panels. The silicon technology requires a high as excellent semiconductors. This means perovskite panels are more flexible than rigid silicon panels

  6. Impact of Interfacial Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Cho, An-Na; Park, Nam-Gyu

    2017-10-09

    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. NaIrO3-A pentavalent post-perovskite

    International Nuclear Information System (INIS)

    Bremholm, M.; Dutton, S.E.; Stephens, P.W.; Cava, R.J.

    2011-01-01

    Sodium iridium (V) oxide, NaIrO 3, was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO 3 , the much-studied structural analog of the high-pressure post-perovskite phase of MgSiO 3 . Among the oxide post-perovskites, NaIrO 3 is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO 6 octahedra separated by layers of NaO 8 bicapped trigonal prisms. NaIrO 3 shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides. -- Graphical abstract: Sodium iridium(V) oxide, NaIrO 3 , synthesized by a high pressure solid state method and recovered to ambient conditions is found to crystallize as the post-perovskite structure and is the first example of a pentavalent ABO 3 post-perovskite. Research highlights: → NaIrO 3 post-perovskite stabilized by pressure. → First example of a pentavalent oxide post-perovskite. → Non-metallic and non-magnetic behavior of NaIrO 3 .

  8. Dissolution-recrystallization method for high efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Luo, Junsheng; Wan, Zhongquan; Liu, Xingzhao; Jia, Chunyang, E-mail: cyjia@uestc.edu.cn

    2017-06-30

    Highlights: • Dissolution-recrystallization method can improve perovskite crystallization. • Dissolution-recrystallization method can improve TiO{sub 2}/perovskite interface. • The optimal perovskite solar cell obtains the champion PCE of 16.76%. • The optimal devices are of high reproducibility. - Abstract: In this work, a dissolution-recrystallization method (DRM) with chlorobenzene and dimethylsulfoxide treating the perovskite films during the spin-coating process is reported. This is the first time that DRM is used to control perovskite crystallization and improve the device performance. Furthermore, the DRM is good for reducing defects and grain boundaries, improving perovskite crystallization and even improving TiO{sub 2}/perovskite interface. By optimizing, the DRM2-treated perovskite solar cell (PSC) obtains the best photoelectric conversion efficiency (PCE) of 16.76% under AM 1.5 G illumination (100 mW cm{sup −2}) with enhanced J{sub sc} and V{sub oc} compared to CB-treated PSC.

  9. Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films.

    Science.gov (United States)

    Duan, Zonghui; Wang, Shuai; Yi, Ningbo; Gu, Zhiyuan; Gao, Yisheng; Song, Qinghai; Xiao, Shumin

    2017-06-21

    Lasing actions in organo-lead halide perovskite films have been heavily studied in the past few years. However, due to the disordered nature of synthesized perovskite films, the lasing actions are usually understood as random lasers that are formed by multiple scattering. Herein, we demonstrate the miscellaneous lasing actions in organo-lead halide perovskite films. In addition to the random lasers, we show that a single or a few perovskite microparticles can generate laser emissions with their internal resonances instead of multiple scattering among them. We experimentally observed and numerically confirmed whispering gallery (WG)-like microlasers in polygon shaped and other deformed microparticles. Meanwhile, owing to the nature of total internal reflection and the novel shape of the nanoparticle, the size of the perovskite WG laser can be significantly decreased to a few hundred nanometers. Thus, wavelength-scale lead halide perovskite lasers were realized for the first time. All of these laser behaviors are complementary to typical random lasers in perovskite film and will help the understanding of lasing actions in complex lead halide perovskite systems.

  10. Determining the energetics of vicinal perovskite oxide surfaces

    NARCIS (Netherlands)

    Wessels, W.A.; Bollmann, Tjeerd Rogier Johannes; Koster, Gertjan; Zandvliet, Henricus J.W.; Rijnders, Augustinus J.H.M.

    2017-01-01

    The energetics of vicinal SrTiO3(001) and DyScO3(110), prototypical perovskite vicinal surfaces, has been studied using topographic atomic force microscopy imaging. The kink formation and strain relaxation energies are extracted from a statistical analysis of the step meandering. Both perovskite

  11. Structures and Phase Transitions in Ordered Double Perovskites

    International Nuclear Information System (INIS)

    Kennedy, Brendan; Zhou, Qingdi; Cheah, Melina

    2005-01-01

    Full text: The basic perovskite structure is ubiquitous in the study of metal oxides, yet very few oxides actually adopt the archetypal cubic structure. The perovskite structure is based on corner sharing octahedra and in most cases cooperative rotations of successive octahedra lower the symmetry of the perovskite structure. Solid State Chemists have been fascinated by these distortions for many years, not only for their intrinsic interest but also to understand how these distortions control the electronic and magnetic properties of perovskite oxides. In this presentation we will describe the use of high-resolution powder diffraction methods to unravel the temperature and composition dependence of the structures in two series of double perovskites, Sr 1-x A x NiWO 6 (A = Ba, Ca) where there is essentially complete ordering of Ni and W cations and in Sr 1-x Ca x CrNbO 6 where there is extensive disorder of the Cr and Nb cations. (authors)

  12. Highly efficient light management for perovskite solar cells.

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  13. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu

    2015-12-02

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  14. Planar-integrated single-crystalline perovskite photodetectors

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-11-09

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors.

  15. Performance of planar heterojunction perovskite solar cells under light concentration

    Directory of Open Access Journals (Sweden)

    Aaesha Alnuaimi

    2016-11-01

    Full Text Available In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.

  16. Reconditioning perovskite films in vapor environments through repeated cation doping

    Science.gov (United States)

    Boonthum, Chirapa; Pinsuwan, Kusuma; Ponchai, Jitprabhat; Srikhirin, Toemsak; Kanjanaboos, Pongsakorn

    2018-06-01

    Perovskites have attracted considerable attention for application as high-efficiency photovoltaic devices owing to their low-cost and low-temperature fabrication. A good surface and high crystallinity are necessary for high-performance devices. We examine the negative effects of chemical ambiences on the perovskite crystal formation and morphology. The repeated cation doping (RCD) technique was developed to remedy these issues by gradually dropping methylammonium ions on top of about-to-form perovskite surfaces to cause recrystallization. RCD promotes pinhole-free, compact, and polygonal-like surfaces under various vapor conditions. Furthermore, it enhances the electronic properties and crystallization. The benefits of RCD extend beyond perovskites under vapor ambiences, as it can improve regular and wasted perovskites.

  17. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.

    KAUST Repository

    Xu, Jixian

    2015-05-08

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  18. Two-Dimensional Perovskite Activation with an Organic Luminophore.

    Science.gov (United States)

    Jemli, Khaoula; Audebert, Pierre; Galmiche, Laurent; Trippé-Allard, Gaelle; Garrot, Damien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2015-10-07

    A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type organic-inorganic perovskite, while respecting the two-dimensional perovskite structure. A substantial increase of the brilliance of the perovskite is obtained. This activation of the perovskite luminescence by the adequate engineering of the organic part is an original approach, and is particularly interesting in the framework of the light-emitting devices such as organic light-emitting diodes (OLEDs) or lasers.

  19. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes

    Science.gov (United States)

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-05-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3- antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  20. Two-Dimensional Halide Perovskites for Emerging New- Generation Photodetectors

    DEFF Research Database (Denmark)

    Tang, Yingying; Cao, Xianyi; Chi, Qijin

    2018-01-01

    Compared to their conventional three-dimensional (3D) counterparts, two-dimensional (2D) halide perovskites have attracted more interests recently in a variety of areas related to optoelectronics because of their unique structural characteristics and enhanced performances. In general, there are two...... distinct types of 2D halide perovskites. One represents those perovskites with an intrinsic layered crystal structure (i.e. MX6 layers, M = metal and X = Cl, Br, I), the other defines the perovskites with a 2D nanostructured morphology such as nanoplatelets and nanosheets. Recent studies have shown that 2D...... halide perovskites hold promising potential for the development of new-generation photodetectors, mainly arising from their highly efficient photoluminescence and absorbance, color tunability in the visible-light range and relatively high stability. In this chapter, we present the summary and highlights...

  1. Perovskite Catalysts—A Special Issue on Versatile Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Yu-Chuan Lin

    2014-08-01

    Full Text Available Perovskite-type catalysts have been prominent oxide catalysts for many years due to attributes such as flexibility in choosing cations, significant thermal stability, and the unique nature of lattice oxygen. Nearly 90% metallic elements of the Periodic Table can be stabilized in perovskite’s crystalline framework [1]. Moreover, by following the Goldschmidt rule [2], the A- and/or B-site elements can be partially substituted, making perovskites extremely flexible in catalyst design. One successful example is the commercialization of noble metal-incorporated perovskites (e.g., LaFe0.57Co0.38Pd0.05O3 for automotive emission control used by Daihatsu Motor Co. Ltd. [3]. Thus, growing interest in, and application of perovskites in the fields of material sciences, heterogeneous catalysis, and energy storage have prompted this Special Issue on perovskite catalysts. [...

  2. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu; Yassitepe, Emre; Voznyy, Oleksandr; Janmohamed, Alyf; Lan, Xinzheng; Levina, Larissa; Comin, Riccardo; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  3. Group theoretical analysis of octahedral tilting in perovskites

    International Nuclear Information System (INIS)

    Howard, C.J.; Stokes, H.T.

    1998-01-01

    Full text: Structures of the perovskite family, ABX 3 , have interested crystallographers over many years, and continue to attract attention on account of their fascinating electrical and magnetic properties, for example the giant magnetoresistive effects exhibited by certain perovskite materials. The ideal perovskite (cubic, space group Pm -/3 m) is a particularly simple structure, but also a demanding one, since aside from the lattice parameter there are no variable parameters in the structure. Consequently, the majority of perovskite structures are distorted perovskites (hettotypes), the most common distortion being the corner-linked tilting of the practically rigid BX 6 octahedral units. In this work, group theoretical methods have been applied to the study of octahedral tilting in perovskites. The only irreducible representations of the parent group (Pm -/3 m) which produce octahedral tilting subject to corner-linking constraints are M + / 3 and R 4 ' + . A six-dimensional order parameter in the reducible representation space of M + / 3 + R + / 4 describes the different possible tilting patterns. The space groups for the different perovskites are then simply the isotropy subgroups, comprising those operations which leave the order parameter invariant. The isotropy subgroups are obtained from a computer program or tabulations. The analysis yields a list of fifteen possible space groups for perovskites derived through octahedral tilting. A connection is made to the (twenty-three) tilt systems given previously by Glazer. The group-subgroup relationships have been derived and displayed. It is interesting to note that all known perovskites based on octahedral tilting conform with the fifteen space groups on our list, with the exception of one perovskite at high temperature, the structure of which seems poorly determined

  4. Generalized trends in the formation energies of perovskite oxides.

    Science.gov (United States)

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  5. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    Science.gov (United States)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  6. Improving the Morphology of the Perovskite Absorber Layer in Hybrid Organic/Inorganic Halide Perovskite MAPbI3 Solar Cells

    Directory of Open Access Journals (Sweden)

    I. J. Ogundana

    2017-01-01

    Full Text Available Recently, perovskite solar cells have attracted tremendous attention due to their excellent power conversion efficiency, low cost, simple fabrications, and high photovoltaic performance. Furthermore, the perovskite solar cells are lightweight and possess thin film and semitransparency. However, the nonuniformity in perovskite layer constitutes a major setback to the operation mechanism, performance, reproducibility, and degradation of perovskite solar cells. Therefore, one of the main challenges in planar perovskite devices is the fabrication of high quality films with controlled morphology and least amount of pin-holes for high performance thin film perovskite devices. The poor reproducibility in perovskite solar cells hinders the accurate fabrication of practical devices for use in real world applications, and this is primarily as a result of the inability to control the morphology of perovskites, leading to large variability in the characteristics of perovskite solar cells. Hence, the focus of research in perovskites has been mostly geared towards improving the morphology and crystallization of perovskite absorber by selecting the optimal annealing condition considering the effect of humidity. Here we report a controlled ambient condition that is necessary to grow uniform perovskite crystals. A best PCE of 7.5% was achieved along with a short-circuit current density of 15.2 mA/cm2, an open-circuit voltage of 0.81 V, and a fill factor of 0.612 from the perovskite solar cell prepared under 60% relative humidity.

  7. Thermoelectric properties of IV–VI-based heterostructures and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pabloborges@ufv.br [Instituto de Ciências Exatas e Tec., Universidade Federal de Viçosa, Rio Paranaíba, MG (Brazil); Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Petersen, J.E.; Scolfaro, L. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States); Leite Alves, H.W. [Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Caixa Postal 110, São João Del Rei 36300-000, MG (Brazil); Myers, T.H. [Department of Physics, Texas State University, San Marcos, TX 78666 (United States)

    2015-07-15

    Doping in a manner that introduces anisotropy in order to reduce thermal conductivity is a significant focus in thermoelectric research today. By solving the semiclassical Boltzmann transport equations in the constant scattering time (τ) approximation, in conjunction with ab initio electronic structure calculations, within Density Functional Theory, we compare the Seebeck coefficient (S) and figure of merit (ZT) of bulk PbTe to PbTe/SnTe/PbTe heterostructures and PbTe doping superlattices (SLs) with periodically doped planes. Bismuth and Thallium were used as the n- and p-type impurities, respectively. The effects of carrier concentration are considered via chemical potential variation in a rigid band approximation. The impurity bands near the Fermi level in the electronic structure of PbTe SLs are of Tl s- and Bi p-character, and this feature is independent of the doping concentration or the distance between impurity planes. We observe the impurity bands to have a metallic nature in the directions perpendicular to the doping planes, yet no improvement on the values of ZT is found when compared to bulk PbTe. For the PbTe/SnTe/PbTe heterostructures, the calculated S presents good agreement with recent experimental data, and an anisotropic behavior is observed for low carrier concentrations (n<10{sup 18} cm{sup −3}). A large value of ZT{sub ||} (parallel to the growth direction) of 3.0 is predicted for n=4.7×10{sup 18} cm{sup −3} and T=700 K, whereas ZT{sub p} (perpendicular to the growth direction) is found to peak at 1.5 for n=1.7×10{sup 17} cm{sup −3}. Both electrical conductivity enhancement and thermal conductivity reduction are analyzed. - Graphical abstract: Figure of merit for PbTe/SnTe/PbTe heterostructure along the [0 0 1] direction, P.D. Borges, J.E. Petersen, L. Scolfaro, H.W. Leite Alves, T.H. Myers, Improved thermoelectric properties of IV–VI-based heterostructures and superlattices. - Highlights: • Thermoelectric properties of IV

  8. Advanced Semiconductor Heterostructures Novel Devices, Potential Device Applications and Basic Properties

    CERN Document Server

    Stroscio, Michael A

    2003-01-01

    This volume provides valuable summaries on many aspects of advanced semiconductor heterostructures and highlights the great variety of semiconductor heterostructures that has emerged since their original conception. As exemplified by the chapters in this book, recent progress on advanced semiconductor heterostructures spans a truly remarkable range of scientific fields with an associated diversity of applications. Some of these applications will undoubtedly revolutionize critically important facets of modern technology. At the heart of these advances is the ability to design and control the pr

  9. In-plane heterostructures of Sb/Bi with high carrier mobility

    Science.gov (United States)

    Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying

    2017-06-01

    In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (˜4000 cm2 V-1 s-1). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.

  10. Electronic properties of phosphorene/graphene heterostructures: Effect of external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumandeep; Srivastava, Sunita; Tankeshwar, K. [Department of Physics, Panjab University, Chandigarh-160014 (India); Kumar, Ashok [Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India 151001 (India)

    2016-05-23

    We report the electronic properties of electrically gated heterostructures of black and blue phosphorene with graphene. The heterostructure of blue phosphorene with graphene is energetically more favorable than black phospherene/graphene. However, both are bonded by weak interlayer interactions. Graphene induces the Dirac cone character in both heterostructure which shows tunabilities with external electric field. It is found that Dirac cone get shifted depending on the polarity of external electric field that results into the so called self induced p-type or n-type doping effect. These features have importance in the fabrication of nano-electronic devices based on the phosphorene/graphene heterostructures.

  11. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    Science.gov (United States)

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  12. Axial Ge/Si nanowire heterostructure tunnel FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Sanuel T [Los Alamos National Laboratory; Daych, Shadi A [Los Alamos National Laboratory

    2010-01-01

    The vapor-liquid-solid (VLS) growth of semiconductor nanowires allows doping and composition modulation along their axis and the realization of axial 1 D heterostructures. This provides additional flexibility in energy band-edge engineering along the transport direction which is difficult to attain by planar materials growth and processing techniques. We report here on the design, growth, fabrication, and characterization of asymmetric heterostructure tunnel field-effect transistors (HTFETs) based on 100% compositionally modulated Si/Ge axial NWs for high on-current operation and low ambipolar transport behavior. We discuss the optimization of band-offsets and Schottky barrier heights for high performance HTFETs and issues surrounding their experimental realization. Our HTFET devices with 10 nm PECVD SiN{sub x} gate dielectric resulted in a measured current drive exceeding 100 {mu}A/{mu}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios.

  13. Giant magnetoelectric effect in pure manganite-manganite heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sanjukta; Pankaj, Ravindra; Yarlagadda, Sudhakar; Majumdar, Pinaki; Littlewood, Peter B.

    2017-11-01

    Obtaining strong magnetoelectric couplings in bulk materials and heterostructures is an ongoing challenge. We demonstrate that manganite heterostructures of the form (Insulator) /(LaMnO3)(n)/Interface/(CaMnO3)(n)/(Insulator) show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by charges leaking from LaMnO3 to CaMnO3 due to repulsion. Here, an effective nearest-neighbor electron-electron (electron-hole) repulsion (attraction) is generated by cooperative electron-phonon interaction. Double exchange, when a particle virtually hops to its unoccupied neighboring site and back, produces magnetic polarons that polarize antiferromagnetic regions. Thus a striking giant magnetoelectric effect ensues when an external electrical field enhances the electron leakage across the interface.

  14. Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Oezelt, Harald, E-mail: harald.oezelt@fhstp.ac.at [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Gusenbauer, Markus [Center for Integrated Sensor Systems, Danube University Krems, Viktor Kaplan-Straße 2, A-2700 Wiener Neustadt (Austria); Schubert, Christian; Albrecht, Manfred [Institute of Physics, Chemnitz University of Technology, Reichenhainer Straße 70, D-09126 Chemnitz (Germany); Institute of Physics, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg (Germany); Schrefl, Thomas [Industrial Simulation, St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten (Austria); Center for Integrated Sensor Systems, Danube University Krems, Viktor Kaplan-Straße 2, A-2700 Wiener Neustadt (Austria)

    2015-05-01

    Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau–Lifshitz–Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed. - Highlights: • We present a model for exchange coupled ferri-/ferromagnetic heterostructures. • We incorporate the microstructural features of the amorphous ferrimagnet. • A distribution of interface exchange coupling is assumed to fit experimental data. • The reversal is dominated by pinning within the ferrimagnet and at the interface.

  15. Heterostructures for Realizing Magnon-Induced Spin Transfer Torque

    Directory of Open Access Journals (Sweden)

    P. B. Jayathilaka

    2012-01-01

    Full Text Available This work reports efforts fabricating heterostructures of different materials relevant for the realization of magnon-induced spin transfer torques. We find the growth of high-quality magnetite on MgO substrates to be straightforward, while using transition metal buffer layers of Fe, Cr, Mo, and Nb can alter the structural and magnetic properties of the magnetite. Additionally, we successfully fabricated and characterized Py/Cr/Fe3O4 and Fe3O4/Cr/Fe3O4 spin valve structures. For both, we observe a relatively small giant magnetoresistance and confirm an inverse dependence on spacer layer thickness. Thus, we have shown certain materials combinations that may form the heterostructures that are the building blocks necessary to achieve magnon-induced spin transfer torque devices.

  16. Spin-orbit controlled capacitance of a polar heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Kevin; Kopp, Thilo [Center for Electronic Correlations and Magnetism, EP VI, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Loder, Florian [Center for Electronic Correlations and Magnetism, EP VI and TP III, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany)

    2015-07-01

    Oxide heterostructures with polar films display special electronic properties, such as the electronic reconstruction at their internal interfaces with the formation of two-dimensional metallic states. Moreover, the electrical field from the polar layers is inversion-symmetry breaking and may generate a strong Rashba spin-orbit coupling (RSOC) in the interfacial electronic system. We investigate the capacitance of a heterostructure in which a strong RSOC at a metallic interface is controlled by the electric field of a surface electrode. Such a structure is for example given by a LaAlO{sub 3} film on a SrTiO{sub 3} substrate which is gated by a top electrode. We find that due to a strong RSOC the capacitance can be larger than the classical geometric value.

  17. Efficient photocarrier injection in a transition metal oxide heterostructure

    CERN Document Server

    Muraoka, Y; Ueda, Y; Hiroi, Z

    2002-01-01

    An efficient method for doping a transition metal oxide (TMO) with hole carriers is presented: photocarrier injection (PCI) in an oxide heterostructure. It is shown that an insulating vanadium dioxide (VO sub 2) film is rendered metallic under light irradiation by PCI from an n-type titanium dioxide (TiO sub 2) substrate doped with Nb. Consequently, a large photoconductivity, which is exceptional for TMOs, is found in the VO sub 2 /TiO sub 2 :Nb heterostructure. We propose an electronic band structure where photoinduced holes created in TiO sub 2 :Nb can be transferred into the filled V 3d band via the low-lying O 2p band of VO sub 2. (letter to the editor)

  18. Improving the photovoltaic performance of perovskite solar cells with acetate

    Science.gov (United States)

    Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.

    2016-01-01

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924

  19. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Di Zhou

    2018-01-01

    Full Text Available A novel all-solid-state, hybrid solar cell based on organic-inorganic metal halide perovskite (CH3NH3PbX3 materials has attracted great attention from the researchers all over the world and is considered to be one of the top 10 scientific breakthroughs in 2013. The perovskite materials can be used not only as light-absorbing layer, but also as an electron/hole transport layer due to the advantages of its high extinction coefficient, high charge mobility, long carrier lifetime, and long carrier diffusion distance. The photoelectric power conversion efficiency of the perovskite solar cells has increased from 3.8% in 2009 to 22.1% in 2016, making perovskite solar cells the best potential candidate for the new generation of solar cells to replace traditional silicon solar cells in the future. In this paper, we introduce the development and mechanism of perovskite solar cells, describe the specific function of each layer, and focus on the improvement in the function of such layers and its influence on the cell performance. Next, the synthesis methods of the perovskite light-absorbing layer and the performance characteristics are discussed. Finally, the challenges and prospects for the development of perovskite solar cells are also briefly presented.

  20. Perovskite Materials for Light-Emitting Diodes and Lasers.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Improving the photovoltaic performance of perovskite solar cells with acetate.

    Science.gov (United States)

    Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P

    2016-12-09

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

  2. Random lasing actions in self-assembled perovskite nanoparticles

    Science.gov (United States)

    Liu, Shuai; Sun, Wenzhao; Li, Jiankai; Gu, Zhiyuan; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai

    2016-05-01

    Solution-based perovskite nanoparticles have been intensively studied in the past few years due to their applications in both photovoltaic and optoelectronic devices. Here, based on the common ground between solution-based perovskite and random lasers, we have studied the mirrorless lasing actions in self-assembled perovskite nanoparticles. After synthesis from a solution, discrete lasing peaks have been observed from optically pumped perovskites without any well-defined cavity boundaries. We have demonstrated that the origin of the random lasing emissions is the scattering between the nanostructures in the perovskite microplates. The obtained quality (Q) factors and thresholds of random lasers are around 500 and 60 μJ/cm2, respectively. Both values are comparable to the conventional perovskite microdisk lasers with polygon-shaped cavity boundaries. From the corresponding studies on laser spectra and fluorescence microscope images, the lasing actions are considered random lasers that are generated by strong multiple scattering in random gain media. In additional to conventional single-photon excitation, due to the strong nonlinear effects of perovskites, two-photon pumped random lasers have also been demonstrated for the first time. We believe this research will find its potential applications in low-cost coherent light sources and biomedical detection.

  3. Properties of perovskites and other oxides

    CERN Document Server

    Müller, K Alex

    2010-01-01

    In this book some 50 papers published by K A Muller as author or co-author over several decades, amplified by more recent work mainly by T W Kool with collaborators, are reproduced. The main subject is Electron Paramagnetic Resonance (EPR) applied to the study of perovskites and other oxides with related subjects. This wealth of papers is organized into eleven chapters, each with an introductory text written in the light of current understanding. The contributions of the first author on structural phase transitions have been immense, and because K A Muller and J C Fayet have published a review

  4. Superconductivity in multilayer perovskite. Weak coupling analysis

    International Nuclear Information System (INIS)

    Koikegami, Shigeru; Yanagisawa, Takashi

    2006-01-01

    We investigate the superconductivity of a three-dimensional d-p model with a multilayer perovskite structure on the basis of the second-order perturbation theory within the weak coupling framework. Our model has been designed with multilayer high-T c superconducting cuprates in mind. In our model, multiple Fermi surfaces appear, and the component of a superconducting gap function develops on each band. We have found that the multilayer structure can stabilize the superconductivity in a wide doping range. (author)

  5. Ag/CdS heterostructural composites: Fabrication, characterizations and photocatalysis

    International Nuclear Information System (INIS)

    Liu, Yang; Chi, Mei; Dong, Hailiang; Jia, Husheng; Xu, Bingshe; Zhang, Zhuxia

    2014-01-01

    Highlights: • Novel Ag/CdS core–shell heterostructural composites were fabricated using a two-step chemical method. • A formation mechanism of Ag/CdS heterostructural composites. • The photocatalytic activity of Ag/CdS heterostructural composites was found to be improved. • PL emissions are markedly quenched in the Ag/CdS composites than in CdS nanoparticles. - Abstract: Ag/CdS heterostructural materials were successfully synthesized by ultrasound-assisted polyols and hydrothermal method. Under hydrothermal condition, thiourea adsorbed on Ag nanowires releases S 2− ions, which react with vicinal Cd 2+ ions to form CdS clusters on Ag nanowires. Thereafter, the Ag/CdS composites grow into core–shell structure through CdS aggregation, Ostwald ripening, and preferential growth. The obtained core–shell structures and morphologies were investigated by XRD, SEM, and TEM; the experimental results indicate that the composites are composed of Ag nanowires serving as the core and CdS particles as the shell. The photocatalytic property of Ag/CdS core–shell materials was then investigated in detail. Comparing studies on the degradation of methylene blue were employed by using pure CdS, pure Ag, and Ag/CdS composites, respectively. The results show that the Ag/CdS composites possess higher photocatalytic degradation efficiency. Moreover, the Ag/CdS composites show improved stability, and the photocatalytic activity remains almost unchanged after four recycles. The enhanced photocatalytic effect for Ag/CdS composites is mainly attributed to the photogenerated electron transfer from CdS to Ag nanowire, while photogenerated holes still remain in CdS's valence band. Consequently, the effective separation of photogenerated electrons and holes and the resulting OH radicals improve the photocatalytic efficiency of Ag/CdS composites greatly

  6. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya; Shekhah, Osama; Spanopoulos, Ioannis; Trikalitis, Pantelis N.; Eddaoudi, Mohamed

    2017-01-01

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  7. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya

    2017-05-10

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  8. Tailored Assembly of 2D Heterostructures beyond Graphene

    Science.gov (United States)

    2017-05-11

    attainable. Here we propose our synthetic approach to construct graphene-based 3D heterostructures composed of 2D layered materials with finely tunable...DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force Research ...Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Rapid progress in graphene research has attracted further research attentions for other 2D layered

  9. Mixed Dimensional Van der Waals Heterostructures for Opto-Electronics.

    Science.gov (United States)

    Jariwala, Deep

    The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into ``all-2D'' van der Waals heterostructures, this concept is not limited to 2D materials alone. Given that any passivated, dangling bond-free surface will interact with another via vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D materials with non-2D materials that adhere primarily through noncovalent interactions. In the first part of this talk I will present our work on emerging mixed-dimensional (2D + nD, where n is 0, 1 or 3) heterostructure devices performed at Northwestern University. I will present two distinct examples of gate-tunable p-n heterojunctions 1. Single layer n-type MoS2\\ (2D) combined with p-type semiconducting single walled carbon nanotubes (1D) and 2. Single layer MoS2 combined with 0D molecular semiconductor, pentacene. I will present the unique electrical properties, underlying charge transport mechanisms and photocurrent responses in both the above systems using a variety of scanning probe microscopy techniques as well as computational analysis. This work shows that van der Waals interactions are robust across different dimensionalities of materials and can allow fabrication of semiconductor devices with unique geometries and properties unforeseen in bulk semiconductors. Finally, I will briefly discuss our recent work from Caltech on near-unity absorption in atomically-thin photovoltaic devices. This work is supported by the Materials Research Center at Northwestern University, funded by the National Science Foundation (NSF DMR-1121262) and the Resnick Sustainability Institute at Caltech.

  10. New approach to local anodic oxidation of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Martaus, Jozef; Gregusova, Dagmar; Cambel, Vladimir; Kudela, Robert; Soltys, Jan

    2008-01-01

    We have experimentally explored a new approach to local anodic oxidation (LAO) of a semiconductor heterostructures by means of atomic force microscopy (AFM). We have applied LAO to an InGaP/AlGaAs/GaAs heterostructure. Although LAO is usually applied to oxidize GaAs/AlGaAs/GaAs-based heterostructures, the use of the InGaP/AlGaAs/GaAs system is more advantageous. The difference lies in the use of different cap layer materials: Unlike GaAs, InGaP acts like a barrier material with respect to the underlying AlGaAs layer and has almost one order of magnitude lower density of surface states than GaAs. Consequently, the InGaP/AlGaAs/GaAs heterostructure had the remote Si-δ doping layer only 6.5 nm beneath the surface and the two-dimensional electron gas (2DEG) was confined only 23.5 nm beneath the surface. Moreover, InGaP unaffected by LAO is a very durable material in various etchants and allows us to repeatedly remove thin portions of the underlying AlGaAs layer via wet etching. This approach influences LAO technology fundamentally: LAO was used only to oxidize InGaP cap layer to define very narrow (∼50 nm) patterns. Subsequent wet etching was used to form very narrow and high-energy barriers in the 2DEG patterns. This new approach is promising for the development of future nano-devices operated both at low and high temperatures

  11. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei

    2015-06-23

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  12. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  13. Axial Ge/Si nanowire heterostructure tunnel FETs.

    Energy Technology Data Exchange (ETDEWEB)

    Dayeh, Shadi A. (Los Alamos National Laboratory); Gin, Aaron V.; Huang, Jian Yu; Picraux, Samuel Thomas (Los Alamos National Laboratory)

    2010-03-01

    Axial Ge/Si heterostructure nanowires (NWs) allow energy band-edge engineering along the axis of the NW, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two significant advances in the area of heterostructure NWs and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure NWs with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these NWs for high-on currents and suppressed ambipolar behavior. Initial prototype devices with 10 nm PECVD SiN{sub x} gate dielectric resulted in a very high current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios. Prior work on the synthesis of Ge/Si axial NW heterostructures through the VLS mechanism have resulted in axial Si/Si{sub 1-x}Ge{sub x} NW heterostructures with x{sub max} {approx} 0.3, and more recently 100% composition modulation was achieved with a solid growth catalyst. In this latter case, the thickness of the heterostructure cannot exceed few atomic layers due to the slow axial growth rate and concurrent radial deposition on the NW sidewalls leading to a mixture of axial and radial deposition, which imposes a big challenge for fabricating useful devices form these NWs in the near future. Here, we report the VLS growth of 100% doping and composition modulated axial Ge/Si heterostructure NWs with lengths appropriate for device fabrication by devising a growth procedure that eliminates Au diffusion on the NW sidewalls and minimizes random kinking in the heterostructure NWs as deduced from detailed microscopy analysis. Fig. 1 a shows a cross-sectional SEM image of epitaxial Ge/Si axial NW heterostructures grown on a Ge(111) surface. The interface abruptness in these Ge/Si heterostructure NWs is of the order of the NW diameter. Some of these NWs develop a crystallographic kink that is {approx

  14. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.

    Science.gov (United States)

    Rooney, Aidan P; Kozikov, Aleksey; Rudenko, Alexander N; Prestat, Eric; Hamer, Matthew J; Withers, Freddie; Cao, Yang; Novoselov, Kostya S; Katsnelson, Mikhail I; Gorbachev, Roman; Haigh, Sarah J

    2017-09-13

    Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS 2 or WS 2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe 2 and WSe 2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe 2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe 2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe 2 compared to processing in air.

  15. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    Science.gov (United States)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  16. M = Mo, W; X = S, Se, Te) heterostructures

    KAUST Repository

    Zhang, Qingyun

    2018-04-16

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional GaX/MX2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between GaX and MX2 is found to result in Rashba splitting at the valence-band edge around the Γ point, which grows for increasing strength of the spin-orbit coupling in the p orbitals of the chalcogenide atoms. The location of the valence-band maximum in the Brillouin zone can be tuned by strain and application of an out-of-plane electric field. The coexistence of Rashba splitting (in-plane spin direction) and band splitting at the K and K′ valleys (out-of-plane spin direction) makes GaX/MX2 heterostructures interesting for spintronics and valleytronics. They are promising candidates for two-dimensional spin-field-effect transistors and spin-valley Hall effect devices. Our findings shed light on the spin-valley coupling in van der Waals heterostructures.

  17. Simulation design of P–I–N-type all-perovskite solar cells with high efficiency

    International Nuclear Information System (INIS)

    Du Hui-Jing; Wang Wei-Chao; Gu Yi-Fan

    2017-01-01

    According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J sc of 32.47 mA/cm 2 . The small series resistance of the all-perovskite solar cell also benefits the high J sc . The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem. (paper)

  18. Theoretical calculations on layered perovskites: implications for photocatalysis

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2014-12-01

    Full Text Available The application of first-principles calculations to the study of layered perovskites is reviewed here, with an emphasis on properties relevant to the use of these materials in photocatalysis. First, the accuracies of the theoretical methods in common use for the study of layered perovskites are compared. The main body of the article then reviews studies of the bulk atomic and electronic structures of pure and doped perovskites; first-principles thermodynamics studies; studies of surfaces and studies of adsorption on surfaces.

  19. Neutral Color Semitransparent Microstructured Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2014-01-28

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium. © 2013 American Chemical Society.

  20. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  1. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  2. Magnetic and Electric Properties of , ( Layered Perovskites

    Directory of Open Access Journals (Sweden)

    A. I. Ali

    2013-01-01

    Full Text Available The electric and magnetic properties of layered perovskites have been investigated systematically over the doping range . It was found that both Sr1.5Y0.5CoO4 and Sr1.4Y0.6CoO4 undergo ferromagnetic (FM transition around 145 K and 120 K, respectively. On the other hand, Sr1.3Y0.7CoO4 and Sr1.2Y0.8CoO4 compounds showed paramagnetic behavior over a wide range of temperatures. In addition, spin-glass transition ( was observed at 10 K for Sr1.3Y0.7CoO4. All investigated samples are semiconducting-like within the temperature range of 10–300 K. The temperature dependence of the electrical resistivity, , was described by two-dimensional variable range hopping (2D-VRH model at 50 K < ≤ 300 K. Comparison with other layered perovskites was discussed in this work.

  3. Finding New Perovskite Halides via Machine learning

    Science.gov (United States)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  4. Local polar fluctuations in lead halide perovskites

    Science.gov (United States)

    Tan, Liang; Yaffe, Omer; Guo, Yinsheng; Brus, Louis; Rappe, Andrew; Egger, David; Kronik, Leeor

    The lead halide perovskites have recently attracted much attention because of their large and growing photovoltaic power conversion efficiencies. However, questions remain regarding the temporal and spatial correlations of the structural fluctuations, their atomistic nature, and how they affect electronic and photovoltaic properties. To address these questions, we have performed a combined ab initio molecular dynamics (MD) and density functional theory (DFT) study on CsPbBr3. We have observed prevalent anharmonic motion in our MD trajectories, with local polar fluctuations involving head-to-head motion of A-site Cs cations coupled with Br window opening. We calculate Raman spectra from the polarizability auto-correlation functions obtained from these trajectories and show that anharmonic A-site cation motion manifests as a broad central peak in the Raman spectrum, which increases in intensity with temperature. A comparison of the experimental Raman spectrum of hybrid organometallic MAPbBr3 and fully inorganic CsPbBr3 suggests that structural fluctuations in lead-halide perovskites is more general than rotation of polar organic cations and is intimately coupled to the inorganic framework.

  5. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    Science.gov (United States)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  6. Formation of Two-Dimensional Homologous Faults and Oxygen Electrocatalytic Activities in a Perovskite Nickelate.

    Science.gov (United States)

    Bak, Jumi; Bae, Hyung Bin; Kim, Jaehoon; Oh, Jihun; Chung, Sung-Yoon

    2017-05-10

    Atomic-scale direct probing of active sites and subsequent elucidation of the structure-activity relationship are important issues involving oxide-based electrocatalysts to achieve better electrochemical conversion efficiency. By generating Ruddlesden-Popper (RP) two-dimensional homologous faults via simple control of the cation nonstoichiometry in LaNiO 3 thin films, we demonstrate that strong tetragonal distortion of [NiO 6 ] octahedra is induced by more than 20% elongation of Ni-O bonds in the faults. In addition to direct visualization of the elongation by scanning transmission electron microscopy, we identify that the distorted [NiO 6 ] octahedra in the faults show considerably higher electrocatalytic activities than other surface sites during the electrochemical oxygen evolution reaction. This unequivocal evidence of the octahedral distortion and its impact on electrocatalysis in LaNiO 3 suggests that the formation of RP-type faults can provide an efficient way to control the octahedral geometry and thereby remarkably enhance the oxygen catalytic performance of perovskite oxides.

  7. All-inorganic inverse perovskite solar cells using zinc oxide nanocolloids on spin coated perovskite layer

    Science.gov (United States)

    Shibayama, Naoyuki; Kanda, Hiroyuki; Yusa, Shin-ichi; Fukumoto, Shota; Baranwal, Ajay K.; Segawa, Hiroshi; Miyasaka, Tsutomu; Ito, Seigo

    2017-07-01

    We confirmed the influence of ZnO nanoparticle size and residual water on performance of all inorganic perovskite solar cells. By decreasing the size of the ZnO nanoparticles, the short-circuit current density ( Jsc) and open circuit photovoltage ( Voc) values are increased and the conversion efficiency is improved. Although the Voc value is not affected by the influence of residual water in the solution for preparing the ZnO layer, the Jsc value drops greatly. As a result, it was found that it is important to use the oxide nanoparticles with a small particle diameter and to reduce the water content in the oxide forming material in order to manufacture a highly efficient all inorganic perovskite solar cells.

  8. Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices

    Science.gov (United States)

    2016-03-01

    ARL-TR-7618 ● MAR 2016 US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in...US Army Research Laboratory Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices by Blair C...Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  9. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  10. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  11. The Surface of Hybrid Perovskite Crystals: A Boon or Bane

    KAUST Repository

    Banavoth, Murali; Yengel, Emre; Yang, Chen; Peng, Wei; Alarousu, Erkki; Bakr, Osman; Mohammed, Omar F.

    2017-01-01

    Hybrid perovskite single crystals have garnered tremendous research attention and are expected to be next-generation materials for high-efficiency photoactive devices. Therefore, it is fundamentally important to understand the 8 relationship between

  12. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-01-01

    Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios

  13. Present status and future prospects of perovskite photovoltaics

    Science.gov (United States)

    Snaith, Henry J.

    2018-05-01

    Solar cells based on metal halide perovskites continue to approach their theoretical performance limits thanks to worldwide research efforts. Mastering the materials properties and addressing stability may allow this technology to bring profound transformations to the electric power generation industry.

  14. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.

    KAUST Repository

    Xu, Jixian; Buin, Andrei; Ip, Alexander H; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G; Maksymovych, Peter; Sargent, Edward H

    2015-01-01

    passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar

  15. Manganites in Perovskite Superlattices: Structural and Electronic Properties

    KAUST Repository

    Jiwuer, Jilili

    2016-01-01

    Perovskite manganites are widely investigated compounds due to the discovery of the colossal magnetoresistance effect in 1994. They have a broad range of structural, electronic, magnetic properties and potential device applications in sensors

  16. Chemically Addressable Perovskite Nanocrystals for Light-Emitting Applications

    KAUST Repository

    Sun, Haizhu; Yang, Zhenyu; Wei, Mingyang; Sun, Wei; Li, Xiyan; Ye, Shuyang; Zhao, Yongbiao; Tan, Hairen; Kynaston, Emily L.; Schon, Tyler B.; Yan, Han; Lu, Zheng-Hong; Ozin, Geoffrey A.; Sargent, Edward H.; Seferos, Dwight S.

    2017-01-01

    Whereas organic–inorganic hybrid perovskite nanocrystals (PNCs) have remarkable potential in the development of optoelectronic materials, their relatively poor chemical and colloidal stability undermines their performance in optoelectronic devices

  17. Pyridine-induced Dimensionality Change in Hybrid Perovskite Nanocrystals

    KAUST Repository

    Ahmed, Ghada H.; Yin, Jun; Bose, Riya; Sinatra, Lutfan; Alarousu, Erkki; Yengel, Emre; AlYami, Noktan; Saidaminov, Makhsud I.; Zhang, Yuhai; Hedhili, Mohamed N.; Bakr, Osman; Bredas, Jean-Luc; Mohammed, Omar F.

    2017-01-01

    of pyridine during the synthesis of methylammonium lead bromide (MAPbBr) perovskite nanocrystals can transform three-dimensional (3D) cubes into two-dimensional (2D) nanostructures. Density functional theory (DFT) calculations show that pyridine preferentially

  18. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa

    2016-09-08

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  19. Metal Halide Perovskite Single Crystals: From Growth Process to Application

    Directory of Open Access Journals (Sweden)

    Shuigen Li

    2018-05-01

    Full Text Available As a strong competitor in the field of optoelectronic applications, organic-inorganic metal hybrid perovskites have been paid much attention because of their superior characteristics, which include broad absorption from visible to near-infrared region, tunable optical and electronic properties, high charge mobility, long exciton diffusion length and carrier recombination lifetime, etc. It is noted that perovskite single crystals show remarkably low trap-state densities and long carrier diffusion lengths, which are even comparable with the best photovoltaic-quality silicon, and thus are expected to provide better optoelectronic performance. This paper reviews the recent development of crystal growth in single-, mixed-organic-cation and fully inorganic halide perovskite single crystals, in particular the solution approach. Furthermore, the application of metal hybrid perovskite single crystals and future perspectives are also highlighted.

  20. Preparation of manganese-based perovskite nanoparticles using a ...

    Indian Academy of Sciences (India)

    Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: ... ted much attention in various fields of medicine and pharma- cology such as .... In addition, the SAR value of sample was calculated through ...

  1. Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture.

    Science.gov (United States)

    Xu, Xiaobao; Chen, Qi; Hong, Ziruo; Zhou, Huanping; Liu, Zonghao; Chang, Wei-Hsuan; Sun, Pengyu; Chen, Huajun; De Marco, Nicholas; Wang, Mingkui; Yang, Yang

    2015-10-14

    In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

  2. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  3. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  4. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites

    KAUST Repository

    El-Mellouhi, Fedwa; Marzouk, Asma; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-01-01

    In the past few years, the efficiency of solar cells based on hybrid organic–inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic–inorganic framework materials that are widely used.

  5. Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy

    NARCIS (Netherlands)

    Maheshwari, Arpit; Heck, Michael; Santarelli, Massimo

    2018-01-01

    The cycle aging of a commercial 18650 lithium-ion battery with graphite anode and lithium nickel manganese cobalt (NMC) oxide-based cathode at defined operating conditions is studied by regular electrochemical characterization, electrochemical impedance spectroscopy (EIS) and post-mortem analysis.

  6. Zinc oxide based dye sensitized solar cell using eosin – Y as ...

    African Journals Online (AJOL)

    A zinc oxide based Dye sensitized Solar Cell (DSSC) has been fabricated, using Eosin-Y as the dye adsorbed on a nanocrystalline zinc oxide - fluorine doped tin oxide electrode, for the sensitization of the large band gap semiconductor. The absorption spectrum of Eosin-Y showed high absorption of visible light between ...

  7. Bismuth oxide based ceramics with improved electrical and mechanical properties: Part II. Structural and mechanical properties

    NARCIS (Netherlands)

    Kruidhof, H.; Seshan, Kulathuiyer; van de Velde, G.M.H.; de Vries, K.J.; Burggraaf, A.J.

    1988-01-01

    Coprecipitation as a method of preparation for bismuth oxides based ceramics yields relatively strong and machineable materials in comparison with the solid state reaction. Compositions within the system (1−x)Bi2O3|xEr2O3 containing up to twenty five mole percent of erbium oxide show a slow

  8. Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Yong Hui; Luo, Jingshan; Son, Min-Kyu; Gao, Peng; Cho, Kyung Taek; Seo, Jiyoun; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-05-01

    The Al2 O3 passivation layer is beneficial for mesoporous TiO2 -based perovskite solar cells when it is deposited selectively on the compact TiO2 surface. Such a passivation layer suppressing surface recombination can be formed by thermal decomposition of the perovskite layer during post-annealing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Topological Crystalline Insulators and Dirac Octets in Anti-perovskites

    OpenAIRE

    Hsieh, Timothy H.; Liu, Junwei; Fu, Liang

    2014-01-01

    We predict a new class of topological crystalline insulators (TCI) in the anti-perovskite material family with the chemical formula A$_3$BX. Here the nontrivial topology arises from band inversion between two $J=3/2$ quartets, which is described by a generalized Dirac equation for a "Dirac octet". Our work suggests that anti-perovskites are a promising new venue for exploring the cooperative interplay between band topology, crystal symmetry and electron correlation.

  10. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

    Science.gov (United States)

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.

    2018-03-01

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can

  11. Application of carbon nanotubes in perovskite solar cells: A review

    Science.gov (United States)

    Oo, Thet Tin; Debnath, Sujan

    2017-11-01

    Solar power, as alternative renewable energy source, has gained momentum in global energy generation in recent time. Solar photovoltaics (PV) systems now fulfill a significant portion of electricity demand and the capacity of solar PV capacity is growing every year. PV cells efficiency has improved significantly following decades of research, evolving into third generations of PV cells. These third generation PV cells are set out to provide low-cost and efficient PV systems, further improving the commercial competitiveness of solar energy generation. Among these latest generations of PV cells, perovskite solar cells have gained attraction due to the simple manufacturing process and the immense growth in PV efficiency in a short period of research and development. Despite these advantages, perovskite solar cells are known for the weak stability and decomposition in exposure to humidity and high temperature, hindering the possibility of commercialization. This paper will discuss the role of carbon nanotubes (CNTs) in improving the efficiency and stability of perovskite solar cells, in various components such as perovskite layer and hole transport layer, as well as the application of CNTs in unique aspects. These includes the use of CNTs fiber in making the perovskite solar cells flexible, as well as simplification of perovskite PV production by using CNT flash evaporation printing process. Despite these advances, challenges remain in incorporation CNTs into perovskite such as lower conversion efficiency compared to rare earth metals and improvements need to be made. Thus, the paper will be also highlighting the CNTs materials suggested for further research and improvement of perovskite solar cells.

  12. Spin transport properties of partially edge-hydrogenated MoS2 nanoribbon heterostructure

    International Nuclear Information System (INIS)

    Peng, Li; Yao, Kailun; Zhu, Sicong; Ni, Yun; Zu, Fengxia; Wang, Shuling; Guo, Bin; Tian, Yong

    2014-01-01

    We report ab initio calculations of electronic transport properties of heterostructure based on MoS 2 nanoribbons. The heterostructure consists of edge hydrogen-passivated and non-passivated zigzag MoS 2 nanoribbons (ZMoS 2 NR-H/ZMoS 2 NR). Our calculations show that the heterostructure has half-metallic behavior which is independent of the nanoribbon width. The opening of spin channels of the heterostructure depends on the matching of particular electronic orbitals in the Mo-dominated edges of ZMoS 2 NR-H and ZMoS 2 NR. Perfect spin filter effect appears at small bias voltages, and large negative differential resistance and rectifying effects are also observed in the heterostructure.

  13. Vacuum-evaporated ferroelectric films and heterostructures of vinylidene fluoride/trifluoroethylene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Draginda, Yu. A., E-mail: lbf@ns.crys.ras.ru; Yudin, S G; Lazarev, V V; Yablonskii, S V; Palto, S P [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-05-15

    The potential of the vacuum method for preparing ferroelectric films and photonic heterostructures from organic materials is studied. Vacuum-evaporated films of fluoropolymers and heterostructures on their basis are obtained and their ferroelectric and spectral properties are studied. In particular, homogeneous films of the well-known piezoelectric polymer polyvinylidene fluoride and ferroelectric material vinylidene fluoride/trifluoroethylene copolymer (P(VDF/TFE)) are produced. Experimental studies of vacuum-evaporated P(VDF/TFE) films confirmed their ferroelectric properties. The heterostructures composed of alternating layers of P(VDF/TFE) copolymer molecules and azodye molecules are fabricated by vacuum evaporation. Owing to the controlled layer thickness and a significant difference in the refractive indices of the P(VDF/TFE) copolymer and azodyes, these heterostructures exhibit properties of photonic crystals. This finding is confirmed by the occurrence of a photonic band in the absorption spectra of the heterostructures.

  14. Perovskite classification: An Excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup

    Science.gov (United States)

    Locock, Andrew J.; Mitchell, Roger H.

    2018-04-01

    Perovskite mineral oxides commonly exhibit extensive solid-solution, and are therefore classified on the basis of the proportions of their ideal end-members. A uniform sequence of calculation of the end-members is required if comparisons are to be made between different sets of analytical data. A Microsoft Excel spreadsheet has been programmed to assist with the classification and depiction of the minerals of the perovskite- and vapnikite-subgroups following the 2017 nomenclature of the perovskite supergroup recommended by the International Mineralogical Association (IMA). Compositional data for up to 36 elements are input into the spreadsheet as oxides in weight percent. For each analysis, the output includes the formula, the normalized proportions of 15 end-members, and the percentage of cations which cannot be assigned to those end-members. The data are automatically plotted onto the ternary and quaternary diagrams recommended by the IMA for depiction of perovskite compositions. Up to 200 analyses can be entered into the spreadsheet, which is accompanied by data calculated for 140 perovskite compositions compiled from the literature.

  15. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang

    2018-01-01

    Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.

  16. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-01

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  17. Fabrication of Semiconducting Methylammonium Lead Halide Perovskite Particles by Spray Technology.

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2018-01-10

    In this "nano idea" paper, three concepts for the preparation of methylammonium lead halide perovskite particles are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.

  18. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  19. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  20. Thermodynamic stability and kinetic dissolution of perovskite in natural waters

    International Nuclear Information System (INIS)

    Nesbitt, H.W.; Bancroft, G.M.; Fyfe, W.S.; Karkhanis, S.; Melling, P.; Nishijima, A.

    1981-01-01

    Ringwood and coworkers have recently proposed using titanates and zirconates as hosts for nuclear waste in the Synroc B process. Three minerals are used as hosts: perovskite (CaTiO 3 ), Ba-hollandite (BaAl 2 Ti 6 O 16 ), and zirconolite (CaZrTi 2 O 7 ). The Synroc philosophy relies heavily on geological and geochemical observations in selecting stable host minerals. Although it has been recognized that the Synroc minerals are not thermodynamically compatible with siliceous rocks, the minerals are considered to be thermodynamically stable in the presence of water, and it has been reported that these minerals are kinetically stable under high-temperature (up to 900 0 C) hydrothermal conditions. Detailed thermodynamic calculations and leach tests have been performed which demonstrate: first, that perovskite is thermodynamically unstable in all known natural waters; and second, that pervoskite leaches at a significant rate even at 100 0 C. Hydrothermal leach tests have been made on natural and synthetic perovskite and perovskite analogues between 100 0 C and 300 0 C. Weight losses and solution concentrations were monitored. The results reported previously in the literature also show that perovskite is kinetically unstable in the presence of common silicates. Our results show that perovskite may be no more stable than siliceous glasses, such as rhyolite, which have been studied previously. Geologic evidence from common alkaline rocks also indicates that hollandite and zirconolite probably will not survive in common rock matrices

  1. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P.; Bakr, Osman; Sargent, Edward H.

    2015-01-01

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  2. Tracking the formation of methylammonium lead triiodide perovskite

    International Nuclear Information System (INIS)

    Liu, Lijia; McLeod, John A.; Wang, Rongbin; Shen, Pengfei; Duhm, Steffen

    2015-01-01

    The formation mechanism of perovskite methylammonium lead triiodide (CH 3 NH 3 PbI 3 ) was studied with in situ X-ray photoelectron spectroscopy (XPS) on successive depositions of thermally evaporated methylammonium iodide (CH 3 NH 3 I) on a lead iodide (PbI 2 ) film. This deposition method mimics the “two-step” synthesis method commonly used in device fabrication. We find that several competing processes occur during the formation of perovskite CH 3 NH 3 PbI 3 . Our most important finding is that during vapour deposition of CH 3 NH 3 I onto PbI 2 , at least two carbon species are present in the resulting material, while only one nitrogen species is present. This suggests that CH 3 NH 3 I can dissociate during the transition to a perovskite phase, and some of the resulting molecules can be incorporated into the perovskite. The effect of partial CH 3 NH 3 substitution with CH 3 was evaluated, and electronic structure calculations show that CH 3 defects would impact the photovoltaic performance in perovskite solar cells. The possibility that not all A sites in the APbI 3 perovskite are occupied by CH 3 NH 3 is therefore an important consideration when evaluating the performance of organometallic trihalide solar cells synthesized using typical approaches

  3. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    Science.gov (United States)

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  4. Study of transport properties of bodies with a perovskite structure: application to the MgSiO3 perovskite

    International Nuclear Information System (INIS)

    Kapusta, Benedicte

    1990-01-01

    After some recalls on transport in ionic solids (Nernst-Einstein relationship, variation of ionic conductivity, hybrid conduction, fast ionic conduction), this research thesis presents the physical properties of perovskites and more particularly the structure and stability of the MgSiO 3 perovskite: structure and elastic properties, electric conductivity and transport properties in compounds with a perovskite structure. Then, the author reports the experimental study of the KZnF 3 perovskite (a structural analogous of MgSiO 3 ): measurements of electric conductivity under pressure, measurements under atmospheric pressure, result discussion. The next part addresses the numerical simulation of MgSiO 3 : simulation techniques (generalities on molecular dynamics, model description), investigation of structural, elastic and thermodynamic properties, diffusion properties in quadratic phase [fr

  5. Designing pseudocubic perovskites with enhanced nanoscale polarization

    Energy Technology Data Exchange (ETDEWEB)

    Levin, I. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Laws, W. J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; Wang, D. [Department of Materials Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom; Reaney, I. M. [Department of Materials Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom

    2017-11-20

    A crystal-chemical framework has been proposed for the design of pseudocubic perovskites with nanoscale ferroelectric order, and its applicability has been demonstrated using a series of representative solid solutions that combined ferroelectric (K0.5Bi0.5TiO3, BaTiO3, and PbTiO3) and antiferroelectric (Nd-substituted BiFeO3) end members. The pseudocubic structures obtained in these systems exhibited distortions that were coherent on a scale ranging from sub-nanometer to tens of nanometers, but, in all cases, the macroscopic distortion remained unresolvable even if using high-resolution X-ray powder diffraction. Different coherence lengths for the local atomic displacements account for the distinctly different dielectric, ferroelectric, and electromechanical properties exhibited by the samples. The guidelines identified provide a rationale for chemically tuning the coherence length to obtain the desired functional response.

  6. Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite

    KAUST Repository

    Hermes, Ilka M.

    2016-02-12

    Methylammonium lead iodide (MAPbI3) perovskite materials show an outstanding performance in photovoltaic devices. However, certain material properties, especially the possible ferroic behavior, remain unclear. We observed distinct nanoscale periodic domains in the piezoresponse of MAPbI3(Cl) grains. The structure and the orientation of these striped domains indicate ferroelasticity as their origin. By correlating vertical and lateral piezoresponse force microscopy experiments performed at different sample orientations with x-ray diffraction, the preferred domain orientation was suggested to be the a1-a2-phase. The observation of these ferroelastic fingerprints appears to strongly depend on the film texture and thus the preparation route. The formation of the ferroelastic twin domains could be induced by internal strain during the cubic-tetragonal phase transition.

  7. Colour centre-free perovskite single crystals

    International Nuclear Information System (INIS)

    Petit, Pierre-Olivier; Petit, Johan; Goldner, Philippe; Viana, Bruno

    2009-01-01

    Yb 3+ :YAlO 3 (YAP) and Yb 3+ :GdAlO 3 (GAP) are interesting 1 μm high-power laser media thanks to their very good thermo-mechanical properties. However, as-grown perovskite single crystals exhibit colour centres. Parasitic thermal load generated by these centres is deleterious for high-power laser action and can lead to crystal damages. Moreover these defects decrease Yb 3+ lifetime. They are related to trapped holes on the oxygen network. In the present work, several schemes to remove colour centres are presented. Attention is focused on cerium codoping, thermal annealing under reducing atmosphere and growth of non-stoechiometric compounds.

  8. Properties and applications of perovskite proton conductors

    Directory of Open Access Journals (Sweden)

    Eduardo Caetano Camilo de Souza

    2010-09-01

    Full Text Available A brief overview is given of the main types and principles of solid-state proton conductors with perovskite structure. Their properties are summarized in terms of the defect chemistry, proton transport and chemical stability. A good understanding of these subjects allows the manufacturing of compounds with the desired electrical properties, for application in renewable and sustainable energy devices. A few trends and highlights of the scientific advances are given for some classes of protonic conductors. Recent results and future prospect about these compounds are also evaluated. The high proton conductivity of barium cerate and zirconate based electrolytes lately reported in the literature has taken these compounds to a highlight position among the most studied conductor ceramic materials.

  9. High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells.

    Science.gov (United States)

    Cao, Xiaobing; Zhi, Lili; Jia, Yi; Li, Yahui; Cui, Xian; Zhao, Ke; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2018-08-15

    Thermal annealing plays multiple roles in fabricating high quality perovskite films. Generally, it might result in large perovskite grains by elevating annealing temperature, but might also lead to decomposition of perovskite. Here, we study the effects of annealing temperature on the coarsening of perovskite grains in a temperature range from 100 to 250 °C, and find that the coarsening rate of the perovskite grain increase significantly with the annealing temperature. Compared with the perovskite films annealed at 100 °C, high quality perovskite films with large columnar grains are obtained by annealing perovskite precursor films at 250 °C for only 10 s. As a result, the power conversion efficiency of best solar cell increased from 12.35% to 16.35% due to its low recombination rate and high efficient charge transportation in solar cells. Copyright © 2018. Published by Elsevier Inc.

  10. Selective dissolution of halide perovskites as a step towards recycling solar cells.

    Science.gov (United States)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-23

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb(2+) cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  11. New lithium-ion conducting perovskite oxides related to (Li, La)TiO3

    Indian Academy of Sciences (India)

    Unknown

    We describe the synthesis and lithium-ion conductivity of new perovskite-related oxides ... work on lithium-ion conducting perovskite oxides containing d0 cations. Keywords. ..... On the other hand, Nb/Ta compounds show a higher conductivity.

  12. Selective dissolution of halide perovskites as a step towards recycling solar cells

    Science.gov (United States)

    Kim, Byeong Jo; Kim, Dong Hoe; Kwon, Seung Lee; Park, So Yeon; Li, Zhen; Zhu, Kai; Jung, Hyun Suk

    2016-05-01

    Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.

  13. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman; Peng, Wei; Wang, Lingfei

    2017-01-01

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making

  14. Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions

    KAUST Repository

    Guan, Xinwei; Hu, Weijin; Haque, Mohammed; Wei, Nini; Liu, Zhixiong; Chen, Aitian; Wu, Tao

    2017-01-01

    Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite-based resistive switching (RS

  15. Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals

    NARCIS (Netherlands)

    Khoram, P.; Brittman, S.; Dzik, W.I.; Reek, J.N.H.; Garneett, E.C.

    2016-01-01

    Recently, halide perovskites have attracted considerable attention for optoelectronic applications, but further progress in this field requires a thorough understanding of the fundamental properties of these materials. Studying perovskites in their single-crystalline form provides a model system for

  16. Resonant Tunneling in Photonic Double Quantum Well Heterostructures

    Directory of Open Access Journals (Sweden)

    Cox Joel

    2010-01-01

    Full Text Available Abstract Here, we study the resonant photonic states of photonic double quantum well (PDQW heterostructures composed of two different photonic crystals. The heterostructure is denoted as B/A/B/A/B, where photonic crystals A and B act as photonic wells and barriers, respectively. The resulting band structure causes photons to become confined within the wells, where they occupy discrete quantized states. We have obtained an expression for the transmission coefficient of the PDQW heterostructure using the transfer matrix method and have found that resonant states exist within the photonic wells. These resonant states occur in split pairs, due to a coupling between degenerate states shared by each of the photonic wells. It is observed that when the resonance energy lies at a bound photonic state and the two photonic quantum wells are far away from each other, resonant states appear in the transmission spectrum of the PDQW as single peaks. However, when the wells are brought closer together, coupling between bound photonic states causes an energy-splitting effect, and the transmitted states each have two peaks. Essentially, this means that the system can be switched between single and double transparent states. We have also observed that the total number of resonant states can be controlled by varying the width of the photonic wells, and the quality factor of transmitted peaks can be drastically improved by increasing the thickness of the outer photonic barriers. It is anticipated that the resonant states described here can be used to develop new types of photonic-switching devices, optical filters, and other optoelectronic devices.

  17. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures

    Science.gov (United States)

    2018-02-19

    AFRL-AFOSR-JP-TR-2018-0012 Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures PHILIP Kim HARVARD COLLEGE PRESIDENT...21-02-2018 2.  REPORT TYPE      Final 3.  DATES COVERED (From - To)      15 Aug 2015 to 14 Feb 2017 4.  TITLE AND SUBTITLE Nano Electronics on...NOTES 14.  ABSTRACT We report molecular beam epitaxial growth and electronic transport properties of high quality topological insulator Bi2Se3 thin films

  18. Spin-polarized photoemission from SiGe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Chrastina, D.; Finazzi, M.; Ciccacci, F. [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-12-04

    We apply the principles of Optical Orientation to measure by Mott polarimetry the spin polarization of electrons photoemitted from different group-IV heterostructures. The maximum measured spin polarization, obtained from a Ge/Si{sub 0.31}Ge{sub 0.69} strained film, undoubtedly exceeds the maximum value of 50% attainable in bulk structures. The explanation we give for this result lies in the enhanced band orbital mixing between light hole and split-off valence bands as a consequence of the compressive strain experienced by the thin Ge layer.

  19. Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing.

    Science.gov (United States)

    Figuerola, Albert; van Huis, Marijn; Zanella, Marco; Genovese, Alessandro; Marras, Sergio; Falqui, Andrea; Zandbergen, Henny W; Cingolani, Roberto; Manna, Liberato

    2010-08-11

    The thermal evolution of a collection of heterogeneous CdSe-Au nanosystems (Au-decorated CdSe nanorods, networks, vertical assemblies) prepared by wet-chemical approaches was monitored in situ in the transmission electron microscope. In contrast to interfaces that are formed during kinetically controlled wet chemical synthesis, heating under vacuum conditions results in distinct and well-defined CdSe/Au interfaces, located at the CdSe polar surfaces. The high quality of these interfaces should make the heterostructures more suitable for use in nanoscale electronic devices.

  20. Upper critical field of Mo-Ni heterostructures

    International Nuclear Information System (INIS)

    Uher, C.; Watson, W.J.; Cohn, J.L.; Schuller, I.K.

    1985-12-01

    Upper critical field and its anisotropy have been measured on two very short wavelength Mo-Ni heterostructures of different degrees of perfection, lambda = 13.8A (disordered structure) and lambda = 16.6A (layered structure). In both cases the parallel critical field has an unexpected temperature dependence, a large and temperature dependent anisotropy, and over 60% enhancement over the Clogston-Chandrasekhar limit. Data are fit to the Werthamer-Helfand-Hohenberg theory and the spin-orbit scattering times are found to be 1.79 x 10 -13 s and 2 x 10 -13 s, respectively

  1. Phase transition in metastable perovskite Pb(AlNb)0,5O3

    International Nuclear Information System (INIS)

    Zhabko, T.E.; Olekhnovich, N.M.; Shilin, A.D.

    1987-01-01

    Dielectric properties of metastable perovskite Pb(AlNb) 0.5 O 3 and X-ray temperature investigations of both perovskite and pyrochlore modifications of the given compound are studied. Samples with the perovskite structure are prepared from the pyrochlorephase at 4-5 GPa pressure and 1170-1270 K. Ferroelectric phase transition is shown to occur in the metastable perovskite phase Pb(AlNb) 0.5 O 3 at 170 K

  2. La interstitial defect-induced insulator-metal transition in the oxide heterostructures LaAl O3 /SrTi O3

    Science.gov (United States)

    Zhou, Jun; Yang, Ming; Feng, Yuan Ping; Rusydi, Andrivo

    2017-11-01

    Perovskite oxide interfaces have attracted tremendous research interest for their fundamental physics and promising all-oxide electronic applications. Here, based on first-principles calculations, we propose a surface La interstitial promoted interface insulator-metal transition in LaAl O3 /SrTi O3 (110). Compared with surface oxygen vacancies, which play a determining role on the insulator-metal transition of LaAl O3 /SrTi O3 (001) interfaces, we find that surface La interstitials can be more experimentally realistic and accessible for manipulation and more stable in an ambient atmospheric environment. Interestingly, these surface La interstitials also induce significant spin-splitting states with a Ti dy z/dx z character at a conducting LaAl O3 /SrTi O3 (110) interface. On the other hand, for insulating LaAl O3 /SrTi O3 (110) (<4 unit cells LaAl O3 thickness), a distortion between La (Al) and O atoms is found at the LaAl O3 side, partially compensating the polarization divergence. Our results reveal the origin of the metal-insulator transition in LaAl O3 /SrTi O3 (110) heterostructures, and also shed light on the manipulation of the superior properties of LaAl O3 /SrTi O3 (110) for different possibilities in electronic and magnetic applications.

  3. Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Wei Yin

    2016-06-01

    Full Text Available Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction (PHJ perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are introduced between a perovskite film and the anode/cathode. The hole and electron transporting layers are expected to enhance exciton separation, charge transportation and collection. Further, the supporting layer for the perovskite film not only plays an important role in energy-level alignment, but also affects perovskite film morphology, which have a great effect on device performance. In addition, interfacial layers also affect device stability. In this review, recent progress in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular interfacial materials. The supporting interfacial layers for the optimization of perovskite films will be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will be discussed.

  4. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2017-03-02

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.

  5. Computational study on oxynitride perovskites for CO_2 photoreduction

    International Nuclear Information System (INIS)

    Hafez, Ahmed M.; Zedan, Abdallah F.; AlQaradawi, Siham Y.; Salem, Noha M.; Allam, Nageh K.

    2016-01-01

    Highlights: • Oxynitride perovskites are investigated for photoelectrochemical CO_2 reduction. • They have small electron and hole effective masses, rendering higher mobility. • The effect of cation size on the band gap is investigated and discussed. • W-doping allowed the selection of specific CO_2 reduction products. - Abstract: The photocatalytic conversion of CO_2 into chemical fuels is an attractive route for recycling this greenhouse gas. However, the large scale application of such approach is limited by the low selectivity and activity of the currently used photocatalysts. Using first principles calculations, we report on the selection of optimum oxynitride perovskites as photocatalysts for photoelectrochemical CO_2 reduction. The results revealed six perovskites that perfectly straddle the carbon dioxide redox potential; namely, BaTaO_2N, SrTaO_2N, CaTaO_2N, LaTiO_2N, BaNbO_2N, and SrNbO_2N. The electronic structure and the effective mass of the selected candidates are discussed in details, the partial and total density of states illustrated the orbital hybridization and the contribution of each element in the valence and conduction band minima. The effect of cation size in the ABO_2N perovskites on the band gap is investigated and discussed. The optical properties of the selected perovskites are calculated to account for their photoactivity. Moreover, the effect of W doping on improving the selectivity of perovskites toward specific hydrocarbon product (methane) is discussed in details. This study reveals the promising optical and structural properties of oxynitride perovskite candidates for CO_2 photoreduction.

  6. Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics.

    Science.gov (United States)

    Rajagopal, Adharsh; Stoddard, Ryan J; Jo, Sae Byeok; Hillhouse, Hugh W; Jen, Alex K-Y

    2018-05-09

    Development of large bandgap (1.80-1.85 eV E g ) perovskite is crucial for perovskite-perovskite tandem solar cells. However, the performance of 1.80-1.85 eV E g perovskite solar cells (PVKSCs) are significantly lagging their counterparts in the 1.60-1.75 eV E g range. This is because the photovoltage ( V oc ) does not proportionally increase with E g due to lower optoelectronic quality of conventional (MA,FA,Cs)Pb(I,Br) 3 and results in a photovoltage plateau ( V oc limited to 80% of the theoretical limit for ∼1.8 eV E g ). Here, we incorporate phenylethylammonium (PEA) in a mixed-halide perovskite composition to solve the inherent material-level challenges in 1.80-1.85 eV E g perovskites. The amount of PEA incorporation governs the topography and optoelectronic properties of resultant films. Detailed structural and spectroscopic characterization reveal the characteristic trends in crystalline size, orientation, and charge carrier recombination dynamics and rationalize the origin of improved material quality with higher luminescence. With careful interface optimization, the improved material characteristics were translated to devices and V oc values of 1.30-1.35 V were achieved, which correspond to 85-87% of the theoretical limit. Using an optimal amount of PEA incorporation to balance the increase in V oc and the decrease in charge collection, a highest power conversion efficiency of 12.2% was realized. Our results clearly overcome the photovoltage plateau in the 1.80-1.85 eV E g range and represent the highest V oc achieved for mixed-halide PVKSCs. This study provides widely translatable insights, an important breakthrough, and a promising platform for next-generation perovskite tandems.

  7. Synthesis; characterization; and growth mechanism of Au/CdS heterostructured nanoflowers constructed with nanorods

    International Nuclear Information System (INIS)

    Kong Qingcheng; Wu Rong; Feng Xiumei; Ye Cui; Hu Guanqi; Hu Jianqiang; Chen Zhiwu

    2011-01-01

    Research highlights: → Well-defined and flower-shaped Au/CdS heterostructured nanocrystals were for the first time synthesized. → The Au-nanorod-induced hydrothermal strategy was for the first time used to fabricate metal/semiconductor heterostructured nanomaterials. → A preliminary crystal growing mechanism was also proposed for better understanding the growth process of other Au/semiconductor heterostructure nanocrystals. → The route devised here should also be extendable to fabricate other Au/semiconductor heterostructure nanomaterials. - Abstract: Gold/sulfide cadmium (Au/CdS) heterostructured nanocrystals with a flower-like shape were for the first time synthesized through an Au-nanorod-induced hydrothermal method. The Au/CdS nanoflowers possessed the average size of about 350 nm while the nanorods constructing the nanoflowers had the average diameter, length, and aspect ratio of approximately 50 nm, 100 nm, and 2, respectively. Our method suggested that Au-nanorods played a decisive role in the formation of Au/CdS heterostructured nanoflowers, demonstrated by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), energy-dispersive X-ray spectroscopy (EDS), and UV-visible absorption spectroscopy measurements. A preliminary experiment model to reveal the Au/CdS growth mechanism was also put forward. The route devised here should be perhaps extendable to fabricate other Au/semiconductor heterostructured nanomaterials, and the Au/CdS nanoflowers may have potential applications in nanodevices, biolabels, and clinical detection and diagnosis.

  8. Silicon oxide based high capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  9. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics.

    Science.gov (United States)

    Chen, Hao; Yin, Jinde; Yang, Jingwei; Zhang, Xuejun; Liu, Mengli; Jiang, Zike; Wang, Jinzhang; Sun, Zhipei; Guo, Tuan; Liu, Wenjun; Yan, Peiguang

    2017-11-01

    In this Letter, high-quality WS 2 film and MoS 2 film were vertically stacked on the tip of a single-mode fiber in turns to form heterostructure (WS 2 -MoS 2 -WS 2 )-based saturable absorbers with all-fiber integrated features. Their nonlinear saturable absorption properties were remarkable, such as a large modulation depth (∼16.99%) and a small saturable intensity (6.23  MW·cm -2 ). Stable pulses at 1.55 μm with duration as short as 296 fs and average power as high as 25 mW were obtained in an erbium-doped fiber laser system. The results demonstrate that the proposed heterostructures own remarkable nonlinear optical properties and offer a platform for adjusting nonlinear optical properties by stacking different transition-metal dichalcogenides or modifying the thickness of each layer, paving the way for engineering functional ultrafast photonics devices with desirable properties.

  10. Novel aspects of diluted and digital magnetic heterostructures

    International Nuclear Information System (INIS)

    Bonanni, A.

    1999-04-01

    In the present work novel aspects of diluted and digital II-VI-based heterostructures containing Mn ions are investigated. All the structures under study were fabricated by means of molecular beam epitaxy. Digital magnetic heterostructures have been prepared by incorporating discrete (sub)monolayers of the purely magnetic semiconductor MnTe into otherwise non magnetic CdTe quantum wells embedded in CdMgTe barriers. Formation and binding energy of magnetic polarons have been investigated in these structures and compared with the diluted case. Reflectance difference spectroscopy (RDS) performed ex-situ allowed to distinguish between signals due to the crystal anisotropy solely and those induced by the presence a magnetic elements. The problem of p-type doping of bulk diluted magnetic semiconductors II-VI-based is tackled. During and upon growth of ZnMnTe highly doped with N, in-situ RDS was carried out in order to investigate intra-ion transitions within the half filled 3d shell of Mn. Transport measurements and magnetometry at low temperature were performed to study, on the tracks of recent theoretical works, the influence of free carriers on the interaction between magnetic ions. As expected, indications of ferromagnetic ordering were found for the DMS with the highest concentration of carriers. Special attention was given to the formation of Mn islands on a II-VI substrate and to their change in morphology upon overgrowth with a mismatched material. A rich zoology of regularly shaped nanostructures could be produced. (author)

  11. Fabrication and transport studies of graphene-superconductor heterostructures

    Science.gov (United States)

    Hu, Jiuning; Wu, Tailung; Tian, Jifa; Chen, Yong

    2014-03-01

    Recently, graphene based stacked heterostructures, e.g., graphene and boron nitride (BN) multi-layers, have attracted much attention as a system to study novel interaction-driven physics (e.g., excitonic condensation) and perform interesting measurements (eg. Coulomb drag and tunneling). The realm of graphene-superconductor heterostructures remains less unexplored, while such a system offers various interesting prospects (effects of superconductor vortices lattices on over-layering graphene and quantum Hall states, where novel phenomena such as anionic excitations have been predicted). We have used polyvinyl alcohol (PVA) based carrier films and a micro-manipulator to transfer mechanically exfoliated flakes and fabricated graphene/BN/NbSe2 structures to study the transport properties of graphene in close proximity to electrically isolated superconducting NbSe2 films. The NbSe2 film shows the superconducting transition temperature of ~7 K and upper critical field of ~3.5 T after device fabrication. We will present results from magneto-transport in graphene and graphene-NbSe2 Coulomb drag and tunneling measurements.

  12. Band offsets in ITO/Ga2O3 heterostructures

    Science.gov (United States)

    Carey, Patrick H.; Ren, F.; Hays, David C.; Gila, B. P.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito

    2017-11-01

    The valence band offsets in rf-sputtered Indium Tin Oxide (ITO)/single crystal β-Ga2O3 (ITO/Ga2O3) heterostructures were measured with X-Ray Photoelectron Spectroscopy using the Kraut method. The bandgaps of the component materials in the heterostructure were determined by Reflection Electron Energy Loss Spectroscopy as 4.6 eV for Ga2O3 and 3.5 eV for ITO. The valence band offset was determined to be -0.78 ± 0.30 eV, while the conduction band offset was determined to be -0.32 ± 0.13 eV. The ITO/Ga2O3 system has a nested gap (type I) alignment. The use of a thin layer of ITO between a metal and the Ga2O3 is an attractive approach for reducing contact resistance on Ga2O3-based power electronic devices and solar-blind photodetectors.

  13. Polarized neutron reflectivity and scattering studies of magnetic heterostructures

    International Nuclear Information System (INIS)

    Zabel, H; Theis-Broehl, K

    2003-01-01

    The current interest in the magnetism of ultrathin films and multilayers is driven by their manifold applications in the magneto-and spin-electronic areas, for instance as magnetic field sensors or as information storage devices. In this regard, there is a large interest in exploring spin structures and spin disorder at the interface of magnetic heterostructures, to investigate magnetic domains in thin films and superlattices, and to understand remagnetization processes of various laterally shaped magnetic nanostructures. Traditionally neutron scattering has played a dominant role in the determination of spin structures, phase transitions and magnetic excitations in bulk materials. Today, its potential for the investigation of thin magnetic films has to be redefined. Polarized neutron reflectivity (PNR) at small wavevectors can provide precise information on the magnetic field distribution parallel to the film plane and on layer resolved magnetization vectors. In addition, PNR is not only sensitive to structural interface roughness but also to the magnetic roughness. Furthermore, magnetic hysteresis measurements from polarized small angle Bragg reflections allows us to filter out correlation effects during magnetization reversals of magnetic stripes and islands. An overview is provided on most recent PNR investigations of magnetic heterostructures

  14. Magnetotransport in heterostructures of transition metal dichalcogenides and graphene

    Science.gov (United States)

    Völkl, Tobias; Rockinger, Tobias; Drienovsky, Martin; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan

    2017-09-01

    We use a van der Waals pickup technique to fabricate different heterostructures containing WSe2(WS2) and graphene. The heterostructures were structured by plasma etching, contacted by one-dimensional edge contacts, and a top gate was deposited. For graphene /WSe2/SiO2 samples we observe mobilities of ˜12 000 cm2V-1s-1 . Magnetic-field-dependent resistance measurements on these samples show a peak in the conductivity at low magnetic fields. This dip is attributed to the weak antilocalization (WAL) effect, stemming from spin-orbit coupling. Samples where graphene is encapsulated between WSe2(WS2) and hexagonal boron nitride show a much higher mobility of up to ˜120 000 cm2V-1s-1 . However, in these samples no WAL peak can be observed. We attribute this to a transition from the diffusive to the quasiballistic regime. At low magnetic fields a resistance peak appears, which we ascribe to a size effect due to boundary scattering. Shubnikov-de Haas oscillations in fully encapsulated samples show all integer filling factors due to complete lifting of the spin and valley degeneracies.

  15. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  16. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing; Peng, Yuting [Department of Physic, Henan Normal University, Xinxiang 453007 (China); Jia, Yu [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  17. Nanoscale heterostructures with molecular-scale single-crystal metal wires.

    Science.gov (United States)

    Kundu, Paromita; Halder, Aditi; Viswanath, B; Kundu, Dipan; Ramanath, Ganpati; Ravishankar, N

    2010-01-13

    Creating nanoscale heterostructures with molecular-scale (synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.

  18. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.

    Science.gov (United States)

    Jiang, Qi; Chu, Zema; Wang, Pengyang; Yang, Xiaolei; Liu, Heng; Wang, Ye; Yin, Zhigang; Wu, Jinliang; Zhang, Xingwang; You, Jingbi

    2017-12-01

    Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI 2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI 2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI 2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm 2 ) and 20.1% in large size (1 cm 2 ) with moderate residual PbI 2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Direct Bandgap Copper-Antimony Halide Perovskite.

    Science.gov (United States)

    Vargas, Brenda; Ramos, Estrella; Pérez-Gutiérrez, Enrique; Alonso, Juan Carlos; Solis-Ibarra, Diego

    2017-07-12

    Since the establishment of perovskite solar cells (PSCs), there has been an intense search for alternative materials to replace lead and improve their stability toward moisture and light. As single-metal perovskite structures have yielded unsatisfactory performances, an alternative is the use of double perovskites that incorporate a combination of metals. To this day, only a handful of these compounds have been synthesized, but most of them have indirect bandgaps and/or do not have bandgaps energies well-suited for photovoltaic applications. Here we report the synthesis and characterization of a unique mixed metal ⟨111⟩-oriented layered perovskite, Cs 4 CuSb 2 Cl 12 (1), that incorporates Cu 2+ and Sb 3+ into layers that are three octahedra thick (n = 3). In addition to being made of abundant and nontoxic elements, we show that this material behaves as a semiconductor with a direct bandgap of 1.0 eV and its conductivity is 1 order of magnitude greater than that of MAPbI 3 (MA = methylammonium). Furthermore, 1 has high photo- and thermal-stability and is tolerant to humidity. We conclude that 1 is a promising material for photovoltaic applications and represents a new type of layered perovskite structure that incorporates metals in 2+ and 3+ oxidation states, thus significantly widening the possible combinations of metals to replace lead in PSCs.

  20. Decreasing the electronic confinement in layered perovskites through intercalation.

    Science.gov (United States)

    Smith, Matthew D; Pedesseau, Laurent; Kepenekian, Mikaël; Smith, Ian C; Katan, Claudine; Even, Jacky; Karunadasa, Hemamala I

    2017-03-01

    We show that post-synthetic small-molecule intercalation can significantly reduce the electronic confinement of 2D hybrid perovskites. Using a combined experimental and theoretical approach, we explain structural, optical, and electronic effects of intercalating highly polarizable molecules in layered perovskites designed to stabilize the intercalants. Polarizable molecules in the organic layers substantially alter the optical and electronic properties of the inorganic layers. By calculating the spatially resolved dielectric profiles of the organic and inorganic layers within the hybrid structure, we show that the intercalants afford organic layers that are more polarizable than the inorganic layers. This strategy reduces the confinement of excitons generated in the inorganic layers and affords the lowest exciton binding energy for an n = 1 perovskite of which we are aware. We also demonstrate a method for computationally evaluating the exciton's binding energy by solving the Bethe-Salpeter equation for the exciton, which includes an ab initio determination of the material's dielectric profile across organic and inorganic layers. This new semi-empirical method goes beyond the imprecise phenomenological approximation of abrupt dielectric-constant changes at the organic-inorganic interfaces. This work shows that incorporation of polarizable molecules in the organic layers, through intercalation or covalent attachment, is a viable strategy for tuning 2D perovskites towards mimicking the reduced electronic confinement and isotropic light absorption of 3D perovskites while maintaining the greater synthetic tunability of the layered architecture.

  1. Exciton Dynamics of 2D Hybrid Perovskite Nanocrystal

    Science.gov (United States)

    Guo, Rui; Zhu, Zhuan; Boulesbaa, Abdelaziz; Venkatesan, Swaminathan; Xiao, Kai; Bao, Jiming; Yao, Yan; Li, Wenzhi

    Organic-inorganic hybrid perovskites have emerged as promising materials for applications in photovoltaic and optoelectronic devices. Among the perovskites, two dimensional (2D) perovskites are of great interests due to their remarkable optical and electrical properties as well as the flexibility of material selection for the organic and inorganic moieties. In this study, we demonstrate the solution-phase growth of large square-shaped single-crystalline 2D hybrid perovskites of (C6H5C2H4 NH3) 2 PbBr4 with a few unit cells thickness. Compared to the bulk crystal, a band gap shift and new photoluminescence (PL) peak are observed from the hybrid perovskite sheets. Color of the 2D crystals can be tuned by adjusting the sheet thickness. Pump-probe spectroscopy is used to investigate the exciton dynamics and exhibits a biexponential decay with an amplitude-weighted lifetime of 16.7 ps. Such high-quality (C6H5C2H4 NH3) 2 PbBr4 sheets are expected to have high PL quantum efficiency which can be adopted for light-emitting devices. National Science Foundation (Grant No. CMMI-1334417 and DMR-1506640).

  2. LSFM perovskites as cathodes for the electrochemical reduction of NO

    DEFF Research Database (Denmark)

    Kammer Hansen, K.; Skou, E.M.

    2005-01-01

    Six La0.6Sr0.4Fe1-xMnO3-delta (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) perovskite compounds have been synthesised by the citric-acid route. The perovskites have been characterised by powder XRD and are shown to belong to the hexagonal crystal system. The perovskites are also evaluated by TG...... degrees C on a ceria based electrolyte. Only La0.6Sr0.4Fe0.8Mn0.2O3-delta (LSFM020) and La0.6Sr0.4FeO3-delta (LSFM000) show significant activity for the reduction of NO. This can probably be related to the high redox capacity of these compounds. The activity of the perovskites for the reduction of oxygen...... increases systematically with increasing iron content. The selectivity of the perovskites towards the reduction of NO with regard to the reduction of O-2 is highest at the lowest temperatures. (c) 2004 Published by Elsevier B.V....

  3. Effect of Perovskite Film Preparation on Performance of Solar Cells

    Directory of Open Access Journals (Sweden)

    Yaxian Pei

    2016-01-01

    Full Text Available For the perovskite solar cells (PSCs, the performance of the PSCs has become the focus of the research by improving the crystallization and morphology of the perovskite absorption layer. In this thesis, based on the structure of mesoporous perovskite solar cells (MPSCs, we designed the experiments to improve the photovoltaic performance of the PSCs by improved processing technique, which mainly includes the following two aspects. Before spin-coating PbI2 solution, we control the substrate temperature to modify the crystal quality and morphology of perovskite films. On the other hand, before annealing, we keep PbI2 films for the different drying time at room temperature to optimize films morphology. In our trials, it was found that the substrate temperature is more important in determining the photovoltaic performance than drying time. These results indicate that the crystallization and morphology of perovskite films affect the absorption intensity and obviously influence the short circuit current density of MPSCs. Utilizing films prepared by mentioning two methods, MPSCs with maximum power conversion efficiency of over 4% were fabricated for the active area of 0.5 × 0.5 cm2.

  4. Magnetoresistance and magnetic properties of the double perovskites

    International Nuclear Information System (INIS)

    Philipp, J.B.; Majewski, P.; Resinger, D.; Gepraegs, S; Opel, M.; Reb, A.; Alff, L.; Gross, R.

    2004-01-01

    The magnetic double perovskite materials of composition A 2 BB'O 6 with A an alkaline earth ion and B and B' a magnetic and non-magnetic transition metal or lanthanide ions, respectively, have attracted considerable attention due to their interesting magnetic properties ranging from antiferromagnetism to geometrically frustrated spin systems and ferromagnetism. With respect to application in spin electronics, the ferromagnetic double perovskites with BB' = CrW, CrRe, FeMo or FeRe and A = Ca, Ba, Sr are highly interesting due to their in most cases high Curie temperatures well above room temperature and their half-magnetic behaviour. Here, we summarize the structural, magnetotransport, magnetic and optical properties of the ferromagnetic double perovskites and discuss the underlying physics. In particular, we discuss the impact of the steric effects resulting in a distorted perovskite structure, doping effects obtained by a partial replacing of the divalent alkaline earth ions on the A site by a trivalent lanthanide as well as B/B' cationic disorder on the Curie temperature T C , the saturation magnetization and the magnetotransport properties. Our results support the presence of a kinetic energy driven mechanism in the ferromagnetic double perovskites, where ferromagnetism is stabilised by a hybridization of states of the non-magnetic B'- site positioned in between the high spin B-sites. (author)

  5. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  6. Chemical changes in carbon Nanotube-Nickel/Nickel Oxide Core/Shell nanoparticle heterostructures treated at high temperatures

    International Nuclear Information System (INIS)

    Chopra, Nitin; McWhinney, Hylton G.; Shi Wenwu

    2011-01-01

    Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N 2 -rich (O 2 -lean) environment between 125 and 750 deg. C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: → Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. → Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. → CNTs in heterostructures decompose between 600 and 750 deg. C in N 2 -rich atmosphere. → Metallic species in heterostructures were oxidized at higher temperatures.

  7. Quantum mechanical studies of complex ferroelectric perovskites

    Science.gov (United States)

    Ramer, Nicholas John

    In many electronic device applications, there is a need to interconvert electrical energy and other types of energy. Ferroelectric materials, which possess a voltage-dependent polarization, can enable this energy conversion process. Because of the broad interest in ferroelectric materials for these devices, there is a critical research effort, both experimental and theoretical, to understand these materials and aid in the development of materials with improved properties. This thesis presents detailed quantum mechanical investigations of the behavior of a complex ferroelectric perovskite under applied stress. In particular, we have chosen to study the solid solution PbZr1-xTix O3 (PZT). Since the study of ferroelectricity involves understanding both its structural and electronic signatures in materials, it has necessitated the development of a novel theoretical technique which improves the accuracy of the pseudopotentials used in our density functional theory calculations as well as a new method for constructing three-dimensional atomistic responses to small amounts of external stress. To examine the material's behavior under larger amounts of stress, we have studied the behavior of a composition of PZT lying near a structural phase boundary. On either side of the phase boundary, the material is characterized by a different polarization direction and may easily be switched between phases by applying external stress. In addition to stress-induced phase transitions, most ferroelectric materials also have composition dependent phase boundaries. Since different compositions of PZT would require increased computational effort, we have formulated an improved virtual crystal approach that makes tractable the study of the entire composition range. Using this method, we have been able to show for the first time via first-principles calculations, a composition dependent phase transition in a ferroelectric material. This thesis has accomplished three important goals: new

  8. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells

    KAUST Repository

    Bera, Ashok

    2014-12-11

    In this work, we explored perovskite oxide SrTiO3 (STO) for the first time as the electron-transporting layer in organolead trihalide perovskite solar cells. The steady-state photoluminescence (PL) quenching and transient absorption experiments revealed efficient photoelectron transfer from CH3NH3PbI3-xClx to STO. Perovskite solar cells with meso-STO exhibit an open circuit voltage of 1.01 V, which is 25% higher than the value of 0.81 V achieved in the control device with the conventional meso-TiO2. In addition, an increase of 17% in the fill factor was achieved by tailoring the thickness of the meso-STO layer. We found that the application of STO leads to uniform perovskite layers with large grains and complete surface coverage, leading to a high shunt resistance and improved performance. These findings suggest STO as a competitive candidate as electron transport material in organometal perovskite solar cells.

  9. Paintable Carbon-Based Perovskite Solar Cells with Engineered Perovskite/Carbon Interface Using Carbon Nanotubes Dripping Method.

    Science.gov (United States)

    Ryu, Jaehoon; Lee, Kisu; Yun, Juyoung; Yu, Haejun; Lee, Jungsup; Jang, Jyongsik

    2017-10-01

    Paintable carbon electrode-based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon-based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (V oc ) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis-free performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells

    KAUST Repository

    Bera, Ashok; Wu, Kewei; Sheikh, Arif D.; Alarousu, Erkki; Mohammed, Omar F.; Wu, Tao

    2014-01-01

    In this work, we explored perovskite oxide SrTiO3 (STO) for the first time as the electron-transporting layer in organolead trihalide perovskite solar cells. The steady-state photoluminescence (PL) quenching and transient absorption experiments revealed efficient photoelectron transfer from CH3NH3PbI3-xClx to STO. Perovskite solar cells with meso-STO exhibit an open circuit voltage of 1.01 V, which is 25% higher than the value of 0.81 V achieved in the control device with the conventional meso-TiO2. In addition, an increase of 17% in the fill factor was achieved by tailoring the thickness of the meso-STO layer. We found that the application of STO leads to uniform perovskite layers with large grains and complete surface coverage, leading to a high shunt resistance and improved performance. These findings suggest STO as a competitive candidate as electron transport material in organometal perovskite solar cells.

  11. Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Light-Emitting Diodes.

    Science.gov (United States)

    Wang, Haoran; Li, Xiaomin; Yuan, Mingjian; Yang, Xuyong

    2018-04-01

    Despite the recent advances in the performance of perovskite light-emitting diodes (PeLEDs), the effects of water on the perovskite emissive layer and its electroluminescence are still unclear, even though it has been previously demonstrated that moisture has a significant impact on the quality of perovskite films in the fabrication process of perovskite solar cells and is a prerequisite for obtaining high-performance PeLEDs. Here, the effects of postmoisture on the luminescent CH 3 NH 3 PbBr 3 (MAPbBr 3 ) perovskite films are systematically investigated. It is found that postmoisture treatment can efficiently control the morphology and growth of perovskite films and only a fast moisture exposure at a 60% high relative humidity results in significantly improved crystallinity, carrier lifetime, and photoluminescence quantum yield of perovskite films. With the optimized moisture-treated perovskite films, a high-performance PeLED is fabricated, exhibiting a maximum current efficiency of 20.4 cd A -1 , which is an almost 20-fold enhancement when compared with perovskite films without moisture treatment. The results provide valuable insights into the moisture-assisted growth of luminescent perovskite films and will aid in the development of high-performance perovskite light-emitting devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design.

    Science.gov (United States)

    Saparov, Bayrammurad; Mitzi, David B

    2016-04-13

    Although known since the late 19th century, organic-inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic-inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.

  13. Atomically thin two-dimensional organic-inorganic hybrid perovskites

    Science.gov (United States)

    Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong

    2015-09-01

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

  14. Intrinsic white-light emission from layered hybrid perovskites.

    Science.gov (United States)

    Dohner, Emma R; Jaffe, Adam; Bradshaw, Liam R; Karunadasa, Hemamala I

    2014-09-24

    We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.

  15. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    Science.gov (United States)

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  16. Silver copper fluoride: A novel perovskite cathode for lithium batteries

    Science.gov (United States)

    Tong, Wei; Amatucci, Glenn G.

    2017-09-01

    An electrochemically active nanostructured silver copper fluoride (SCF) perovskite, AgCuF3, was synthesized via a mechanochemical reaction between AgF and CuF2 precursors. Phase composition and electrochemical properties of the SCF perovskites produced under various synthetic parameters were studied. The optimum SCF perovskite sample exhibited an appreciable electrochemical performance through the use of conductive carbon matrix in a primary lithium half cell. A high specific capacity of 270 mAh g-1 was achieved at a cutoff voltage of 2 V with 190 mAh g-1 above 3 V, leading to a total volumetric energy density of 3666 Wh L-1 at >3 V and 4848 Wh L-1 at >2 V.

  17. Perovskite solid electrolytes: Structure, transport properties and fuel cell applications

    DEFF Research Database (Denmark)

    Bonanos, N.; Knight, K.S.; Ellis, B.

    1995-01-01

    Doped barium cerate perovskites, first investigated by Iwahara and co-workers, have ionic conductivities of the order of 20 mS/cm at 800 degrees C making them attractive as fuel cell electrolytes for this temperature region. They have been used to construct laboratory scale fuel cells, which...... vapour transfer in a cell in which the perovskite is exposed to wet hydrogen on both sides. The evolution of transport properties with temperature is discussed in relation to structure. Neutron diffraction studies of doped and undoped barium cerate are reported, revealing a series of phase transitions...... between ambient temperature and 1000 degrees C. The available literature on chemical stability of cerate perovskites to reduction and attack by carbon dioxide is reviewed in brief....

  18. Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-28

    © 2014 American Chemical Society. Conformal integration of semiconductor gain media is broadly important in on-chip optical communication technology. Here we deploy atomic layer deposition to create conformally deposited organohalide perovskites-an attractive semiconducting gain medium-with the goal of achieving coherent light emission on spherical optical cavities. We demonstrate the high quality of perovskite gain media fabricated with this method, achieving optical gain in the nanosecond pulse regime with a threshold for amplified spontaneous emission of 65 ± 8 μJ cm-2. Through variable stripe length measurements, we report a net modal gain of 125 ± 22 cm-1 and a gain bandwidth of 50 ± 14 meV. Leveraging the high quality of the gain medium, we conformally coat silica microspheres with perovskite to form whispering gallery mode optical cavities and achieve lasing.

  19. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  20. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  1. Research progress on organic-inorganic halide perovskite materials and solar cells

    Science.gov (United States)

    Ono, Luis K.; Qi, Yabing

    2018-03-01

    Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.

  2. Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency.

    Science.gov (United States)

    Yu, Yu; Yang, Songwang; Lei, Lei; Cao, Qipeng; Shao, Jun; Zhang, Sheng; Liu, Yan

    2017-02-01

    Most antisolvents employed in previous research were miscible with perovskite precursor solution. They always led to fast formation of perovskite even if the intermediate stage existed, which was not beneficial to obtain high quality perovskite films and made the formation process less controllable. In this work, a novel ethyl ether/n-hexane mixed antisolvent (MAS) was used to achieve high nucleation density and slow down the formation process of perovskite, producing films with improved orientation of grains and ultrasmooth surfaces. These high quality films exhibited efficient charge transport at the interface of perovskite/hole transport material and perovskite solar cells based on these films showed greatly improved performance with the best power conversion efficiency of 17.08%. This work also proposed a selection principle of MAS and showed that solvent engineering by designing the mixed antisolvent system can lead to the fabrication of high-performance perovskite solar cells.

  3. Studies of Fe-Co based perovskite cathodes with different A-site cations

    DEFF Research Database (Denmark)

    Kammer Hansen, K.

    2006-01-01

    Iron-cobalt based perovskite cathodes with different A-site cations ((Ln(0.6)Sr(0.4))(0.99)Fe0.8Co0.2O3-delta, where Ln is La, Pr, Sm or Gd) have been synthesised, characterised by a powder XRD, dilatometry, 4-point DC conductivity measurements, and electrochemical impedance spectroscopy (EIS......) on cone shaped electrodes. In addition to this scanning electron microscopy (SEM) was used to characterise the bars. XRD revealed that only the La-containing perovskite was hexagonal. The Pr and Sm perovskites were orthorhombic. The gadolinium-based perovskite was a two phase system consisting...... of an orthorhombic and a cubic perovskite phase. The thermal expansion coefficient (TEC) increased systematically with a decrease in the size of the A-site cation until the gadoliniurn-containing perovskite where the TEC decreases abruptly. The total electric conductivity was the highest for the La-based perovskite...

  4. Anion-based approaches to tunable functionality in oxide heterostructures

    Science.gov (United States)

    May, Steven

    2014-03-01

    The ability to control the position and composition of the anion site is emerging as a promising route to tune properties in epitaxial perovskites. This talk will focus on recent and ongoing efforts aimed at developing anion-based approaches to tailor electronic and magnetic properties in oxide films. First, I will discuss how the position of the oxygen anions can be tailored to stabilize non-bulk-like bond angles and lengths, thereby altering electronic bandwidth. Recent work on La2/3Sr1/3MnO3 will be presented in which ultrathin films under the same strain state exhibit dramatically different electronic and magnetic properties when grown on substrates with different symmetries. In the second half of the talk, I will describe efforts focused on altering the composition of the anion site. In La1/3Sr2/3FeO3-δ films, a reversible change in oxygen content leads to dramatic changes in electrical, optical, and structural properties. Finally, the synthesis of oxyfluoride ferrite and nickelate perovskite films via topotactic reactions carried out following thin film deposition will be described. This work is supported by the Office of Naval Research (N00014-11-1-0664) and the U. S. Army Research Office (W911NF-12-1-0132).

  5. Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures

    Science.gov (United States)

    Liu, Ruoyu; Hu, Peiguang; Chen, Shaowei

    2012-10-01

    Heterostructures based on Ag3PO4 nanoparticles and TiO2 nanobelts were prepared by a coprecipitation method. The crystalline structures were characterized by X-ray diffraction measurements. Electron microscopic studies showed that the Ag3PO4 nanoparticles and TiO2 nanobelts were in intimate contact which might be exploited to facilitate charge transfer between the two semiconductor materials. In fact, the heterostructures exhibited markedly enhanced photocatalytic activity as compared with unmodified TiO2 nanobelts or commercial TiO2 colloids in the photodegradation of methyl orange under UV irradiation. This was accounted for by the improved efficiency of interfacial charge separation thanks to the unique alignments of their band structures. Remarkably, whereas the photocatalytic activity of the heterostructure was comparable to that of Ag3PO4 nanoparticles alone, the heterostructures exhibited significantly better stability and reusability in repeated tests than the Ag3PO4 nanoparticles.

  6. Heterostructures based on two-dimensional layered materials and their potential applications

    KAUST Repository

    Li, Ming-yang; Chen, Chang-Hsiao; Shi, Yumeng; Li, Lain-Jong

    2015-01-01

    The development of two-dimensional (2D) layered materials is driven by fundamental interest and their potential applications. Atomically thin 2D materials provide a wide range of basic building blocks with unique electrical, optical, and thermal properties which do not exist in their bulk counterparts. The van der Waals interlayer interaction enables the possibility to exfoliate and reassemble different 2D materials into arbitrarily and vertically stacked heterostructures. Recently developed vapor phase growth of 2D materials further paves the way of directly synthesizing vertical and lateral heterojunctions. This review provides insights into the layered 2D heterostructures, with a concise introduction to preparative approaches for 2D materials and heterostructures. These unique 2D heterostructures have abundant implications for many potential applications.

  7. Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area

    KAUST Repository

    Li, Henan; Li, Peng; Huang, Jing Kai; Li, Ming-yang; Yang, Chih-Wen; Shi, Yumeng; Zhang, Xixiang; Li, Lain-Jong

    2016-01-01

    Two-dimensional transition metal dichalcogenides (TMDCs) have shown great promise in electronics and optoelectronics due to their unique electrical and optical properties. Heterostructured TMDC layers such as the laterally stitched TMDCs offer

  8. Nonvolatile resistive switching in Pt/laALO3/srTiO3 heterostructures

    KAUST Repository

    Wu, S.; Luo, X.; Turner, S.; Peng, H.; Lin, W.; Ding, J.; David, A.; Wang, B.; Van, Tendeloo, G.; Wang, J.; Wu, Tao

    2013-01-01

    Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures

  9. Synthesis, fabrication and characterization of Ge/Si axial nanowire heterostructure tunnel FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Samuel T [Los Alamos National Laboratory; Dayeh, Shadi A [Los Alamos National Laboratory

    2010-01-01

    Axial Ge/Si heterostructure nanowires allow energy band-edge engineering along the axis of the nanowire, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two advances in the area of heterostructure nanowires and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure nanowires with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these nanowires for high-on currents and suppressed ambipolar behavior. Initial prototype devices resulted in a current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios. These results demonstrate the potential of such asymmetric heterostructures (both in the semiconductor channel and metal-semiconductor barrier heights) for low-power and high performance electronics.

  10. Interpreting Interfacial Structure in Cross-Sectional STM Images of III-V Semiconductor Heterostructures

    National Research Council Canada - National Science Library

    Nosho, B. Z; Barvosa-Carter, W; Yang, M. J; Bennett, B. R; Whitman, L. J

    2000-01-01

    ...) can be used for the study of III-V heterostructure interfaces. The interpretation of interfacial structure in XSTM images is impeded by the fact that only every other III or V plane as grown on the (001...

  11. The photoelectric yield technique for the characterization of the semiconductor heterostructures

    International Nuclear Information System (INIS)

    Evangelisti, F.; Di Gaspare, L.

    1998-01-01

    The paper discusses the use of the photoelectric yield spectroscopy for investigating surface defects and interfaces. Few examples are presented that clearly show the usefulness of the techniques. The heterostructures discussed include crystalline/amorphous and crystalline/crystalline systems

  12. Heterostructures based on two-dimensional layered materials and their potential applications

    KAUST Repository

    Li, Ming-yang

    2015-12-04

    The development of two-dimensional (2D) layered materials is driven by fundamental interest and their potential applications. Atomically thin 2D materials provide a wide range of basic building blocks with unique electrical, optical, and thermal properties which do not exist in their bulk counterparts. The van der Waals interlayer interaction enables the possibility to exfoliate and reassemble different 2D materials into arbitrarily and vertically stacked heterostructures. Recently developed vapor phase growth of 2D materials further paves the way of directly synthesizing vertical and lateral heterojunctions. This review provides insights into the layered 2D heterostructures, with a concise introduction to preparative approaches for 2D materials and heterostructures. These unique 2D heterostructures have abundant implications for many potential applications.

  13. Heterostructures (CaSrBa)F2 on InP for Optoelectronics

    National Research Council Canada - National Science Library

    Pyshkin, Sergei

    1995-01-01

    .... MBE and Laser Vacuum Epitaxy (LVE) growth methods for semiconductor-semiconductor (SS) and semiconductor-crystalline dielectric-semiconductor heterostructures are considered as well as experimental facilities for these processes are elaborated.

  14. Excitonic Effects in Methylammonium Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Beard, Matthew C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xihan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lu, Haipeng [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Ye [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-01

    The exciton binding energy in methylammonium lead iodide (MAPbI3) is about 10 meV, around 1/3 of the available thermal energy (kBT ~ 26 meV) at room temperature. Thus, exciton populations are not stable at room temperature at moderate photoexcited carrier densities. However, excitonic resonances dominate the absorption onset. Furthermore, these resonances determine the transient absorbance and transient reflectance spectra. The exciton binding energy is a reflection of the Coulomb interaction energy between photoexcited electrons and holes. As such, it serves as a marker for the strength of electron/hole interactions and impacts a variety of phenomena, such as, absorption, radiative recombination, and Auger recombination. In this Perspective, we discuss the role of excitons and excitonic resonances in the optical properties of lead-halide perovskite semiconductors. Finally, we discuss how the strong light-matter interactions induce an optical stark effect splitting the doubly spin degenerate ground exciton states and are easily observed at room temperature.

  15. A hybrid organic-inorganic perovskite dataset

    Science.gov (United States)

    Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi; Ramprasad, Rampi

    2017-05-01

    Hybrid organic-inorganic perovskites (HOIPs) have been attracting a great deal of attention due to their versatility of electronic properties and fabrication methods. We prepare a dataset of 1,346 HOIPs, which features 16 organic cations, 3 group-IV cations and 4 halide anions. Using a combination of an atomic structure search method and density functional theory calculations, the optimized structures, the bandgap, the dielectric constant, and the relative energies of the HOIPs are uniformly prepared and validated by comparing with relevant experimental and/or theoretical data. We make the dataset available at Dryad Digital Repository, NoMaD Repository, and Khazana Repository (http://khazana.uconn.edu/), hoping that it could be useful for future data-mining efforts that can explore possible structure-property relationships and phenomenological models. Progressive extension of the dataset is expected as new organic cations become appropriate within the HOIP framework, and as additional properties are calculated for the new compounds found.

  16. Topological Oxide Insulator in Cubic Perovskite Structure

    Science.gov (United States)

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  17. Perovskite Solar Cells: Potentials, Challenges, and Opportunities

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Ahmed

    2015-01-01

    Full Text Available Heralded as a major scientific breakthrough of 2013, organic/inorganic lead halide perovskite solar cells have ushered in a new era of renewed efforts at increasing the efficiency and lowering the cost of solar energy. As a potential game changer in the mix of technologies for alternate energy, it has emerged from a modest beginning in 2012 to efficiencies being claimed at 20.1% in a span of just two years. This remarkable progress, encouraging at one end, also points to the possibility that the potential may still be far from being fully realized. With greater insight into the photophysics involved and optimization of materials and methods, this technology stands to match or even exceed the efficiencies for single crystal silicon solar cells. With thin film solution processability, applicability to flexible substrates, and being free of liquid electrolyte, this technology combines the benefits of Dye Sensitized Solar Cells (DSSCs, Organic Photovoltaics (OPVs, and thin film solar cells. In this review we present a brief historic perspective to this development, take a cognizance of the current state of the art, and highlight challenges and the opportunities.

  18. Tracking the formation of methylammonium lead triiodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijia, E-mail: ljliu@suda.edu.cn, E-mail: jmcleod@suda.edu.cn; McLeod, John A., E-mail: ljliu@suda.edu.cn, E-mail: jmcleod@suda.edu.cn; Wang, Rongbin; Shen, Pengfei; Duhm, Steffen [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123 (China)

    2015-08-10

    The formation mechanism of perovskite methylammonium lead triiodide (CH{sub 3}NH{sub 3}PbI{sub 3}) was studied with in situ X-ray photoelectron spectroscopy (XPS) on successive depositions of thermally evaporated methylammonium iodide (CH{sub 3}NH{sub 3}I) on a lead iodide (PbI{sub 2}) film. This deposition method mimics the “two-step” synthesis method commonly used in device fabrication. We find that several competing processes occur during the formation of perovskite CH{sub 3}NH{sub 3}PbI{sub 3}. Our most important finding is that during vapour deposition of CH{sub 3}NH{sub 3}I onto PbI{sub 2}, at least two carbon species are present in the resulting material, while only one nitrogen species is present. This suggests that CH{sub 3}NH{sub 3}I can dissociate during the transition to a perovskite phase, and some of the resulting molecules can be incorporated into the perovskite. The effect of partial CH{sub 3}NH{sub 3} substitution with CH{sub 3} was evaluated, and electronic structure calculations show that CH{sub 3} defects would impact the photovoltaic performance in perovskite solar cells. The possibility that not all A sites in the APbI{sub 3} perovskite are occupied by CH{sub 3}NH{sub 3} is therefore an important consideration when evaluating the performance of organometallic trihalide solar cells synthesized using typical approaches.

  19. Perovskite solar cells for roll-to-roll fabrication

    Directory of Open Access Journals (Sweden)

    Uddin Ashraf

    2017-01-01

    Full Text Available Perovskite solar cell (PSCs is considered as the game changer in emerging photovoltaics technology. The highest certified efficiency is 22% with high temperature processed (∼500 °C TiO2 based electron transport layer (ETL. High temperature process is a rudimentary hindrance towards roll-to-roll processing of PSCs on flexible substrates. Low temperature solution process (<150 °C ZnO based ETL is one of the most promising candidate for large scale roll-to-roll fabrication of cells as it has nearly identical electron affinity (4.2 eV of TiO2. The mixed organic perovskite (MA0.6FA0.4PbI3 devices with Al doped ZnO (AZO ETL demonstrate average cell efficiency over 16%, which is the highest ever reported efficiency for this device configuration. The energy level alignment and related interfacial charge transport dynamics at the interface of ZnO and perovskite films and the adjacent charge transport layers are investigated. Significantly improved device stability, hysteresis free device photocurrent have been observed in MA0.6FA0.4PbI3 cells. A systematic electrochemical impedance spectroscopy, frequency dependent capacitance spectra, surface morphology and topography characterization have been conducted to understand the role of interfacial electronic properties between perovskite and neighbouring layers in perovskite device. A standardized degradation study, interfacial electronic property and capacitive spectra analysis of aged device, have been measured to understand the enhanced device stability in mixed MA0.6FA0.4PbI3 cells. Slow perovskite material decomposition rate and augmented device lifetime with AZO based devices have been found to be correlated with the more hydrophobic and acidic nature of AZO surface compared to pristine ZnO film.

  20. Large Current Modulation and Spin-Dependent Tunneling of Vertical Graphene/MoS$_{2}$ Heterostructures

    OpenAIRE

    Myoung, Nojoon; Seo, Kyungchul; Lee, Seung Joo; Ihm, Gukhyung

    2013-01-01

    Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When an atomically thin MoS2 layer sandwiched between graphene electrodes becomes magnetic, Dirac fermio...

  1. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Methods for producing single crystal mixed halide perovskites

    Science.gov (United States)

    Zhu, Kai; Zhao, Yixin

    2017-07-11

    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.

  3. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  4. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    Science.gov (United States)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  5. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  6. The Effect of Al on the Compressibility of Silicate Perovskite

    Science.gov (United States)

    Walter, M. J.; Kubo, A.; Yoshino, T.; Koga, K. T.; Ohishi, Y.

    2003-12-01

    Experimental data on compressibility of aluminous silicate perovskite show widely disparate results. Several studies show that Al causes a dramatic increase in compressibility1-3, while another study indicates a mild decrease in compressibility4. Here we report new results for the effect of Al on the room-temperature compressibility of perovskite using in situ X-ray diffraction in the diamond anvil cell from 30 to 100 GPa. We studied compressibility of perovskite in the system MgSiO3-Al2O3 in compositions with 0 to 25 mol% Al. Perovskite was synthesized from starting glasses using laser-heating in the DAC, with KBr as a pressure medium. Diffraction patterns were obtained using monochromatic radiation and an imaging plate detector at beamline BL10XU, SPring8, Japan. Addition of Al into the perovskite structure causes systematic increases in orthorhombic distortion and unit cell volume at ambient conditions (V0). Compression of the perovskite unit cell is anisotropic, with the a axis about 25% and 3% more compressive than the b and c axes, respectively. The magnitude of orthorhombic distortion increases with pressure, but aluminous perovskite remains stable to at least 100 GPa. Our results show that Al causes only a mild increase in compressibility, with the bulk modulus (K0) decreasing at a rate of 0.7 GPa/0.01 XAl. This increase in compressibility is consistent with recent ab initio calculations if Al mixes into both the 6- and 8-coordinated sites by coupled substitution5, where 2 Al3+ = Mg2+ + Si4+. Our results together with those of [4] indicate that this substitution mechanism predominates throughout the lower mantle. Previous mineralogic models indicating the upper and lower mantle are compositionally similar in terms of major elements remain effectively unchanged because solution of 5 mol% Al into perovskite has a minor effect on density. 1. Zhang & Weidner (1999). Science 284, 782-784. 2. Kubo et al. (2000) Proc. Jap. Acad. 76B, 103-107. 3. Daniel et al

  7. Stable perovskite solar cells by surface modification with surfactant molecules

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia, E-mail: mholandabsb@outlook.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica

    2016-07-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH{sub 3}NH{sub 3}PbI{sub 3} was prepared by single step method using a solution containing PbI{sub 2} and CH{sub 3}NH{sub 3}I on DMF:DMSO (2:1) on a concentration of 0.88 mol L{sup -1}. The film was deposited over a planar film of TiO{sub 2}, previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL{sup -1} solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple

  8. Perovskite Solar Cells and Devices at EPFL Valais Wallis.

    Science.gov (United States)

    Nazeeruddin, Mohammad Khaja

    2016-09-22

    Stability required! Perovskite solar cells have emerged as one of the most exciting fields of research, owing to their impressive rise in power conversion efficiency surpassing 22% in six short years of research. Current research is focused on ways to improve stability of perovskite-based devices, a key characteristic required to bring this technology from the lab into the market. In this Editorial, guest editor Prof. Mohammad Khaja Nazeeruddin describes the context of this Special Issue, and summarizes the work being performed in his research group toward this low-cost near-future photovoltaic technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Stable perovskite solar cells by surface modification with surfactant molecules

    International Nuclear Information System (INIS)

    Holanda, Matheus Serra de; Nogueira, Ana Flavia

    2016-01-01

    Full text: Surface modification on organic-inorganic perovskite films using dodecylammonium chloride was done to improve the stability of the material over the air moisture, which is considered extremely harmful to these materials and complicates their application on solar cell technology. Perovskite CH 3 NH 3 PbI 3 was prepared by single step method using a solution containing PbI 2 and CH 3 NH 3 I on DMF:DMSO (2:1) on a concentration of 0.88 mol L -1 . The film was deposited over a planar film of TiO 2 , previously deposited over FTO glass, by using spin-casting method. 25 μL of the solution was spread over the substrate which was turned at 4000 RPM for 45 s. In the last 10 s, 800 μL of monochlorobenzene was dropped. The film was submitted to a thermal treatment so the conversion of the perovskite could be completed. After the thermal treatment, the modifier was spin coated over the perovskite film from 5 and 10 mg mL -1 solutions of the dodecylammonium chloride in chloroform. The perovskite films were characterized by SEM, XRD and UV-Vis spectroscopy. SEM images have shown that the modifiers agglomerate and they cover the perovskite film, forming a protection layer. XRD and UV-Vis carried out after the film preparation, 7 and 15 days after the deposition. The first results show that the protection layer is able to avoid degradation of the perovskite film. Photovoltaic devices were prepared by depositing Spiro-OMeTAD as HTM layer and gold as electrode. It was observed that the increase on the thickness of the surfactant layer causes a decrease on the short-circuit current density (JSC), which is expected since is starts to act like an insulating layer. This effect is also the cause of the reduction of the fill factor (FF). More experiments need to be carried out to improve the solar cells devices, but the present data has shown the potential of the method developed, which uses easy access surfactants and a simple preparation method to improve the stability of

  10. Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes

    DEFF Research Database (Denmark)

    Schmidt, Thomas Mikael; Larsen-Olsen, Thue Trofod; Carlé, Jon Eggert

    2015-01-01

    A scaling effort on perovskite solar cells is presented where the device manufacture is progressed onto fl exible substrates using scalable techniques such as slot-die roll coating under ambient conditions. The printing of the back electrode using both carbon and silver is essential to the scaling...... effort. Both normal and inverted device geometries are explored and it is found that the formation of the correct morphology for the perovskite layer depends heavily on the surface upon which it is coated and this has signifi cant implications for manufacture. The time it takes to form the desired layer...... morphology falls in the range of 5–45 min depending on the perovskite precursor, where the former timescale is compatible with mass production and the latter is best suited for laboratory work. A signifi cant loss in solar cell performance of around 50% is found when progressing to using a fully scalable...

  11. Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure

    International Nuclear Information System (INIS)

    Huang, Zongyu; Han, Weijia; Chander, D Sathish; Qi, Xiang; Zhang, Han; Tang, Hongli; Ren, Long

    2015-01-01

    We have fabricated a novel sunlight photo-detector based on a MoS 2 /graphene heterostructure. The MoS 2 /graphene heterostructure was prepared by a facile hydrothermal method along with a subsequent annealing process followed by a substrate-induced high selective nucleation and growth mechanism. The microstructures and morphologies of the two-dimensional MoS 2 /graphene heterostructure can be experimentally confirmed by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and a UV–vis absorption spectrometer. Photoresponse investigations performed by a photoelectrochemical (PEC) measurement system indicate that the synthesized MoS 2 /graphene heterostructure shows superior photoresponse activities under the illumination of sunlight in contrast with bare MoS 2 and graphene. The improved photoresponsivity can be attributed to the enhanced light absorption, strong light–matter interaction and the extremely efficient charge separation of the heterostructure. The structure and performances of the MoS 2 /graphene heterostructure suggest promising applications in the field of photonics and optoelectronics. (paper)

  12. Strong magnetization and Chern insulators in compressed graphene/CrI 3 van der Waals heterostructures

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Xue, Yang; Ma, Chunlan; Yang, Zhongqin

    2018-02-01

    Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional monolayer ferromagnetic insulator CrI3 was successfully synthesized in experiments [B. Huang et al., Nature (London) 546, 270 (2017), 10.1038/nature22391]. Here, these two interesting materials are proposed to build a heterostructure (Gr /CrI3). Our first-principles calculations show that the system forms a van der Waals (vdW) heterostructure, which is relatively facilely fabricated in experiments. A Chern insulating state is acquired in the Gr /CrI3 heterostructure if the vdW gap is compressed to a distance between about 3.3 and 2.4 Å, corresponding to a required external pressure between about 1.4 and 18.3 GPa. Amazingly, very strong magnetization (about 150 meV) is found in graphene, induced by the substrate CrI3, despite the vdW interactions between them. A low-energy effective model is employed to understand the mechanism. The work functions, contact types, and band alignments of the Gr /CrI3 heterostructure system are also studied. Our work demonstrates that the Gr /CrI3 heterostructure is a promising system to observe the quantum anomalous Hall effect at high temperatures (up to 45 K) in experiments.

  13. High-efficiency super capacitors based on hetero-structured α-MnO2 nanorods

    International Nuclear Information System (INIS)

    Ghouri, Zafar Khan; Shaheer Akhtar, M.; Zahoor, Awan; Barakat, Nasser A.M.; Han, Weidong; Park, Mira; Pant, Bishweshwar; Saud, Prem Singh; Lee, Cho Hye; Kim, Hak Yong

    2015-01-01

    Highlights: • Hetero-structured α-MnO 2 nanorods are prepared by a facile hydrothermal route. • It is applied as active electrode materials for supercapacitor. • A high specific capacitance of 298 Fg −1 with a superior long term cyclic stability is achieved. • Supercapacitor shows high specific capacitance retention 94% after 1000 cycles. - Abstract: Hetero-structured manganese dioxide nanorods with α phase (α-MnO 2 ) were prepared by a facile hydrothermal route at low temperature. X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements were used to characterize the prepared hetero-structured α-MnO 2 nanorods. Supercapacitive performance of the hetero-structured α-MnO 2 nanomaterials as active electrode material was evaluated by cyclic voltammetry (CV) in alkaline medium. The MnO 2 hetero-structure with 2 × 2 tunnels constructed from double chains of octahedral [MnO 6 ] structure yield a significantly high specific capacitance of 298 Fg −1 at 5 mV s −1 and demonstrated a superior long term cyclic stability, with specific capacitance retention about 94% after 1000 cycles. The superior supercapacitive performance of the hetero-structured α-MnO 2 electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport

  14. Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures

    Science.gov (United States)

    Shan, Junjie; Li, Jinhua; Chu, Xueying; Xu, Mingze; Jin, Fangjun; Fang, Xuan; Wei, Zhipeng; Wang, Xiaohua

    2018-06-01

    Semiconductor heterostructures based on transition metal dichalcogenides provide a broad platform to research two-dimensional nanomaterials and design atomically thin devices for fundamental and applied interests. The MoS2/WS2 heterostructure was prepared on SiO2/Si substrate by chemical vapor deposition (CVD) in our research. And the optical properties of the heterostructure was characterized by Raman and photoluminescence (PL) spectroscopy. The similar 2 orders of magnitude decrease of PL intensity in MoS2/WS2 heterostructures was tested, which is attribute to the electrical and optical modulation effects are connected with the interfacial charge transfer between MoS2 and WS2 films. Using MoS2/WS2 heterostructure as channel material of the phototransistor, we demonstrated over 50 folds enhanced photoresponsivity of multilayer MoS2 field-effect transistor. The results indicate that the MoS2/WS2 films can be a promising heterostructure material to enhance the photoresponse characteristics of MoS2-based phototransistors.

  15. Size-tunable band alignment and optoelectronic properties of transition metal dichalcogenide van der Waals heterostructures

    Science.gov (United States)

    Zhao, Yipeng; Yu, Wangbing; Ouyang, Gang

    2018-01-01

    2D transition metal dichalcogenide (TMDC)-based heterostructures exhibit several fascinating properties that can address the emerging market of energy conversion and storage devices. Current achievements show that the vertical stacked TMDC heterostructures can form type II band alignment and possess significant optoelectronic properties. However, a detailed analytical understanding of how to quantify the band alignment and band offset as well as the optimized power conversion efficiency (PCE) is still lacking. Herein, we propose an analytical model to exhibit the PCEs of TMDC van der Waals (vdW) heterostructures and explore the intrinsic mechanism of photovoltaic conversion based on the detailed balance principle and atomic-bond-relaxation correlation mechanism. We find that the PCE of monolayer MoS2/WSe2 can be up to 1.70%, and that of the MoS2/WSe2 vdW heterostructures increases with thickness, owing to increasing optical absorption. Moreover, the results are validated by comparing them with the available evidence, providing realistic efficiency targets and design principles. Highlights • Both electronic and optoelectronic models are developed for vertical stacked MoS2/WSe2 heterostructures. • The underlying mechanism on size effect of electronic and optoelectronic properties for vertical stacked MoS2/WSe2 heterostructures is clarified. • The macroscopically measurable quantities and the microscopical bond identities are connected.

  16. Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications

    Directory of Open Access Journals (Sweden)

    Marwa Akkari

    2016-12-01

    Full Text Available In this study, ZnO/SiO2-clay heterostructures were successfully synthesized by a facile two-step process applied to two types of clays: montmorillonite layered silicate and sepiolite microfibrous clay mineral. In the first step, intermediate silica–organoclay hybrid heterostructures were prepared following a colloidal route based on the controlled hydrolysis of tetramethoxysilane in the presence of the starting organoclay. Later on, pre-formed ZnO nanoparticles (NP dispersed in 2-propanol were incorporated under ultrasound irradiation to the silica–organoclay hybrid heterostructures dispersed in 2-propanol, and finally, the resulting solids were calcinated to eliminate the organic matter and to produce ZnO nanoparticles (NP homogeneously assembled to the clay–SiO2 framework. In the case of montmorillonite the resulting materials were identified as delaminated clays of ZnO/SiO2-clay composition, whereas for sepiolite, the resulting heterostructure is constituted by the assembling of ZnO NP to the sepiolite–silica substrate only affecting the external surface of the clay. The structural and morphological features of the prepared heterostructures were characterized by diverse physico-chemical techniques (such as XRD, FTIR, TEM, FE-SEM. The efficiency of these new porous ZnO/SiO2-clay heterostructures as potential photocatalysts in the degradation of organic dyes and the removal of pharmaceutical drugs in water solution was tested using methylene blue and ibuprofen compounds, respectively, as model of pollutants.

  17. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures

    International Nuclear Information System (INIS)

    Chung, Jing-Yang; Sorkin, Viacheslav; Pei, Qing-Xiang; Zhang, Yong-Wei; Chiu, Cheng-Hsin

    2017-01-01

    Van der Waals heterostructures based on graphene and other 2D materials have attracted great attention recently. In this study, the mechanical properties and failure behaviour of a graphene/silicene/graphene heterostructure are investigated using molecular dynamics simulations. We find that by sandwiching silicene in-between two graphene layers, both ultimate tensile strength and Young’s modulus of the heterostructure increase approximately by a factor of 10 compared with those of stand-alone silicene. By examining the fracture process of the heterostructure, we find that graphene and silicene exhibit quite different fracture behaviour. While graphene undergoes cleavage through its zigzag edge only, silicene can cleave through both its zigzag and armchair edges. In addition, we study the effects of temperature and strain rate on the mechanical properties of the heterostructure and find that an increase in temperature results in a decrease in its mechanical strength and stiffness, while an increase in strain rate leads to an increase in its mechanical strength without significant changes in its stiffness. We further explore the failure mechanism and show that the temperature and strain-rate dependent fracture stress can be accurately described by the kinetic theory of fracture. Our findings provide a deep insight into the mechanical properties and failure mechanism of graphene/silicene heterostructures. (paper)

  18. The Origin of Tc Enhancement in Heterostructure Cuprate Superconductors

    Directory of Open Access Journals (Sweden)

    Doron L. Bergman

    2011-10-01

    Full Text Available Recent experiments on heterostructures composed of two or more films of cuprate superconductors of different oxygen doping levels have shown a remarkable Tc enhancement (up to 50% relative to single compound films. We provide a simple explanation of the enhancement which arises naturally from a collection of experimental works. We show that the enhancement could be caused by a structural change in the lattice, namely an increase in the distance of the apical oxygen from the copper-oxygen plane. This increase modifies the effective off-site interaction in the plane which in turn enhances the d-wave superconductivity order parameter. To illustrate this point we study the extended Hubbard model using the fluctuation exchange approximation.

  19. Numerical methods for semiconductor heterostructures with band nonparabolicity

    International Nuclear Information System (INIS)

    Wang Weichung; Hwang Tsungmin; Lin Wenwei; Liu Jinnliang

    2003-01-01

    This article presents numerical methods for computing bound state energies and associated wave functions of three-dimensional semiconductor heterostructures with special interest in the numerical treatment of the effect of band nonparabolicity. A nonuniform finite difference method is presented to approximate a model of a cylindrical-shaped semiconductor quantum dot embedded in another semiconductor matrix. A matrix reduction method is then proposed to dramatically reduce huge eigenvalue systems to relatively very small subsystems. Moreover, the nonparabolic band structure results in a cubic type of nonlinear eigenvalue problems for which a cubic Jacobi-Davidson method with an explicit nonequivalence deflation method are proposed to compute all the desired eigenpairs. Numerical results are given to illustrate the spectrum of energy levels and the corresponding wave functions in rather detail

  20. Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gruverman, Alexei [Univ. of Nebraska, Lincoln, NE (United States); Tsymbal, Evgeny Y. [Univ. of Nebraska, Lincoln, NE (United States); Eom, Chang-Beom [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-03

    This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modeling of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.

  1. TEM assessment of defects in (CdHg)Te heterostructures

    International Nuclear Information System (INIS)

    Lawson-Jack, S.G.; Jones, I.P.; Williams, D.J.; Astles, M.G.

    1991-01-01

    This paper reports on transmission electron microscopy used to assess the defect contents of the various layers and interfaces in (CdHg)Te heterostructures. Examination of cross sectional specimens of these materials suggests that the density of misfit dislocations at the interfaces is related to the layer thicknesses, and that the high density of dislocations which are generated at the GaAs/CdTe interface are effectively prevented from penetrating into the CdHgTe epilayer by a 3 μm thick buffer layer. The majority of the dislocations in the layers were found to have a Burgers vector b = a/2 left-angle 110 right-angle and either lie approximately parallel or inclined at an angle of ∼ 60 degrees to the interfactial plane

  2. Gallium nitride heterostructures on 3D structured silicon.

    Science.gov (United States)

    Fündling, Sönke; Sökmen, Unsal; Peiner, Erwin; Weimann, Thomas; Hinze, Peter; Jahn, Uwe; Trampert, Achim; Riechert, Henning; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas

    2008-10-08

    We investigated GaN-based heterostructures grown on three-dimensionally patterned Si(111) substrates by metal organic vapour phase epitaxy, with the goal of fabricating well controlled high quality, defect reduced GaN-based nanoLEDs. The high aspect ratios of such pillars minimize the influence of the lattice mismatched substrate and improve the material quality. In contrast to other approaches, we employed deep etched silicon substrates to achieve a controlled pillar growth. For that a special low temperature inductively coupled plasma etching process has been developed. InGaN/GaN multi-quantum-well structures have been incorporated into the pillars. We found a pronounced dependence of the morphology of the GaN structures on the size and pitch of the pillars. Spatially resolved optical properties of the structures are analysed by cathodoluminescence.

  3. Gallium nitride heterostructures on 3D structured silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fuendling, Soenke; Soekmen, Uensal; Peiner, Erwin; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Weimann, Thomas; Hinze, Peter [Physikalisch Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)], E-mail: s.fuendling@tu-bs.de

    2008-10-08

    We investigated GaN-based heterostructures grown on three-dimensionally patterned Si(111) substrates by metal organic vapour phase epitaxy, with the goal of fabricating well controlled high quality, defect reduced GaN-based nanoLEDs. The high aspect ratios of such pillars minimize the influence of the lattice mismatched substrate and improve the material quality. In contrast to other approaches, we employed deep etched silicon substrates to achieve a controlled pillar growth. For that a special low temperature inductively coupled plasma etching process has been developed. InGaN/GaN multi-quantum-well structures have been incorporated into the pillars. We found a pronounced dependence of the morphology of the GaN structures on the size and pitch of the pillars. Spatially resolved optical properties of the structures are analysed by cathodoluminescence.

  4. Multi-color imaging of magnetic Co/Pt heterostructures

    Directory of Open Access Journals (Sweden)

    Felix Willems

    2017-01-01

    Full Text Available We present an element specific and spatially resolved view of magnetic domains in Co/Pt heterostructures in the extreme ultraviolet spectral range. Resonant small-angle scattering and coherent imaging with Fourier-transform holography reveal nanoscale magnetic domain networks via magnetic dichroism of Co at the M2,3 edges as well as via strong dichroic signals at the O2,3 and N6,7 edges of Pt. We demonstrate for the first time simultaneous, two-color coherent imaging at a free-electron laser facility paving the way for a direct real space access to ultrafast magnetization dynamics in complex multicomponent material systems.

  5. Transport Properties Of Van Der Waals Hybrid Heterostructures.

    Science.gov (United States)

    Pacheco, M.; Orellana, P. A.; Felix, A. B.; Latge, A.

    Here we study transport properties of van der Waals heterostructures composed of carbon nanotubes adsorbed on nanoribbons of distinct 2D materials. Calculations of the electronic density of states and conductance of the hybrid systems are obtained in single band tight-binding approximation in the Green function formalism by adopting real-space renormalization schemes. We show that an analytical approach may be derived when both systems are formed by the same type of atoms. In the coupled structures the different electronic paths along the ribbons and finite nanotubes lead to quantum interference effects which are reflected as Fano antiresonances in the conductance. The electronic and transport properties of these materials are modulated by changing geometrical and structural parameters, such as the nanotube diameter and the widths and edge type of the ribbons. FONDECYT 1151316-1140571.

  6. Oscillatory bistability of real-space transfer in semiconductor heterostructures

    Science.gov (United States)

    Do˙ttling, R.; Scho˙ll, E.

    1992-01-01

    Charge transport parallel to the layers of a modulation-doped GaAs/AlxGa1-xAs heterostructure is studied theoretically. The heating of electrons by the applied electric field leads to real-space transfer of electrons from the GaAs into the adjacent AlxGa1-xAs layer. For sufficiently large dc bias, spontaneous periodic 100-GHz current oscillations, and bistability and hysteretic switching transitions between oscillatory and stationary states are predicted. We present a detailed investigation of complex bifurcation scenarios as a function of the bias voltage U0 and the load resistance RL. For large RL subcritical Hopf bifurcations and global bifurcations of limit cycles are displayed.

  7. Interfacial thermal conductance in multilayer graphene/phosphorene heterostructure

    International Nuclear Information System (INIS)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Mai, Yiu-Wing; Lai, Siu-Kai

    2016-01-01

    Vertical integration of 2D materials has recently appeared as an effective method for the design of novel nano-scale devices. Using non-equilibrium molecular dynamics simulations, we study the interfacial thermal transport property of graphene/phosphorene heterostructures where phosphorene is sandwiched in between graphene. Various modulation techniques are thoroughly explored. We found that the interfacial thermal conductance at the interface of graphene and phosphorene can be enhanced significantly by using vacancy defects, hydrogenation and cross-plane compressive strain. By contrast, the reduction in the interfacial thermal conductance can be achieved by using cross-plane tensile strain. Our results provide important guidelines for manipulating the thermal transport in graphene/phosphorene based-nano-devices. (paper)

  8. Dark current of organic heterostructure devices with insulating spacer layers

    Science.gov (United States)

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul

    2015-03-01

    The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.

  9. Majorana zero modes in superconductor-semiconductor heterostructures

    Science.gov (United States)

    Lutchyn, R. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Krogstrup, P.; Marcus, C. M.; Oreg, Y.

    2018-05-01

    Realizing topological superconductivity and Majorana zero modes in the laboratory is a major goal in condensed-matter physics. In this Review, we survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor-superconductor heterostructures. We examine materials science progress in growing InAs and InSb semiconductor nanowires and characterizing these systems. We then discuss the observation of robust signatures of Majorana zero modes in recent experiments, paying particular attention to zero-bias tunnelling conduction measurements and Coulomb blockade experiments. We also outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation.

  10. Resonance of magnetization excited by voltage in magnetoelectric heterostructures

    Science.gov (United States)

    Yu, Guoliang; Zhang, Huaiwu; Li, Yuanxun; Li, Jie; Zhang, Dainan; Sun, Nian

    2018-04-01

    Manipulation of magnetization dynamics is critical for spin-based devices. Voltage driven magnetization resonance is promising for realizing low-power information processing systems. Here, we show through Finite Element Method (FEM) simulations that magnetization resonance in nanoscale magnetic elements can be generated by a radio frequency (rf) voltage via the converse magnetoelectric (ME) effect. The magnetization dynamics induced by voltage in a ME heterostructures is simulated by taking into account the magnetoelastic and piezoelectric coupling mechanisms among magnetization, strain and voltage. The frequency of the excited magnetization resonance is equal to the driving rf voltage frequency. The proposed voltage driven magnetization resonance excitation mechanism opens a way toward energy-efficient spin based device applications.

  11. GaN heterostructures for biosensing and radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Howgate, John D.

    2012-12-11

    In this thesis I show the results from our investigation of the interface between gallium nitride wide bandgap semiconductor heterostructures and (bio)molecular systems on their surfaces for biosensing, bioelectronics, and photoelectric applications, with a large emphasis on the processes arising from high energy ionizing irradiation, including heterostructure photoelectric gain mechanisms. Wide bandgap semiconductors, such as gallium nitride, have received increasing attention as potential components in advanced organic/inorganic hybrid systems. Working to further this topic, we determine a new semiconductor alignment required for low energy photo-induced charge transfer ionization of alkyl chains well below the energy normally required for molecular cleavage, show original results of the influence of binding methods on enzyme functionality in conjunction with a novel electrochemical and environmental control system and demonstrate new possibilities to significantly improve upon pH measurements through the use of high sensitivity devices. Furthermore, based on the extension of this work to support future studies of radiation effects on cell systems, we present a detailed characterization of new simultaneous chemical sensing and ionizing radiation dosimetry using single devices. We found that their pH sensitivity was retained during X-ray irradiation and that the fundamental characteristics can be used to separate the irradiation signal from the pH response without compromising operational stability. These data provide clear indications of the separate response mechanism tied to the presence of a two-dimensional electron gas channel. Here, we found new results exhibiting exceptionally high gains and independence of the well-known persistent photoconductivity for soft X-rays and high energy particles in the ultralow dose-rate regime. This material system provides the capability for high sensitivity and resolution real time monitoring, which is competitive with and

  12. Imaging the motion of electrons in 2D semiconductor heterostructures

    Science.gov (United States)

    Dani, Keshav

    Technological progress since the late 20th century has centered on semiconductor devices, such as transistors, diodes, and solar cells. At the heart of these devices, is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. In this talk, we combine femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy to image the motion of photoexcited electrons from high-energy to low-energy states in a 2D InSe/GaAs heterostructure exhibiting a type-II band alignment. At the instant of photoexcitation, energy-resolved photoelectron images reveal a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observe the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we make a movie lasting a few tens of picoseconds of the electron transfer process in the photoexcited type-II heterostructure - a fundamental phenomenon in semiconductor devices like solar cells. Quantitative analysis and theoretical modeling of spatial variations in the video provide insight into future solar cells, electron dynamics in 2D materials, and other semiconductor devices.

  13. A.E.S. characterisation of small dimensional heterostructures

    International Nuclear Information System (INIS)

    Gelsthorpe, A.J.

    2001-01-01

    Surface analysis is used to examine the outer layers of solid material to determine their properties and composition, and has many applications in industry. Atomic composition of the surface can be determined by Auger analysis. Depth profiles can also be obtained by exposing layers buried within a structure and then analysing them. This thesis presents improved techniques for analysing complex structures that have multiple thin layers or have significant topographical features. Bevelling techniques can be used to produce depth profiles of complex heterostructures by removing surface layers with a bevel. The work presented here shows the development of a chemical bevelling reactor to produce a system that is routinely used to make bevels on samples. The chemical bevelling reactor can also be used to correct for non-linear effects in the slope of the surface of the bevel that are usually present in other bevelling techniques. Chemical bevelling shows significant improvements in the depth resolution over the existing technique of ion beam milling. Artefacts due to surface topography are a common problem in Auger analysis as it is often difficult to identify the correct Auger reading from the artefact. A Cylindrical Mirror Analyser (CMA) described here, has been modified to detect artefacts. It uses three pairs of opposing detectors that observe 6 angles of azimuth simultaneously. The opposing detectors are used to identify topographical artefacts in two dimensions across the surface. The CMA also incorporates an electrostatic lens that deflects electrons onto the detectors along the same path independent of their energy. The operation and characterisation of the modified CMA and its electrostatic lens is described. Application to topographical features that show artefacts is also described. The CMA system can also be used to perform depth profiling by ion beam bevelling. This technique is applied to multi-layered heterostructures and a comparison is made between this

  14. Multilayer Graphene–WSe2 Heterostructures for WSe2 Transistors

    KAUST Repository

    Tang, Hao-Ling

    2017-11-29

    Two-dimensional (2D) materials are drawing growing attention for next-generation electronics and optoelectronics owing to its atomic thickness and unique physical properties. One of the challenges posed by 2D materials is the large source/drain (S/D) series resistance due to their thinness, which may be resolved by thickening the source and drain regions. Recently explored lateral graphene–MoS21−3 and graphene–WS21,4 heterostructures shed light on resolving the mentioned issues owing to their superior ohmic contact behaviors. However, recently reported field-effect transistors (FETs) based on graphene–TMD heterostructures have only shown n-type characteristics. The lack of p-type transistor limits their applications in complementary metal-oxide semiconductor electronics. In this work, we demonstrate p-type FETs based on graphene–WSe2 lateral heterojunctions grown with the scalable CVD technique. Few-layer WSe2 is overlapped with the multilayer graphene (MLG) at MLG–WSe2 junctions such that the contact resistance is reduced. Importantly, the few-layer WSe2 only forms at the junction region while the channel is still maintained as a WSe2 monolayer for transistor operation. Furthermore, by imposing doping to graphene S/D, 2 orders of magnitude enhancement in Ion/Ioff ratio to ∼108 and the unipolar p-type characteristics are obtained regardless of the work function of the metal in ambient air condition. The MLG is proposed to serve as a 2D version of emerging raised source/drain approach in electronics.

  15. GaN heterostructures for biosensing and radiation detection

    International Nuclear Information System (INIS)

    Howgate, John D.

    2012-01-01

    In this thesis I show the results from our investigation of the interface between gallium nitride wide bandgap semiconductor heterostructures and (bio)molecular systems on their surfaces for biosensing, bioelectronics, and photoelectric applications, with a large emphasis on the processes arising from high energy ionizing irradiation, including heterostructure photoelectric gain mechanisms. Wide bandgap semiconductors, such as gallium nitride, have received increasing attention as potential components in advanced organic/inorganic hybrid systems. Working to further this topic, we determine a new semiconductor alignment required for low energy photo-induced charge transfer ionization of alkyl chains well below the energy normally required for molecular cleavage, show original results of the influence of binding methods on enzyme functionality in conjunction with a novel electrochemical and environmental control system and demonstrate new possibilities to significantly improve upon pH measurements through the use of high sensitivity devices. Furthermore, based on the extension of this work to support future studies of radiation effects on cell systems, we present a detailed characterization of new simultaneous chemical sensing and ionizing radiation dosimetry using single devices. We found that their pH sensitivity was retained during X-ray irradiation and that the fundamental characteristics can be used to separate the irradiation signal from the pH response without compromising operational stability. These data provide clear indications of the separate response mechanism tied to the presence of a two-dimensional electron gas channel. Here, we found new results exhibiting exceptionally high gains and independence of the well-known persistent photoconductivity for soft X-rays and high energy particles in the ultralow dose-rate regime. This material system provides the capability for high sensitivity and resolution real time monitoring, which is competitive with and

  16. Pulse Power Capability Estimation of Lithium Titanate Oxide-based Batteries

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Loan

    2016-01-01

    The pulse power capability (PPC) represents one of the parameters that describe the performance behavior of Lithium-ion batteries independent on the application. Consequently, extended information about the Li-ion battery PPC and its dependence on the operating conditions become necessary. Thus......, this paper analyzes the power capability characteristic of a 13Ah high power Lithium Titanate Oxide-based battery and its dependence on temperature, load current and state-of-charge. Furthermore, a model to predict the discharging PPC of the battery cell at different temperatures and load currents for three...

  17. Photoluminescence properties of perovskite multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Macario, Leilane Roberta; Longo, Elson, E-mail: leilanemacario@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Mazzo, Tatiana Martelli [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil); Bouquet, Valerie; Deputier, Stephanie; Ollivier, Sophie; Guilloux-Viry, Maryline [Universite de Rennes (France)

    2016-07-01

    Full text: The knowledge of the optical properties of thin films is important in many scientific, technological and industrial applications of thin films such as photoconductivity, solar energy, photography, and numerous other applications [1]. In this study, perovskite type oxides were grown by pulsed laser deposition [2] in order to obtain thin films with applicable optical properties. The LaNiO{sub 3} (LN), BaTiO{sub 3} (BT) and KNbO{sub 3} (KNb) targets were prepared by solid-state reaction. The X-ray Diffraction revealed the presence of the desired phases, containing the elements of interest in the targets and in the thin films that were produced. The LN, BT and KNb thin films were polycrystalline and the corresponding diffraction peaks were indexed in the with JCPDS cards n. 00-033-0711, n. 00-005-0626, and n. 00-009-0156, respectively. The multilayers films were polycrystalline. The majority of the micrographs obtained by scanning electron microscopy presented films with a thickness from 100 to 400 nm. The photoluminescent (PL) emission spectra of thin films show different broad bands that occupies large region of the visible spectrum, ranging from about 300-350 to 600-650 nm of the electromagnetic spectrum. The PL emission is associated with the order-disorder structural, even small structural changes can modify the interactions between electronic states. The structural disorder results in formation of new energy levels in the forbidden region. The proximity or distance of these new energy levels formed in relation to valence band and to the conduction band results in PL spectra located at higher or lower energies. These interactions change the electronic states which can be influenced by defects, particularly the interface defects between the layers of the thin films. The presence of defects results in changes in the broad band matrix intensity and in displacement of the PL emission maximum. (author)

  18. Enhancement of photoresponse property of perovskite solar cell by aluminium chloride (AlCl3)

    Science.gov (United States)

    Ghosh, S. S.; Sil, A.

    2018-05-01

    The fabrication of a three layer solar cell device is a new area of research. The formation of perovskite phase is evident from x-ray diffraction and its particle size is observed by microstructural analysis. A thin layer of gold coating over the device increases the surface conductivity. Direct contact between a SnCl2 or AlCl3 based perovskite with the gold coating increases the durability of the film but decreases the hole transport properties due to absence of an organic hole transport material. The absorbance spectroscopy analysis gives characteristic peaks showing the evidence of ITO, TiO2 (rutile) and Sn2+ complexes present in the Sn-perovskite film or Al3+ complexes present within the Al-perovskite cell. The desired absorbance near 550 nm due to Al3+ complexes causes a much higher flow of current on illumination and thus is also evidenced by the presence of comparatively high intensity PL spectra in the Al-perovskite system which occurred due to free exciton formation near band edge excitation. The fill factor of the devices is estimated as ∼0.83 and ∼0.65 for Sn-perovskite and Al-perovskite devices respectively. The PCE values of Sn-perovskite and Al-perovskite devices are calculated 0.39% and 0.96% respectively, which establish Al-perovskite film as a useful component for future solar cell device manufacturing.

  19. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu

    2017-03-13

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  20. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu; Voznyy, Oleksandr; Walters, Grant; Fan, James Z.; Liu, Min; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  1. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    Science.gov (United States)

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-10-09

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation

    Science.gov (United States)

    Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui

    2018-04-01

    The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n  >  2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n  >  2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n  =  2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.

  3. Investigations of the electronic, magnetic and crystalline structure of perovskite oxides and an oxide-oxide interface

    International Nuclear Information System (INIS)

    Raisch, Christoph Werner

    2013-01-01

    Strontium doped LSMO, Calcium doped LCMO and undoped LMO are discussed in chapter 7. The focus lies on a multi-technique approach to correlate changes of one parameter to its effects on others. The characterization of a YBCO / LCMO heterostructure on STO concludes this work (chapter 8). Again it is the electronic, magnetic and crystalline structure at the interface that proves crucial for the properties of this unusual system which artificially combines a superconductor (SC) and a ferromagnet (FM). This structure makes two antagonistic effects meet, the tendency of a superconductor to pair two electrons with different spin into Cooper pairs and the tendency of a ferromagnet to align all spin moments. This fascinating competition shows the wide range of properties that the perovskite oxides offer when they are used accordingly and combined usefully. The above mentioned polar discontinuity at the interface between a manganite and a cuprate is examined. The thesis is completed by a summary and an outlook.

  4. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices

    Science.gov (United States)

    Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.

    2013-07-01

    Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.

  5. Anaerobic digestion of amine-oxide-based surfactants: biodegradation kinetics and inhibitory effects.

    Science.gov (United States)

    Ríos, Francisco; Lechuga, Manuela; Fernández-Arteaga, Alejandro; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2017-08-01

    Recently, anaerobic degradation has become a prevalent alternative for the treatment of wastewater and activated sludge. Consequently, the anaerobic biodegradability of recalcitrant compounds such as some surfactants require a thorough study to avoid their presence in the environment. In this work, the anaerobic biodegradation of amine-oxide-based surfactants, which are toxic to several organisms, was studied by measuring of the biogas production in digested sludge. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-cocoamido). Results show that AO-R 12 and AO-R 14 inhibit biogas production, inhibition percentages were around 90%. AO-cocoamido did not cause inhibition and it was biodegraded until reaching a percentage of 60.8%. Otherwise, we fitted the production of biogas to two kinetic models, to a pseudo first-order model and to a logistic model. Production of biogas during the anaerobic biodegradation of AO-cocoamido was pretty good adjusted to the logistics model. Kinetic parameters were also determined. This modelling is useful to predict their behaviour in wastewater treatment plants and under anaerobic conditions in the environment.

  6. Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells

    Science.gov (United States)

    Pedesseau, L.; Kepenekian, M.; Sapori, D.; Huang, Y.; Rolland, A.; Beck, A.; Cornet, C.; Durand, O.; Wang, S.; Katan, C.; Even, J.

    2016-03-01

    A method based on DFT is used to obtained dielectric profiles. The high frequency Ɛ∞(z) and the static Ɛs(z) dielectric profiles are compared for 3D, 2D-3D and 2D Hybrid Organic Perovskites (HOP). A dielectric confinement is observed for the 2D materials between the high dielectric constant of the inorganic part and the low dielectric constant of the organic part. The effect of the ionic contribution on the dielectric constant is also shown. The quantum and dielectric confinements of 3D HOP nanoplatelets are then reported. Finally, a numerical simulation based on the SILVACO code of a HOP based solar cell is proposed for various permittivity of MAPbI3.

  7. Electrical and Optical Properties of Nanosized Perovskite-type La ...

    African Journals Online (AJOL)

    Electrical and Optical Properties of Nanosized Perovskite-type La 0.5 Ca 0.5 MO 3 (M=Co,Ni) ... In addition, the TEM images show that the average particle size of ... of both compounds decreases exponentially by increasing the temperature.

  8. Field-emission from quantum-dot-in-perovskite solids.

    Science.gov (United States)

    García de Arquer, F Pelayo; Gong, Xiwen; Sabatini, Randy P; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-24

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 10 12 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  9. Composite perovskite materials, methods of making, and methods of use

    KAUST Repository

    Yu, Weili; Amassian, Aram

    2017-01-01

    Embodiments of the present disclosure provide materials, devices and systems including a composite of halide perovskite single crystals and nanotubes, and the like. Embodiments of the composite can be used in devices such as detectors, solar panels, transistors, sensors, and the like.

  10. Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals

    NARCIS (Netherlands)

    Gomez, Leyre; Lin, Junhao; De Weerd, Chris; Poirier, Lucas; Boehme, Simon C.; Von Hauff, Elizabeth; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2018-01-01

    All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the

  11. Multifunctional MgO Layer in Perovskite Solar Cells.

    Science.gov (United States)

    Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo

    2015-06-08

    A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Excitations Partition into Two Distinct Populations in Bulk Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lili [Department of Chemistry, The James Franck Institute, The Institute for Biophysical Dynamics, The University of Chicago, Chicago IL 60637 USA; Brawand, Nicholas P. [The Institute for Molecular Engineering, The University of Chicago, Chicago IL 60637 USA; Vörös, Márton [Materials Science Division, Argonne National Laboratory, Lemont IL 60439 USA; Dahlberg, Peter D. [Department of Chemistry, The James Franck Institute, The Institute for Biophysical Dynamics, The University of Chicago, Chicago IL 60637 USA; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Otto, John P. [Department of Chemistry, The James Franck Institute, The Institute for Biophysical Dynamics, The University of Chicago, Chicago IL 60637 USA; Williams, Nicholas E. [Department of Chemistry, The James Franck Institute, The Institute for Biophysical Dynamics, The University of Chicago, Chicago IL 60637 USA; Tiede, David M. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Galli, Giulia [The Institute for Molecular Engineering, The University of Chicago, Chicago IL 60637 USA; Materials Science Division, Argonne National Laboratory, Lemont IL 60439 USA; Engel, Gregory S. [Department of Chemistry, The James Franck Institute, The Institute for Biophysical Dynamics, The University of Chicago, Chicago IL 60637 USA

    2018-01-09

    Organolead halide perovskites convert optical excitations to charge carriers with remarkable efficiency in optoelectronic devices. Previous research predominantly documents dynamics in perovskite thin films; however, extensive disorder in this platform may obscure the observed carrier dynamics. Here, carrier dynamics in perovskite single-domain single crystals is examined by performing transient absorption spectroscopy in a transmissive geometry. Two distinct sets of carrier populations that coexist at the same radiation fluence, but display different decay dynamics, are observed: one dominated by second-order recombination and the other by third-order recombination. Based on ab initio simulations, this observation is found to be most consistent with the hypothesis that free carriers and localized carriers coexist due to polaron formation. The calculations suggest that polarons will form in both CH3NH3PbBr3 and CH3NH3PbI3 crystals, but that they are more pronounced in CH3NH3PbBr3. Single-crystal CH3NH3PbBr3 could represent the key to understanding the impact of polarons on the transport properties of perovskite optoelectronic devices.

  13. Improving Perovskite Solar Cells: Insights From a Validated Device Model

    NARCIS (Netherlands)

    Sherkar, Tejas S.; Momblona, Cristina; Gil-Escrig, Lidon; Bolink, Henk J.; Koster, L. Jan Anton

    2017-01-01

    To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of

  14. Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals

    NARCIS (Netherlands)

    Brenes, Roberto; Guo, D.; Osherov, Anna; Noel, Nakita K.; Eames, Christopher; Hutter, E.M.; Pathak, Sandeep K.; Niroui, Farnaz; Friend, Richard H.; Islam, M. Saiful; Snaith, Henry J.; Bulović, Vladimir; Savenije, T.J.; Stranks, Samuel D.

    2017-01-01

    Metal halide perovskites are generating enormous excitement for use in solar cells and light-emission applications, but devices still show substantial non-radiative losses. Here, we show that by combining light and atmospheric treatments, we can increase the internal luminescence quantum

  15. Synthesis of new perovskite and ''tetragonal bronze'' materials with thorium

    International Nuclear Information System (INIS)

    Launay, Suzanne; Erb, Alfred; Freundlich, William

    1982-01-01

    Disclosure and crystal chemistry study of the solid solutions Th(NbO 3 ) 4 , NaNbO 3 or AgNbO 3 with perovskite structure and Th(Nb, TaO 3 ) 4 , K(Nb,Ta)O 3 with ''tetragonal tungstene bronze'' structure, ''Banana'' type [fr

  16. Classification of perovskites with supervised self-organizing maps

    International Nuclear Information System (INIS)

    Kuzmanovski, Igor; Dimitrovska-Lazova, Sandra; Aleksovska, Slobotka

    2007-01-01

    In this work supervised self-organizing maps were used for structural classification of perovskites. For this purpose, structural data for total number of 286 perovskites, belonging to ABO 3 and/or A 2 BB'O 6 types, were collected from literature: 130 of these are cubic, 85 orthorhombic and 71 monoclinic. For classification purposes, the effective ionic radii of the cations, electronegativities of the cations in B-position, as well as, the oxidation states of these cations, were used as input variables. The parameters of the developed models, as well as, the most suitable variables for classification purposes were selected using genetic algorithms. Two-third of all the compounds were used in the training phase. During the optimization process the performances of the models were checked using cross-validation leave-1/10-out. The performances of obtained solutions were checked using the test set composed of the remaining one-third of the compounds. The obtained models for classification of these three classes of perovskite compounds show very good results. Namely, the classification of the compounds in the test set resulted in small number of discrepancies (4.2-6.4%) between the actual crystallographic class and the one predicted by the models. All these results are strong arguments for the validity of supervised self-organizing maps for performing such types of classification. Therefore, the proposed procedure could be successfully used for crystallographic classification of perovskites in one of these three classes

  17. Perovskite Solar Cells for High-Efficiency Tandems

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-09-30

    The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm2. Werner et al.15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher current density of 15.9 mA/cm2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both

  18. Dynamic and Impure Perovskite Structured Metal Oxide Surfaces

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Traulsen, Marie Lund

    2017-01-01

    Surfaces of LSF and LSCF perovskite model electrodes were investigated using a variety of analytical methods on flat model electrodes that were prepared as either pellets or as thin films on top of YSZ pellets in other to throw more light on the widely discussed segregation of layers and particles...

  19. Performance of genetic algorithms in search for water splitting perovskites

    DEFF Research Database (Denmark)

    Jain, A.; Castelli, Ivano Eligio; Hautier, G.

    2013-01-01

    We examine the performance of genetic algorithms (GAs) in uncovering solar water light splitters over a space of almost 19,000 perovskite materials. The entire search space was previously calculated using density functional theory to determine solutions that fulfill constraints on stability, band...

  20. A Monolithic Perovskite Structure for Use as a Magnetic Regenerator

    DEFF Research Database (Denmark)

    Pryds, Nini; Clemens, Frank; Menon, Mohan

    2011-01-01

    A La0.67Ca0.26Sr0.07Mn1.05O3 (LCSM) perovskite was prepared for the first time as a ceramic monolithic regenerator used in a regenerative magnetic refrigeration device. The parameters influencing the extrusion process and the performance of the regenerator, such as the nature of the monolith paste...