WorldWideScience

Sample records for permit countercurrent heat

  1. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    Science.gov (United States)

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  2. Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs.

    Science.gov (United States)

    Lahondère, Chloé; Insausti, Teresita C; Paim, Rafaela Mm; Luan, Xiaojie; Belev, George; Pereira, Marcos H; Ianowski, Juan P; Lazzari, Claudio R

    2017-11-21

    Blood-sucking insects experience thermal stress at each feeding event on endothermic vertebrates. We used thermography to examine how kissing-bugs Rhodnius prolixus actively protect themselves from overheating. During feeding, these bugs sequester and dissipate the excess heat in their heads while maintaining an abdominal temperature close to ambient. We employed a functional-morphological approach, combining histology, µCT and X-ray-synchrotron imaging to shed light on the way these insects manage the flow of heat across their bodies. The close alignment of the circulatory and ingestion systems, as well as other morphological characteristics, support the existence of a countercurrent heat exchanger in the head of R. prolixus , which decreases the temperature of the ingested blood before it reaches the abdomen. This kind of system has never been described before in the head of an insect. For the first time, we show that countercurrent heat exchange is associated to thermoregulation during blood-feeding.

  3. Countercurrent two-phase flow

    International Nuclear Information System (INIS)

    Hewitt, G.F.; Imperial Coll. of Science and Technology, London

    1989-01-01

    A survey is presented of counter-current flow with particular reference to the limits of the regime, namely the 'flooding' phenomena. Emphasis is also given to the transiently counter-current type of flow ('churn flow') which is formed on the break-down of falling film counter-current flow. The mechanisms of flooding are reviewed and flooding in systems with heat transfer and in non-vertical channels is discussed. New data on the flooding phenomena and the region of simultaneous downflow and upflow beyond flooding are presented. The onset of churn flow is discussed and new measurements on churn flow are presented. The characteristics of the churn flow regime are shown to be independent of the coexistence of a falling film region below the liquid injection point. (orig.)

  4. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    Science.gov (United States)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The

  5. Counter-current motion in counter-current chromatography.

    Science.gov (United States)

    Ito, Yoichiro

    2014-12-12

    After the CCC2012 meeting, I have received an e-mail regarding the terminology of "Countercurrent Chromatography". It stated that the term "Countercurrent" is a misnomer, because its stationary phase is motionless in the column and that the method should be renamed as liquid-liquid separations or centrifugal separations. However, it was found that these names are already used for various other techniques as found via Google search. The term "Countercurrent Chromatography" was originally made after two preparative methods of Countercurrent distribution and liquid Chromatography, both having no countercurrent motion in the column. However, it is surprising to find that this F1 hybrid method "Countercurrent Chromatography" can clearly exhibit countercurrent motion within the separation column in both hydrodynamic and hydrostatic equilibrium systems. This justifies that "Countercurrent Chromatography" is a proper term for this chromatographic method. Published by Elsevier B.V.

  6. SIMULATION OF NON-AZEOTROPIC REFRIGERANT MIXTURES FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER WITH COUNTERCURRENT HEAT EXCHANGES

    Science.gov (United States)

    The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...

  7. Interfacial condensation heat transfer for countercurrent steam-water wavy flow in a horizontal circular pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Chun, Moon Hyun [Korea Advanced Institute of Science and Technolgy, Taejon (Korea, Republic of); Chu, In Cheol [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    An experimental study of interfacial condensation heat transfer has been performed for countercurrent steam-water wavy flow in a horizontal circular pipe. A total of 105 local interfacial condensation heat transfer coefficients have been obtained for various combinations of test parameters. Two empirical Nusselt number correlations were developed and parametric effects of steam and water flow rates and the degree of water subcooling on the condensation heat transfer were examined. For the wavy interface condition, the local Nusselt number is more strongly sensitive to the steam Reynolds number than water Reynolds number as opposed to the case of smooth interface condition. Comparisons of the present circular pipe data with existing correlations showed that existing correlations developed for rectangular channels are not directly applicable to a horizontal circular pipe flow.

  8. Interfacial heat transfer in countercurrent flows of steam and water

    International Nuclear Information System (INIS)

    Megahed, M.M.

    1987-04-01

    A study was conducted to examine the departure from equilibrium conditions with respect to direct contact condensation. A simple analytical model, which used an equilibrium factor, K, was derived. The model was structured to represent the physical dimensions of a nuclear reactor downcomer annulus, water subcooling, wall temperature, and water flow rate. In a two step process the model was first used to isolate the average interfacial heat transfer coefficient from vertical countercurrent steam/water data of Cook et al., with the aid of a Stanton number correlation. In the second step the model was assessed by regeneration of measured steam flow rates in the experiments by Cook et al., and an additional experiment of Kim. This report documents the analytical model, the derived Stanton number correlation, and the comparison of the calculated and measured steam flow rates by which the accuracy of the model was assessed

  9. Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down

    Science.gov (United States)

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2015-01-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting.

  10. Flooding in counter-current two-phase flow

    International Nuclear Information System (INIS)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding

  11. Flooding in counter-current two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  12. An experimental investigation of the interfacial condensation heat transfer in steam/water countercurrent stratified flow in a horizontal pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chu, In Cheol; Yu, Seon Oh; Chun, Moon Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Byong Sup; Kim, Yang Seok; Kim, In Hwan; Lee, Sang Won [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within {+-} 15%. 5 refs., 6 figs. (Author)

  13. Prediction of pressure drop and CCFL breakdown in countercurrent two-phase flow

    International Nuclear Information System (INIS)

    Ostrogorsky, A.G.; Gay, R.R.; Lahey, R.T. Jr.

    1983-01-01

    A steady-state analytical has been developed to predict channel pressure drop as a function of inlet vapor flow rate and applied heat flux during conditions of countercurrent two-phase flow. The interfacial constitutive relations utilized are flow surface dependent and allow for the existence of either smooth or way liquid films. A computer code was developed to solve the analytical model. Predictions of Δp versus vapor flow rate were found to agree favorably with experimental data from adiabatic, air/water systems. In addition, the model was used to predict countercurrent flow conditions in heated channels characteristic of a BWR/4 nuclear reactor fuel assembly

  14. Heat transfer from a plate cooled by a water film with countercurrent air flow

    International Nuclear Information System (INIS)

    Ambrosini, W.; Manfredini, A.; Mariotti, F.; Oriolo, F.; Vigni, P.

    1995-01-01

    An experimental program at the University of Pisa provides specific data for the evaluation of heat and mass transfer by falling film evaporation. The problem is addressed primarily because of its relevance to the study of the behavior of passive containment cooling systems in simplified pressurized water reactors. In these plants, after an accident that releases vapor from the primary circuit, the steel containment envelope is cooled either by an ascending stream of air in natural circulation or by the combination of air flow and falling film evaporation. To qualify models for the prediction of the heat transfer capabilities in postulated accident conditions, researchers have built an experimental facility consisting of a flat heated plate with water sprays and a fan to simulate a countercurrent air stream. The range of relevant parameters to be investigated has been determined on the basis of integral calculations performed for the AP600 reactor containment. The facility has enabled the collection of data that confirm the adequacy of the classical heat and mass transfer analogy in predicting evaporation phenomena. Further developments in the research are needed to confirm the first results and to extend the experimental database by considering more subtle aspects of the phenomenon such as the characteristics of surface waviness of the water film and its effect on heat transfer

  15. Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type

    International Nuclear Information System (INIS)

    Lee, Min Jung; Cho, Sang Moon; Choi, Byung Il; Kim, Nam Il

    2010-01-01

    Small energy sources have been interested with the recent development of small-scale mechanical systems. With the purpose of developing a basic model of micro-combustors of heat recirculation, small combustors of a counter-current channel type were fabricated, and the premixed flame stabilization characteristics were investigated experimentally. Each combustor consists of a combustion space and a pair of counter-current channels for heat recirculation. The channel gap was less than the ordinary quenching distance of a stoichiometric methane-air premixed flame. Depending on the flame locations and structures, flame stabilization was classified into four modes: an ordinary mode, a channel mode, a radiation mode, and a well-stirred reaction mode. Base-scale combustors of stainless steel were initially examined. Additional half-scale combustors of stainless steel and quartz were fabricated and their flame stabilization conditions were compared. Consequently, a change of the material of the combustor significantly affected the flame stabilization compared to the effects of a scale-down design. A half-scale quartz combustor had a wide range of flame stabilization conditions. Surface temperatures and the composition of the emission gas were measured. At a higher flow rate, the combustor temperature increases and the light emission from the middle wall is enhanced to extend the flame stabilization conditions. The combustion efficiency and the composition of emitted gas were feasible. These results provide useful information for the design of small-scale combustors.

  16. Numerical simulation of countercurrent flow based on two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.D. [Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 (China); School of Electric Power, South China University of Technology, Guangzhou 510640 (China); Zhang, X.Y., E-mail: zxiaoying@mail.sysu.edu.cn [Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 (China)

    2017-03-15

    Highlights: • Using one-dimensional two-fluid model to help understanding counter-current flow two-phase flows. • Using surface tension model to make the one-dimensional two-fluid flow model well-posed. • Solving the governing equations with a modified SIMPLE algorithm. • Validating code with experimental data and applying it to vertical air/steam countercurrent flow condition - Abstract: In order to improve the understanding of counter-current two-phase flows, a transient analysis code is developed based on one-dimensional two-fluid model. A six equation model has been established and a two phase pressure model with surface tension term, wall drag force and interface shear terms have been used. Taking account of transport phenomenon, heat and mass transfer models of interface were incorporated. The staggered grids have been used in discretization of equations. For validation of the model and code, a countercurrent air-water problem in one experimental horizontal stratified flow has been considered firstly. Comparison of the computed results and the experimental one shows satisfactory agreement. As the full problem for investigation, one vertical pipe with countercurrent flow of steam-water and air-water at same boundary condition has been taken for study. The transient distribution of liquid fraction, liquid velocity and gas velocity for selected positions of steam-water and air-water problem were presented and discussed. The results show that these two simulations have similar transient behavior except that the distribution of gas velocity for steam-water problem have larger oscillation than the one for air-water. The effect of mesh size on wavy characteristics of interface surface was also investigated. The mesh size has significant influence on the simulated results. With the increased refinement, the oscillation gets stronger.

  17. CFD simulation of transient stage of continuous countercurrent hydrolysis of canola oil

    KAUST Repository

    Wang, Weicheng

    2012-08-01

    Computational Fluid Dynamic (CFD) modeling of a continuous countercurrent hydrolysis process was performed using ANSYS-CFX. The liquid properties and flow behavior such as density, specific heats, dynamic viscosity, thermal conductivity, and thermal expansivity as well as water solubility of the hydrolysis components triglyceride, diglyceride, monoglyceride, free fatty acid, and glycerol were calculated. Chemical kinetics for the hydrolysis reactions were simulated in this model by applying Arrhenius parameters. The simulation was based on actual experimental reaction conditions including temperature and water-to-oil ratio. The results not only have good agreement with experimental data but also show instantaneous distributions of concentrations of every component in hydrolysis reaction. This model provided visible insight into the continuous countercurrent hydrolysis process. © 2012 Elsevier Ltd.

  18. CFD simulation of transient stage of continuous countercurrent hydrolysis of canola oil

    KAUST Repository

    Wang, Weicheng; Natelson, Robert H.; Stikeleather, Larry F.; Roberts, William L.

    2012-01-01

    Computational Fluid Dynamic (CFD) modeling of a continuous countercurrent hydrolysis process was performed using ANSYS-CFX. The liquid properties and flow behavior such as density, specific heats, dynamic viscosity, thermal conductivity, and thermal expansivity as well as water solubility of the hydrolysis components triglyceride, diglyceride, monoglyceride, free fatty acid, and glycerol were calculated. Chemical kinetics for the hydrolysis reactions were simulated in this model by applying Arrhenius parameters. The simulation was based on actual experimental reaction conditions including temperature and water-to-oil ratio. The results not only have good agreement with experimental data but also show instantaneous distributions of concentrations of every component in hydrolysis reaction. This model provided visible insight into the continuous countercurrent hydrolysis process. © 2012 Elsevier Ltd.

  19. Wave-driven countercurrent plasma centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J; Fisch, Nathaniel J [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States)

    2009-11-15

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the {alpha} channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  20. Wave-driven countercurrent plasma centrifuge

    International Nuclear Information System (INIS)

    Fetterman, Abraham J; Fisch, Nathaniel J

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  1. Wave-driven Countercurrent Plasma Centrifuge

    International Nuclear Information System (INIS)

    Fetterman, A.J.; Fisch, N.J.

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided

  2. Countercurrent exchange of water in canine jejunum

    International Nuclear Information System (INIS)

    Ryu, K.H.; Grim, E.

    1985-01-01

    The possibility of countercurrent exchange of water molecules in canine intestinal villi has been examined. Tritium-labeled water ( 3 H 2 O) molecules were introduced either into the fluid lavaging the intestinal lumen or into the arterial blood supply for varying periods of time. Quickly frozen samples of intestinal tissue were sectioned such that isotopic concentrations at the villus tip, midvillus, villus base, and underlying submucosa and muscle could be determined. The villus concentration gradients observed were consistent with the existence of a countercurrent exchange but could also be explained by alternative arrangements. More convincing evidence of a countercurrent was obtained from experiments in which [ 14 C]inulin was introduced simultaneously with 3 H 2 O into the intestinal artery. The villus tip-to-base concentration ratio for 3 H 2 O was less than one while the ratio for inulin was greater than one, thus vitiating the alternative explanations and leading to the conclusion that the labeled water molecules must have undergone a countercurrent exchange

  3. Flow characteristics of counter-current flow in debris bed

    International Nuclear Information System (INIS)

    Abe, Yutaka; Adachi, Hiromichi

    2004-01-01

    In the course of a severe accident, a damaged core would form a debris bed consisting of once-molten and fragmented fuel elements. It is necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. The dryout phenomena in the debris bed is dominated by the counter-current flow limitation (CCFL) in the debris bed. In this study, air-water counter-current flow behavior in the debris bed is experimentally investigated with glass particles simulating the debris beds. In this experiment, falling water flow rate and axial pressure distributions were experimentally measured. As the results, it is clarified that falling water flow rate becomes larger with the debris bed height and the pressure gradient in the upper region of the debris bed is different from that in the lower region of the debris bed. These results indicate that the dominant region for CCFL in the debris bed is identified near the top of the debris bed. Analytical results with annular flow model indicates that interfacial shear stress in the upper region of the debris bed is larger than that in the lower region of the debris bed. (author)

  4. Hybrid indirect/direct contactor for thermal management of counter-current processes

    Science.gov (United States)

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  5. Gulping phenomena in transient countercurrent two-phase flow

    International Nuclear Information System (INIS)

    Tehrani, Ali A.K.

    2001-04-01

    Apart from previous work on countercurrent gas-liquid flow, transient tank drainage through horizontal off-take pipes is described, including experimental procedure, flow pattern on observations and countercurrent flow limitation results. A separate chapter is devoted to countercurrent two-phase flow in a pressurised water reactor hot-leg scaled model. Results concerning low head flooding, high head and loss of bowl flooding, transient draining of the steam generator and pressure variation and bubble detachment are presented. The following subjects are covered as well: draining of sealed tanks of vertical pipes, unsteady draining of closed vessel via vertical tube, unsteady filling of a closed vessel via vertical tube from a constant head reservoir. Practical significance of the results obtained is discussed

  6. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  7. Spiral Countercurrent Chromatography

    Science.gov (United States)

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  8. Counter-current flow limited CHF in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, L.Y.

    1990-01-01

    An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs

  9. Experimental study of falling water limitation under counter-current flow in the vertical rectangular channel

    International Nuclear Information System (INIS)

    Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.

    1988-07-01

    Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)

  10. Development of the APR1400 model for countercurrent natural circulation in hot leg and steam generator under station blackout

    International Nuclear Information System (INIS)

    Park, Sang Gil; Kim, Han Chul

    2012-01-01

    In order to analyze severe accident phenomena, Korea Institute of Nuclear Safety (KINS) made a MELCOR model for APR1400 to examine natural circulation and creep rupture failure in the Reactor Coolant System (RCS) under station blackout (SBO). In this study, we are trying to advance the former model to describe natural circulation more accurately. After Fukushima accident, the concerns of severe accident management, assuring the heat removal capability, has risen for the case when the SBO is happened and there are no more electric powers to cool down decay heat. Under SBO there are three kinds of natural circulation which can delay the core heatup. One is in vessel natural circulation in the upper plenum of reactor vessel and the second is countercurrent natural circulation in hot leg through steam generator tubes and the last is full loop natural circulation when the reactor coolant pump loop seal is cleared and reactor coolant pump sealing is damaged by high temperature and high pressure. Among them this study focuses on the countercurrent natural circulation model using MELCOR1.8.6

  11. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  12. Counter-current acid leaching process for copper azole treated wood waste.

    Science.gov (United States)

    Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul

    2012-09-01

    This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.

  13. Design of a liquid metals heat exchanger

    International Nuclear Information System (INIS)

    Roffiel C, L.

    1976-01-01

    The method that has been used in this design is that of the summation of the partial resistances to the heat transference, permitting to obtain the value of the total coefficient of heat transfer which will be equal to the reciprocal of the summation of all the resistances. The obtained exchanger is of tubes and rod type shield with the primary sodium flowing through the tubes and the secondary sodium flowing in counter-current through the shield. The shield has a nominal diameter of 6 inches and the bundle of tubes is formed by 31 tubes with a nominal diameter of 1/2 inch. The shield as well as the tubes are of stainless steel. The total heat transfer area is of 7.299 square meters, and the effective length of heat transfer is of 3.519 meters. After sizing the interchanger it was proceeded to simulate its functioning through a computer program in which the effective length of heat transfer was divided in 150 points in such a way that according to the integration of the distinct parameters along these points a comparison can finally be made between the design values and those of the simulation, which show a concordance. (author)

  14. An experimental study of gravity-driven countercurrent two-phase flow in horizontal and inclined channels

    International Nuclear Information System (INIS)

    Lillibridge, K.H.; Ghiaasiaan, S.M.; Abdel-Khalik, S.I.

    1994-01-01

    Countercurrent two-phase flow in horizontal and inclined channels, connecting a sealed liquid-filled reservoir to the atmosphere, is experimentally studied. This type of gravity-driven countercurrent two-phase flow can occur during the operation of passive safety coolant injection systems of advanced reactors. It can also occur in the pressurizer surge line of pressurized water reactors during severe accidents when the hot leg becomes voided. Four distinct flow regimes are identified: (a) stratified countercurrent, which mainly occurs when the channel is horizontal; (b) intermittent stratified-slug; (c) oscillating, which occurs when the angle of inclination is ≥30 deg; and (d) annular countercurrent. The characteristics of each regime and their sensitivity to important geometric parameters are examined. The superficial velocities in the stratified countercurrent and oscillating regimes are empirically correlated

  15. Theoretical study of the countercurrent in an ultracentrifuge-approximate solution of the countercurrent equations

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, R.

    1975-03-15

    Integrating the linearized Navier-Stokes equations linearized along the whole length of the centrifuge, we get a differential relation between the mean axial velocity and the centrifugal and viscosity forces on the ends. Then, these equations are integrated near the ends by a boundary layer approximation method. We assume that outside the boundary layer, the axial velocity reaches its mean value. So we obtain on the first hand the repartition of all physical quantities in the boundary layer, on the second hand a differential equation between the mean axial velocity and the boundary conditions imposed on the ends. This equation, valid both for the mechanical and thermal counter-current is solved numerically. Its solution shows the existence of a second boundary layer close to the wall of the tube. The present theory extends Martin's one in that it takes into account: (1) the action of pressure forces; (2) zero velocity on the wall with no transport; (3) the interaction between mechanical and thermal effects which tend to decrease the efficiency and the intensity of the counter-current. (author)

  16. Design of cryogenic heat exchangers for a superconducting magnet

    International Nuclear Information System (INIS)

    Chrusciel, W.A.; Tao, B.Y.; Ventura, S.A.

    1976-01-01

    Computer programs were written to design and simulate the behavior of three heat exchangers for cooling supercritical helium to approximately 4.3 0 K at 4 atm. Helium, at 1, 3, or 5 gm/sec, is cooled by passing it through 0.635-cm-diam copper tubing immersed in a liquid nitrogen bath, through a copper, concentric tube, counter-current heat exchanger, and then through 0.635-cm copper tubing immersed in a liquid helium bath. The helium then enters a superconducting test magnet and finally passes through the annulus of the countercurrent exchanger before venting to the atmosphere. Several acceptable designs are presented that meet design and space limitations

  17. Plasma rotation study in Tore Supra radio frequency heated plasmas

    International Nuclear Information System (INIS)

    Chouli, Bilal

    2014-01-01

    Toroidal flows are found to improve the performance of the magnetic confinement devices with increase of the plasma stability and confinement. In ITER or future reactors, the torque from NBI should be less important than in present-day tokamaks. Consequently, it is of interest to study other intrinsic mechanisms that can give rise to plasma rotation in order to predict the rotation profile in experiments. Intriguing observations of plasmas rotation have been made in radio frequency (RF) heated plasmas with little or no external momentum injection. Toroidal rotation in both the direction of the plasma current (co-current) and in the opposite direction (counter-current) has been observed depending on the heating schemes and plasma performance. In Tore Supra, most observations in L-mode plasmas have been in the counter-current direction. However, in this thesis, we show that in lower hybrid current drive (LHCD), the core toroidal rotation increment is in co- or counter-current direction depending on the plasma current amplitude. At low plasma current the rotation change is in the co-current direction while at high plasma current, the change is in the counter-current direction. In both low and high plasma current cases, rotation increments are found to increase linearly with the injected LH power. Several mechanisms in competition which can induce co- or counter-current rotation in Tore Supra LHCD plasmas are investigated and typical order of magnitude are discussed in this thesis. (author) [fr

  18. Countercurrent liquid-liquid extraction on paper

    NARCIS (Netherlands)

    Salentijn, Gert Ij; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-01-01

    Proof-of-concept is shown for two-phase countercurrent flow on paper. The device consists of two paper layers, one of which has been modified with a sizing agent to be hydrophobic. The layers exhibit different wetting behavior for water and octanol. Both phases dominate wetting in one of the layers

  19. Passive restriction of blood flow and counter-current heat exchange via lingual retia in the tongue of a neonatal gray whale Eschrichtius robustus (Cetacea, Mysticeti).

    Science.gov (United States)

    Ekdale, Eric G; Kienle, Sarah S

    2015-04-01

    Retia mirabilia play broad roles in cetacean physiology, including thermoregulation during feeding and pressure regulations during diving. Vascular bundles of lingual retia are described within the base of the tongue of a neonatal female gray whale (Eschrichtius robustus). Each rete consists of a central artery surrounded by four to six smaller veins. The retia and constituent vessels decrease in diameter as they extend anteriorly within the hyoglossus muscle from a position anterior to the basihyal cartilage toward the apex of the tongue. The position of the retia embedded in the hyoglossus and the anterior constriction of the vessels differs from reports of similar vascular bundles that were previously identified in gray whales. The retia likely serve as a counter-current heat exchange system to control body temperature during feeding. Cold blood flowing toward the body center within the periarterial veins would accept heat from warm blood in the central artery flowing toward the anterior end of the tongue. Although thermoregulatory systems have been identified within the mouths of a few mysticete species, the distribution of such vascular structures likely is more widespread among baleen whales than has previously been described. © 2015 Wiley Periodicals, Inc.

  20. A comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane dual-type FTS reactor in GTL technology

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, M.R.; Forghani, A.A.; Mostafazadeh, A. Khosravanipour; Shariati, A. [Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345 (Iran)

    2010-01-15

    In this work, a comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane reactor for Fischer-Tropsch Synthesis (FTS) has been carried out. In both modes of operations, a system with two-catalyst bed instead of one single catalyst bed is developed for FTS reactions. In the first catalytic reactor, the synthesis gas is partly converted to products in a conventional water-cooled fixed-bed reactor, while in the second reactor which is a membrane fixed-bed reactor, the FTS reactions are completed and heat of reaction is used to preheat the feed synthesis gas to the first reactor. In the co-current mode, feed gas is entered into the tubes of the second reactor in the same direction with the reacting gas stream in shell side while in the counter-current mode the gas streams are in the opposite direction. Simulation results for both co-current and counter-current modes have been compared in terms of temperature, gasoline and CO{sub 2} yields, H{sub 2} and CO conversion, selectivity of components as well as permeation rate of hydrogen through the membrane. The results showed that the reactor in the co-current configuration operates with lower conversion and lower permeation rate of hydrogen, but it has more favorable profile of temperature. The counter-current mode of operation decreases undesired products such as CO{sub 2} and CH{sub 4} and also produces more gasoline. (author)

  1. Hydrodynamic and mechanical tests of a newly improved counter-current multi-stage centrifugal extractor

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Retegan, Teodora

    2003-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high level waste (HLW) are nowadays of major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involves an extraction process usually carried out by means of a mixer-settler, pulse column or centrifugal contactor. This last, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and built. Similar apparatus was not found in the literature published to-date. The counter-current multi-stage centrifugal extractor is a stainless steel cylinder with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, working in horizontal position. The new internal structure and geometry of the new advanced centrifugal extractor consisting of nine cells (units), five rotation units, two mixing units, two propelling units and two final plates, ensures the counter-current running of the two phases.The central shaft having the rotation cells fixed on it is coupled by an intermediary connection to a electric motor of high rotation speed. Conceptual layout of the advanced counter-current multi-stage centrifugal extractor is presented. The newly designed extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase =1 to examine the mechanical behavior and the hydrodynamics of the two phases in countercurrent. The results showed that the performances have been generally good and the design requirements were fulfilled. The newly designed counter-current multistage centrifugal extractor appears to be a promising way to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  2. Continuous countercurrent extraction and particle separation

    International Nuclear Information System (INIS)

    Ito, Y.

    1981-01-01

    A flow-through continuous countercurrent extraction or particle separation device consists of a coiled tube or spiral coplanar channel revolving around a main axis and rotating around its own axis at the same angular velocity and in the same direction. In a flow-through centrifuge for continuous countercurrent extraction, with two solvent phases A and B, there are 5 flow tubes: 1) a feed tube for phase B located at the head end of a helical separation column, 2) a return tube for phase A located at the head end, 3) a feed tube for phase A located at the tail end, 4) a return tube for phase B located at the tail end, and 5) a sample feed tube located at the middle portion of the column. The column is mounted on a hollow rotary shaft and the axis of revolution is defined by a stationary hollow central shaft. The 5 flow tubes are led through the hollow rotary shaft, and then through the stationary central shaft. In this way, the flow tubes from the rotary shaft are allowed to rotate freely without interference or twisting. (author)

  3. Local properties of countercurrent stratified steam-water flow

    International Nuclear Information System (INIS)

    Kim, H.J.

    1985-10-01

    A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4 0 -87 0 ) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed

  4. Advanced counter-current multi-stage centrifugal extractor for solvent extraction process

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Steflea, Dumitru; Mihaila, V.; Peteu, Gh.

    2002-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high level waste (HLW) are nowadays of a major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involve an extraction process usually by means of mixer-settler, pulse column or centrifugal contactor. The latter, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and built. The counter-current multi-stage centrifugal extractor is a stainless steel cylinder with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, having horizontal position as working position. The new internal structure and geometry of the new advanced centrifugal extractor is shown. It consists of nine cells (units): five rotation units, two mixing units, two propelling units and two final plates which ensures the counter-current running of the two phases. The central shaft having the rotation cells fixed on it is connected to an electric motor of high rotation speed. The extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase = 1. The mechanical and hydrodynamic behavior of the two phases in counter-current are described. The results showed that the performances have been generally good. The new facility appears to be a promising idea to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  5. pH-zone-refining elution-extrusion countercurrent chromatography: Separation of hydroxyanthraquinones from Cassiae semen.

    Science.gov (United States)

    Bu, Zhisi; Lv, Liqiong; Li, Xingnuo; Chu, Chu; Tong, Shengqiang

    2017-11-01

    Seven hydroxyanthraquinones were successfully separated from the traditional Chinese medicinal herb Cassiae semen by conventional and pH-zone-refining countercurrent chromatography with an environmentally friendly biphasic solvent system, in which elution-extrusion mode was investigated for pH-zone-refining countercurrent chromatography for the first time. A two-phase solvent system composed of n-hexane/ethyl acetate/ethanol/water (5:3:4:4, v/v/v/v) was used for the conventional countercurrent chromatography while the same system with a different volume ratio n-hexane/ethyl acetate/ethanol/water (3:5:2:6, v/v/v/v) was used for pH-zone-refining countercurrent chromatography, in which 20 mmol/L of trifluoroacetic acid was added in the organic phase as a retainer and 15 mmol/L of ammonia was added to the aqueous phase as an eluter. A 400 mg crude sample could be well separated by pH-zone-refining countercurrent chromatography, yielding 53 mg of aurantio-obtusin, 40 mg of chryso-obtusin, 18 mg of obtusin, 24 mg of obtusifolin, 10 mg of emodin, and 105 mg of the mixture of chrysophanol and physcion with a purity of over 95.8, 95.7, 96.9, 93.5, 97.4, 77.1, and 19.8%, as determined by high-performance liquid chromatography. Furthermore, the difference in elution sequence between conventional and pH-zone-refining mode was observed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The 9th International Countercurrent Chromatography Conference held at Dominican University, Chicago, USA, August 1-3, 2016.

    Science.gov (United States)

    Friesen, J Brent; McAlpine, James B; Chen, Shao-Nong; Pauli, Guido F

    2017-10-20

    The 9th International Countercurrent Chromatography Conference (CCC 2016) was held at Dominican University near Chicago, IL (USA), from August 1st-3rd, 2016. The biennial CCC 20XX conferences provide an opportunity for countercurrent chromatography and centrifugal partition chromatography (CCC/CPC) manufactures, marketers, theorists, and research scientists to gather together socially, learn from each other, and advance countercurrent separation technology. A synopsis of the conference proceedings as well as a series of short reviews of the special edition articles is included in this document. Many productive discussions and collegial conversation at CCC 2016 attested to the liveliness, connectivity, and productivity of the global countercurrent research community and bodes well for the success of the 10th conference at the University of Braunschweig, Germany on August 1-3, 2018. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography.

    Science.gov (United States)

    Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter

    2015-07-15

    The main procyanidins, including dimeric B2 and B5, trimeric C1, tetrameric and pentameric procyanidins, were isolated from unroasted cocoa beans (Theobroma cacao L.) using various techniques of countercurrent chromatography, such as high-speed countercurrent chromatography (HSCCC), low-speed rotary countercurrent chromatography (LSRCCC) and spiral-coil LSRCCC. Furthermore, dimeric procyanidins B1 and B7, which are not present naturally in the analysed cocoa beans, were obtained after semisynthesis of cocoa bean polymers with (+)-catechin as nucleophile and separated by countercurrent chromatography. In this way, the isolation of dimeric procyanidin B1 in considerable amounts (500mg, purity>97%) was possible in a single run. This is the first report concerning the isolation and semisynthesis of dimeric to pentameric procyanidins from T. cacao by countercurrent chromatography. Additionally, the chemical structures of tetrameric (cinnamtannin A2) and pentameric procyanidins (cinnamtannin A3) were elucidated on the basis of (1)H NMR spectroscopy. Interflavanoid linkage was determined by NOE-correlations, for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Co-current and Counter-Current Operations for Steam Reforming of Heptane in a Novel CFB Membrane Reformer

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.S.E.H.

    2004-01-01

    Hydrogen production by steam reforming of higher hydrocarbon over nickel supported catalyst is investigated in an earlier suggested novel Circulating Fast Fluidized Bed Membrane Reformer (CFFBMR). Palladium hydrogen membranes are used with co-current and counter-current operation modes. It is found that hydrogen production has a non-monotonic dependence upon the reaction temperature in the range of 623-823 K. Between 623 and 723 K. the yields of hydrogen decrease and then increase between 723 and 823 K. This important phenomenon is investigated, discussed and explained. The simulation results shows that the reformer performance can be significantly improved using hydrogen membranes, especially in the counter-current operation mode. At low temperatures around 623 K, both .co-current and counter-current operation modes provide similar yields of hydrogen. While at temperature 723 K and higher, the counter-current operation provides the highest yield of hydrogen

  9. Calculation of the separate parameters of a countercurrent centrifuge with an axially varying internal flow

    International Nuclear Information System (INIS)

    Migliavacca, S.C.P.

    1991-01-01

    A review of the isotope separation theory for the countercurrent gas centrifuge is presented. The diffusion-convection equation is solved according to the ONSAGER-COHEN solution for the constant internal flow and adapted to an axially varying countercurrent flow. Based on that theory, a numerical program is developed for the calculation of the isotopic compositions and the separative parameters of the centrifuge. The influence of the feed flow and the internal parameters. Like cut and countercurrent flow, on the separative parameters is then analysed for a model-centrifuge, which afterwards is optimized with respect to its separative power. Finally, a comparison between the present calculation procedure and some published results, provided by different theories, shows deviations lower then 20%. (author)

  10. The counter-current flooding limit in vertical tubes with and without orifices

    International Nuclear Information System (INIS)

    Tye, P.; Davidson, M.; Teyssedou, A.; Tapucu, A.; Matuszkiewicz, A.; Midvidy, W.

    1993-01-01

    For hypothetical loss of coolant accidents in nuclear reactors, rapid reflooding of the core is desirable. In CANDU reactors the cooling water is injected into the headers which are connected to the fuel channels by the feeder pipes. These pipes consist of vertical and horizontal runs; in some feeders, orifices and/or venturi flow meters are installed for flow adjustments and measurements respectively. For certain postulated accident scenarios, steam coming from the fuel channels and/or generated in the hot feeders may flow in the direction opposite to that of the cooling water thereby, creating a vertical or horizontal counter-current two-phase flow. Under these conditions, the rate at which cooling water can enter the fuel channels may be limited by the flooding phenomena. This phenomena is greatly affected by the geometry of the feeder pips, shape and number of fittings, and the flow area restrictions located in the feeders. In this paper the influence that orifice type flow area restrictions have on the counter-current flooding limit (CCFL) in a vertical tube is examined. air and water at close to atmospheric conditions are used as the working fluids. The data collected on the counter-current flooding limit in a vertical tube both with and without flow area restrictions is compared against some of the most commonly used correlations that are available in the open literature. Data on the two-phase counter-current pressure drop below the flooding point are also presented. 12 refs., 10 figs., 1 tab

  11. A high performance cocurrent-flow heat pipe for heat recovery applications

    Science.gov (United States)

    Saaski, E. W.; Hartl, J. C.

    1980-01-01

    By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.

  12. Prediction of Counter-Current Flow Limitation at Hot Leg Pipe During a Small-Break Loca

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.Y. [Korea Electric Power Research Institute, Taejeon (Korea)

    2001-07-01

    The possibility of hot leg flooding during reflux condensation cooling after a small-break loss-of-coolant accident in a nuclear power plant is evaluated. The vapor and liquid velocities in hot leg and steam generator tubes are calculated during reflux condensation cooling with the accident scenarios of three typical break sizes, 0.13 %, 1.02 % and 10.19 % cold leg break. The effect of initial water level to counter-current flow limitation is taken into account. It is predicted that the hot leg flooding is precluded when all steam generators are available for heat removal. It is also shown the both hot leg flooding and SG flooding are possible under the operation of one steam generators. Therefore, it can be said that the occurrence of hot leg flooding under reflux condensation cooling is possible when the number of steam generators available for heat removal is limited. (author). 15 refs., 15 figs., 3 tabs.

  13. Thermal hydrodynamic analysis of a countercurrent gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de

    1999-01-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  14. The heat-transfer performance of gas—solid trickle flow over a regularly stacked packing

    NARCIS (Netherlands)

    Verver, A.B.; van Swaaij, Willibrordus Petrus Maria

    1986-01-01

    The heat-transfer behaviour of a countercurrent gas—solid trickle flow contactor is studied, using coarse sand particles as the solids phase. Experimental data on the overall heat-transfer rate constant between the gas flow and the solid particle flow were obtained in a 0.15 m square cross-section

  15. Theoretical study of flow in a thermal countercurrent centrifuge

    International Nuclear Information System (INIS)

    Durivault, Jean; Louvet, Pierre.

    1976-03-01

    This paper deals with the flow calculation in a thermal countercurrent centrifuge at total reflux. Matched asymptotic expansions are used to find approximate solutions of Navier-Stokes equations which are assumed to be valid in the whole domaine. Convection and viscous dissipation disappear because of linearization, but compressibility is taken into account. Let epsilon be the Ekman number. The equations are solved in the inviscid core, in the horizontal Ekman layers of thickness 0 (epsilonsup(1/2) and in the Stewartson layer of thickness 0 (epsilonsup(1/3)), parallel to the axis. As the thermal convection is neglected, the Stewartson layer of thickness 0 (epsilon sup(1/4)) does not occur. The results show the importance of the recirculating mass-flow rate of order 0 (epsilonsup(1/3)) in front of the countercurrent mass-flow rate of order 0 (epsilonsup(1/2)). The temperature profile rules the pattern and the intensity of the recirculating flow [fr

  16. Counter-current gas-liquid two-phase flow in a narrow rectangular channel

    International Nuclear Information System (INIS)

    Sohn, Byung Hu; Kim, Byong Joo

    2000-01-01

    A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)

  17. The influence of walls and upper tie plate slots on the flooding mechanism in fuel elements with and without heat transfer between steam and water

    International Nuclear Information System (INIS)

    Spatz, R.; Mewes, D.

    1989-01-01

    The counter-current flow of steam and water was experimentally investigated for the upper part of a PWR fuel element. The actual geometrical shape of the nuclear equipment was simulated by various types of plates, in which bore holes and slots were arranged in different positions. The experiments were performed with and without an installed, unheated rod bundle below the plates. The water was injected at saturated and subcooled temperatures in order to observe the effects of heat transfer on counter-current flow. With increasing steam velocity the flooding occurs initially in the tie-plate area. If the rod bundle is installed in the flow duct, a part of the downwards flowing water is transported upwards from the region of the upper grid spacer to the plate. Heat transfer between the phases can cause in the counter-current flow region an instable transition from downward to near complete upward directed liquid flow. In comparison to experiments with saturated water injection, flooding occurs at larger steam velocities. Different flooding correlations, which are known from the literature, were compared with the experimental data to appraise their applicability to counter-current flow in the core of PWRs. (orig.)

  18. Numerical analysis of thermal behavior of a heat exchanger made of double-finned annulus

    International Nuclear Information System (INIS)

    Vaz Junior, M.; Colle, S.

    1986-01-01

    The present paper reports a boundary integral solution analysis of a countercurrent heat exchanger made of a double-finned annulus. The enhancement of the heat transfer surface is obtained by longitudinal straight finns which are placed on the intermediate surface. The Nusselt number is compared with data obtained from analytical solution available for limiting-cases. (author) [pt

  19. Treatment of low-activity-level process wastewaters by continuous countercurrent ion exchange

    International Nuclear Information System (INIS)

    Hall, R.; Watson, J.S.; Robinson, S.M.

    1990-01-01

    A mobile pilot-scale continuous countercurrent ion-exchange (CCIX) system is being operated at the Oak Ridge National Laboratory (ORNL) for the treatment of wastewaters that contain predominantly calcium sodium, and magnesium bicarbonates and are slightly contaminated with 90 Sr and 137 Cs radioisotopes. A demonstration study is being conducted to evaluate the near-steady-state performance and feasibility of a pilot-scale CCIX column for the selective removal of strontium from wastewater. Test results show that the process removes strontium sufficiently from the wastewater to permit discharge while significantly reducing the volume of secondary waste generation. CCIX has the potential for effective use in several applications; however, it has not been frequently utilized by industries to date. The CCIX system could offer an economical alternative for decontamination of wastewaters containing trace amounts of contaminants prior to discharge into the environment. This paper discusses (a) application of the Thomas model for predicting breakthrough curves from ion exchange column tests, (b) methods for scaleup of experimental small-scale ion-exchange columns to industrial-scale columns, and (c) methods for predicting effluent compositions in a CCIX system. 20 refs., 6 figs., 2 tabs

  20. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.

    Science.gov (United States)

    Friesen, J Brent; Ahmed, Sana; Pauli, Guido F

    2015-01-16

    Rational solvent system selection for countercurrent chromatography and centrifugal partition chromatography technology (collectively known as countercurrent separation) studies continues to be a scientific challenge as the fundamental questions of comparing polarity range and selectivity within a solvent system family and between putative orthogonal solvent systems remain unanswered. The current emphasis on metabolomic investigations and analysis of complex mixtures necessitates the use of successive orthogonal countercurrent separation (CS) steps as part of complex fractionation protocols. Addressing the broad range of metabolite polarities demands development of new CS solvent systems with appropriate composition, polarity (π), selectivity (σ), and suitability. In this study, a mixture of twenty commercially available natural products, called the GUESSmix, was utilized to evaluate both solvent system polarity and selectively characteristics. Comparisons of GUESSmix analyte partition coefficient (K) values give rise to a measure of solvent system polarity range called the GUESSmix polarity index (GUPI). Solvatochromic dye and electrical permittivity measurements were also evaluated in quantitatively assessing solvent system polarity. The relative selectivity of solvent systems were evaluated with the GUESSmix by calculating the pairwise resolution (αip), the number of analytes found in the sweet spot (Nsw), and the pairwise resolution of those sweet spot analytes (αsw). The combination of these parameters allowed for both intra- and inter-family comparison of solvent system selectivity. Finally, 2-dimensional reciprocal shifted symmetry plots (ReSS(2)) were created to visually compare both the polarities and selectivities of solvent system pairs. This study helps to pave the way to the development of new solvent systems that are amenable to successive orthogonal CS protocols employed in metabolomic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Countercurrent flow limitation model for RELAP5/MOD3

    International Nuclear Information System (INIS)

    Riemke, R.A.

    1991-01-01

    This paper reports on a countercurrent flow limitation model incorporated into the RELAP5/MOD3 system transient analysis code. The model is implemented in a manner similar to the RELAP5 chocking model. Simulations using air/water flooding test problem demonstrate the ability of the code to significantly improve its comparison to data when a flooding correlation is used

  2. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Eung-Soo [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  3. Compact type-I coil planet centrifuge for counter-current chromatography.

    Science.gov (United States)

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2010-02-19

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.

  4. Countercurrent Process for Lignin Separation from Biomass Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Kadam; Ed Lehrburger

    2006-03-31

    The overall goal of the project was to test the concept of using a twin-screw extruder to conduct autohydrolysis pretreatment of wheat straw in countercurrent fashion, demonstrate in situ solid/liquid separation, and produce a low-lignin cellulose product using ethanol as an extractant. The resultant solid product is suitable for sugar production through enzymatic hydrolysis and for pulp applications. Pilot-scale equipment was used to successfully demonstrate the process both for sugar and pulp applications.

  5. Numerical investigation of vapor–liquid heat and mass transfer in porous media

    International Nuclear Information System (INIS)

    Xin, Chengyun; Rao, Zhonghao; You, Xinyu; Song, Zhengchang; Han, Dongtai

    2014-01-01

    Highlights: • The heat and mass transfer behaviors in porous media was investigated. • A modified separate flow model (MSFM) was developed. • The influence of heat flux direction on heat and fluid flow behaviors is great. • The saturation profile is weakly discontinuous on the phase interface. • A countercurrent flow exists in two-phase region. - Abstract: A modified separate flow model (MSFM) is developed to numerically investigate the heat and mass transfer behaviors in porous media in this paper. In the MSFM, the effects of capillarity, liquid phase change, nonisothermal two-phase region and the local thermal non-equilibrium (LTNE) are considered. The vapor and liquid velocities are both converted into intermediate variables in the simulations and conveniently convergent solutions are obtained because a special upwind scheme for the convection or boiling heat transfer source and variable convergence factors are simultaneously employed. Two typical numerical examples with a one-dimension model of porous media are studied that the high heat fluxes are vertical and parallel to the fluid flow direction, respectively. And the results indicated that the influence of heat flux direction on heat and fluid flow behaviors in porous media is great. The nonisothermal phenomenon in the two-phase region is obvious for the former while the LTNE phenomenon is remarkable in the two-phase region for the latter. The results also showed several similar behaviors that the saturation profile is weakly discontinuous on the phase interface and a countercurrent flow exists in two-phase region

  6. High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials

    Energy Technology Data Exchange (ETDEWEB)

    Chordia, Lalit [Thar Energy, LLC, Pittsburgh, PA (United States); Portnoff, Marc A. [Thar Energy, LLC, Pittsburgh, PA (United States); Green, Ed [Thar Energy, LLC, Pittsburgh, PA (United States)

    2017-03-31

    The project’s main purpose was to design, build and test a compact heat exchanger for supercritical carbon dioxide (sCO2) power cycle recuperators. The compact recuperator is required to operate at high temperature and high pressure differentials, 169 bar (~2,500 psi), between streams of sCO2. Additional project tasks included building a hot air-to-sCO2 Heater heat exchanger (HX) and design, build and operate a test loop to characterize the recuperator and heater heat exchangers. A novel counter-current microtube recuperator was built to meet the high temperature high differential pressure criteria and tested. The compact HX design also incorporated a number of features that optimize material use, improved reliability and reduced cost. The air-to-sCO2 Heater HX utilized a cross flow, counter-current, micro-tubular design. This compact HX design was incorporated into the test loop and exceeded design expectations. The test loop design to characterize the prototype Brayton power cycle HXs was assembled, commissioned and operated during the program. Both the prototype recuperator and Heater HXs were characterized. Measured results for the recuperator confirmed the predictions of the heat transfer models developed during the project. Heater HX data analysis is ongoing.

  7. An analytic solution for the enrichment of uranium hexafluoride in long countercurrent centrifuges

    International Nuclear Information System (INIS)

    Raetz, E.

    1977-01-01

    The paper describes an analytic solution for the enrichment and the separative power of long countercurrent centrifuges. Equations to derive optimal operation parameters like feed and feed input height are derived and solved. (orig.) [de

  8. TRAC-BDl/MOD1 post-dryout wall heat transfer

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1984-01-01

    A comparison of TRAC-BWR heat transfer package with 766 data points is presented. On the average, TRAC-BWR provides a better prediction of the data compared to any single correlation although there is still a large scatter in TRAC-BWR prediction. Regarding any potential changes in the TRAC-BD1/MOD1 wall heat transfer package, it is concluded that no significant improvement in the film boiling area can be made until data with better measurements are obtained and analyzed. Specifically, data is needed which has a wide range of accurately measured void fractions. Heated tube data is also needed which addresses the countercurrent flow transition conditions

  9. Elution-extrusion counter-current chromatography for the separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix.

    Science.gov (United States)

    Chu, Chu; Zhang, Shidi; Tong, Shengqiang; Li, Xingnuo; Li, Qingyong; Yan, Jizhong

    2015-09-01

    In this work, a simple and efficient protocol for the rapid separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix was developed by combining macroporous resin and elution-extrusion counter-current chromatography. The crude extract was firstly subjected to a D101 macroporous resin column eluted with water and a series of different concentrations of ethanol. Then, effluents of 30 and 95% ethanol were collected as sample 1 and sample 2 for further counter-current chromatography purification. Finally, a pair of isomers, 96 mg of compound 1 and 48 mg of compound 2 with purities of 91.1 and 96.2%, respectively, was isolated from 200 mg of sample 1. The other pair of isomers, 14 mg of compound 3 and 8 mg of compound 4 with purities of 93.6 and 88.9%, respectively, was isolated from 48 mg of sample 2. Their purities were analyzed by high-performance liquid chromatography, and their chemical structures were identified by mass spectrometry and (1) H NMR spectroscopy. Compared to a normal counter-current chromatography separation, the separation time and solvent consumption of elution-extrusion counter-current chromatography were reduced while the resolutions were still good. The established protocol is promising for the separation of natural products with great disparity of content in herbal medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enantioseparations in counter-current chromatography and centrifugal partition chromatography.

    Science.gov (United States)

    Foucault, A P

    2001-01-12

    Examples of chiral separations in counter-current chromatography (CCC) and centrifugal partition chromatography (CPC) are not numerous, due to the difficulty of finding chiral selectors highly selective in the liquid phase as well as a combination of solvents that does not destroy the selectivity and retains the capacity to elute chiral isomers of interest. New ideas and new chiral selectors generally come from other separation techniques, as will be highlighted in this review.

  11. Critical heat flux and transition boiling characteristics for a sodium-heated steam generator tube for LMFBR applications

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, S.; Holmes, D.H.

    1977-04-01

    An experimental program was conducted to characterize critical heat flux (CHF) in a sodium-heated steam generator tube model at a proposed PLBR steam generator design pressure of 7.2 MPa. Water was circulated vertically upward in the tube and the heating sodium was flowing counter-current downward. The experimental ranges were: mass flux, 110 to 1490 kg/s.m/sup 2/ (0.08 to 1.10 10/sup 6/ lbm/h.ft/sup 2/); critical heat flux, 0.16 to 1.86 MW/m/sup 2/ (0.05 to 0.59 10/sup 6/ Btu/h.ft/sup 2/); and critical quality, 0.48 to 1.0. The CHF phenomenon for the experimental conditions is determined to be dryout as opposed to departure from nucleate boiling (DNB). The data are divided into high- and low-mass flux regions.

  12. Preparative Separation of Six Rhynchophylla Alkaloids from Uncaria macrophylla Wall by pH-Zone Refining Counter-Current Chromatography

    OpenAIRE

    Zhang, Qinghai; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Luo, Aiqin

    2013-01-01

    pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w) in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether–ethyl acetate–isopropanol–water (2:6:3:9, v/v), adding 10 mM triethylamine ...

  13. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography.

    Science.gov (United States)

    Yan, Rongwei; Shen, Jie; Liu, Xiaojing; Zou, Yong; Xu, Xinjun

    2018-05-01

    The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO 2 , solvent extraction, and two-step high-speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO 2 , and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two-step high-speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high-speed countercurrent chromatography for further enrichment and consecutive high-speed countercurrent chromatography for purification. The yield of concentrates from high-speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high-speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high-speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Investigation of the separation of americium(III) and europium(III) by high-speed countercurrent chromatography

    International Nuclear Information System (INIS)

    Wu, J.F.; Jin, Y.R.; Xu, Q.C.; Wang, S.L.; Zhang, L.X.

    2005-01-01

    The long-lived actinides are the important elements in the radioactive waste ;disposal. Because the ions semi diameter and chemical properties of trivalent actinides(III) and trivalent lanthanides(III) are very similar, the separation between them is very difficult. Yang Yu-Sheng put forward the actinides(III) are softer acid than the lanthanides(III), so the actinides(III) are more easily extracted by the soft extractant contain sulfur or nitrogen than the lanthanides(III). Some research have been done on the separation between actinides(III) and lanthanides(III) using the extractants contain sulfur or nitrogen. The results show that satisfactory separation efficiency was gained. Countercurrent Chromatography (CCC) have many specific advantages, such as free from solid support, permit large sample volume and high flow rate, which is useful in the preconcentration of inorganic solute and inorganic preparation. Some studies were done on the separation of lanthanides or-other inorganic elements by HSCCC, the high-purity reagents prepared by HSCCC or CPC turned out to be successful. In present paper, the investigation of separation between Americium (III) and Euricium (III) by High-Speed Countercurrent Chromatography (HSCCC) were made. The extractant used in the work was prepared by ourselves, which is of the soft extractant contrain sulfur. The effects of separation condition on the separation efficiency of Am and Eu by HSCCC were investigated using dichlorophenyl dithiophosphinic acid in xylene as the stationary phase and 0.1 mol/L NaClO4 as mobile phase, respectively. The results show that mutual separation between Am and Eu can be accomplished. The separation factor increases with the increasing of the concentration of extractant and the pH value of the mobile phase, further more, minishing the flow rate of the mobile phase can also improves the separation efficiency between Am and Eu. The nearly base separation was gained when the flow rate is 0.35 ml/min, the

  15. Efficient methods for isolating five phytochemicals from Gentiana macrophylla using high-performance countercurrent chromatography.

    Science.gov (United States)

    Rho, Taewoong; Jung, Mila; Lee, Min Won; Chin, Young-Won; Yoon, Kee Dong

    2016-12-01

    Efficient high-performance countercurrent chromatography methods were developed to isolate five typical compounds from the extracts of Gentiana macrophylla. n-Butanol-soluble extract of G. macrophylla contained three hydrophilic iridoids, loganic acid (1), swertiamarin (2) and gentiopicroside (3), and a chromene derivative, macrophylloside D (4) which were successfully isolated by flow rate gradient (1.5 mL/min in 0-60 min, 5.0 mL/min in 60-120 min), and consecutive flow rate gradient HPCCC using n-butanol/0.1% aqueous trifluoroacetic acid (1:1, v/v, normal phase mode) system. The yields of 1-4 were 22, 16, 122, and 6 mg, respectively, with purities over 97% in a flow rate gradient high-performance countercurrent chromatography, and consecutive flow rate gradient high-performance countercurrent chromatography gave 1, 2, 3 (54, 41, 348 mg, respectively, purities over 97%) and 4 (13 mg, purity at 95%) from 750 mg of sample. The main compound in methylene chloride soluble extract, 2-methoxyanofinic acid, was successfully separated by n-hexane/ethyl acetate/methanol/water (4:6:4:6, v/v/v/v, flow-rate: 4 mL/min, reversed phase mode) condition. The structures of five isolates were elucidated by 1 H, 13 C NMR and ESI-Q-TOF-MS spectroscopic data which were compared with previously reported values. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Stereoselective separation of β-adrenergic blocking agents containing two chiral centers by countercurrent chromatography.

    Science.gov (United States)

    Lv, Liqiong; Bu, Zhisi; Lu, Mengxia; Wang, Xiaoping; Yan, Jizhong; Tong, Shengqiang

    2017-09-01

    Four β-adrenergic blocking agents, including 1-[(1-methylethyl)amino]-3-phenoxy-2-propanol (1), 1-[(1-methylethyl)amino]-3-(3-methylphenoxy)-2-propanol (2), 1,1'-[1,4-phenylenebis(oxy)]bis[3-[(1-methylethyl)amino]-2-propanol (3) and 1,1'-[(4-methyl-1,2-phenylene)bis(oxy)]bis[3-[(1-methylethyl)amino]-2-propanol (4), were stereoselectively separated by countercurrent chromatography using di-n-hexyl l-tartrate and boric acid as chiral selector. The compounds (3) and (4) have four optical isomers since they contained two chiral centers. A two-phase solvent system composed of chloroform-0.05molL -1 of acetate buffer containing 0.10molL -1 of boric acid (1:1, v/v) was selected, in which 0.10molL -1 of di-n-hexyl l-tartrate was added in the organic phase as chiral selector. 20-42mg of each racemate was stereoselectively separated by countercurrent chromatography in a single run with high purity of 96-98%, and the recovery of each separated compound reached around 87-93%. This is the first time report on successful stereoselective separation of optical isomeric compounds containing two chiral centers by countercurrent chromatography. At the same time, a chiral stationary phase was screened for analytical stereoselective separation of compounds (3) and (4) by high performance liquid chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enantioseparation of pheniramine enantiomers by high-speed countercurrent chromatography using β-cyclodextrin derivatives as a chiral selector.

    Science.gov (United States)

    Xu, Weifeng; Wang, Shichuan; Xie, Xiaojuan; Zhang, Panliang; Tang, Kewen

    2017-10-01

    The enantioselective separation of pheniramine was studied by a high-speed countercurrent chromatography method using β-cyclodextrin derivatives as a chiral selector. Several key variables, for instance, type of organic solvent and chiral selector, concentration of chiral selector, pH value of aqueous phase, and temperature on the enantioselectivity, were investigated systematically by liquid-liquid extraction experiments. Combining the results of extraction experiments and high-speed countercurrent chromatography, the most suitable conditions for separation of pheniramine enantiomers were obtained with the two-phase system that consisted of isobutyl acetate/aqueous phase, containing 0.02 mol/L carboxymethyl-β-cyclodextrin, pH 8.50 at 278.15 K. Under the optimal conditions, pheniramine enantiomer was successfully resolved after four cycles of high-speed countercurrent chromatography. By using high-performance liquid chromatography to analyze the fractions, the purities of both (+)-pheniramine and (-)-pheniramine were over 99% and the recovery of this method was up to 85-90%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigation on countercurrent flow characteristics in vertical tubes

    International Nuclear Information System (INIS)

    Yan Changqi; Sun Zhongning

    2001-01-01

    It is found in the experiment that for different air inlet the flooding may be occurred in air inlet or outlet in two-phase countercurrent flow. Since the positions of flooding are difference, the correlation between water flow rate and air flow rate for onset of flooding is difference. This result is of significant meaning for studying the mechanism of onset of flooding. The reason for this difference is analyzed based on two-phase flow characteristics. It is proposed that different correlation should be used to calculate the inlet flooding and outlet flooding

  19. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  20. Exogeneous countercurrent ultracentrifuges. Enrichment of a unitary machine out of a cascade

    International Nuclear Information System (INIS)

    Jacques, R.

    1977-01-01

    The integration of the equation giving isotope concentrations inside an exogeneous countercurrent ultracentrifuge is presented. The optimization of such a centrifuge, as for as the radius of the internal stream is concerned, is analyzed. The use of this type of centrifuge as part of a separating cascade is discussed

  1. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    Science.gov (United States)

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  2. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.

    Science.gov (United States)

    Wade, Kristina L; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W David; Fahey, Jed W

    2015-01-01

    Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (from broccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Treatment of low-activity-level process wastewaters by Continuous Countercurrent Ion Exchange

    International Nuclear Information System (INIS)

    Hall, R.; Watson, J.S.; Robinson, S.M.

    1990-01-01

    This paper discusses application of the Thomas model for predicting breakthrough curves from ion exchange column tests, methods for scale-up of experimental small-scaled ion exchange columns to industrial scale columns, and methods for predicting effluent compositions in a continuous countercurrent ion exchange system. 20 refs., 6 figs., 2 tabs

  4. Mathematical simulation and calculation of continuous countercurrent process of ion-exchange extraction of strontium from strongly mineralized solutions

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Venitsianov, E.V.; Ivanov, V.A.; Gur'yanova, L.N.; Nikolaev, N.P.; Baturova, L.L.; Moskovskij Gosudarstvennyj Univ., Moscow

    1993-01-01

    A program 'Countercurrent' is developed for the simulation of a continuous ion-exchange extraction of strontium from the strongly mineralized solutions containing NaCl and CaCl 2 using carboxylic cation exchanger KB-4 in countercurrent columns. The use of the program allows one to calculate the consitions of Ca and Sr separation depending on the modes of operation at the stage of sorption as well as regeneration, to calculate a residual Sr content on an overloaded sorbent and Sr separation on an incompletely regenerated KB-4, and to find the optimal separation conditions

  5. Combinative application of pH-zone-refining and conventional high-speed counter-current chromatography for preparative separation of caged polyprenylated xanthones from gamboge.

    Science.gov (United States)

    Xu, Min; Fu, Wenwei; Zhang, Baojun; Tan, Hongsheng; Xiu, Yanfeng; Xu, Hongxi

    2016-02-01

    An efficient method for the preparative separation of four structurally similar caged xanthones from the crude extracts of gamboge was established, which involves the combination of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography for the first time. pH-zone-refining counter-current chromatography was performed with the solvent system composed of n-hexane/ethyl acetate/methanol/water (7:3:8:2, v/v/v/v), where 0.1% trifluoroacetic acid was added to the upper organic stationary phase as a retainer and 0.03% triethylamine was added to the aqueous mobile phase as an eluter. From 3.157 g of the crude extract, 1.134 g of gambogic acid, 180.5 mg of gambogenic acid and 572.9 mg of a mixture of two other caged polyprenylated xanthones were obtained. The mixture was further separated by conventional high-speed counter-current chromatography with a solvent system composed of n-hexane/ethyl acetate/methanol/water (5:5:10:5, v/v/v/v) and n-hexane/methyl tert-butyl ether/acetonitrile/water (8:2:6:4,v/v/v/v), yielding 11.6 mg of isogambogenic acid and 10.4 mg of β-morellic acid from 218.0 mg of the mixture, respectively. The purities of all four of the compounds were over 95%, as determined by high-performance liquid chromatography, and the chemical structures of the four compounds were confirmed by electrospray ionization mass spectrometry and NMR spectroscopy. The combinative application of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography shows great advantages in isolating and enriching the caged polyprenylated xanthones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process.

    Science.gov (United States)

    Hassanpour, Saeid; Saboonchi, Ahmad

    2016-12-01

    This paper aims to evaluate the role of small vessels in heat transfer mechanisms of a tissue-like medium during local intensive heating processes, for example, an interstitial hyperthermia treatment. To this purpose, a cylindrical tissue with two co- and counter-current vascular networks and a central heat source is introduced. Next, the energy equations of tissue, supply fluid (arterial blood), and return fluid (venous blood) are derived using porous media approach. Then, a 2D computer code is developed to predict the temperature of blood (fluid phase) and tissue (solid phase) by conventional volume averaging method and a more realistic solution method. In latter method, despite the volume averaging the blood of interconnect capillaries is separated from the arterial and venous blood phases. It is found that in addition to blood perfusion rate, the arrangement of vascular network has considerable effects on the pattern and amount of the achieved temperature. In contrast to counter-current network, the co-current network of vessels leads to considerable asymmetric pattern of temperature contours and relocation of heat affected zone along the blood flow direction. However this relocation can be prevented by changing the site of hyperthermia heat source. The results show that the cooling effect of co-current blood vessels during of interstitial heating is more efficient. Despite much anatomical dissimilarities, these findings can be useful in designing of protocols for hyperthermia cancer treatment of living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Purification of a synthetic pterocarpanquinone by countercurrent chromatography

    International Nuclear Information System (INIS)

    Costa, Fernanda das Neves; Silva, Alcides Jose M. da; Domingos, Jorge L. de Oliveira; Costa, Paulo Roberto R.; Leitao, Gilda G.; Daher Netto, Chaquip

    2012-01-01

    Countercurrent chromatography (CCC) was employed as a useful, fast and economic alternative to conventional chromatography techniques for the purification of a synthetic pterocarpanquinone, LQB-118. The separation was performed in a two-step CCC with the solvent system hexanechloroform- methanol-water 2:1.5:5:2 in both steps. Traditional purification of these reaction products by silica gel column chromatography demanded a large amount of solvent and time, besides allowing the irreversible adsorption of the compound in the column. The use of 1 H NMR for the calculation of KD of target compound is proposed as an alternative for HPLC measurements. (author)

  8. Hydrodynamic behaviour of a gas—solid counter-current packed column at trickle flow

    NARCIS (Netherlands)

    Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    Trickle flow of a more or less fluidized catalyst through a packed column is a promising new gas—solid counter-current operation. The hydrodynamic, behaviour of such a column, filled with dumped PALL rings, has been investigated, while some results have been obtained with RASCHIG rings and

  9. Core-debris quenching-heat-transfer rates under top- and bottom-reflood conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.; Klages, J.; Schwarz, C.E.; Sanborn, Y.

    1983-02-01

    This paper presents recent experimental data for the quench-heat-transfer characteristics of superheated packed beds of spheres which were cooled, in separate experiments, by top- and bottom-flooding modes. Experiments were carried out with beds of 3-mm steel spheres of 330-mm height. The initial bed temperature was 810 K. The observed heat-transfer rates are strongly dependent on the mode of water injection. The results suggest that top-flood bed quench heat transfer is limited by the rate at which water can penetrate the bed under two-phase countercurrent-flow conditions. With bottom-reflood the heat-transfer rate is an order-of-magnitude greater than under top-flood conditions and appears to be limited by particle-to-fluid film boiling heat transfer

  10. Transition from condensation-induced counter-current flow to dispersed flow

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2004-01-01

    Model of transition from the horizontally stratified condensation-induced counter-current flow to slug flow has been analyzed with computer code WAHA and compared to the experimental data obtained in the steamline of the PMK2 test facility of Hungarian Atomic Energy Institute. The experiment was performed in the steamline initially filled with hot vapor that was gradually flooded with cold liquid. Successful simulation of the condensation-induced water hammer that follows the transition, requires accurate description of the horizontally stratified and slug flow regimes and criteria for transition between both flow regimes. Current version of the WAHA code, not verified for the condensation induced type of the water hammer, predicts the water-hammer pressure peak that exceeds 600 bar, while the measured pressure is p m = 170 ± 50 bar. Sensitivity analysis of the inter-phase exchange terms and transition conditions, pointed to the most important closure relations for heat, mass and momentum transfer. The main conclusion of the analysis is large uncertainty of the simulations: minor modification of the crucial correlations can lead to a severe water-hammer in one case, or to the 'calm' transient without pressure peaks in the other case. Large uncertainty is observed in experiments. The same simulation was performed also with RELAP5 code. However, no water hammer was predicted. (author)

  11. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and

  12. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B 4 C) to have the ability of reactivity control. It has annular vapor space and it

  13. Enhancement of combined heat and mass transfer in a vertical-tube heat and mass exchanger

    International Nuclear Information System (INIS)

    Webb, R.L.; Perez-Blanco, H.

    1986-01-01

    This paper studies enhancement of heat and mass transfer between a countercurrent, gravity-drained water film and air flowing in a vertical tube. The enhancement technique employed is spaced, transverse wires placed in the air boundary layer, near the air--water interface. Heat transfer correlations for turbulent, single-phase heat transfer in pipes having wall-attached spaced ribs are used to select the preferred wire diameter, and to predict the gas phase heat and mass transfer coefficients. Tests were run with two different radial placements of the rib roughness: (1) at the free surface of the liquid film, and (2) the base of the roughness displaced 0.51 mm into the air flow. The authors hypothesize that the best heat/mass transfer and friction performance will be obtained with the roughness at the surface of the water film. Experiments conducted with both roughness placements show that the authors' hypothesis is correct. The measured heat/mass transfer enhancement agreed very closely with the predicted values. A unique feature of the enhancement concept is that it does not require surface wetting of the enhancement device to provide enhancement

  14. Purification of drugs from biological fluids by counter-current chromatography.

    Science.gov (United States)

    Hochlowski, Jill E; Pan, Jeffrey Y; Searle, Philip A; Buck, Wayne R; Spanton, Stephen G

    2009-08-21

    Experiments were performed to demonstrate the potential of counter-current chromatography (CCC) for the isolation of drugs and their metabolites from biological matrices relevant to the metabolism studies of pharmaceutical research. Examples of typical drugs are spiked into biological media ex vivo to provide test samples for analysis. A mass spectrometer hyphenated to a CCC allows for the detection of small molecule drugs within the matrix through selected ion monitoring, and fraction collection can provide material for further structural elucidation by NMR.

  15. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng; Natelson, Robert H.; Stikeleather, Larry F.; Roberts, William L.

    2013-01-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine

  16. Countercurrent soil washing system for remediation of viscous hydrocarbons, heavy metals, radionuclides

    International Nuclear Information System (INIS)

    Kuhlman, M.I.; Karlsson, M.K.; Downie, C.A.

    1995-01-01

    Drying augers and multicell DAF tanks are excellent machines in which to countercurrently wash soil and remove hazardous hydrocarbons, metals or radionuclides. An auger works well because it preferentially moves soil along one side of its trough. Thus, when enough high pressure and temperature water jets are placed along that path, contaminants can be melted, or dissolved and scoured from the soil. Contaminants and fines flow down the opposite side of the auger and out for extraction in a series of flotation tanks. Countercurrent washing of the silt results when soil settles in tanks through rising water and air bubbles then is pumped through cyclones placed above the next DAF tank of the series. LNAPLs, DNAPLs, or metallic contaminants made hydrophobic by chemicals in the system are removed at the overflow of the cyclones or by flotation in the tanks. The overflow from the cyclones and DAF tanks flows into the previous tank of the series. Examples of contaminants remediated include; arsenic, cadmium, lead and mercury, Naturally Occurring Radioactive Materials (NORM), uranium, solid oils, polyaromatic hydrocarbons in creosote and coal tars, and polychlorinated hydrocarbons

  17. Estimation of shear stress in counter-current gas-liquid annular two-phase flow

    International Nuclear Information System (INIS)

    Abe, Yutaka; Akimoto, Hajime; Murao, Yoshio

    1991-01-01

    The accuracy of the correlations of the friction factor is important for the counter-current flow (CCF) analysis with two-fluid model. However, existing two fluid model codes use the correlations of friction factors for co-current flow or correlation developed based on the assumption of no wall shear stress. The assessment calculation for two fluid model code with those existing correlations of friction factors shows the falling water flow rate is overestimated. Analytical model is developed to calculate the shear stress distribution in water film at CCF in order to get the information on the shear stress at the interface and the wall. The analytical results with the analysis model and Bharathan's CCF data shows that the wall shear stress acting on the falling water film is almost same order as the interfacial shear stress and the correlations for co-current flow cannot be applied to the counter-current flow. Tentative correlations of the interfacial and the wall friction factors are developed based on the results of the present study. (author)

  18. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  19. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  20. Combustion of pulverized coal in counter-current flow

    Energy Technology Data Exchange (ETDEWEB)

    Timnat, Y M; Goldman, Y [Technion-Israel Inst. of Tech., Haifa (Israel). Faculty of Aerospace Engineering

    1991-01-01

    In this report we describe the results obtained with two prototypes of pulverized coal combustors operating in counter-current flow, one at atmospheric pressure, the other at higher pressure and compare them to the predictions of a theoretical-numerical model, we have developed. The first prototype treats a vertical configuration, eight times larger than the one treated before (Hazanov et al. 1985), while in the second a horizontal arrangement with a smaller volume is studied. Attention was focused on particle trajectories, burnout, angle of injection, ash separation by rotational motion, effects of initial particle size and temperature, impingement velocity and the effect of gravity. Main development activity was directed to achieving stable and reliable coal burning in the combustors.

  1. Separation of calcium isotopes by counter-current electromigration in molten salts (1962)

    International Nuclear Information System (INIS)

    Menes, F.; Dirian, G.; Roth, E.

    1962-01-01

    The method of counter-current electromigration in molten salts has been applied to calcium bromide with an alkali metal bromide added to the cathode compartment. Enrichments on calcium-46 greater than a factor of two were obtained at the anode. The mass effect was found to be about 0.06. An estimation of the cost of energy for a process based on this method has been made. (authors) [fr

  2. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    DEFF Research Database (Denmark)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.

    2012-01-01

    The rotation of L-mode plasmas in the JET tokamak heated by waves in the ion cyclotron range of frequencies (ICRF) damped on electrons, is reported. The plasma in the core is found to rotate in the counter-current direction with a high shear and in the outer part of the plasma with an almost......, electron absorption of the fast magnetosonic wave by transit time magnetic pumping and electron Landau damping (TTMP/ELD) is the dominating absorption mechanism. Inverted mode conversion is done in (He-3)-H plasmas where the mode converted waves are essentially absorbed by electron Landau damping. Similar...... rotation profiles are seen when heating at the second harmonic cyclotron frequency of He-3 and with mode conversion at high concentrations of He-3. The magnitude of the counter-rotation is found to decrease with an increasing plasma current. The correlation of the rotation with the electron temperature...

  3. Simultaneous separation of three isomeric sennosides from senna leaf (Cassia acutifolia) using counter-current chromatography.

    Science.gov (United States)

    Park, Sait Byul; Kim, Yeong Shik

    2015-10-01

    Senna leaf is widely consumed as tea to treat constipation or to aid in weight loss. Sennoside A, A1 , and B are dirheinanthrone glucosides that are abundant and the bioactive constituents in the plant. They are isomers that refer to the (R*R*), (S*S*), and (R*S*) forms of protons on C-10 and C-10' centers and it is difficult to refine them individually due to their structural similarities. The new separation method using counter-current chromatography successfully purified sennoside A, A1 , and B from senna leaf (Cassia acutifolia) while reversed-phase medium-pressure liquid chromatography yielded sennoside A only. n-Butanol/isopropanol/water (5:1:6, v/v/v) was selected as the solvent system for counter-current chromatography operation, and the partition coefficients were carefully determined by adding different concentrations of formic acid. High-resolution mass spectrometry and NMR spectroscopy were performed to verify the chemical properties of the compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line

    Directory of Open Access Journals (Sweden)

    Takashi Futatsugi

    2012-01-01

    Full Text Available Steam generated in a reactor core and water condensed in a pressurizer form a countercurrent flow in a surge line between a hot leg and the pressurizer during reflux cooling. Characteristics of countercurrent flow limitation (CCFL in a 1/10-scale model of the surge line were measured using air and water at atmospheric pressure and room temperature. The experimental results show that CCFL takes place at three different locations, that is, at the upper junction, in the surge line, and at the lower junction, and its characteristics are governed by the most dominating flow limitation among the three. Effects of inclination angle and elbows of the surge line on CCFL characteristics were also investigated experimentally. The effects of inclination angle on CCFL depend on the flow direction, that is, the effect is large for the nearly horizontal flow and small for the vertical flow at the upper junction. The presence of elbows increases the flow limitation in the surge line, whereas the flow limitations at the upper and lower junctions do not depend on the presence of elbows.

  5. Identifying Natural syNergist from Pongamia pinnata Using High-Speed Counter-Current Chromatography Combined with Isobolographic Analysis

    Directory of Open Access Journals (Sweden)

    Hao Yin

    2017-03-01

    Full Text Available For identifying the synergistic compounds from Pongamia pinnata, an approach based on high-speed counter-current chromatography (HSCCC combined with isobolographic analysis was designed to detect the synergistic effects in the complex mixture [...

  6. Isolation of symlandine from the roots of common comfrey (Symphytum officinale) using countercurrent chromatography.

    Science.gov (United States)

    Kim, N C; Oberlies, N H; Brine, D R; Handy, R W; Wani, M C; Wall, M E

    2001-02-01

    Three pyrrolizidine alkaloids, symlandine, symphytine, and echimidine (1-3), were isolated from the roots of Symphytum officinale using a one-step countercurrent chromatography procedure. The structures of 1-3 were confirmed by several spectroscopic techniques including 2D NMR methods. This is the first description of the separation of symlandine (1) from its stereoisomer, symphytine (2).

  7. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    Science.gov (United States)

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparative Separation of Six Rhynchophylla Alkaloids from Uncaria macrophylla Wall by pH-Zone Refining Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    Qinghai Zhang

    2013-12-01

    Full Text Available pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether–ethyl acetate–isopropanol–water (2:6:3:9, v/v, adding 10 mM triethylamine in organic stationary phase and 5 mM hydrochloric acid in aqueous mobile phase. Then pH-zone refining counter-current chromatography using the other two-phase solvent system was used for final purification. Six target compounds were finally isolated and purified by following two-phase solvent system composed of methyl tert-butyl ether (MTBE–acetonitrile–water (4:0.5:5, v/v, adding triethylamine (TEA (10 mM to the organic phase and HCl (5 mM to aqueous mobile phase. The separation of 2.8 g enriched total alkaloids yielded 36 mg hirsutine, 48 mg hirsuteine, 82 mg uncarine C, 73 mg uncarine E, 163 mg rhynchophylline, and 149 mg corynoxeine, all with purities above 96% as verified by HPLC Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS and 1H-NMR spectroscopy.

  9. Preparative separation of six rhynchophylla alkaloids from Uncaria macrophylla wall by pH-zone refining counter-current chromatography.

    Science.gov (United States)

    Zhang, Qinghai; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Luo, Aiqin

    2013-12-12

    pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w) in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether-ethyl acetate-isopropanol-water (2:6:3:9, v/v), adding 10 mM triethylamine in organic stationary phase and 5 mM hydrochloric acid in aqueous mobile phase. Then pH-zone refining counter-current chromatography using the other two-phase solvent system was used for final purification. Six target compounds were finally isolated and purified by following two-phase solvent system composed of methyl tert-butyl ether (MTBE)-acetonitrile-water (4:0.5:5, v/v), adding triethylamine (TEA) (10 mM) to the organic phase and HCl (5 mM) to aqueous mobile phase. The separation of 2.8 g enriched total alkaloids yielded 36 mg hirsutine, 48 mg hirsuteine, 82 mg uncarine C, 73 mg uncarine E, 163 mg rhynchophylline, and 149 mg corynoxeine, all with purities above 96% as verified by HPLC Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS) and 1H-NMR spectroscopy.

  10. Modelling of the steam-water-countercurrent flow in the rewetting and flooding phase after loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Curca-Tivig, F.

    1990-01-01

    A new interphase momentum exchange model has been developed to simulate the Refill- Reflood Phase after LOCAs. Special phenomena of steam/water- countercurrent flow - like limitation or onset of downward-watee penetration - have been modelled and integrated into a flooding model. The interphase momentum exchange model interconnected with the flooding model has been implemented into the advanced system code RELAP5/MOD1. The new version of this code can now be utilized to predict the hot leg emergency-core-cooling (ECC) injection for German PWRs. The interfacial momentum transfer model developed includes the interphase frictional drag, the force due to virtual mass and the momenta due to interphase mass transfer. The modelling of the interfacial shear or drag accounts for the effects of phase and velocity profiles. The flooding model predicts countercurrent-flow limitation, onset of water penetration and partial delivery. The flooding correlation specifies the maximum down flow liquid velocity in case of countercurrent flow through flow restrictions for a given vapor velocity. (orig./HP) [de

  11. Permeability criteria for effective function of passive countercurrent multiplier.

    Science.gov (United States)

    Layton, H E; Knepper, M A; Chou, C L

    1996-01-01

    The urine concentrating effect of the mammalian renal inner medulla has been attributed to countercurrent multiplication of a transepithelial osmotic difference arising from passive absorption of NaCl from thin ascending limbs of long loops of Henle. This study assesses, both mathematically and experimentally, whether the permeability criteria for effective function of this passive hypothesis are consistent with transport properties measured in long loops of Henle of chinchilla. Mathematical simulations incorporating loop of Henle transepithelial permeabilities idealized for the passive hypothesis generated a steep inner medullary osmotic gradient, confirming the fundamental feasibility of the passive hypothesis. However, when permeabilities measured in chinchilla were used, no inner medullary gradient was generated. A key parameter in the apparent failure of the passive hypothesis is the long-loop descending limb (LDL) urea permeability, which must be small to prevent significant transepithelial urea flux into inner medullary LDL. Consequently, experiments in isolated perfused thin LDL were conducted to determine whether the urea permeability may be lower under conditions more nearly resembling those in the inner medulla. LDL segments were dissected from 30-70% of the distance along the inner medullary axis of the chinchilla kidney. The factors tested were NaCl concentration (125-400 mM in perfusate and bath), urea concentration (5-500 mM in perfusate and bath), calcium concentration (2-8 mM in perfusate and bath), and protamine concentration (300 micrograms/ml in perfusate). None of these factors significantly altered the measured urea permeability, which exceeded 20 x 10(-5) cm/s for all conditions. Simulation results show that this moderately high urea permeability in LDL is an order of magnitude too high for effective operation of the passive countercurrent multiplier.

  12. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng

    2013-11-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.

  13. Heat transfer in a sodium-to-sodium heat exchanger under conditions of combined force and free convection

    International Nuclear Information System (INIS)

    Jackson, J.D.; Axcell, B.P.; Johnston, S.E.

    1987-01-01

    A combined experimental and theoretical investigation of heat transfer in a vertical tube and annulus, countercurrent flow heat exchanger is reported. The working fluid was liquid sodium. Included in the range of conditions covered were those which are of interest in connection with the low flow rate operation of fast reactor intermediate heat exchanger systems. The heat transfer process ranged from that of pure forced convection to combined forced and free convection. By changing the direction of fluid flow or the direction of heat flow four different configurations were studied. In two cases the convection process was buoyancy aided and in the other two it was buoyancy opposed. Results are presented showing the influence of flow rate and temperature difference on overall heat transfer coefficient for each case. A theoretical model of turbulent flow and heat transfer incorporating influences of buoyancy was used to produce results for the range of conditions covered in the experiments. The predictions of overall heat transfer coefficient were found to be in reasonable general agreement with the measurements. It was clear from these calculations that the influence of buoyancy on heat transfer stemmed largely, under the conditions of the present experiment, from the modification of the convection process due to the distortion of the velocity field. This led to an enhancement of the heat transfer for the buoyancy-aided process and an impairment for the buoyancy-opposed process. The contribution of the turbulent diffusion of heat was relatively small. (author)

  14. Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.

    Science.gov (United States)

    Yang, Zhi; Hu, Xueqian; Wu, Shihua

    2016-02-01

    In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Scale-up of counter-current chromatography: demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale.

    Science.gov (United States)

    Sutherland, Ian; Hewitson, Peter; Ignatova, Svetlana

    2009-12-11

    Predictable scale-up from test tube derived distribution ratios and analytical-scale sample loading optimisation is demonstrated using a model sample system of benzyl alcohol and p-cresol in a heptane:ethyl acetate:methanol:water phase system with the new 18 L Maxi counter-current chromatography centrifuge. The versatility of having a liquid stationary phase with its high loading capacity and flexible operating modes is demonstrated at two different scales by separating and concentrating target compounds using a mixture of caffeine, vanillin, naringenin and carvone using a quasi-continuous technique called intermittent counter-current extraction.

  16. Schinus terebinthifolius scale-up countercurrent chromatography (Part I): High performance countercurrent chromatography fractionation of triterpene acids with off-line detection using atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Vieira, Mariana Neves; Costa, Fernanda das Neves; Leitão, Gilda Guimarães; Garrard, Ian; Hewitson, Peter; Ignatova, Svetlana; Winterhalter, Peter; Jerz, Gerold

    2015-04-10

    'Countercurrent chromatography' (CCC) is an ideal technique for the recovery, purification and isolation of bioactive natural products, due to the liquid nature of the stationary phase, process predictability and the possibility of scale-up from analytical to preparative scale. In this work, a method developed for the fractionation of Schinus terebinthifolius Raddi berries dichloromethane extract was thoroughly optimized to achieve maximal throughput with minimal solvent and time consumption per gram of processed crude extract, using analytical, semi-preparative and preparative 'high performance countercurrent chromatography' (HPCCC) instruments. The method using the biphasic solvent system composed of n-heptane-ethyl acetate-methanol-water (6:1:6:1, v/v/v/v) was volumetrically scaled up to increase sample throughput up to 120 times, while maintaining separation efficiency and time. As a fast and specific detection alternative, the fractions collected from the CCC-separations were injected to an 'atmospheric pressure chemical ionization mass-spectrometer' (APCI-MS/MS) and reconstituted molecular weight MS-chromatograms of the APCI-ionizable compounds from S. terebinthifolius were obtained. This procedure led to the direct isolation of tirucallane type triterpenes such as masticadienonic and 3β-masticadienolic acids. Also oleanonic and moronic acids have been identified for the first time in the species. In summary, this approach can be used for other CCC scale-up processes, enabling MS-target-guided isolation procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Enrichment of fission products in ionic salt bath by countercurrent electromigration

    International Nuclear Information System (INIS)

    Matsuura, Haruaki; Takagi, Ryuzo; Okada, Isao; Fujita, Reiko.

    1997-01-01

    We have proposed to apply a countercurrent electromigration method to enrichment of fission products in ionic melts. In the test runs, for this purpose, we have enriched Cs, Sr and Gd from their dilute melts. All of Cs, Sr and Gd were much concentrated at the area near the anode in the migration tubes. Gd and Sr were more concentrated than Cs. It was found that the electromigration method can be applied to the salt bath refleshing process after an electrorefining process, which removes fission products of multivalent cations. (author)

  18. Quenching of hot wall of vertical-narrow-annular passages by water falling down counter-currently

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ohtake, Hiroyasu; Arai, Manabu; Okabayashi, Yoshiaki; Nagae, Takashi; Okano, Yukimitsu

    2004-01-01

    quenching of a thin-gap annular flow passage by gravitational liquid penetration was examined by using water. The outer wall of the test flow channel was made of stainless steel. The inner wall was made of glass or stainless steel. The annular gap spacings tested were 10, 5.0, 2.0, 1.0 and 0.5 mm. No inner wall case; the gap width = ∞, was also tested. The stainless steel walls(s) was (were) heated electrically. When the glass wall was used for the inner wall, a fiber scope was inserted inside to observe a flow state. The quenching was observed for the gap spacing over 1.0 mm. When the spacing was less than 1.0 mm, the wall was gradually and monotonously cooled down without any quenching. As the gap spacing became narrow, the counter-current flow limiting; flooding, severely occurred. The peak heat flux during the quenching process became lower than that in pool boiling as the gap spacing became narrower. The quenching propagated from the bottom when the gap spacing was larger than 5 mm. When the gap clearance was less than 2.0 mm, the quenching proceeded from the top in the bottom closed case. It was visually observed that liquid accumulated in the lower portion of the flow passage in the 5 mm gap case and the rewetting front propagated upward from the bottom. In the 1.0 mm gap case, the moving-down of the rewetting front was observed. The quenching velocity became slow as the gap spacing became narrow. Quenching simulation was performed by solving a transient heat conduction equation. The simulation indicated that the quenching velocity becomes fast as the peak heat flux becomes low with the gap spacing, which was opposite to the experimental results. It was also suggested that precursory cooling is one of key factors to control the rewetting velocity; as the precursory cooling becomes weak, the rewetting velocity becomes slow. (author)

  19. A model for a countercurrent gas—solid—solid trickle flow reactor for equilibrium reactions. The methanol synthesis

    NARCIS (Netherlands)

    Westerterp, K.R.; Kuczynski, M.

    1987-01-01

    The theoretical background for a novel, countercurrent gas—solid—solid trickle flow reactor for equilibrium gas reactions is presented. A one-dimensional, steady-state reactor model is developed. The influence of the various process parameters on the reactor performance is discussed. The physical

  20. Electrohydrodynamic enhancement of in-tube convective condensation heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, H.; Robinson, A.J.; Ching, C.Y.; Shoukri, M. [McMaster University, Department of Mechanical Engineering, Hamilton, Ont. (Canada); Cotton, J.S. [Dana Corporation, Long Manufacturing Division, Oakville, Ont. (Canada)

    2006-05-15

    An experimental investigation of electrohydrodynamic (EHD) augmentation of heat transfer for in-tube condensation of flowing refrigerant HFC-134a has been performed in a horizontal, single-pass, counter-current heat exchanger with a rod electrode placed in the centre of the tube. The effects of varying the mass flux (55kg/m{sup 2}s=heat transfer coefficient was enhanced by a factor up to 3.2 times for applied voltage of 8kV. The pressure drop was increased by a factor 1.5 at the same conditions of the maximum heat transfer enhancement. The improved heat transfer performance and pressure drop penalty are due to flow regime transition from stratified flow to annular flow as has been deduced from the surface temperature profiles along the top and bottom surfaces of the tube. (author)

  1. Critical investigations and model development on countercurrent flow of gas and liquid in horizontal and vertical channels

    International Nuclear Information System (INIS)

    Mewes, D.; Beckmann, H.

    1989-01-01

    Countercurrent flow of steam and water occurs in the horizontal and vertical lines of a PWR in case of a LOCA. In order to predict the emergency core cooling behaviour in case of a large or small break LOCA it is important to calculate the volumetric flow rate of water which will get to the reactor core. Theoretical and experimental results of countercurrent flow in horizontal and vertical channels given by publication and reports are critically reviewed for the purpose of a more physical understanding of the flow phenomena. The influence of geometry, pressure and other boundary conditions are emphasized. The existing models which are developed to calculate the onset of flooding are based on experimental results of small test facilities. The applicability of these models to large geometries and high pressures as well as the consideration of condensation and entrainment are investigated. (orig./HP) [de

  2. UPTF experiment: Effect of full-scale geometry on countercurrent flow behaviour in PWR downcomer

    International Nuclear Information System (INIS)

    Liebert, J.; Weiss, P.

    1989-01-01

    Four separate effects tests (13 runs) have been performed at UPTF - a 1:1 scale test facility - to investigate the thermal-hydraulic phenomena in the full-scale downcomer of a PWR during end-of-blowdown, refill and reflood phases. Special attention has been paid to the effects of geometry - cold leg arrangement - and ECC-water subcooling on downcomer countercurrent flow and ECC bypass behaviour. A synopsis of the most significant events and a comparison of countercurrent flow limitation (CCFL) data from UPTF and 1/5 scale test facility of Creare are given. The CCFL results of UPTF are compared to data predicted by an empirical correlation developed at Creare, based on the modified dimensionless Wallis parameter J * . A significant effect of cold leg arrangement on CCFL was observed leading to strongly heterogeneous flow condition in the downcomer. CCFL in front of cold leg 1 adjacent to the broken loop exists even for very low steam flow rates. Therefore the benefit of strong water subcooling is not as much as expected. The existing flooding correlation of Creare predicts the full-scale downcomer CCFL insufficiently. New flooding correlations are required to describe the CCFL process adequately. (orig.)

  3. An extension of theoretical analysis for the onset of slugging criterion in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Lee, Byung Ryung

    1997-02-01

    This paper presents an experimental and theoretical investigation of interfacial friction factor, wave height and transition criterion from wavy to slug flow in a long horizontal air-water countercurrent stratified flow condition. A series of experiments have been conducted in adiabatic countercurrent stratified flow with the round pipe and rectangular duct test section to develop the interfacial friction factor and the criterion of onset of slugging in horizontal air-water countercurrent stratified flow. An adiabatic semi-empirical correlation for interfacial friction factor has been developed based on the surface roughness concept. A comparison of the measured data in this study and of other investigators with the predictions of the present correlation shows that the agreement is within ±30% error, and that the present correlation is applicable to a broader range of water flow rate than the correlations of previous investigators. The theories which can calculate the wave height and criteria of onset of slug flow in a stratified wavy flow regime have been developed based on the concept of total energy conservation and also wave theory. This theoretical criteria agree better with the measured data than the other criteria available in the literature, but the criteria range about 92∼107% of the measured data. An empirical formula for the criterion has been also developed and compared with the formula in the literatures. Comparison between the measured data and the predictions of the present theory shows that the agreement is within ±8%

  4. Investigation of straitified and countercurrent flows in horizontal piping during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bourteele, J.P.

    1980-06-01

    The ECTHOR program consists in a loop having as objective to study the flow regimes in horizontal pipings (stratification, countercurrent flows) in conditions representative of small break transients within commercial PWR. The ECTHOR tests are in process. Experimental results are already available and are presented in this paper: scaling problem, U tube experiments, hot leg experiments, high pressure tests

  5. Effects of gravity and inlet location on a two-phase countercurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; Sun, S.

    2012-01-01

    We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.

  6. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    Science.gov (United States)

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.

  7. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification.

    Science.gov (United States)

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.

  8. Critical heat flux in bottom heated two-phase thermosyphon. Improvement in critical heat flux due to concentric tube; Katan shuchu kanetsugata niso netsu syphon no genkai netsu ryusoku. Nijukan ni yoru genkai netsu ryusoku no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Monde, M.; Mitsutake, Y. [Saga University, Saga (Japan). Faculty of Science and Engineering

    2000-02-25

    An experiment has been carried out to elucidate the critical heat flux (CHF) of an open two-phase thermosyphon with a bottom heated chamber in which heat is absorbed by evaporation of liquid. Another objective is to enhance the CHF using a concentric-tube by which counter-current flow of vapor and liquid in the throat of the chamber can be controlled well. The CHF data are measured for the saturated liquid of R 113 at a different pressure and different configuration of concentric tubes. The CHF data without the inner tube are in good agreement with the existing correlation and analytical result. The CHF increases by as much as several times of the CHF without the inner tube with an increase in the inner tube diameter up to a certain diameter of the inner tube and then decreases continuously as the inner tube diameter approaches the outer tube diameter. The optimum diameter of inner tube exists at which the CHF is maximum. (author)

  9. Thermal hydrodynamic analysis of a countercurrent gas centrifuge; Analise termo hidrodinamica de uma centrifuga a contracorrente

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de

    1999-07-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  10. Thermal hydrodynamic analysis of a countercurrent gas centrifuge; Analise termo hidrodinamica de uma centrifuga a contracorrente

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de

    1999-07-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  11. Isolamento do alcalóide ricinina das folhas de Ricinus communis (Euphorbiaceae através de cromatografias em contracorrente Isolation of the alkaloid ricinine from the leaves of Ricinus communis (Euphorbiaceae through counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Ana Cristina Leite

    2005-12-01

    Full Text Available Droplet counter-current chromatography, rotation locular counter-current chromatography and high-speed counter-current chromatography were applied to the preparative separation of the alkaloid ricinine from the dichloromethane extracts of Ricinus communis leaves. The solvent system used was composed of dichloromethane-methanol-water (93:35:72 v/v/v and all techniques led to the isolation of large amounts of the alkaloid. The best result was obtained through HSCCC, since the ricinine yield was respectively 50% and 30% higher than when using RLCCC or DCCC.

  12. Experimental study of interfacial shear stress for an analogy model of evaporative heat transfer

    International Nuclear Information System (INIS)

    Kwon, Hyuk; Park, GoonCherl; Min, ByungJoo

    2008-01-01

    In this study, we conducted measurements of an evaporative interfacial shear stress in a passive containment cooling system (PCCS). An interfacial shear stress for a counter-current flow was measured from a momentum balance equation and the interfacial friction factor for evaporation was evaluated by using experimental data. A model for the evaporative heat transfer coefficient of a vertical evaporative flat surface was developed based on an analogy between heat and momentum transfer. It was found that the interfacial shear stress increases with the Jacob number, which incorporates the evaporation rate, and the air and water Reynolds numbers. The relationship between the evaporative heat transfer and the interfacial shear stress was evaluated by using the experimental results. This relationship was used to develop a model for an evaporative heat transfer coefficient by using an analogy between heat and mass transfer. The prediction of this model were found to be in good agreement with the experimental data obtained for evaporative heat transfer by Kang and Park. (author)

  13. Transient core-debris bed heat-removal experiments and analysis

    International Nuclear Information System (INIS)

    Ginsberg, T.; Klein, J.; Klages, J.; Schwarz, C.E.; Chen, J.C.

    1982-08-01

    An experimental investigation is reported of the thermal interaction between superheated core debris and water during postulated light-water reactor degraded core accidents. Data are presented for the heat transfer characteristics of packed beds of 3 mm spheres which are cooled by overlying pools of water. Results of transient bed temperature and steam flow rate measurements are presented for bed heights in the range 218 mm-433 mm and initial particle bed temperatures between 530K and 972K. Results display a two-part sequential quench process. Initial frontal cooling leaves pockets or channels of unquenched spheres. Data suggest that heat transfer process is limited by a mechanism of countercurrent two-phase flow. An analytical model which combines a bed energy equation with either a quasisteady version of the Lipinski debris bed model or a critical heat flux model reasonably well predicts the characteristic features of the bed quench process. Implications with respect to reactor safety are discussed

  14. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Directory of Open Access Journals (Sweden)

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  15. Analysis of the Conditions for the Appearance of the 'Overshootö Phenomenon in Counter-Current Packed Columns

    Czech Academy of Sciences Publication Activity Database

    Akramov, T. A.; Svoboda, Petr; Jiřičný, Vladimír; Staněk, Vladimír

    2004-01-01

    Roč. 43, č. 18 (2004), s. 5899-5903 ISSN 0888-5885 R&D Projects: GA ČR GA104/03/1558 Institutional research plan: CEZ:AV0Z4072921 Keywords : counter-current flow * holdup overshoot * mathematical analysis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.424, year: 2004

  16. Isolation of a furan fatty acid from Hevea brasiliensis latex employing the combined use of pH-zone-refining and conventional countercurrent chromatography.

    Science.gov (United States)

    Englert, Michael; Ulms, Kerstin; Wendlinger, Christine; Vetter, Walter

    2016-02-01

    Furan fatty acids are valuable and bioactive minor fatty acids that usually contribute chromatography. A first run using pH-zone-refining countercurrent chromatography provided 48.4 mg of 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid from 210 mg latex extract in a purity of 95%. The purity was increased to 99% by means of one second run in conventional countercurrent chromatography mode. The Structure and purity of 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid were determined by gas chromatography coupled to mass spectrometry and (1)H and (13)C NMR spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of micro-structured heat exchangers; Developpement d'echangeurs de chaleur microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Bouzon, C

    2004-10-01

    This study has been carried out to defend the Technological Diploma of Research, in the aim to develop micro-structured heat exchangers. Realized within the Research Group on the Heat exchangers and Energy (GREThE) of the Atomic Energy Commission (CEA) of Grenoble. The rise of micro-technologies and the optimization of heat exchangers have led to emergence from few years of new structures of fluid paths with scales lower than the millimeter, thus making it possible to produce heat exchangers ultra-compacts. The micro-structured exchangers are heat exchangers whose hydraulic diameters are lower than the millimeter but with external dimensions of several centimeters. The study is based on two patents filed by the CEA and the characterization of these two geometries. A first concept of cross flow type finds applications with Gas/Liquid heat exchanger. A second type, a countercurrent, is more adapted to Liquid/Liquid applications. An approach with simplified analytical models and by numerical simulation was employed for each concept. An experimental study on the Gas/Liquid concept was also carried out. (author)

  18. FIRE PERMIT NOW ON EDH!

    CERN Multimedia

    TIS General Safety Group or

    2001-01-01

    The electronic version of the Fire Permit form is now active. The aim of the Fire Permit procedure is to reduce the risk of fire or explosion. It is mandatory when performing 'hot work' (mainly activities which involve the use of naked flames or other heat sources - e.g. welding, brazing, cutting, grinding, etc.). Its use is explained in the CERN Fire Protection Code E. (Fire Protection) The new electronic form, which is substantially unchanged from the previous authorizing procedure, will be available on the Electronic Document Handling system (https://edh.cern.ch/) as of 1st September 2001. From this date use of the paper version should be discontinued.

  19. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    International Nuclear Information System (INIS)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor

    2015-01-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  20. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor, E-mail: ymo@cdtn.br, E-mail: amir@cdtn.br, E-mail: aacs@cdtn.br, E-mail: vitors@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  1. Study of the instability of a film streaming on a vertical plane plate and submitted to a gas counter-current. Transition towards the co-current upward flow

    International Nuclear Information System (INIS)

    Bachir, Aziz

    1987-01-01

    This research thesis addresses the study of a liquid film flowing on a vertical wall in presence of a counter-current gas flow, and of its transition towards an upward co-current flow due to the increase of gas rate, such transition being herein called flooding. In the first part, the author addresses this flooding phenomenon and reports a bibliographical study of experimental and theoretical works. In the second part, he proposes an original theoretical approach to the modelling of a counter-current flow evolving towards a co-current flow: main methods of study of liquid film stability without gas flow, elaboration of the proposed model, study of the linear stability, numerical resolution, and presentation of an original theoretical criterion defining the limits of counter-current flow. The next part reports the experimental works: visualisations of mechanisms resulting in flooding in a rectangular duct, development of an experimental installation, comparison between theoretical and experimental results [fr

  2. 3D Numerical Study of Multiphase Counter-Current Flow within a Packed Bed for Post Combustion Carbon Dioxide Capture

    Directory of Open Access Journals (Sweden)

    Li Yang

    2018-06-01

    Full Text Available The hydrodynamics within counter-current flow packed beds is of vital importance to provide insight into the design and operational parameters that may impact reactor and reaction efficiencies in processes used for post combustion CO2 capture. However, the multiphase counter-current flows in random packing used in these processes are complicated to visualize. Hence, this work aimed at developing a computational fluid dynamics (CFD model to study more precisely the complex details of flow inside a packed bed. The simulation results clearly demonstrated the development of, and changes in, liquid distributions, wetted areas, and film thickness under various gas and liquid flow rates. An increase in values of the We number led to a more uniform liquid distribution, and the flow patterns changed from droplet flow to film flow and trickle flow as the We number was increased. In contrast, an increase in gas flow rate had no significant effect on the wetted areas and liquid holdup. It was also determined that the number of liquid inlets affected flow behavior, and the liquid surface tension had an insignificant influence on pressure drop or liquid holdup; however, lower surface tension provided a larger wetted area and a thinner film. An experimental study, performed to enable comparisons between experimentally measured pressure drops and simulation-determined pressure drops, showed close correspondence and similar trends between the experimental data and the simulation data; hence, it was concluded that the simulation model was validated and could reasonably predict flow dynamics within a counter-current flow packed bed.

  3. Development of micro-structured heat exchangers; Developpement d'echangeurs de chaleur microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Bouzon, C.

    2004-10-01

    This study has been carried out to defend the Technological Diploma of Research, in the aim to develop micro-structured heat exchangers. Realized within the Research Group on the Heat exchangers and Energy (GREThE) of the Atomic Energy Commission (CEA) of Grenoble. The rise of micro-technologies and the optimization of heat exchangers have led to emergence from few years of new structures of fluid paths with scales lower than the millimeter, thus making it possible to produce heat exchangers ultra-compacts. The micro-structured exchangers are heat exchangers whose hydraulic diameters are lower than the millimeter but with external dimensions of several centimeters. The study is based on two patents filed by the CEA and the characterization of these two geometries. A first concept of cross flow type finds applications with Gas/Liquid heat exchanger. A second type, a countercurrent, is more adapted to Liquid/Liquid applications. An approach with simplified analytical models and by numerical simulation was employed for each concept. An experimental study on the Gas/Liquid concept was also carried out. (author)

  4. Practice of the counter-current trickle leaching of uranium ore by refreshed liquor of bacterial oxidation

    International Nuclear Information System (INIS)

    Chen Shian; Huang Xiangfu; Fan Baotuan

    1995-01-01

    The uranium ore of the Mine No. 753 is a high-silicate type primary one, in which the tetravalent uranium accounts for 85%, and the uranium grade is in the range of 0.36% to 0.442%. To reduce the engineering investment and the operating cost a four-stage counter-current trickle leaching pilot-plant test was carried out with the leaching time 50 days and acid consumption 38 kg per ton of ore, and the recovery of more than 95% was obtained. Using the counter-current trickle leaching mode and controlling the limit concentration of the harmful matters in the bacterial leaching liquor, the latter can be effectively oxidized by the synchronical regeneration. A trickle leaching comparative test of 25 ton ore single heap also gave a good result of more than 95% in extraction rate, and 30% acid consumption was saved and the 2.0% pyrolusite (containing MnO 2 40%) was eliminated. This process is feasible in technology and worth-while in economy for treating the uranium ore of Mine No. 753, and provides a new method of uranium ore trickle leaching

  5. Two-phase countercurrent flow in a model of a pressurized water reactor hot leg

    International Nuclear Information System (INIS)

    Wongwises, S.

    1996-01-01

    The onset of flooding or countercurrent flow limitation (CCFL) determines the maximum rate at which one phase can flow countercurrently to another phase. In the present study, the experimental data of the CCFL for gas and liquid in a horizontal pipe with a bend are investigated. The different mechanisms that lead to flooding and that are dependent on the liquid flow rate are observed. For low and intermediate liquid flow rates, the onset of flooding appears simultaneously with the slugging of unstable waves that are formed at the crest of the hydraulic jump. At low liquid flow rates, slugging appears close to the bend; at higher liquid flow rates, it appears far away from the bend, in the horizontal section. For high liquid flow rates, no hydraulic jump is observed, and flooding occurs as a result of slug formation at the end of the horizontal pipe. The effects of the inclination angle of the bends, the liquid inlet conditions and the length of the horizontal pipes are of significance for the onset of flooding. A mathematical model of Ardron and Banerjee is modified to predict the onset of flooding. Flooding curves calculated by this model are compared with present experimental data and those of other researchers. The predictions of the onset of flooding as a function of the length-to-diameter ratio are in reasonable agreement with the experimental data. (orig.)

  6. Preparative Separation of Phenolic Compounds from Halimodendron halodendron by High-Speed Counter-Current Chromatography

    OpenAIRE

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-01-01

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH...

  7. Continuous treatment of heavy metal contaminated clay soils by extraction in stirred tanks and in a countercurrent column

    NARCIS (Netherlands)

    Tuin, B.J.W.; Tels, M.

    1991-01-01

    Extn. of metals from 2 contaminated waste site clay soils by 0.1-0.3 N HCl solns. was tested in 3 lab. scale, continuous processes: 2 stirred tank reactors (CSTR' s) in series; a countercurrent sieve-plate column fed with flocculated clay soil materials; and a combination of tank reactor and column.

  8. Multi-staging for extraction of cesium from nitric acid by a single liquid-liquid countercurrent centrifugal extractor with Taylor vortices

    International Nuclear Information System (INIS)

    Nakase, Masahiko; Kinuhata, Hiroshi; Takeshita, Kenji

    2013-01-01

    Fission products that emit considerable decay heat and radioactivity, such as 137 Cs, have a large impact on waste management. Small and high-performance extractor is desirable for separating such nuclei. In this study, we implemented the continuous extraction of Cs from nitric acid in a single liquid-liquid countercurrent centrifugal extractor with Taylor Vortices by calix arene-bis(t-octylbenzo-crown-6)(BOBCalixC6) as an extractant with trioctylamine(TOA) as a suppressant and with 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) as a phase modifier. Because of slow extraction kinetics of this process, extraction with multiple theoretical stages by just replacing conventional extractors into the single centrifugal extractor is difficult. Hence, we improved the dispersion of organic phase by an inner rotor made of lipophilic epoxy resin and elevating the solution temperature to lower the viscosity. Higher temperature was not appropriate from the aspect of chemical equilibrium in this process, but extraction with multiple theoretical stages was found to be possible. (author)

  9. Heat transfer of a helical double-pipe vertical evaporator: Theoretical analysis and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Colorado-Garrido, D.; Santoyo-Castelazo, E. [Posgrado en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Hernandez, J.A.; Siqueiros, J.; Juarez-Romero, D. [Centro de Investigacion en Ingenieria y Ciencia Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Garcia-Valladares, O. [Centro de Investigacion en Energia (CIE), Universidad Nacional Autonoma de Mexico(UNAM), Privada Xochicalco S/N, Temixco, 62580 Morelos (Mexico)

    2009-07-15

    A predictive model is developed to describe heat transfer and fluid dynamic behavior of a helical double-pipe vertical evaporator used in an absorption heat transformer integrated to a water purification process. The evaporator uses water as working fluid connected in countercurrent. Heat transfer by conduction in the internal tube wall is considered; in addition the change of phase is carried out into the internal tube. The dynamic model considers equations of continuity, momentum and energy in each flow. The discretized governing equations are coupled using an implicit step by step method. The results of this model are compared with the experimental data in steady state, obtaining good agreement in the evaporation process. The model is also evaluated of form dynamic to determine the principal operation variables that affect the evaporator with the main objective to optimize and control the system. (author)

  10. A new flooding correlation development and its critical heat flux predictions under low air-water flow conditions in Savannah River Site assembly channels

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    The upper limit to countercurrent flow, namely, flooding, is important to analyze the reactor coolability during an emergency cooling system (ECS) phase as a result of a large-break loss-of-coolant accident (LOCA) such as a double-ended guillotine break in the Savannah River Site (SRS) reactor system. During normal operation, the reactor coolant system utilizes downward flow through concentric heated tubes with ribs, which subdivided each annular channel into four subchannels. In this paper, a new flooding correlation has been developed based on the analytical models and literature data for adiabatic, steady-state, one-dimensional, air-water flow to predict flooding phenomenon in the SRS reactor assembly channel, which may have a counter-current air-water flow pattern during the ECS phase. In addition, the correlation was benchmarked against the experimental data conducted under the Oak Ridge National Laboratory multislit channel, which is close to the SRS assembly geometry. Furthermore, the correlation has also been used as a constitutive relationship in a new two-component two-phase thermal-hydraulics code FLOWTRAN-TF, which has been developed for a detailed analysis of SRS reactor assembly behavior during LOCA scenarios. Finally, the flooding correlation was applied to the predictions of critical heat flux, and the results were compared with the data taken by the SRS heat transfer laboratory under a single annular channel with ribs and a multiannular prototypic test rig

  11. A mixture theory approach to model co- and counter-current two-phase flow in porous media accounting for viscous coupling

    Science.gov (United States)

    Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.

    2018-02-01

    It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.

  12. Two-phase heat and mass transfer in turbulent parallel and countercurrent flows of liquid film and gas

    International Nuclear Information System (INIS)

    Kholpanov, L.P.; Babak, T.B.; Babak, V.N.; Malyusov, V.A.; Zhavoronkov, N.M.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1980-01-01

    To determine the ways of intensification of heat and mass transfer processes, the direct flow and counterflow heat and mass transfer is analytically investigated during the turbulent flow of a liquid and gas film on the basis of solving the energy equation for liquid and gas film, i.e. the two-phase film heat transfer is investigated from the position of a conjugate task. The analysis of the two-phase heat transfer has shown that it is necessary to know the position of each point in a plane before using this or that formula. Depending on its position on this plane, the heat transfer process will be determined by one or two phases only. It is found, that in the case of a single-phase heat transfer the temperature on the surface remains stable over the channel length. In the case of a two-phase heat transfer it can significantly change over the channel length [ru

  13. Isolation and purification of arctigenin from Fructus Arctii by enzymatic hydrolysis combined with high-speed counter-current chromatography.

    Science.gov (United States)

    Liu, Feng; Xi, Xingjun; Wang, Mei; Fan, Li; Geng, Yanling; Wang, Xiao

    2014-02-01

    Enzymatic hydrolysis pretreatment combined with high-speed counter-current chromatography for the transformation and isolation of arctigenin from Fructus Arctii was successfully developed. In the first step, the extract solution of Fructus Arctii was enzymatic hydrolyzed by β-glucosidase. The optimal hydrolysis conditions were 40°C, pH 5.0, 24 h of hydrolysis time, and 1.25 mg/mL β-glucosidase concentration. Under these conditions, the content of arctigenin was transformed from 2.60 to 12.59 mg/g. In the second step, arctigenin in the hydrolysis products was separated and purified by high-speed counter-current chromatography with a two-phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (10:25:15:20, v/v), and the fraction was analyzed by HPLC, ESI-MS, and (1)H NMR spectroscopy. Finally, 102 mg of arctigenin with a purity of 98.9% was obtained in a one-step separation from 200 mg of hydrolyzed sample. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    Science.gov (United States)

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  15. Countercurrent flow-limiting characteristics of a Savannah River Plant control rod septifoil

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1992-07-01

    Experiments were performed at the Idaho National Engineering Laboratory to investigate the counter-current flow limiting characteristics of a Savannah River Plant control rod septifoil assembly. These experiments were unheated, using air and water as the working fluids. Results are presented in terms of the Wallis flooding correlation for several different control rod configurations. Flooding was observed to occur in the vicinity of the inlet slots/holes of the septifoil, rather than within the rod bundle at the location of the minimum flow area. Nearly identical flooding characteristics of the septifoil were observed for configurations with zero, three, and four rods inserted, but significantly different results occurred with 5 rods inserted

  16. Multidecadal-scale adjustment of the ocean mixed layer heat budget in the tropics: examining ocean reanalyses

    Science.gov (United States)

    Cook, Kerry H.; Vizy, Edward K.; Sun, Xiaoming

    2018-03-01

    Distributions of ocean mixed layer temperature trends and trends in the net heat flux from the atmosphere differ, indicating the important role of the transport of heat within the ocean for determining temperature trends. Annual-mean, linear trends in the components of the tropical ocean mixed layer heat budget for 1980-2015 are diagnosed in 4 ocean reanalyses to improve our physical understanding of multidecadal-scale SST trends. The well-known temperature trend in the tropical Pacific, with cooling in the east and warming in the west, is reproduced in each reanalysis with high statistical significance. Cooling in the east is associated with negative trends in the net heat flux from the atmosphere and enhanced equatorial upwelling related to a strengthening of the subtropical cells. Negative trends in the net heat flux also occur in the western tropical Pacific, but advective warming associated with a strengthening and shoaling of the equatorial undercurrent overwhelms these negative trends. The strengthening of the equatorial undercurrent is consistent with enhanced easterly wind stress, which is applied to the ocean reanalyses, and differential sea level trends that enhance the negative zonal height gradient across the Pacific. The Pacific North Equatorial countercurrent is also strengthening in all 4 reanalyses in association with a strengthening of the sea level trough at 10°N in the central and eastern Pacific. All 4 ocean reanalyses produce warming of 0.1-0.3 K/decade in the North Atlantic with statistical significance levels ranging from below 90-99%. The Atlantic is similar to the Pacific in having the equatorial undercurrent strengthening, but indications of shoaling are less consistent in the reanalyses and the North Equatorial Countercurrent in the Atlantic is not strengthening. Large-scale ocean mixed layer warming trends in the Indian Ocean in the reanalyses are interrupted by some regional cooling close to the equator. Net surface heat flux trends

  17. Numerical modeling of counter-current condensation in a Black Liquor Gasification plant

    International Nuclear Information System (INIS)

    Risberg, Mikael; Gebart, Rikard

    2013-01-01

    Pressurized Entrained flow High Temperature Black Liquor Gasification is a novel technique to recover the inorganic chemicals and available energy in black liquor originating from kraft pulping. The gasifier has a direct quench that quickly cools the raw syngas when it leaves the hot reactor by spraying the gas with a water solution. As a result, the raw syngas becomes saturated with steam. Typically the gasifier operates at 30 bar which corresponds to a dew point of about 235 °C and a steam concentration in the saturated syngas that is about 3 times higher than the total concentration of the other species in the syngas. After the quench cooler the syngas is passed through a counter-current condenser where the raw syngas is cooled and most of the steam is condensed. The condenser consists of several vertical tubes where reflux condensation occurs inside the tubes due to water cooling of the tubes on the shell-side. A large part of the condensation takes place inside the tubes on the wall and results in a counterflow of water driven by gravity through the counter current condenser. In this study a computational fluid dynamics model is developed for the two-phase fluid flow on the tube-side of the condenser and for the single phase flow of the shell-side. The two-phase flow was treated using an Euler–Euler formulation with closure correlations for heat flux, condensation rate and pressure drop inside the tubes. The single-phase model for the shell side uses closure correlations for the heat flux and pressure drop. Predictions of the model are compared with results from experimental measurements in a condenser used in a 3 MW Black Liquor Gasification development plant. The results are in good agreement with the limited experimental data that has been collected in the experimental gasifier. However, more validation data is necessary before a definite conclusion can be drawn about the predictive capability of the code. -- Highlights: • A multi-phase model for a

  18. Penguin heat-retention structures evolved in a greenhouse Earth.

    Science.gov (United States)

    Thomas, Daniel B; Ksepka, Daniel T; Fordyce, R Ewan

    2011-06-23

    Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a 'Greenhouse Earth' interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets.

  19. Penguin heat-retention structures evolved in a greenhouse Earth

    Science.gov (United States)

    Thomas, Daniel B.; Ksepka, Daniel T.; Fordyce, R. Ewan

    2011-01-01

    Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a ‘Greenhouse Earth’ interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets. PMID:21177693

  20. Purification of Proteins From Cell-Culture Medium or Cell-Lysate by High-Speed Counter-Current Chromatography Using Cross-Axis Coil Planet Centrifuge

    Science.gov (United States)

    Shibusawa, Yoichi; Ito, Yoichiro

    2014-01-01

    This review describes protein purifications from cell culture medium or cell-lysate by high speed counter-current chromatography using the cross-axis coil planet centrifuge. Purifications were performed using aqueous two phase systems composed of polyethylene glycols and dextrans. PMID:25360182

  1. Thermodynamic analysis of a refrigeration cycle using regenerative heat exchanger - suction/liquid line

    Energy Technology Data Exchange (ETDEWEB)

    Tebchirani, Tarik Linhares; Matos, Rudmar Serafim [Pos graduate Programme in Mechanical Engineering (PGMEC), Universidade Federal do Parana, Curitiba, PR (Brazil)], e-mails: tarik@utfpr.edu.br, rudmar@demec.ufpr.br

    2010-07-01

    This paper presents results from thermodynamic comparison of a conventional compression cycle and a steam cycle that uses a heat exchanger countercurrent (liquid line/suction line) in an air conditioning system split. The main objective is to study the relationship between the COP and the mass variation of refrigerant to the effectiveness of the heat exchanger. The papers presented in the literature discuss the matter in a theoretical way, are summarized in tables of rare loss statements without specification of methods. The methodology of work is based on testing of an air conditioner operating conventionally and also with the heat exchanger for the determination of values and parameters of interest. The tests were performed in a thermal chamber with temperature controlled and equipped with a data acquisition system for reading and storage results. The refrigerant was R22. Besides making possible an assessment of the feasibility of cost-benefit thermodynamics, it is suggested a different method for installing the equipment type split. (author)

  2. SPIRAL COUNTER-CURRENT CHROMATOGRAPHY OF SMALL MOLECULES, PEPTIDES AND PROTEINS USING THE SPIRAL TUBING SUPPORT ROTOR

    OpenAIRE

    Knight, Martha; Finn, Thomas M.; Zehmer, John; Clayton, Adam; Pilon, Aprile

    2011-01-01

    An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was c...

  3. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY

    OpenAIRE

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2013-01-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside (I, 20.2 mg),, syringin (II, 56.8 mg), sinapaldehyde glucoside (III, 26.2 mg),, syringaresinol 4'-o-β-d-glucopyra...

  4. Tradable CO2 permits in Danish and European energy policy

    DEFF Research Database (Denmark)

    Varming, S.; Eriksen, P.B.; Grohnheit, Poul Erik

    2000-01-01

    This report presents the results of the project "Tradable CO2 permits in Danish and European energy policy". The project was financed by a grant from the Danish Energy Research Programme 1998 (Grant 1753/98-0002). The project was conducted in co-operationbetween Elsamprojekt A/S (project manager...... for a tradable CO_2 permit market for the energy sector in the EU. Experience from the tradable SO_2 permit market in the US is taken into consideration as well. Topresent an overview of price estimates of CO_2 and greenhouse gas permits in different models as well as discussing the assumptions leading...... to the different outcomes. Furthermore, the special role of backstop technologies in relation to permit prices isanalysed. To analyse the connection between CO_2 permit prices and technology choice in the energy sector in the medium and longer term (i.e., 2010 and 2020) with a special emphasis on combined heat...

  5. The Behavior of Counter-Current Packed Bed in the Proximity of the Flooding Point under Periodic Variations of Inlet Velocities

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Jakub; Stavárek, Petr; Jiřičný, Vladimír; Staněk, Vladimír

    2006-01-01

    Roč. 20, č. 2 (2006), s. 147-155 ISSN 0352-9568 R&D Projects: GA ČR(CZ) GA104/03/1558 Institutional research plan: CEZ:AV0Z40720504 Keywords : counter-current flow * flooding point * axial dispersion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.357, year: 2006

  6. Investigation of a novel dew point indirect evaporative air conditioning system for buildings

    OpenAIRE

    Duan, Zhiyin

    2011-01-01

    This study aims to improve the performance of existing indirect evaporative coolers. A new dew point indirect evaporative cooler with counter-current heat/mass exchanger was developed in this research by optimal design, material selection, numerical simulation, experimental investigations and economic, environmental, regional acceptance analysis. A new dew point heat/mass exchanger using a counter-current flow pattern was designed by numerical simulation in terms of material, structure, g...

  7. Critical heat flux under zero flow conditions in a vertical 3 X 3 rod bundle with a non-uniform axial heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seok; Chun, Se Young; Moon, Sang Ki; Baek, Won Pil

    2003-11-01

    KAERI has performed an experimental study of water Critical Heat Flux (CHF) under zero flow conditions with a non-uniformly heated 3 by 3 rod bundle. Experimental conditions are in the range of a system pressure from 0.5 to 15.0 MPa and inlet water subcooling enthalpies from 67.5 to 351.5 kJ/kg. The test section used in the present experiments consisted of a vertical flow channel, upper and lower plenums, and a non-uniformly heated 3 by 3 rod bundle. The experimental results show that the CHFs in low-pressure conditions are somewhat scattered within a narrow range. As the system pressure increases, however, the CHFs show a consistent parametric trend. The CHFs occur in the upper region of the heated section, but the vertical distances of the detected CHFs from the bottom of the heated section are reduced as the system pressure increases. Even though the effects of the inlet water subcooling enthalpies and system pressure in the flooding CHF are relatively smaller than those of the flow boiling CHF, the CHF increases by increasing the inlet water subcooling enthalpies. Several existing correlations for the countercurrent flooding CHF based on Wallis's flooding correlation and Kutateladze's criterion for the onset of flooding are compared with the CHF data obtained in the present experiments to examine the applicability of the correlations.

  8. Counter-current flow in a vertical to horizontal tube with obstructions

    Energy Technology Data Exchange (ETDEWEB)

    Tye, P.; Matuszkiewicz, A.; Teyssedou, A. [Institut de Genie Nucleaire, Quebec (Canada)] [and others

    1995-09-01

    This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.

  9. Update heat exchanger designing principles

    International Nuclear Information System (INIS)

    Lipets, A.U.; Yampol'skij, A.E.

    1985-01-01

    Update heat exchanger design principles are analysed. Different coolant pattern in a heat exchanger are considered. It is suggested to rationally organize flow rates irregularity in it. Applying on heat exchanger designing measures on using really existing temperature and flow rate irregularities will permit to improve heat exchanger efficiency. It is expedient in some cases to artificially produce irregularities. In this connection some heat exchanger design principles must be reviewed now

  10. Isolation of xanthyletin, an inhibitor of ants' symbiotic fungus, by high-speed counter-current chromatography.

    Science.gov (United States)

    Cazal, Cristiane de Melo; Domingues, Vanessa de Cássia; Batalhão, Jaqueline Raquel; Bueno, Odair Corrêa; Filho, Edson Rodrigues; da Silva, Maria Fátima G Fernandes; Vieira, Paulo Cezar; Fernandes, João Batista

    2009-05-08

    Xanthyletin, an inhibitor of symbiotic fungus (Leucoagaricus gongylophorus) of leaf-cutting ant (Atta sexdens rubropilosa), as well as suberosin, seselin and xanthoxyletin were isolated from Citrus sinensis grafted on Citrus limonia. A two-phase solvent system composed of hexane/ethanol/acetonitrile/water (10:8:1:1, v/v) was used for the high-speed counter-current chromatographic isolation of xanthyletin with high yield and over 99% purity as determined by liquid and gas chromatography with mass spectrometry detection. Identifications were performed by UV spectra, IR spectra, (1)H NMR and (13)C NMR.

  11. An analogy for evaporative heat transfer with wavy/stratified air-water flow in vertical counter-current flow conditions

    International Nuclear Information System (INIS)

    Kweon, H.; Park, K. C.

    2001-01-01

    An analogy for evaporative heat transfer with mass transfer was derived. From von-Karman analogy which has been applied between heat and momentum transfer in single phase turbulent flow, a modified Karman analogy was suggested at present paper. Nusselt number from this analogy showed good agreement with experimental results. Such a result shows that the analogy for a complex heat transfer mode between heat transfer and momentum transfer accompanying evaporation or condensation on the interface can be established

  12. 2.5 MWT Heat Exchanger Designs for Passive DHRS in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dehee; Eoh, Jaehyuk; Lee, Tae-Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Decay Heat Removal System (DHRS) of PGSFR consists of two passive DHRS (PDHRS) trains and two active DHRS (ADHRS) trains. Recently, total heat removal capacity of the DHRS in the PGSFR has increased to 10 MWT from 4 MWT reflecting safety analysis results. Consequently, DHRS components including heat exchangers, dampers, electro-magnetic pump, fan, piping, expansion tank and stack have been newly designed. In this work, physical models and correlations to design two main components of the PDHRS, decay heat exchanger (DHX) and natural-draft sodium-to-air heat exchanger (AHX), are introduced and designed data are presented. Physical models and correlations applied for heat exchangers in the PDHRS design were introduced and design works using the SHXSA and AHXSA codes has been completed for 2.5 MWT decay heat removal capability. DHX and AHX are designed utilizing SHXSA and AHXSA codes, respectively. Those design codes have capability of thermal sizing and performance analysis for the shell-and-tube type and counter-current flow heat exchanger unit. Since both SHXSA and AHXSA codes are similar, following description is focused on the SHXSA code. A single flow channel associated with an individual heat transfer tube is basically considered for thermal sizing and then the calculation results and design variables regarding heat transfer and pressure drop, etc. are extended to whole tubes. Various correlations of heat transfer and pressure loss for the shell- and tubeside flows were implemented in the computer codes. The analysis domain is discretized into several control volumes and heat transfer and pressure losses are calculated in each control volume.

  13. One-dimensional three-field model of condensation in horizontal countercurrent flow with supercritical liquid velocity

    International Nuclear Information System (INIS)

    Trewin, Richard R.

    2011-01-01

    Highlights: → CCFL in the hot leg of a PWR with ECC Injection. → Three-Field Model of counter flowing water film and entrained droplets. → Flow of steam can cause a hydraulic jump in the supercritical flow of water. → Condensation of steam on subcooled water increases the required flow for hydraulic jump. → Better agreement with UPTF experimental data than Wallis-type correlation. - Abstract: A one-dimensional three-field model was developed to predict the flow of liquid and vapor that results from countercurrent flow of water injected into the hot leg of a PWR and the oncoming steam flowing from the upper plenum. The model solves the conservation equations for mass, momentum, and energy in a continuous-vapor field, a continuous-liquid field, and a dispersed-liquid (entrained-droplet) field. Single-effect experiments performed in the upper plenum test facility (UPTF) of the former SIEMENS KWU (now AREVA) at Mannheim, Germany, were used to validate the countercurrent flow limitation (CCFL) model in case of emergency core cooling water injection into the hot legs. Subcooled water and saturated steam flowed countercurrent in a horizontal pipe with an inside diameter of 0.75 m. The flow of injected water was varied from 150 kg/s to 400 kg/s, and the flow of steam varied from 13 kg/s to 178 kg/s. The subcooling of the liquid ranged from 0 K to 104 K. The velocity of the water at the injection point was supercritical (greater than the celerity of a gravity wave) for all the experiments. The three-field model was successfully used to predict the experimental data, and the results from the model provide insight into the mechanisms that influence the flows of liquid and vapor during countercurrent flow in a hot leg. When the injected water was saturated and the flow of steam was small, all or most of the injected water flowed to the upper plenum. Because the velocity of the liquid remained supercritical, entrainment of droplets was suppressed. When the injected

  14. Numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Z., E-mail: ssfmorghi@gmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Puente, Jesus, E-mail: jpuente720@gmail.com [Centro Federal de Educaçao Tecnologica Celso Suckowda Fonseca (CEFET), Angra dos Reis, RJ (Brazil); Baliza, Ana R., E-mail: baliza@eletronuclear.gov.br [Eletrobras Eletronuclear Angra dos Reis, RJ (Brazil)

    2017-07-01

    After a loss-of-coolant accident (LOCA) in a Pressurized Water Reactor (PWR), the temperature of the fuel elements cladding increases dramatically due to the heat produced by the fission products decay, which is not adequately removed by the vapor contained in the core. In order to avoid this sharp rise in temperature and consequent melting of the core, the Emergency Core Cooling System is activated. This system initially injects borated water from accumulator tanks of the reactor through the inlet pipe (cold leg) and the outlet pipe (hot leg), or through the cold leg only, depending on the plant manufacturer. Some manufacturers add to this, direct injection into the upper plenum of the reactor. The penetration of water into the reactor core is a complex thermo fluid dynamic process because it involves the mixing of water with the vapor contained in the reactor, added to that generated in the contact of the water with the still hot surfaces in various geometries. In some critical locations, the vapor flowing in the opposite direction of the water can control the penetration of this into the core. This phenomenon is known as Countercurrent Flow Limitation (CCFL) or Flooding, and it is characterized by the control that a gas exerts in the liquid flow in the opposite direction. This work presents a proposal to use a CFD to simulate the CCFL phenomenon. Numerical computing can provide important information and data that is difficult or expensive to measure or test experimentally. Given the importance of computational science today, it can be considered a third and independent branch of science on an equal footing with the theoretical and experimental sciences. (author)

  15. Water-tunnel studies of heat balance in swimming mako sharks.

    Science.gov (United States)

    Bernal, D; Sepulveda, C; Graham, J B

    2001-12-01

    The mako shark (Isurus oxyrinchus) has specialized vascular networks (retia mirabilia) forming counter-current heat exchangers that allow metabolic heat retention in certain regions of the body, including the aerobic, locomotor red muscle and the viscera. Red muscle, white muscle and stomach temperatures were measured in juvenile (5-13.6 kg) makos swimming steadily in a water tunnel and exposed to stepwise square-wave changes in ambient temperature (T(a)) to estimate the rates of heat transfer and to determine their capacity for the activity-independent control of heat balance. The rates of heat gain of red muscle during warming were significantly higher than the rates of heat loss during cooling, and neither the magnitude of the change in T(a) nor the direction of change in T(a) had a significant effect on red muscle latency time. Our findings for mako red muscle are similar to those recorded for tunas and suggest modulation of retial heat-exchange efficiency as the underlying mechanism controlling heat balance. However, the red muscle temperatures measured in swimming makos (0.3-3 degrees C above T(a)) are cooler than those measured previously in larger decked makos. Also, the finding of non-stable stomach temperatures contrasts with the predicted independence from T(a) recorded in telemetry studies of mako and white sharks. Our studies on live makos provide new evidence that, in addition to the unique convergent morphological properties between makos and tunas, there is a strong functional similarity in the mechanisms used to regulate heat transfer.

  16. Countercurrent Flow of Molten Glass and Air during Siphon Tests

    International Nuclear Information System (INIS)

    Guerrero, H.N.

    2001-01-01

    Siphon tests of molten glass were performed to simulate potential drainage of a radioactive waste melter, the Defense Waste Processing Facility (DWPF) at the Savannah River Site. Glass is poured from the melter through a vertical downspout that is connected to the bottom of the melter through a riser. Large flow surges have the potential of completely filling the downspout and creating a siphon effect that has the potential for complete draining of the melter. Visual observations show the exiting glass stream starts as a single-phase pipe flow, constricting into a narrow glass stream. Then a half-spherical bubble forms at the exit of the downspout. The bubble grows, extending upwards into the downspout, while the liquid flows counter-currently to one side of the spout. Tests were performed to determine what are the spout geometry and glass properties that would be conducive to siphoning, conditions for terminating the siphon, and the total amount of glass drained

  17. Multiple dual mode counter-current chromatography with variable duration of alternating phase elution steps.

    Science.gov (United States)

    Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N

    2014-06-20

    The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography.

    Science.gov (United States)

    Dutta, Amit K; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A; Zhang, Ada W; Tustian, Andrew D; Zydney, Andrew L; Shinkazh, Oleg

    2015-11-10

    Recent studies using simple model systems have demonstrated that continuous countercurrent tangential chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an "after binder" to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (∼ 0.67 g/L) and one with high titer (∼ 6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to those obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography

    Science.gov (United States)

    Dutta, Amit K.; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A.; Zhang, Ada W.; Tustian, Andrew D.; Zydney, Andrew L.; Shinkazh, Oleg

    2015-01-01

    Recent studies using simple model systems have demonstrated that Continuous Countercurrent Tangential Chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an “after binder” to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (~0.67 g/L) and one with high titer (~6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to that obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. PMID:25747172

  20. Schinus terebinthifolius countercurrent chromatography (Part III): Method transfer from small countercurrent chromatography column to preparative centrifugal partition chromatography ones as a part of method development.

    Science.gov (United States)

    das Neves Costa, Fernanda; Hubert, Jane; Borie, Nicolas; Kotland, Alexis; Hewitson, Peter; Ignatova, Svetlana; Renault, Jean-Hugues

    2017-03-03

    Countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC) are support free liquid-liquid chromatography techniques sharing the same basic principles and features. Method transfer has previously been demonstrated for both techniques but never from one to another. This study aimed to show such a feasibility using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. Heptane - ethyl acetate - methanol -water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds. The optimized separation methodology previously described in Part I and II, was scaled up from an analytical hydrodynamic CCC column (17.4mL) to preparative hydrostatic CPC instruments (250mL and 303mL) as a part of method development. Flow-rate and sample loading were further optimized on CPC. Mobile phase linear velocity is suggested as a transfer invariant parameter if the CPC column contains sufficient number of partition cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development of heat transfer models for gap cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kohriyama, Tamio; Murase, Michio; Tamaki, Tomohiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In a severe accident of a light water reactor (LWR), heat transfer models in a narrow annular gap between superheated core debris and a reactor pressure vessel (RPV) are important to evaluate the integrity of RPV and emergency procedures. This paper discusses the effects of superheat on the heat flux based on existing data. In low superheat conditions, the heat flux in the narrow gap is higher than the heat flux in pool nucleate boiling due to restricted flow area. It approaches the nucleate boiling heat flux as superheat increasing and reaches a critical value subject to the counter-current flow limiting (CCFL) at the top end of the gap. A heat transfer correlation was derived as a function of dimensionless superheat and a Kutateladze-type CCFL correlation was deduced for critical heat flux (CHF) restricted by CCFL, which gave good prediction for a wide range of the CHF data. Effect of an angle of inclination of the gap could also be incorporated in the CCFL correlation. In high superheat conditions, the heat flux in the narrow gap maintains a similar shape to the pool boiling curve but shifts the position to a higher superheated side than the pool boiling except film boiling, which could be expressed by the typical pool film boiling correlation. Incorporating quench test data, the heat flux correlation was derived as a function of dimensionless superheat using the same formula for the low superheat and the Kutateladze-type CCFL correlation was deduced for CHF. The CHF at the high superheat was 3-4 times as large as CHF at the low superheat and this difference was well predicted by different flow patterns in the gap and the balance of pressure gradients between gas and liquid phases. (author)

  2. Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border

    Directory of Open Access Journals (Sweden)

    Svetlana S. Vlasova

    2016-09-01

    Full Text Available The exact stationary solution of the boundary-value problem that describes the convective motion of an incompressible viscous fluid in the two-dimensional layer with the square heating of a free surface in Stokes's approach is found. The linearization of the Oberbeck–Boussinesq equations allows one to describe the flow of fluid in extreme points of pressure and temperature. The condition under which the counter-current flows (two counter flows in the fluid can be observed, is introduced. If the stagnant point in the fluid exists, six non-closed whirlwinds can be observed.

  3. Resolution of gram quantities of racemates by high-speed counter-current chromatography.

    Science.gov (United States)

    Ma, Y; Ito, Y; Foucault, A

    1995-06-02

    Gram quantities of (+/-)-dinitrobenzoyl amino acids were separated by high-speed counter-current chromatography (CCC) using N-dodecanoyl-L-proline-3,5-dimethylanilide as a chiral selector (CS). Standard and pH-zone-refining CCC techniques were compared. By using the standard technique, 10 mg to a maximum of 1 g of samples was resolved in 2-9 h simply by increasing the concentration of the CS in the stationary phase. By using pH-zone-refining CCC, even more sample (2 g) was efficiently separated in less time (3 h). In both techniques, leakage of CS from the column was negligible. The method requires no solid support and the same column can be used repeatedly to separate a variety of enantiomers by dissolving appropriate chiral selectors in the stationary phase.

  4. A completely automated flow, heat-capacity, calorimeter for use at high temperatures and pressures

    Science.gov (United States)

    Rogers, P. S. Z.; Sandarusi, Jamal

    1990-11-01

    An automated, flow calorimeter has been constructed to measure the isobaric heat capacities of concentrated, aqueous electrolyte solutions using a differential calorimetry technique. The calorimeter is capable of operation to 700 K and 40 MPa with a measurement accuracy of 0.03% relative to the heat capacity of the pure reference fluid (water). A novel design encloses the calorimeter within a double set of separately controlled, copper, adiabatic shields that minimize calorimeter heat losses and precisely control the temperature of the inlet fluids. A multistage preheat train, used to efficiently heat the flowing fluid, includes a counter-current heat exchanger for the inlet and outlet fluid streams in tandem with two calorimeter preheaters. Complete system automation is accomplished with a distributed control scheme using multiple processors, allowing the major control tasks of calorimeter operation and control, data logging and display, and pump control to be performed simultaneously. A sophisticated pumping strategy for the two separate syringe pumps allows continuous fluid delivery. This automation system enables the calorimeter to operate unattended except for the reloading of sample fluids. In addition, automation has allowed the development and implementation of an improved heat loss calibration method that provides calorimeter calibration with absolute accuracy comparable to the overall measurement precision, even for very concentrated solutions.

  5. RELAP5/MOD2 benchmarking study: Critical heat flux under low-flow conditions

    International Nuclear Information System (INIS)

    Ruggles, E.; Williams, P.T.

    1990-01-01

    Experimental studies by Mishima and Ishii performed at Argonne National Laboratory and subsequent experimental studies performed by Mishima and Nishihara have investigated the critical heat flux (CHF) for low-pressure low-mass flux situations where low-quality burnout may occur. These flow situations are relevant to long-term decay heat removal after a loss of forced flow. The transition from burnout at high quality to burnout at low quality causes very low burnout heat flux values. Mishima and Ishii postulated a model for the low-quality burnout based on flow regime transition from churn turbulent to annular flow. This model was validated by both flow visualization and burnout measurements. Griffith et al. also studied CHF in low mass flux, low-pressure situations and correlated data for upflows, counter-current flows, and downflows with the local fluid conditions. A RELAP5/MOD2 CHF benchmarking study was carried out investigating the performance of the code for low-flow conditions. Data from the experimental study by Mishima and Ishii were the basis for the benchmark comparisons

  6. Separation and purification of four flavonol diglucosides from the flower of Meconopsis integrifolia by high-speed counter-current chromatography.

    Science.gov (United States)

    Huang, Yanfei; Han, Yatao; Chen, Keli; Huang, Bisheng; Liu, Yuan

    2015-12-01

    Flavonoids are the main components of Meconopsis integrifolia (Maxim.) Franch, which is a traditional Tibetan medicine. However, traditional chromatography separation requires a large quantity of raw M. integrifolia and is very time consuming. Herein, we applied high-speed counter-current chromatography in the separation and purification of flavonoids from the ethanol extracts of M. integrifolia flower. Ethyl acetate/n-butanol/water (2:3:5, v/v/v) was selected as the optimum solvent system to purify the four components, namely quercetin-3-O-β-d-glucopyrannosy-(1→6)-β-d-glucopyranoside (compound 1, 60 mg), quercetin 3-O-[2'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 2, 40 mg), quercetin 3-O-[3'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 3, 11 mg), and quercetin 3-O-[6'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 4, 16 mg). Among the four compounds, 3 and 4 were new acetylated flavonol diglucosides. After the high-speed counter-current chromatography separation, the purities of the four flavonol diglucosides were 98, 95, 90, and 92%, respectively. The structures of these compounds were identified by mass spectrometry and NMR spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A new bioheat equation and its application to peripheral tissue and whole limb heat transfer

    International Nuclear Information System (INIS)

    Weinbaum, S.

    1987-01-01

    Much of the mathematical modeling of heat transfer in perfused tissue over the past three decades has been based on the Pennes bioheat equation. This equation assumes that blood at the local arterial supply temperature reaches the capillaries where the primary thermal equilibration occurs because of the large surface area available for heat exchange. While this argument is correct for gas, water and solute transport, recent theoretical and experimental studies have shown that virtually no heat exchange occurs in vessels under 100 μm and that the primary mechanism for microvascular heat exchange is the imperfect heat exchange between the larger paired countercurrent microvessels that occur 3 to 6 generations prior to the capillaries. A new fundamental bioheat equations has been derived to describe this heat transfer mechanism. This equation contains a basic new expression for the thermal conductivity of perfused tissue which depends on the geometry and flow in the largest microvessels of the local tissue element and the direction of the vessels relative to the local tissue temperature gradient. Although the new equation appears to be complicated, it is shown that it can be applied with relative ease to a host of problems previously treated by the Pennes equation

  8. Study on characteristics of void fraction in vertical countercurrent two-phase flow by neutron radiography

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Sudo, Yukio; Haga, Katsuhiro

    1996-01-01

    In order to make clear the flow mechanism and characteristics of falling water limitation under the countercurrent two-phase flow, that is, the countercurrent flow limitation (CCFL), in a vertical channel, a technique of neutron radiography (NRG) provided in the Research Nuclear Reactor JRR-3M was applied to an air-water system of vertical rectangular channels of 50 and 782 mm in length with 66 mm in channel width and 2.3 mm in channel gap under atmospheric pressure. The neutron radiography facility used in this study has a high thermal neutron flux that is suitable for visualization of fluid phenomena. A real-time electronic imaging method was used for capturing two-phase flow images in a vertical channel. It was found the technique applied was very potential to clarify the characteristics of instantaneous, local and average void fractions which were important to understand flow mechanism of the phenomena, while the measurements of void fraction had not been applied fully effectively to understanding of the flow mechanism of CCFL, because the differential pressure for determining void fraction is, in general, too small along the tested channel and is fluctuating too frequently to be measured accurately enough. From the void fraction measured by NRG as well as through direct flow observation, it was revealed that the shorter side walls of rectangular channel tested were predominantly wetted by water falling down with the longer side walls being rather dry by ascending air flow. It was strongly suggested that the analytical flow model thus obtained and proposed for the CCFL based on the flow observation was most effective

  9. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I [Condens Oy, Haemeenlinna (Finland)

    1997-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  10. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  11. Preparative separation of flavonoids from the medicinal plant Davilla elliptica St. Hill. by high-speed counter-current chromatography

    OpenAIRE

    Rinaldo Daniel; Silva Marcelo Aparecido; Rodrigues Clenilson Martins; Calvo Tamara Regina; Sannomiya Miriam; Santos Lourdes Campaner dos; Vilegas Wagner; Kushima Hélio; Hiruma-Lima Clélia Akiko; Brito Alba Regina Monteiro de Souza

    2006-01-01

    High-speed counter-current chromatography (HSCCC) is a major tool for the fast separation of natural products from plants. It was used for the preparative isolation of the flavonoid monoglucosides present in the aerial parts of the Davilla elliptica St. Hill. (Dilleniaceae). This species is used in Brazilian folk medicine for the treatment of gastric disorders. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80, v/v/v) and led to a successful...

  12. Metal ion-improved complexation countercurrent chromatography for enantioseparation of dihydroflavone enantiomers.

    Science.gov (United States)

    Han, Chao; Wang, Wenli; Xue, Guimin; Xu, Dingqiao; Zhu, Tianyu; Wang, Shanshan; Cai, Pei; Luo, Jianguang; Kong, Lingyi

    2018-01-12

    Cu(II) ion was selected as an additive to improve the enantioseparation efficiency of three dihydroflavone enantiomers in high-speed counter-current chromatography (HSCCC), using hydroxypropyl-β-cyclodextrin (HP-β-CyD) as the chiral selector. The influences of important parameters, including the metal ion, the concentrations of HP-β-CyD and the Cu(II) ion, and the sample size were investigated. Under optimal conditions, three dihydroflavone enantiomers, including (±)-hesperetin, (±)-naringenin, and (±)-farrerol, were successfully enantioseparated. The chiral recognition mechanism was investigated. The enantioseparation was attributed to the different thermodynamic stabilities of the binary complexes of HP-β-CyD and (±)-hesperetin, and Cu(II) ion could enhance this difference by forming ternary complexes with the binary complexes. This Cu(II) ion-improved complexation HSCCC system exhibited improved performance for chiral separation, and therefore it has great application potential in the preparative enantioseparation of other compounds with similar skeletons. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Pressurized Hybrid Heat Pipe for Passive IN-Core Cooling System (PINCs) in Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-05-15

    The representative operating limit of the thermosyphon heat pipe is flooding limit that arises from the countercurrent flow of vapor and liquid. The effect of difference between wetted perimeter and heated perimeter on the flooding limit of the thermosyphons has not been studied; despite the effect of cross-sectional area of the vapor path on the heat transfer characteristics of thermosyphons have been studied. Additionally, the hybrid heat pipe must operate at the high temperature and high pressure environment because it will be inserted to the active core to remove the decay heat. However, the previously studied heat pipes operated below the atmospheric pressure. Therefore, the effect of the unique geometry for hybrid heat pipe and operating pressure on the heat transfer characteristics including the flooding limit of hybrid heat pipe was experimentally measured. Hybrid heat pipe as a new conceptual decay heat removal device was proposed. For the development of hybrid heat pipe operating at high temperature and high pressure conditions, the pressurized hybrid heat pipe was prepared and the thermal performances including operation limits of hybrid heat pipe were experimentally measured. Followings were obtained: (1) As operating pressure of the heat pipe increases, the evaporation heat transfer coefficient increases due to heat transfer with convective pool boiling mode. (2) Non-condensable gas charged in the test section for the pressurization lowered the condensation heat transfer by impeding the vapor flow to the condenser. (3) The deviations between experimentally measured flooding limits for hybrid heat pipes and the values from correlation for annular thermosyphon were observed.

  14. Inquiry of selected topics on heat exchanger design

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1977-01-01

    Three specific topics of heat exchanger design are discussed. First is an examination of the effect of maldistribution on the performance of an exchanger. Three different patterns of maldistribution are investigated and for each type when the overall coefficient is independent of the maldistribution (constant) and when the maldistributed fluid is the controlling resistance and, hence, is a function of the maldistribution. It is the purpose of this investigation to determine how serious the maldistribution problem can be and hopefully, develop guidelines for the designer. Second, the simple laminar flow in tube heat transfer problem was examined with the further complications of appreciable external resistance and for countercurrent flow with appreciable temperature changes in the secondary fluid. This is a complex problem theoretically and it is shown how this would be simplified by means of several simple plots. Based on an old analog solution, the possible error if one used the conventional methods of applying overall coefficients in the design of laminar flow exchangers is discussed. Third, laminar flow heat transfer in tube banks was reviewed. The fundamental problem here is how does one handle the effect of the number of tube rows in baffled exchangers. Another form of correlation is suggested but basically it was found that insufficient experimental data were available to determine the best form of correlation. Further experimental data are needed

  15. Slug flooding in air-water countercurrent vertical flow

    International Nuclear Information System (INIS)

    Lee, Jae Young; Raman, Roger; Chang, Jen-Shih

    2000-01-01

    This paper is to study slug flooding in the vertical air-water countercurrent flow loop with a porous liquid injector in the upper plenum. More water penetration into the bottom plenum in slug flooding is observed than the annular flooding because the flow regime changes from the slug flow regime or periodic slug/annular flow regime to annular flow regime due to the hysteresis between the onset of flooding and the bridging film. Experiments were made tubes of 0.995 cm, 2.07 cm, and 5.08 cm in diameter. A mechanistic model for the slug flooding with the solitary wave whose height is four time of the mean film thickness is developed to produce relations of the critical liquid flow rate and the mean film thickness. After fitting the critical liquid flow rate with the experimental data as a function of the Bond number, the gas flow rate for the slug flooding is obtained by substituting the critical liquid flow rate to the annular flooding criteria. The present experimental data evaluate the slug flooding condition developed here by substituting the correlations for mean film thickness models in the literature. The best prediction was made by the correlation for the mean film thickness of the present study which is same as Feind's correlation multiplied by 1.35. (author)

  16. Assessing Energy Efficiency of Compression Heat Pumps in Drying Processes when Zeotropic Hydrocarbon Mixtures are Used as Working Agents

    Directory of Open Access Journals (Sweden)

    Shurayts Alexander

    2016-01-01

    Full Text Available Presents the results of studies of innovative materials in the field of renewable energy.The paper proposes a design and a formula for assessing energy efficiency of the heat pump air dryer, which uses zeotropic hydrocarbon mixtures of saturated hydrocarbons as a working agent and applies the principle of a counter-current heat exchanger with a variable temperature of both the working and the drying agents. Energy efficiency of the heat pump is achieved by means of obtaining a greater part of heat from renewable energy sources, in this case by cooling the air and condensing the water vapors in the heat pump. A conducted analysis identified correlations in establishing the marginal real coefficient of performance of the compression heat pump dryer running on zeotropic hydrocarbon mixtures and operating a cycle with variable temperatures of both the working and the drying agent in the evaporator and the condenser of the heat pump. According to the established correlations, the marginal real coefficient of performance of the compression heat pump dryers running on zeotropic hydrocarbon mixtures of 40 mol% of R600a and 60 mol% of R601 is 1.92 times higher than that of the same dryers running on only R600 (n-butane.

  17. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Zhang, Guang-Hui [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China); Gu, Ping, E-mail: guping@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of cesium by copper ferrocyanide followed a Freundlich model. Black-Right-Pointing-Pointer Decontamination factor of cesium was higher in lab-scale test than that in jar test. Black-Right-Pointing-Pointer A countercurrent two-stage adsorption-microfiltration process was achieved. Black-Right-Pointing-Pointer Cesium concentration in the effluent could be calculated. Black-Right-Pointing-Pointer It is a new cesium removal process with a higher decontamination factor. - Abstract: Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3 {mu}g/L, the dosage of CuFC was 40 mg/L and the adsorption time was 20 min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75 {mu}g/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test.

  18. Optimization of Temperature Schedule Parameters on Heat Supply in Power-and-Heat Supply Systems

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2009-01-01

    Full Text Available The paper considers problems concerning optimization of a temperature schedule in the district heating systems with steam-turbine thermal power stations having average initial steam parameters. It has been shown in the paper that upkeeping of an optimum network water temperature permits to increase an energy efficiency of heat supply due to additional systematic saving of fuel. 

  19. Counter-current extraction studies for the recovery of neptunium by the Purex process. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, N.; Nadkarni, M. N.; Kumar, S. V.; Kartha, P. K.S.; Sonavane, R. R.; Ramaniah, M. V.; Patil, S. K.

    1974-07-01

    It is proposed to recover neptunium-237, along with uranium and plutonium, during the fuel reprocessing in the PREFRE plant at Tarapur. Counter-current extraction studies, relevant to the code contamination (HA) and partitioning (IA) cycles of the purex process, were carried out to arrive at suitable chemical flowsheet conditions which would enable the co-extraction of neptunium along with uranium and plutonium. The results of the studies carried out using a laboratory mixer-settler unit and synthetic mixtures of neptunium and uranium are reported here. Based on these results, the chemical flowsheet conditions are proposed for the co-extraction of neptunium even if it exists as Np(V) in the aqueous feed solution. (auth)

  20. Cooperative heat transfer and ground coupled storage system

    Science.gov (United States)

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  1. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  2. Study on nonstationary convective heat transfer in annular channels and rod bundles in conditions of arbitrary variation of heat duty in time and length

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.N.; Kalinin, E.I.; Naumov, M.A.

    1980-01-01

    The effect of variability of heat duty on the characteristics of heat exchange in ring channels and rod bundles is investigated with analytical methods. The plotting of calculation formulae for non-stationary heat exchange in an annular channel at a jump of heat duty is carried out on the basis of the method of the effect function. The formulae obtained permit to accomplish technical calculations of the processes of non-stationary heat exchange in annular channels in the case of any alterations of thermal duty in time, at any moment of time, for any channel cross section (including the entrance heat section) in a wide range of geometric and regime parameters of the turbulent current of a coolant. According to preliminary estimates, calculation results differ from the results oi a numerical solution less than 5%. The approach considered permits to transfer the data on the non-stationary heat exchange in annular channels in the case of changing the heat duty in time, in the case of a non-stationary heat exchange in longitudinally flown not very dense and infinite rod bundles

  3. Energy well. Ground-source heat in one-family houses; Energiakaivo. Maalaemmoen hyoedyntaeminen pientaloissa

    Energy Technology Data Exchange (ETDEWEB)

    Juvonen, J.; Lapinlampi, T.

    2013-08-15

    This guide deals with the legislation, planning, building, usage and maintenance of ground-source heat systems. The guide gives recommendations and instructions on national level on the permit practices and how to carry out the whole ground-source heat system project. The main focus of the guide is on energy wells for one-family houses. The principle is that an action permit is needed to build a ground-source heat system. On ground water areas a permit according to the water act may also be required. To avoid any problems, the placement of the system needs to be planned precisely. This guide gives a comprehension to the orderer on the issues that need to be considered before ordering, during construction, when the system is running and when giving up the use of the ground-source heat system. (orig.)

  4. Improved separation with the intermittently pressed tubing of multilayer coil in type-I counter-current chromatography.

    Science.gov (United States)

    Yang, Yi; Yang, Jiao; Fang, Chen; Wang, Jihui; Gu, Dongyu; Tian, Jing; Ito, Yoichiro

    2018-05-25

    The intermittently pressed tubing was introduced in type-I counter-current chromatographic system as the separation column to improve the separation performance in the present study. The separations were performed with two different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW) and hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMW) using dipeptides and DNP-amino acids as test samples, respectively. The chromatographic performance was evaluated in terms of retention of the stationary phase (Sf), theoretical plate (N) and peak resolution (Rs). In general, the type-I planetary motion with the multilayer coil of non-modified standard tubing can yield the best separation at a low revolution speed of 200 rpm with lower flow rate. The present results with intermittently pressed tubing indicated that the performance was also optimal at the revolution speed of 200 rpm where the lower flow rate was more beneficial to retention of stationary phase and resolution. In the moderately hydrophobic two-phase solvent system composed of hexane-ethyl acetate-metanol-0.1 M hydrochloric acid (1:1:1:1, v/v), DNP-amino acids were separated with Rs at 1.67 and 1.47, respectively, with 12.66% of stationary phase retention at a flow rate of 0.25 ml/min. In the polar solvent system composed of 1-butanol-acetic acid-water (4:1:5, v/v), dipeptide samples were resolved with Rs at 2.18 and 18.75% of stationary phase retention at a flow rate of 0.25 ml/min. These results indicate that the present system substantially improves the separation efficiency of type-I counter-current chromatographic system. Published by Elsevier B.V.

  5. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION

    OpenAIRE

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2012-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:...

  6. Application of an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum.

    Science.gov (United States)

    Chen, Tao; Liu, Yongling; Zou, Denglang; Chen, Chen; You, Jinmao; Zhou, Guoying; Sun, Jing; Li, Yulin

    2014-01-01

    This study presents an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum. A new solvent system composed of petroleum ether/ethyl acetate/water (4:2:1, v/v/v) was developed for the liquid-liquid extraction of the crude extract from R. tanguticum. As a result, emodin, aloe-emodin, physcion, and chrysophanol were greatly enriched in the organic layer. In addition, an efficient method was successfully established to separate and purify the above anthraquinones by high-speed counter-current chromatography and preparative HPLC. This study supplies a new alternative method for the rapid enrichment, separation, and purification of emodin, aloe-emodin, physcione, and chrysophanol. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Analysis of multidimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1991-01-01

    The presence of parallel enclosed channels in a boiling water reactor (BWR) provides opportunities for multiple flow regimes in cocurrent and countercurrent flow under loss-of-coolant accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the steam sector test facility (SSFT), which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests an integral transients with vessel vlowdown and refill were performed. The presence of multidimensional and parallel-channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  8. Gas-liquid countercurrent integration process for continuous biodiesel production using a microporous solid base KF/CaO as catalyst.

    Science.gov (United States)

    Hu, Shengyang; Wen, Libai; Wang, Yun; Zheng, Xinsheng; Han, Heyou

    2012-11-01

    A continuous-flow integration process was developed for biodiesel production using rapeseed oil as feedstock, based on the countercurrent contact reaction between gas and liquid, separation of glycerol on-line and cyclic utilization of methanol. Orthogonal experimental design and response surface methodology were adopted to optimize technological parameters. A second-order polynomial model for the biodiesel yield was established and validated experimentally. The high determination coefficient (R(2)=98.98%) and the low probability value (Prcontinuous-flow process has good potential in the manufacture of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing

    International Nuclear Information System (INIS)

    Pogiatzis, Thomas; Ishiyama, Edward M.; Paterson, William R.; Vassiliadis, Vassilios S.; Wilson, D. Ian

    2012-01-01

    Fouling of heat exchangers causes reduced heat transfer and other penalties. Regular cleaning represents one widely used fouling mitigation strategy, where the schedule of cleaning actions can be optimised to minimise the cost of fouling. This paper investigates, for the first time, the situation where there are two cleaning methods available so that the mode of cleaning has to be selected as well as the cleaning interval. Ageing is assumed to convert the initial deposit, labelled 'gel', into a harder and more conductive form, labelled 'coke', which cannot be removed by one of the cleaning methods. The second method can remove both the gel layer and the coke layer, but costs more and requires the unit to be off-line longer for cleaning. Experimental data demonstrating the effects of ageing are presented. The industrial application is the comparison of cleaning-in-place methods with off-line mechanical cleaning. A process model is constructed for an isolated counter-current heat exchanger subject to fouling, where ageing is described by a simple two-layer model. Solutions generated by an NLP-based approach prove to be superior to a simpler heuristic. A series of case studies demonstrate that combinations of chemical and mechanical cleaning can be superior to mechanical cleaning alone for certain combinations of parameters.

  10. Separation of five compounds from leaves of Andrographis paniculata (Burm. f.) Nees by off-line two-dimensional high-speed counter-current chromatography combined with gradient and recycling elution.

    Science.gov (United States)

    Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing

    2015-05-01

    An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A state of the art on the flooding phenomena and countercurrent flow limiting modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jong; Chang, Won Pyo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    Countercurrent flow limiting phenomenon and its modeling for vertical and nearly horizontal pipes has been reviewed in two phase flow. A number of analytical and empirical model have been developed for flooding in the vertical pipes and annulars. These may be classified as stability theory, envelope theory, static equilibrium theory, slug formation theory, Wallis correlation, and Kutateladze correlation. The theories and empirical correlations are reviewed and comparison with the various experimental data. The scatter of the experimental data is large because of the different flooding condition and because of the influence of the experimental conditions. Application of flooding for PWR best estimate system codes is reviewed. The codes provide the user options to implement CCFL correlation for the specific geometry. The codes can accommodate generally Wallis, Kutateladze, or Bankoff correlation. 4 tabs., 36 figs., 52 refs. (Author).

  12. Separation of two major chalcones from Angelica keiskei by high-speed counter-current chromatography.

    Science.gov (United States)

    Kil, Yun-Seo; Nam, Joo-Won; Lee, Jun; Seo, Eun Kyoung

    2015-08-01

    Angelica keiskei (Shin-sun cho) is an edible higher plant with the beneficial preventive effects on cancer, hypertension, and coronary heart disease. Two bioactive chalcones of Shin-sun cho, xanthoangelol (1) and 4-hydroxyderricin (2), were separated simultaneously by using high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-EtOAc-MeOH-H2O (9:5:9:4). Only nonconsuming processes, solvent fractionations and Sephadex LH-20 column chromatography, were conducted as presteps. Xanthoangelol (1, 35.9 mg, 99.9 % purity at 254 and 365 nm) and 4-hydroxyderricin (2, 4.4 mg, 98.7 % purity at 254 nm and 98.8 % purity at 365 nm) were successfully purified from 70 mg of the processed extract from A. keiskei. The structures of two compounds were confirmed by (1)H- and (13)C-NMR analysis.

  13. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  14. A state of the art on the flooding phenomena and countercurrent flow limiting modeling

    International Nuclear Information System (INIS)

    Jeong, Young Jong; Chang, Won Pyo

    1996-07-01

    Countercurrent flow limiting phenomenon and its modeling for vertical and nearly horizontal pipes has been reviewed in two phase flow. A number of analytical and empirical model have been developed for flooding in the vertical pipes and annulars. These may be classified as stability theory, envelope theory, static equilibrium theory, slug formation theory, Wallis correlation, and Kutateladze correlation. The theories and empirical correlations are reviewed and comparison with the various experimental data. The scatter of the experimental data is large because of the different flooding condition and because of the influence of the experimental conditions. Application of flooding for PWR best estimate system codes is reviewed. The codes provide the user options to implement CCFL correlation for the specific geometry. The codes can accommodate generally Wallis, Kutateladze, or Bankoff correlation. 4 tabs., 36 figs., 52 refs. (Author)

  15. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  16. Process heat recovery: hot prospects

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    By updating established technologies to recover heat at higher temperatures and under more corrosive conditions, British industry could recover six to eight million tons of coal equivalent that it currently wastes. Organic liquids in organic Rankine cycle (ORC) engines and simpler designs than steam turbines can increase efficiency. They also eliminate the need for vacuum pumps and permit the use of air cooling. Cooperative government-private industry research programs are exploring the use of ORC engines. Other heat-recovery projects include a Scottish paper mill, a metal decorating and printing plant, a falling-cloud heat exchanger, and heat-pipe development. 4 figures, 1 table. (DCK)

  17. Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Thomas, E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Deendarlianto,; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany)

    2011-10-15

    In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-{omega} turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.

  18. Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

    Energy Technology Data Exchange (ETDEWEB)

    Hohne, T.; Deendarlianto; Vallee, C.; Lucas, D.; Beyer, M., E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Inst. of Safety Research, Dresden (Germany)

    2011-07-01

    In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden- Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a SST turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all ANSYS CFX users, with the possibility of the implementation of their own correlations. (author)

  19. Energy efficiency of gas engine driven heat pumps for heating and cooling applications; Energieeffizienter Einsatz von Gasmotorwaermepumpen fuer Heiz- und Kuehlanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Juergen [Magdeburg Univ. (Germany). Inst. fuer Stroemungstechnik und Thermodynamik

    2012-11-15

    Heat pumps are gaining in importance for a sustainable and ecological heat supply. Gas engine driven systems can contribute to a decentralized energy supply by power heat cogeneration. In the paper, a pilot plant, which offers high energy efficiency by simultaneous use of the heat of evaporation and condensation, is presented. The plant permits the testing of different operating modes and obtains high values above three for the primary energy ratio. (orig.)

  20. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    International Nuclear Information System (INIS)

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  1. Preparative Separation of Sulfur-Containing Diketopiperazines from Marine Fungus Cladosporium sp. Using High-Speed Counter-Current Chromatography in Stepwise Elution Mode

    OpenAIRE

    Gu, Binbin; Zhang, Yanying; Ding, Lijian; He, Shan; Wu, Bin; Dong, Junde; Zhu, Peng; Chen, Juanjuan; Zhang, Jinrong; Yan, Xiaojun

    2015-01-01

    High-speed counter-current chromatography (HSCCC) was successively applied to the separation of three sulfur-containing diketopiperazines (DKPs) (including two new compounds cladosporin A (1) and cladosporin B (3), and a known compound haematocin (2)) from a marine fungus Cladosporium sp. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v) and (2:1:2:1, v/v), in stepwise elution mode, was used for HSCCC. The preparative HSCCC separation was perfor...

  2. Online hyphenation of extraction, Sephadex LH-20 column chromatography, and high-speed countercurrent chromatography: A highly efficient strategy for the preparative separation of andrographolide from Andrographis paniculata in a single step.

    Science.gov (United States)

    Zhang, Ying-Qi; Wang, Shan-Shan; Han, Chao; Xu, Jin-Fang; Luo, Jian-Guang; Kong, Ling-Yi

    2017-12-01

    A novel isolation strategy, online hyphenation of ultrasonic extraction, Sephadex LH-20 column chromatography combined with high-speed countercurrent chromatography, was developed for pure compounds extraction and purification. Andrographolide from Andrographis paniculata was achieved only in a single step purification protocol via the present strategy. The crude powder was ultrasonic extracted and extraction was pumped into Sephadex LH-20 column directly to cut the nontarget fractions followed by the second-dimensional high-speed countercurrent chromatography, hyphenated by a six-port valve equipped at the post-end of Sephadex LH-20 column, for the final purification. The results yielded andrographolide with the amount of 1.02 mg and a purity of 98.5% in a single step, indicating that the present method is effective to harvest target compound from medicinal plant. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Countercurrent flow of supercritical anti-solvent in the production of pure xanthophylls from Nannochloropsis oculata.

    Science.gov (United States)

    Cho, Yueh-Cheng; Wang, Yuan-Chuen; Shieh, Chwen-Jen; Lin, Justin Chun-Te; Chang, Chieh-Ming J; Han, Esther

    2012-08-10

    This study examined pilot scaled elution chromatography coupled with supercritical anti-solvent precipitation (using countercurrent flow) in generating zeaxanthin-rich particulates from a micro-algal species. Ultrasonic agitated acetone extract subjected to column fractionation successfully yielded a fraction containing 349.4 mg/g of zeaxanthin with a recovery of 85%. Subsequently, supercritical anti-solvent (SAS) precipitation of the column fraction at 150 bar and 343 K produced submicron-sized particulates with a concentration of 845.5mg/g of zeaxanthin with a recovery of 90%. Experimental results from a two-factor response surface method SAS precipitation indicated that purity, mean size and morphology of the precipitates were significantly affected by the flow type configuration, feed flow rate and injection time. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Pulsed counter-current ultrasound-assisted extraction and characterization of polysaccharides from Boletus edulis.

    Science.gov (United States)

    You, Qinghong; Yin, Xiulian; Ji, Chaowen

    2014-01-30

    Four methods for extracting polysaccharides from Boletus edulis, namely, hot-water extraction, ultrasonic clearer extraction, static probe ultrasonic extraction, and pulsed counter-current probe ultrasonic extraction (CCPUE), were studied. Results showed that CCPUE has the highest extraction efficiency among the methods studied. Under optimal CCPUE conditions, a B. edulis polysaccharide (BEP) yield of 8.21% was obtained. Three purified fractions, BEP-I, BEP-II, and BEP-III, were obtained through sequential purification by DEAE-52 and Sephadex G-75 chromatography. The average molecular weights of BEP-I, BEP-II, and BEP-III were 10,278, 23,761, and 42,736 Da, respectively. The polysaccharides were mainly composed of xylose, mannose, galactose, and glucose; of these, mannose contents were the highest. The antioxidant activities of the BEPs were further investigated by measurement of their ability to scavenge DPPH and hydroxyl radicals as well as their reducing power. The results indicated that the BEPs have good antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Preparative isolation and purification of theaflavins and catechins by high-speed countercurrent chromatography.

    Science.gov (United States)

    Wang, Kunbo; Liu, Zhonghua; Huang, Jian-an; Dong, Xinrong; Song, Lubing; Pan, Yu; liu, Fang

    2008-05-15

    High-speed countercurrent chromatography (HSCCC) has been applied for the separation of theaflavins and catechins. The HSCCC run was carried out with a two-phase solvent system composed of hexane-ethyl acetate-methanol-water-acetic acid (1:5:1:5:0.25, v/v) by eluting the lower aqueous phase at 2 ml/min at 700 rpm. The results indicated that pure theaflavin, theaflavins-3-gallate, theaflavins-3'-gallate and theaflavin-3,3'-digallate could be obtained from crude theaflavins sample and black tea. The structures of the isolated compounds were positively confirmed by (1)H NMR and (13)C NMR, MS analysis, HPLC data and TLC data. Meanwhile, catechins including epigallocatechin gallate, gallocatechin gallate, epicatechin gallate and epigallocatechin were isolated from the aqueous extract of green tea by using the same solvent system. This study developed a modified method combined with enrichment theaflavins method by using HSCCC for separation of four individual theaflavins, especially for better separation of theaflavins monogallates.

  6. Tradable CO{sub 2} permits in Danish and European energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Varming, S.; Vesterdal, M. [ELSAMPROJEKT A/S (Denmark); Boerre Eriksen, P. [Eltra I/S (Denmark); Grohnheit, P.E.; Nielsen, L. [RISOe (Denmark); Tinggaard Svendsen, G. [Handelshoejskolen i Aarhus (Denmark)

    2000-08-01

    This report presents the results of the project 'Tradable CO{sub 2} permits in Danish and European energy policy'. The project was financed by a grant from the Danish Energy Research Programme 1998 (Grant 1753/98-0002). The project was conducted in co-operation between Elsamprojekt A/S (project manager), Risoe National Laboratory, Aarhus School of Business and I/S Eltra. The three major objectives of the project were: To identify and analyse the economical and political issues that are relevant with regard to the construction of a tradable CO{sub 2} permit market as well as proposing a suitable design for a tradable CO{sub 2} permit market for the energy sector in the EU. Experience from the tradable S{sub O}2 permit market in the US is taken into consideration as well. To present an overview of price estimates of CO{sub 2} and greenhouse gas permits in different models as well as discussing the assumptions leading to the different outcomes. Furthermore, the special role of backstop technologies in relation to permit prices is analysed. To analyse the connection between CO{sub 2} permit prices and technology choice in the energy sector in the medium and longer term (i.e., 2010 and 2020) with a special emphasis on combined heat and power and renewables. In addition, the short-term effects on CO{sub 2} emissions and electricity trade of introducing tradable CO{sub 2} permit with limited coverage (i.e. a national system) as well as complete coverage (i.e. including all the countries) in the Nordic electricity system are analysed. (au)

  7. Tradable CO{sub 2} permits in Danish and European energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Varming, S; Vesterdal, M [ELSAMPROJEKT A/S (Denmark); Boerre Eriksen, P [Eltra I/S (Denmark); Grohnheit, P E; Nielsen, L [RISOe (Denmark); Tinggaard Svendsen, G [Handelshoejskolen i Aarhus (Denmark)

    2000-08-01

    This report presents the results of the project 'Tradable CO{sub 2} permits in Danish and European energy policy'. The project was financed by a grant from the Danish Energy Research Programme 1998 (Grant 1753/98-0002). The project was conducted in co-operation between Elsamprojekt A/S (project manager), Risoe National Laboratory, Aarhus School of Business and I/S Eltra. The three major objectives of the project were: To identify and analyse the economical and political issues that are relevant with regard to the construction of a tradable CO{sub 2} permit market as well as proposing a suitable design for a tradable CO{sub 2} permit market for the energy sector in the EU. Experience from the tradable S{sub O}2 permit market in the US is taken into consideration as well. To present an overview of price estimates of CO{sub 2} and greenhouse gas permits in different models as well as discussing the assumptions leading to the different outcomes. Furthermore, the special role of backstop technologies in relation to permit prices is analysed. To analyse the connection between CO{sub 2} permit prices and technology choice in the energy sector in the medium and longer term (i.e., 2010 and 2020) with a special emphasis on combined heat and power and renewables. In addition, the short-term effects on CO{sub 2} emissions and electricity trade of introducing tradable CO{sub 2} permit with limited coverage (i.e. a national system) as well as complete coverage (i.e. including all the countries) in the Nordic electricity system are analysed. (au)

  8. Preparative separation of cacao bean procyanidins by high-speed counter-current chromatography.

    Science.gov (United States)

    Li, Lingxi; Zhang, Shuting; Cui, Yan; Li, Yuanyuan; Luo, Lanxin; Zhou, Peiyu; Sun, Baoshan

    2016-11-15

    In this work, an efficient method for preparative separation of procyanidins from raw cacao bean extract by high-speed counter-current chromatography (HSCCC) was developed. Under the optimized solvent system of n-hexane-ethyl acetate-water (1:50:50, v/v/v) with a combination of head-tail and tail-head elution modes, various procyanidins fractions with different polymerization degrees were successfully separated. UPLC, QTOF-MS and 1 H NMR analysis verified that these fractions contained monomer up to pentamer respectively. Dimeric procyanidin B2 (purity>86%) could be isolated by HSCCC in a single run. Other individual procyanidins in these fractions could be further isolated and purified by preparative HPLC. The developed HSCCC together with preparative HPLC techniques appeared to be a useful tool for large preparation of different procyanidins from cacao beans. Furthermore, by antioxidant activity assays, it was proved that both fractions and individual procyanidins possessed greater antioxidant activities compared to standard trolox. The antioxidant activities of procyanidins increase as the increase of their polymerization degree. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Separation of amaranthine-type betacyanins by ion-pair high-speed countercurrent chromatography.

    Science.gov (United States)

    Jerz, Gerold; Gebers, Nadine; Szot, Dominika; Szaleniec, Maciej; Winterhalter, Peter; Wybraniec, Slawomir

    2014-05-30

    Betacyanins, red-violet plant pigments, were fractionated by ion-pair high-speed countercurrent chromatography (IP-HSCCC) from leaves extract of Iresine lindenii Van Houtte, an ornamental plant of the family Amaranthaceae. An HSCCC solvent system consisting of TBME-1-BuOH-ACN-H2O (1:3:1:5, v/v/v/v) was applied using ion-pair forming heptafluorobutyric acid (HFBA). Significantly different elution profiles of betacyanin diastereomeric pairs (derivatives based on betanidin and isobetanidin) observed in the HSCCC in comparison to HPLC systems indicate a complementarity of both techniques' fractionation capabilities. The numerous diastereomeric pairs can be selectively separated from each other using the HSCCC system simplifying the pigment purification process. Apart from the three well known highly abundant pigments (amaranthine, betanin and iresinin I) together with their isoforms, three new acylated (feruloylated and sinapoylated) betacyanins as well as known pigment hylocerenin (previously isolated from cacti fruits) were characterized in the plant for the first time and they are new for the whole Amaranthaceae family. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Preparative separation and purification of bufadienolides from ChanSu by high-speed counter-current chromatography combined with preparative HPLC

    International Nuclear Information System (INIS)

    Li, Jialian; Zhang, Yongqing; Lin, Yunliang; Wang, Xiao; Fang, Lei; Geng, Yanling; Zhang, Qinde

    2013-01-01

    Eight bufadienolides were successfully isolated and purified from ChanSu by high-speed counter-current chromatography (HSCCC) combined with preparative HPLC (prep-HPLC). First, a stepwise elution mode of HSCCC with the solvent system composed of petroleum ether–ethyl acetate–methanol–water (4:6:4:6, 4:6:5:5, v/v) was employed and four bufadienolides, two partially purified fractions were obtained from 200 mg of crude extract. The partially purified fractions III and VI were then further separated by prepHPLC, respectively, and another four bufadienolides were recovered. Their structures were confirmed by ESI-MS and 1 H-NMR spectra. (author)

  11. Liquid film and interfacial wave behavior in air-water countercurrent flow through vertical short multi-tube geometries

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Giot, M.

    1992-01-01

    A series of experiments has been performed on air-water countercurrent flow through short multi-tube geometries (tube number n = 3, diameter d = 36mm, length I = 2d, 10d and 20d). The time-varying thicknesses of the liquid films trickling down the individual tubes are measured by means of conductance probes mounted flush at different locations of the inner wall surfaces. Detailed time series analyses of the measured film thicknesses provide some useful information about the film flow behavior as well as the interfacial wave characteristics in individual tubes, which can be used as some guidelines for developing more general predictive flooding models. 18 refs., 18 figs., 1 tabs

  12. Two-step purification of scutellarin from Erigeron breviscapus (vant.) Hand. Mazz. by high-speed counter-current chromatography.

    Science.gov (United States)

    Gao, Min; Gu, Ming; Liu, Chun-Zhao

    2006-07-11

    Scutellarin, a flavone glycoside, popularly applied for the treatment of cardiopathy, has been purified in two-step purification by high-speed counter-current chromatography (HSCCC) from Erigeron breviscapus (vant.) Hand. Mazz. (Deng-zhan-hua in Chinese), a well-known traditional Chinese medicinal plant for heart disease. Two solvent systems, n-hexane-ethyl acetate-methanol-acetic acid-water (1:6:1.5:1:4, v/v/v/v/v) and ethyl acetate-n-butanol-acetonitrile-0.1% HCl (5:2:5:10, v/v/v/v) were used for the two-step purification. The purity of the collected fraction of scutellarin was 95.6%. This study supplies a new alternative method for purification of scutellarin.

  13. Experimental investigation of flooding in air-water counter-current flow with a vertical adiabatic multi-rod bundle

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Hho Jung; Cha, Jong Hee; Cho, Sung Jae; Chun, Moon Hyun

    1991-01-01

    The process of flooding phenomenon in a vertical adiabatic 3 x 3 tube bundle flow channel has been studied experimentally. A series of tests was performed, using three types of tube bundle differing only in the number of spacer grids attached, to investigate the effects of spacer grids and multi-flow channel interactions on the air-water counter-current flow limitations. Experimentally determined flooding points at various water film Reynolds numbers for three different test sections are presented in graphical form and compared with entrainment criterion for co-current flow and instability criteria. In addition, empirical flooding correlations of the Kutateladze type are obtained for each type of test section using liquid penetration data

  14. Isolation and Purification of Oridonin from the Whole Plant of Isodon rubescens by High-Speed Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    ChunYue Yu

    2011-09-01

    Full Text Available Semi-preparative high-speed counter-current chromatography (HSCCC was successfully used for isolation and purification of oridonin from Isodon rubescens by using a two-phase-solvent system composed of n-hexane-ethyl acetate-methanol-water (2.8:5:2.8:5, v/v/v/v. The targeted compound isolated, collected and purified by HSCCC was analyzed by high performance liquid chromatography (HPLC. A total of 40.6 mg of oridonin with the purity of 73.5% was obtained in less than 100 min from 100 mg of crude Isodon rubescens extract. The chemical structure of the compound was identified by IR, 1H-NMR and 13C-NMR.

  15. Analysis of multi-dimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1989-01-01

    The presence of parallel enclosed channels in a BWR provides opportunities for multiple flow regimes in co-current and countercurrent flow under Loss-of-Coolant Accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the Steam Sector Test Facility (SSTF) which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests and integral transients with vessel blowdown and refill were performed. The present of multi-dimensional and parallel channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  16. Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.

    Science.gov (United States)

    Berthod, A; Faure, K

    2015-04-17

    A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY

    Science.gov (United States)

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2013-01-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside (I, 20.2 mg),, syringin (II, 56.8 mg), sinapaldehyde glucoside (III, 26.2 mg),, syringaresinol 4'-o-β-d-glucopyranoside (IV, 20.4 mg), and pedunculoside (V, 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1H and 13C NMR studies. Glycoside I was isolated from this plant for the first time. PMID:25132792

  18. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY.

    Science.gov (United States)

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2014-04-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside ( I , 20.2 mg),, syringin ( II , 56.8 mg), sinapaldehyde glucoside ( III , 26.2 mg),, syringaresinol 4'-o-β-d-glucopyranoside ( IV , 20.4 mg), and pedunculoside ( V , 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1 H and 13 C NMR studies. Glycoside I was isolated from this plant for the first time.

  19. Isolation of four phenolic compounds from Mangifera indica L. flowers by using normal phase combined with elution extrusion two-step high speed countercurrent chromatography.

    Science.gov (United States)

    Shaheen, Nusrat; Lu, Yanzhen; Geng, Ping; Shao, Qian; Wei, Yun

    2017-03-01

    Two-step high speed countercurrent chromatography method, following normal phase and elution-extrusion mode of operation by using selected solvent systems, was introduced for phenolic compounds separation. Phenolic compounds including gallic acid, ethyl gallate, ethyl digallate and ellagic acid were separated from the ethanol extract of mango (Mangifera indica L.) flowers for the first time. In the first step, gallic acid of 3.7mg and ethyl gallate of 3.9mg with the purities of 98.87% and 99.55%, respectively, were isolated by using hexane-ethylacetate-methanol-water (4:6:4:6, v/v) in normal phase high speed countercurrent chromatography from 200mg of crude extract, while ethyl digallate and ellagic acid were collected in the form of mixture fraction. In the second step, further purification of the mixture was carried out with the help of another selected solvent system of dichloromethane-methanol-water (4:3:2, v/v) following elusion-extrusion mode of operation. Ethyl digallate of 3.8mg and ellagic acid of 5.7mg were separated well with high purities of 98.68% and 99.71%, respectively. The separated phenolic compounds were identified and confirmed by HPLC, UPLC-QTOF/ESI-MS, 1 H and 13 C NMR spectrometric analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Increase of efficiency of plant materials heat treatment in tubular reactors

    Directory of Open Access Journals (Sweden)

    A. V. Golubkovich

    2016-01-01

    Full Text Available In agriculture products of pyrolysis of plant materials in the form of waste of the main production can be applied as a source of heat and electric power. Besides, their use prevents ecological pollution of the soil and the atmosphere. Pyrolysis plants can be used for work with tubular reactors anywhere. Due to them farmers can dry grain, using waste heat of diesel generators, heatgenerators, boiler plants and receiving thus gaseous products, liquid and firm fractions. A technology based on cyclic and continuous plant mass movement by a piston in a pipe from a loading site to a place of unloading of a firm phase consistently through cameras of drying, pyrolysis, condensation of gaseous products. Exhaust furnace gases with a temperature up to 600 degrees Celsius are given countercurrent material movement from a power equipment. The gaseous, liquid and firm products from the pyrolysis camera are used for heat and electric power generation. Calculation of parameters of subdrying and pyrolysis cameras is necessary for effective and steady operation of the tubular reactor. The authors determined the speed of raw materials movement, and also duration of drying and pyrolysis in working chambers. An analysis of a simplified mathematical model of process was confirmed with results of experiments. Models of heat treatment of wet plant materials in tubular reactors are worked out on a basis of equality of speeds of material movement in the reactor and distribution of a temperature front in material on radius. The authors defined estimated characteristic for determination of tubular reactor productivity and size of heat, required for drying and pyrolysis.

  1. Experimental characterisation of the interfacial structure during counter-current flow limitation in a model of the hot leg of a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, C., E-mail: c.vallee@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Inst. of Safety Research, Dresden (Germany); Nariai, T.; Futatsugi, T.; Tomiyama, A., E-mail: nariai@cfrg.scitec.kobe-u.ac.jp, E-mail: futatsugi@cfrg.scitec.kobe-u.ac.jp, E-mail: tomiyama@mech.kobe-u.ac.jp [Kobe Univ., Graduate School of Engineering, Kobe (Japan); Lucas, D., E-mail: d.lucas@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Inst. of Safety Research, Dresden (Germany); Murase, M., E-mail: murase@inss.co.jp [Inst. of Nuclear Safety System, Inc. (INSS), Fukui (Japan)

    2011-07-01

    In order to investigate the two-phase flow behaviour during counter-current flow limitation in the hot leg of a pressurised water reactor, dedicated experiments were performed in a scaled down model of Kobe University. The structure of the interface was observed from the side of the channel test section using a high-speed video camera. An algorithm was developed to recognise the stratified interface in the camera frames after background subtraction. The evolution of the water level along the hot leg is analysed in function of the liquid and gas flow rates. (author)

  2. One component, volume heated, boiling pool thermohydraulics

    International Nuclear Information System (INIS)

    Bede, M.; Perret, C.; Pretrel, H.; Seiler, J.M.

    1993-01-01

    Prior work on boiling pools provided heat exchange correlations valid for bubbly flow with laminar or turbulent boundary layers. New experiments performed with water (SEBULON) and UO 2 (SCARABEE BF2) in a churn-turbulent flow configuration show unexpected heat flux distributions for which the maximum heat flux may be situated well below the pool surface. The origin of this behaviour is attributed to condensation effects, very unstable boundary layer flow and surface oscillation. A calculation model is discussed which permits to approach the experimental heat flux distribution with reasonable accuracy. (authors). 7 figs., 2 appendix., 14 refs

  3. Chromium (Ⅵ) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption.

    Science.gov (United States)

    Wang, Wenqiang

    2018-01-01

    To exploit the adsorption capacity of commercial powdered activated carbon (PAC) and to improve the efficiency of Cr(VI) removal from aqueous solutions, the adsorption of Cr(VI) by commercial PAC and the countercurrent two-stage adsorption (CTA) process was investigated. Different adsorption kinetics models and isotherms were compared, and the pseudo-second-order model and the Langmuir and Freundlich models fit the experimental data well. The Cr(VI) removal efficiency was >80% and was improved by 37% through the CTA process compared with the conventional single-stage adsorption process when the initial Cr(VI) concentration was 50 mg/L with a PAC dose of 1.250 g/L and a pH of 3. A calculation method for calculating the effluent Cr(VI) concentration and the PAC dose was developed for the CTA process, and the validity of the method was confirmed by a deviation of <5%. Copyright © 2017. Published by Elsevier Ltd.

  4. Preparative separation and purification of bufadienolides from ChanSu by high-speed counter-current chromatography combined with preparative HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jialian; Zhang, Yongqing, E-mail: fleiv@163.com [College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong (China); Lin, Yunliang; Wang, Xiao; Fang, Lei; Geng, Yanling [Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, Shandong (China); Zhang, Qinde [Shandong College of Traditional Chinese Medicine, Laiyang, Shandong (China)

    2013-09-01

    Eight bufadienolides were successfully isolated and purified from ChanSu by high-speed counter-current chromatography (HSCCC) combined with preparative HPLC (prep-HPLC). First, a stepwise elution mode of HSCCC with the solvent system composed of petroleum ether-ethyl acetate-methanol-water (4:6:4:6, 4:6:5:5, v/v) was employed and four bufadienolides, two partially purified fractions were obtained from 200 mg of crude extract. The partially purified fractions III and VI were then further separated by prepHPLC, respectively, and another four bufadienolides were recovered. Their structures were confirmed by ESI-MS and {sup 1}H-NMR spectra. (author)

  5. Mathematical simulation and calculation of the continuous countercurrent process of ion-exchange extraction of strontium from strongly mineralized solutions

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Guryanova, L.N.; Baturova, L.L.; Venetsianov, E.V.; Ivanov, V.A.; Nikolaev, N.P.

    1993-01-01

    The program open-quotes Countercurrentclose quotes is developed for the simulation of a continuous ion-exchange extraction of strontium from strongly mineralized NaCl and CaCl 2 solutions using a KB-4 carboxylic cation-exchanger in the countercurrent columns. The program allows one to Calculate the conditions of Ca and Sr separation depending on the mode of operation at the sorption and regeneration stages, the residual Sr content on the overloaded sorbent, and the Sr separation on incompletely regenerated KB-4. It also makes it possible to find the optimal separation conditions. The program open-quotes Countercurrentclose quotes can be also used to simulate other ion-exchange processes

  6. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production.

    Science.gov (United States)

    Steinebach, Fabian; Müller-Späth, Thomas; Morbidelli, Massimo

    2016-09-01

    The economic advantages of continuous processing of biopharmaceuticals, which include smaller equipment and faster, efficient processes, have increased interest in this technology over the past decade. Continuous processes can also improve quality assurance and enable greater controllability, consistent with the quality initiatives of the FDA. Here, we discuss different continuous multi-column chromatography processes. Differences in the capture and polishing steps result in two different types of continuous processes that employ counter-current column movement. Continuous-capture processes are associated with increased productivity per cycle and decreased buffer consumption, whereas the typical purity-yield trade-off of classical batch chromatography can be surmounted by continuous processes for polishing applications. In the context of continuous manufacturing, different but complementary chromatographic columns or devices are typically combined to improve overall process performance and avoid unnecessary product storage. In the following, these various processes, their performances compared with batch processing and resulting product quality are discussed based on a review of the literature. Based on various examples of applications, primarily monoclonal antibody production processes, conclusions are drawn about the future of these continuous-manufacturing technologies. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Capes Current: a summer countercurrent flowing past Cape Leeuwin and Cape Naturaliste, Western Australia

    Science.gov (United States)

    Pearce, Alan; Pattiaratchi, Charitha

    1999-03-01

    Although the dominant boundary current off Western Australia is the poleward-flowing Leeuwin Current, satellite imagery shows that there is a cool equatorward coastal countercurrent running close inshore in the extreme southwest during the summer months. This seasonal current has been named the Capes Current as it appears to be strongest between Cape Leeuwin (34°20'S) and Cape Naturaliste (33°30'S), and it is probably linked with the general northward shelf current which has been observed previously along most of the Western Australian coastline further north. Strong northwards wind stresses between November and March slow the Leeuwin Current (which moves offshore) and drive the Capes Current, and there may be localised upwelling as well (Gersbach et al., Continental Shelf Research, 1998). It has important implications for the salmon fishery as it may affect the migration of adult salmon around Cape Leeuwin at this time of year.

  8. Isolation and Purification of Two Isoflavones from Hericium erinaceum Mycelium by High-Speed Counter-Current Chromatography.

    Science.gov (United States)

    He, Jinzhe; Fan, Peng; Feng, Simin; Shao, Ping; Sun, Peilong

    2018-03-02

    High-speed counter-current chromatography (HSCCC) was used to separate and purify two isoflavones for the first time from Hericium erinaceum ( H. erinaceum ) mycelium using a two-phase solvent system composed of chloroform-dichloromethane-methanol-water (4:2:3:2, v / v / v / v ). These two isoflavones were identified as genistein (4',5,7-trihydroxyisoflavone, C 15 H 10 O₅) and daidzein (4',7-dihydroxyisoflavone, C 15 H 10 O₄), using infrared spectroscopy (IR), electro-spary ionisation mass (ESI-MS), ¹H-nuclear magnetic resonance (NMR) and 13 C-NMR spectra. About 23 mg genistein with 95.7% purity and 18 mg daidzein with 97.3% purity were isolated from 150 mg ethanolic extract of H. erinaceum mycelium. The results demonstrated that HSCCC was a feasible method to separate and purify genistein and daidzein from H. erinaceum mycelium.

  9. Generation and Sustainment of Plasma Rotation by ICRF Heating

    Science.gov (United States)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  10. A quasilinear, Fokker--Planck description of fast wave minority heating permitting off-axis tangency interactions

    International Nuclear Information System (INIS)

    Catto, P.J.; Myra, J.R.; Russell, D.A.

    1994-01-01

    The off-axis quasilinear fast wave minority heating description of Catto and Myra [Phys. Fluids B 4, 187 (1992)] has been improved and implemented in a code which solves the combined quasilinear and collision operator equation for the minority distribution function. Geometrical complications of a minority resonance nearly tangent to a flux surface in the presence of trapped as well as passing particles are retained. The tangency interactions alter the moments and the fusion reaction rate parameter in a model which explores heating on a single flux surface. The strong tangency interactions enhance the more familiar interactions due to trapped particles turning in the vicinity of the minority resonance. An asymmetry in off-axis heating effects occurs because heating on the low field side of the magnetic axis heats more trapped particles than high field side heating. This asymmetry is responsible for the better performance of the low field side case relative to the high and on-axis cases and provides some control over the power absorbed by and the energy stored in the trapped particles

  11. Analysis of the UPTF Separate Effects Test 11 (steam-water counter-current flow in the broken loop hot leg) using RELAP5/MOD2

    International Nuclear Information System (INIS)

    Dillistone, M.J.

    1989-08-01

    RELAP5/MOD2 predictions of countercurrent flow limitation in the UPTF hot leg separate effects Test (test 11) are compared with the experimental data. The code underestimates, by a factor of more than three, the gas flow necessary to prevent liquid runback from the steam generator, and this is shown to be due to an oversimplified flow-regime map which does not allow the possibility of stratified flow in the hot leg riser. The predicted countercurrent flow is also shown to depend, wrongly, on the depth of liquid in the steam generator plenum. The same test is also modelled using a version of the code in which stratified flow in the riser is made possible. The gas flow needed to prevent liquid runback is then predicted quite well, but at all lower gas flows the code predicts that the flow is completely unrestricted - i.e. liquid flows between full flow and zero flow are not predicted. This is shown to happen because the code cannot calculate correctly the liquid level in the hot leg, mainly because of a numerical effect of upwind donoring in the momentum flux terms of the code's basic equations. It is also shown that the code cannot model the considerable effect of the ECCS injection pipe (which runs inside the hot leg) on the liquid level. (author)

  12. Two-phase flow experiments on Counter-Current Flow Limitation in a model of the hot leg of a pressurized water reactor (2015 test series)

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Matthias; Lucas, Dirk; Pietruske, Heiko; Szalinski, Lutz

    2016-12-15

    Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.

  13. Two-phase flow experiments on Counter-Current Flow Limitation in a model of the hot leg of a pressurized water reactor (2015 test series)

    International Nuclear Information System (INIS)

    Beyer, Matthias; Lucas, Dirk; Pietruske, Heiko; Szalinski, Lutz

    2016-12-01

    Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.

  14. Experimental Assessment of a Helical Coil Heat Exchanger Operating at Subcritical and Supercritical Conditions in a Small-Scale Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2017-05-01

    Full Text Available In this study, the performance of a helical coil heat exchanger operating at subcritical and supercritical conditions is analysed. The counter-current heat exchanger was specially designed to operate at a maximal pressure and temperature of 42 bar and 200 °C, respectively. The small-scale solar organic Rankine cycle (ORC installation has a net power output of 3 kWe. The first tests were done in a laboratory where an electrical heater was used instead of the concentrated photovoltaic/thermal (CPV/T collectors. The inlet heating fluid temperature of the water was 95 °C. The effects of different parameters on the heat transfer rate in the heat exchanger were investigated. Particularly, the performance analysis was elaborated considering the changes of the mass flow rate of the working fluid (R-404A in the range of 0.20–0.33 kg/s and the inlet pressure varying from 18 bar up to 41 bar. Hence, the variation of the heat flux was in the range of 5–9 kW/m2. The results show that the working fluid’s mass flow rate has significant influence on the heat transfer rate rather than the operational pressure. Furthermore, from the comparison between the experimental results with the heat transfer correlations from the literature, the experimental results fall within the uncertainty range for the supercritical analysis but there is a deviation of the investigated subcritical correlations.

  15. Application of silver ion in the separation of macrolide antibiotic components by high-speed counter-current chromatography.

    Science.gov (United States)

    Wen, Yaoming; Wang, Jiaoyan; Chen, Xiuming; Le, Zhanxian; Chen, Yuxiang; Zheng, Wei

    2009-05-29

    Three macrolide antibiotic components - ascomycin, tacrolimus and dihydrotacrolimus - were separated and purified by silver ion high-speed counter-current chromatography (HSCCC). The solvent system consisted of n-hexane-tert-butyl methyl ether-methanol-water (1:3:6:5, v/v) and silver nitrate (0.10mol/l). The silver ion acted as a pi-complexing agent with tacrolimus because of its extra side double bond compared with ascomycin and dihydrotacrolimus. This complexation modified the partition coefficient values and the separation factors of the three components. As a result, ascomycin, tacrolimus and dihydrotacrolimus were purified from 150mg extracted crude sample with purities of 97.6%, 98.7% and 96.5%, respectively, and yields over 80% (including their tautomers). These results cannot be achieved with the same solvent system but without the addition of silver ion.

  16. Use of limonene in countercurrent chromatography: a green alkane substitute.

    Science.gov (United States)

    Faure, Karine; Bouju, Elodie; Suchet, Pauline; Berthod, Alain

    2013-05-07

    Counter-current chromatography (CCC) is a preparative separation technique working with the two liquid phases of a biphasic liquid system. One phase is used as the mobile phase when the other, the stationary phase, is held in place by centrifugal fields. Limonene is a biorenewable cycloterpene solvent coming from orange peel waste. It was evaluated as a possible substitute for heptane in CCC separations. The limonene/methanol/water and heptane/methanol/water phase diagrams are very similar at room temperature. The double bonds of the limonene molecule allows for possible π-π interactions with solutes rendering limonene slightly more polar than heptane giving small differences in solute partition coefficients in the two systems. The 24% higher limonene density is a difference with heptane that has major consequences in CCC. The polar and apolar phases of the limonene/methanol/water 10/9/1 v/v have -0.025 g/cm(3) density difference (lower limonene phase) compared to +0.132 g/cm(3) with heptane (upper heptane phase). This precludes the use of this limonene system with hydrodynamic CCC columns that need significant density difference to retain a liquid stationary phase. It is an advantage with hydrostatic CCC columns because density difference is related to the working pressure drop: limonene allows one to work with high centrifugal fields and moderate pressure drop. Limonene has the capability to be a "green" alternative to petroleum-based solvents in CCC applications.

  17. 77 FR 22267 - Eagle Permits; Changes in the Regulations Governing Eagle Permitting

    Science.gov (United States)

    2012-04-13

    ... with rotating wind turbines. Permit Duration and Transferability In February 2011, we published draft... permit applicants, because of the known risk to eagles from collisions with wind turbines and electric... change does not affect the tenure of any other migratory bird or eagle permit type. DATES: Electronic...

  18. Isolation of sutherlandins A, B, C and D from Sutherlandia frutescens (L.) R. Br. by counter-current chromatography using spiral tubing support rotors.

    Science.gov (United States)

    Chen, Cuiping; Folk, William R; Lazo-Portugal, Rodrigo; Finn, Thomas M; Knight, Martha

    2017-07-28

    Spiral countercurrent-chromatography has great potential for improving the capacity and efficiency of purification of secondary metabolites, and here we describe applications useful for the isolation of flavonoids from the widely used South African medicinal plant, Sutherlandia frutescens (L.) R. Br. In the spiral tubing support rotor, STS-4 for high-speed counter-current chromatography, several polar butanol aqueous solvent systems were selected using a logK plot, and the novel flavonol glycosides (sutherlandins A-D) were well separated by the optimized solvent system (ethyl acetate:n-butanol:acetic acid:water; 5:1:0.3:6 by vol.). The yield of purified flavonoids from 0.9g extract varied from 8.6mg to 54mg of the sutherlandins for a total of 85.3mg. The same extract was fractionated in the new STS-12 rotor of the same outside dimensions but with more radial channels forming 12 loops of the tubing instead of 4. The rotor holds more layers and increased length of tubing. From 0.9g extract the STS-12 rotor yielded more recovery of 110.4mg total with amounts varying from 11.2mg to 64mg of the sutherlandins and apparent increased separation efficiency as noted by less volume of each fraction peak. Thus from 1-g amounts of extract, good recovery of the flavonoids was achieved in the butanol aqueous solvent system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Tradeable carbon permits

    International Nuclear Information System (INIS)

    Koutstaal, P.R.

    1995-01-01

    The research project on tradeable carbon permits has focused on three elements. First of all, the practical implications of designing a system of tradeable emission permits for reducing CO2 has been studied. In the second part, the consequences of introducing a system of tradeable carbon permits for entry barriers have been considered. Finally, the institutional requirements and welfare effects of coordination of CO2 abatement in a second-best world have been examined

  20. 50 CFR 679.4 - Permits.

    Science.gov (United States)

    2010-10-01

    ... this section, with the exception that an IFQ hired master permit or a CDQ hired master permit need not... program permit or card type is: Permit is in effect from issue date through the end of: For more... section (C) Halibut & sablefish hired master permits Specified fishing year Paragraph (d)(2) of this...

  1. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    Science.gov (United States)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  2. State Licenses & Permits

    Data.gov (United States)

    Small Business Administration — Starting a business? Confused about whether you need a business license or permit? Virtually every business needs some form of license or permit to operate legally....

  3. Permit.LOA table

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table includes the effective dates by vessel and permit number for each issued letter of authorization (LOA) by the Permit Office (APSD)

  4. Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels

    International Nuclear Information System (INIS)

    Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young

    2001-01-01

    A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant

  5. Countercurrent extraction of soluble sugars from almond hulls and assessment of the bioenergy potential.

    Science.gov (United States)

    Holtman, Kevin M; Offeman, Richard D; Franqui-Villanueva, Diana; Bayati, Andre K; Orts, William J

    2015-03-11

    Almond hulls contain considerable proportions (37% by dry weight) of water-soluble, fermentable sugars (sucrose, glucose, and fructose), which can be extracted for industrial purposes. The maximum optimal solids loading was determined to be 20% for sugar extraction, and the addition of 0.5% (w/v) pectinase aided in maintaining a sufficient free water volume for sugar recovery. A laboratory countercurrent extraction experiment utilizing a 1 h steep followed by three extraction (wash) stages produced a high-concentration (131 g/L fermentable sugar) syrup. Overall, sugar recovery efficiency was 88%. The inner stage washing efficiencies were compatible with solution equilibrium calculations, indicating that efficiency was high. The concentrated sugar syrup was fermented to ethanol at high efficiency (86% conversion), and ethanol concentrations in the broth were 7.4% (v/v). Thin stillage contained 233 g SCOD/L, which was converted to biomethane at an efficiency of 90% with a biomethane potential of 297 mL/g SCODdestroyed. Overall, results suggested that a minima of 49 gal (185 L) ethanol and 75 m(3) methane/t hulls (dry whole hull basis) are achievable.

  6. Federal Fisheries Permit (FFP)/ Federal Processor Permit (FPP) Permit Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Federal Fisheries Permit (FFP) is required for vessels of the United States which are used to fish for groundfish in the Gulf of Alaska or Bering Sea and...

  7. Preparative separation of polyphenols from artichoke by polyamide column chromatography and high-speed counter-current chromatography

    International Nuclear Information System (INIS)

    Shu, Xikai; Wang, Mei; Liu, Daicheng; Wang, Daijie; Lin, Xiaojing; Liu, Jianhua; Wang, Xiao; Huang, Luqi

    2013-01-01

    An efficient method for the rapid separation and purification of polyphenols from artichoke by polyamide column chromatography in combination with high-speed counter-current chromatography (HSCCC) was successfully built. The crude ethanol extracts from dry artichoke were first pre-separated by polyamide column chromatography and divided in two parts as sample 1 and sample 2. Then, the samples were further separated by HSCCC and yielded 7.8 mg of chlorogenic acid (compound I), 24.5 mg of luteolin-7-O-β-D-rutinoside (compound II), 18.4 mg of luteolin-7-O-β-D-glucoside (compound III), and 33.4 mg of cynarin (compound IV) with purity levels of 92.0%, 98.2%, 98.5%, and 98.0%, respectively, as determined by high-performance liquid chromatography (HPLC) method. The chemical structures of these compounds were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). (author)

  8. Preparative separation of polyphenols from artichoke by polyamide column chromatography and high-speed counter-current chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xikai; Wang, Mei; Liu, Daicheng [College of Life Science, Shandong Normal University, Jinan, Shandong (China); Wang, Daijie; Lin, Xiaojing; Liu, Jianhua; Wang, Xiao; Huang, Luqi, E-mail: wxjn1998@126.com [Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, Shandong (China)

    2013-09-01

    An efficient method for the rapid separation and purification of polyphenols from artichoke by polyamide column chromatography in combination with high-speed counter-current chromatography (HSCCC) was successfully built. The crude ethanol extracts from dry artichoke were first pre-separated by polyamide column chromatography and divided in two parts as sample 1 and sample 2. Then, the samples were further separated by HSCCC and yielded 7.8 mg of chlorogenic acid (compound I), 24.5 mg of luteolin-7-O-{beta}-D-rutinoside (compound II), 18.4 mg of luteolin-7-O-{beta}-D-glucoside (compound III), and 33.4 mg of cynarin (compound IV) with purity levels of 92.0%, 98.2%, 98.5%, and 98.0%, respectively, as determined by high-performance liquid chromatography (HPLC) method. The chemical structures of these compounds were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). (author)

  9. VOF Simulations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg

    Directory of Open Access Journals (Sweden)

    Michio Murase

    2012-12-01

    Full Text Available In order to evaluate flow patterns and CCFL (countercurrent flow limitation characteristics in a PWR hot leg under reflux condensation, numerical simulations have been done using a two-fluid model and a VOF (volume of fluid method implemented in the CFD software, FLUENT6.3.26. The two-fluid model gave good agreement with CCFL data under low pressure conditions but did not give good results under high pressure steam-water conditions. On the other hand, the VOF method gave good agreement with CCFL data for tests with a rectangular channel but did not give good results for calculations in a circular channel. Therefore, in this paper, the computational grid and schemes were improved in the VOF method, numerical simulations were done for steam-water flows at 1.5 MPa under PWR full-scale conditions with the diameter of 0.75 m, and the calculated results were compared with the UPTF data at 1.5 MPa. As a result, the calculated flow pattern was found to be similar to the flow pattern observed in small-scale air-water tests, and the calculated CCFL characteristics agreed well with the UPTF data at 1.5 MPa except in the region of a large steam volumetric flux.

  10. Behaviour of liquid films and flooding in counter-current two-phase flow, (1)

    International Nuclear Information System (INIS)

    Suzuki, Shin-ichi; Ueda, Tatsuhiro.

    1978-01-01

    This paper reports on the results of study of the behavior of liquid film and flooding in counter-current two phase flow, and the flow speed of gas phase was measured over the wide ranges of tube diameter, tube length, amount of liquid flow, viscosity and surface tension. Liquid samples used for this experiment were water, glycerol, and second octyl alcohol. The phenomena were observed with a high speed camera. The maximum thickness of liquid film was measured, and the effects of various factors on the flooding were investigated. The results of investigation were as follows. The big waves which cause the flooding were developed by the interaction of one of the waves on liquid film surface with gas phase flow. The flow speed of gas phase at the time of beginning of flooding increases with the reduction of amount of liquid flow and the increase of tube diameter. The flooding flow speed is reduced with the increase of tube length. The larger maximum film thickness at the time of no gas phase flow causes flooding at low gas phase flow speed. (Kato, T.)

  11. The effects of a multistep intercooled compression process implemented on a solar-driven Braysson heat engine

    International Nuclear Information System (INIS)

    Georgiou, D.P.; Milidonis, K.F.; Georgiou, E.N.

    2015-01-01

    Highlights: • Thermodynamic analysis of a solar driven power plant running on the Braysson cycle. • Isothermal compression is implemented by the use of multistage intercooled compression stages. • The plant’s thermal efficiency is investigated and compared against other cycles. - Abstract: The present study develops the thermodynamic analysis for the cycle of a solar-driven, Braysson cycle based plant in the ideal limit and in the presence of process irreversibilities. The plant cycle differs from the conventional idealized Braysson cycle in that the implementation of the final isothermal compression process is substituted by a multistep intercooled compression. The cycle’s efficiency is analytically formulated after taking into account several loss (irreversibility) sources such as the non-isentropic behavior of the main compressor, the power turbine and the intercooled compressor stages as well as the actual heat transferred through countercurrent heat exchangers. All pressure losses associated with heat exchangers are related to the actual heat transfer load within each exchanger. The analysis develops a parametric evaluation for the effectiveness of the main cycle free variables on the thermal efficiency of the cycle. Such free variables include the working fluid maximum temperature, the compressor pressure ratio and the operating temperature limits of the intercooled compression stages, in addition to the polytropic coefficients of the compressor and power turbine (quasi-) isentropic processes. The results indicate that such a plant may reach efficiency levels above 30%, i.e. exceeding the efficiencies of the conventional Photovoltaic plants by a wide margin

  12. Diffusive shunting of gases and other molecules in the renal vasculature: physiological and evolutionary significance.

    Science.gov (United States)

    Ngo, Jennifer P; Ow, Connie P C; Gardiner, Bruce S; Kar, Saptarshi; Pearson, James T; Smith, David W; Evans, Roger G

    2016-11-01

    Countercurrent systems have evolved in a variety of biological systems that allow transfer of heat, gases, and solutes. For example, in the renal medulla, the countercurrent arrangement of vascular and tubular elements facilitates the trapping of urea and other solutes in the inner medulla, which in turn enables the formation of concentrated urine. Arteries and veins in the cortex are also arranged in a countercurrent fashion, as are descending and ascending vasa recta in the medulla. For countercurrent diffusion to occur, barriers to diffusion must be small. This appears to be characteristic of larger vessels in the renal cortex. There must also be gradients in the concentration of molecules between afferent and efferent vessels, with the transport of molecules possible in either direction. Such gradients exist for oxygen in both the cortex and medulla, but there is little evidence that large gradients exist for other molecules such as carbon dioxide, nitric oxide, superoxide, hydrogen sulfide, and ammonia. There is some experimental evidence for arterial-to-venous (AV) oxygen shunting. Mathematical models also provide evidence for oxygen shunting in both the cortex and medulla. However, the quantitative significance of AV oxygen shunting remains a matter of controversy. Thus, whereas the countercurrent arrangement of vasa recta in the medulla appears to have evolved as a consequence of the evolution of Henle's loop, the evolutionary significance of the intimate countercurrent arrangement of blood vessels in the renal cortex remains an enigma. Copyright © 2016 the American Physiological Society.

  13. Preparative separation of C19-diterpenoid alkaloids from Aconitum carmichaelii Debx by pH‑zone-refining counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Dahui Liu

    2013-01-01

    Full Text Available The technique of pH-zone-refining counter-current chromatography was successfully applied to preparatively separate three C19-diterpenoid alkaloids from the crude extracts of Aconitum carmichaelii for the first time using a two-phase solvent system of petroleum ether-ethyl acetate-methanol-water (5:5:1:9, v/v/v/v. Mesaconitine (I, hypaconitine (II, and deoxyaconitine (III were obtained from 2.5 g of the crude alkaloids in a one-step separation; the yields were 4.16%, 16.96%, and 5.05%, respectively. The purities of compounds I, II, and III were 93.0%, 95%, and 96%, respectively, as determined by HPLC. The chemical structures of the three compounds were identified by electrospray ionization mass spectrometry (ESI-MS and NMR.

  14. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    International Nuclear Information System (INIS)

    Vierow, Karen

    2008-01-01

    This project is investigating countercurrent flow and 'flooding' phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the 'surge line' and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008

  15. 50 CFR 660.25 - Permits.

    Science.gov (United States)

    2010-10-01

    ... change and the reasons for the request. If the permit requested to be changed to the base permit is..., vessel owner, or permit owner for any reason. The sablefish at-sea processing exemption will expire upon... ownership. (G) For a request to change a permit's ownership that is necessitated by divorce, the individual...

  16. 41 CFR 102-74.500 - Can Federal agencies disapprove permit applications or cancel issued permits?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Can Federal agencies disapprove permit applications or cancel issued permits? 102-74.500 Section 102-74.500 Public Contracts and... cancel issued permits? Yes, Federal agencies may disapprove any permit application or cancel an issued...

  17. One-step isolation of γ-oryzanol from rice bran oil by non-aqueous hydrostatic countercurrent chromatography.

    Science.gov (United States)

    Angelis, Apostolis; Urbain, Aurélie; Halabalaki, Maria; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros

    2011-09-01

    The value-added γ-oryzanol was purified in one step from crude rice bran oil (RBO) using a preparative hydrostatic countercurrent chromatography (hydrostatic CCC) method, operating in the dual mode. The fractionation was performed using a non-aqueous biphasic solvent system consisting of heptane-acetonitrile-butanol (1.8:1.4:0.7, v/v/v), leading rapidly to the target compounds. Transfer of the analytical CCC method to large-scale isolation was also carried out yielding a high quantity-high purity fraction of γ-oryzanol. In addition, a fraction of hydroxylated triterpene alcohol ferulates (polar γ-oryzanol) was clearly separated and obtained. Furthermore, a fast HPLC-APCI(±)-HRMS method was developed and applied for the identification of γ-oryzanol as well as the polar γ-oryzanol in RBO and the resulting fractions. The purity of γ-oryzanol fraction was estimated as 97% based on HPLC-APCI-HRMS analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Title V Permitting Statistics Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Title V Permitting Statistics Inventory contains measured and estimated nationwide statistical data, consisting of counts of permitted sources, types of permits...

  19. Heat transfer phenomena related to the boiling crisis

    International Nuclear Information System (INIS)

    Groenveld, D.C.

    1981-03-01

    This report contains a state-of-the-art review of critical heat flux (CHF) and post-CHF heat transfer. Part I reviews the mechanisms controlling the boiling crisis. The observed parametric trends of the CHF in a heat flux controlled system are discussed in detail, paying special attention to parameters pertaining to nuclear fuel. The various methods of predicting the critical power are described. Part II reviews the published information on transition boiling and film boiling heat transfer under forced convective conditions. Transition boiling data were found to be available only within limited ranges of conditions. The data did not permit the derivation of a correlation; however, the parametric trends were isolated from these data. (author)

  20. 50 CFR 18.31 - Scientific research permits and public display permits.

    Science.gov (United States)

    2010-10-01

    ... the population stock and the marine ecosystem. In determining whether to issue a public display permit... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Scientific research permits and public..., DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER...

  1. Hanford Facility RCRA permit handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  2. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  3. Purification of optical imaging ligand-Cybesin by high-speed counter-current chromatography

    Science.gov (United States)

    Ma, Zhiyong; Ma, Ying; Sun, Xilin; Ye, Yunpeng; Shen, Baozhong; Chen, Xiaoyuan; Ito, Yoichiro

    2010-01-01

    Fluorescent Cybesin (Cypate-Bombesin Peptide Analogue Conjugate) was synthesized from Indocyanine Green (ICG) and the bombesin receptor ligand as a contrast agent for detecting pancreas tumors. However, the LC–MS analysis indicated that the target compound was only a minor component in the reaction mixture. Since preparative HPLC can hardly separate such a small amount of the target compound directly from the original crude reaction mixture without a considerable adsorptive loss onto the solid support, high-speed counter-current chromatography (HSCCC) was used for purification since the method uses no solid support and promises high sample recovery. A suitable two-phase solvent system composed of hexane/ethyl acetate/methanol/methyl t.-butyl ether/acetonitrile/water) at a volume ratio of 1:1:1:4:4:7 was selected based on the partition coefficient of Cybesin (K ≈ 0.9) determined by LC–MS. The separation was performed in two steps using the same solvent system with lower aqueous mobile phase. From 400 mg of the crude reaction mixture the first separation yielded 7.7 mg of fractions containing the target compound at 12.8% purity, and in the second run 1 mg of Cybesin was obtained at purity of 94.0% with a sample recovery rate of over 95% based on the LC–MS Analysis. PMID:20933483

  4. Preparative separation of C{sub 19}-diterpenoid alkaloids from Aconitum carmichaelii Debx by pH zone-refining counter-current chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dahui [Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming (China); Shu, Xikai; Wang, Xiao; Fang, Lei; Huang, Luqi, E-mail: wxjn1998@126.com [Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, Shandong (China); Xi, Xingjun; Zheng, Zhenjia [China National institute of Standardization, Beijing (China)

    2013-11-01

    The technique of pH-zone-refining counter-current chromatography was successfully applied to preparatively separate three C{sub 19}-diterpenoid alkaloids from the crude extracts of Aconitum carmichaelii for the first time using a two-phase solvent system of petroleum ether-ethyl acetate-methanol-water (5:5:1:9, v/v/v/v). Mesaconitine (I), hypaconitine (II), and deoxyaconitine (III) were obtained from 2.5 g of the crude alkaloids in a one-step separation; the yields were 4.16%, 16.96%, and 5.05%, respectively. The purities of compounds I, II, and III were 93.0%, 95%, and 96%, respectively, as determined by HPLC. The chemical structures of the three compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and NMR. (author)

  5. Generation and sustainment of plasma rotation by ICRF heating

    International Nuclear Information System (INIS)

    Perkins, F.W.; White, R.; Bonoli, P.T.; Chan, V.S.

    2001-01-01

    A mechanism is proposed and evaluated for driving rotation in tokamak plasmas by minority ion-cyclotron heating, even though this process introduces negligible angular momentum. The mechanism has two elements: First, angular momentum transport is governed by a diffusion equation with a non-slip boundary condition at the separatrix. Second, Monte-Carlo calculations show that energized particles will provide a torque density source which has a zero volume integral but separated positive and negative regions. With such a source, a solution of the diffusion equation predicts the on-axis rotation frequency Ω to be Ω=(4q max WJ*)eBR 3 a 2 n e (2π) 2 ) -1 (τ M /τ E ) where vertical bar J* vertical bar ∼ 5-10 is a non-dimensional rotation frequency calculated by the Monte-Carlo ORBIT code. Overall, agreement with experiment is good, when the resonance is on the low-field-side of the magnetic axis. The rotation becomes more counter-current and reverses sign on the high field side for a no-slip boundary. The velocity shear layer position is controllable and of sufficient magnitude to affect microinstabilities. (author)

  6. SEPARATION OF THE MINOR FLAVONOLS FROM FLOS GOSSYPII BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY

    Science.gov (United States)

    Yang, Yi; Zhao, Yongxin; Gu, Dongyu; Ayupbek, Amatjan; Huang, Yun; Dou, Jun; Ito, Yoichiro; Zhang, Tianyou; Aisa, Haji Akber

    2010-01-01

    An effective high-speed countercurrent chromatography (HSCCC) method was established for further separation and purification of four minor flavonols in addition to five major flavonols which were reported by our previous study from extracts of Flos Gossypii. HSCCC was performed with three two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water (7.5:15:6:7, v/v), (2.5:15:2:7, v/v) and (0:1:0:1, v/v). The separation was repeated 3 times, and 3.8 mg of 8-methoxyl-kaempferol-7-O-β-D-rhamnoside (HPLC purity 98.27%), 6.7 mg of astragalin (HPLC purity 94.18%), 3.3 mg of 4′-methoxyl-quercetin-7-O-β-D-glucoside (HPLC purity 94.30%) and 8.2 mg of hyperoside (HPLC purity 93.48%) were separated from 150 mg of the crude sample. The chemical structures of the flavonols were confirmed by MS, 1H NMR and 13C NMR. Meanwhile, the results indicated that the target compound with smaller K value (<0.5) can be separated by increasing column length of HSCCC. And four separation rules of flavonols according to the present study and references were summarized, which can be used as a useful guide for separation of flavonols by HSCCC. PMID:21494318

  7. RF heating and current drive on NSTX with high harmonic fast waves

    International Nuclear Information System (INIS)

    Ryan, P.M.; Swain, D.W.; Rosenberg, A.L.

    2003-01-01

    NSTX is a small aspect ratio tokamak (R = 0.85 m, a = 0.65 m). The High Harmonic Fast Wave (HHFW) system is a 30 MHz, 12-element array capable of launching both symmetric and directional wave spectra for plasma heating and non-inductive current drive. It has delivered up to 6 MW for short pulses and has routinely operated at ∼3 MW for 100-400 ms pulses. Results include strong, centrally-peaked electron heating in both D and He plasmas for both high and low phase velocity spectra. H-modes were obtained with application of HHFW power alone, with stored energy doubling after the L-H transition. Beta poloidal as large as unity has been obtained with significant fractions (0.4) of bootstrap current. Differences in the loop voltage are observed depending on whether the array is phased to drive current in the co- or counter-current directions. A fast ion tail with energies extending up to 140 keV has been observed when HHFW interacts with 80 keV neutral beams; neutron rate and lost ion measurements, as well as modeling, indicate significant power absorption by the fast ions. Radial rf power deposition and driven current profiles have been calculated with ray tracing and kinetic full-wave codes and compared with measurements. (author)

  8. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  9. Novel design for centrifugal counter-current chromatography: VI. Ellipsoid column.

    Science.gov (United States)

    Gu, Dongyu; Yang, Yi; Xin, Xuelei; Aisa, Haji Akber; Ito, Yoichiro

    2015-01-01

    A novel ellipsoid column was designed for centrifugal counter-current chromatography. Performance of the ellipsoid column with a capacity of 3.4 mL was examined with three different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW), hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMH), and 12.5% (w/w) PEG1000 and 12.5% (w/w) dibasic potassium phosphate in water (PEG-DPP) each with suitable test samples. In dipeptide separation with BAW system, both stationary phase retention (Sf) and peak resolution (Rs) of the ellipsoid column were much higher at 0° column angle (column axis parallel to the centrifugal force) than at 90° column angle (column axis perpendicular to the centrifugal force), where elution with the lower phase at a low flow rate produced the best separation yielding Rs at 2.02 with 27.8% Sf at a flow rate of 0.07 ml/min. In the DNP-amino acid separation with HEMW system, the best results were obtained at a flow rate of 0.05 ml/min with 31.6% Sf yielding high Rs values at 2.16 between DNP-DL-glu and DNP-β-ala peaks and 1.81 between DNP-β-ala and DNP-L-ala peaks. In protein separation with PEG-DPP system, lysozyme and myolobin were resolved at Rs of 1.08 at a flow rate of 0.03 ml/min with 38.9% Sf. Most of those Rs values exceed those obtained from the figure-8 column under similar experimental conditions previously reported.

  10. Experimental Modeling of Sterilization Effects for Atmospheric Entry Heating on Microorganisms

    Science.gov (United States)

    Schubert, Wayne W.; Spry, James A.; Ronney, Paul D.; Pandian, Nathan R.; Welder, Eric

    2012-01-01

    The objective of this research was to design, build, and test an experimental apparatus for studying the parameters of atmospheric entry heating, and the inactivation of temperature-resistant bacterial spores. The apparatus is capable of controlled, rapid heating of sample coupons to temperatures of 200 to 350 C and above. The vacuum chamber permits operation under vacuum or special atmospheric gas mixtures.

  11. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1988-03-01

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  12. Heat dispersion in rivers

    International Nuclear Information System (INIS)

    Shaw, T.L.

    1974-01-01

    One of the tasks of the Sonderforschungsbereich 80 is to study the dispersion of heat discharged into rivers and other bodies of water and to develop methods which permit prediction of detrimental effects caused by the heated discharges. In order to help the SFB 80 to specify this task, Dr. Shaw, lecturer of Civil Engineering at the Bristol University, conducted a literature survey on heat-dispersion studies during the two months which he spent as a visiting research fellow with the SFB 80 at the University of Karlsruhe in the summer of 1973. The following report is the outcome of this survey. It gives Dr. Shaw's assessment of the present state of knowledge - based almost exclusively on literature in the English language - and compares this with the knowledge required by river planners. The apparent discrepancy leads to suggestions for future research. Selected references as well as a representative bibliography can be found at the end of the report. (orig.) [de

  13. Rapid plasma heating by collective interactions, using strong turbulence and relativistic electron beams

    International Nuclear Information System (INIS)

    Wharton, C.B.

    1977-01-01

    A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating

  14. Multi-species counter-current diffusion model for etching depleted uranium oxide in NF3, RF glow discharge

    International Nuclear Information System (INIS)

    Saber, H.H.; El-Genk, M.S.

    1999-01-01

    Results of recent experiments investigating the decontamination of depleted UO 2 using NF 3 gas, RF gloss discharge, showed that etching rate decreased monotonically with immersion time to the end point. In addition to the formation of non-volatile reaction products on UO 2 surface, the accumulation of UF 6 in the sheath contributed to the decrease in etch rate with immersion time. To investigate the latter, a transient, multi-species, counter-current diffusion model for UO 2 etching is developed. Model results indicated that, depending on gas pressure and absorbed power, the diffusion coefficient of F in the sheath decreased at the end point by ∼15%. At 17.0 Pa and 200 W, the mole fraction of F at UO 2 surface decreased rapidly with immersion time to 61% and 86% of its initial value, after one and two characteristic etch time, respectively, it became almost zero at the end point, reached after 4--5 characteristic etch times

  15. Experimental investigation of droplet separation in a horizontal counter-current air/water stratified flow

    International Nuclear Information System (INIS)

    Gabriel, Stephan Gerhard

    2015-01-01

    A stratified counter-current two-phase gas/liquid flow can occur in various technical systems. In the past investigations have mainly been motivated by the possible occurrence of these flows in accident scenarios of nuclear light water-reactors and in numerous applications in process engineering. However, the precise forecast of flow parameters, is still challenging, for instance due to their strong dependency on the geometric boundary conditions. A new approach which uses CFD methods (Computational Fluid Dynamics) promises a better understanding of the flow phenomena and simultaneously a higher scalability of the findings. RANS methods (Reynolds Averaged Navier Stokes) are preferred in order to compute industrial processes and geometries. A very deep understanding of the flow behavior and equation systems based on real physics are necessary preconditions to develop the equation system for a reliable RANS approach with predictive power. Therefore, local highly resolved, experimental data is needed in order to provide and validate the required turbulence and phase interaction models. The central objective of this work is to provide the data needed for the code development for these unsteady, turbulent and three-dimensional flows. Experiments were carried out at the WENKA facility (Water Entrainment Channel Karlsruhe) at the Karlsruhe Institute of Technology (KIT). The work consists of a detailed description of the test-facility including a new bended channel, the measurement techniques and the experimental results. The characterization of the new channel was done by flow maps. A high-speed imaging study gives an impression of the occurring flow regimes, and different flow phenomena like droplet separation. The velocity distributions as well as various turbulence values were investigated by particle image velocimetry (PIV). In the liquid phase fluorescent tracer-particles were used to suppress optical reflections from the phase surface (fluorescent PIV, FPIV

  16. Hovering in the heat: effects of environmental temperature on heat regulation in foraging hummingbirds.

    Science.gov (United States)

    Powers, Donald R; Langland, Kathleen M; Wethington, Susan M; Powers, Sean D; Graham, Catherine H; Tobalske, Bret W

    2017-12-01

    At high temperature (greater than 40°C) endotherms experience reduced passive heat dissipation (radiation, conduction and convection) and increased reliance on evaporative heat loss. High temperatures challenge flying birds due to heat produced by wing muscles. Hummingbirds depend on flight for foraging, yet inhabit hot regions. We used infrared thermography to explore how lower passive heat dissipation during flight impacts body-heat management in broad-billed ( Cynanthus latirostris , 3.0 g), black-chinned ( Archilochus alexandri , 3.0 g), Rivoli's ( Eugenes fulgens , 7.5 g) and blue-throated ( Lampornis clemenciae , 8.0 g) hummingbirds in southeastern Arizona and calliope hummingbirds ( Selasphorus calliope , 2.6 g) in Montana. Thermal gradients driving passive heat dissipation through eye, shoulder and feet dissipation areas are eliminated between 36 and 40°C. Thermal gradients persisted at higher temperatures in smaller species, possibly allowing them to inhabit warmer sites. All species experienced extended daytime periods lacking thermal gradients. Broad-billed hummingbirds lacking thermal gradients regulated the mean total-body surface temperature at approximately 38°C, suggesting behavioural thermoregulation. Blue-throated hummingbirds were inactive when lacking passive heat dissipation and hence might have the lowest temperature tolerance of the four species. Use of thermal refugia permitted hummingbirds to tolerate higher temperatures, but climate change could eliminate refugia, forcing distributional shifts in hummingbird populations.

  17. Versatile solvent systems for the separation of betalains from processed Beta vulgaris L. juice using counter-current chromatography.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Ignatova, Svetlana; Garrard, Ian; Wybraniec, Sławomir

    2013-12-15

    Two mixtures of decarboxylated and dehydrogenated betacyanins from processed red beet roots (Beta vulgaris L.) juice were fractionated by high performance counter-current chromatography (HPCCC) producing a range of isolated components. Mixture 1 contained mainly betacyanins, 14,15-dehydro-betanin (neobetanin) and their decarboxylated derivatives while mixture 2 consisted of decarboxy- and dehydro-betacyanins. The products of mixture 1 arose during thermal degradation of betanin/isobetanin in mild conditions while the dehydro-betacyanins of mixture 2 appeared after longer heating of the juice from B. vulgaris L. Two solvent systems were found to be effective for the HPCCC. A highly polar, high salt concentration system of 1-PrOH-ACN-(NH4)2SO4 (satd. soln)-water (v/v/v/v, 1:0.5:1.2:1) (tail-to-head mode) enabled the purification of 2-decarboxy-betanin/-isobetanin, 2,17-bidecarboxy-betanin/-isobetanin and neobetanin (all from mixture 1) plus 17-decarboxy-neobetanin, 2,15,17-tridecarboxy-2,3-dehydro-neobetanin, 2-decarboxy-neobetanin and 2,15,17-tridecarboxy-neobetanin (from mixture 2). The other solvent system included heptafluorobutyric acid (HFBA) as ion-pair reagent and consisted of tert-butyl methyl ether (TBME)-1-BuOH-ACN-water (acidified with 0.7% HFBA) (2:2:1:5, v/v/v/v) (head-to-tail mode). This system enabled the HPCCC purification of 2,17-bidecarboxy-betanin/-isobetanin and neobetanin (from mixture 1) plus 2,15,17-tridecarboxy-2,3-dehydro-neobetanin, 2,17-bidecarboxy-2,3-dehydro-neobetanin and 2,15,17-tridecarboxy-neobetanin (mixture 2). The results of this research are crucial in finding effective isolation methods of betacyanins and their derivatives which are meaningful compounds due their colorant properties and potential health benefits regarding antioxidant and cancer prevention. The pigments were detected by LC-DAD and LC-MS/MS techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. 9 CFR 78.2 - Handling of certificates, permits, and “S” brand permits for interstate movement of animals.

    Science.gov (United States)

    2010-01-01

    ... âSâ brand permits for interstate movement of animals. 78.2 Section 78.2 Animals and Animal Products... certificates, permits, and “S” brand permits for interstate movement of animals. (a) Any certificate, permit, or “S” brand permit required by this part for the interstate movement of animals shall be delivered...

  19. 10 CFR 50.23 - Construction permits.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Construction permits. 50.23 Section 50.23 Energy NUCLEAR... Description of Licenses § 50.23 Construction permits. A construction permit for the construction of a... part 52 of this chapter, the construction permit and operating license are deemed to be combined in a...

  20. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  1. Heat capacity of liquids: A hydrodynamic approach

    Directory of Open Access Journals (Sweden)

    T. Bryk

    2015-03-01

    Full Text Available We study autocorrelation functions of energy, heat and entropy densities obtained by molecular dynamics simulations of supercritical Ar and compare them with the predictions of the hydrodynamic theory. It is shown that the predicted by the hydrodynamic theory single-exponential shape of the entropy density autocorrelation functions is perfectly reproduced for small wave numbers by the molecular dynamics simulations and permits the calculation of the wavenumber-dependent specific heat at constant pressure. The estimated wavenumber-dependent specific heats at constant volume and pressure, Cv(k and Cp(k, are shown to be in the long-wavelength limit in good agreement with the macroscopic experimental values of Cv and Cp for the studied thermodynamic points of supercritical Ar.

  2. The National Solar Permitting Database

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-31

    "The soft costs of solar — costs not associated with hardware — remain stubbornly high. Among the biggest soft costs are those associated with inefficiencies in local permitting and inspection. A study by the National Renewable Energy Laboratory and Lawrence Berkeley National Laboratory estimates that these costs add an average of $0.22/W per residential installation. This project helps reduce non-hardware/balance of system (BOS) costs by creating and maintaining a free and available site of permitting requirements and solar system verification software that installers can use to reduce time, capital, and resource investments in tracking permitting requirements. Software tools to identify best permitting practices can enable government stakeholders to optimize their permitting process and remove superfluous costs and requirements. Like ""a Wikipedia for solar permitting"", users can add, edit, delete, and update information for a given jurisdiction. We incentivize this crowdsourcing approach by recognizing users for their contributions in the form of SEO benefits to their company or organization by linking back to users' websites."

  3. 2008 Contruction General Permits & Multi-Sector General Permits

    Data.gov (United States)

    U.S. Environmental Protection Agency — View stormwater notices of intent (NOIs) for construction projects under EPA's 2008 Construction General Permit (CGP), for Low Erosivity Waivers (LEWs) submitted...

  4. C2R2. Compact Compound Recirculator/Recuperator for Renewable Energy and Energy Efficient Thermochemical Processing.

    Energy Technology Data Exchange (ETDEWEB)

    Ermanoski, Ivan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Orozco, Adrian [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    In this report we present the development of a packed particle bed recirculator and heat exchanger. The device is intended to create countercurrent flows of packed particle beds and exchange heat between the flows. The project focused on the design, fabrication, demonstration, and modifications of a simple prototype, in order to attain high levels of heat exchange between particle flows while maintaining an effective particle conveying rate in a scalable package. Despite heat losses in a package not optimized for heat retention, 50% heat recovery was achieved, at a particle conveying efficiency of 40%.

  5. Heat exchanger tube inspection using ultrasonic arrays

    International Nuclear Information System (INIS)

    Meyer, P.A.; Carodiskey, T.J.

    1986-01-01

    Tubing used in industrial heat exchangers is often subject to failure caused by corrosion and cracking. Technical conferences are used as a forum in the steam generator industry to ensure that the failure mechanisms are well understood and that the quality of the heat exchanger is maintained. The quality of a heat exchanger can be thought of as its ability to operate to design specifications over its intended life. This is the motivation to inspect and evaluate these devices periodically. Inspection, however, normally requires shutdown of the heat exchanger which is costly but is much more acceptable than an unscheduled shutdown due to failure of a tube. Therefore, the degree of inspection is established by balancing the cost of inspection with the risk of a tube failure. Any method of reducing the cost of inspection will permit a higher degree of inspection and, therefore, improve heat exchanger quality. This paper reviews the design and performance of an improved method of ultrasonic inspection of heat exchanger tubing with emphasis on applications in the nuclear industry

  6. Modeling pH-zone refining countercurrent chromatography: a dynamic approach.

    Science.gov (United States)

    Kotland, Alexis; Chollet, Sébastien; Autret, Jean-Marie; Diard, Catherine; Marchal, Luc; Renault, Jean-Hugues

    2015-04-24

    A model based on mass transfer resistances and acid-base equilibriums at the liquid-liquid interface was developed for the pH-zone refining mode when it is used in countercurrent chromatography (CCC). The binary separation of catharanthine and vindoline, two alkaloids used as starting material for the semi-synthesis of chemotherapy drugs, was chosen for the model validation. Toluene/CH3CN/water (4/1/5, v/v/v) was selected as biphasic solvent system. First, hydrodynamics and mass transfer were studied by using chemical tracers. Trypan blue only present in the aqueous phase allowed the determination of the parameters τextra and Pe for hydrodynamic characterization whereas acetone, which partitioned between the two phases, allowed the determination of the transfer parameter k0a. It was shown that mass transfer was improved by increasing both flow rate and rotational speed, which is consistent with the observed mobile phase dispersion. Then, the different transfer parameters of the model (i.e. the local transfer coefficient for the different species involved in the process) were determined by fitting experimental concentration profiles. The model accurately predicted both equilibrium and dynamics factors (i.e. local mass transfer coefficients and acid-base equilibrium constant) variation with the CCC operating conditions (cell number, flow rate, rotational speed and thus stationary phase retention). The initial hypotheses (the acid-base reactions occurs instantaneously at the interface and the process is mainly governed by mass transfer) are thus validated. Finally, the model was used as a tool for catharanthine and vindoline separation prediction in the whole experimental domain that corresponded to a flow rate between 20 and 60 mL/min and rotational speeds from 900 and 2100 rotation per minutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Coastal counter-currents setup patterns in the Gulf of Cadiz

    Science.gov (United States)

    Relvas, P.; Juniór, L.; Garel, E.; Drago, T.

    2017-12-01

    Alongshore coastal counter-currents (CCC) are frequent features of Eastern Boundary Upwelling Systems, where they temporally alternate with upwelling driven jets of opposite direction. Along the northern margin of the Gulf of Cadiz inner shelf, these CCCs are oriented poleward (eastward) and responsible for sharp temperature increases during the upwelling season, along with potential decline in water quality at the coast. This research is based on a multi-year ADCP velocity time-series (2008-2017), recorded at a single location (23 m water depth) over 13 deployments up to 3 months-long. The analysis focuses on the water column alongshore velocities during current inversions (i.e., the transition from equatorward upwelling jets to poleward CCCs). A set of parameters were derived from the flow structure to identify distinct types of inversions and to hypothesize about their driving mechanisms. Results show that 77% of the inversions start near the bed, propagating then to the upper layers. The bottom layer also changes direction before the surface layer for most events (71%). The vertical shear in this case is one order of magnitude greater than in the (less frequent) opposite situation. No seasonal variability is observed in the CCC occurrences. However, the parameters analysed in this study suggest different types of inversion between winter and summer. In winter, inversions are well defined (low variability), with similar patterns near the surface and bed layers as a result of a strong barotropic component. In summer the inversion patterns are more variable. In particular, the upper and bed layers are often importantly decoupled during inversions, indicating the strengthening of baroclinicity. A categorization of inversions events is proposed based on cross-correlation and multi-variable analyses of the developed parameters. Various types of inversion are obtained, suggesting that CCCs are driven by different forcings that may act separately or jointly.

  8. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  9. Preparative separation of capsaicin and dihydrocapsaicin from Capsicum frutescens by high-speed counter-current chromatography.

    Science.gov (United States)

    Peng, Aihua; Ye, Haoyu; Li, Xia; Chen, Lijuan

    2009-09-01

    Capsaicin and dihydrocapsaicin are two main bioactive components of Capsicum frutescens and are widely used as food additives and drugs in China and India. Due to their similarity in structures, isolation of capsaicin and dihydrocapsaicin with traditional methods such as silica gel column chromatography, normal-phase thin-layer chromatography (TLC) becomes difficult. This study involves separating capsaicin and dihydrocapsaicin with sufficient purity and recovery using high-speed counter-current chromatography (HSCCC) with a solvent system composed of n-hexane-ethyl acetate-methanol-water-acetic acid (20:20:20:20:2, v/v/v/v/v). Separation parameters such as sample volume, and sample concentration were first optimized on analytical HSCCC, and then scaled up to preparative HSCCC. 0.65 g capsaicin and 0.28 g dihydrocapsaicin were obtained from 1.2 g crude extract and their purities were 98.5 and 97.8%, respectively. The recoveries of the two compounds were 86.3 and 85.4%, respectively. The purity of the isolated compounds was analyzed by high-performance liquid chromatography (HPLC) and their structures were identified by (1)H nuclear magnetic resonance (NMR) and (13)C NMR analysis.

  10. Automatic Commercial Permit Sets

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Paul [Folsom Labs, Inc., San Francisco, CA (United States)

    2017-12-21

    Final report for Folsom Labs’ Solar Permit Generator project, which has successfully completed, resulting in the development and commercialization of a software toolkit within the cloud-based HelioScope software environment that enables solar engineers to automatically generate and manage draft documents for permit submission.

  11. Flooding and non-equilibrium in counter-current flows with reference to pressurised water reactors

    International Nuclear Information System (INIS)

    Megahed, M.M.M.

    1981-12-01

    During the refill stage of a Loss of Coolant Accident (LOCA) in a Pressurised Water Reactor (PWR) the effectiveness with which the emergency coolant penetrates to the lower plenum, and hence to the core, is of paramount importance. Results of experimental and theoretical work carried out at the University of Strathclyde on two 1/10 scale planar test sections of a PWR downcomer annulus are presented. The experiments involved the countercurrent flows of air and water and the data were compared with existing flooding correlations for tubes. It was found experimentally that, as the inlet air flowed upwards against two opposing waterfalls, an increase in air flowrate caused the waterfalls to mover closer together until a critical air flowrate was reached where the waterfalls collapsed. A theoretical model defined this collapse condition. It was shown to be analogous to the choked flow of air through a nozzle whose cross sectional area varied with pressure. Previous experimental results for steam-water mixtures on similar test sections and the present air-water data were used to study condensation effects. Non-equilibrium effects were isolated and correlated against the dependent parameters of inlet water flowrate, inlet subcooling and downcomer wall temperature. A theoretical model giving good qualitative and quantitative agreement with experiment was developed. (author)

  12. Reliability of non-heated tube bends of boilers

    International Nuclear Information System (INIS)

    Bugaj, N.V.; Akhremenko, V.L.; Zamotaev, V.S.

    1984-01-01

    Bend failures are described for non-heated boiler tubes of 12Kh1MF and 20 steels. Methods of reliability evaluations are presented which permit revealing and replacing the bends with inadequate resources. Influences of operation conditions on bend durability is shown as well as the factors which are dominating at bend failures

  13. RPP Environmental Permits and Related Documentation

    International Nuclear Information System (INIS)

    DEXTER, M.L.

    2001-01-01

    This document contains the current list of environmental permits and related documentation for RPP facilities and activities. Copies of these permits and related approvals are maintained by RPP Environmental. In addition, notices of Correction and Notices of Violation are issued by State and Federal Regulators which are tracked by RPP Environmental to resolve any recently identified deficiencies. A listing of these recent Notices is provided as an attachment to this document. These permits, approval conditions, and recent regulatory agency notices, constitute an important element of the RPP Authorization Envelope. Permits are issued frequently and the reader is advised to check with RPP environmental for new permits or approval conditions. Interpretation of permit or approval conditions should be coordinated with RPP Environmental. This document is updated on a quarterly basis

  14. RPP Environmental Permits and Related Documentation

    International Nuclear Information System (INIS)

    DEXTER, M.L.

    2000-01-01

    This document contains the current list of environmental permits and related documentation for RPP facilities and activities. Copies of these permits and related approvals are maintained by RPP Environmental. In addition, Notices of Correction and Notices of Violation are issued by State and Federal Regulators which are tracked by RPP Environmental to resolve any recently identified deficiencies. A listing of these recent Notices is provided as an attachment to this document. These permits, approval conditions, and recent regulatory agency notices, constitute an important element of the RPP Authorization Envelope. Permits are issued frequently and the reader is advised to check with RPP environmental for new permits or approval conditions. Interpretation of permit or approval conditions should be coordinated with RPP Environmental. This document will be updated on a quarterly basis

  15. Modelling of a transmembrane evaporation module for desalination of seawater

    NARCIS (Netherlands)

    Guijt, C.M.; Racz, I.G.; van Heuven, Jan Willem; Reith, T.; de Haan, A.B.

    1999-01-01

    Transmembrane evaporation (often called membrane distillation) carried out in a countercurrent flow module, in which incoming cold seawater is heated by the condensing product water flow, is a promising technology for low-cost seawater desalination. This paper presents a model for preliminary design

  16. Stability and heating of a poloidal divertor tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, A. P.; Dexter, R. N.; Holly, D. T.; Lipschultz, B.; Osborne, T. H.; Prager, S. C.; Shepard, D.A., Sprott, J.C.; Witherspoon, F. D.

    1980-06-01

    Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a Tokamak with a four node poloidal divertor. First, discharges have been attained with safety factor q as low as 0.6 over most of the column without degradation of confinement, and correlation of helical instability onset with current profile shape is being studied. Second, the axisymmetric instability has been investigated in detail for various noncircular cross-sectional shapes, and results have been compared with a numerical stability code adapted to the Tokapole machine. Third, application of high power fast wave ion cyclotron resonance heating doubles the ion temperature and permits observation of heating as a function of harmonic number and spatial location of the resonance. Fourth, low power shear Alfven wave propagation is underway to test the applicability of this heating method to tokamaks. Fifth, preionization by electron cyclotron heating has been employed to reduce the startup loop voltage by approx. 60%.

  17. Assessment of capability of models for prediction of pressure drop and dryout heat flux in a heat generating particulate debris bed

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Nayak, A.K.; Rashid, M.; Kulenovic, R.

    2009-01-01

    During a severe accident in a light water reactor, the core can melt and be relocated to the lower plenum of the reactor pressure vessel. There it can form a particulate debris bed due to the possible presence of water. This bed, if not quenched in time, can lead to the failure of the pressure vessel because of the insufficient heat removal of decay heat in the debris bed. Therefore, addressing the issue of coolability behaviour of heat generating particulate debris bed is of prime importance in the framework of severe accident management strategies, particularly in case of above mentioned late phase scenario of an accident. In order to investigate the coolability behaviour of particulate debris bed, experiments were carried out at IKE test facility 'DEBRIS' on particle beds of irregularly shaped particles mixed with spheres under top- and bottom-flooding condition. The pressure drop and dryout heat flux (DHF) were measured for top- and bottom-flooding conditions. For top-flooding conditions, it was found that the pressure gradients are all smaller than the hydrostatic pressure gradient of water, indicating an important role of the counter-current interfacial shear stress of the two-phase flow. For bottom-flooding with a relatively high liquid inflow velocity, the pressure gradient increases consistently with the vapour velocity and the fluid-particle drags become important. Also, with additional forced liquid inflow from the bottom, the DHF increases dramatically. In all the cases, it was found that the DHF is significantly larger with bottom-flooding condition compared to top-flooding condition. Different models such as Lipinski, Reed, Tung and Dhir, Hu and Theophanous, and Schulenberg and Mueller have been used to predict the pressure drop characteristics and the DHF of heat generating particulate debris beds. Comparison is made among above mentioned models and experimental results for DHF and pressure drop characteristics. Considering the overall trend in

  18. Pacific Islands Region Fishing Permits

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sustainable Fisheries Division Permits Program issues around 300 permits annually for pelagic longline and troll & handline, bottomfish, crustacean (lobster...

  19. Geothermal direct-heat study: Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    Potential applications of geothermal energy which would be compatible with the agricultural activities in the county were identified and a plan to attract potential users to the area was developed. The intent of the first effort was to identify general classifications of industries which could utilize geothermal heat in production processes. Two levels of analyses were utilized for this effort. Initially, activities relying on previously developed engineering and industrial concepts were investigated to determine capital costs, employment, and potential energy savings. Second, innovative concepts not yet fully developed were investigated to determine their potential applicability to the agricultural base of the county. These investigations indicated that the major potential applications of geothermal heat would involve industries related to food processing or other direct agriculture-related uses of raw materials produced or imported to the county. An implementation plan which can be utilized by the county to market direct heat applications was developed. A socioeconomics analysis examined the potential effects on the county from development of direct heat projects. The county's planning and permitting requirements for dirct heat projects were also examined.

  20. Damping mechanisms and heating scenarii in the ICRF

    International Nuclear Information System (INIS)

    Jacquinot, J.; Lapierre, Y.

    1980-09-01

    A wave damping and heating model is presented. It permits to treat a wide range of plasma parameters and complex ion species composition. Applied to JET parameters, two selected wave scenarii are found to allow a great flexibility, in particular with respect to complex gas composition. A major results is the possibility of single pass absorption

  1. A laplace transform-based technique for solving multiscale and multidomain problems: Application to a countercurrent hemodialyzer model.

    Science.gov (United States)

    Simon, Laurent

    2017-08-01

    An integral-based method was employed to evaluate the behavior of a countercurrent hemodialyzer model. Solute transfer from the blood into the dialysate was described by writing mass balance equations over a section of the device. The approach provided Laplace transform concentration profiles on both sides of the membrane. Applications of the final value theorem led to the development of the effective time constants and steady-state concentrations in the exit streams. Transient responses were derived by a numerical inversion algorithm. Simulations show that the period elapsed, before reaching equilibrium in the effluents, decreased when the blood flow rate increased from 0.25 to 0.30 ml/s. The performance index decreased from 0.80 to 0.71 when the blood-to-dialysate flow ratio increased by 20% and increased from 0.80 to 0.85 when this fraction was reduced by 17%. The analytical solution predicted methadone removal in patients undergoing dialysis. Clinicians can use these findings to predict the time required to achieve a target extraction ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Heating Development Analysis in Long HTS Objects - Updated Results

    Energy Technology Data Exchange (ETDEWEB)

    Vysotsky, V S; Repnikov, V V; Lobanov, E A; Karapetyan, G H; Sytnikov, V E [All-Russian Scientific R and D Cable Institute, 5, Shosse Entuziastov, 111024, Moscow (Russian Federation)

    2006-06-01

    During fault in a grid large overload current, up to 30-times fold, forcibly will go to an HTS superconducting cable installed in a grid causing its quench and heating. The upgraded model has been used to analyse the heating development in long HTS objects during overloads. The model better presents real properties of materials used. New calculations coincide well with experiments and permit to determine the cooling coefficients. The stability limit (thermal runaway current) was determined for different cooling and index n. The overload currents, at which the superconductor will be heated up to 100 K during 250 ms can be determined also. The model may be used for practical evaluations of operational parameters.

  3. 40 CFR 70.6 - Permit content.

    Science.gov (United States)

    2010-07-01

    ... § 70.5(d) of this part. (B) Prompt reporting of deviations from permit requirements, including those... corrective actions or preventive measures taken. The permitting authority shall define “prompt” in relation... and air pollution control equipment), practices, or operations regulated or required under the permit...

  4. Development of micro solar charger with blocking relay; Gyakuryu boshi relay wo oyoshita kogata solar judenki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nanno, I.; Matsushita, Y. Oka, S. [Omron Corp., Kyoto (Japan)

    1997-11-25

    Heavy-current tiny-scale solar charger is tentatively built, equipped with a function of preventing overcharge and countercurrent in case of charging storage batteries using solar cells. Incorporated into this solar charger are a countercurrent prevention relay system, a low loss current detection system, and a MOSFET parallel connection, which allow the solar charger to be designed small in size in the presence of an increase in heat due to circuit loss. In the countercurrent prevention relay system, the countercurrent prevention diode is bypassed by MOSFETs when too large a current is generated. In the low loss current detection system, currents are detected by use of the ON resistance of the MOSFETs for the prevention of overcharge. In the MOSFET parallel connection, MOSFETs are connected in parallel for a decrease in the ON resistance. The tentatively built charger is then subjected to a performance evaluation test outside the building, and the test is carried out by measuring the temperatures of the MOSFETs and the air. As the result, it is found that the temperature of MOSFET junction of the 12A tiny-size solar charger is approximately 42.5 degC at the highest, low enough to clear the requirements. 4 refs., 7 figs., 4 tabs.

  5. 7 CFR 319.75-3 - Permits.

    Science.gov (United States)

    2010-01-01

    ... Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Port Operations, Permit Unit... article may be imported only after issuance of a written permit by Plant Protection and Quarantine. (b) An application for a written permit should be submitted to the Animal and Plant Health Inspection Service, Plant...

  6. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-01-01

    Universal high-speed counter-current chromatograph (HSCCC) was newly designed and fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2 cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1 M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. PMID:24267319

  7. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  8. Vessel Permit System Data Set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GARFO issues federal fishing permits annually to owners of fishing vessels who fish in the Greater Atlantic region, as required by federal regulation. These permits...

  9. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  10. Preservation of canned Vienna sausage by combination of heat and radiation

    International Nuclear Information System (INIS)

    Incze, K.; Farkas, J.; Zukal, E.

    1973-01-01

    Since no texture improver is permitted in Hungarian Vienna sausage, the heat treatment necessary for bacteriological safety causes texture and consistency problems with this type of product. The aim of the investigations was to lower the heat damage by using a combination of mild heat treatment and irradiation. During the experiments an irradiation dose of 0.45 Mrad was combined with heat treatments of various F 0 values (0.2-0.5). F 0 of the control was 1.9. Naturally contaminated samples were used. Storage temperature was 30 0 C, storage time up to 2 months. Combination of irradiation (0.45 Mrad) and heat treatment (F 0 =0.4) - regardless of the sequence - gave satisfactory results in shelf-life and excellent results in organoleptic properties as compared to traditionally heat treated samples. This statement is valid for uninoculated samples only. (F.J.)

  11. Economical judge possibility uses solar collectors to warm service water and heating

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2006-09-01

    Full Text Available The sun-heated water has been used from before fossil fuels started to determine the direction of our power consumption. This article is focused on the assessing of the use of solar energy as one of inexhaustible resources that has multiple uses, including hot water service systems. Heating is rendered through solar collectors that permit to transform solar energy to warm water. We divide solar collectors into various groups but in principle they are medium temperature collectors and low temperature collectors. The work is directed also on the solar collector market. In our case the market is just at its initial stage as this technology is little known and costs of collectors are rather high, compared to our conditions, on average, they may grow up to 100,000 Slovac crowns per a family house. Because it is the only investment and the costs of operation are minimum throughout the entire collectors lifetime, from the economic point of view, it is a rather advantageous investment. Solar collectors are used in heating and also in hot service water systems in family houses, where they permit to lower costs for the consumption of many kinds of energies. In the hot service water system, solar collectors permit to lower the consumption by almost 70 %. This way of using the solar energy is very prospective and in future it will be used in various sectors

  12. Recovery of Butanol by Counter-Current Carbon Dioxide Fractionation with its Potential Application to Butanol Fermentation

    Directory of Open Access Journals (Sweden)

    Miriam Solana

    2016-06-01

    Full Text Available A counter-current CO2 fractionation method was applied as a mean to recover n-butanol and other compounds that are typically obtained from biobutanol fermentation broth from aqueous solutions. The influence of operating variables, such as solvent-to-feed ratio, temperature, pressure and feed solution composition was experimentally studied in terms of separation efficiency, butanol removal rate, total removal and butanol concentration in the extract at the end of the continuous cycle. With respect to the temperature and pressure conditions investigated, results show that the highest separation efficiency was obtained at 35 °C and 10.34 MPa. At these operating conditions, 92.3% of the butanol present in the feed solution was extracted, and a concentration of 787.5 g·L−1 of butanol in the extract was obtained, starting from a feed solution of 20 g·L−1. Selectivity was calculated from experimental data, concluding that our column performs much better than a single equilibrium stage. When adding ethanol and acetone to the feed solution, ethanol was detected in the water-rich fraction (raffinate, whereas the highest concentration of acetone was found in the butanol rich fraction (extract.

  13. Annual Hanford Site Environmental Permitting status report

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    1999-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies

  14. Investigation on chemical heat pump using calcium-chloride; Enka calcium no suiwa dassui hanno wo mochiita solar chemical heat pump ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I; Arai, T; Saito, Y [Meiji University, Tokyo (Japan)

    1997-11-25

    With an objective of developing a room heating system utilizing a solar chemical heat pump, an experimental system was fabricated to evaluate its performance. Steam was employed as a working gas, and for a reaction material, calcium-chloride was used, which has a reaction temperature zone permitting safe use and fitting the purpose among other hydrate systems and has high standard enthalpy in hydration. Water was used as a solar heat transferring medium. The system operates under the following principle: a container I is filled with hydrated salt and a container II with water, the two containers being linked with a pipe interposed with a valve; heat is inputted and outputted by performing charging and discharging alternately; and the role of a heat pump is played by deriving from environment the heat of water evaporation in the container II during discharging. The COP must take into account the electric power consumption of the water circulation pump to transfer solar heat. A COP of 0.256 was derived as a result of the experiment. 3 refs., 5 figs.

  15. Lean in Air Permitting Guide

    Science.gov (United States)

    The Lean in Air Permitting Guide is designed to help air program managers at public agencies better understand the potential value and results that can be achieved by applying Lean improvement methods to air permitting processes.

  16. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  17. Annual Hanford Site environmental permitting status report

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1998-01-01

    The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, 'best efforts' means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for

  18. Rapid isolation and purification of phorbol esters from Jatropha curcas by high-speed countercurrent chromatography.

    Science.gov (United States)

    Hua, Wan; Hu, Huiling; Chen, Fang; Tang, Lin; Peng, Tong; Wang, Zhanguo

    2015-03-18

    In this work, a high-speed countercurrent chromatography (HSCCC) method was established for the preparation of phorbol esters (PEs) from Jatropha curcas. n-Hexane-ethyl acetate-methanol-water (1.5:1.5:1.2:0.5, v/v) was selected as the optimum two-phase solvent system to separate and purify jatropha factor C1 (JC1) with a purity of 85.2%, as determined by HPLC, and to obtain a mixture containing four or five PEs. Subsequently, continuous semipreparative HPLC was applied to further purify JC1 (99.8% as determined by HPLC). In addition, UPLC-PDA and UPLC-MS were established and successfully used to evaluate the isolated JC1 and PE-rich crude extract. The purity of JC1 was only 87.8% by UPLC-UV. A peak (a compound highly similar to JC1) was indentified as the isomer of JC1 by comparing the characteristic UV absorption and MS spectra. Meanwhile, this strategy was also applied to analyze the PE-rich crude extract from J. curcas. It is interesting that there may be more than 15 PEs according to the same quasi-molecular ion peaks, highly similar sequence-specific fragment ions, and similar UV absorption spectrum.

  19. Preparative Separation of Phenolic Compounds from Halimodendron halodendron by High-Speed Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    Zhu Yu

    2010-08-01

    Full Text Available Three phenolic compounds, p-hydroxybenzoic acid (1, isorhamnetin-3-O-β-D-rutinoside (2, and 3,3'-di-O-methylquercetin (5, along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3 and 3-O-methylquercetin (4. Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC. The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3 and 3-O-methylquercetin (4 (26.43% and 71.89%, respectively in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5 at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1 at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2 at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.

  20. Preparative separation of phenolic compounds from Halimodendron halodendron by high-speed counter-current chromatography.

    Science.gov (United States)

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-08-31

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3) and 3-O-methylquercetin (4). Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC). The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3) and 3-O-methylquercetin (4) (26.43% and 71.89%, respectively) in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5) at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1) at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2) at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.

  1. Annual Hanford Site Environmental Permitting Status Report

    International Nuclear Information System (INIS)

    HOMAN, N.A.

    2000-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Rev. 4), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year

  2. Factors Influencing Learner Permit Duration

    Directory of Open Access Journals (Sweden)

    Johnathon P. Ehsani

    2016-12-01

    Full Text Available An increasing number of countries are requiring an extended learner permit prior to independent driving. The question of when drivers begin the learner permit period, and how long they hold the permit before advancing to independent licensure has received little research attention. Licensure timing is likely to be related to “push” and “pull” factors which may encourage or inhibit the process. To examine this question, we recruited a sample of 90 novice drivers (49 females and 41 males, average age of 15.6 years soon after they obtained a learner permit and instrumented their vehicles to collect a range of driving data. Participants completed a series of surveys at recruitment related to factors that may influence licensure timing. Two distinct findings emerged from the time-to-event analysis that tested these push and pull factors in relation to licensure timing. The first can be conceptualized as teens’ motivation to drive (push, reflected in a younger age when obtaining a learner permit and extensive pre-permit driving experience. The second finding was teens’ perceptions of their parents’ knowledge of their activities (pull; a proxy for a parents’ attentiveness to their teens’ lives. Teens who reported higher levels of their parents’ knowledge of their activities took longer to advance to independent driving. These findings suggest time-to-licensure may be related to teens’ internal motivation to drive, and the ability of parents to facilitate or impede early licensure.

  3. Storm water permitting for oil and gas facilities

    International Nuclear Information System (INIS)

    de Blanc, P.C.

    1991-01-01

    After several false starts, the US Environmental Protection Agency (EPA) published new federal storm water regulations in the November 16, 1990 Federal Register. These regulations identify facilities which must apply for a storm water permit and detail permit application requirements. The regulations appear at 40 CFR 122 Subpart B and became effective December 17, 1990. An outline of these regulations and their applicability to oil and gas facilities is presented. They are: facilities which require a storm water permit; types of storm water permits; permit application deadlines; permit application forms; facilities with existing storm water permits; storm water permit application data requirements; storm water sampling and analysis requirements; and EPA contacts for additional information

  4. Permit trading and credit trading

    DEFF Research Database (Denmark)

    Boom, Jan-Tjeerd; R. Dijstra, Bouwe

    This paper compares emissions trading based on a cap on total emissions (permit trading) and on relative standards per unit of output (credit trading). Two types of market structure are considered: perfect competition and Cournot oligopoly. We find that output, abatement costs and the number...... of firms are higher under credit trading. Allowing trade between permit-trading and credit-trading sectors may increase in welfare. With perfect competition, permit trading always leads to higher welfare than credit trading. With imperfect competition, credit trading may outperform permit trading....... Environmental policy can lead to exit, but also to entry of firms. Entry and exit have a profound impact on the performance of the schemes, especially under imperfect competition. We find that it may be impossible to implement certain levels of total industry emissions. Under credit trading several levels...

  5. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    International Nuclear Information System (INIS)

    Wang, Daijie; Lin, Yunliang; Lin, Xiaojing; Geng, Yanling; Wang, Xiao; Zhang, Jinjie; Qiu, Jiying

    2012-01-01

    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 degree C. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, 1H-NMR and 13 C-NMR. (author)

  6. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daijie; Lin, Yunliang; Lin, Xiaojing; Geng, Yanling; Wang, Xiao, E-mail: wxjn1998@126.com [Process Control Research Center of TCM. Shandong Academy of Sciences. Shandong Analysis and Test Center (China); Zhang, Jinjie [College of Biosystems Engineering and Food Science, Zhejiang University (China); Qiu, Jiying [Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Science, Shandong (China)

    2012-07-01

    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 degree C. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, 1H-NMR and {sup 13}C-NMR. (author)

  7. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Daijie Wang

    2012-01-01

    Full Text Available Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio. The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR.

  8. Noncooperative models of permit markets

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd

    2011-07-15

    The applicability of some popular and basic permit market theories has been questioned. Drawing on noncooperative equilibrium theory for pure exchange economies, this article adapts several well-established alternative models to permit exchange. Some qualitative properties of the associated equilibria are provided, including two games with equilibria that in a sense coincide. Nevertheless, as there exist quite a few models potentially applicable to emissions trading, with equilibria that range from autarky to Pareto optimality, it seems that economics lacks a broadly accepted basic theory for permit markets. (Author)

  9. Separation of Np from U and Pu using a salt-free reductant for Np(VI) by continuous counter-current back-extraction

    International Nuclear Information System (INIS)

    Ban, Yasutoshi; Asakura, Toshihide; Morita, Yasuji

    2005-01-01

    Reduction properties of several salt-free reagents for Np(VI) and Pu(IV) were reviewed to choose selective reductants that reduce only Np(VI) to Np(V) for separating Np from U and Pu in TBP by reductive back-extraction. Allylhydrazine was proposed as a candidate for selective Np(VI) reductant, and it was confirmed by a batch experiment that allylhydrazine reduced almost all Np(VI) to Np(V) and back-extracted Np from organic phase (30 vol.% TBP diluted in n-dodecane) to aqueous phase (3 mol/dm 3 HNO 3 ) within 10 min. A continuous counter-current experiment using a miniature mixer-settler was carried out with allylhydrazine at room temperature. At least 91% of Np(VI) that fed to the mixer-settler was selectively reduced to Np(V) and separated from U and Pu. (author)

  10. Measurement and modeling of interface heat transfer coefficients

    International Nuclear Information System (INIS)

    Rollett, A.D.; Lewis, H.D.; Dunn, P.S.

    1985-01-01

    The results of preliminary work on the modeling and measurement of the heat transfer coefficients of metal/mold interfaces is reported. The system investigated is the casting of uranium in graphite molds. The motivation for the work is primarily to improve the accuracy of process modeling of prototype mold designs at the Los Alamos Foundry. The evolution in design of a suitable mold for unidirectional solidification is described, illustrating the value of simulating mold designs prior to use. Experiment indicated a heat transfer coefficient of 2 kW/m 2 /K both with and without superheat. It was possible to distinguish between solidification due to the mold and that due to radiative heat loss. This permitted an experimental estimate of the emissivity, epsilon = 0.2, of the solidified metal

  11. 21 CFR 108.12 - Manufacturing, processing, or packing without a permit, or in violation of a permit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Manufacturing, processing, or packing without a permit, or in violation of a permit. 108.12 Section 108.12 Food and Drugs FOOD AND DRUG ADMINISTRATION... General Provisions § 108.12 Manufacturing, processing, or packing without a permit, or in violation of a...

  12. 40 CFR 60.4124 - Hg budget permit revisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Hg budget permit revisions. 60.4124... Coal-Fired Electric Steam Generating Units Permits § 60.4124 Hg budget permit revisions. Except as provided in § 60.4123(b), the permitting authority will revise the Hg Budget permit, as necessary, in...

  13. EPA Region 2 Discharge Pipes for Facilites with NPDES Permits from the Permit Compliance GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Permit and Compliance System (PCS) contains data on the National Pollution Discharge Elimination Systems (NPDES) permit-holding facilities. This includes...

  14. 30 CFR 773.10 - Review of permit history.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Review of permit history. 773.10 Section 773.10... REQUIREMENTS FOR PERMITS AND PERMIT PROCESSING § 773.10 Review of permit history. (a) We, the regulatory authority, will rely upon the permit history information you, the applicant, submit under § 778.12 of this...

  15. Self-ignition of coal during in-situ gasification. Thermoanalytical investigations. Selbstentzuendung von Kohlen bei der Untertagevergasung. Thermoanalytische Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J O

    1986-01-10

    The underground gasification of deep coal strata via boreholes presupposes flow ways for the gasifying agent and the gasified media with a sufficiently high degree of permeability. Canal burning during countercurrent flow in low depths has been tested as a technical method for linking boreholes and enhancing gas permeability. For the execution of in situ gasification the control or prevention of the spontaneous ignition of the coal under high pressure should not be ignored, because of self-ignition resulting from canal burning in the linking phase. To investigate enthalpy change during the oxidation of coal under various conditions, a device for differential thermal analysis (DTA) was developed and constructed with which temperature development as a result of oxidation in a flowing pressure-gas atmosphere could be observed. A caloric calibration of the device permitted a direct inference of enthalpic difference from differential thermal potential as a measured value. With a regression model for reaction kinetics, the intensity of heat development was linked with kinetic data; this permitted a description of the dependence of the oxidation process on temperature and material concentration. From the interconnections discovered between the carbonization degree and enthalpy change during oxidation we may conclude that the oxidation process is controlled by the emergence of thermal decomposition products. The heat tonality diagram of the DTA of coal oxidation can be divided into three phases and interpreted in connection with the different degrees of carbonization. The results of the investigation reveal that inactivation of the coal before the actual process of linking is of considerable importance. (MOS).

  16. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.; Parsons, B.K.; Althof, J.A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations. 33 refs., 69 figs., 38 tabs.

  17. Improvements to TRAC models of condensing stratified flow. Pt. 1

    International Nuclear Information System (INIS)

    Zhang, Q.; Leslie, D.C.

    1991-12-01

    Direct contact condensation in stratified flow is an important phenomenon in LOCA analyses. In this report, the TRAC interfacial heat transfer model for stratified condensing flow has been assessed against the Bankoff experiments. A rectangular channel option has been added to the code to represent the experimental geometry. In almost all cases the TRAC heat transfer coefficient (HTC) over-predicts the condensation rates and in some cases it is so high that the predicted steam is sucked in from the normal outlet in order to conserve mass. Based on their cocurrent and countercurrent condensing flow experiments, Bankoff and his students (Lim 1981, Kim 1985) developed HTC models from the two cases. The replacement of the TRAC HTC with either of Bankoff's models greatly improves the predictions of condensation rates in the experiment with cocurrent condensing flow. However, the Bankoff HTC for countercurrent flow is preferable because it is based only on the local quantities rather than on the quantities averaged from the inlet. (author)

  18. Ci PERMIT

    CERN Multimedia

    Relations with the Host States Service

    1999-01-01

    The Swiss Permanent Mission to the International Organisations at Geneva recalls that only the spouses and children of members of personnel resident in Switzerland and in possession of a legitimation card of types 'B', 'C', 'D' or 'E' issued by the Swiss Federal Department of Foreign Affairs are entitled to benefit from a Ci Permit.The 'demande d'attestation de permis Ci' (request for a Ci permit attestation) can be sent to the Mission only through Personnel Division (Administrative Services, Office 33/1-025).Additional information on access by family members of CERN officials to the Swiss labour market are available to you on the Web site of the Relations with the Host States Service (cf. document entitled 'Employment in Switzerland for spouses and children of CERN officials' dated March 1996).Relations with the Host States Servicehttp://www.cern.ch/relations/Tel. 72848

  19. Measurement of critical heat flux in narrow gap with two-dimensional slices

    International Nuclear Information System (INIS)

    Kim, Yong Hoon; Kim, Sung Joong; Noh, Sang Woo; Suh, Kune Y.

    2002-01-01

    A cooling mechanism due to boiling in a gap between the debris crust and the reactor pressure vessel (RPV) wall was proposed for the TMI-2 reactor accident analysis. If there is enough heat transfer through the gap to cool the outer surface of the debris and the inner surface of the wall, the RPV wall may preserve its integrity during a severe core melt accident. If the heat removal through gap cooling relative to the counter-current flow limitation (CCFL) is pronounced, the safety margin of the reactor can be far greater than what had been previously known in the severe accident management arena. Should a severe accident take place, the RPV integrity will be maintained because of the inherent nature of degraded core coolability inside the lower head due to boiling in a narrow gap between the debris crust and the RPV wall. As a defense-in-depth measure, the heat removal capability by gap cooling coupled with external cooling can be examined for the Korean Standard Nuclear Power Plant (KSNPP) and the Advanced Power Reactor 1400MWe (APR1400) in light of the TMI-2 vessel survival. A number of studies were carried out to investigate the complex heat transfer mechanisms for the debris cooling in the lower plenum. However, these heat transfer mechanisms have not been clearly understood yet. The CHFG (Critical Heat Flux in Gap) experiments at KAERI were carried out to develop the critical heat flux (CHF) correlation in a hemispherical gap, which is the upper limit of the heat transfer. According to the CHFG experiments performed with a pool boiling condition, the CHF in a parallel gap was reduced by 1/30 compared with the value measured in the open pool boiling condition. The correlation developed from the CHFG experiment is based on the fact that the CHF in a hemispherical gap is governed by the CCFL and a Kutateladze type CCFL parameter correlates CCFL data well in hemispherical gap geometry. However, the results of the CHFG experiments appear to be limited in their

  20. The Sydvaerme project: District heating from the Barsebeck nuclear power plant

    International Nuclear Information System (INIS)

    Josefsson, L.

    1977-01-01

    The paper presents a summary report of a study on district heating from Barsebeck Nuclear Power Plant in Sweden, prepared cooperatively by the cities of Malmoe, Lund, Helsingborg, Landskrona and the electric power company Sydkraft. A future number 3 generating set at the Barsebeck nuclear power station could be designed for combined production of heat and electric power. The generating set could be completed after 1983, and could then supply about 65% of total district heating requirements. The first stage of the investigation includes a proposal for a technically feasible solution, sufficiently detailed to permit both technical and economic evaluation of the project. (author)

  1. A COUNTER-CURRENT HEAT EXCHANGE SYSTEM IN THE TAIL ...

    African Journals Online (AJOL)

    tion of blood returning by the median system under cool conditions. .... Effect of changing ambient temperature (Ta) on core temperature (Tc). caudal .... Considering the relative thickness of the human fore-arm and vervet caudal arteries at the.

  2. A Framework for Building Efficient Environmental Permitting Processes

    Directory of Open Access Journals (Sweden)

    Nicola Ulibarri

    2017-01-01

    Full Text Available Despite its importance as a tool for protecting air and water quality, and for mitigating impacts to protected species and ecosystems, the environmental permitting process is widely recognized to be inefficient and marked by delays. This article draws on a literature review and interviews with permitting practitioners to identify factors that contribute to delayed permit decisions. The sociopolitical context, projects that are complex or use novel technology, a fragmented and bureaucratic regulatory regime, serial permit applications and reviews, and applicant and permitting agency knowledge and resources each contribute to permitting inefficiency when they foster uncertainty, increase transaction costs, and allow divergent interests to multiply, yet remain unresolved. We then use the interviews to consider the potential of a collaborative dialogue between permitting agencies and applicants to mitigate these challenges, and argue that collaboration is well positioned to lessen permitting inefficiency.

  3. Results of investigation of spray controlled heat transfer crisis in tubes

    International Nuclear Information System (INIS)

    Sapankevich, A.P.; Kalinina, O.K.; Selivanov, Yu.F.

    1984-01-01

    Coefficient of liquid phase mass transfer is a determining parameter in tubes at crisis controlled with precipitating on heat surface a liquid phase carried in flow. To determine mass transfer coefficients in 4-14 MPa pressure range at 400-2000 kg/m 2 s mass velocities, special experiments were performed in experimental section consisting of two independently heated tubes in-series-connected along the flow. Heat transfer crisis was reached simultaneously in two sections which permitted to eliminate influence of liquid flowing on the wall in the controlsection. A part of heat removed due to forced convection was taken account of during calculation of mass transfer coefficient. Processing results are presented in the criterional form. Mean-square deviation with respect to massive obtained was amounted to 24% during calculation of the mass transfer coefficient and 20% during calculation of critical heat flux

  4. Application of transient analysis methodology to heat exchanger performance monitoring

    International Nuclear Information System (INIS)

    Rampall, I.; Soler, A.I.; Singh, K.P.; Scott, B.H.

    1994-01-01

    A transient testing technique is developed to evaluate the thermal performance of industrial scale heat exchangers. A Galerkin-based numerical method with a choice of spectral basis elements to account for spatial temperature variations in heat exchangers is developed to solve the transient heat exchanger model equations. Testing a heat exchanger in the transient state may be the only viable alternative where conventional steady state testing procedures are impossible or infeasible. For example, this methodology is particularly suited to the determination of fouling levels in component cooling water system heat exchangers in nuclear power plants. The heat load on these so-called component coolers under steady state conditions is too small to permit meaningful testing. An adequate heat load develops immediately after a reactor shutdown when the exchanger inlet temperatures are highly time-dependent. The application of the analysis methodology is illustrated herein with reference to an in-situ transient testing carried out at a nuclear power plant. The method, however, is applicable to any transient testing application

  5. Watershed-based point sources permitting strategy and dynamic permit-trading analysis.

    Science.gov (United States)

    Ning, Shu-Kuang; Chang, Ni-Bin

    2007-09-01

    Permit-trading policy in a total maximum daily load (TMDL) program may provide an additional avenue to produce environmental benefit, which closely approximates what would be achieved through a command and control approach, with relatively lower costs. One of the important considerations that might affect the effective trading mechanism is to determine the dynamic transaction prices and trading ratios in response to seasonal changes of assimilative capacity in the river. Advanced studies associated with multi-temporal spatially varied trading ratios among point sources to manage water pollution hold considerable potential for industries and policy makers alike. This paper aims to present an integrated simulation and optimization analysis for generating spatially varied trading ratios and evaluating seasonal transaction prices accordingly. It is designed to configure a permit-trading structure basin-wide and provide decision makers with a wealth of cost-effective, technology-oriented, risk-informed, and community-based management strategies. The case study, seamlessly integrating a QUAL2E simulation model with an optimal waste load allocation (WLA) scheme in a designated TMDL study area, helps understand the complexity of varying environmental resources values over space and time. The pollutants of concern in this region, which are eligible for trading, mainly include both biochemical oxygen demand (BOD) and ammonia-nitrogen (NH3-N). The problem solution, as a consequence, suggests an array of waste load reduction targets in a well-defined WLA scheme and exhibits a dynamic permit-trading framework among different sub-watersheds in the study area. Research findings gained in this paper may extend to any transferable dynamic-discharge permit (TDDP) program worldwide.

  6. Bunsen Reaction using a HIx Solution (HI-I2-H2O with Countercurrent Flow for Sulfur-Iodine Hydrogen Production Process

    Directory of Open Access Journals (Sweden)

    Kim Hyo-Sub

    2016-01-01

    Full Text Available In the sulfur-iodine hydrogen production process, the Bunsen reaction is a crucial section because of the linkage with the H2SO4 and HI decomposition sections. The HIx solution (HI-I2-H2O mixture was fed to the Bunsen reaction section as a reactant from the HI decomposition section. In this study, the Bunsen reaction using the HIx solution with countercurrent flow was performed. The production rate of HIx phase solution increased while that of H2SO4 phase solution was maintained constant when increasing the flow rate of HIx solution. As the SO2 flow rate increased, the production rates of H2SO4 and HIx phase solutions increased. The amount of resultant H2SO4 phase was very lower than that of resultant HIx phase under the conditions examined in this study.

  7. Annual report 1974. Sodium technology development programme

    International Nuclear Information System (INIS)

    1975-01-01

    The sodium technology development program comprises a number of separate research programs in the field of designing and testing parts and components for the SNR-300 reactor. Design studies and theoretical studies on cold trapping and the behavior of hydrogen in sodium circuits are reported. A preliminary test program for fighting sodium fires is completed. Results of research done on vibration measurements and counter-current mixing in a dummy tube bundle of a S.N.R. spiralized steam generator with counter-current flow are reported briefly. Research done in the field of heat transfer, pressure drop and bubble dynamics of a straight pipe steam generator are also briefly reported. To determine the influence of spiral diameter of the spiralized pipe on heat transfer in a spiralized pipe heat exchanger, a second testsection will be built in 1975. Research was reported on pump viscoseals, bearing stability, rotordynamics and bearing materials for sodium pumps. Research done on the properties of SNR-construction materials at high temperature and long time exposure and corrosion in sodium are reported. Fundamental research on corrosion accompanied this research. The report closes with results of weldability, mechanized-welding and remote welding of sodium-wetted surfaces

  8. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Shakiba, Ali, E-mail: Shakiba7858@yahoo.com [Department of Mechanical Engineering, Mazandaran Institute of Technology, Babol (Iran, Islamic Republic of); Vahedi, Khodadad, E-mail: Khvahedi@ihu.ac.ir [Department of Mechanical Engineering, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2016-03-15

    This study attempts to numerically investigate the hydro-thermal characteristics of a ferrofluid (water and 4 vol% Fe{sub 3}O{sub 4}) in a counter-current horizontal double pipe heat exchanger, which is exposed to a non-uniform transverse magnetic field with different intensities. The magnetic field is generated by an electric current going through a wire located parallel to the inner tube and between two pipes. The single phase model and the control volume technique have been used to study the flow. The effects of magnetic field have been added to momentum equation by applying C++ codes in Ansys Fluent 14. The results show that applying this kind of magnetic field causes kelvin force to be produced perpendicular to the ferrofluid flow, changing axial velocity profile and creating a pair of vortices which leads to an increase in Nusselt number, friction factor and pressure drop. Comparing the enhancement percentage of Nusselt number, friction factor and pressure drop demonstrates that the optimum value of magnetic number for Re{sub ff}=50 is between Mn=1.33×10{sup 6} and Mn=2.37×10{sup 6}. So applying non-uniform transverse magnetic field can control the flow of ferrofluid and improve heat transfer process of double pipe heat exchanger. - Highlights: • Effect of applying non-uniform transverse magnetic field on a ferrofluid for enhancing the cooling process in a double pipe heat exchanger is investigated. • Heat exchanger is exposed to a non-uniform transverse magnetic field with different intensities. • The magnetic field is generated by an electric current going through a wire located parallel to inner tube and between two pipes. • Applying this field produces kelvin force to change axial velocity profile and creating a pair of vortices increasing Nusselt number, friction factor and pressure drop.

  9. Chiral separation of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography with biphasic recognition

    Science.gov (United States)

    Tong, Shengqiang

    2010-01-01

    This work concentrates on a novel chiral separation technology named biphasic recognition applied to resolution of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography (HSCCC). The biphasic chiral recognition HSCCC was performed by adding lipophilic (−)-2-ethylhexyl tartrate in the organic stationary phase and hydrophilic hydroxypropyl-β-cyclodextrin in the aqueous mobile phase, which preferentially recognized the (−)-enantiomer and (+)-enantiomer, respectively. The two-phase solvent system composed of n-hexane-methyl tert-butyl ether-water (9:1:10, v/v/v) with the above chiral selectors was selected according to the partition coefficient and separation factor of the target enantiomers. Various parameters involved in the chiral separation were investigated, namely the types of the chiral selector (CS); the concentration of each chiral selector; pH of the mobile phase; and the separation temperature. The mechanism involved in this biphasic recognition chiral separation by HSCCC was discussed. Langmuirian isotherm was employed to estimate the loading limits for each chiral selector. The overall experimental results show that the HSCCC separation of enantiomer based on biphasic recognition is much more efficient than the traditional monophasic recognition chiral separation, since it utilizes the cooperation of both lipophilic and hydrophilic chiral selectors. PMID:20303497

  10. 77 FR 25082 - Picture Permit Imprint Indicia

    Science.gov (United States)

    2012-04-27

    ... POSTAL SERVICE 39 CFR Part 111 Picture Permit Imprint Indicia AGENCY: Postal Service\\TM\\. ACTION... Service, Domestic Mail Manual (DMM[supreg]) 604.5 to add picture permit imprint indicia standards allowing...: The use of picture permit imprint indicia is designed to improve the effectiveness of a mailpiece by...

  11. 50 CFR 20.64 - Foreign export permits.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Foreign export permits. 20.64 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Importations § 20.64 Foreign export permits. No... such birds are accompanied by export permits, tags, or other documentation required by applicable...

  12. The three-dimensional model for helical columns on type-J synchronous counter-current chromatography.

    Science.gov (United States)

    Guan, Y H; van den Heuvel, Remco

    2011-08-05

    Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Schinus terebinthifolius countercurrent chromatography (Part II): Intra-apparatus scale-up and inter-apparatus method transfer.

    Science.gov (United States)

    Costa, Fernanda das Neves; Vieira, Mariana Neves; Garrard, Ian; Hewitson, Peter; Jerz, Gerold; Leitão, Gilda Guimarães; Ignatova, Svetlana

    2016-09-30

    Countercurrent chromatography (CCC) is being widely used across the world for purification of various materials, especially in natural product research. The predictability of CCC scale-up has been successfully demonstrated using specially designed instruments of the same manufacturer. The reality is that the most of CCC users do not have access to such instruments and do not have enough experience to transfer methods from one CCC column to another. This unique study of three international teams is based on innovative approach to simplify the scale-up between different CCC machines using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. The optimized separation methodology, recently developed by the authors (Part I), was repeatedly performed on CCC columns of different design available at most research laboratories across the world. Hexane - ethyl acetate - methanol - water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds to monitor stationary phase retention and calculate peak resolution. It has been demonstrated that volumetric, linear and length scale-up transfer factors based on column characteristics can be directly applied to different i.d., volume and length columns independently on instrument make in an intra-apparatus scale-up and inter-apparatus method transfer. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Canonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast

    Directory of Open Access Journals (Sweden)

    Luis L. Fonseca

    2012-02-01

    Full Text Available Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-multi-scale nature, heat adaptation constitutes a complex dynamic process, which has forced most experimental and modeling analyses in the past to focus on just one or a few of its aspects. Here we review the basic components of the heat stress response in yeast and outline what has been done, and what needs to be done, to merge the available information into computational structures that permit comprehensive diagnostics, interrogation, and interpretation. We illustrate the process in particular with the coordination of two metabolic responses, namely the dramatic accumulation of the protective disaccharide trehalose and the substantial change in the profile of sphingolipids, which in turn affect gene expression. The proposed methods primarily use differential equations in the canonical modeling framework of Biochemical Systems Theory (BST, which permits the relatively easy construction of coarse, initial models even in systems that are incompletely characterized.

  15. 50 CFR 21.21 - Import and export permits.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Import and export permits. 21.21 Section... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD PERMITS Specific Permit Provisions § 21.21 Import and export... must have a permit to import or export migratory birds, their parts, nests, or eggs. You must meet the...

  16. Application of the Bowring correlation for calculating the critical heat flux

    International Nuclear Information System (INIS)

    Borges, R.C.; Freitas, R.L.

    1986-01-01

    The evaluation of the critical heat flux is of great importance for the nuclear reactor project, because it permits the verification of the safety margin with respect to fuel rod damage. This work presents a comparison of the original critical heat flux correlation proposed by Bowring with an alternative form derived from it presented in several papers. Very different results have been encountered from the application of the two correlation forms. Therefore, a criterious choice of the correlation form must be done avoid the violation of the project's safety margin. (Author) [pt

  17. High temperature heat recovery systems; Les recuperateurs de chaleur a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.

    2003-07-15

    A state-of-the-art of high temperature heat recovery systems has been made to highlight the advantages of recovery in different energy cycles, and to compare the different geometries, materials and fabrication processes used by the different manufacturers. This leads to define the criteria that a heat recovery system must satisfy in gas turbine cogeneration applications. The pre-dimensioning of a recovery system has been performed in order to compare different geometries and to evaluate them with respect to the criteria defined in the bibliographic study. Finally, the new configuration of the 'Claire' loop has permitted to experimentally characterize a recovery system with an innovative technology based on an helical geometry. These tests have permitted to obtain the global data of the recovery system (efficiency, pressure drop, global exchange coefficient, friction coefficient, velocity and temperature profiles) and to position it with respect to the criteria defined in the bibliographic study. (J.S.)

  18. Functional anatomy of the footpad vasculature of dogs: scanning electron microscopy of vascular corrosion casts.

    Science.gov (United States)

    Ninomiya, Hiroyoshi; Akiyama, Emi; Simazaki, Kanae; Oguri, Atsuko; Jitsumoto, Momoko; Fukuyama, Takaaki

    2011-12-01

    Dogs are well adapted to cold climates and they can stand, walk and run on snow and ice for long periods of time. In contrast to the body trunk, which has, dense fur, the paws are more exposed to the cold due to the lack of fur insulation. The extremities have a high surface area-to-volume ratio, so they lose heat very easily. We offer anatomical evidence for a heat-conserving structure associated with dog footpad vasculature. Methylmethacrylate vascular corrosion casts for scanning electron microscopy, Indian ink-injected whole-mount and histological specimens were each prepared, in a series of 16 limbs from four adult dogs. Vascular casts and Indian ink studies showed that abundant venules were arranged around the arteries supplying the pad surface and formed a vein-artery-vein triad, with the peri-arterial venous network intimately related to the arteries. In addition, numerous arteriovenous anastomoses and well-developed venous plexuses were found throughout the dermal vasculature. The triad forms a counter-current heat exchanger. When the footpad is exposed to a cold environment, the counter-current heat exchanger serves to prevent heat loss by recirculating heat back to the body core. Furthermore, the arteriovenous anastomoses shift blood flow, draining blood to the skin surface, and the venous plexuses retain warm blood in the pad surface. Hence, the appropriate temperature for the footpad can be maintained in cold environments. © 2011 The Authors. Veterinary Dermatology. © 2011 ESVD and ACVD.

  19. Study of Co-Current and Counter-Current Gas-Liquid Two-Phase Flow Through Packed Bed in Microgravity

    Science.gov (United States)

    Revankar, Shripad T.

    2002-11-01

    The main goal of the project is to obtain new experimental data and development of models on the co-current and counter-current gas-liquid two-phase flow through a packed bed in microgravity and characterize the flow regime transition, pressure drop, void and interfacial area distribution, and liquid hold up. Experimental data will be obtained for earth gravity and microgravity conditions. Models will be developed for the prediction of flow regime transition, void fraction distribution and interfacial area concentration, which are key parameters to characterize the packed bed performance. Thus the specific objectives of the proposed research are to: (1) Develop experiments for the study of the gas liquid two-phase flow through the packed bed with three different flow combinations: co-current down flow, co-current upflow and counter current flow. (2) Develop pore scale and bed scale two-phase instrumentation for measurement of flow regime transition, void distribution and gas-liquid interfacial area concentration in the packed bed. (3) Obtain database on flow regime transition, pressure drop, void distribution, interfacial area concentration and liquid hold up as a function of bed characteristics such as bed particle size, porosity, and liquid properties such as viscosity and surface tension. (4) Develop mathematical model for flow regime transition, void fraction distribution and interfacial area concentration for co-current gas-liquid flow through the porous bed in gravity and micro gravity conditions.(4) Develop mathematical model for the flooding phenomena in counter-current gas-liquid flow through the porous bed in gravity and micro gravity conditions. The present proposal addresses the most important topic of HEDS-specific microgravity fluid physics research identified by NASA 's one of the strategic enterprises, OBPR Enterprise. The proposed project is well defined and makes efficient use of the ground-based parabolic flight research aircraft facility. The

  20. Absorbers for combined heating and cooling permit new concepts; Absorber zum Kuehlen und Heizen gestatten neue Konzepte

    Energy Technology Data Exchange (ETDEWEB)

    Stadelmann, M. [Verband der Schweizerischen Gasindustrie, Zurich (Switzerland)

    1998-05-01

    Direct-fuelled absorption-type refrigerators are recently being used not only for cold generation but also for heat generation with a flow temperature of 80 C. They can cool, heat, or cool and heat simultaneously, eah with a 50% share. This opens up new fields of application, either as a stand-alone system or combined with a gas engine cogeneration unit and absorber for cold generation. Two examples are presented, i.e. a hotel and a shopping mall. (orig.) [Deutsch] Direktbefeuerte Absorptionskaeltemaschinen erzeugen neuerdings nicht nur Kaelte, sondern auch Heizungswaerme mit 80 C Vorlauftemperatur. Sie koennen kuehlen, heizen oder - bis je 50% der Leistung - beides gleichzeitig. Der Teillastwirkungsgrad beim Kuehlbetrieb ist hoeher als bekannt. Das eroeffnet neue Moeglichkeiten des Einsatzes solcher Geraete, sei es allein oder zusammen mit Gasmotor-BHKW und Absorber zur Kaelteerzeugung. Zwei Beispiele - ein Hotel und ein Einkaufszentrum - werden vorgestellt. (orig.)

  1. Supercritical heat transfer in an annular channel with two-sided heaing

    International Nuclear Information System (INIS)

    Sergeev, V.V.; Remizov, O.V.; Gal'chenko, Eh.F.

    1986-01-01

    The paper deals with experimental inestigation into worsening of heat transfer at forced up flow in steam-water mixture in a vertical annular channel with two-sided heating and development of technique for calculation of supercritical heat exchange in this channel. Bench-scale experiments are carried out at high-pressure at mass rates of the coolant equal to 300-865 kg/(m 2 x s), pressure of 9.8-17.8 MPa and heat flux on the internal surface - 20-400 kW/m 2 , on the external surface - 35-450 kW/m 2 . Technique for calculation of supercritical heat exchange in channels with one- and two-sided heating is suggested. Analysis of the obtained experimental data permits to determine conditions for arising departure nucleate boiling on the internal and external surfaces and on both surfaces simultaneously. It is concluded that the suggested technique of calculation adequately reflects the effect of regime parameters of coolant flow on temperature regime of heat transferring surfaces in the supercritical area

  2. Radiant recuperator modelling and design

    Directory of Open Access Journals (Sweden)

    Knežević Suzana D.

    2017-01-01

    Full Text Available Recuperators are frequently used in glass production and metallurgical processes to preheat combustion air by heat exchange with high temperature flue gases. Mass and energy balances of a 15 m high, concurrent radiant recuperator used in a glass fiber production process are given. The balances are used: for validation of a cell modeling method that predicts the performance of different recuperator designs, and for finding a simple solution to improve the existing recuperator. Three possible solutions are analyzed: to use the existing recuperator as a countercurrent one, to add an extra cylinder over the existing construction, and to make a system that consists of a central pipe and two concentric annular ducts. In the latter, two air streams flow in opposite directions, whereas air in the inner annular passage flows concurrently or countercurrently to flue gases. Compared with the concurrent recuperator, the countercurrent has only one drawback: the interface temperature is higher at the bottom. The advantages are: lower interface temperature at the top where the material is under maximal load, higher efficiency, and smaller pressure drop. Both concurrent and countercurrent double pipe-in-pipe systems are only slightly more efficient than pure concurrent and countercurrent recuperators, respectively. Their advantages are smaller interface temperatures whereas the disadvantages are their costs and pressure drops. To implement these solutions, the average velocities should be: for flue gas around 5 m/s, for air in the first passage less than 2 m/s, and for air in the second passage more than 25 m/s. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. EE 33027

  3. 77 FR 71818 - Endangered Species Recovery Permit Applications

    Science.gov (United States)

    2012-12-04

    ... following permit requests. Applicant Permit No. TE-78622A Applicant: William J. Mautz, Hilo, Hawaii The...-179036 Applicant: Cullen A. Wilkerson, Richmond, California The applicant requests a permit renewal to...

  4. Floodplain District Permit

    Data.gov (United States)

    Montgomery County of Maryland — The purpose of a Floodplain District Permit (FPDP) is to control floodplain development in order to protect persons and property from danger and destruction and to...

  5. Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress

    Directory of Open Access Journals (Sweden)

    Xin Xin Zhao

    2014-09-01

    Full Text Available The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L..The stomatal conductance (Gs, net photosynthetic rate (Pn, and transpiration rates (Tr of both heat-acclimated (HA and non-acclimated (NA plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night, in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times versus the NA (1.8 times plants, and the intercellular CO2 concentration decreased gently in NA (10.9% and HA (25.3% plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD, catalase (CAT, guaiacol peroxidase (POD, and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  6. IFQ Halibut/Sablefish and CDQ Halibut Permit Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Under the IFQ Halibut/Sablefish Permit Program and CDQ Halibut Permit Program permits are issued for harvesting and receiving/processing halibut, and non-trawl...

  7. 5 CFR 734.202 - Permitted activities.

    Science.gov (United States)

    2010-01-01

    ... (CONTINUED) POLITICAL ACTIVITIES OF FEDERAL EMPLOYEES Permitted Activities § 734.202 Permitted activities. Employees may take an active part in political activities, including political management and political campaigns, to the extent not expressly prohibited by law and this part. ...

  8. WIPP's Hazardous Waste Facility Permit Renewal Application

    International Nuclear Information System (INIS)

    Most, W.A.; Kehrman, R.F.

    2009-01-01

    Hazardous waste permits issued by the New Mexico Environment Department (NMED) have a maximum term of 10-years from the permit's effective date. The permit condition in the Waste Isolation Pilot Plant's (WIPP) Hazardous Waste Facility Permit (HWFP) governing renewal applications, directs the Permittees to submit a permit application 180 days prior to expiration of the Permit. On October 27, 1999, the Secretary of the NMED issued to the United States Department of Energy (DOE), the owner and operator of WIPP, and to Washington TRU Solutions LLC (WTS), the Management and Operating Contractor and the cooperator of WIPP, a HWFP to manage, store, and dispose hazardous waste at WIPP. The DOE and WTS are collectively known as the Permittees. The HWFP is effective for a fixed term not to exceed ten years from the effective date of the Permit. The Permittees may renew the HWFP by submitting a new permit application at least 180 calendar days before the expiration date, of the HWFP. The Permittees are not proposing any substantial changes in the Renewal Application. First, the Permittees are seeking the authority to dispose of Contact-Handled and Remote-Handled TRU mixed waste in Panel 8. Panels 4 through 7 have been approved in the WIPP Hazardous Waste Facility Permit as it currently exists. No other change to the facility or to the manner in which hazardous waste is characterized, managed, stored, or disposed is being requested. Second, the Permittees also seek to include the Mine Ventilation Rate Monitoring Plan, as Attachment Q in the HWFP. This Plan has existed as a separate document since May 2000. The NMED has requested that the Plan be submitted as part of the Renewal Application. The Permittees have been operating to the Mine Ventilation Rate Monitoring Plan since the Plan was submitted. Third, some information submitted in the original WIPP RCRA Part B Application has been updated, such as demographic information. The Permittees will submit this information in the

  9. Graphite curtain vacuum outgassing and heat transfer. Final report

    International Nuclear Information System (INIS)

    Fivel, H.J.; Lang, G.P.; Kipp, H.W.

    1976-12-01

    Thermal conductivity of a bundle of high conductivity graphite fibers (T-50) was measured as a function of temperature, density and fiber orientation at pressures of 10 -4 to 10 -5 torr. All 3 variables had a significant influence on thermal conductivity. The highest conductivity fiber bundle tested had a conductivity significantly less than dense, bulk nuclear grade graphite. The incorporation of heat pipes into a graphite spectral shaper will permit a 2-fold thicker shaper. Heat pipes not only increase the transport of heat within the spectral shaper but can increase heat transfer at the shaper-first wall interface and potentially serve as a means of attaching shaper modules to the first wall. A heat pipe using a liquid metal working fluid was fabricated and tested in magnetic fields of 1 and 2 Tesla. Liquid metal heat pipes can be used in a magnetic field of at least up to 2 Tesla. Much more work needs to be done to establish the capabilities for high performance heat pipes when used in magnetic fields. Four different types of graphite fibers were exposed in EBR-II to a neutron fluence of 3.5 x 10 21 cm -2 EFF at 470 0 C. Large axial shrinkages of 6.6 to 8.6% resulted

  10. Measurement of heat transfer effectiveness during collision of a Leidenfrost droplet with a heated wall - 15447

    International Nuclear Information System (INIS)

    Park, J.S.; Kim, H.; Bae, S.W.; Kim, K.D.

    2015-01-01

    Droplet-wall collision heat transfer during dispersed flow film boiling plays a role in predicting cooling rate and peak cladding temperature of overheated fuels during reflood following a LOCA accident in nuclear power plants. This study aims at experimentally studying effects of collision velocity and angle, as dynamic characteristics of the colliding droplet, on heat transfer. The experiments were performed by varying collision velocity from 0.2 to 1.5 m/s and collision angle between the droplet path and the wall in the range from 30 to 90 degrees under atmosphere condition. A single droplet was impinged on an infrared-opaque Pt film deposited on an infrared-transparent sapphire plate, which combination permits to measure temperature distribution of the collision surface using a high-speed infrared camera from below. The instantaneous local surface heat flux was obtained by solving transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition of the collision surface. Total heat transfer amount of a single droplet collision was calculated by integrating the local heat flux distribution on the effective heat transfer area during the collision time. The obtained results confirmed the finding from the previous studies that with increasing collision velocity, the heat transfer effectiveness increases due to the increase of the heat transfer area and the local heat flux value. Interestingly, it was found that as collision angle of a droplet with a constant collision velocity decreases from 90 to 50 degrees and thus the vertical velocity component of the collision decreases, the total heat transfer amount per a collision increases. It was observed that the droplet colliding with an angle less than 90 degrees slides on the surface during the collision and the resulting collision area is larger than that in the normal collision. On the other hand, further decrease of collision angle below 40 degrees

  11. BCDC Minor Permits

    Data.gov (United States)

    California Natural Resource Agency — An administrative permit can be issued for an activity that qualifies as a minor repair or improvement in a relatively short period of time and without a public...

  12. Void fraction correlations analysis and their influence on heat transfer of helical double-pipe vertical evaporator

    International Nuclear Information System (INIS)

    Parrales, Arianna; Colorado, Dario; Huicochea, Armando; Díaz, Juan; Alfredo Hernández, J.

    2014-01-01

    Highlights: • 50 void fraction correlations were evaluated on heat transfer in vertical evaporators. • Two-phase flow model based on control volume formulation was used. • The drift flux parameter is common in all correlations with satisfactory results. - Abstract: An analysis of 50 void fraction correlations available in the literature was performed to describe two-phase flow mechanism inside two helical double-pipe vertical evaporators. The evaporators considered water as working fluid connected in countercurrent so the change of phase was carried out into the internal tube. The discretized equations of continuity, momentum and energy in each flow were coupled using an implicit step by step method. The selection of the void fraction correlations for the mathematical model was based on inclusion of some theoretical limits. The results of this analysis were compared with the experimental data in steady state for two different evaporators, obtaining good agreement in the evaporation process for only 7 void fraction correlations. The Armand and Massena correlation had a mean percentage error (MPE) of 3.08%, followed by Rouhanni and Axelsson I adquired MPE=3.16%, Chisholm and Armand obtained MPE=3.18%, Steiner as well as Rouhanni and Axelsson II with MPE=3.19%, Bestion reached MPE=3.20% and Flanigan presented MPE=3.21%. Furthermore, the experimental and simulated heat flux were acceptable (R 2 =0.939). Finally, the results showed that the drift flux parameter was important to evaluate the void fraction

  13. Heat-exchanger concepts for neutral-beam calorimeters

    International Nuclear Information System (INIS)

    Thompson, C.C.; Polk, D.H.; McFarlin, D.J.; Stone, R.

    1981-01-01

    Advanced cooling concepts that permit the design of water cooled heat exchangers for use as calorimeters and beam dumps for advanced neutral beam injection systems were evaluated. Water cooling techniques ranging from pool boiling to high pressure, high velocity swirl flow were considered. Preliminary performance tests were carried out with copper, inconel and molybdenum tubes ranging in size from 0.19 to 0.50 in. diameter. Coolant flow configurations included (1) smooth tube/straight flow, (2) smooth tube with swirl flow created by tangential injection of the coolant, and (3) axial flow in internally finned tubes. Additionally, the effect of tube L/D was evaluated. A CO 2 laser was employed to irradiate a sector of the tube exterior wall; the laser power was incrementally increased until burnout (as evidenced by a coolant leak) occurred. Absorbed heat fluxes were calculated by dividing the measured coolant heat load by the area of the burn spot on the tube surface. Two six element thermopiles were used to accurately determine the coolant temperature rise. A maximum burnout heat flux near 14 kW/cm 2 was obtained for the molybdenum tube swirl flow configuration

  14. Method for separating isotopes

    International Nuclear Information System (INIS)

    Jepson, B.E.

    1976-01-01

    The invention comprises a method for separating different isotopes of elements from each other by contacting a feed solution containing the different isotopes with a macrocyclic polyether to preferentially form a macrocyclic polyether complex with the lighter of the different isotopes. The macrocyclic polyether complex is then separated from the lighter isotope depleted feed solution. A chemical separation of isotopes is carried out in which a constant refluxing system permits a continuous countercurrent liquid-liquid extraction. (LL)

  15. State Waste Discharge Permit ST-4502 Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    BROWN, M.J.; LECLAIR, M.D.

    2000-09-27

    Plan has been developed to demonstrate compliance with regulatory requirements set forth in Permit ST-3502 and as a line management tool for use in maintaining configuration control of permit as well as documentation used to implement permit requirements.

  16. State Waste Discharge Permit ST-4502 Implementation Plan

    International Nuclear Information System (INIS)

    BROWN, M.J.; LECLAIR, M.D.

    2000-01-01

    Plan has been developed to demonstrate compliance with regulatory requirements set forth in Permit ST-3502 and as a line management tool for use in maintaining configuration control of permit as well as documentation used to implement permit requirements

  17. The Use of Transferable Permits in Transport Policy

    OpenAIRE

    Raux, Charles

    2004-01-01

    http://dx.doi.org/10.1016/j.trd.2004.01.001; International audience; This paper considers potential use of domestic transferable, or tradable, permit systems for the purposes of travel management, especially reducing environmental nuisances. The main arguments for and against the use of permits are analyzed. Secondly two case studies of existing permit systems are examined. The main conclusions are that tradable permits can address greenhouse gas and regional atmospheric pollutant emissions, ...

  18. 50 CFR 21.31 - Rehabilitation permits.

    Science.gov (United States)

    2010-10-01

    ..., foster parenting, research projects, or other permitted activities with persons permitted or otherwise... Response Coordinator or other designated Service representative and obtain permission from the On-Scene Coordinator. All activities within the location of the spill are subject to the authority of the On-Scene...

  19. 78 FR 24305 - Actions on Special Permit Applications

    Science.gov (United States)

    2013-04-24

    ... special permit Lincoln, NE. to authorize an alternative fire protection system. 11624-M Clean Harbors 49... Special Permit Applications AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice of actions on Special Permit Applications. SUMMARY: In accordance with the procedures...

  20. 40 CFR 71.6 - Permit content.

    Science.gov (United States)

    2010-07-01

    ... § 71.5(d). (B) Prompt reporting of deviations from permit requirements, including those attributable to... prompt or otherwise specifies a time frame for reporting deviations, that definition or time frame shall... and air pollution control equipment), practices, or operations regulated or required under the permit...

  1. 40 CFR 71.25 - Permit content.

    Science.gov (United States)

    2010-07-01

    ... such reports; and (ii) Prompt reporting of any deviations from permit requirements, including those... “prompt” in the permit for each situation and will do so in relation to the degree and type of deviation... reasonable times any facilities, equipment (including monitoring and air pollution control equipment...

  2. 40 CFR 233.21 - General permits.

    Science.gov (United States)

    2010-07-01

    ... ensure compliance with existing permit conditions an any reporting monitoring, or prenotification... apply for an individual permit. This discretionary authority will be based on concerns for the aquatic environment including compliance with paragraph (b) of this section and the 404(b)(1) Guidelines (40 CFR part...

  3. 40 CFR 144.51 - Conditions applicable to all permits.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Permit Conditions § 144.51 Conditions applicable... permit. Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds... denial of a permit renewal application; except that the permittee need not comply with the provisions of...

  4. Microwave-Assisted Extraction and Purification of Arctiin and Arctigenin from Fructus Arctii by High-Speed Countercurrent Chromatography.

    Science.gov (United States)

    Lü, Haitao; Sun, Zhaoyun; Shan, Hu; Song, Jiying

    2016-03-01

    An efficient method for the rapid extraction, separation and purification of bioactive lignans, arctiin and arctigenin, from Fructus arctii by microwave-assisted extraction coupled with high-speed countercurrent chromatography was developed. The optimal extraction conditions of arctiin and arctigenin were evaluated by orthogonal array. Arctigenin could be converted from arctiin by hydrochloric acid hydrolysis. The separations were performed at a preparative scale with two-phase solvents composed of ethyl acetate-ethanol-water (5 : 1 : 5, v/v/v) for arctiin, and n-hexane-ethyl acetate-ethanol-water (4 : 4 : 3 : 4, v/v/v/v) for arctigenin. From 500 mg of crude extract sample, 122.3 mg of arctiin and 45.7 mg of arctigenin were obtained with the purity of 98.46 and 96.57%, and the recovery of 94.3 and 81.6%, respectively. Their structures were determined by comparison with the high-performance liquid chromatography retention time of standard substance as well as UV, FT-IR, electrospray ion source (ESI)-MS, (1)H-NMR and (13)C-NMR spectrum. According to the antioxidant activity assay, arctigenin had stronger 1,1-diphenyl-2-picrylhydrazyl free radicals scavenging activity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Rational approach to solvent system selection for liquid-liquid extraction-assisted sample pretreatment in counter-current chromatography.

    Science.gov (United States)

    Wang, Jiajia; Gu, Dongyu; Wang, Miao; Guo, Xinfeng; Li, Haoquan; Dong, Yue; Guo, Hong; Wang, Yi; Fan, Mengqi; Yang, Yi

    2017-05-15

    A rational liquid-liquid extraction approach was established to pre-treat samples for high-speed counter-current chromatography (HSCCC). n-Hexane-ethyl acetate-methanol-water (4:5:4:5, v/v) and (1:5:1:5, v/v) were selected as solvent systems for liquid-liquid extraction by systematically screening K of target compounds to remove low- and high-polarity impurities in the sample, respectively. After liquid-liquid extraction was performed, 1.4g of crude sample II was obtained from 18.5g of crude sample I which was extracted from the flowers of Robinia pseudoacacia L., and then separated with HSCCC by using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v). As a result, 31mg of robinin and 37mg of kaempferol 7-O-α-l-rhamnopyranoside were isolated from 200mg of crude sample II in a single run of HSCCC. A scale-up separation was also performed, and 160mg of robinin with 95% purity and 188mg of kaempferol 7-O-α-l-rhamnopyranoside with 97% purity were produced from 1.2g of crude sample II. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Device for measuring high temperature heat conductivity of solids and melts

    International Nuclear Information System (INIS)

    Magomedov, Ya.B.; Gadzhiev, G.G.

    1990-01-01

    A modification of a device for measuring heat conductivity by a compensation method when a thermocouple with gadolinium sulfide being used is suggested. Such a device has less error of measurement (8%), wider interval of working temperatures (300-1600K) and it permits to investigate the material in the wide range of heat conductivity values (0.5-30 W/(mxK)). The stainless steel 12Kh18N10T, lanthanum sulfide and melted quartz were used for the device calibration. The results obtained and the literature data on these materials agree well between each other

  7. 78 FR 6817 - Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for...

    Science.gov (United States)

    2013-01-31

    ... Wisconsin Public Service Corporation--JP Pulliam Plant. Pursuant to section 505(b)(2) of the Act, a... ENVIRONMENTAL PROTECTION AGENCY [FRL 9774-6] Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for Wisconsin Public Service Corporation--JP Pulliam Plant AGENCY...

  8. 50 CFR 648.88 - Multispecies open access permit restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Multispecies open access permit... Management Measures for the NE Multispecies and Monkfish Fisheries § 648.88 Multispecies open access permit restrictions. (a) Handgear permit. A vessel issued a valid open access NE multispecies Handgear permit is...

  9. 50 CFR 21.41 - Depredation permits.

    Science.gov (United States)

    2010-10-01

    ... PLANTS (CONTINUED) MIGRATORY BIRD PERMITS Control of Depredating and Otherwise Injurious Birds § 21.41... control purposes. No permit is required merely to scare or herd depredating migratory birds other than... other means of concealment, decoys, duck calls, or other devices to lure or entice birds within gun...

  10. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration.

    Science.gov (United States)

    Han, Fei; Zhang, Guang-Hui; Gu, Ping

    2012-07-30

    Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3μg/L, the dosage of CuFC was 40mg/L and the adsorption time was 20min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75μg/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Separation of three anthraquinone glycosides including two isomers by preparative high-performance liquid chromatography and high-speed countercurrent chromatography from Rheum tanguticum Maxim. ex Balf.

    Science.gov (United States)

    Chen, Tao; Li, Hongmei; Zou, Denglang; Liu, Yongling; Chen, Chen; Zhou, Guoying; Li, Yulin

    2016-08-01

    Anthraquinone glycosides, such as chrysophanol 1-O-β-d-glucoside, chrysophanol 8-O-β-d-glucoside, and physion 8-O-β-d-glucoside, are the accepted important active components of Rheum tanguticum Maxim. ex Balf. due to their pharmacological properties: antifungal, antimicrobial, cytotoxic, and antioxidant activities. However, an effective method for the separation of the above-mentioned anthraquinone glycosides from this herb is not currently available. Especially, greater difficulty existed in the separation of the two isomers chrysophanol 1-O-β-d-glucoside and chrysophanol 8-O-β-d-glucoside. This study demonstrated an efficient strategy based on preparative high-performance liquid chromatography and high-speed countercurrent chromatography for the separation of the above-mentioned anthraquinone glycosides from Rheum tanguticum Maxim.ex Balf. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 25 CFR 211.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 211.56 Section 211.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations and Appeals § 211.56 Geological and geophysical permits. Permits to conduct geological and geophysical operations on Indian lands which do not...

  13. 77 FR 34061 - Endangered Species; Issuance of Permits

    Science.gov (United States)

    2012-06-08

    ...-FF09A30000] Endangered Species; Issuance of Permits AGENCY: Fish and Wildlife Service, Interior. ACTION... following permits to conduct certain activities with endangered species. We issue these permits under the Endangered Species Act (ESA). ADDRESSES: Brenda Tapia, Division of Management Authority, U.S. Fish and...

  14. 78 FR 27255 - Endangered Species; Issuance of Permits

    Science.gov (United States)

    2013-05-09

    ...-FF09A30000] Endangered Species; Issuance of Permits AGENCY: Fish and Wildlife Service, Interior. ACTION... following permits to conduct certain activities with endangered species. We issue these permits under the Endangered Species Act (ESA). ADDRESSES: Brenda Tapia, Division of Management Authority, U.S. Fish and...

  15. 78 FR 56922 - Endangered Species; Issuance of Permits

    Science.gov (United States)

    2013-09-16

    ...-FF09A30000] Endangered Species; Issuance of Permits AGENCY: Fish and Wildlife Service, Interior. ACTION... following permits to conduct certain activities with endangered species. We issue these permits under the Endangered Species Act (ESA). ADDRESSES: Brenda Tapia, Division of Management Authority, U.S. Fish and...

  16. Coping with EPA's new petroleum industry storm water permits

    International Nuclear Information System (INIS)

    Veal, S.C.; Whitescarver, J.P.

    1994-01-01

    The United States Environmental Protection Agency has just released for public comment its so-called multi-sector industry specific storm water permit. This permit -- developed in response to the 730 group storm water permit applications submitted in 1992 to EPA -- proposes the establishment of specific runoff sampling and facility design requirements for at least two petroleum industry sectors. This proposed permit establishes specific conditions for the oil and gas extraction section (SIC group 13) and for lubricant manufacturers (SIC 2992). Permit conditions are also established for allied industrial sectors such as the chemical, transportation and asphalt materials industries. By most standards, the proposed permit is much tougher than EPA's baseline general permit for storm water discharges which was released in September of 1992. For example, under the proposal, most industries are required to perform periodic storm water sampling. EPA has also established storm water effluent and performance standards for several industrial categories. This paper will discuss the petroleum industry specific conditions of the new permit. The paper will also discuss the results of the industry-wide storm water sampling efforts undertaken by more than 300 oil patch facilities across the country. In particular, sampling results will be discussed in the context to the permit conditions proposed by EPA. The paper will also discuss strategies for dealing with the new permits

  17. Isolation of two new prenylated flavonoids from Sinopodophyllum emodi fruit by silica gel column and high-speed counter-current chromatography.

    Science.gov (United States)

    Sun, Yanjun; Sun, Yinshi; Chen, Hui; Hao, Zhiyou; Wang, Junmin; Guan, Yanbin; Zhang, Yanli; Feng, Weisheng; Zheng, Xiaoke

    2014-10-15

    Two new prenylated flavonoids, sinoflavonoids A-B, were isolated from the dried fruits of Sinopodophyllum emodi by silica gel column chromatography (SGCC) and high-speed counter-current chromatography (HSCCC). The 95% ethanol extract was partitioned with petroleum ether, dichloromethane, ethyl acetate, and n-butanol in water, respectively. The ethyl acetate fraction was pre-separated by SGCC with a petroleum ether-acetone gradient. The eluates containing target compounds were further separated by HSCCC with n-hexane-ethyl acetate-methanol-water (4:6:4:4, v/v). Finally, 17.3mg of sinoflavonoid A and 25.9mg of sinoflavonoid B were obtained from 100mg of the pretreated concentrate. The purities of sinoflavonoid A and sinoflavonoid B were 98.47% and 99.38%, respectively, as determined by HPLC. Their structures were elucidated on the basis of spectroscopic evidences (HR-ESI-MS, (1)H-NMR, (13)C-NMR, HSQC, HMBC). The separation procedures proved to be efficient, especially for trace prenylated flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Marketable pollution permits with uncertainty and transaction costs

    International Nuclear Information System (INIS)

    Montero, Juan-Pablo

    1998-01-01

    Increasing interest in the use of marketable permits for pollution control has become evident in recent years. Concern regarding their performance still remains because empirical evidence has shown transaction costs and uncertainty to be significant in past and existing marketable permits programs. In this paper we develop theoretical and numerical models that include transaction costs and uncertainty (in trade approval) to show their effects on market performance (i.e., equilibrium price of permits and trading volume) and aggregate control costs. We also show that in the presence of transaction costs and uncertainty the initial allocation of permits may not be neutral in terms of efficiency. Furthermore, using a numerical model for a hypothetical NO x trading program in which participants have discrete control technology choices, we find that aggregate control costs and the equilibrium price of permits are sensitive to the initial allocation of permits, even for constant marginal transaction costs and certainty

  19. 34 CFR 395.35 - Terms of permit.

    Science.gov (United States)

    2010-07-01

    ..., periodicals, publications, confections, tobacco products, foods, beverages, chances for any lottery authorized... PROPERTY Federal Property Management § 395.35 Terms of permit. Every permit shall describe the location of...

  20. 7 CFR 330.208 - Courtesy permits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Courtesy permits. 330.208 Section 330.208 Agriculture... PRODUCTS; GARBAGE Movement of Plant Pests § 330.208 Courtesy permits. The Deputy Administrator may issue... subject to regulation under the Plant Protection Actor any other act, as a courtesy to facilitate movement...

  1. 75 FR 2560 - Issuance of Permits

    Science.gov (United States)

    2010-01-15

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R9-IA-2010-N006] [96300-1671-0000-P5] Issuance of Permits AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of issuance of permits..., 2009 PH.D, Department of 16, 2009. Cardiology Children's Hospital. Dated: January 8, 2010. Brenda Tapia...

  2. 25 CFR 212.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 212.56 Section 212.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.56 Geological and geophysical permits. (a) Permits to conduct geological and geophysical operations on Indian lands which do not...

  3. Banking and back-loading emission permits

    International Nuclear Information System (INIS)

    Chaton, Corinne; Creti, Anna; Peluchon, Benoît

    2015-01-01

    In this article we focus on the so-called back-loading policy adopted by the European Commission to increase the carbon market price. This environmental measure consists of removing a share of the allowances allocated for a given period in order to reallocate some or all of them later on. To analyze the impact of the permits back-loading, we determine the CO 2 price equilibrium with and without the policy measure, considering not only the market for permits but also the output market of regulated sectors. We propose a two-period model, where the market for permits is perfectly competitive, and the output market can be either competitive or oligopolistic. First, we define the condition under which banking from one period to another is optimal. This condition, that is the absence of arbitrage opportunities (AOA), depends not only from the period initial allocation but also on production market fundamentals. When this condition is satisfied, the market for emission is shown intertemporally efficient. Second, we point out that the back-loading measure may create inefficiencies or leave unaffected the permits price, if it alters the AOA. -- Highlights: •Relationship between the market for permits and the output market of regulated sectors. •Analysis of CO 2 prices and banking. •Impact of a recent environmental policy measure (backloading) on CO 2 prices

  4. Quasi-adaptive fuzzy heating control of solar buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, M.M. [Faculty of Industrial Education, Cairo (Egypt); Danaher, S. [University of Northumbria, Newcastle upon Tyne, (United Kingdom). School of Engineering; Underwood, C.P. [University of Northumbria, Newcastle upon Tyne (United Kingdom). School of Built Environment and Sustainable Cities Research Institute

    2006-12-15

    Significant progress has been made on maximising passive solar heat gains to building spaces in winter. Control of the space heating in these applications is complicated due to the lagging influence of the useful solar heat gain coupled with the wide range of construction materials and heating system choices. Additionally, and in common with most building control applications, there is a need to develop control solutions that permit simple and transparent set-up and commissioning procedures. This paper addresses the development and testing of a quasi-adaptive fuzzy logic control method that addresses these issues. The controller is developed in two steps. A feed-forward neural network is used to predict the internal air temperature, in which a singular value decomposition (SVD) algorithm is used to remove the highly correlated data from the inputs of the neural network to reduce the network structure. The fuzzy controller is then designed to have two inputs: the first input being the error between the set-point temperature and the internal air temperature and the second the predicted future internal air temperature. The controller was implemented in real-time using a test cell with controlled ventilation and a modulating electric heating system. Results, compared with validated simulations of conventionally controlled heating, confirm that the proposed controller achieves superior tracking and reduced overheating when compared with the conventional method of control. (author)

  5. 32 CFR 552.90 - Permit office.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Permit office. 552.90 Section 552.90 National... CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Fort Lewis Land Use Policy § 552.90 Permit office... non-training acess to the range complex. The office is open 0700-1900 hours, seven days a week, for...

  6. 75 FR 20622 - Endangered Wildlife and Plants; Permits

    Science.gov (United States)

    2010-04-20

    .... Permit No. TE-02997A Applicant: University of Hawaii, Hilo, Hawaii. The applicant requests a permit to... scientific research including genetic, morphological and behavioral research on the island of Hawaii in the State of Hawaii for the purpose of enhancing its survival. The applicant also requests a permit to take...

  7. 76 FR 67650 - Migratory Bird Permits; Abatement Regulations

    Science.gov (United States)

    2011-11-02

    ... and suggestions on migratory bird permit regulations for a permit to use raptors (birds of prey) in abatement activities. Abatement means the use of trained raptors to flush, scare (haze), or take birds or... for a specific permit authorizing the use of raptors in abatement activities (76 FR 39368). The...

  8. 21 CFR 1312.22 - Application for export permit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Application for export permit. 1312.22 Section... EXPORTATION OF CONTROLLED SUBSTANCES Exportation of Controlled Substances § 1312.22 Application for export permit. (a) An application for a permit to export controlled substances shall be made on DEA Form 161...

  9. Equipment for heating the exhaust gases of internal combustion engines in order to improve afterburning

    Energy Technology Data Exchange (ETDEWEB)

    Masaki,

    1976-04-15

    The device described here serves to heat exhaust gases of internal combustion engines by heat exchange with hot gases and also, in cold engines, to raise the temperature of the fuel-air mixture drawn in by the engine. The device is installed next to the outlet opening of the engine. It consists of a burner to generate the hot gas, as well as a heat exchanger permitting heat supply to the exhaust gases and a hot-gas line leading to the intake line. Heating of the air is taken in leads to a better atomization of the mixture and thus to improved combustion. Heating of the exhaust gases improves afterburning. The burner generating the hot gas is shut off when the normal operational temperature of the engine is reached. The temperature is controlled by means of a temperature sensor installed in the device.

  10. 40 CFR 60.4123 - Hg budget permit contents and term.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Hg budget permit contents and term. 60... Coal-Fired Electric Steam Generating Units Permits § 60.4123 Hg budget permit contents and term. (a) Each Hg Budget permit will contain, in a format prescribed by the permitting authority, all elements...

  11. Investigation of the kinetics of the change in the group composition of the anthracene fraction on heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Lur' e, M.V.; Stepanenko, M.A.

    1981-01-01

    In the reported experiments, an investigation has been made of the kinetics of the change in the group composition of the anthracene fraction during heat treatment under various conditions. On the basis of the results obtained, a kinetic model of the process has been developed which permits rational conditions for obtaining a heat-treated product of the necessary group composition to be found. 6 refs.

  12. Specific heat measurement set-up for quench condensed thin superconducting films.

    Science.gov (United States)

    Poran, Shachaf; Molina-Ruiz, Manel; Gérardin, Anne; Frydman, Aviad; Bourgeois, Olivier

    2014-05-01

    We present a set-up designed for the measurement of specific heat of very thin or ultra-thin quench condensed superconducting films. In an ultra-high vacuum chamber, materials of interest can be thermally evaporated directly on a silicon membrane regulated in temperature from 1.4 K to 10 K. On this membrane, a heater and a thermometer are lithographically fabricated, allowing the measurement of heat capacity of the quench condensed layers. This apparatus permits the simultaneous thermal and electrical characterization of successively deposited layers in situ without exposing the deposited materials to room temperature or atmospheric conditions, both being irreversibly harmful to the samples. This system can be used to study specific heat signatures of phase transitions through the superconductor to insulator transition of quench condensed films.

  13. 21 CFR 1312.23 - Issuance of export permit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Issuance of export permit. 1312.23 Section 1312.23... CONTROLLED SUBSTANCES Exportation of Controlled Substances § 1312.23 Issuance of export permit. (a) The... regulation in § 1312.30 of this part be exported only pursuant to the issuance of an export permit. The...

  14. Operation of the annular pulsed column, (2)

    International Nuclear Information System (INIS)

    Takahashi, Keiki; Tsukada, Takeshi

    1988-01-01

    The heat of reaction generated form the uranium extraction is considered to from the temperature profile inside the pulsed column. A simulation code was developed to estimate the temperature profile, considering heat generation and counter-current heat transfer. The temperature profiles calculated using this code was found to depend on both the position of the extraction zone and the operating condition. The reported experimental result was fairly represented by this simulation code. We consider that this presented simulation code is capable of providing with the temperature profile in the pulsed column and useful for the monitoring of the uranium extraction zone. (author)

  15. Guide to Permitting Hydrogen Motor Fuel Dispensing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, Carl [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-28

    The purpose of this guide is to assist project developers, permitting officials, code enforcement officials, and other parties involved in developing permit applications and approving the implementation of hydrogen motor fuel dispensing facilities. The guide facilitates the identification of the elements to be addressed in the permitting of a project as it progresses through the approval process; the specific requirements associated with those elements; and the applicable (or potentially applicable) codes and standards by which to determine whether the specific requirements have been met. The guide attempts to identify all applicable codes and standards relevant to the permitting requirements.

  16. Rosebud Casino and Hotel NPDES Proposed Permit

    Science.gov (United States)

    Indian Country, Minor Permit, proposed permit SD-0034584, Rosebud Casino and Hotel, South Dakota, is authorized to discharge from its wastewater treatment facility in Todd County, South Dakota to an unnamed drainageway(s) tributary to Rock Creek.

  17. Permitting issues in Virginia

    International Nuclear Information System (INIS)

    Kennel, R.P.

    1992-01-01

    As background, LG and E Development Corporation (formerly Hadson) has successfully put 16 Qualifying Facilities in the ground over the past 9 years in California, Maine, Virginia, and North Carolina. Each of these qualifying facilities has had some environmental innovative first, so there is no apology for the authors' environmental credentials. In Virginia, there are four identical 60 MW stoker coal cogeneration projects in Southampton County, Altavista, Hopewell, and -lastly-Buena Vista. The Buena Vista cogeneration project becomes the exception that proves the permitting rules. It has been in the permitting process for over 4 years; and despite being the cleanest coal project ever considered east of the Mississippi (design at 0.1 lbs/MMBtu for both So 2 and NO x ), it has suffered serous consequences from permitting delays and BACT ratcheting. As a simple comparison of importance, the Virginia Power Mt. Storm coal power facility emits approximately 150,000 tons of So 2 per year, while the Buena Vista project will actually emit approximately 150 tons of SO 2 per year (not including 1,500' tons of purchased SO 2 offsets). Both are similar distances from the Shenandoah National Park which has been the primary environmental point of concern in Virginia

  18. 75 FR 22400 - Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Wheelabrator...

    Science.gov (United States)

    2010-04-28

    ... ENVIROMENTAL PROTECTION AGENCY [FRL-9142-6] Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Wheelabrator Baltimore, L.P., Baltimore City, MD AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of final action. SUMMARY: Pursuant to section 505(b)(2) of the Clean...

  19. Electron cyclotron heating for current profile control of non-circular plasmas

    International Nuclear Information System (INIS)

    Chan, V.S.; Davidson, R.; Guest, G.; Hacker, M.; Miller, L.

    1981-01-01

    Electron Cyclotron Heating (ECH) offers a promising approach to modifying the radial profiles of electron temperature and plasma current in tokamaks to increase the ideal MHD beta limits and permit experimental access to particular noncircular cross-section tokamaks that cannot be achieved with the peaked current profiles characteristic of ohmically heated tokamaks. We use a one-and-one-half-dimensional, time-dependent transport model that incorporates a self-consistent model of electron cyclotron power absorption to study the temporal evolution of electron temperature and plasma current profiles and the resulting noncircular equilibria. Startup scenarios for high-beta dees and doublets are investigated with this transport modeling

  20. Hanford facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains ''umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit

  1. Simulation of Radiation Heat Transfer in a VAR Furnace Using an Electrical Resistance Network

    Science.gov (United States)

    Ballantyne, A. Stewart

    The use of electrical resistance networks to simulate heat transfer is a well known analytical technique that greatly simplifies the solution of radiation heat transfer problems. In a VAR furnace, radiative heat transfer occurs between the ingot, electrode, and crucible wall; and the arc when the latter is present during melting. To explore the relative heat exchange between these elements, a resistive network model was developed to simulate the heat exchange between the electrode, ingot, and crucible with and without the presence of an arc. This model was then combined with an ingot model to simulate the VAR process and permit a comparison between calculated and observed results during steady state melting. Results from simulations of a variety of alloys of different sizes have demonstrated the validity of the model. Subsequent simulations demonstrate the application of the model to the optimization of both steady state and hot top melt practices, and raises questions concerning heat flux assumptions at the ingot top surface.

  2. Industrial Fuel Gas Demonstration Plant Program: environmental permit compliance plan

    Energy Technology Data Exchange (ETDEWEB)

    Bodamer, Jr., James W.; Bocchino, Robert M.

    1979-11-01

    This Environmental Permit Compliance Plan is intended to assist the Memphis Light, Gas and Water Division in acquiring the necessary environmental permits for their proposed Industrial Fuel Gas Demonstration Plant in a time frame consistent with the construction schedule. Permits included are those required for installation and/or operation of gaseous, liquid and solid waste sources and disposal areas. Only those permits presently established by final regulations are described. The compliance plan describes procedures for obtaining each permit from identified federal, state and local agencies. The information needed for the permit application is presented, and the stepwise procedure to follow when filing the permit application is described. Information given in this plan was obtained by reviewing applicable laws and regulations and from telephone conversations with agency personnel on the federal, state and local levels. This Plan also presents a recommended schedule for beginning the work necessary to obtain the required environmental permits in order to begin dredging operations in October, 1980 and construction of the plant in September, 1981. Activity for several key permits should begin as soon as possible.

  3. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance countercurrent chromatography.

    Science.gov (United States)

    Vieira, Mariana N; Winterhalter, Peter; Jerz, Gerold

    2016-01-01

    Impatiens glandulifera Royle (Balsaminaceae) is an annual herb from the Himalaya region, currently widespread along European river systems and one of the most important neophyte invading plants in Germany. Exploring the effects of allelopathic plant chemicals is important for the understanding of its ecological impacts in the process of suppression of indigenous plant species. To investigate the chemical composition of Impatiens glandulifera flowers (IGFs) using high performance countercurrent chromatography (HPCCC). The flowers of Impatiens glandulifera were manually separated and extracted with ethanol. LC-ESI-MS/MS was used to characterise the crude extract of IGF. The various flavonoids detected were isolated by HPCCC using of methyl tert-butyl ether-acetonitrile-water (2:2:3, v/v/v). The combination of the data provided by preparative ESI-MS/MS metabolite profiling, LC-ESI-MS/MS, UV-vis and 1D/2D-NMR spectroscopic analysis was used to elucidate the structures of the isolated compounds. HPCCC runs led to the direct isolation of pure dihydromyricetin (ampelopsin), eriodictyol-7-O-glucoside, kaempferol-3-O-glucoside (astragalin) and kaempferol-3-O-6"-malonyl-glucoside, as well as the pre-purification of kaempferol-3-O-rhamno-rhamnosyldiglucoside, quercetin-3-O-galactoside (hyperoside), quercetin and kaempferol in a single step. This is the first report on the flavonoid composition of the species Impatiens glandulifera. The developed protocol was successfully used to isolate the main flavonoids from the crude extract of IGFs. This combined HPCCC and HPLC procedure could be applied to the fast fractionation and recovery of flavonoid derivatives of other plant extracts. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Improvement of critical heat flux correlation for research reactors using plate-type fuel

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Yamamoto, Kazuyoshi; Sudo, Yukio

    1998-01-01

    In research reactors, plate-type fuel elements are generally adopted so as to produce high power densities and are cooled by a downward flow. A core flow reversal from a steady-state forced downward flow to an upward flow due to natural convection should occur during operational transients such as Loss of the primary coolant flow'. Therefore, in the thermal hydraulic design of research reactors, critical heat flux (CHF) under a counter-current flow limitation (CCFL) or a flooding condition are important to determine safety margins of fuel against CHF during a core flow reversal. The authors have proposed a CHF correlation scheme for the thermal hydraulic design of research reactors, based on CHF experiments for both upward and downward flows including CCFL condition. When the CHF correlation scheme was proposed, a subcooling effect for CHF correlation under CCFL condition had not been considered because of a conservative evaluation and a lack of enough CHF data to determine the subcooling effect on CHF. A too conservative evaluation is not appropriate for the design of research reactors because of construction costs etc. Also, conservativeness of the design must be determined precisely. In this study, therefore, the subcooling effect on CHF under the CCFL conditions in vertical rectangular channels heated from both sides were investigated quantitatively based on CHF experimental results obtained under uniform and non-uniform heat flux conditions. As a result, it was made clear that CHF in this region increase linearly with an increase of the channel inlet subcooling and a new CHF correlation including the effect of channel inlet subcooling was proposed. The new correlation could be adopted under the conditions of the atmospheric pressure, the inlet subcooling less than 78K, the channel gap size between 2.25 to 5.0mm, the axial peaking factor between 1.0 to 1.6 and L/De between 71 to 174 which were the ranges investigated in this study. (author)

  5. Isolation of Flavonoids From Wild Aquilaria sinensis Leaves by an Improved Preparative High-Speed Counter-Current Chromatography Apparatus.

    Science.gov (United States)

    Yang, Mao-Xun; Liang, Yao-Guang; Chen, He-Ru; Huang, Yong-Fang; Gong, Hai-Guang; Zhang, Tian-You; Ito, Yoichiro

    2018-01-01

    Four flavonoids including apigenin-7,4'-dimethylether, genkwanin, quercetin, and kaempferol were isolated in a preparative or semi-preparative scale from the leaves of wild Aquilaria sinensis using an improved preparative high-speed counter-current chromatography apparatus. The separations were performed with a two-phase solvent system composed of hexane-ethyl acetate, methanol-water at suitable volume ratios. The obtained fractions were analyzed by HPLC, and the identification of each target compound was carried out by ESI-MS and NMR. The yields of the above four target flavonoids were 4.7, 10.0, 11.0 and 4.4%, respectively. All these four flavonoids exhibited nitrite scavenging activities with the clearance rate of 12.40 ± 0.20%, 5.84 ± 0.03%, 28.10 ± 0.17% and 5.19 ± 0.11%, respectively. Quercetin was originally isolated from the Thymelaeaceae family, while kaempferol was isolated from the Aquilaria genus for the first time. In cytotoxicity test these two flavonoids exhibited moderate inhibitory activities against HepG2 cells with the IC50 values of 12.54 ± 1.37 and 38.63 ± 4.05 μM, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Review and revision of overload permit classification.

    Science.gov (United States)

    2013-02-01

    The Michigan Department of Transportation (MDOT) allows trucks that exceed their legal loads to cross : bridges if they apply and are approved for a permit. More than 30,000 permits have been processed each : year since 2002, providing a vital servic...

  7. 300 area TEDF permit compliance monitoring plan

    International Nuclear Information System (INIS)

    BERNESKI, L.D.

    1998-01-01

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease

  8. 300 area TEDF permit compliance monitoring plan

    Energy Technology Data Exchange (ETDEWEB)

    BERNESKI, L.D.

    1998-11-20

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.

  9. Observations of the southern East Madagascar Current and undercurrent and countercurrent system

    Science.gov (United States)

    Nauw, J. J.; van Aken, H. M.; Webb, A.; Lutjeharms, J. R. E.; de Ruijter, W. P. M.

    2008-08-01

    In April 2001 four hydrographic sections perpendicular to the southern East Madagascar Current were surveyed as part of the Agulhas Current Sources Experiment. Observations with a vessel mounted and a lowered ADCP produced information on the current field while temperature, salinity, oxygen and nutrient data obtained with a CTD-Rosette system, gave information on the water mass structure of the currents southeast of Madagascar. The peak velocity in the pole-ward East Madagascar Current through these four sections had a typical magnitude of ˜110 cm/s, while the width of this current was of the order of 120 km. The mean pole-ward volume transport rate of this current during the survey above the 5°C isotherm was estimated to be 37 ± 10 Sv. On all four sections an undercurrent was observed at intermediate depths below the East Madagascar Current. Its equator-ward transport rate amounted to 2.8 ± 1.4 Sv. Offshore of the East Madagascar Current the shallow South Indian Ocean Countercurrent was observed. This eastward frontal jet coincided with the barotropic and thermohaline front that separates the saline Subtropical Surface Water from the fresher Tropical Surface Water in the East Madagascar Current. The near-surface geostrophic flow of the East Madagascar Current, derived from satellite altimetry data from 1992 to 2005, suggests a strong variability of this transport due to eddy variability and interannual changes. The long-term pole-ward mean transport of the East Madagascar Current, roughly estimated from those altimetry data amounts to 32 Sv. The upper-ocean water mass of the East Madagascar Current was very saline in 2001, compared to WOCE surveys from 1995. Comparison of our undercurrent data with those of the WOCE surveys in 1995 confirms that the undercurrent is a recurrent feature. Its water mass properties are relatively saline, due to the presence of water originating from the Red Sea outflow at intermediate levels. The saline water was advected from the

  10. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.

    Science.gov (United States)

    Englert, Michael; Vetter, Walter

    2015-07-16

    Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase

  11. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    Science.gov (United States)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  12. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    International Nuclear Information System (INIS)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant; Ó Náraigh, Lennon

    2016-01-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  13. Preparative separation of sulfur-containing diketopiperazines from marine fungus Cladosporium sp. using high-speed counter-current chromatography in stepwise elution mode.

    Science.gov (United States)

    Gu, Binbin; Zhang, Yanying; Ding, Lijian; He, Shan; Wu, Bin; Dong, Junde; Zhu, Peng; Chen, Juanjuan; Zhang, Jinrong; Yan, Xiaojun

    2015-01-09

    High-speed counter-current chromatography (HSCCC) was successively applied to the separation of three sulfur-containing diketopiperazines (DKPs) (including two new compounds cladosporin A (1) and cladosporin B (3), and a known compound haematocin (2)) from a marine fungus Cladosporium sp. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v) and (2:1:2:1, v/v), in stepwise elution mode, was used for HSCCC. The preparative HSCCC separation was performed on 300 mg of crude sample yielding 26.7 mg of compound 3 at a purity of over 95%, 53.6 mg of a mixture of compounds 1 and 2, which was further separated by preparative-HPLC yielding 14.3 mg of compound 1 and 25.4 mg of compound 2 each at a purity of over 95%. Their structures were established by spectroscopic methods. The sulfur-containing DKPs suppressed the proliferation of hepatocellular carcinoma cell line HepG2. The present work represents the first application of HSCCC in the efficient preparation of marine fungal natural products.

  14. Preparative Separation of Sulfur-Containing Diketopiperazines from Marine Fungus Cladosporium sp. Using High-Speed Counter-Current Chromatography in Stepwise Elution Mode

    Directory of Open Access Journals (Sweden)

    Binbin Gu

    2015-01-01

    Full Text Available High-speed counter-current chromatography (HSCCC was successively applied to the separation of three sulfur-containing diketopiperazines (DKPs (including two new compounds cladosporin A (1 and cladosporin B (3, and a known compound haematocin (2 from a marine fungus Cladosporium sp. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v and (2:1:2:1, v/v, in stepwise elution mode, was used for HSCCC. The preparative HSCCC separation was performed on 300 mg of crude sample yielding 26.7 mg of compound 3 at a purity of over 95%, 53.6 mg of a mixture of compounds 1 and 2, which was further separated by preparative-HPLC yielding 14.3 mg of compound 1 and 25.4 mg of compound 2 each at a purity of over 95%. Their structures were established by spectroscopic methods. The sulfur-containing DKPs suppressed the proliferation of hepatocellular carcinoma cell line HepG2. The present work represents the first application of HSCCC in the efficient preparation of marine fungal natural products.

  15. Renewable Energy Permitting Barriers in Hawaii: Experience from the Field

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Donnelly, C.; Atkins, D.; Fields, R.; Black, C.

    2013-03-01

    This white paper presents a summary of the solicited input from permitting agencies and renewable energy developers on the permitting process in Hawaii to provide stakeholders in Hawaii, particularly those involved in permitting, with information on current permitting barriers that renewable energy developers are experiencing.

  16. Natural refrigerants. Future heat pumps for district heating; Naturliga koeldmedier. Framtida vaermepumpar foer fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Ingvarsson, Paul; Steen Ronnermark, Ingela [Fortum Teknik och Miljoe AB, Stockholm (Sweden); Eriksson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science

    2004-01-01

    International work on refrigerants is aiming at phasing out HFC. The solution might be natural refrigerants. Within 15-20 years, when present heat pumps for district heating in Sweden are likely not in service any longer, it might still be good economy to install new heat pumps since only the machines need to be replaced. This report describes the possibilities to use natural refrigerants. A first screening resulted in further study on some hydrocarbons, ammonia and carbon dioxide. Water was considered to require too large volumes. In present plants it is practically not possible to use any natural refrigerants, partly because the compressors are not adapted. In new plants the situation is different. Today it is technically possible to install new heat pumps in the studied size, 15 MW{sub th}, using ammonia or hydrocarbons as refrigerant. But likely it is very difficult to get permits from authorities since the refrigerants are toxic or highly flammable. There is substantial international research on using carbon dioxide, and this refrigerant is also used in some applications. Carbon dioxide is used at high pressure and in a trans-critical process. Surprisingly, it turned out that one compressor manufacturer considers it possible to supply a heat pump for district heating within 5 years. This development has taken place in Russia, mainly for domestic use. Thus, within 15 to 20 years there will probably exist a technique where carbon dioxide is used. However, more development is needed. Additionally, low district heating return temperatures are also needed to get an acceptable COP. The investment cost for a heat pump installation is considered to be approx. 30 % higher when using ammonia or propane compared to using R134a. When using carbon dioxide there is in the longer run potential to get lower cost than for R134a. The COPs are almost identical if the systems are properly designed. In the carbon dioxide case the COP is somewhat lower, but has a potential for

  17. Optimization of heat exchanger networks using genetic algorithms

    International Nuclear Information System (INIS)

    Teyssedou, A.; Dipama, J.; Sorin, M.

    2004-01-01

    Most thermal processes encountered in the power industry (chemical, metallurgical, nuclear and thermal power stations) necessitate the transfer of large amounts of heat between fluids having different thermal potentials. A common practice applied to achieve such a requirement consists of using heat exchangers. In general, each current of fluid is conveniently cooled or heated independently from each other in the power plant. When the number of heat exchangers is large enough, however, a convenient arrangement of different flow currents may allow a considerable reduction in energy consumption to be obtained (Linnhoff and Hidmarsh, 1983). In such a case the heat exchangers form a 'Heat Exchanger Network' (HEN) that can be optimized to reduce the overall energy consumption. This type of optimization problem, involves two separates calculation procedures. First, it is necessary to optimize the topology of the HEN that will permit a reduction in energy consumption to be obtained. In a second step the power distribution across the HEN should be optimized without violating the second law of thermodynamics. The numerical treatment of this kind of problem requires the use of both discrete variables (for taking into account each heat exchanger unit) and continuous variables for handling the thermal load of each unit. It is obvious that for a large number of heat exchangers, the use of conventional calculation methods, i.e., Simplexe, becomes almost impossible. Therefore, in this paper we present a 'Genetic Algorithm' (GA), that has been implemented and successfully used to treat complex HENs, containing a large number of heat exchangers. As opposed to conventional optimization techniques that require the knowledge of the derivatives of a function, GAs start the calculation process from a large population of possible solutions of a given problem (Goldberg, 1999). Each possible solution is in turns evaluated according to a 'fitness' criterion obtained from an objective

  18. Two-Step Separation of Nostotrebin 6 from Cultivated Soil Cyanobacterium (Nostoc sp. by High Performance Countercurrent Chromatography

    Directory of Open Access Journals (Sweden)

    José Cheel

    2014-06-01

    Full Text Available High performance countercurrent chromatography (HPCCC was successfully applied for the separation of nostotrebin 6 from cultivated soil cyanobacteria in a two-step operation. A two-phase solvent system composed of n-hexane–ethyl acetate–methanol–water (4:5:4:5, v/v/v/v was employed for the HPCCC separation. In the first-step operation, its neutral upper phase was used as stationary phase and its basic lower phase (1% NH3 in lower phase was employed as mobile phase at a flow rate of 1 mL/min. In the second operation step, its neutral upper phase was used as stationary phase, whereas both its neutral lower phase and basic lower phase were employed as mobile phase with a linear gradient elution at a flow rate of 0.8 mL/min. The revolution speed and temperature of the separation column were 1,000 rpm and 30 °C, respectively. Using HPCCC followed by clean-up on Sephadex LH-20 gel, 4 mg of nostotrebin 6 with a purity of 99% as determined by HPLC/DAD-ESI-HRMS was obtained from 100 mg of crude extract. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, ESI-HRMS, ESI-HRMS2 with those of an authentic standard and data available in the literature.

  19. Steam turbines for nuclear power stations in Czechoslovakia and their use for district heating

    International Nuclear Information System (INIS)

    Drahy, J.

    1989-01-01

    The first generation of nuclear power stations in Czechoslavakia is equipped with 440 MW e pressurized water reactors. Each reactor supplies two 220 MW, 3000 rpm condensing type turbosets operating with saturated steam. After the completion of heating water piping systems, all of the 24 units of 220 MW in Czechoslovak nuclear power stations will be operated as dual purpose units, delivering both electricity and heat. At the present time, second-generation nuclear power stations, with 1000 MW e PWRs, are being built. Each such plant is equipped with one 1000 MW full-speed saturated steam turbine. The turbine is so designed as to permit the extraction of steam corresponding to the following quantities of heat: 893 MJ/s with three-stage water heating (150/60 0 C); and 570 MJ/s with two-stage water heating (120/60 0 C). The steam is taken from uncontrolled steam extraction points. (author)

  20. Air quality permits in Texas and New Mexico

    International Nuclear Information System (INIS)

    Fusselman, D.K.; Hofmann, J.E.

    1991-01-01

    Permitting gas processing equipment ranges from fairly simple procedures under the Texas Air Control Board (TACB) Standard Exemption List and the New Mexico Environmental Improvement Division (NMEID) Registration Regulations to an extremely complicated procedure requiring a federal Prevention of Significant Deterioration (PSD) and/or non-attainment review. The following topics relating to obtaining air permits for gas plants will be addressed in this paper: Type of permit/exemption necessary for construction, Specific permit/exemption requirements, New Source Performance Standards (NSPS) Subparts KKK, LLL, GG, K, Ka and Kb, Potential effects of the Federal Clean Air Act Amendments (FCAA). This paper only addresses specific permitting concerns and requirements that apply to the natural gas production industry. The same requirements apply to other industries, with possible additional requirements of National Emission Standards for Hazardous Air Pollutants (NESHAP), NSPS other than Subparts KKK, LLL, GG, K, Ka and Kb, and non-attainment review for pollutants other than ozone

  1. Permit to Work System in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Shyen, A.K.S.; Azwafarina Zarmira Aznan; Md Derus Ibrahim

    2015-01-01

    A Permit-To-Work System is an essential part of the job risk assessment process. An effective Permit-To-Work System would help to prevent accident that usually involves maintenance and construction activities. In Malaysian Nuclear Agency, Radiation Safety and Health Division (BKS) has been given the responsibility to implement the system in order to fulfill the requirement of providing a safe and healthy workplace and environment for its employees as pledged in the Occupational Safety, Health and Environmental Policy. This paper presents the roles and functions of Permit-To-Work System, together with the process flow and challenges ahead. (author)

  2. 40 CFR 270.65 - Research, development, and demonstration permits.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Research, development, and... Special Forms of Permits § 270.65 Research, development, and demonstration permits. (a) The Administrator may issue a research, development, and demonstration permit for any hazardous waste treatment facility...

  3. 76 FR 53452 - Clean Air Act Operating Permit Program; Response to Petition To Reopen the 2001 Title V Permit...

    Science.gov (United States)

    2011-08-26

    ... ENVIROMENTAL PROTECTION AGENCY [FRL-9457-3 ] Clean Air Act Operating Permit Program; Response to Petition To Reopen the 2001 Title V Permit for Reliant Portland Generating Station, Upper Mount Bethel Township, Northampton County, PA AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of action...

  4. 40 CFR 68.85 - Hot work permit.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner or operator shall issue a hot work permit for hot work operations conducted on or near a covered process. (b...

  5. 50 CFR 21.27 - Special purpose permits.

    Science.gov (United States)

    2010-10-01

    ... certification required by part 13 and makes a sufficient showing of benefit to the migratory bird resource..., salvage, otherwise acquire, transport, or possess migratory birds, their parts, nests, or eggs for any... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD PERMITS Specific Permit Provisions § 21.27 Special purpose...

  6. Group NPDES stormwater permit application: The Conoco experience

    International Nuclear Information System (INIS)

    Holler, J.D.

    1993-01-01

    The US Environmental Protection Agency (USEPA) has reported that stormwater runoff is a major cause of pollution and use impairment to waters of the nation. Diffuse pollution sources (stormwater runoff) are increasingly important as controls for industrial process dischargers. On November 16, 1990 the Federal Clean Water Act National Pollutant Discharge Elimination System (NPDES) rules governing the discharge of stormwater were published (56 FR 40948). These rules potentially affect every type of business enterprise conducting work ''associated with industrial activity.'' Dischargers of stormwater associated with industrial activity ar required to either seek coverage under a federal or state general permit using notice of intent, apply for an individual permit, or apply for a permit through a two-part group application process. Conoco, Inc. Supply and Transportation (S and T) elected the latter alternative to attempt to comply with these new evolving complex, broad-ranging permitting requirements. This paper discusses specific details of S and T's strategy, BMP designs, data acquisition activities, monitoring results, as well as economic impacts on the corporation as a result of storm water permit requirements. S and T operates approximately 170 unique wholly and jointly owned petroleum product storage and transport facilities across the nation. Approximately one-third of these facilities were subject to stormwater permit application requirements

  7. Permitted Marine Hydrokinetic Projects

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data represents pending or issued preliminary permits or issued licenses for marine hydrokinetic projects that produce energy from waves or directly from the...

  8. 40 CFR 74.10 - Roles-EPA and permitting authority.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Roles-EPA and permitting authority. 74... (CONTINUED) SULFUR DIOXIDE OPT-INS Permitting Procedures § 74.10 Roles—EPA and permitting authority. (a... end-of-year compliance, determining reduced utilization, approving thermal energy transfer and...

  9. 40 CFR 52.2184 - Operating permits for minor sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Operating permits for minor sources. 52... permits for minor sources. Emission limitations and related provisions established in South Dakota minor... right to deem permit conditions not federally enforceable. Such a determination will be made according...

  10. 76 FR 40338 - Marine Mammals; Photography Permit No. 16360

    Science.gov (United States)

    2011-07-08

    ... Mammals; Photography Permit No. 16360 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... photography of cetaceans off Hawaii. ADDRESSES: The permit and related documents are available for review upon... photography on 12 cetacean species had been submitted by the above-named applicant. The requested permit has...

  11. 40 CFR 96.323 - CAIR permit contents and term.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR permit contents and term. 96.323 Section 96.323 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... the permitting authority, as necessary to facilitate coordination of the renewal of the CAIR permit...

  12. A full size test rig of dry and dry-wet towers

    International Nuclear Information System (INIS)

    Fesson, J.-P.

    1981-01-01

    In order to test the various systems submitted by French companies, with a view to their application to the 900 MW and 1300 MW nuclear units, the tower is divided into two parts, each permitting the evacuation of an identical thermal charge. The first part includes a cross-current wet zone in which the water flows vertically and the air horizontally, connected to a set of vertical dry batteries. The second part includes bands of packing along the counter-current system, alternating with horizontal dry exchangers [fr

  13. Heat transfer and hydrodynamics of nonstationary dispersed-film flow in complex shape channels

    International Nuclear Information System (INIS)

    Nigmatulin, B.I.; Klebanov, L.A.; Kroshilin, A.E.; Kroshilin, V.E.

    1980-01-01

    The mathematical model has been used to investigate the dispersed-film regime of a liquid flow and condition for the appearance of heat transfer crisis. One-dimensional motion equations are used for each component of the mixture. The model developed is used to describe the hydrodynamics and the crisis of heat transfer in rod bundles and round tubes under stationary and nonstationary conditions. The account of a separate flow of a liquid film and a vapourdrop nucleus permits to describe the main regularities of a dispersed film flow. A good agreement of calculation and experimental results is obtained [ru

  14. Calculation of nonsteady heat transfer in channels at the second-type boundary conditions

    International Nuclear Information System (INIS)

    Ryadno, A.A.

    1982-01-01

    The algorithm of solving non-stationary edge problems of convective heat exchange realized for the luminary longtitudinal flow-around with non-compressed liquid of a bundle of cores, is developed. The method can be used for solving problems of non-stationary heat exchange in channels with any form of transverse cross section, as well as in the case of turbulent regime of liquid flow (if the rate profile and the distribution of turbulent temperature conductivity in the cross section of the channel are known). The method permits to solVe problems with variable density of the thermal flux (at the internal channel surface)

  15. Heat transfer investigations within dry spent fuel casks

    International Nuclear Information System (INIS)

    Nitsche, F.

    1986-07-01

    For studying the heat transfer processes and predicting the maximum spent fuel element surface temperature in a spent fuel assembly (SFA) transported in a dry cask, model experiments have been performed with a gas-filled model cask containing a simplified electrically heated model of a WWER-type SFA with 90 fuel elements. The temperature distribution of the SFA model is measured for different heat rates under vacuum in the model cask, and under normal pressure and overpressure (0.1 ... 0.7 MPa) for several cooling gases (air, argon, helium) in order to separately investigate heat transfer processes by radiation and convection/conduction. The measuring results were compared with the calculations. Computer programmes as well as simplified calculation methods for temperature prediction were developed and checked. The results obtained are also useful for thermal analyses in the field of the dry storage of SFAs in a cask or can. Specifically it was found that: The heat removal from the SFA can be considerably improved by increasing the internal cask pressure or by using helium as coolant. The radiant heat exchange in the SFA model can be calculated with sufficient accuracy by means of a computer programme developed in 1978 or by means of a simplified analytical representation shown in the final report. Both methods are directly applicable to the original SFA and useful in order to approximately calculate the maximum SFE surface temperature under normal pressure, if the fraction of heat transferred by radiation is allowed for. For the calculation of the total heat transfer a computer programme was developed and verified, which completely permits the temperature prediction of the SFA model in dependence on heat rate, type of gaseous coolant and coolant pressure. This computer programme can be directly applied to the original SFA for the calculation of the maximum SFE surface temperature

  16. 29 CFR 2.12 - Audiovisual coverage permitted.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Audiovisual coverage permitted. 2.12 Section 2.12 Labor Office of the Secretary of Labor GENERAL REGULATIONS Audiovisual Coverage of Administrative Hearings § 2.12 Audiovisual coverage permitted. The following are the types of hearings where the Department...

  17. 77 FR 10183 - Reissuance of Nationwide Permits

    Science.gov (United States)

    2012-02-21

    ... Civil Works Program (Engineer Circular 1165- 2-211). The current Engineer Circular applies to Corps..., Corps of Engineers Reissuance of Nationwide Permits; Notice #0;#0;Federal Register / Vol. 77 , No. 34..., Corps of Engineers RIN 0710-AA71 Reissuance of Nationwide Permits AGENCY: Army Corps of Engineers, DoD...

  18. 30 CFR 280.27 - When may MMS cancel my permit?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may MMS cancel my permit? 280.27 Section... Part Interrupted Activities § 280.27 When may MMS cancel my permit? The RD may cancel a permit at any time. (a) If we cancel your permit, the RD will advise you by certified or registered mail 30 days...

  19. Account of volume heat capacity on interface in numerical solution of the Stephen problem using the strained coordinates method

    International Nuclear Information System (INIS)

    Latynin, V.A.; Reshetov, V.A.; Karaseva, L.N.

    1988-01-01

    Numerical solution of the Stephen problem by the strained coordinate method is presented for an one-dimensional sphere. Differential formulae of heat fluxes from moving interfaces do not take into account volume heat capacities of the front nodes. Calculations, carried out according to these balanced formulae, as well as according to those usually used, have shown that the balanced formulae permit to reduce approximately by an order the number of nodes on the sphere radius, if similar accuracy of heat balance of the whole process of melting or crystallization is observed. 2 refs.; 1 fig

  20. 75 FR 3731 - Proposed Issuance of a General NPDES Permit for Small Suction Dredging-Permit Number IDG-37-0000

    Science.gov (United States)

    2010-01-22

    ... System (NPDES) general permit to placer mining operations in Idaho for small suction dredges (intake... ENVIRONMENTAL PROTECTION AGENCY [FRL-9104-3] Proposed Issuance of a General NPDES Permit for Small... significant economic impact on a substantial number of small entities.'' EPA has concluded that NPDES general...

  1. Cooperative Emissions Trading Game: International Permit Market Dominated by Buyers.

    Science.gov (United States)

    Honjo, Keita

    2015-01-01

    Rapid reduction of anthropogenic greenhouse gas emissions is required to mitigate disastrous impacts of climate change. The Kyoto Protocol introduced international emissions trading (IET) to accelerate the reduction of carbon dioxide (CO2) emissions. The IET controls CO2 emissions through the allocation of marketable emission permits to sovereign countries. The costs for acquiring additional permits provide buyers with an incentive to reduce their CO2 emissions. However, permit price has declined to a low level during the first commitment period (CP1). The downward trend in permit price is attributed to deficiencies of the Kyoto Protocol: weak compliance enforcement, the generous allocation of permits to transition economies (hot air), and the withdrawal of the US. These deficiencies created a buyer's market dominated by price-making buyers. In this paper, I develop a coalitional game of the IET, and demonstrate that permit buyers have dominant bargaining power. In my model, called cooperative emissions trading (CET) game, a buyer purchases permits from sellers only if the buyer forms a coalition with the sellers. Permit price is determined by bargaining among the coalition members. I evaluated the demand-side and supply-side bargaining power (DBP and SBP) using Shapley value, and obtained the following results: (1) Permit price is given by the product of the buyer's willingness-to-pay and the SBP (= 1 - DBP). (2) The DBP is greater than or equal to the SBP. These results indicate that buyers can suppress permit price to low levels through bargaining. The deficiencies of the Kyoto Protocol enhance the DBP, and contribute to the demand-side dominance in the international permit market.

  2. 40 CFR 123.25 - Requirements for permitting.

    Science.gov (United States)

    2010-07-01

    ... MS4, may I share the responsibility to implement the minimum control measures with other entities... held prior to issuing any permit while reducing the amount of advance notice of such a hearing. State... individual, including the Director, who has or shares authority to approve all or portions of permits either...

  3. 33 CFR 325.1 - Applications for permits.

    Science.gov (United States)

    2010-07-01

    ... process. Whenever the district engineer becomes aware of planning for work which may require a DA permit... in the basic timing sequence used by the Corps of Engineers in processing applications for DA permits.... Upon receipt of such request, the district engineer will assure the conduct of an orderly process which...

  4. The influence of meridional ice transport on Europa's ocean stratification and heat content

    Science.gov (United States)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  5. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  6. 75 FR 75463 - Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Luke Paper...

    Science.gov (United States)

    2010-12-03

    ... ENVIROMENTAL PROTECTION AGENCY [FRL-9234-9] Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Luke Paper Company, Luke, MD AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of final action. SUMMARY: Pursuant to section 505(b)(2) of the Clean Air Act (CAA), the...

  7. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  8. Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.

    Science.gov (United States)

    Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S

    2017-05-03

    During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.

  9. Mathematical model for solar-hydrogen heated desalination plant using humidification-dehumidification process

    International Nuclear Information System (INIS)

    Yassin, Jamal S.; Eljrushi, Gibril S.

    2006-01-01

    This paper presents a mathematical model for thermal desalination plant operating with solar energy and hydrogen. This plant is composed of two main systems, the heating system and the distillation system. The distillation system is composed of multi-cells; each cell is using the humidification-dehumidification (H-D) process in the distillation unit and getting the required amount of heat from feed seawater heater. The feed seawater heater is a heat exchanger used to raise the temperature of the preheated seawater coming from the condensation chamber (Dehumidifier) of each cell to about 85 degree centigrade. The heating amount in the heat exchangers is obtained from the thermal storage tank, which gets its energy from solar thermal system and is coupled with a hydrogen-fired backup system to guaranty necessary operating conditions and permit 24 hours solar H-D desalination plant to enhance the performance of this system. The mathematical model studies the performance of the proposed desalination system using thermal solar energy and hydrogen as fuel. Other pertinent variable in the heating and distillation system are also studied. The outcomes of this study are analyzed to enhance the used solar desalination process and make commercial.(Author)

  10. Moral concerns on tradable pollution permits in international environmental agreements

    Energy Technology Data Exchange (ETDEWEB)

    Eyckmans, Johan [Hogeschool-Universiteit Brussel - HUB, Stormstraat 2, B-1000 Brussels (Belgium); Katholieke Universiteit Leuven, Centrum voor Economische Studien Naamsestraat 69, 3000 Leuven (Belgium); Kverndokk, Snorre [Ragnar Frisch Centre for Economic Research, Gaustadalleen 21, 0349 Oslo (Norway)

    2010-07-15

    We investigate how moral concerns about permit trading affect an endogenous pollution permit trading equilibrium, where governments choose non-cooperatively the amount of permits they allocate to domestic industries. Politicians may feel reluctant to allow permit trading and/or may prefer that abatement is undertaken domestically because of moral concerns. This will have an effect on the initial permit allocations, and, therefore, on global emissions. The impact on global emissions depends on the precise formulation of the moral concerns, but under reasonable assumptions, we show that global emissions may increase. Thus, doing what is perceived as good does not always yield the desired outcome. However, this can be offset by restrictions on permit trading when governments have moral concerns about this trade. (author)

  11. Moral concerns on tradable pollution permits in international environmental agreements

    International Nuclear Information System (INIS)

    Eyckmans, Johan; Kverndokk, Snorre

    2010-01-01

    We investigate how moral concerns about permit trading affect an endogenous pollution permit trading equilibrium, where governments choose non-cooperatively the amount of permits they allocate to domestic industries. Politicians may feel reluctant to allow permit trading and/or may prefer that abatement is undertaken domestically because of moral concerns. This will have an effect on the initial permit allocations, and, therefore, on global emissions. The impact on global emissions depends on the precise formulation of the moral concerns, but under reasonable assumptions, we show that global emissions may increase. Thus, doing what is perceived as good does not always yield the desired outcome. However, this can be offset by restrictions on permit trading when governments have moral concerns about this trade. (author)

  12. 78 FR 27249 - Endangered Species Recovery Permit Applications

    Science.gov (United States)

    2013-05-09

    ... purpose of enhancing the species' survival. Permit No. TE-99477A Applicant: Benjamin S. Wallace, Fairfield...-99473A Applicant: Joseph D. Henry, San Diego, California The applicant requests a permit to take (capture...

  13. 75 FR 27814 - Receipt of Applications for Permit

    Science.gov (United States)

    2010-05-18

    ... permit to export one female captive bred giant panda (Ailuropoda melanoleuca) born at the zoo in 2005 and... education. The permit numbers and animals are: 070854, Bimbo Jr.; 079868, Vickie; 079870, Jenny; 079871...

  14. 7 CFR 330.203 - Action on applications for permits to move plant pests; form of and conditions in permits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Action on applications for permits to move plant pests... PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.203 Action on applications for permits to move plant pests; form of and conditions in...

  15. Opposed slant tube diabatic sorber

    Science.gov (United States)

    Erickson, Donald C.

    2004-01-20

    A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.

  16. Dynamic and control of a once through steam generator

    International Nuclear Information System (INIS)

    Gomes, Arivaldo Vicente

    1979-01-01

    This paper presents a non linear distributed parameter model for the dynamics and feedback control of a large countercurrent heat exchanger used as a once through steam generator for a breeder reactor power plant. A convergent, implicit method has been developed to solve simultaneously the equations of conservation of mass, momentum and energy. The model, applicable to heat exchanger systems in general, has been used specifically to study the performance of a once-through steam generator with respect to its load following ability and stability of throttle steam temperature and pressure. (author)

  17. Hazardous waste incinerator permitting in Texas from inception to operation

    International Nuclear Information System (INIS)

    Simms, M.D.; McDonnell, R.G. III

    1991-01-01

    The regulatory permitting process for hazardous waste incinerators i a long and arduous proposition requiring a well-developed overall strategy. In Texas, RCRA permits for the operation of hazardous waste incinerator facilities are issued through the federally delegated Texas Water Commission (TWC). While the TWC has primacy in the issuance of RCRA permits for hazardous waste incinerators, the Texas Air Control Board (TACB) provides a significant portion of the Part B application review and provides much of the permit language. In addition to dealing with regulatory agencies, RCRA permitting provides by significant public involvement. Often the lack of public support becomes a major roadblock for an incinerator project. In order to establish an effective strategy which addresses the concerns of regulatory agencies and the public, it is important to have an understanding of the steps involved in obtaining a permit. A permit applicant seeking to construct a new hazardous waste incinerator can expect to go through a preapplication meeting with government regulators, a site selection process, file an application, respond to calls for additional technical information from both the TACB and the TWC, defend the application in a hearing, have a recommendation from a TWC hearing examiner and, finally, receive a determination from the TWC's Commissioners. Presuming a favorable response from the Commission, the permittee will be granted a trial burn permit and may proceed with the construction, certification and execution of a trial burn at the facility. Subsequent to publication of the trial burn results and approval by the TWC, the permittee will possess an operational hazardous waste incinerator permit. The paper describes the major steps required to receive an operational permit for a hazardous waste incinerator in the State of Texas. Important issues involved in each step will be discussed including insights gained from recent incinerator permitting efforts

  18. Allegheny County Asbestos Permits

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Current asbestos permit data issued by the County for commercial building demolitions and renovations as required by the EPA. This file is updated daily and can be...

  19. A pump/intermediate heat exchanger assembly for a liquid metal reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Alexion, C.C.; Sumpman, W.C.

    1987-01-01

    A heat exchanger and electromagnetic pump assembly is disclosed comprising a heat exchanger housing defining an annularly shaped cavity and supporting therein a plurality of heat transfer tubes. An electromagnetic pump disposed beneath the heat exchanger comprises a circular array of flow couplers. Each flow coupler comprises a pump duct receiving primary liquid metal and a generator duct receiving a pumped intermediate liquid metal. A first plenum chamber is in communication with the generator ducts of all the flow couplers and receives intermediate liquid metal from inlet duct. The generator ducts exit their flows of intermediate liquid metal to a second plenum chamber in communication with the heat exchanger annularly shaped cavity to permit the flow of the intermediate liquid metal therethrough. A third plenum chamber receives collectively the flows of the primary liquid metal from the tubes and directs the primary liquid metal to the pump ducts of the flow couplers. The annular magnetic field of the electromagnetic pump is produced by a circular array of electromagnets having hollow windings cooled by a flow of intermediate liquid metal via tubes and manifolds. The leads to the electromagnets pass through an annular space around the inlet duct. (author)

  20. RHIC beam permit and quench detection communications system

    International Nuclear Information System (INIS)

    Conkling, C.R. Jr.

    1997-01-01

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure