WorldWideScience

Sample records for permeation enhancement effect

  1. Effect of Permeation Enhancers on the Release Behavior and ...

    African Journals Online (AJOL)

    Purpose: The aim of this research work was to formulate, characterize and evaluate the in vitro permeation behavior of tramadol lotion containing propylene glycol (PG) and polyethylene glycol (PEG) as permeation enhancers. Methods: The permeation experiments were conducted in vitro using full thickness rabbit skin in ...

  2. Effects of Vehicles and Enhancers on the Skin Permeation of Phytoestrogenic Diarylheptanoids from Curcuma comosa.

    Science.gov (United States)

    Tuntiyasawasdikul, Sarunya; Limpongsa, Ekapol; Jaipakdee, Napaphak; Sripanidkulchai, Bungorn

    2017-04-01

    Curcuma comosa (C. comosa) is widely used in traditional medicine as a dietary supplement for health promotion in postmenopausal women in Thailand. It contains several diarylheptanoids, which are considered to be a novel class of phytoestrogens. However, the diarylheptanoids isolated from the plant rhizome are shown to have low oral bioavailability and faster elimination characteristics. The aim of this study was to investigate the permeation behavior of the active compounds of diarylheptanoids. The effects of binary vehicle systems and permeation enhancers on diarylheptanoids permeation and accumulation within the skin were studied using side-by-side diffusion cells through the porcine ear skin. Among the tested binary vehicle systems, the ethanol/water vehicle appeared to be the most effective system for diarylheptanoids permeation with the highest flux and shortest lag time. The presence of transcutol in the vehicle system significantly increased diarylheptanoid's permeation and accumulation within the skin in a concentration-dependent manner. Although the presence of terpenes in formulation decreased the flux of diarylheptanoids, it raised the amount of diarylheptanoids retained within the skin substantially. Based on the feasibility of diarylheptanoid permeation, C. comosa extract should be further developed into an effective transdermal product for health benefits and hormone replacement therapy.

  3. Effect of permeation enhancers on the penetration mechanism of transfersomal gel of ketoconazole

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2012-01-01

    Full Text Available The aim of the present research work was to investigate the potential of transfersome formulations for transdermal delivery of Ketoconazole (KTZ. KTZ is a broad-spectrum antifungal agent that is active against a wide variety of fungi and yeasts. It is readily but incompletely absorbed after oral dosing and is highly variable. The transfersomes were formulated by lipid film hydration technique using Rotary vacuum Evaporator. The prepared transfersomes were converted into suitable gel formulation and is evaluated for their gel characteristics like pH, viscosity, spreadability, extrudability, homogeneity, drug content, etc. Suitable essential oils acting as natural permeation enhancers were added to the transfersomal formulation of KTZ for their release studies. Studies proved that addition of suitable permeation enhancers to the transfersomal formulation improved the release and permeation of KTZ, which showed that the permeation enhancers modify the barrier to penetration present in skin without itself undergoing any change. From the various essential oils which are used as permeation enhancers, the formulation containing Eucalyptus oil showed better in vitro release and permeation as compared with other formulations containing different permeation enhancers.

  4. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability.

    Science.gov (United States)

    Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna

    2013-06-03

    The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies

  5. Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-L-Methionine.

    Science.gov (United States)

    Kim, Ki Taek; Kim, Ji Su; Kim, Min-Hwan; Park, Ju-Hwan; Lee, Jae-Young; Lee, WooIn; Min, Kyung Kuk; Song, Min Gyu; Choi, Choon-Young; Kim, Won-Serk; Oh, Hee Kyung; Kim, Dae-Duk

    2017-07-01

    S-methyl- L -methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of -3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM.

  6. Skin permeation enhancement effects of the gel and whole-leaf materials of Aloe vera, Aloe marlothii and Aloe ferox.

    Science.gov (United States)

    Fox, Lizelle T; Gerber, Minja; du Preez, Jan L; du Plessis, Jeanetta; Hamman, Josias H

    2015-01-01

    The aim of this study was to investigate the in-vitro permeation enhancement effects of the gel and whole-leaf materials of Aloe vera, Aloe marlothii and Aloe ferox using ketoprofen as a marker compound. The permeation studies were conducted across excised female abdominal skin in Franz diffusion cells, and the delivery of ketoprofen into the stratum corneum-epidermis and epidermis-dermis layers of the skin was investigated using a tape-stripping technique. A. vera gel showed the highest permeation-enhancing effect on ketoprofen (enhancement ratio or ER = 2.551) when compared with the control group, followed by A. marlothii gel (ER = 1.590) and A. ferox whole-leaf material (ER = 1.520). Non-linear curve fitting calculations indicated that the drug permeation-enhancing effect of A. vera gel can be attributed to an increased partitioning of the drug into the skin, while A. ferox whole leaf modified the diffusion characteristics of the skin for ketoprofen. The tape stripping results indicated that A. marlothii whole leaf delivered the highest concentration of the ketoprofen into the different skin layers. Of the selected aloe species investigated, A. vera gel material showed the highest potential as transdermal drug penetration enhancer across human skin. © 2014 Royal Pharmaceutical Society.

  7. Synergistic effect of iontophoresis and chemical enhancers on transdermal permeation of tolterodine tartrate for the treatment of overactive bladder

    Directory of Open Access Journals (Sweden)

    D. Prasanthi

    2013-01-01

    Full Text Available Purpose The objective of the study was to evaluate the synergistic transdermal permeation effect of chemical enhancers and iontophoresis technique on tolterodine tartrate (TT transdermal gel and to evaluate its pharmacokinetic properties. Materials and Methods Taguchi robust design was used for optimization of formulations. Skin permeation rates were evaluated using the Keshary-chein type diffusion cells in order to optimize the gel formulation. In-vivo studies of the optimized formulation were performed in a rabbit model and histopathology studies of optimized formulation were performed on rats. Results Transdermal gels were formulated successfully using Taguchi robust design method. The type of penetration enhancer, concentration of penetration enhancer, current density and pulse on/off ratio were chosen as independent variables. Type of penetration enhancer was found to be the significant factor for all the responses. Permeation parameters were evaluated when maximum cumulative amount permeated in 24 hours (Q24 was 145.71 ± 2.00µg/cm2 by CIT4 formulation over control (91.89 ± 2.30µg/cm2. Permeation was enhanced by 1.75 fold by CIT4 formulation. Formulation CIT4 containing nerolidol (5% and iontophoretic variables applied (0.5mA/cm2 and pulse on/off ratio 3:1 was optimized. In vivo studies with optimized formulation CIT4 showed increase in AUC and T1/2 when compared to oral suspension in rabbits. The histological studies showed changes in dermis indicating the effect of penetration enhancers and as iontophoresis was continued only for two cycles in periodic fashion so it did not cause any skin damage observed in the slides. Conclusion Results indicated that iontophoresis in combination with chemical enhancers is an effective method for transdermal administration of TT in the treatment of overactive bladder.

  8. Long time effects in radiation enhanced permeation of H2 through stainless steel tubes

    International Nuclear Information System (INIS)

    Schwarzinger, G.; Dobrozemsky, R.

    1982-01-01

    The aim of this research is to give the particulars of influences of penetrating radiation on permeation and diffusion processes of hydrogen isotopes in stainless steel. Short time as well as long time effects have been investigated. Such processes are not only of interest for the fuel inventory of fusion reactors, but also for environmental aspects (tritium release). (Author)

  9. Effect of permeation enhancers on the iontophoretic transport of metoprolol tartrate and the drug retention in skin.

    Science.gov (United States)

    Nair, Anroop; Vyas, Hiral; Shah, Jigar; Kumar, Ashok

    2011-01-01

    Utilization of chemical penetration enhancers in conjunction with iontophoresis is regarded as the most effective method to enhance the passage of molecules across the skin barrier. A systematic approach to enhance the transdermal delivery of metoprolol tartrate and the subsequent release of the drug depot in the skin was investigated. Gel formulations with proximate viscosity were prepared and assessed for the effect of polymers (carbopol, hydroxypropyl methyl cellulose, and methyl cellulose), permeation enhancers (5% w/w, sodium lauryl sulfate (SLS), dimethyl formamide, n-methyl-2-pyrrolidone, and polyethylene glycol 400), and the combination approach (permeation enhancers with iontophoresis-0.5 mA/cm² on the drug delivery. The flux values observed in passive (4.59-5.89 µg/cm²/h) and iontophoresis (37.99-41.57 µg/cm²/h) processes revealed that the permeation of metoprolol was not influenced by the polymers studied, under similar conditions, and further studies were carried out using carbopol gel as a representative polymer. Appreciable enhancement (~5-fold) in drug delivery was observed with SLS in the passive process while the optimum iontophoretic delivery condition ensured better delivery (~7-fold). Combination of iontophoresis with SLS further enhanced the drug delivery (~9-fold) and leads to noticeable drug retention in the skin as well. Moreover, the drug retained in the cutaneous layer of the skin eventually released over a period of time (5 days) and followed a near first order profile. This study concludes that the combination of iontophoresis with SLS augmented the metoprolol delivery and rendered skin drug depot, which eventually released over a period of time.

  10. Pluronic lecithin organogel (PLO) of diltiazem hydrochloride: effect of solvents/penetration enhancers on ex vivo permeation.

    Science.gov (United States)

    Parhi, Rabinarayan; Suresh, Podilam; Pattnaik, Subasini

    2016-06-01

    In the present study, pluronic lecithin organogel (PLO) of diltiazem hydrochloride (DZH) was developed by taking different ratios of organic phase to aqueous phase (1:3, 1:4, and 1:5) with varying concentration of soya lecithin (20, 30, and 40 % w/w) in organic phase (isopropyl myristate, IPM) and pluronic (20, 25, and 30 % w/w) in aqueous phase, respectively, and characterized for in vitro parameters and ex vivo permeation study. The results of in vitro parameters were found to be within permissible limit and all the PLOs were physically stable at refrigeration and ambient temperature. The influence of phase ratio and different concentrations of soya lecithin on DZH release from the PLOs was found to be significant (p < 0.05), whereas the influences of different concentrations of pluronic were insignificant. The effect of different solvents/penetration enhancers viz. IPM, propylene glycol (PG), dimethyl sulphoxide (DMSO), and D-limonene, in combination and alone, on the permeation of DZH across the dorsal skin of rat was studied. Among all, formulation containing IPM (PLO6) exhibited highest flux of 147.317 μg/cm(2)/h. Furthermore, histopathology section of treated skin sample illustrated that lipid bilayer disruption was the mechanism for the DZH permeation. The above results indicated that PLO6 may serve as a promising alternative delivery system for DZH in the effective treatment of hypertension.

  11. Skin Permeation Enhancers and their Effects on Narcotic Transdermal Drug Delivery Systems through Response Surface Experimental Design

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2014-02-01

    Full Text Available Drug delivery through skin is often obstructed by low permeability of skin towards most drugs; however, such problem would be solved by application of skin penetration enhancers in the formulations. In the present study, a drug in adhesive patch with buprenorphine as active ingredient was prepared. Drug-in-adhesive transdermal drug delivery systems with different chemical penetration enhancers were designed. For this purpose a response-surface experimental design was used. Response surface methodology based on a three-level, three-variable Box–Behnken design was used to evaluate the interactive effects of dependent variables such as: the rate of skin permeation and adhesion properties including peel strength and tack value. The parameters such as drug release and adhesion were used as independent variables. Levulinic acid, lauryl alcohol and Tween 80 were used as penetration enhancers. In order to prepare samples, buprenorphine with constant concentration was incorporated into acrylic pressure sensitive adhesive with carboxylic functionality and this mixture was added to chemical penetration enhancer with different concentrations. The results show that the cumulative amount of drug release in presence of Tween 80 is 462.9 ± 0.006 μg so it is higher than cumulative amount of drug release in presence of levulinic acid (357.9 ± 0.005 μg and lauryl alcohol (269.5 ± 0.001 μg. Results of adhesion properties such as peel strength and tack reveal that using levulinic acid and lauryl alcohol will increase peel strength while Tween 80 will decrease it. Besides, the results show that all these permeation enhancers have increased tack values.

  12. Permeation enhancer strategies in transdermal drug delivery.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  13. Enhanced transbuccal salmon calcitonin (sCT) delivery: effect of chemical enhancers and electrical assistance on in vitro sCT buccal permeation.

    Science.gov (United States)

    Oh, Dong-Ho; Chun, Kyeung-Hwa; Jeon, Sang-Ok; Kang, Jeong-Won; Lee, Sangkil

    2011-10-01

    This study investigates the combined effect of absorption enhancers and electrical assistance on transbuccal salmon calcitonin (sCT) delivery, using fresh swine buccal tissue. We placed 200 IU (40 μg/mL) of each sCT formulation--containing various concentrations of ethanol, N-acetyl-L-cysteine (NAC), and sodium deoxyglycocholate (SDGC)--onto the donor part of a Franz diffusion cell. Then, 0.5 mA/cm(2) of fixed anodal current was applied alone or combined with chemical enhancers. The amount of permeated sCT was analyzed using an ELISA kit, and biophysical changes of the buccal mucosa were investigated using FT-IR spectroscopy, and hematoxylin-eosin staining methods were used to evaluate histological alteration of the buccal tissues. The flux (J(s)) of sCT increased with the addition of absorption enhancer groups, but it was significantly enhanced by the application of anodal iontophoresis (ITP). FT-IR study revealed that all groups caused an increase in lipid fluidity but only the groups containing SDGC showed statistically significant difference. Although the histological data of SDGC groups showed a possibility for tissue damage, the present enhancing methods appear to be safe. In conclusion, the combination of absorption enhancers and electrical assistance is a potential strategy for the enhancement of transbuccal sCT delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. In Vitro Skin Permeation Enhancement of Sumatriptan by Microneedle Application.

    Science.gov (United States)

    Nalluri, Buchi N; Anusha, Sai Sri V; Bramhini, Sri R; Amulya, J; Sultana, Ashraf S K; Teja, Chandra U; Das, Diganta B

    2015-01-01

    Different dimensions of commercially available microneedle devices, namely, Admin- Patch(®) microneedle arrays (MN) (0.6, 0.9, 1.2 and 1.5 mm lengths) and Dermaroller(®) microneedle rollers (DR) (0.5 and 1mm lengths) were evaluated for their relative efficiency in enhancement of transdermal permeation of Sumatriptan (SMT). Solubility assessment of SMT was carried out using propylene glycol (PG), polyethylene glycol (PEG) in combination with saline (S) at different ratios and the order of solubility was found to be 70:30 > 80:20 > 90:10 %v/v in both PG:S and PEG:S. In vitro skin permeation studies were performed using PG:S (70:30 %v/v) as donor vehicle. A significant increase in cumulative amount of SMT permeated, steady state flux, permeability coefficient and diffusion coefficient values were observed after microneedle treatment, and the values were in the order of 1.5mm MN >1.2mm MN >0.9mm MN >1mm DR >0.6mm MN >0.5mm DR > passive permeation. Lag times were significantly shorter after longer microneedle application (0.24h for 1.5mm MN). Arrays were found to be superior to rollers with similar microneedle lengths in enhancing SMT permeation and may be attributed to higher density of microneedles and force of application onto skin. The in vitro flux values revealed that 2.5cm(2) area patch is sufficient for effective therapy after treatment of skin with 1.5mm MN. It may be inferred that microneedle application significantly enhances the transdermal penetration of SMT and that it may be feasible to deliver clinically relevant therapeutic levels of SMT using microneedle assisted transdermal delivery systems.

  15. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    International Nuclear Information System (INIS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-01-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1–4 μm, encapsulation efficiency 80–85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  16. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant, E-mail: pmishra@dbeb.iitd.ac.in [Indian Institute of Technology Delhi, Department of Biochemical Engineering and Biotechnology (India)

    2013-03-15

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1-4 {mu}m, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 {+-} 28.6 nm, encapsulation efficiency 92.17 {+-} 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  17. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Science.gov (United States)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  18. Impacts of chemical enhancers on skin permeation and deposition of terbinafine.

    Science.gov (United States)

    Erdal, Meryem Sedef; Peköz, Ayca Yıldız; Aksu, Buket; Araman, Ahmet

    2014-08-01

    The addition of chemical enhancers into formulations is the most commonly employed approach to overcome the skin barrier. The objective of this work was to evaluate the effect of vehicle and chemical enhancers on the skin permeation and accumulation of terbinafine, an allylamine antifungal drug. Terbinafine (1% w/w) was formulated as a Carbopol 934 P gel formulation in presence and absence of three chemical enhancers, nerolidol, dl-limonene and urea. Terbinafine distribution and deposition in stratum corneum (SC) and skin following 8-h ex vivo permeation study was determined using a sequential tape stripping procedure. The conformational order of SC lipids was investigated by ATR-FTIR spectroscopy. Nerolidol containing gel formulation produced significantly higher enhancement in terbinafine permeation through skin and its skin accumulation was increased. ATR-FTIR results showed enhancer induced lipid bilayer disruption in SC. Urea resulted in enhanced permeation of terbinafine across the skin and a balanced distribution to the SC was achieved. But, dl-limonene could not minimize the accumulation of terbinafine in the upper SC. Nerolidol dramatically improved the skin permeation and deposition of terbinafine in the skin that might help to optimize targeting of the drug to the epidermal sites as required for both of superficial and deep cutaneous fungal infections.

  19. Skin Delivery of EGCG and Silibinin: Potential of Peptide Dendrimers for Enhanced Skin Permeation and Deposition.

    Science.gov (United States)

    Shetty, Pallavi Krishna; Manikkath, Jyothsna; Tupally, Karnaker; Kokil, Ganesh; Hegde, Aswathi R; Raut, Sushil Y; Parekh, Harendra S; Mutalik, Srinivas

    2017-08-01

    The aim of the present study was to evaluate the ability of the peptide dendrimers to facilitate transdermal delivery of antioxidants, silibinin, and epigallocatechin-3-gallate (EGCG). Drug-peptide dendrimer complexes were prepared and evaluated for their ability to permeate across the skin. The data revealed the ready formation of complexes between drug and peptide dendrimer in a molar ratio of 1:1. In vitro permeation studies using excised rat skin and drug-peptide dendrimer complexes showed highest values for cumulative drug permeation at the end of 12 h (Q 12 ), with corresponding permeability coefficient (Kp) and enhancement ratio values also determined at this time point. With silibinin, 3.96-, 1.81-, and 1.06-fold increase in skin permeation was observed from silibinin-peptide dendrimer complex, simultaneous application of silibinin + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. With EGCG, 9.82-, 2.04-, and 1.72-fold increase in skin permeation was observed from EGCG-peptide dendrimer complex, simultaneous application of EGCG + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. The present study demonstrates the application of peptide dendrimers in effectively delivering antioxidants such as EGCG and silibinin into the skin, thus offering the potential to provide antioxidant effects when delivered via appropriately formulated topical preparations.

  20. Alteration of skin hydration and its barrier function by vehicle and permeation enhancers: a study using TGA, FTIR, TEWL and drug permeation as markers.

    Science.gov (United States)

    Shah, D K; Khandavilli, S; Panchagnula, R

    2008-09-01

    Vehicles and permeation enhancers (PEs) used in transdermal drug delivery (TDD) of a drug can affect skin hydration, integrity and permeation of the solute administered. This investigation was designed to study the effect of the most commonly used vehicles and PEs on rat skin hydration, barrier function and permeation of an amphiphilic drug, imipramine hydrochloride (IMH). An array of well-established techniques were used to confirm the findings of the study. Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were used to determine changes in skin hydration. Alteration of the stratum corneum (SC) structure was investigated using FTIR studies. To monitor the barrier function alteration, transepidermal water loss (TEWL) measurement and permeation studies were performed. Our findings indicate that with hydration, there was an increase in the bound water content of the skin, and pseudoequilibrium of hydration (a drastic decrease in hydration rate) was achieved at around 12 h. Hydration increased the ratio between amide-I and amide-II peaks in FTIR and reduced the C-H stretching peak area. Both propylene glycol (PG) and ethanol (EtOH) dehydrated skin, with the latter showing a predominant effect. Furthermore, it was confirmed that PG and EtOH decreased the bound water content due to alteration in the protein domains and extraction of SC lipids, respectively. The effect of hydration on the SC was found to be similar to that reported for temperature. Permeation studies revealed that the dehydration caused by vehicles decreased IMH flux, whereas the flux was enhanced by PEs. The role of partition was predominant for the permeation of IMH through dehydrated skin. A synergistic effect was observed for PG and menthol in the enhancement of IMH. Further findings provided strong evidence that PG affects protein domains and EtOH extracts lipids from the bilayer. Both PG and EtOH, with or without PEs, increased TEWL. Initial TEWL was well

  1. Effect of Nutrient Formulations on Permeation of Proteins and Lipids ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of nutrient formulations on the permeation of proteins and lipids through porcine intestine in vitro. Method: In vitro permeation studies of proteins and lipids of two peptide-based formulations, composed of various compounds and sources of hydrolyzed protein was carried out, and compared ...

  2. Analysis of skin permeation-enhancing mechanism of iontophoresis using hydrodynamic pore theory.

    Science.gov (United States)

    Manabe, E; Numajiri, S; Sugibayashi, K; Morimoto, Y

    2000-05-15

    The effects of constant DC iontophoresis (0-1.5 mA/0.966 cm(2)) on the permeation of three hydrophilic compounds, antipyrine (ANP, M.W. 188.23), sucrose (SR, M.W. 342.30) and 1-kestose (KT, M.W. 506.73), through excised hairless rat skin were evaluated using hydrodynamic pore theory. The electro-osmotic flow caused by iontophoresis was measured using deuterium oxide (D(2)O). The penetration-enhancing mechanism of iontophoresis was found to increase solvent flow through electro-osmosis and pore enlargement and/or new pore production in the skin barrier, together with enhancement of electrochemical potential difference across the skin. These effects were closely related to the strength of the current applied. The electro-osmotic flow of D(2)O (J(D(2)O)) greatly enhanced the skin permeation clearance of all hydrophilic penetrants (CL(drug)). Pore production was classified into reversible and irreversible processes, which resulted from lower (0-0.5 mA/0.966 cm(2)) and higher (0.5-1. 5 mA/0.966 cm(2)) currents, respectively. Thus, the enhancing effects of iontophoresis on skin permeation of nonionic hydrophilic compounds can be explained by increase in pore size and higher solvent flow.

  3. Transdermal delivery of carvedilol containing glycyrrhizin and chitosan as permeation enhancers: biochemical, biophysical, microscopic and pharmacodynamic evaluation.

    Science.gov (United States)

    Sapra, Bharti; Jain, Subheet; Tiwary, A K

    2008-09-01

    The present study was aimed at unveiling the influence of glycyrrhizin and chitosan on rat epidermis and to correlate these effects with percutaneous permeation characteristics of carvedilol. The permeation of carvedilol across excised rat epidermis was significantly higher (p vehicle as compared to propylene glycol:ethanol (7:3) mixture. Epidermis obtained after 12 hr treatment of viable rat skin with a glycyrrhizin-chitosan mixture showed significantly higher (p space, disordered lipid structure and corneocyte detachment as observed in SEM and TEM suggests great potential of glycyrrhizin for use as a percutaneous permeation enhancer.

  4. Effect of Microneedle Type on Transdermal Permeation of Rizatriptan.

    Science.gov (United States)

    Uppuluri, Chandrateja; Shaik, Ashraf Sultana; Han, Tao; Nayak, Atul; Nair, Karthik J; Whiteside, Benjamin R; Nalluri, Buchi N; Das, Diganta B

    2017-07-01

    The present study was aimed to investigate the effect of salient microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation of rizatriptan (RIZ). Studies were carried out using two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 0.9, 1.2 and 1.5 mm lengths) and laboratory-fabricated polymeric MNs (PMs) of 0.6 mm length. In the case of the PMs, arrays were applied three times at different places within a 1.77-cm 2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Histological studies revealed that PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 4.9- and 4.2-fold increases in the RIZ steady-state flux values were observed with 1.5 mm ADM and PM-3 applications when compared to the passive studies. A good correlation between different dimensionless parameters like the amount of RIZ permeated (C t /C s ), thickness (h/L) and surface area (S a /L 2 ) of the skin was observed with scaling analyses. Numerical simulations provided further information regarding the distribution of RIZ in MN-treated skin after application of different MNs. Overall, the study suggests that MN application enhances the RIZ transdermal permeation and the geometrical parameters of MNs play an important role in the degree enhancement.

  5. Enhancement of skin permeation of flurbiprofen via its transdermal patches using isopulegol decanoate (ISO-C10) as an absorption enhancer: pharmacokinetic and pharmacodynamic evaluation.

    Science.gov (United States)

    Chen, Yang; Quan, Peng; Liu, Xiaochang; Guo, Wenjia; Song, Wenting; Cun, Dongmei; Wang, Zhongyan; Fang, Liang

    2015-09-01

    The study aimed to prepare a transdermal patch for flurbiprofen using isopulegol decanoate (ISO-C10) as a permeation enhancer, and to evaluate the in-vitro and in-vivo percutaneous permeation of the drug, as well as the pharmacodynamic efficacy of the formulation. The permeation experiments were conducted on rabbit skin, and the pharmacokinetic profiles and synovial fluid drug concentration were measured after in-vivo transdermal administration. A deconvolution approach was employed to analyse the correlation between the in-vitro and in-vivo drug permeation. The anti-inflammatory and analgesic effects were, respectively, assessed using the adjuvant arthritis model and the acetic acid induced pain model. ISO-C10 could increase the in-vitro permeation of flurbiprofen from 46.22 ± 5.65 μg/cm(2) to 101.07 ± 10.85 μg/cm(2) . The in-vivo absorption of the drug was also improved by the enhancer, and a good linear correlation was observed between the in-vitro and in-vivo drug permeation. Meanwhile, the ISO-C10 contained patches increased the drug disposition in synovial fluid and enhanced the pharmacodynamic efficacy of the formulation. ISO-C10 would be a promising permeation enhancer for improving the in-vitro and in-vivo delivery of flurbiprofen from its transdermal patches. © 2015 Royal Pharmaceutical Society.

  6. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems.

    Science.gov (United States)

    Bernkop-Schnürch, A; Kast, C E; Guggi, D

    2003-12-05

    Thiolated polymers (= thiomers) in combination with reduced glutathione (GSH) were shown to improve the uptake of hydrophilic macromolecules from the GI tract. The mechanism responsible for this permeation enhancing effect seems to be based on the thiol groups of the polymer. These groups inhibit protein tyrosine phosphatase, being involved in the closing process of tight junctions, via a GSH-mediated mechanism. The strong permeation enhancing effect of various thiomer/GSH systems such as poly(acrylic acid)-cysteine/GSH or chitosan-4-thio-butylamidine (chitosan-TBA)/GSH could be shown via permeation studies on freshly excised intestinal mucosa in Ussing-type chambers. Furthermore, the efficacy of the system was also shown in vivo. By utilizing poly(acrylic acid)-cysteine/GSH as carrier matrix, an absolute oral bioavailability for low molecular weight heparin of 19.9 +/- 9.3% and a pharmacological efficacy--calculated on the basis of the areas under the reduction in serum glucose levels of the oral formulation versus subcutaneous (s.c.) injection-for orally given insulin of 7% could be achieved. The incorporation of salmon calcitonin in chitosan-TBA/GSH led on the other hand to a pharmacological efficacy based on the areas under the reduction in plasma calcium levels of the oral thiomer formulation versus intravenous (i.v.) injection of 1.3%. Because of this high efficacy (i), the possibility to combine thiomer/GSH systems with additional low molecular weight permeation enhancers acting in other ways (ii) and minimal toxicological risks as these polymers are not absorbed from the GI tract (iii), thiolated polymers represent a promising novel tool for the oral administration of hydrophilic macromolecules.

  7. Effect of residual stresses on hydrogen permeation in iron

    International Nuclear Information System (INIS)

    Mouanga, M.; Bercot, P.; Takadoum, J.

    2010-01-01

    The effect of residual stresses on electrochemical permeation in iron membrane was investigated. Four thermal and mechanical treatments were chosen to obtain different surface states in relation to the residual stresses. Residual stresses were determined by X-ray diffraction (XRD) using the Macherauch and Mueller method. The results were completed by the microhardness measurements. For all iron membranes, compressive residual stresses were obtained. Electrochemical permeation experiments using a Devanathan and Stachurski cell were employed to determine the hydrogen permeation behaviour of the various iron membranes. The latter was charged with hydrogen by galvanostatic cathodic polarization in 0.1 M NaOH at 25 deg. C. The experimental results revealed that hydrogen permeation rate increases with increasing residual stresses introduced in iron membranes.

  8. Investigating the sonophoresis effect on the permeation of diclofenac sodium using 3D skin equivalent.

    Science.gov (United States)

    Aldwaikat, Mai; Alarjah, Mohammed

    2015-01-01

    Ultrasound temporally increases skin permeability by altering stratum corneum SC function (sonophoresis). The objective of this study was to evaluate the effect of variable ultrasound conditions on the permeation of diclofenac sodium DS with range of physicochemical properties through EpiDerm™. Permeation studies were carried out in vitro using Franz diffusion cell. HPLC method was used for the determination of the concentration of diclofenac sodium in receiving compartment. Parameters like ultrasound frequency, application time, amplitude, and mode of sonication and distance of ultrasound horn from skin were investigated, and the conditions where the maximum enhancement rate obtained were determined. Application of ultrasound enhanced permeation of diclofenac sodium across EpiDerm™ by fivefolds. The most effective enhancing parameters were power sonication of 20kHz frequency, 20% amplitude at continuous mode for 5min. Copyright © 2014. Published by Elsevier B.V.

  9. Dual-directional regulation of drug permeating amount by combining the technique of ion-pair complexation with chemical enhancers for the synchronous permeation of indapamide and bisoprolol in their compound patch through rabbit skin.

    Science.gov (United States)

    Song, Wenting; Cun, Dongmei; Quan, Peng; Liu, Nannan; Chen, Yang; Cui, Hongxia; Xiang, Rongwu; Fang, Liang

    2015-04-01

    To achieve the synchronous skin permeation of indapamide (IND) and bisoprolol (BSP) in their compound patch, the techniques of ion-pair complexation and chemical enhancers were combined to dual-directionally regulate drug permeating amounts. Ion-pair complexes of BSP and various organic acids were formed by the technique of ion-pair complexation. Among the complexes formed, bisoprolol tartrate (BSP.T) down-regulated the permeating amount of BSP to the same extent as that of IND. Then, to simultaneously up-regulate the amounts of the two drugs, an enhancer combination of 15.8% Span80 (SP), 6.0% Azone (AZ) and 2.2% N-methyl pyrrolidone (NMP) was obtained by central composite design and exhibited an outstanding and simultaneous enhancement on IND and BSP with enhancing ratio (ER) of 4.52 and 3.49, respectively. The effect of the dual-directional regulation was evaluated by in vitro permeation experiments and in vivo pharmacokinetic studies. For IND and BSP, their observed permeation profiles were comparable and their MAT (mean absorption time) showed no significant difference, which both demonstrated these two drugs achieved the synchronous skin permeation in their compound patch by the dual-directional regulation strategy of combining the technique of ion-pair complexation with chemical enhancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Development of Novel Formulations to Enhance in Vivo Transdermal Permeation of Tocopherol

    Directory of Open Access Journals (Sweden)

    Nada Aly H.

    2014-09-01

    Full Text Available Tocopherol represents a big challenge for transdermal permeation owing to its extreme hydrophobicity and large molecular mass. The aim of the present study was to develop alpha-tocopherol (T topical formulations and evaluate their ex vivo and in vivo permeation. Franz diffusion cells were used for ex vivo permeation, and neonatal rats were used for in vivo permeation. Seven gel formulations and 21 liquid formulations were investigated for physical stability, viscosity and permeation of T. Analysis of T was performed by a validated HPLC method using a UV detector. The ex vivo permeation from gel and emulsion formulations was very poor (0.001-0.015 %. Highest permeation was observed from monophasic liquid formulations containing dimethyl sulfoxide (DMSO, tocopheryl polyethylene glycols (TPGs, propylene glycol, ethanol and 9.5 % T. The in vivo results demonstrated higher retention in the epidermis compared to subcutaneous tissues, 1377 and 1.13 μg g-1, respectively. Increasing T concentration from 4.8 to 9.5 % did not increase the amount permeated or % of T retained. It was concluded that simple solutions of T in the presence of DMSO and TPGs were more promising systems for effective transdermal permeation compared to gel, emulsion or oleaginous systems.

  11. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; HariKumar, S L

    2012-03-01

    The feasibility of development of transdermal delivery system of olanzapine utilizing natural oils as permeation enhancers was investigated. Penetration enhancing potential of corn (maize) oil, groundnut oil and jojoba oil on in vitro permeation of olanzapine across rat skin was studied. The magnitude of flux enhancement factor with corn oil, groundnut oil and jojoba oil was 7.06, 5.31 and 1.9 respectively at 5mg/ml concentration in solvent system. On the basis of in vitro permeation studies, eudragit based matrix type transdermal patches of olanzapine were fabricated using optimized concentrations of natural oils as permeation enhancers. All transdermal patches were found to be uniform with respect to physical characteristics. The interaction studies carried out by comparing the results of ultraviolet, HPLC and FTIR analyses for the pure drug, polymers and mixture of drug and polymers indicated no chemical interaction between the drug and excipients. Corn oil containing unsaturated fatty acids was found to be promising natural permeation enhancer for transdermal delivery of olanzapine with greatest cumulative amount of drug permeated (1010.68 μg/cm²/h) up to 24 h and caused no skin irritation. The fabricated transdermal patches were found to be stable. The pharmacokinetic characteristics of the final optimized matrix patch (T2) were determined after transdermal application to rabbits. The calculated relative bioavailability of TDDS was 113.6 % as compared to oral administration of olanzapine. The therapeutic effectiveness of optimized transdermal system was confirmed by tranquillizing activity in rotarod and grip mice model.

  12. Effect of Bile Salt on Permeation Characteristics of the Oral Mucosal ...

    African Journals Online (AJOL)

    An attempt was made to study the effect of bile salt [sodium glycocholate (SG)] as a permeation enhancer on mucoadhesive buccal patches of diltiazem hydrochloride (anti-anginal drug) using various polymers like hydroxypropyl methyl cellulosee (HPMC), Eudragit RL100, ethyl cellulose alone and in combination with PVP.

  13. Enhanced skin permeation of naltrexone by pulsed electromagnetic fields in human skin in vitro.

    Science.gov (United States)

    Krishnan, Gayathri; Edwards, Jeffrey; Chen, Yan; Benson, Heather A E

    2010-06-01

    The aim of the present study was to evaluate the skin permeation of naltrexone (NTX) under the influence of a pulsed electromagnetic field (PEMF). The permeation of NTX across human epidermis and a silicone membrane in vitro was monitored during and after application of the PEMF and compared to passive application. Enhancement ratios of NTX human epidermis permeation by PEMF over passive diffusion, calculated based on the AUC of cumulative NTX permeation to the receptor compartment verses time for 0-4 h, 4-8 h, and over the entire experiment (0-8 h) were 6.52, 5.25, and 5.66, respectively. Observation of the curve indicated an initial enhancement of NTX permeation compared to passive delivery whilst the PEMF was active (0-4 h). This was followed by a secondary phase after termination of PEMF energy (4-8 h) in which there was a steady increase in NTX permeation. No significant enhancement of NTX penetration across silicone membrane occurred with PEMF application in comparison to passively applied NTX. In a preliminary experiment PEMF enhanced the penetration of 10 nm gold nanoparticles through the stratum corneum as visualized by multiphoton microscopy. This suggests that the channels through which the nanoparticles move must be larger than the 10 nm diameter of these rigid particles. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  14. S-protected thiolated chitosan for oral delivery of hydrophilic macromolecules: evaluation of permeation enhancing and efflux pump inhibitory properties.

    Science.gov (United States)

    Dünnhaupt, Sarah; Barthelmes, Jan; Rahmat, Deni; Leithner, Katharina; Thurner, Clemens C; Friedl, Heike; Bernkop-Schnürch, Andreas

    2012-05-07

    The objective of this study was the investigation of permeation enhancing and P-glycoprotein (P-gp) inhibition effects of a novel thiolated chitosan, the so-named S-protected thiolated chitosan. Mediated by a carbodiimide, increasing amounts of thioglycolic acid (TGA) were covalently bound to chitosan (CS) in the first step of modification. In the second step, these thiol groups of thiolated chitosan were protected by disulfide bond formation with the thiolated aromatic residue 6-mercaptonicotinamide (6-MNA). Mucoadhesive properties of all conjugates were evaluated in vitro on porcine intestinal mucosa based on tensile strength investigations. Permeation enhancing effects were evaluated ex vivo using rat intestinal mucosa and in vitro via Caco-2 cells using the hydrophilic macromolecule FD(4) as the model drug. Caco-2 cells were further used to show P-gp inhibition effects by using Rho-123 as P-gp substrate. Apparent permeability coefficients (P(app)) were calculated and compared to values obtained from each buffer control. Three different thiolated chitosans were generated in the first step of modification, which displayed increasing amounts of covalently attached free thiol groups on the polymer backbone. In the second modification step, more than 50% of these free thiol groups were covalently linked with 6-MNA. Within 3 h of permeation studies on excised rat intestine, P(app) values of all S-protected chitosans were at least 1.3-fold higher compared to those of corresponding thiomers and more than twice as high as that of unmodified chitosan. Additional permeation studies on Caco-2 cells confirmed these results. Because of the chemical modification and higher amount of reactive thiol groups, all S-protected thiolated chitosans exhibit at least 1.4-fold pronounced P-gp inhibition effects in contrast to their corresponding thiomers. These features approve S-protected thiolated chitosan as a promising excipient for various drug delivery systems providing improved

  15. Enhancement of Skin Permeation and Skin Immunization of Ovalbumin Antigen via Microneedles.

    Science.gov (United States)

    Pamornpathomkul, Boonnada; Rojanarata, Theerasak; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2017-10-01

    The purpose of this study was to evaluate the use of different types of microneedles and doses of ovalbumin antigen for in vitro skin permeation and in vivo immunization. In vitro skin permeation experiments and confocal laser scanning microscopy revealed that hollow microneedles had a superior enhancing effect on skin permeation compared with a solid microneedle patch and untreated skin by efficiently delivering ovalbumin-fluorescein conjugate into the deep skin layers. The flux and cumulative amount of ovalbumin-fluorescein conjugate at 8 h after administering with various conditions could be ranked as follows: hollow MN; high dose > medium dose > low dose > MN patch; high dose > medium dose > low dose > untreated skin; high dose > medium dose > low dose > without ovalbumin-fluorescein conjugate. As the dose of ovalbumin-fluorescein conjugate was increased to 500 μg, the antigen accumulated in the skin to a greater extent, as evidenced by the increasing green fluorescence intensity. When the hollow microneedle was used for the delivery of ovalbumin into the skin of mice, it was capable of inducing a stronger immunoglobulin G immune response than conventional subcutaneous injection at the same antigen dose. Immunoglobulin G levels in the hollow MN group were 5.7, 11.6, and 13.3 times higher than those of the subcutaneous injection group for low, medium, and high doses, respectively. Furthermore, the mice immunized using the hollow microneedle showed no signs of skin infection or pinpoint bleeding. The results suggest that the hollow MN is an efficient device for delivering the optimal dose of antigen via the skin for successful immunization.

  16. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu

    2015-01-01

    © the Owner Societies. Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface

  17. Electro-Conductive Membranes for Permeation Enhancement and Fouling Mitigation: A Short Review.

    Science.gov (United States)

    Formoso, Patrizia; Pantuso, Elvira; De Filpo, Giovanni; Nicoletta, Fiore Pasquale

    2017-07-28

    The research on electro-conductive membranes has expanded in recent years. These membranes have strong prospective as key components in next generation water treatment plants because they are engineered in order to enhance their performance in terms of separation, flux, fouling potential, and permselectivity. The present review summarizes recent developments in the preparation of electro-conductive membranes and the mechanisms of their response to external electric voltages in order to obtain an improvement in permeation and mitigation in the fouling growth. In particular, this paper deals with the properties of electro-conductive polymers and the preparation of electro-conductive polymer membranes with a focus on responsive membranes based on polyaniline, polypyrrole and carbon nanotubes. Then, some examples of electro-conductive membranes for permeation enhancement and fouling mitigation by electrostatic repulsion, hydrogen peroxide generation and electrochemical oxidation will be presented.

  18. Electro-Conductive Membranes for Permeation Enhancement and Fouling Mitigation: A Short Review

    Directory of Open Access Journals (Sweden)

    Patrizia Formoso

    2017-07-01

    Full Text Available The research on electro-conductive membranes has expanded in recent years. These membranes have strong prospective as key components in next generation water treatment plants because they are engineered in order to enhance their performance in terms of separation, flux, fouling potential, and permselectivity. The present review summarizes recent developments in the preparation of electro-conductive membranes and the mechanisms of their response to external electric voltages in order to obtain an improvement in permeation and mitigation in the fouling growth. In particular, this paper deals with the properties of electro-conductive polymers and the preparation of electro-conductive polymer membranes with a focus on responsive membranes based on polyaniline, polypyrrole and carbon nanotubes. Then, some examples of electro-conductive membranes for permeation enhancement and fouling mitigation by electrostatic repulsion, hydrogen peroxide generation and electrochemical oxidation will be presented.

  19. Effect of helium irradiation on deuterium permeation behavior in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, Yuki; Sakurada, Shodai; Fujita, Hiroe; Azuma, Keisuke; Zhou, Quilai [Graduate School of Science & Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529 Japan (Japan); Hatano, Yuji [Hydrogen Isotope Research Center, University of Toyama, 3190 Gofuku, Toyama, 930-8555 Japan (Japan); Yoshida, Naoaki; Watanabe, Hideo [Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580 Japan (Japan); Oyaizu, Makoto; Isobe, Kanetsugu [National Institutes for Quantum and Radiological Science and Technology, 2166 Obuchi, Rokkasho, Aomori, 039-3212 Japan (Japan); Shimada, Masashi [Idaho National Laboratory, 1955 N. Fremont Avenue, Idaho Falls, ID 83415 (United States); Buchenauer, Dean; Kolasinski, Robert [Sandia National Laboratories, Chemistry, Combustion and Materials Center, Livermore, CA 94550 (United States); Chikada, Takumi [Graduate School of Science & Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529 Japan (Japan); Oya, Yasuhisa, E-mail: oya.yasuhisa@shizuoka.ac.jp [Graduate School of Science & Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529 Japan (Japan)

    2017-07-15

    In this study, we measured deuterium (D) gas-driven permeation through tungsten (W) foils that had been pre-damaged by helium ions (He{sup +}). The goal of this work was to determine how ion-induced damage affects hydrogen isotope permeation. At 873 K, the D permeability for W irradiated by 3.0 keV He{sup +} was approximately one order of magnitude lower than that for un-damaged W. This difference diminished with increasing temperature. Even after heating to 1173 K, the permeability returned to less than half of the value measured for un-damaged W. We propose that this is due to nucleation of He bubbles near the surface which potentially serve as a barrier to diffusion deeper into the bulk. Exposure at higher temperatures shows that the D permeability and diffusion coefficients return to levels observed for undamaged material. It is possible that these effects are linked to annealing of defects introduced by ion damage, and whether the defects are stabilized by the presence of trapped He.

  20. Effect of alcohol on skin permeation and metabolism of an ester-type prodrug in Yucatan micropig skin.

    Science.gov (United States)

    Fujii, Makiko; Ohara, Rieko; Matsumi, Azusa; Ohura, Kayoko; Koizumi, Naoya; Imai, Teruko; Watanabe, Yoshiteru

    2017-11-15

    We studied the effect that three alcohols, ethanol (EA), propanol (PA), and isopropanol (IPA), have on the skin permeation of p-hydroxy benzoic acid methyl ester (HBM), a model ester-type prodrug. HBM was applied to Yucatan micropig skin in a saturated phosphate buffered solution with or without 10% alcohol, and HBM and related materials in receptor fluid and skin were determined with HPLC. In the absence of alcohol, p-hydroxy benzoic acid (HBA), a metabolite of HBM, permeated the skin the most. The three alcohols enhanced the penetration of HBM at almost the same extent. The addition of 10% EA or PA to the HBM solution led to trans-esterification into the ethyl ester or propyl ester of HBA, and these esters permeated skin as well as HBA and HBM did. In contrast, the addition of 10% IPA promoted very little trans-esterification. Both hydrolysis and trans-esterification in the skin S9 fraction were inhibited by BNPP, an inhibitor of carboxylesterase (CES). Western blot and native PAGE showed the abundant expression of CES in micropig skin. Both hydrolysis and trans-esterification was simultaneously catalyzed by CES during skin permeation. Our data indicate that the alcohol used in dermal drug preparations should be selected not only for its ability to enhance the solubility and permeation of the drug, but also for the effect on metabolism of the drug in the skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Skin deposition and permeation of finasteride in vitro: effects of propylene glycol, ethanol and sodium lauryl sulfate.

    Science.gov (United States)

    Limpongsa, Ekapol; Jaipakdee, Napaphak; Pongjanyakul, Thaned

    2014-08-27

    Abstract The objective of this study was to investigate the effects of propylene glycol (PG), ethanol (EtOH) and sodium lauryl sulfate (SLS) on the in vitro deposition and permeation of finasteride (FNS). A side-by-side diffusion cell mounted with a pig ear skin and a saturated solution of FNS in PG (10, 20% v/v), EtOH (10, 20% v/v) or SLS (0.5, 1% w/v) vehicles were used. Incorporation of PG, EtOH or SLS caused a significant increase in FNS solubility both in the solution and on the skin with SLS > EtOH > PG. The results obtained from skin deposition studies showed that the FNS deposition rate and time increased in the same order as that of the solubility. The deposition kinetics of FNS solubilized in PG, EtOH and SLS vehicles followed either zero-order, square-root-of-time or pseudo-first-order kinetic models depending on the type and concentration of the enhancer. The permeation studies demonstrated that FNS permeation fluxes were enhanced only by EtOH vehicles. These results suggest that PG and SLS could be used as deposition enhancers, while EtOH could be the effective permeation enhancer of FNS. The obtained results can be used as the considerable insights for formulating the topical and transdermal products of FNS.

  2. Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2017-01-01

    Intestinal permeation enhancers (PEs) are agents aimed to improve oral delivery of therapeutic drugs with poor bioavailability. The main permeability barrier for oral delivery is the intestinal epithelium, and PEs act to increase the paracellular and/or transcellular passage of drugs. Transcellular...... for the fluorescent polar tracer lucifer yellow, but surprisingly, they all also blocked both constitutive -and receptor-mediated pathways of endocytosis from the brush border, indicating a complete arrest of apical membrane trafficking. At the ultrastructural level, the PEs caused longitudinal fusion of brush border...

  3. Synthesis and Characterization of a Gd-DOTA-D-Permeation Peptide for Magnetic Resonance Relaxation Enhancement of Intracellular Targets

    Directory of Open Access Journals (Sweden)

    Andrew M. Prantner

    2003-10-01

    Full Text Available Many MR contrast agents have been developed and proven effective for extracellular nontargeted applications, but exploitation of intracellular MR contrast agents has been elusive due to the permeability barrier of the plasma membrane. Peptide transduction domains can circumvent this permeability barrier and deliver cargo molecules to the cell interior. Based upon enhanced cellular uptake of permeation peptides with D-amino acid residues, an all-D Tat basic domain peptide was conjugated to DOTA and chelated to gadolinium. Gd-DOTA-D-Tat peptide in serum at room temperature showed a relaxivity of 7.94 ± 0.11 mM−1 sec−1 at 4.7 T. The peptide complex displayed no significant binding to serum proteins, was efficiently internalized by human Jurkat leukemia cells resulting in intracellular T1 relaxation enhancement, and in preliminary T1-weighted MRI experiments, significantly enhanced liver, kidney, and mesenteric signals.

  4. Evaluations of imidazolium ionic liquids as novel skin permeation enhancers for drug transdermal delivery.

    Science.gov (United States)

    Zhang, Ding; Wang, Huai-Ji; Cui, Xiu-Ming; Wang, Cheng-Xiao

    2017-06-01

    In this work, imidazolium ionic liquids (imidazolium ILs) were employed as the novel chemical permeation enhancers (CPEs) and their performances and mechanisms of action were deeply investigated. Testosterone was used as a model drug to investigate the transdermal delivery enhancement of twenty imdidazolium ILs. The results suggested that the promotion activity connected to the structure and composition of the ILs. The quantitative structure-activity relationship (QSAR) model revealed a good linearity between the electronic properties of ILs and their enhancements. Furthermore, the transepidermal water loss (TEWL) and scanning laser confocal microscope (CLSM) examinations showed the strong improvement of ILs on skin barrier permeability, which were well correlated with the drug penetration profiles. The total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscope (AFM) evaluations of skins indicated that the ILs can disrupt the regular and compact arrangements of the corneocytes, change the surface properties of stratum corneum, and make the skin structure more permeable. Our work demonstrated the significant skin permeation promotion profiles of the imidazolium ILs, which are of great potential in transdermal drug delivery systems.

  5. Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: optimization and ex vivo permeation

    Directory of Open Access Journals (Sweden)

    Freag MS

    2013-07-01

    Full Text Available May S Freag, Yosra SR Elnaggar, Ossama Y AbdallahDepartment of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, EgyptAbstract: Diosmin (DSN is an outstanding phlebotonic flavonoid with a tolerable potential for the treatment of colon and hepatocellular carcinoma. Being highly insoluble, DSN bioavailability suffers from high inter-subject variation due to variable degrees of permeation. This work endeavored to develop novel DSN loaded phytosomes in order to improve drug dissolution and intestinal permeability. Three preparation methods (solvent evaporation, salting out, and lyophilization were compared. Nanocarrier optimization encompassed different soybean phospholipid (SPC types, different solvents, and different DSN:SPC molar ratios (1:1, 1:2, and 1:4. In vitro appraisal encompassed differential scanning calorimetry, infrared spectroscopy, particle size, zeta potential, polydispersity index, transmission electron microscopy, drug content, and in vitro stability. Comparative dissolution studies were performed under sink versus non-sink conditions. Ex vivo intestinal permeation studies were performed on rats utilizing noneverted sac technique and high-performance liquid chromatography analysis. The results revealed lyophilization as the optimum preparation technique using SPC and solvent mixture (Dimethyl sulphoxide:t-butylalchol in a 1:2 ratio. Complex formation was contended by differential scanning calorimetry and infrared data. Optimal lyophilized phytosomal nanocarriers (LPNs exhibited the lowest particle size (316 nm, adequate zeta-potential (−27 mV, and good in vitro stability. Well formed, discrete vesicles were revealed by transmission electron microscopy, drug content, and in vitro stability. Comparative dissolution studies were performed. LPNs demonstrated significant enhancement in DSN dissolution compared to crude drug, physical mixture, and generic and brand DSN products. Permeation studies revealed 80% DSN

  6. Effect of pressure sensitive adhesive and vehicles on permeation of terbinafine across porcine hoof membrane.

    Science.gov (United States)

    Ahn, Tai Sang; Lee, Jung-Phil; Kim, Juhyun; Oh, Seaung Youl; Chun, Myung-Kwan; Choi, Hoo-Kyun

    2013-11-01

    The purpose of this study was to investigate characteristics of transungual drug delivery and the feasibility of developing a drug-in-adhesive formulation of terbinafine. The permeation of terbinafine from a PSA matrix across porcine hoof membrane was determined using a plate containing poloxamer gel. The permeation rate of terbinafine across hairless mouse skin was evaluated using a flow-through diffusion cell system. The permeation of terbinafine across the hoof membranes was the highest from the silicone adhesive matrix, followed by PIB, and most of the acrylic adhesives, SIS, and SBS. The rank order of permeation rate across mice skin was different from the rank order across porcine hooves. The amount of terbinafine permeated across the porcine hoof membranes poorly correlated with the amount of terbinafine remaining inside the hooves after 20 days, however, the ratio between rate of terbinafine partitioning into the hoof membrane and its rate of diffusion across the membrane was relatively constant within the same type of PSA. For influence of various vehicles in enhancing permeation of terbinafine across the hoof membrane, all vehicles except Labrasol(®) showed tendency to improve permeation rate. However, the enhancement ratio of a given vehicle differed from one adhesive to another with a moderate correlation between them. The infrared spectrum of the hoof treated with NMP, PPG 400 or PEG 200 indicated that the conformation of keratin changed from a non-helical to a helical structure.

  7. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid as a permeation enhancer

    Directory of Open Access Journals (Sweden)

    Mooranian A

    2014-09-01

    Full Text Available Armin Mooranian,1 Rebecca Negrulj,1 Nigel Chen-Tan,2 Gerald F Watts,3 Frank Arfuso,4 Hani Al-Salami11Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, 2Faculty of Science and Engineering, Curtin University, 3School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, 4School of Biomedical Science, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, AustraliaAbstract: The authors have previously designed, developed, and characterized a novel microencapsulated formulation as a platform for the targeted delivery of therapeutics in an animal model of type 2 diabetes, using the drug probucol (PB. The aim of this study was to optimize PB microcapsules by incorporating the bile acid deoxycholic acid (DCA, which has good permeation-enhancing properties, and to examine its effect on microcapsules’ morphology, rheology, structural and surface characteristics, and excipients’ chemical and thermal compatibilities. Microencapsulation was carried out using a BÜCHI-based microencapsulating system established in the authors’ laboratory. Using the polymer sodium alginate (SA, two microencapsulated formulations were prepared: PB-SA (control and PB-DCA-SA (test at a constant ratio (1:30 and 1:3:30, respectively. Complete characterization of the microcapsules was carried out. The incorporation of DCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained similar to control. In addition, PB-DCA-SA microcapsules showed good excipients’ compatibilities, which were supported by data from differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray studies, suggesting

  8. Development and characterisation of electrospun timolol maleate-loaded polymeric contact lens coatings containing various permeation enhancers.

    Science.gov (United States)

    Mehta, Prina; Al-Kinani, Ali A; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan

    2017-10-30

    Despite exponential growth in research relating to sustained and controlled ocular drug delivery, anatomical and chemical barriers of the eye still pose formulation challenges. Nanotechnology integration into the pharmaceutical industry has aided efforts in potential ocular drug device development. Here, the integration and in vitro effect of four different permeation enhancers (PEs) on the release of anti-glaucoma drug timolol maleate (TM) from polymeric nanofiber formulations is explored. Electrohydrodynamic (EHD) engineering, more specifically electrospinning, was used to engineer nanofibers (NFs) which coated the exterior of contact lenses. Parameters used for engineering included flow rates ranging from 8 to 15μL/min and a novel EHD deposition system was used; capable of hosting four lenses, masked template and a ground electrode to direct charged atomised structures. SEM analysis of the electrospun structures confirmed the presence of smooth nano-fibers; whilst thermal analysis confirmed the stability of all formulations. In vitro release studies demonstrated a triphasic release; initial burst release with two subsequent sustained release phases with most of the drug being released after 24h (86.7%) Biological evaluation studies confirmed the tolerability of all formulations tested with release kinetics modelling results showing drug release was via quasi-Fickian or Fickian diffusion. There were evident differences (p<0.05) in TM release dependant on permeation enhancer. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. Effect of piperidones on hydrogen permeation and corrosion ...

    Indian Academy of Sciences (India)

    corrosion inhibition. 3.5 Hydrogen permeation measurements. Hydrogen can enter into the metal during various industrial operations like melting, heat treatment, or pickling and electrochemical processes such as cathodic cleaning and electrolytic machining. Of the various sources of entry of hydrogen into the metal,.

  10. Gel in core carbosomes as novel ophthalmic vehicles with enhanced corneal permeation and residence.

    Science.gov (United States)

    Moustafa, Mona A; El-Refaie, Wessam M; Elnaggar, Yosra S R; Abdallah, Ossama Y

    2018-05-17

    Carbopol is a good bio-adhesive polymer that increases the residence time in the eye. However, the effect of blinking and lacrimation still reduce the amount of polymer and the incorporated drug available for bioadhesion. Gel-core liposomes are advanced systems offering benefits making it a good tool for improved ocular drug delivery and residence time. Incorporation of carbopol in gel-core liposomes and their potential in ocular delivery have not so far been investigated. Fluconazole (FLZ) was selected as a challenging important ocular antifungal suffering from poor corneal permeation and short residence time. In this study, gel-core carbosomes have been elaborated as novel carbopol-based ophthalmic vehicles to solve ocular delivery obstacles of FLZ and to sustain its effect. Full in vitro appraisal was performed considering gel-core structure, entrapment efficiency, particle size and stability of the vesicles as quality attributes. Structure elucidation of the nanocarrier was performed using optical, polarizing and transmission electron microscopy before and after Triton-X100 addition. Ex-vivo ocular permeation and in vivo performance were investigated on male albino rabbits. Optimized formulation (CBS5) showed gel-core structure, nanosize (339.00 ± 5.50 nm) and not defined before (62.00% ± 1.73) entrapment efficiency. Cumulative amount of CBS5 permeated ex-vivo after 6 h, was 2.43 and 3.43 folds higher than that of conventional liposomes and FLZ suspension, respectively. In-vivo corneal permeation of CBS5 showed significantly higher AUC0-24 h (487.12 ± 74.80) compared to that of FLZ suspension (204.34 ± 7.46) with longer residence time in the eye lasts for more than 18 h. In conclusion, novel gel-core carbosomes could successfully be used as a promising delivery system for chronic ocular diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Evaluation of γ-cyclodextrin effect on permeation of lipophilic drugs: application of cellophane/fused octanol membrane.

    Science.gov (United States)

    Muankaew, Chutimon; Jansook, Phatsawee; Loftsson, Thorsteinn

    2017-06-01

    According to the Biopharmaceutics Classification System, oral bioavailability of drugs is determined by their aqueous solubility and the ability of the dissolved drug molecules to permeate lipophilic biological membranes. Similarly topical bioavailability of ophthalmic drugs is determined by their solubility in the aqueous tear fluid and their ability to permeate the lipophilic cornea. Enabling pharmaceutical excipients such as cyclodextrins can have profound effect on the drug bioavailability. However, to fully appreciate such enabling excipients, the relationship between their effects and the physicochemical properties of the permeating drug needs to be known. In this study, the permeation enhancing effect of γ-cyclodextrin (γCD) on saturated drug solutions containing hydrocortisone (HC), irbesartan (IBS), or telmisartan (TEL) was evaluated using cellophane and fused cellulose-octanol membranes in a conventional Franz diffusion cell system. The flux (J), the flux ratio (J R ) and the apparent permeability coefficients (P app ) demonstrate that γCD increases drug permeability. However, its efficacy depends on the drug properties. Addition of γCD increased P app of HC (unionized) and IBS (partially ionized) through the dual membrane but decreased the P app of TEL (fully ionized) that displays low complexation efficacy. The dual cellophane-octanol membrane system was simple to use and gave reproducible results.

  12. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes.

    Science.gov (United States)

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad

    2017-10-25

    Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

  13. Compensation effect in H 2 permeation kinetics of PdAg membranes

    KAUST Repository

    Zeng, Gaofeng

    2012-08-30

    Knowledge about the (inter)dependence of permeation kinetic parameters on the stoichiometry of H 2-selective alloys is still rudimentary, although uncovering the underlying systematic correlations will greatly facilitate current efforts into the design of novel high-performance H 2 separation membranes. Permeation measurements with carefully engineered, 2-7 μm thick supported Pd 100-xAg x membranes reveal that the activation energy and pre-exponential factor of H 2 permeation laws vary systematically with alloy composition, and both kinetic parameters are strongly correlated for x ≤ 50. We show that this permeation kinetic compensation effect corresponds well with similar correlations in the hydrogen solution thermodynamics and diffusion kinetics of PdAg alloys that govern H 2 permeation rates. This effect enables the consistent description of permeation characteristics over wide temperature and alloy stoichiometry ranges, whereas hydrogen solution thermodynamics may play a role, too, as a yet unrecognized source of kinetic compensation in, for example, H 2-involving reactions over metal catalysts or hydrogenation/ dehydrogenation of hydrogen storage materials. © 2012 American Chemical Society.

  14. Topical Niosome Gel of Zingiber cassumunar Roxb. Extract for Anti-inflammatory Activity Enhanced Skin Permeation and Stability of Compound D.

    Science.gov (United States)

    Priprem, Aroonsri; Janpim, Khwanhatai; Nualkaew, Somsak; Mahakunakorn, Pramote

    2016-06-01

    An extract of Zingiber cassumunar Roxb. (ZC) was encapsulated in niosomes of which a topical gel was formed. (E)-4-(3',4'-dimethoxyphenyl)but-3-en-1-ol or compound D detected by a gradient HPLC was employed as the marker and its degradation determined to follow zero-order kinetics. Niosomes significantly retarded thermal-accelerated decomposition of compound D in the gel (p D. Niosomes enhanced in vitro permeation rate of compound D from the gel. Topical applications of ZC noisome gel gave a faster change in tail flick latency than piroxicam gel and hydrocortisone cream (p anti-inflammatory activity up to 6 h using croton oil-induced ear edema model in mice (p > 0.05). Thus, encapsulation of ZC extract in niosomes enhanced chemical stability and skin permeation with comparable topical anti-inflammatory effects to steroid and NSAID.

  15. Thiolated hydroxyethyl cellulose: design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles.

    Science.gov (United States)

    Rahmat, Deni; Müller, Christiane; Barthelmes, Jan; Shahnaz, Gul; Martien, Ronny; Bernkop-Schnürch, Andreas

    2013-02-01

    Within this study, HEC-cysteamine nanoparticles with free thiol groups in the range of 117-1548 μmol/g were designed and characterized. Nanoparticles were generated via ionic gelation of the cationic polymer with tripolyphosphate (TPP) followed by covalent crosslinking via disulfide bond formation using H2O2 as oxidant. The mean diameter of the particles was in the range of 270-360 nm, and zeta potential was determined to be +4 to +10 mV. Nanoparticles were evaluated in terms of mucoadhesive, permeation enhancing, and biocompatible properties as well as biodegradability. The particles remained attached to porcine intestinal mucosa up to 70% after 3h of incubation. The more nanoparticles were oxidized; however, the less were their mucoadhesive properties. Nanoparticles applied in a concentration of 0.5% (m/v) with the highest content of free thiol groups improved the transport of fluorescein isothiocyanate dextran 4 (FD4) across Caco-2 cell monolayer 3.94-fold in comparison with control (buffer). In addition, the transport of FD4 was even 1.84-fold enhanced in the presence of 0.5% (m/v) nanoparticles with the lowest free thiol group content. The higher the disulfide bond content within nanoparticles was, to a lower degree nanoparticles were hydrolyzed by cellulase. None of these nanoparticles showed pronounced cytotoxicity. Accordingly, HEC-cysteamine could be a promising excipient for nanoparticulate delivery systems for poorly absorbed drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Development of Lecithin Nanoemulsion Based Organogels for Permeation Enhancement of Metoprolol through Rat Skin

    Directory of Open Access Journals (Sweden)

    J. Varshosaz

    2013-01-01

    Full Text Available Background. Drugs with low oral bioavailability due to the first pass metabolism are good candidates for transdermal delivery. Objectives. The aim of this work was preparation of transdermal nanoemulsion of metoprolol which has high first pass metabolism. Methods. Three commercially available types of lecithin (200, 100p, and 170, three short chain alcohol (n-butanol, isopropyl alcohol, and n-propanol, and isopropyl myristate (IPM were used as surfactant, cosurfactant, and oil phase, respectively. The aqueous phase was composed of metoprolol tartrate. Nanoemulsions with different surfactant/cosurfactant weight ratio, various amounts of drug, and different types of alcohol were prepared, and their phase diagrams were studied. Drug release, permeability, and diffusion coefficient of the drug were studied using hairless rat skin. Results. A significant increase in drug solution rate was observed with increasing the metoprolol content in the nanoemulsions, while it decreased when lecithin concentration increased from 40% to 60%. Increasing the water content resulted in a significant increase in metoprolol release. N-butanol enhanced the drug flux from nanoemulsions more than n-propanol and isopropyl alcohol. The o/w nanoemulsions of metoprolol showed high flux and permeability through the skin. Conclusion. Both w/o and o/w nanoemulsions of metoprolol could enhance permeation and diffusion of metoprolol through rat skin.

  17. Laboratory validation of a new gas-enhanced dentine liquid permeation evaluation system.

    Science.gov (United States)

    Al-Jadaa, Anas; Attin, Thomas; Peltomäki, Timo; Heumann, Christian; Schmidlin, Patrick R

    2014-12-01

    To validate a new automated dentine permeability testing platform based on pressure change measurements. A split chamber was designed allowing for concomitant measurement of fluid permeation and pressure difference. In a first test, system reliability was assessed by interposing a solid metal disk, embedded composite resin disks, or teeth by consecutively measuring eight times under standardized conditions. Secondly, the repeatability and applicability of the method was tested in a dentine wound model by using intact third molars: Class I (2 × 5 mm) and a full occlusal preparation as well a ceramic restoration were consecutively performed and repeatedly measured eight times each. In the last test, the system detection limit as well correlation between gas pressure difference and liquid permeation were evaluated: Again, third molars were used and occlusal preparations of increasing size (2 × 5, 3 × 5, 4 × 5, and 5 × 5 mm and full occlusal preparations, respectively) were made. Data was analyzed for the linearity of measurement, and R (2) values were calculated. The embedding procedure allowed for perfect separation of the two chambers, and no significant variation in repeated measurements of evaluated samples for the respective treatments (p = 0.05) was found. The detection was 0.002 hPa/min for the pressure slope and 0.0225 μl/min for the fluid infiltration, respectively. The saline volume was highly correlating to the gas pressure changes (R (2) = 0.996, p < 0.0001). The presented method is a reliable and exact tool to assess dentine permeability by nondestructive and repeatable measurements. This method is suitable for measurements and comparison of the effectiveness of dentine wounds sealing materials.

  18. Modelling the effect of mixture components on permeation through skin.

    Science.gov (United States)

    Ghafourian, T; Samaras, E G; Brooks, J D; Riviere, J E

    2010-10-15

    A vehicle influences the concentration of penetrant within the membrane, affecting its diffusivity in the skin and rate of transport. Despite the huge amount of effort made for the understanding and modelling of the skin absorption of chemicals, a reliable estimation of the skin penetration potential from formulations remains a challenging objective. In this investigation, quantitative structure-activity relationship (QSAR) was employed to relate the skin permeation of compounds to the chemical properties of the mixture ingredients and the molecular structures of the penetrants. The skin permeability dataset consisted of permeability coefficients of 12 different penetrants each blended in 24 different solvent mixtures measured from finite-dose diffusion cell studies using porcine skin. Stepwise regression analysis resulted in a QSAR employing two penetrant descriptors and one solvent property. The penetrant descriptors were octanol/water partition coefficient, logP and the ninth order path molecular connectivity index, and the solvent property was the difference between boiling and melting points. The negative relationship between skin permeability coefficient and logP was attributed to the fact that most of the drugs in this particular dataset are extremely lipophilic in comparison with the compounds in the common skin permeability datasets used in QSAR. The findings show that compounds formulated in vehicles with small boiling and melting point gaps will be expected to have higher permeation through skin. The QSAR was validated internally, using a leave-many-out procedure, giving a mean absolute error of 0.396. The chemical space of the dataset was compared with that of the known skin permeability datasets and gaps were identified for future skin permeability measurements. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Photokinetic Drug Delivery: Light-Enhanced Permeation in an In Vitro Eye Model.

    Science.gov (United States)

    Godley, Bernard F; Kraft, Edward R; Giannos, Steven A; Zhao, Zhen-Yang; Haag, Anthony M; Wen, Julie W

    2015-12-01

    To investigate light-enhanced molecular movement as a potential technology for drug delivery. To do this, we developed an in vitro eye model while representing similar concentration gradient conditions and compositions found in the eye. The eye model unit was fabricated by inserting a cross-linked type I collagen membrane in a spectrophotometer cuvette with 1% hyaluronic acid as the drug recipient medium. Photokinetic delivery was studied by illuminating 1 mg/mL methotrexate (MTX) placed in the drug donor compartment on top of the membrane, with noncoherent 450 nm light at 8.2 mW from an LED source pulsed at 25 cycles per second, placed in contact with the solution. A modified UV-visual spectrophotometer was employed to rapidly determine the concentration of MTX, at progressive 1 mm distances away from the membrane, within the viscous recipient medium of the model eye after 1 h. A defined, progressive concentration gradient was observed within the nonagitated drug recipient media, diminishing with greater distances from the membrane. Transport of MTX through the membrane was significantly enhanced (ranging from 2 to 3 times, P < 0.05 to P ≤ 0.001) by photokinetic methods compared with control conditions by determining drug concentrations at 4 defined distances from the membrane. According to scanning electron microscopy images, no structural damage or shunts were created on the surface of the cross-linked gelatin membrane. The application of pulsed noncoherent visible light significantly enhances the permeation of MTX through a cross-linked collagen membrane and hyaluronic acid recipient medium without causing structural damage to the membrane.

  20. Effect of argon ion sputtering of surface on hydrogen permeation through vanadium

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Namba, Takashi; Yoneoka, Toshiaki; Kanno, Masayoshi; Shida, Koji.

    1983-01-01

    In order to measure the hydrogen permeation rate through V with atomically cleaned surface, an Ar ion sputtering apparatus has been installed in the hydrogen permeability measuring system. The permeation rate of the initial specimen was found to be increased by about one order of magnitude after Ar ion sputtering of its upstream side surface. Repeating of such a sputter-cleaning was not so much effective in increasing the steady state permeation rate as the initial sputtering was, but it accelerated the transient response rate by a factor of 2 or 3. The transient response rate was also accelerated by the increase of hydrogen pressure, but this effect tended to be diminished by the sputter-cleaning of specimen surface. The surface impurity layer on the downstream side of specimen was also inferred to act as a diffusion barrier affecting the steady state permeation rate. The present value of activation energy for hydrogen permeation through V at temperatures below 873K was the smallest one ever obtained, showing that the surface effect was minimized in the present study on account of the surface sputter-cleaning in addition to the ultra high vacuum system. (author)

  1. Safety concerns over the use of intestinal permeation enhancers: A mini-review.

    Science.gov (United States)

    McCartney, Fiona; Gleeson, John P; Brayden, David J

    2016-01-01

    Intestinal permeation enhancers (PEs) are key components in ∼12 oral peptide formulations in clinical trials for a range of molecules, primarily insulin and glucagon-like-peptide 1 (GLP-1) analogs. The main PEs comprise medium chain fatty acid-based systems (sodium caprate, sodium caprylate, and N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC)), bile salts, acyl carnitines, and EDTA. Their mechanism of action is complex with subtle differences between the different molecules. With the exception of SNAC and EDTA, most PEs fluidize the plasma membrane causing plasma membrane perturbation, as well as enzymatic and intracellular mediator changes that lead to alteration of intestinal epithelial tight junction protein expression. The question arises as to whether PEs can cause irreversible epithelial damage and tight junction openings sufficient to permit co-absorption of payloads with bystander pathogens, lipopolysaccharides and its fragment, or exo- and endotoxins that may be associated with sepsis, inflammation and autoimmune conditions. Most PEs seem to cause membrane perturbation to varying extents that is rapidly reversible, and overall evidence of pathogen co-absorption is generally lacking. It is unknown however, whether the intestinal epithelial damage-repair cycle is sustained during repeat-dosing regimens for chronic therapy.

  2. Effects of thin films on inventory, permeation and re-emission of energetic hydrogen

    International Nuclear Information System (INIS)

    Ohyabu, N.; Nakamura, Y.; Nakahara, Y.; Livshits, A.; Alimov, V.; Busnyuk, A.; Notkin, M.; Samartsev, A.; Doroshin, A.

    2000-01-01

    A non-metallic coating thicker than the implantation depth may protect a metal against tritium retention and permeation. However, a thinner film has quite the opposite effect: a dramatic increase of permeation and retention, and a corresponding suppression of re-emission. In view of the benefits expected from particle control with a superpermeable membrane placed right inside the divertor, the behavior of a Nb sample was investigated in a plasma-membrane device having a graphite target. Even polyatomic carbide coating was found not to hinder hydrogen absorption and permeation. Polyatomic non-carbide C films effectively inhibits it, but the formation of such films depends on H and C fluxes, H energy and metal temperature. A durable isolation of suprathermal hydrogen with the superpermeable membrane was observed at a high enough ratio between H and C fluxes, and the effects of carbon were found to have a non-monotonic temperature dependence

  3. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu; Chang, Le; Uddi, Mruthunjaya; Kirchen, Patrick; Ghoniem, Ahmed F.

    2015-01-01

    and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis

  4. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin.

    Science.gov (United States)

    Andega, S; Kanikkannan, N; Singh, M

    2001-11-09

    Melatonin (MT) is a hormone secreted by the pineal gland that plays an important role in the regulation of the circadian sleep-wake cycle. It would be advantageous to administer MT using a transdermal delivery system for the treatment of sleep disorders such as delayed sleep syndrome, jet lag in travelers, cosmonauts and shift workers. The porcine skin has been found to have similar morphological and functional characteristics as human skin. The elastic fibres in the dermis, enzyme pattern of the epidermis, epidermal tissue turnover time, keratinous proteins and thickness of epidermis of porcine skin are similar to human skin. However, the fat deposition and vascularisation of the cutaneous glands of porcine skin are different from human skin. In addition, porcine skin has been found to have a close permeability character to human skin. However, the comparative effect of chemical penetration enhancers on the permeation of drugs between porcine and human skin has not been reported. The purpose of this study was to compare the effect of fatty alcohols on the permeability of porcine and human skin using MT as a model compound. The effect of saturated fatty alcohols (octanol, nonanol, decanol, undecanol, lauryl alcohol, tridecanol, myristyl alcohol) and unsaturated fatty alcohols (oleyl alcohol, linoleyl alcohol, linolenyl alcohol) at 5% concentration was tested across dermatomed porcine and human skin. Our studies showed a parabolic relationship between the carbon chain length of saturated fatty alcohols and permeation enhancement of MT with both porcine and human skin. Maximum permeation of MT was observed when fatty alcohol carbon chain length was 10. In general, as the level of unsaturation increased from one to two double bonds, there was an increase in the permeation of MT both in porcine and human skin. However, a decrease in the permeation was observed with three double bonds. Regression analysis using the steady state flux data showed a significant positive

  5. Effect of Different Skin Penetration Promoters in Halobetasol Propionate Permeation and Retention in Human Skin

    Directory of Open Access Journals (Sweden)

    Paulina Carvajal-Vidal

    2017-11-01

    Full Text Available Halobetasol propionate (HB is a potent synthetic corticosteroid used against inflammatory skin diseases, such as dermatitis, eczema, and psoriasis, among others. The aim of this study is to define how the presence of different skin penetration enhancers (nonane, menthone, limonene, azone, carene, decanol, linoleic acid and cetiol affects the penetration and retention in skin of HB. To determine drug penetration through skin, 5% of each promoter was used in an ex vivo system with human skin on Franz cells. The results showed that the highest permeation occurs in the presence of menthone, followed by nonane. Permeation parameters were determined. The in vivo test was assessed, and the formulation containing HB-menthone presented better anti-inflammatory efficacy. These results are useful to generate a specific treatment according to each patient’s needs, and the inflammatory characteristics of the disease.

  6. In silico modelling of permeation enhancement potency in Caco-2 monolayers based on molecular descriptors and random forest

    DEFF Research Database (Denmark)

    Welling, Søren Havelund; Clemmensen, Line Katrine Harder; Buckley, Stephen T.

    2015-01-01

    has been developed.The random forest-QSAR model was based upon Caco-2 data for 41 surfactant-like permeation enhancers from Whitehead et al. (2008) and molecular descriptors calculated from their structure.The QSAR model was validated by two test-sets: (i) an eleven compound experimental set with Caco......-2 data and (ii) nine compounds with Caco-2 data from literature. Feature contributions, a recent developed diagnostic tool, was applied to elucidate the contribution of individual molecular descriptors to the predicted potency. Feature contributions provided easy interpretable suggestions...

  7. Efficacious Intestinal Permeation Enhancement Induced by the Sodium Salt of 10-undecylenic Acid, A Medium Chain Fatty Acid Derivative

    OpenAIRE

    Brayden, David J.; Walsh, Edwin

    2014-01-01

    10-undecylenic acid (UA) is an OTC antifungal therapy and a nutritional supplement. It is an unsaturated medium chain fatty acid (MCFA) derivative, so our hypothesis was that its 11-mer sodium salt, uC11, would improve intestinal permeation similar to the established enhancer, sodium caprate (C10), but without the toxicity of the parent saturated MCFA, decylenic acid (C11). MTT assay and high-content screening (HCS) confirmed a cytotoxicity ranking in Caco-2 cells: C11 > C10 = uC11. Five to t...

  8. Effect of emulsification on the skin permeation and UV protection of catechin.

    Science.gov (United States)

    Yoshino, Sachie; Mitoma, Tomoaki; Tsuruta, Keiko; Todo, Hiroaki; Sugibayashi, Kenji

    2014-06-01

    An anti-aging effect may be obtained by skin application of tea catechins (Camellia sinensis) since they have high ultraviolet (UV)-protection activity. In this study, the skin permeation of catechin (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) and epigallocatechin gallate (EGCg) was determined and compared, and the effect of emulsification on the skin permeation of C was measured. The UV-protective effect of C was also determined. The in vitro skin permeability of each catechin derivative was determined using side-by-side diffusion of cells. The UV-protective effect of C was determined by applying different concentrations of C to the solution or emulsion on a three-dimensional cultured human skin model or normal human epidermal keratinocytes with UV-irradiation. ECg and EGCg with gallate groups showed lower skin permeability than C, EC and EGC without gallate groups, suggesting that the skin permeability of catechin derivatives may be dependent on the existence of a gallate group. Interestingly, the skin permeation of C was increased by an o/w emulsification. In addition, the C emulsion showed a significantly higher UV-protective effect by C than that with its aqueous solution. These results suggest that the o/w emulsion of catechin derivatives is probably useful as a cosmetic formulation with anti-aging efficacy.

  9. Effects of vehicles and enhancers on transdermal delivery of clebopride.

    Science.gov (United States)

    Rhee, Yun-Seok; Huh, Jai-Yong; Park, Chun-Woong; Nam, Tae-Young; Yoon, Koog-Ryul; Chi, Sang-Cheol; Park, Eun-Seok

    2007-09-01

    The effects of vehicles and penetration enhancers on the skin permeation of clebopride were evaluated using Franz type diffusion cells fitted with excised rat dorsal skins. The binary vehicle system, diethylene glycol monoethyl ether/isopropyl myristate (40/60, w/w), significantly enhanced the skin permeation rate of clebopride. The skin permeation enhancers, oleic acid and ethanol when used in the binary vehicle system, resulted in relatively high clebopride skin permeation rates. A gel formulation consisting of 1.5% (w/w) clebopride, 5% (w/w) oleic acid, and 7% (w/w) gelling agent with the binary vehicle system resulted in a permeation rate of 28.90 microg/cm2/h. Overall, these results highlight the potential of clebopride formulation for the transdermal route.

  10. Effects of hypothyroidism on vascular 125I-albumin permeation and blood flow in rats

    International Nuclear Information System (INIS)

    Tilton, R.G.; Pugliese, G.; Chang, K.; Speedy, A.; Province, M.A.; Kilo, C.; Williamson, J.R.

    1989-01-01

    Effects of hypothyroidism on vascular 125I-albumin permeation and on blood flow were assessed in multiple tissues of male Sprague-Dawley rats rendered hypothyroid by dietary supplementation with 0.5% (wt/wt) 2-thiouracil or by thyroidectomy. In both thiouracil-treated and thyroidectomized rats, body weights, kidney weight, arterial blood pressure, and pulse rate were decreased significantly v age-matched controls. After 10 to 12 weeks of thiouracil treatment, 125I-albumin permeation was increased significantly in the kidney, aorta, eye (anterior uvea, choroid, retina), skin, and new granulation tissue, remained unchanged in brain, sciatic nerve, and heart, and was decreased in forelimb skeletal muscle. A similar pattern was observed in thyroidectomized rats, except that increases in 125I-albumin permeation for all tissues were smaller than those observed in thiouracil-treated rats, and 125I-albumin permeation in retina did not differ from controls. In both thiouracil-treated and thyroidectomized rats, changes in blood flow (assessed with 15-microns, 85Sr-labeled microspheres) relative to the decrease in arterial blood pressure were indicative of a decrease in regional vascular resistance except in the choroid and in the kidney, in which vascular resistance was increased significantly. Glomerular filtration rate was decreased, but filtration fraction and urinary excretion of albumin remained unchanged by thiouracil treatment and thyroidectomy. These results indicate that vascular hemodynamics and endothelial cell barrier functional integrity are modulated in many different tissues by the thyroid. In view of the correspondence of hypothyroid- and diabetes-induced vascular permeability changes, these results raise the possibility that altered thyroid function in diabetes may play a role in the pathogenesis of diabetic vascular disease

  11. Effects of hypothyroidism on vascular /sup 125/I-albumin permeation and blood flow in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, R.G.; Pugliese, G.; Chang, K.; Speedy, A.; Province, M.A.; Kilo, C.; Williamson, J.R.

    1989-05-01

    Effects of hypothyroidism on vascular 125I-albumin permeation and on blood flow were assessed in multiple tissues of male Sprague-Dawley rats rendered hypothyroid by dietary supplementation with 0.5% (wt/wt) 2-thiouracil or by thyroidectomy. In both thiouracil-treated and thyroidectomized rats, body weights, kidney weight, arterial blood pressure, and pulse rate were decreased significantly v age-matched controls. After 10 to 12 weeks of thiouracil treatment, 125I-albumin permeation was increased significantly in the kidney, aorta, eye (anterior uvea, choroid, retina), skin, and new granulation tissue, remained unchanged in brain, sciatic nerve, and heart, and was decreased in forelimb skeletal muscle. A similar pattern was observed in thyroidectomized rats, except that increases in 125I-albumin permeation for all tissues were smaller than those observed in thiouracil-treated rats, and 125I-albumin permeation in retina did not differ from controls. In both thiouracil-treated and thyroidectomized rats, changes in blood flow (assessed with 15-microns, 85Sr-labeled microspheres) relative to the decrease in arterial blood pressure were indicative of a decrease in regional vascular resistance except in the choroid and in the kidney, in which vascular resistance was increased significantly. Glomerular filtration rate was decreased, but filtration fraction and urinary excretion of albumin remained unchanged by thiouracil treatment and thyroidectomy. These results indicate that vascular hemodynamics and endothelial cell barrier functional integrity are modulated in many different tissues by the thyroid. In view of the correspondence of hypothyroid- and diabetes-induced vascular permeability changes, these results raise the possibility that altered thyroid function in diabetes may play a role in the pathogenesis of diabetic vascular disease.

  12. Effect of feed flow pattern on the distribution of permeate fluxes in desalination by direct contact membrane distillation

    KAUST Repository

    Soukane, Sofiane; Naceur, Mohamed W.; Francis, Lijo; Alsaadi, Ahmad Salem; Ghaffour, NorEddine

    2017-01-01

    The current study aims to highlight the effect of flow pattern on the variations of permeate fluxes over the membrane surface during desalination in a direct contact membrane distillation (DCMD) flat module. To do so, a three dimensional (3D

  13. Microneedle-assisted transdermal delivery of Zolmitriptan: effect of microneedle geometry, in vitro permeation experiments, scaling analyses and numerical simulations.

    Science.gov (United States)

    Uppuluri, Chandra Teja; Devineni, Jyothirmayee; Han, Tao; Nayak, Atul; Nair, Kartik J; Whiteside, Benjamin R; Das, Diganta B; Nalluri, Buchi N

    2017-08-01

    The present study was aimed to investigate the effect of salient microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation enhancement of Zolmitriptan (ZMT). Two types of MN devices viz. AdminPatch ® arrays (ADM) (0.6, 0.9, 1.2 and 1.5 mm lengths) and laboratory fabricated polymeric MNs (PM) of 0.6 mm length were employed. In the case of PMs, arrays were applied thrice at different places within a 1.77 cm 2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Scaling analyses was done using dimensionless parameters like concentration of ZMT (C t /C s ), thickness (h/L) and surface area of the skin (Sa/L 2 ). Micro-injection molding technique was employed to fabricate PM. Histological studies revealed that the PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 3.17- and 3.65-fold increase in ZMT flux values were observed with 1.5 mm ADM and PM-3 applications when compared to the passive studies. Good correlations were observed between different dimensionless parameters with scaling analyses. Numerical simulations, using MATLAB and COMSOL software, based on experimental data and histological images provided information regarding the ZMT skin distribution after MN application. Both from experimental studies and simulations, it was inferred that PM were more effective in enhancing the transdermal delivery of ZMT when compared to ADM. The study suggests that MN application enhances the ZMT transdermal permeation and the geometrical parameters of MNs play an important role in the degree of such enhancement.

  14. Efficacious intestinal permeation enhancement induced by the sodium salt of 10-undecylenic acid, a medium chain fatty acid derivative.

    Science.gov (United States)

    Brayden, David J; Walsh, Edwin

    2014-09-01

    10-undecylenic acid (UA) is an OTC antifungal therapy and a nutritional supplement. It is an unsaturated medium chain fatty acid (MCFA) derivative, so our hypothesis was that its 11-mer sodium salt, uC11, would improve intestinal permeation similar to the established enhancer, sodium caprate (C10), but without the toxicity of the parent saturated MCFA, decylenic acid (C11). MTT assay and high-content screening (HCS) confirmed a cytotoxicity ranking in Caco-2 cells: C11 > C10 = uC11. Five to ten millimolars of the three agents reduced TEER and increased the Papp of [(14)C]-mannitol across Caco-2 monolayers and rat intestinal mucosae, a concentration that matched increases in plasma membrane permeability seen in HCS. Although C11 was the most efficacious enhancer in vitro, it damaged monolayers and tissue mucosae more than the other two agents at similar concentrations and exposure times and was therefore not pursued further. Rat jejunal and colonic in situ intestinal instillations of 100 mM C10 or uC11 with FITC-dextran 4000 (FD4) solutions yielded comparable regional enhancement ratios of ~10 and 30%, respectively, for each agent with acceptable tissue histology. Mini-tablets of uC11 and FD4 however delivered more FD4 compared to C10-FD-4 mini-tablets in both regions, as reflected by a statistically higher AUC, and with no evidence of membrane perturbation. The unsaturated bond in uC11 therefore confers a reduction in lipophilicity and cytotoxicity compared to C11, and the resulting permeation enhancement is on a par with or superior to that of C10, a key component of formulations in current phase II oral peptide clinical trials.

  15. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases.

    Science.gov (United States)

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin.

  16. Effect of feed flow pattern on the distribution of permeate fluxes in desalination by direct contact membrane distillation

    KAUST Repository

    Soukane, Sofiane

    2017-05-31

    The current study aims to highlight the effect of flow pattern on the variations of permeate fluxes over the membrane surface during desalination in a direct contact membrane distillation (DCMD) flat module. To do so, a three dimensional (3D) Computational Fluid Dynamics (CFD) model with embedded pore scale calculations is implemented to predict flow, heat and mass transfer in the DCMD module. Model validation is carried out in terms of average permeate fluxes with experimental data of seawater desalination using two commercially available PTFE membranes. Average permeate fluxes agree within 6% and less with experimental values without fitting parameters. Simulation results show that the distribution of permeate fluxes and seawater salinity over the membrane surface are strongly dependent on momentum and heat transport and that temperature and concentration polarization follow closely the flow distribution. The analysis reveals a drastic effect of recirculation loops and dead zones on module performance and recommendations to improve MD flat module design are drawn consequently.

  17. Computational investigation of the effects of barrier layers on the permeation of hydrogen through metals

    International Nuclear Information System (INIS)

    Perkins, W.G.

    1975-01-01

    Results of a computational investigation of the permeation behavior of oxide-coated metal membranes are presented. A steady-state permeation model was developed which promises to be useful in evaluation of oxide layers on metals as hydrogen permeation barriers. The pressure and thickness dependence of steady state permeation through oxide-coated metal membranes is described using plots of logarithmic functions. (U.S.)

  18. Effects of water-channel attractions on single-file water permeation through nanochannels

    International Nuclear Information System (INIS)

    Xu, Yousheng; Zheng, Youqu; Tian, Xingling; Lv, Mei; He, Bing; Deng, Maolin; Xiu, Peng; Tu, Yusong

    2016-01-01

    Single-file transportation of water across narrow nanochannels such as carbon nanotubes has attracted much attention in recent years. Such permeation can be greatly affected by the water-channel interactions; despite some progress, this issue has not been fully explored. Herein we use molecular dynamics simulations to investigate the effects of water-channel attractions on occupancy, translational (transportation) and orientational dynamics of water inside narrow single-walled carbon nanotubes (SWNTs). We use SWNTs as the model nanochannels and change the strength of water-nanotube attractions to mimic the changes in the hydrophobicity/polarity of the nanochannel. We investigate the dependence of water occupancy inside SWNTs on the water-channel attraction and identify the corresponding threshold values for drying states, wetting-drying transition states, and stably wetting states. As the strength of water-channel attractions increases, water flow increases rapidly first, and then decreases gradually; the maximal flow occurs in the case where the nanochannel is predominately filled with the 1D water wire but with a small fraction of ‘empty states’, indicating that appropriate empty-filling (drying-wetting) switching can promote water permeation. This maximal flow is unexpected, since in traditional view, the stable and tight hydrogen-bonding network of the water wire is the prerequisite for high permeability of water. The underlying mechanism is discussed from an energetic perspective. In addition, the effect of water-channel attractions on reorientational dynamics of the water wire is studied, and a negative correlation between the flipping frequency of water wire and the water-channel attraction is observed. The underlying mechanism is interpreted in term of the axial total dipole moment of inner water molecules. This work would help to better understand the effects of water-channel attractions on wetting properties of narrow nanochannels, and on single

  19. Enhanced Ungual Permeation of Terbinafine HCl Delivered Through Liposome-Loaded Nail Lacquer Formulation Optimized by QbD Approach.

    Science.gov (United States)

    Shah, Viral H; Jobanputra, Amee

    2018-01-01

    The present investigation focused on developing, optimizing, and evaluating a novel liposome-loaded nail lacquer formulation for increasing the transungual permeation flux of terbinafine HCl for efficient treatment of onychomycosis. A three-factor, three-level, Box-Behnken design was employed for optimizing process and formulation parameters of liposomal formulation. Liposomes were formulated by thin film hydration technique followed by sonication. Drug to lipid ratio, sonication amplitude, and sonication time were screened as independent variables while particle size, PDI, entrapment efficiency, and zeta potential were selected as quality attributes for liposomal formulation. Multiple regression analysis was employed to construct a second-order quadratic polynomial equation and contour plots. Design space (overlay plot) was generated to optimize a liposomal system, with software-suggested levels of independent variables that could be transformed to desired responses. The optimized liposome formulation was characterized and dispersed in nail lacquer which was further evaluated for different parameters. Results depicted that the optimized terbinafine HCl-loaded liposome formulation exhibited particle size of 182 nm, PDI of 0.175, zeta potential of -26.8 mV, and entrapment efficiency of 80%. Transungual permeability flux of terbinafine HCl through liposome-dispersed nail lacquer formulation was observed to be significantly higher in comparison to nail lacquer with a permeation enhancer. The developed formulation was also observed to be as efficient as pure drug dispersion in its antifungal activity. Thus, it was concluded that the developed formulation can serve as an efficient tool for enhancing the permeability of terbinafine HCl across human nail plate thereby improving its therapeutic efficiency.

  20. Effect of skim milk treated with high hydrostatic pressure on permeate flux and fouling during ultrafiltration.

    Science.gov (United States)

    Leu, Mathilde; Marciniak, Alice; Chamberland, Julien; Pouliot, Yves; Bazinet, Laurent; Doyen, Alain

    2017-09-01

    Ultrafiltration (UF) is largely used in the dairy industry to generate milk and whey protein concentrate for standardization of milk or production of dairy ingredients. Recently, it was demonstrated that high hydrostatic pressure (HHP) extended the shelf life of milk and improved rennet coagulation and cheese yield. Pressurization also modified casein micelle size distribution and promoted aggregation of whey proteins. These changes are likely to affect UF performance. Consequently, this study determined the effect of skim milk pressurization (300 and 600 MPa, 5 min) on UF performance in terms of permeate flux decline and fouling. The effect of HHP on milk proteins was first studied and UF was performed in total recycle mode at different transmembrane pressures to determine optimal UF operational parameters and to evaluate the effect of pressurization on critical and limiting fluxes. Ultrafiltration was also performed in concentration mode at a transmembrane pressure of 345 kPa for 130 or 140 min to evaluate the decline of permeate flux and to determine fouling resistances. It was observed that average casein micelle size decreased by 32 and 38%, whereas β-lactoglobulin denaturation reached 30 and 70% at 300 and 600 MPa, respectively. These results were directly related to UF performance because initial permeate fluxes in total recycle mode decreased by 25% at 300 and 600 MPa compared with nonpressurized milk, critical flux, and limiting flux, which were lower during UF of milk treated with HHP. During UF in concentration mode, initial permeate fluxes were 30% lower at 300 and 600 MPa compared with the control, but the total flux decline was higher for nonpressurized milk (62%) compared with pressure-treated milk (30%). Fouling resistances were similar, whatever the treatment, except at 600 MPa where irreversible fouling was higher. Characterization of the fouling layer showed that caseins and β-lactoglobulin were mainly involved in membrane fouling after UF of

  1. Effect of Permeation Enhancers on the Release Behavior and ...

    African Journals Online (AJOL)

    HP

    International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African. Index Medicus ... inhibition of norepinephrine and serotonin uptake. ..... structural organization and increase in their fluidity and partial ...

  2. Whey permeate fermented with kefir grains shows antifungal effect against Fusarium graminearum.

    Science.gov (United States)

    Gamba, Raúl Ricardo; De Antoni, Graciela; Peláez, Angela León

    2016-05-01

    The objective of the work reported here was to study the antifungal capability of cell-free supernatants obtained from whey permeates after fermentation by the kefir grains CIDCA AGK1 against Fusarium graminearum growth and zearalenone (ZEA) production. The assays were performed in order to study the conidial germination inhibition -in liquid media- and the effect on fungal growth rate and the Latency phase -in solid media. We observed that fermented supernatants of pH 3·5 produced the highest percentages of inhibition of conidial germination. The dilution and, particularly, alkalinisation of them led to the gradual loss of antifungal activity. In the fungal inhibition assays on plates we found that only the highest proportion of supernatant within solid medium had significant antifungal activity, which was determined as fungicidal. There was no ZEA biosynthesis in the medium with the highest proportion of supernatant, whereas at lower concentrations, the mycotoxin production was strain-dependent. From the results obtained we concluded that kefir supernatants had antifungal activity on the F. graminearum strains investigated and inhibited mycotoxin production as well, but in a strain-dependent fashion. The present work constitutes the first report of the effect of the products obtained from the kefir-grain fermentation of whey permeates - a readily available by-product of the dairy industry - on F. graminearum germination, growth, and toxin production.

  3. Permeation enhancer dedocyl 6-(dimethylamino)hexanoate increases transdermal and topical delivery of adefovir: Influence of pH, ion-pairing and skin species

    Czech Academy of Sciences Publication Activity Database

    Vávrová, K.; Lorencová, K.; Novotný, J.; Holý, Antonín; Hrabálek, A.

    2008-01-01

    Roč. 70, č. 3 (2008), s. 901-907 ISSN 0939-6411 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : adefovir * acyclic nucleoside phosphonates * antiviral * transdermal drug delivery * permeation enhancer Subject RIV: CC - Organic Chemistry Impact factor: 3.344, year: 2008

  4. Examination of several pre-oxidation procedures and their effect as hydrogen permeation-barrier

    International Nuclear Information System (INIS)

    Heimes, E.

    1986-03-01

    Several pre-oxidation procedures have been tested with respect to their effect as a hydrogen permeation barrier at the high temperature alloys Hastelloy X and Inconel 617. By outside coating of Hastelloy X samples with alumina the determined impeding effects were very low. A surface aluminium enrichment by different procedures were accomplished before selective oxidation. The method of Aluminium-Hot-Dipping generated oxide layers with a four- to fivefold higher impeding effect compared to specimens fabricated by a standard procedure. With the aid of a metallographical follow-up examination it was shown that the higher impeding effects are due to an improved adhesion between the oxide layer and the high temperature material, whereby in the cooling period after manufacturing a smaller amount of oxide cracking is obtainable. (orig./PW) [de

  5. Thermal effect of periodical bakeout on tritium inventory in first wall and permeation to coolant in reactor life

    International Nuclear Information System (INIS)

    Nakahara, Katsuhiko

    1989-01-01

    In view of safety, it is very important to control the tritium inventory in first walls and permeation to the coolant. A time-dependent diffusion and temperature calculation code, TPERM, was developed. Using this code, a numerical study on the long term effects of the bakeout temperature on tritium inventory and tritium permeation to the coolant was made. In this study, an FER type first wall (stainless steel) was considered and a cyclic operation (one cycle includes a plasma burn phase and a bakeout phase) was assumed. The results are as follows: (i) There is almost no difference in the tritium inventory in the first wall between the operation with 150 0 C-bakeout and the continuous burning operation (without bakeout). In both cases there is not tritium permeation to the coolant at 5 years' integrated burn time. The 150 0 C-bakeout is effective to release tritium in the surface (to 0.1 mm depth) region on the plasma side, but it is not effective to decrease the tritium inventory over the reactor life. (ii) To decrease the tritium inventory, a bakeout at a temperature higher than 150 0 C is necessary. But a high temperature bakeout causes earlier tritium permeation to the coolant. (iii) From these results it is suggested that the decrease the tritium inventory over the reactor life by bakeout, some form of protection against tritium permeation or a decontamination device in the cooling (or bakeout) system becomes necessary. (orig.)

  6. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process.

    Science.gov (United States)

    Kataoka, Makoto; Fukahori, Miho; Ikemura, Atsumi; Kubota, Ayaka; Higashino, Haruki; Sakuma, Shinji; Yamashita, Shinji

    2016-04-01

    The aim of the present study was to evaluate the effects of gastric pH on the oral absorption of poorly water-soluble drugs using an in vitro system. A dissolution/permeation system (D/P system) equipped with a Caco-2 cell monolayer was used as the in vitro system to evaluate oral drug absorption, while a small vessel filled with simulated gastric fluid (SGF) was used to reflect the gastric dissolution phase. After applying drugs in their solid forms to SGF, SGF solution containing a 1/100 clinical dose of each drug was mixed with the apical solution of the D/P system, which was changed to fasted state-simulated intestinal fluid. Dissolved and permeated amounts on applied amount of drugs were then monitored for 2h. Similar experiments were performed using the same drugs, but without the gastric phase. Oral absorption with or without the gastric phase was predicted in humans based on the amount of the drug that permeated in the D/P system, assuming that the system without the gastric phase reflected human absorption with an elevated gastric pH. The dissolved amounts of basic drugs with poor water solubility, namely albendazole, dipyridamole, and ketoconazole, in the apical solution and their permeation across a Caco-2 cell monolayer were significantly enhanced when the gastric dissolution process was reflected due to the physicochemical properties of basic drugs. These amounts resulted in the prediction of higher oral absorption with normal gastric pH than with high gastric pH. On the other hand, when diclofenac sodium, the salt form of an acidic drug, was applied to the D/P system with the gastric phase, its dissolved and permeated amounts were significantly lower than those without the gastric phase. However, the oral absorption of diclofenac was predicted to be complete (96-98%) irrespective of gastric pH because the permeated amounts of diclofenac under both conditions were sufficiently high to achieve complete absorption. These estimations of the effects of

  7. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  8. Modell experiments to determine the effect of inhibitive oxide layers on metals against hydrogen permeation

    International Nuclear Information System (INIS)

    Zink, U.

    1983-11-01

    The coupling of H 2 -permeation and corrosion has been examined with the high-temperature alloys Incoloy 800 and Incoloy 802. Permeationsrates as well as corrosionsrates have been measured simultanously under H 2 O-H 2 atmospheres in the test-facility HD-PERM. Test parameters have been temperature and oxidationpotential. Parabolic laws for the growth of the oxide scales have been identified and are considered to be highly important for the efficiency of a permeation barrier. A comparison between the temperature dependencies of corrosionsrates and H 2 -permeationsrates has revealed that permeation and corrosion are coupled only in so far that the permeation barrier is formed by the corrosion reaction. The corrosion data (parabolic rate constant, activation energy) of the oxide scales have given clear indications for the existence of a Cr 2 O 3 -layer, which is considered to be responsible for efficient oxide permeation barriers. (orig.) [de

  9. Long-term stable water vapor permeation barrier properties of SiN/SiCN/SiN nanolaminated multilayers grown by plasma-enhanced chemical vapor deposition at extremely low pressures

    International Nuclear Information System (INIS)

    Choi, Bum Ho; Lee, Jong Ho

    2014-01-01

    We investigated the water vapor permeation barrier properties of 30-nm-thick SiN/SiCN/SiN nanolaminated multilayer structures grown by plasma enhanced chemical vapor deposition at 7 mTorr. The derived water vapor transmission rate was 1.12 × 10 −6 g/(m 2 day) at 85 °C and 85% relative humidity, and this value was maintained up to 15 000 h of aging time. The X-ray diffraction patterns revealed that the nanolaminated film was composed of an amorphous phase. A mixed phase was observed upon performing high resolution transmission electron microscope analysis, which indicated that a thermodynamically stable structure was formed. It was revealed amorphous SiN/SiCN/SiN multilayer structures that are free from intermixed interface defects effectively block water vapor permeation into active layer

  10. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors

  11. Tritium permeation through iron

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1989-01-01

    An experimental method for measuring diffusion coefficients and permeation rates of tritium in metals around room temperature has been established, and their values in iron have been obtained by using the method. Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which a tritiated aqueous solution was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a membrane specimen by cathodic polarization, while at the other side of the specimen the permeating tritium and hydrogen were extracted by potentiostatical ionization. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) were determined from the time lag of tritium and hydrogen permeation. D T =9x10 -10 m 2 /s and D H =4x10 -9 m 2 /s at 286 K for annealed iron specimens. These values of D T and D H were compared with the previous data of the diffusion coefficients of hydrogen and deuterium, and the isotope effect in diffusion was discussed. (orig.)

  12. Surface condition effects on tritium permeation through the first wall of a water-cooled ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.-S. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Xu, Y.-P.; Liu, H.-D. [Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Liu, F.; Li, X.-C.; Zhao, M.-Z.; Qi, Q.; Ding, F. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Luo, G.-N., E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Hefei Center for Physical Science and Technology, P.O. Box 1126, Hefei (China); Hefei Science Center of Chinese Academy of Science, P.O. Box 1126, Hefei (China)

    2016-11-01

    Highlights: • We investigate surface effects on T transport through the first wall. • We solve transport equations with various surface conditions. • The RAFMs walls w/and w/o W exhibit different T permeation behavior. • Diffusion in W has been found to be the rate-limiting step. - Abstract: Plasma-driven permeation of tritium (T) through the first wall of a water-cooled ceramic breeder (WCCB) blanket may raise safety and other issues. In the present work, surface effects on T transport through the first wall of a WCCB blanket have been investigated by theoretical calculation. Two types of wall structures, i.e., reduced activation ferritic/martensitic steels (RAFMs) walls with and without tungsten (W) armor, have been analyzed. Surface recombination is assumed to be the boundary condition for both the plasma-facing side and the coolant side. It has been found that surface conditions at both sides can affect T permeation flux and inventory. For the first wall using W as armor material, T permeation is not sensitive to the plasma-facing surface conditions. Contamination of the surfaces will lead to higher T inventory inside the first wall.

  13. Synergistic effects of surface erosion on tritium inventory and permeation in metallic plasma facing armours

    Science.gov (United States)

    Federici, G.; Holland, D. F.; Matera, R.

    1996-10-01

    In the next generation of DT fuelled tokamaks, i.e., the International Thermonuclear Experimental Reactor (ITER) implantation of energetic DT particles on some portions of the plasma facing components (PFCs) will take place along with significant erosion of the armour surfaces. As a result of the simultaneous removal of material from the front surface, the build-up of tritium inventory and the start of permeation originating in the presence of large densities of neutron-induced traps is expected to be influenced considerably and special provisions could be required to minimise the consequences on the design. This paper reports on the results of a tritium transport modelling study based on a new model which describes the migration of implanted tritium across the bulk of metallic plasma facing materials containing neutron-induced traps which can capture it and includes the synergistic effects of surface erosion. The physical basis of the model is summarised, but emphasis is on the discussion of the results of a comparative study performed for beryllium and tungsten armours for ranges of design and operation conditions similar to those anticipated in the divertor of ITER.

  14. Effect of coagulant bath on the gas permeation properties of cellulose acetate asymmetric membrane

    Science.gov (United States)

    Mohamed, F.; Hasbullah, H.; Jami'an, W. N. R.; Salleh, W. N. H. W.; Ibrahim, N.; Ali, R. R.

    2016-06-01

    Membrane based gas separation process technology has been recognized as one of the most efficient and advanced unit operation for gas separation. One of the problems in membrane gas separation is membrane performance. This paper explores the application of cellulose acetate (CA) membrane for natural gas purification and separation by improving its permeability and selectivity. The main interest in this research is to study the effect of quench medium on the gas separation performance towards its physical characteristics and gas separation performance of CA membrane. Cellulose acetate polymer was dissolved in n- methyl-2-pyrrolidone solvent and casted onto a glass plate using a pneumatically controlled casting system with fixed shear rate and solvent evaporation times. The parameter varied was the non-solvent used as quench medium during membrane post treatment that were methanol and n-hexane. The different quench media as post treatment affected the O2 and N2 gas permeation and O2/N2 selectivity as well as the tensile strength of the flat sheet asymmetric membrane. Combination of methanol and n-hexane as quench media gave the best result than the other steps. This solvent exchange step influenced the morphology by producing thin skin layer and thus gives better gas separation performance than other steps

  15. Synergistic effects of surface erosion on tritium inventory and permeation in metallic plasma facing armours

    International Nuclear Information System (INIS)

    Federici, G.; Holland, D.F.; Matera, R.

    1996-01-01

    In the next generation of DT fuelled tokamaks, i.e., the international thermonuclear experimental reactor (ITER) implantation of energetic DT particles on some portions of the plasma facing components (PFCs) will take place along with significant erosion of the armour surfaces. As a result of the simultaneous removal of material from the front surface, the build-up of tritium inventory and the start of permeation originating in the presence of large densities of neutron-induced traps is expected to be influenced considerably and special provisions could be required to minimise the consequences on the design. This paper reports on the results of a tritium transport modelling study based on a new model which describes the migration of implanted tritium across the bulk of metallic plasma facing materials containing neutron-induced traps which can capture it and includes the synergistic effects of surface erosion. The physical basis of the model is summarised, but emphasis is on the discussion of the results of a comparative study performed for beryllium and tungsten armours for ranges of design and operation conditions similar to those anticipated in the divertor of ITER. (orig.)

  16. Effect of phonophoresis on skin permeation of commercial anti-inflammatory gels: sodium diclofenac and ketoprofen.

    Science.gov (United States)

    Souza, Jaqueline; Meira, Alianise; Volpato, Nadia Maria; Mayorga, Paulo; Gottfried, Carmem

    2013-09-01

    This study evaluated the use of ultrasound in combination with the commercial anti-inflammatory drugs ketoprofen and sodium diclofenac, according to the parameters used in physiotherapy. Ketoprofen and sodium diclofenac were used in the Franz diffusion cell model adapted to an ultrasound transducer in three conditions: no ultrasound, one application of ultrasound and two applications of ultrasound. High-performance liquid chromatography was used to quantify the total amount of drug permeating skin per unit area, as well as flux and latency. The results showed that for ketoprofen, the amount of drug permeating skin and flux increased with two ultrasound applications. Permeation of sodium diclofenac decreased in the presence of ultrasound. Ultrasound parameters and drug properties must be considered in the use of phonophoresis. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. On the Road to Development of an in Vitro Permeation Test (IVPT) Model to Compare Heat Effects on Transdermal Delivery Systems: Exploratory Studies with Nicotine and Fentanyl.

    Science.gov (United States)

    Shin, Soo Hyeon; Ghosh, Priyanka; Newman, Bryan; Hammell, Dana C; Raney, Sam G; Hassan, Hazem E; Stinchcomb, Audra L

    2017-09-01

    At elevated temperatures, the rate of drug release and skin permeation from transdermal delivery systems (TDS) may be higher than at a normal skin temperature. The aim of this study was to compare the effect of heat on the transdermal delivery of two model drugs, nicotine and fentanyl, from matrix-type TDSs with different formulations, using in vitro permeation tests (IVPT). IVPT experiments using pig skin were performed on two nicotine and three fentanyl TDSs. Both continuous and transient heat exposures were investigated by applying heat either for the maximum recommended TDS wear duration or for short duration. Continuous heat exposure for the two nicotine TDSs resulted in different effects, showing a prolonged heat effect for one product but not the other. The J max enhancement ratio due to the continuous heat effect was comparable between the two nicotine TDS, but significantly different (p drug from the skin depot after TDS removal differently for two drugs, with fentanyl exhibiting a longer heat effect. This exploratory work suggests that an IVPT study may be able to discriminate differences in transdermal drug delivery when different TDS are exposed to elevated temperatures. However, the clinical significance of IVPT heat effects studies should be further explored by conducting in vivo clinical studies with similar study designs.

  18. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition.

    Science.gov (United States)

    Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong

    2016-08-01

    Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling. Copyright © 2016. Published by Elsevier B.V.

  19. Evaluation of in vitro percutaneous enhancement effect of papain and pequi oil on diclofenac sodium permeation through human skin Avaliação in vitro da papaína e do óleo de pequi como promotores de permeação cutânea para diclofenaco de sódio em pele humana

    Directory of Open Access Journals (Sweden)

    Patrícia Santos Lopes

    2008-06-01

    Full Text Available The purpose of this research was to determine the potential of papain and pequi oil as penetration enhancers for diclofenac sodium (DS across human skin in vitro. The permeation studies were conducted with vertical diffusion cells. The enhancers were associated or not in gels in different concentrations. In vitro studies reveled that papain 0.2% (w/v presented an elevated enhancer property for diclofenac sodium (J = 0.3369 mg/cm²x h. Pequi oil 10% (w/v generated a reduced flux value (J = 0.1848 mg/cm²x h and a combination of both enhancers presented a medium value of J = 0.2187 mg/cm²x h. Papain was found to be better enhancer than pequi oil.O objetivo desta pesquisa foi determinar in vitro o potencial da papaína e do óleo de pequi como promotores de penetração cutânea para o diclofenaco de sódio (DS através de pele humana. Os estudos de penetração foram conduzidos em células de difusão vertical. Os promotores foram associados ou não em géis em concentrações distintas. A avaliação in vitro revelou que a papaína 0,2% p/p apresentou propriedade promotora maior para o diclofenaco de sódio (J = 0,3369 mg/cm²x h. O óleo de pequi 10,0% p/v promoveu redução do fluxo (J = 0,1848 mg/cm²x h e a combinação de ambos os promotores apresentou valor mediano de fluxo de J = 0,2187 mg/cm²x h. A partir dos resultados, verificou-se que a papaína exerceu ação promotora de penetração cutânea melhor que o óleo de pequi.

  20. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    Directory of Open Access Journals (Sweden)

    Carreño, J. A.

    2003-12-01

    Full Text Available A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in the steel and to quantify the roughness effect. Simultaneously, bipotentiostatic hydrogen permeation test were performed to evaluate the coefficient of mass transfer.

    El presente trabajo modela el efecto de la rugosidad y el perfil de concentración de hidrógeno en un acero, tomando como punto de partida la segunda ley de Fick para explicar el transporte de hidrógeno en el acero. El problema se trata como un problema variacional y su solución espacial se hace numéricamente por el Método de Elementos Finitos, mientras que la temporal por el Método de Diferencias Finitas, siendo estas las herramientas utilizadas para determinar los perfiles de concentración y cuantificar el efecto superficial presentado en este tipo de fenómeno. Además, a partir de la teoría se obtienen ecuaciones algebraicas que determinan el efecto que tiene la preparación superficial y el coeficiente de transferencia de masa con la permeación y concentración de hidrógeno en el acero.

  1. Effect of hydrogen bond formation/replacement on solubility characteristics, gastric permeation and pharmacokinetics of curcumin by application of powder solution technology

    Directory of Open Access Journals (Sweden)

    Vijay Sharma

    2016-10-01

    Full Text Available The present research aimed to improve the dissolution rate and bioavailability of curcumin using the potential of liquisolid technology. Twelve drug-loaded liquisolid systems (LS-1 to LS-12 were prepared using different vehicles (PEG 200, PEG 400 and Tween 80 and curcumin concentrations in vehicle (40%, 50%, 60% and 70%, w/w. The carrier [microcrystalline cellulose (MCC PH102] to coat (Aerosil® ratio was 20 in all formulations. The systems were screened for pre-compression properties before being compressed to liquisolid tablets (LT-1 to LT-12. Post compression tests and in vitro dissolution of LTs were conducted and the results compared with those obtained for a directly compressed tablet (DCT made of curcumin, MCC PH102 and Aerosil®. LTs exhibited higher cumulative drug release (CDR than the DCT and the optimum formulation, LT-9 (made using Tween 80, was studied by powder XRD, DSC, SEM and FTIR. Ex-vivo permeation of curcumin from LT-9 through goat gastrointestinal mucosa was significantly (P<0.05 enhanced and its oral bioavailability was increased 18.6-fold in New Zealand rabbits. In vitro cytotoxicity (IC50 of LT-9 towards NCL 87 cancer cells was 40.2 µmol/L substantiating its anticancer efficacy. Accelerated stability studies revealed insignificant effects of temperature and humidity on LT-9. In summary, solubility enhancement of curcumin in LTs produced significant improvements in its permeation and bioavailability.

  2. Enhancement of Permeation in Transdermal Drug Delivery System by 6μm Wavelength Area Using an MIR-FEL

    Science.gov (United States)

    Uchizono, T.; Ishii, K.; Iwao, Y.; Itou, Y.; Maruo, H.; Hori, M.; Awazu, K.

    2005-03-01

    Ablation of the stratum corneum (SC) by pulsed-laser irradiation is one method of enhancing transdermal drug delivery (TD). For non-invasive laser TD treatment, we have tried to enhance TD without ablation of the SC using an MIR-FEL (6-μm wavelength) (FEL : free electron laser). Lidocaine was used as the drug in this study. The enhancement of TD was measured by HPLC. It was found that the lidocaine TD of the sample irradiated by MIR-FEL was enhanced 10 fold faster than the non-irradiated sample with a flux at 0.5 μg/cm2/h, measured by HPLC. We have demonstrated the effectiveness of TD enhancement by an MIR-FEL (6-μm wavelength) irradiation.

  3. In vitro skin permeation and decontamination of the organophosphorus pesticide paraoxon under various physical conditions--evidence for a wash-in effect.

    Science.gov (United States)

    Misik, Jan; Pavlikova, Ruzena; Josse, Denis; Cabal, Jiri; Kuca, Kamil

    2012-09-01

    Misuse of various chemicals, such as chemical warfare agents, industrial chemicals or pesticides during warfare or terrorists attacks requires adequate protection. Thus, development and evaluation of novel decontamination dispositives and techniques are needed. In this study, in vitro permeation and decontamination of a potentially hazardous compound paraoxon, an active metabolite of organophosphorus pesticide parathion, was investigated. Skin permeation and decontamination experiments were carried out in modified Franz diffusion cells. Pig skin was used as a human skin model. Commercially produced detergent-based washing solutions FloraFree(™) and ArgosTM were used as decontamination means. The experiments were done under "warm", "cold", "dry" and "wet" skin conditions in order to determine an effect of various physical conditions on skin permeation of paraoxon and on a subsequent decontamination process. There was no significant difference in skin permeation of paraoxon under warm, cold and dry conditions, whereas wet conditions provided significantly higher permeation rates. In the selected conditions, decontamination treatments performed 1 h after a skin exposure did not decrease the agent volume that permeated through the skin. An exception were wet skin conditions with non-significant decontamination efficacy 18 and 28% for the FloraFree(™) and Argos(™) treatment, respectively. In contrast, the skin permeation of paraoxon under warm, cold and dry conditions increased up to 60-290% following decontamination compared to non-decontaminated controls. This has previously been described as a skin wash-in effect.

  4. Enhanced paracellular and transcellular paclitaxel permeation by chitosan-vitamin E succinate- N-acetyl- l-cysteine copolymer on Caco-2 cell monolayer

    Science.gov (United States)

    Lian, He; Zhang, Tianhong; Sun, Jin; Pu, Xiaohui; Tang, Yilin; Zhang, Youxi; He, Zhonggui

    2014-04-01

    The aim of this study was to evaluate the underlying mechanism of enhanced oral absorption of paclitaxel (PTX)-loaded chitosan-vitamin E succinate- N-acetyl- l-cysteine (CS-VES-NAC) nanomicelles from the cellular level. In aqueous solution, CS-VES-NAC copolymer self-assembled into the polymeric nanomicelles, with the size ranging from 190 to 240 nm and the drug loading content as high as 20.5 %. Cytotoxicity results showed that the PTX-loaded nanomicelles exhibited the similar effect to PTX solution (PTX-Sol) on Caco-2 cells, but no toxicity observed for blank CS-VES-NAC nanomicelles. The cellular uptake of PTX was significantly increased by CS-VES-NAC nanomicelles, compared with that of PTX-Sol, due to the possible escapement of P-glycoprotein (P-gp) efflux pumps by endocytosis pathway. Confocal laser scanning microscope (CLSM) images also confirmed CS-VES-NAC nanomicelles could be effectively internalized by Caco-2 cells. More importantly, P app value of PTX-loaded CS-VES-NAC nanomicelles was 2.3-fold higher than that of PTX-Sol, and the efflux ratio decreased by more than 10.8-fold for the nanomicelles. As a consequence of opening of tight junctions and P-gp inhibition induced by free CS-VES-NAC copolymer, the P app value of PTX was almost increased up to 19.5-fold. All the results indicate that CS-VES-NAC copolymer hold great promises as nanocarrier for antitumor drug oral delivery by improving paracellular and transcellular permeation.

  5. Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches.

    Science.gov (United States)

    Satheeshababu, B K; Shivakumar, K L

    2013-03-01

    The aim of this study was to synthesis the conjugated chitosan by covalent attachment of thiol moieties to the cationic polymer, mediated by a carbodiimide to improve permeation properties of chitosan. Thioglycolic acid was covalently attached to chitosan by the formation of amide bonds between the primary amino groups of the polymer and the carboxylic acid groups of thioglycolic acid. Hence, these polymers are called as thiomers or thiolated polymers. Conjugation of chitosan was confirmed by Fourier transform-infrared and differential scanning calorimetric analysis. Matrix type transdermal patches of carvedilol were prepared using the different proportions of chitosan and chitosan-thioglycolic acid conjugates (2:0, 1.7:0.3, 1.4:0.6, 1:1, 0.6:1.4 and 0.3:1.7) by solvent casting technique. Prepared matrix type patches were evaluated for their physicochemical characterization followed by in vitro evaluation. Selected formulations were subjected for their ex vivo studies on Wistar albino rat skin and human cadaver skin using the modified Franz diffusion cell. As the proportion of conjugated chitosan increased, the transdermal patches showed increased drug permeation. The mechanism of drug release was found to be nonFickian profiles. The present study concludes that the transdermal patches of carvedilol using conjugated chitosan with different proportions of chitosan were successfully developed to provide improved drug permeation. The transdermal patches can be a good approach to improve drug bioavailability by bypassing the extensive hepatic first-pass metabolism of the drug.

  6. On Diffusion and Permeation

    KAUST Repository

    Peppin, Stephen S. L.

    2009-01-01

    concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements

  7. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  8. Effect of membrane property and operating conditions on phytochemical properties and permeate flux during clarification of pineapple juice

    KAUST Repository

    Laorko, Aporn; Li, Zhenyu; Tongchitpakdee, Sasitorn; Chantachum, Suphitchaya; Youravong, Wirote

    2010-01-01

    The effects of membrane property on the permeate flux, membrane fouling and quality of clarified pineapple juice were studied. Both microfiltration (membrane pore size of 0.1 and 0.2 μm) and ultrafiltration (membrane molecular weight cut-off (MWCO) of 30 and 100 kDa) membranes were employed. Membrane filtration did not have significant effects on the pH, reducing sugar and acidity of clarified juice whereas the suspended solids and microorganism were completely removed. The 0.2 μm membrane gave the highest permeate flux, total vitamin C content, total phenolic content and antioxidant capacity as well as the highest value of irreversible fouling. Based on these results, the membrane with pore size of 0.2 μm was considered to be the most suitable membrane for the clarification of pineapple juice. The optimum operating conditions for the clarification pineapple juice by membrane filtration was a cross-flow velocity of 3.4 ms-1 and transmembrane pressure (TMP) of 0.7 bar. An average flux of about 37 lm-2 h-1 was obtained during the microfiltration of pineapple juice under the optimum conditions using batch concentration mode. © 2010 Elsevier Ltd. All rights reserved.

  9. Effect of membrane property and operating conditions on phytochemical properties and permeate flux during clarification of pineapple juice

    KAUST Repository

    Laorko, Aporn

    2010-10-01

    The effects of membrane property on the permeate flux, membrane fouling and quality of clarified pineapple juice were studied. Both microfiltration (membrane pore size of 0.1 and 0.2 μm) and ultrafiltration (membrane molecular weight cut-off (MWCO) of 30 and 100 kDa) membranes were employed. Membrane filtration did not have significant effects on the pH, reducing sugar and acidity of clarified juice whereas the suspended solids and microorganism were completely removed. The 0.2 μm membrane gave the highest permeate flux, total vitamin C content, total phenolic content and antioxidant capacity as well as the highest value of irreversible fouling. Based on these results, the membrane with pore size of 0.2 μm was considered to be the most suitable membrane for the clarification of pineapple juice. The optimum operating conditions for the clarification pineapple juice by membrane filtration was a cross-flow velocity of 3.4 ms-1 and transmembrane pressure (TMP) of 0.7 bar. An average flux of about 37 lm-2 h-1 was obtained during the microfiltration of pineapple juice under the optimum conditions using batch concentration mode. © 2010 Elsevier Ltd. All rights reserved.

  10. Mineralogical and chemical-physical effects of hydrocarbon permeation in composite liners and cut-off walls. Final report; Mineralogische und chemisch-physikalische Auswirkungen der Permeation von Kohlenwasserstoffen in Kombinationsdichtungen und -dichtwaenden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kalbe, U; Berger, W; Mueller, W; Brune, M; Eckardt, J; Tatzky-Gerth, R; Ache, W; Goebbels, J [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Breu, J; Kerzdoerfer, H [Regensburg Univ. (Germany). Inst. fuer Anorganische Chemie

    2000-05-31

    Composite liner systems (HDPE geomembrane and compacted mineral liner) are used in Germany in landfills and for the lining of contaminated sites according to the technical regulations. It is expected that these lining systems provide a highly efficient and reliable technical barrier for the long-term groundwater protection. To support these expectations and assess the performance of the liner system even under extreme conditions, various composite liner systems were exposed to a mixture of 9 liquid hydrocarbons and their permeation behaviour was studied in permeation cells over 12 years. The cells were now dismantled and changes in the liner materials were carefully measured and controlled. The following issues were pursued in the research project: - effect of long-term hydrocarbon permeation and immersion on the properties of the geomembrane, - determination of the vertical distribution of organic contaminants in the mineral liner, - changes in the mineralogical, micromorphological and soil mechanical properties of the mineral liner brought about by the contaminant mixture, - investigation of the influence of microbial activity on the mineral layer, - modelling of the pollutant transport in the composite liner system. Neither geomembrane nor most of the tested mineral liners exhibited significant changes. Hydrocarbon permeation was proved to have been substantially suppressed by the composite liner. (orig.) [German] Zur Sicherung von Deponien und Altlasten mit dem Ziel eines langfristig wirksamen Grundwasserschutzes werden seit Mitte der 80er Jahre Kombinationsdichtungen (Verbund aus Kunststoffdichtungsbahn und mineralischer Dichtschichten) eingesetzt. Um deren Langzeitbestaendigkeit auch unter extremen Bedingungen bewerten zu koennen, wurden Permeationsmesszellen, welche die Verhaeltnisse in der Deponie nachstellen und ueber einen Zeitraum von 12 Jahren mit einem Mehrkomponentengemisch konzentrierter organischer Verbindungen beaufschlagt worden waren, zerlegt und

  11. Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes

    KAUST Repository

    Louie, Jennifer Sarah

    2011-02-01

    The application of polymer surface coatings to improve the fouling resistance of reverse osmosis membranes tends to increase flow resistance across the membrane. This paper presents a systematic analysis on how membrane properties and performance are impacted by the coating process steps, and investigates how such effects could contribute to lower water flux. On one hand, simply pre-soaking dry aromatic polyamide composite membranes in aliphatic alcohols results in a significant increase in water flux, which is attributed to wetting of pores in the selective polyamide layer and to changes in the polymer structure. This flux increase was not readily reversible, based on a 300-h water permeation test. Conversely, drying a wetted membrane led to a decrease in water flux, which we hypothesize is caused by increased interchain hydrogen-bonding in the selective layer. This drop in water flux was not permanent; higher flux was observed if the same wetted/dried membrane was then re-soaked in ethanol prior to the water permeation experiment. An ethanol pre-soaking step also increased water flux of a PEBAX-coated membrane by nearly 70%. In contrast to the reduction in water flux caused by the specific treatment sequence of ethanol-swelling followed by drying, this same sequence actually increased gas transport. The eight- to ten-fold increase in Knudsen diffusion-based gas permeance after this pre-treatment was attributed to an increase in the number or size of membrane defects. © 2010 Elsevier B.V.

  12. Dissolution and permeation characteristics of artemether tablets ...

    African Journals Online (AJOL)

    characterized by delayed drug release but enhanced permeation of the released drug. Keywords: ... and prosopis gum as binders and to consider the relationship between ..... higher tensile strength and higher brittle fracture index compared ...

  13. Practical experience of backwashing with SWRO permeate for UF fouling control

    KAUST Repository

    Li, Sheng; Heijman, Sebastiaan G J; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2013-01-01

    Effectiveness of seawater reverse osmosis (SWRO) permeate backwash on fouling control of seawater ultrafiltration was investigated at a pilot scale. A standard membrane module was used in this pilot to represent full-scale desalination plants. Results of the pilot show a good reproducibility. When the UF permeate was used for backwash, the frequency of chemically enhanced backwash (CEB) was around once per day. However, results of the pilot show that SWRO permeate backwashing could significantly reduce the CEB frequency. © 2013 Desalination Publications.

  14. Effect of multiple film on the tritium permeation property in 316L stainless steel

    International Nuclear Information System (INIS)

    Yao Zhenyu; Hao Jiakun; Zhou Changshan; Shan Changqi

    2000-01-01

    The films of TiN + TiC + TiN and TiN + TiC + SiO 2 were deposited on the surface of 316L stainless steel by physical vapor deposition technology. The characteristics of films are tested by SEM technology, it shows that the films are compact, thermal shock-resistant, oxidation-resistant and have good compatibility with bulk. the SIMS and IR analysis results show that the tritium permeation barrier is formed when TiC and SiO 2 films are annealed in hydrogen above 300 degree C. The tritium permeability in 316L with film is measured at various temperature, the results show that the tritium permeability in 316L with TiN + TiC + SiO 2 film is 4-6 orders of magnitude lower, and that in 316L with TiN + TiC + TiN film is 4-5 orders of magnitude lower than that in 316L with Pd film at about 200-600 degree C. These films may be used as the surface coating of the first wall, tritium blanket and heat exchanger in fusion reactor

  15. Water permeation through anion exchange membranes

    Science.gov (United States)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  16. Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel.

    Science.gov (United States)

    Cheng, Mary Hongying; Coalson, Rob D; Tang, Pei

    2010-11-24

    Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work, we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity, and halothane modulation mechanisms in GLIC, based on recently resolved X-ray crystal structures of the open-channel GLIC. MD calculations of the potential of mean force (PMF) for a Na(+) revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na(+) was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl(-) was found to be 3-4 times higher than that for Na(+). Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (P(Cl)/P(Na)) were comparable to experimental data. On the basis of these calculations, we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl(-) ions. The effect of halothane on the Na(+) PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles.

  17. Physical Aging, Plasticization and Their Effects on Gas Permeation in “Rigid” Polymers of Intrinsic Microporosity

    KAUST Repository

    Swaidan, Raja; Ghanem, Bader; Litwiller, Eric; Pinnau, Ingo

    2015-01-01

    Long-term physical aging and plasticization, two mobility-based phenomena that are counterintuitive in the context of “rigid” polymers of intrinsic microporosity (PIMs), were evaluated using pure- and mixed-gas permeation data for representative

  18. Effect of hygroscopic materials on water vapor permeation and dehumidification performance of poly(vinyl alcohol) membranes

    KAUST Repository

    Bui, T. D.; Wong, Y.; Thu, K.; Oh, S. J.; Kum Ja, M.; Ng, Kim Choon; Raisul, I.; Chua, K. J.

    2017-01-01

    increased with both added hygroscopic material and absorbed water. Water permeation energy varied from positive to negative with higher hygroscopic content. This observation is attributed to a lower diffusion energy and a relatively constant sorption energy

  19. [Adsorption characteristics of proteins on membrane surface and effect of protein solution environment on permeation behavior of berberine].

    Science.gov (United States)

    Li, Yi-Qun; Xu, Li; Zhu, Hua-Xu; Tang, Zhi-Shu; Li, Bo; Pan, Yong-Lan; Yao, Wei-Wei; Fu, Ting-Ming; Guo, Li-Wei

    2017-10-01

    In order to explore the adsorption characteristics of proteins on the membrane surface and the effect of protein solution environment on the permeation behavior of berberine, berberine and proteins were used as the research object to prepare simulated solution. Low field NMR, static adsorption experiment and membrane separation experiment were used to study the interaction between the proteins and ceramic membrane or between the proteins and berberine. The static adsorption capacity of proteins, membrane relative flux, rejection rate of proteins, transmittance rate of berberine and the adsorption rate of proteins and berberine were used as the evaluation index. Meanwhile, the membrane resistance distribution, the particle size distribution and the scanning electron microscope (SEM) were determined to investigate the adsorption characteristics of proteins on ceramic membrane and the effect on membrane separation process of berberine. The results showed that the ceramic membrane could adsorb the proteins and the adsorption model was consistent with Langmuir adsorption model. In simulating the membrane separation process, proteins were the main factor to cause membrane fouling. However, when the concentration of proteins was 1 g•L⁻¹, the proteins had no significant effect on membrane separation process of berberine. Copyright© by the Chinese Pharmaceutical Association.

  20. Permeation through graphene ripples

    Science.gov (United States)

    Liang, Tao; He, Guangyu; Wu, Xu; Ren, Jindong; Guo, Hongxuan; Kong, Yuhan; Iwai, Hideo; Fujita, Daisuke; Gao, Hongjun; Guo, Haiming; Liu, Yingchun; Xu, Mingsheng

    2017-06-01

    Real graphene sheets show limited anti-permeation performance deviating from the ideally flat honeycomb carbon lattice that is impermeable to gases. Ripples in graphene are prevalent and they could significantly influence carrier transport. However, little attention has been paid to the role of ripples in the permeation properties of graphene. Here, we report that gases can permeate through graphene ripples at room temperature. The feasibility of gas permeation through graphene ripples is determined by detecting the initial oxidation sites of Cu surface covered with isolated graphene domain. Nudged elastic band (NEB) calculations demonstrate that the oxygen atom permeation occurs via the formation of C-O-C bond, in which process the energy barrier through the rippled graphene lattice is much smaller than that through a flat graphene lattice, rendering permeation through ripples more favorable. Combining with the recent advances in atoms intercalation between graphene and metal substrate for transfer-free and electrically insulated graphene, this discovery provides new perspectives regarding graphene’s limited anti-permeation performance and evokes for rational design of graphene-based encapsulation for barrier and selective gas separation applications through ripple engineering.

  1. Thiolated quaternary ammonium-chitosan conjugates for enhanced precorneal retention, transcorneal permeation and intraocular absorption of dexamethasone.

    Science.gov (United States)

    Zambito, Ylenia; Di Colo, Giacomo

    2010-06-01

    Previously, a quaternary ammonium (N(+))-chitosan (Ch) conjugate (N(+)(60)-Ch) characterized by short pendant chains, made of 1.7+/-0.1 adjacent diethyl-dimethylene-ammonium groups, substituted onto the primary amino group of the chitosan repeating units (degree of substitution, 59.2+/-4.5%) was used to synthesize a multifunctional non-cytotoxic thiomer (N(+)(60)-Ch-SH(5)), carrying 4.5+/-0.7% thiol-bearing 3-mercaptopropionamide besides quaternary ammonium groups. The present work was aimed at evaluating the potential of N(+)(60)-Ch-SH(5) and N(+)(60)-Ch as bioactive excipients for dexamethasone (DMS) eyedrops. The DMS permeability across excised rabbit cornea was enhanced over the control value by the thiomer and the parent polymer to about the same extent (3.8 vs. 4.1 times). The mean precorneal retention time and AUC in the aqueous of DMS instilled in rabbit eyes via eyedrops were enhanced by the thiomer (MRT=77.96+/-3.57 min, AUC=33.19+/-6.96 microg ml(-1) min) more than the parent polymer (MRT=65.74+/-4.91 min, AUC=21.48+/-3.81 microg ml(-1) min) over the control (MRT=5.07+/-0.25 min, AUC=6.25+/-0.65 microg ml(-1) min). The quaternary ammonium ions were responsible for both permeabilization of corneal epithelium and polymer adhesion to precorneal mucus, while the thiols increased the latter. This synergistic action is the basis of the higher thiomer bioactivity in vivo. A good ocular tolerability of the chitosan derivatives resulted from in vivo experiments. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Cell Permeating Nano-Complexes of Amphiphilic Polyelectrolytes Enhance Solubility, Stability, and Anti-Cancer Efficacy of Curcumin.

    Science.gov (United States)

    Fatima, Munazza T; Chanchal, Abhishek; Yavvari, Prabhu S; Bhagat, Somnath D; Gujrati, Mansi; Mishra, Ram K; Srivastava, Aasheesh

    2016-07-11

    Many hydrophobic drugs encounter severe bioavailability issues owing to their low aqueous solubility and limited cellular uptake. We have designed a series of amphiphilic polyaspartamide polyelectrolytes (PEs) that solubilize such hydrophobic drugs in aqueous medium and enhance their cellular uptake. These PEs were synthesized through controlled (∼20 mol %) derivatization of polysuccinimide (PSI) precursor polymer with hydrophobic amines (of varying alkyl chain lengths, viz. hexyl, octyl, dodecyl, and oleyl), while the remaining succinimide residues of PSI were opened using a protonable and hydrophilic amine, 2-(2-amino-ethyl amino) ethanol (AE). Curcumin (Cur) was employed as a representative hydrophobic drug to explore the drug-delivery potential of the resulting PEs. Unprecedented enhancement in the aqueous solubility of Cur was achieved by employing these PEs through a rather simple protocol. In the case of PEs containing oleyl/dodecyl residues, up to >65000× increment in the solubility of Cur in aqueous medium could be achieved without requiring any organic solvent at all. The resulting suspensions were physically and chemically stable for at least 2 weeks. Stable nanosized polyelectrolyte complexes (PECs) with average hydrodynamic diameters (DH) of 150-170 nm (without Cur) and 220-270 nm (after Cur loading) were obtained by using submolar sodium polyaspartate (SPA) counter polyelectrolyte. The zeta potential of these PECs ranged from +36 to +43 mV. The PEC-formation significantly improved the cytocompatibility of the PEs while affording reconstitutable nanoformulations having up to 40 wt % drug-loading. The Cur-loaded PECs were readily internalized by mammalian cells (HEK-293T, MDA-MB-231, and U2OS), majorly through clathrin-mediated endocytosis (CME). Cellular uptake of Cur was directly correlated with the length of the alkyl chain present in the PECs. Further, the PECs significantly improved nuclear transport of Cur in cancer cells, resulting in their

  3. Encapsulation of the UV filters ethylhexyl methoxycinnamate and butyl methoxydibenzoylmethane in lipid microparticles: effect on in vivo human skin permeation.

    Science.gov (United States)

    Scalia, S; Mezzena, M; Ramaccini, D

    2011-01-01

    Lipid microparticles loaded with the UVB filter ethylhexyl methoxycinnamate (EHMC) and the UVA filter butyl methoxydibenzoylmethane (BMDBM) were evaluated for their effect on the sunscreen agent's percutaneous penetration. Microparticles loaded with EHMC or BMDBM were prepared by the melt emulsification technique using stearic acid or glyceryl behenate as lipidic material, respectively, and hydrogenate phosphatidylcholine as the surfactant. Nonencapsulated BMDBM and EHMC in conjunction with blank microparticles or equivalent amounts of the 2 UV filters loaded in the lipid microparticles were introduced into oil-in-water emulsions and applied to human volunteers. Skin penetration was investigated in vivo by the tape-stripping technique. For the cream with the nonencapsulated sunscreen agents, the percentages of the applied dose diffused into the stratum corneum were 32.4 ± 4.1% and 30.3 ± 3.3% for EHMC and BMDBM, respectively. A statistically significant reduction in the in vivo skin penetration to 25.3 ± 5.5% for EHMC and 22.7 ± 5.4% for BMDBM was achieved by the cream containing the microencapsulated UV filters. The inhibiting effect on permeation attained by the lipid microparticles was more marked (45-56.3% reduction) in the deeper stratum corneum layers. The reduced percutaneous penetration of BMDBM and EHMC achieved by the lipid microparticles should preserve the UV filter efficacy and limit potential toxicological risks. Copyright © 2011 S. Karger AG, Basel.

  4. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability.

    Science.gov (United States)

    Jain, Sanyog; Reddy, Venkata Appa; Arora, Sumit; Patel, Kamlesh

    2016-10-01

    Candesartan cilexetil (CC), an ester prodrug of candesartan, is BCS class II drug with extremely low aqueous solubility limiting its oral bioavailability. The present research aimed to develop a nanocrystalline formulation of CC with improved saturation solubility in gastrointestinal fluids and thereby, exhibiting enhanced oral bioavailability. CC nanocrystals were prepared using a low energy antisolvent precipitation methodology. A combination of hydroxypropyl methylcellulose (HPMC) and Pluronic® F 127 (50:50 w/w) was found to be optimum for the preparation of CC nanocrystals. The particle size, polydispersity index (PDI), and zeta potential of optimized formulation was found to be 159 ± 8.1 nm, 0.177 ± 0.043, and -23.7 ± 1.02 mV, respectively. Optimized formulation was found to possess irregular, plate-like morphology as evaluated by scanning electron microscopy and crystalline as evaluated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). A significant increase in saturation solubility and dissolution rate of the optimized nanosuspension was observed at all the tested pH conditions. Optimized CC nanocrystals exhibited a storage stability of more than 3 months when stored under cold and room temperature conditions. In vitro Caco-2 permeability further revealed that CC nanocrystals exhibited nearly 4-fold increase in permeation rate compared to the free CC. In vivo oral bioavailability studies of optimized CC nanocrystals in murine model revealed 3.8-fold increase in the oral bioavailability and twice the C max as compared with the free CC when administered orally. In conclusion, this study has established a crystalline nanosuspension formulation of CC with improved oral bioavailability in murine model. Graphical Abstract Antisolvent precipitation methodology for the preparation of Candesartan Cilexetil nanocrystals for enhanced solubility and oral bioavailability.

  5. Modeling and experiments on tritium permeation in fusion reactor blankets

    Science.gov (United States)

    Holland, D. F.; Longhurst, G. R.

    The determination of tritium loss from helium-cooled fusion breeding blankets are discussed. The issues are: (1) applicability of present models to permeation at low tritium pressures; (2) effectiveness of oxide layers in reducing permeation; (3) effectiveness of hydrogen addition as a means to lower tritium permeation; and (4) effectiveness of conversion to tritiated water and subsequent trapping to reduce permeation. Theoretical models applicable to these issues are discussed, and results of experiments in two areas are presented; permeation of mixtures of hydrogen isotopes and conversion to tritiated water.

  6. Modeling and experiments on tritium permeation in fusion reactor blankets

    International Nuclear Information System (INIS)

    Holland, D.F.; Longhurst, G.R.

    1985-01-01

    Issues are discussed that are critical in determining tritium loss from helium-cooled fusion breeding blankets. These issues are: (a) applicability of present models to permeation at low tritium pressures, (b) effectiveness of oxide layers in reducing permeation, (c) effectiveness of hydrogen addition as a means to lower tritium permeation, and (d) effectiveness of conversion to tritiated water and subsequent trapping as a means to reduce permeation. The paper discusses theoretical models applicable to these issues, and presents results of experiments in two areas: permeation of mixtures of hydrogen isotopes and conversion to tritiated water

  7. Physical Aging, Plasticization and Their Effects on Gas Permeation in “Rigid” Polymers of Intrinsic Microporosity

    KAUST Repository

    Swaidan, Raja

    2015-08-29

    Long-term physical aging and plasticization, two mobility-based phenomena that are counterintuitive in the context of “rigid” polymers of intrinsic microporosity (PIMs), were evaluated using pure- and mixed-gas permeation data for representative ladder and semiladder PIMs. PIMs between 1 and 4 years old retained from 10- to 1000-fold higher H2 and O2 permeabilities than commercial membrane materials with similar or higher selectivities. A triptycene-based ladder polymer (TPIM-1) exhibited very large selectivity gains outweighing permeability losses after 780 days, resulting in unprecedented performance for O2/N2 (P(O2) = 61 Barrer, α(O2/N2) = 8.6) and H2/N2 (P(H2) = 1105 Barrer, α(H2/N2) = 156) separations. Interestingly, TPIM-1 aged more and faster than its more flexible counterpart, PIM-1, which exhibited P(O2) = 317 Barrer and α(O2/N2) = 5.0 at 1380 days. Additionally, the more “rigid” TPIM-1 plasticized more significantly than PIM-1 (i.e., TPIM-1 endured ∼93% increases in mixed-gas CH4 permeability over pure-gas values compared to ∼60% for PIM-1). A flexible 9,10-bridgehead (i.e., TPIM-2) mitigated the enhancements induced by physical aging but reduced plasticization. Importantly, intra-chain rigidity alone, without consideration of chain architecture and ultra-microporosity, is insufficient for designing aging- and plasticization-resistant gas separation membranes with high permeability and high selectivity

  8. Vehicle and enhancer effects on human skin penetration of aminophylline from cream formulations: evaluation in vivo.

    Science.gov (United States)

    Wang, Lai-Hao; Wang, Chia-Chen; Kuo, Su-Ching

    2007-01-01

    The effects of four essential oils (rosemary, ylang, lilacin, and peppermint oils), and three plant oils (jojoba oil, corn germ oil, and olive oil) on the permeation of aminophylline were studied using human skin. The permeation effects of these oils were compared with those of three chemical penetration enhancers. Although all oils enhanced the permeation of aminophylline, their effects were less than that of ethanol. Jojoba oil was found to be the most active, causing about a 32% peak height decrease of N-H bending absorbances in comparison with the control, while peppermint, lilacin, rosemary, and ylang oils caused 28%, 24%, 18%, and 12% peak height decreases, respectively. Microemulsions containing 10% jojoba oil and 30% corn germ oil were found to be superior vehicles for the percutaneous absorption of aminophylline. Comparision with results obtained from high-performance liquid chromatography shows good agreement.

  9. Photo-electrochemical Investigation of Radiation-Enhanced Galvanic Coupling and Hydrogen Permeation in TPBAR-related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-02

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivating effect of metal oxides.

  10. Photo-electrochemical Investigation of Radiation-Enhanced Galvanic Coupling and Hydrogen Permeation in TPBAR-related Materials

    International Nuclear Information System (INIS)

    Larsen, G.

    2017-01-01

    Research conducted in FY17 used photo-electrochemical methods to investigate the potential for radiationenhanced galvanic coupling in tritium-producing burnable absorber rod (TPBAR) materials. Specifically, a laboratory electrochemical cell was coupled with UV light in order to perform electrochemical opencircuit voltage and galvanic current measurements, techniques that have been used successfully in previous studies to replicate galvanic processes in reactor settings. UV irradiation can mimic reactor-like behavior because, similar to both directly and indirectly ionizing radiation, UV photons with energy greater than the band gap of the material will generate free charge carriers (electrons and holes) and can substantially alter the passivating effect of metal oxides.

  11. Diclofenac Salts, VIII. Effect of the Counterions on the Permeation through Porcine Membrane from Aqueous Saturated Solutions

    Science.gov (United States)

    Fini, Adamo; Bassini, Glenda; Monastero, Annamaria; Cavallari, Cristina

    2012-01-01

    The following bases: monoethylamine (EtA), diethylamine (DEtA), triethylamine (TEtA), monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), pyrrolidine (Py), piperidine (Pp), morpholine (M), piperazine (Pz) and their N-2-hydroxyethyl (HE) analogs were employed to prepare 14 diclofenac salts. The salts were re-crystallized from water in order to obtain forms that are stable in the presence of water. Vertical Franz-type cells with a diffusional surface area of 9.62 cm2 were used to study the permeation of these diclofenac salts from their saturated solutions through an internal pig ear membrane. The receptor compartments of the cells contained 100 mL of phosphate buffer (pH 7.4); a saturated solution (5 mL) of each salt was placed in the donor compartment, thermostated at 37 °C. Aliquots were withdrawn at predetermined time intervals over 8 h and then immediately analyzed by HPLC. Fluxes were determined by plotting the permeated amount, normalized for the membrane surface area versus time. Permeation coefficients were obtained dividing the flux values J by the concentration of the releasing phase—that is, water solubility of each salt. Experimental results show that fluxes could be measured when diclofenac salts with aliphatic amines are released from a saturated aqueous solution. Different chemical species (acid, anion, ion pairs) contribute to permeation of the anti-inflammatory agent even though ion-pairs could be hypothesized to operate to a greater extent. Permeation coefficients were found higher when the counterion contains a ring; while hydroxy groups alone do not appear to play an important role, the ring could sustain permeation, disrupting the organized domains of the membrane. PMID:24300300

  12. Penetration Enhancing Effect of Polysorbate 20 and 80 on the In ...

    African Journals Online (AJOL)

    Purpose: To investigate the penetration enhancing effect of two polysorbates - polyoxyethylene 20 (POE-20) and polyoxyethylene 80 (POE-80) - on the in vitro percutaneous absorption of ascorbic acid (AA). Methods: For the permeation experiments, Franz diffusion cell covered with aluminum foil providing an effective ...

  13. Permeation of hydrogen through metal membranes

    International Nuclear Information System (INIS)

    Wienhold, P.; Rota, E.; Waelbroeck, F.; Winter, J.; Banno, Tatsuya.

    1986-08-01

    Experiments show that the permeant flux of hydrogen through a metal membrane at low driving pressures ( r is introduced into the model as a new material constant and the rate equations are given. After the description of the wall pump effect, a variety of different limiting cases are discussed for a symmetrical permeation membrane. This is modified to the asymmetric case and to the influence of particle implantation. The permeation number W turns out to be a dimensionless quantity which characterizes the permeation range and predicts the permeant flux in steady state. (orig.)

  14. Hydrogen permeation preventive structural materials

    International Nuclear Information System (INIS)

    Fukushima, Kimichika; Nakahigashi, Shigeo; Imura, Masashi; Terasawa, Michitaka; Ebisawa, Katsuyuki.

    1986-01-01

    Purpose: To provide highly practical wall materials for use in thermonuclear reactors capable of effectively preventing the permeation of hydrogen isotopes such as tritium thereby preventing the contamination of coolants. Constitution: Helium gas is injected into or at the surface of base materials comprising stainless steel plates to form a helium gas region. Alternatively, boron, nitrogen or the compound thereof having a greater helium forming nuclear reaction cross section than that of the base materials is mixed or injected into the base material to form the helium gas region through (n,α) reaction under neutron irradiation. Since the helium gas region constitutes a diffusion barrier for the tritium as the hydrogen isotope, the permeation amount of tritium is significantly suppressed. Helium gas bubbles or lattice defects are formed in the helium gas region under the neutron irradiation, by which the hydrogen isotope capturing effect can also be effected. In this way, permeation of the hydrogen isotope, contamination of the coolants, etc. can be prevented to provide great practical effectives. (Kawakami, Y.)

  15. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    OpenAIRE

    Carreño, J. A.; Uribe, I.; Carrillo, J. C.

    2003-01-01

    A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in t...

  16. On Diffusion and Permeation

    KAUST Repository

    Peppin, Stephen S. L.

    2009-01-01

    Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.

  17. Effect of permeability enhancers on paracellular permeability of acyclovir.

    Science.gov (United States)

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma

    2016-06-01

    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  18. Effect of hygroscopic materials on water vapor permeation and dehumidification performance of poly(vinyl alcohol) membranes

    KAUST Repository

    Bui, T. D.

    2017-01-16

    In this study, two hygroscopic materials, inorganic lithium chloride (LiCl) and organic triethylene glycol (TEG) were separately added to poly(vinyl alcohol) (PVA) to form blend membranes for air dehumidification. Water vapor permeation, dehumidification performance and long-term durability of the membranes were studied systematically. Membrane hydrophilicity and water vapor sorbability increased significantly with higher the hygroscopic material contents. Water vapor permeance of the membranes increased with both added hygroscopic material and absorbed water. Water permeation energy varied from positive to negative with higher hygroscopic content. This observation is attributed to a lower diffusion energy and a relatively constant sorption energy when hygroscopic content increases. Comparatively, PVA/TEG has less corrosive problems and is more environmentally friendly than PVA/LiCl. A membrane with PVA/TEG is observed to be highly durable and is suitable for dehumidification applications.

  19. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study.

    Science.gov (United States)

    Zheng, Yin; Ouyang, Wu-Qing; Wei, Yun-Peng; Syed, Shahid Faraz; Hao, Chao-Shuang; Wang, Bo-Zhen; Shang, Yan-Hong

    Nanoemulsions (NEs) are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1) to determine the stability and skin irritability of NE gels (NGs) containing 1%, 2%, and 3% (w/w) Carbopol ® 934 (CP934) (termed NG1, NG2, and NG3, respectively); 2) to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3) to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 μg/cm 2 ) > NG1 (213 μg/cm 2 ) > NG2 (123 μg/cm 2 ) > NG3 (74.3 μg/cm 2 ). The flux rates of citral decreased in the order NE (1,026 μg/cm 2 ) > NG1 (1,021 μg/cm 2 ) > NG2 (541 μg/cm 2 ) > NG3 (353 μg/cm 2 ). The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE ( P drug delivery routes from skin appendages to intercellular paths. Histological images suggested that perturbations to the skin structure, specifically the size of the epidermal intercellular spaces and the separation distance of dermal collagen bundles, could be significantly minimized by increasing the proportion of CP934. These results suggest that adjustments of the CP934 proportions can be used to modulate the skin permeation profiles of NGs for specific therapeutic purposes.

  20. The effect of beta-turn structure on the permeation of peptides across monolayers of bovine brain microvessel endothelial cells

    DEFF Research Database (Denmark)

    Sørensen, M; Steenberg, B; Knipp, G

    1997-01-01

    than the Ile-containing peptides as estimated by the log of their 1-octanol:HBSS partition coefficients (log Po/w). However, the three hydrophilic peptide pairs (Ac-TyrProXaaAspVal-NH2, Ac-TyrProXaaAsnVal-NH2, and Ac-TyrProXaaIleVal-NH2; Xaa = Gly, Ile) were found to permeate BBMEC monolayers...

  1. Combined use of bile acids and aminoacids to improve permeation properties of acyclovir.

    Science.gov (United States)

    Cirri, M; Maestrelli, F; Mennini, N; Mura, P

    2015-07-25

    The aim of this work was to develop a topical formulation with improved permeation properties of acyclovir. Ursodeoxycholic (UDC) and dehydrocholic (DHC) acids were tested as potential enhancers, alone or in combination with different aminoacids. Equimolar binary and ternary systems of acyclovir with cholic acids and basic, hydrophilic or hydrophobic aminoacids were prepared by co-grinding in a high vibrational micromill. Differential scanning calorimetry (DSC) was used to characterize the solid state of these systems, while their permeation properties were evaluated in vitro through a lipophilic artificial membrane. UDC was more than 2 times more effective than DHC in improving drug AUC and permeation rate. As for the ternary systems drug-UDC-aminoacid, only the combined use of l-lysine with UDC acid produced an evident synergistic effect in enhancing drug permeation properties, enabling an almost 3 and 8 times AUC increase compared to the binary UDC system or the pure drug, respectively. The best systems were selected for the development of topical cream formulations, adequately characterized and tested for in vitro drug permeation properties and stability on storage. The better performance revealed by acyclovir-UDC-l-lysine was mainly attributed to the formation of a more permeable activated system induced by the multicomponent co-grinding process. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A novel lipid nanoemulsion system for improved permeation of granisetron.

    Science.gov (United States)

    Doh, Hea-Jeong; Jung, Yunjin; Balakrishnan, Prabagar; Cho, Hyun-Jong; Kim, Dae-Duk

    2013-01-01

    A new lipid nanoemulsion (LNE) system containing granisetron (GRN) was developed and its in vitro permeation-enhancing effect was evaluated using Caco-2 cell monolayers. Particle size, polydispersity index (PI) and stability of the prepared GRN-loaded LNE systems were also characterized. The mean diameters of prepared LNEs were around 50 nm with PI<0.2. Developed LNEs were stable at 4°C in the dark place over a period of 12 weeks. In vitro drug dissolution and cytotoxicity studies of GRN-loaded LNEs were performed. GRN-loaded LNEs exhibited significantly higher drug dissolution than GRN suspension at pH 6.8 for 2h (P<0.05). In vitro permeation study in Caco-2 cell monolayers showed that the LNEs significantly enhanced the drug permeation compared to GRN powder. The in vivo toxicity study in the rat jejunum revealed that the prepared GRN-loaded LNE was as safe as the commercial formulation (Kytril). These results suggest that LNE could be used as a potential oral liquid formulation of GRN for anti-emetic treatment on the post-operative and chemotherapeutic patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: in vitro evaluation of drug permeation by infrared spectroscopy.

    Science.gov (United States)

    Mura, Simona; Manconi, Maria; Fadda, Anna Maria; Sala, Maria Chiara; Perricci, Jacopo; Pini, Elena; Sinico, Chiara

    2013-01-01

    Recently, we carried out a research on new liposomal systems prepared by using in their composition a few penetration enhancers which differ for chemical structure and physicochemical properties. The penetration enhancer-containing vesicles (PEVs) were prepared by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy) ethanol (Transcutol(®)), capryl-caproyl macrogol 8-glyceride (Labrasol(®)), and cineole.To study the influence of the PEVs on (trans)dermal delivery of minoxidil, in vitro diffusion experiments were performed through new born pig skin and the results were compared with that obtained applying the vesicular system without enhancer (control) after pretreatment of the skin with the various enhancers. In this study, Fourier transform infrared spectroscopy (FTIR), attenuated total reflectance FTIR (ATR-FTIR) and FTIR imaging were used to evaluate the effective penetration of minoxidil in the skin layers and to discover the influence of the enhancer on the drug topical delivery. These analytical studies allowed us to characterize the drug formulations and to evaluate the vesicle distribution into the skin. Recorded spectra confirmed that the vesicle formulations with penetration enhancers promoted drug deposition into the skin.

  4. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study

    Directory of Open Access Journals (Sweden)

    Zheng Y

    2016-11-01

    Full Text Available Yin Zheng,1 Wu-Qing Ouyang,1 Yun-Peng Wei,1 Shahid Faraz Syed,2,3 Chao-Shuang Hao,1 Bo-Zhen Wang,4 Yan-Hong Shang1,5 1Department of Basic Veterinary Sciences, College of Veterinary Medicine, 2Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi; 3Faculty of Veterinary and Animal Sciences, Lasbella University of Agriculture Water and Marine Sciences, Uthal Baluchistan, Pakistan; 4College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 5College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China Abstract: Nanoemulsions (NEs are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1 to determine the stability and skin irritability of NE gels (NGs containing 1%, 2%, and 3% (w/w Carbopol® 934 (CP934 (termed NG1, NG2, and NG3, respectively; 2 to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3 to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 µg/cm2 > NG1 (213 µg/cm2 > NG2 (123 µg/cm2 > NG3 (74.3 µg/cm2. The flux rates of citral decreased in the order NE (1,026 µg/cm2 > NG1 (1,021 µg/cm2 > NG2 (541 µg/cm2 > NG3 (353 µg/cm2. The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE (P<0.05 over a period of 12 h. Laser scanning confocal microscopy indicated that the NGs altered the main drug delivery routes from skin appendages to intercellular paths. Histological images suggested

  5. Simplified tritium permeation model

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1993-01-01

    In this model I seek to provide a simplified approach to solving permeation problems addressed by TMAP4. I will assume that there are m one-dimensional segments with thickness L i , i = 1, 2, hor-ellipsis, m, joined in series with an implantation flux, J i , implanting at the single depth, δ, in the first segment. From material properties and heat transfer considerations, I calculate temperatures at each face of each segment, and from those temperatures I find local diffusivities and solubilities. I assume recombination coefficients K r1 and K r2 are known at the upstream and downstream faces, respectively, but the model will generate Baskes recombination coefficient values on demand. Here I first develop the steady-state concentration equations and then show how trapping considerations can lead to good estimates of permeation transient times

  6. RF plasma-driven hydrogen permeation through a biased iron membrane

    International Nuclear Information System (INIS)

    Banno, T.; Waelbroeck, F.; Winter, J.

    1984-01-01

    The steady-state RF plasma-driven hydrogen permeation through an electrically biased iron membrane has been investigated as a function of the bias potential Vsub(M) for membrane temperatures in the range of 150-400 0 C. Vsub(M) has been gradually increased positively from the floating potential of the membrane. The permeation flux decreases when Vsub(M) increases at low voltages: positive hydrogen ions are repelled. The membrane temperature does not influence this effect measurably. The permeation flux starts to increase when Vsub(M) is raised higher, i.e. when energetic electrons strike the surface. This phenomenon shows a pronounced temperature dependence - the enhancement is largest for the lowest temperatures. The effect is interpreted in terms of an electron-induced dissociation of hydrogen molecules on the membrane surface. (orig.)

  7. Hydrogen permeation resistant heat pipe for bi-modal reactors. Final report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    North, M.T.; Anderson, W.G.

    1995-01-01

    The principal objective of this program was to demonstrate technology that will make a sodium heat pipe tolerant of hydrogen permeation for a bimodal space reactor application. Special focus was placed on techniques which enhance the permeation of hydrogen out of the heat pipe. Specific objectives include: define the detailed requirements for the bimodal reactor application; design and fabricate a prototype heat pipe tolerant of hydrogen permeation; and test the prototype heat pipe and demonstrate that hydrogen which permeates into the heat pipe is removed or reduced to acceptable levels. The results of the program were fully successful. Analyses were performed on two different heat pipe designs and an experimental heat pipe was fabricated and tested. A model of the experimental heat pipe was developed to predict the enhancement in the hydrogen permeation rate out of the heat pipe. A significant improvement in the rate at which hydrogen permeates out of a heat pipe was predicted for the use of the special condenser geometry developed here. Agreement between the model and the experimental results was qualitatively good. Inclusion of the additional effects of fluid flow in the heat pipe are recommended for future work

  8. Preparation and evaluation of bioadhesive benzocaine gels for enhanced local anesthetic effects.

    Science.gov (United States)

    Shin, Sang-Chul; Lee, Jin-Woo; Yang, Kyu-Ho; Lee, Chi H

    2003-07-09

    This study was performed to develop new enhanced anesthetic benzocaine gels with a suitable bioadhesive property for local anesthetic effects. As the concentration of benzocaine in the HPMC gels increased up to 15%, the permeation of drug increased, thereafter slightly increased. The activation energy of drug permeation was 11.29 kcal/mol. Bioadhesive forces were also measured. The permeation rate of drug through the skin was studied using various enhancers, such as glycols, non-ionic surfactants or fatty acids. Among the enhancers used, diethylene glycol showed the most enhancing effects. Analgesic activity was examined using a tail-flick analgesimeter. According to the rat tail-flick test, the value of AUEC (0 - 360min) of 15% benzocaine gels containing diethylene glycol was 4662 +/- 200 s min, while that of gels without diethylene glycol was 3353 +/- 132 s min, showing about 1.39-fold increase in analgesic activity. Fifteen percentage of benzocaine gels containing diethylene glycol showed the most enhanced, prolonged analgesic effects, showing the maximum anesthetic effects at 240 min, while the gels without diethylene glycol showed maximum effect at 180 min.

  9. Hydrogen permeation resistant layers for liquid metal reactors

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented

  10. Increased cutaneous wound healing effect of biodegradable liposomes containing madecassoside: preparation optimization, in vitro dermal permeation, and in vivo bioevaluation.

    Science.gov (United States)

    Li, Zehao; Liu, Meifeng; Wang, Huijuan; Du, Song

    2016-01-01

    Madecassoside (MA) is highly potent in treating skin disorders such as wounds and psoriasis. However, the topical wound healing effect of MA was hampered by its poor membrane permeability. In order to overcome this shortcoming, MA liposomes were designed and prepared by a double-emulsion method to enhance transdermal and wound healing effects. In this study, response surface methodology was adopted to yield the optimal preparation conditions of MA double-emulsion liposomes with average particle size of 151 nm and encapsulation efficiency of 70.14%. Moreover, MA double-emulsion liposomes demonstrated superior stability and homogeneous appearance in 5 months; their leakage rate was healing of MA liposomal formulations were conducted for the first time to evaluate MA delivery efficiency and wound healing effect. The transdermal property and wound cure effect of MA double-emulsion liposomes were superior to those of MA film dispersion liposomes, and both the methods were endowed with an excellent performance by polyethylene glycol modification. In conclusion, double-emulsion liposome formulation was an applicable and promising pharmaceutical preparation for enhancing MA delivery toward wound healing effect and improving wound-healing progress.

  11. The effect of polymer size and charge of molecules on permeation through synovial membrane and accumulation in hyaline articular cartilage.

    Science.gov (United States)

    Sterner, B; Harms, M; Wöll, S; Weigandt, M; Windbergs, M; Lehr, C M

    2016-04-01

    The treatment of joint related diseases often involves direct intra-articular injections. For rational development of novel delivery systems with extended residence time in the joint, detailed understanding of transport and retention phenomena within the joint is mandatory. This work presents a systematic study on the in vitro permeation, penetration and accumulation of model polymers with differing charges and molecular weights in bovine joint tissue. Permeation experiments with bovine synovial membrane were performed with PEG polymers (6-200 kDa) and methylene blue in customized diffusion chambers. For polyethylene glycol, 2-fold (PEG 6 kDa), 3-fold (PEG 10 kDa) and 13-fold (PEG 35 kDa) retention by the synovial membrane in reference to the small molecule methylene blue was demonstrated. No PEG 200 kDa was found in the acceptor in detectable amounts after 48 h. This showed the potential for a distinct extension of joint residence times by increasing molecular weights. In addition, experiments with bovine cartilage tissue were conducted. The ability for positively charged, high molecular weight chitosans and HEMA-Co-TMAP (HCT) polymers (up to 233 kDa) to distribute throughout the entire cartilage matrix was demonstrated. In contrast, a distribution into cartilage was not observed for neutral PEG polymers (6-200 kDa). Furthermore, the positive charge density of different compounds (chitosan, HEMA-Co-TMAP, methylene blue, MSC C1 (neutral NCE) and MSC D1 (positively charged NCE) was found to correlate with their accumulation in bovine cartilage tissue. In summary, the results offer pre-clinical in vitro data, indicating that the modification of molecular size and charge of a substance has the potential to decelerate its clearance through the synovial membrane and to promote accumulation inside the cartilage matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Feasibility of permeation grouting for constructing subsurface barriers

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1994-03-01

    The technical feasibility of emplacing a barrier beneath a waste site using directionally drilled boreholes and permeation grouting was investigated. The benefits of this emplacement system are: (1) Directionally drilled boreholes provide access beneath a waste site without disturbing the waste; (2) interim containment of contaminants allows time for the development of remediation options; (3) in the interim, the volume of waste remains fixed; (4) barriers may enhance the effectiveness of in situ remediation actions; and (5) barrier systems may provide permanent waste containment

  13. Effect of Calcium Chloride on the Permeation of the Cryoprotectant Dimethyl Sulfoxide to Japanese Whiting Sillago japonica Embryos

    Science.gov (United States)

    Rahman, Sk. Mustafizur; Majhi, Sullip Kumar; Suzuki, Toru; Strussmann, Carlos Augusto; Watanabe, Manabu

    Cryopreservation of fish eggs and embryos is a highly desired tool to promote aquaculture production and fisheries resource management, but it is still not technically feasible. The failure to develop successful cryopreservation protocols for fish embryos is largely attributed to poor cryoprotectant permeability. The purpose of this study was to test the effectiveness of CaCl2 to enhance cryoprotectant uptake by fish embryos. In this study, embryos (somites and tail elongation stages) of Japanese whiting Sillago japonica were exposed to 10 and 15% dimethyl sulfoxide (DMSO) in artificial sea water (ASW) or a solution of 0.125M CaCl2 in distilled water for 20 min at 24°C. The toxicity of all solutions was estimated from the hatching rates of the embryos and High Performance Liquid Chromatography was used to determine the amount of DMSO taken up during impregnation. The results showed that DMSO incorporation into the embryos was greatly (›50%) enhanced in the presence of CaCl2 compared to ASW. CaCl2 itself was not toxic to the embryos but, probably as a result of the enhanced DMSO uptake, caused decreases in survival of about 14-44% relative to ASW. Somites stage embryos were more tolerant than tail elongation ones to DMSO both as ASW and CaCl2 solutions. The use of CaCl2 as a vehicle for DMSO impregnation could be a promising aid for the successful cryopreservation of fish embryos.

  14. Effect of maize, rumen-protected fat and whey permeate on energy utilisation and milk fat composition in lactating goats

    Directory of Open Access Journals (Sweden)

    Giovanna Battelli

    2010-01-01

    Full Text Available The efficiency of utilisation of diets with different proportions of energy sources (starch, fat, lactose was studied with three pairs of lactating Saanen goats; the animals were fed, in a Latin square design, 3 silage-based diets containing (on DM basis the following energy sources: 32% maize meal (diet M; 4.7% rumen-protected fat (Megalac® and 23.5% maize meal (diet F; 9.8% milk whey permeate powder and 22.3% maize meal (diet W. During each of the three experimental periods, 8 days of total collection balance trials were conducted during which goats were allocated for 72 h (three 24 h cycles in open circuit respiration chambers to determine methane and heat production and, hence, the energy balance. Diet F, in comparison with diets M and W, significantly increased the milk fat content (4.13 vs 3.11 and 3.14%, P<0.001 and the 4%-FCM yield (3367 vs 2927 and 3055 g/d, P<0.01 and P<0.05, respectively, while no relevant changes were observed for milk protein content and yield. Energy digestibility was equal in diets F and W. Megalac® did not decrease fibre digestibility. The partition of the gross energy intake (EI differed significantly between diets: diet M had lower DE (72.4 vs 74.3 and 74.3%; P<0.01 and ME (62.1 vs 64.7 and 63.5%; P<0.05 in comparison with diets F and W, respectively. Energy lost as methane was not significantly decreased by the inclusion of rumen- protected fat in the diet, although a trend for a reduction of methanogenesis was observed. Heat production deter- mined by treatment F was lower in comparison with the other treatments. This difference was almost significant (P=0.056 when expressed as a percentage of the ME. Milk energy output increased significantly (+12%, P<0.001 by including fat in the diet, as compared with treatments M and W: 21.4 vs 19.1 and 19.0% of the EI. The net ener- gy content of the protected fat was 27.94 MJ NEl/kg DM (+340% vs maize meal; its kl value resulted 0.77. The corresponding values for whey

  15. Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation.

    Science.gov (United States)

    Thakkar, Priyanka J; Madan, Parshotam; Lin, Senshang

    2014-05-01

    The objective of the present investigation was to enhance skin permeation of diclofenac using water-in-oil microemulsion and to elucidate its skin permeation mechanism. The w/o microemulsion formulations were selected based on constructed pseudoternary phase diagrams depending on water solubilization capacity and thermodynamic stability. These formulations were also subjected to physical characterization based on droplet size, viscosity, pH and conductivity. Permeation of diclofenac across rat skin using side-by-side permeation cells from selected w/o microemulsion formulations were evaluated and compared with control formulations. The selected w/o microemulsion formulations were thermodynamically stable, and incorporation of diclofenac sodium into microemulsion did not affect the phase behavior of system. All microemulsion formulations had very low viscosity (11-17 cps) and droplet size range of 30-160 nm. Microemulsion formulations exhibited statistically significant increase in diclofenac permeation compared to oily solution, aqueous solution and oil-Smix solution. Higher skin permeation of diclofenac was observed with low Smix concentration and smaller droplet size. Increase in diclofenac loading in aqueous phase decreased the partition of diclofenac. Diclofenac from the oil phase of microemulsion could directly partition into skin, while diclofenac from the aqueous droplets was carried through skin by carrier effect.

  16. A study on reverse osmosis permeating treatment for yarn dyeing ...

    African Journals Online (AJOL)

    This paper presents a fuzzy linear regression model for estimation of reverse osmosis permeating parameters conditions. The proposed model can effectively take on non-crisp, fuzzy and crisp data. This study model used for estimation of reverse osmosis permeating parameters data from Tirupur examines the variables that ...

  17. Permeation barrier for lightweight liquid hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, D.

    2007-04-16

    For the future usage of hydrogen as an automotive fuel, its on-board storage is crucial. One approach is the storage of liquid hydrogen (LH2, 20 K) in double-walled, vacuum insulated tanks. The introduction of carbon fiber reinforced plastics (CFRP) as structural material enables a high potential of reducing the weight in comparison to the state-of-the-art stainless steel tanks. The generally high permeability of hydrogen through plastics, however, can lead to long-term degradation of the insulating vacuum. The derived objective of this dissertation was to find and apply an adequate permeation barrier (liner) on CFRP. The investigated liners were either foils adhered on CFRP specimens or coatings deposited on CFRP specimens. The coatings were produced by means of thermal spraying, metal plating or physical vapor deposition (PVD). The materials of the liners included Al, Au, Cu, Ni and Sn as well as stainless steel and diamond-like carbon. The produced liners were tested for their permeation behavior, thermal shock resistance and adherence to the CFRP substrate. Additionally, SEM micrographs were used to characterize and qualify the liners. The foils, although being a good permeation barrier, adhered weakly to the substrate. Furthermore, leak-free joining of foil segments is a challenge still to be solved. The metal plating liners exhibited the best properties. For instance, no permeation could be detected through a 50 {mu}m thick Cu coating within the accuracy of the measuring apparatus. This corresponds to a reduction of the permeation gas flow by more than factor 7400 compared to uncoated CFRP. In addition, the metal platings revealed a high adherence and thermal shock resistance. The coatings produced by means of thermal spraying and PVD did not show a sufficient permeation barrier effect. After having investigated the specimens, a 170 liter CFRP tank was fully coated with 50 {mu}m Cu by means of metal plating. (orig.)

  18. A Study on Improvement of Solubility of Rofecoxib and its effect on Permeation of Drug from Topical Formulations.

    Science.gov (United States)

    Kulkarni, Madhur; Nagarsenker, Mangal

    2008-01-01

    Rofecoxib, a practically insoluble cox-2 selective nonsteroidal antiinflammatory agent was subjected to improvement in solubility by preparing its binary mixtures with beta cyclodextrin using various methods such as physical mixing, co-grinding, kneading with aqueous methanol and co-evaporation from methanol-water mixture. Characterization of the resulting binary mixtures by differential scanning calorimetry and X-ray diffraction studies indicated partial amorphization of the drug in its binary mixtures. In vitro dissolution studies exhibited remarkable increase in rate and extent of dissolution of the drug from its complexes with beta -cyclodextrin. Pure rofecoxib as well as its co-ground binary mixture were formulated as aqueous gels for topical application. In vitro skin permeation of rofecoxib from formulation containing rofecoxib-cyclodextrin complex was significantly higher (p<0.05) at 1, 2, 12, 18 and 24 hr as compared to formulation containing pure rofecoxib. This could be attributed to better solubility of binary mixture in the aqueous gel vehicle leading to greater concentration gradient between the vehicle and skin and hence higher flux of the drug.

  19. Hydrogen permeation measurement of the reduced activation ferritic steel F82H by the vacuum thermo-balance method

    International Nuclear Information System (INIS)

    Yoshida, Hajime; Enoeda, Mikio; Abe, Tetsuya; Akiba, Masato

    2005-03-01

    Hydrogen permeation fluxes of the reduced activation ferritic steel F82H were quantitatively measured by a newly proposed method, vacuum thermo-balance method, for a precise estimation of tritium leakage in a fusion reactor. We prepared sample capsules made of F82H, which enclosed hydrogen gas. The hydrogen in the capsules permeated through the capsule wall, and subsequently desorbed from the capsule surface during isothermal heating. The vacuum thermo-balance method allows simultaneous measurement of the hydrogen permeation flux by two independent methods, namely, the net weight reduction of the sample capsule and exhaust gas analysis. Thus the simultaneous measurements by two independent methods increase the reliability of the permeability measurement. When the gas pressure of enclosed hydrogen was 0.8 atm at the sample temperature of 673 K, the hydrogen permeation flux of F82H obtained by the net weight reduction and the exhaust gas analysis was 0.75x10 18 (H 2 /m 2 s) and 2.2x10 18 (H 2 /m 2 s), respectively. The ratio of the hydrogen permeation fluxes obtained by the net weight reduction to that measured by the exhaust gas analysis was in the range from 1/4 to 1/1 in this experiment. The temperature dependence of the estimated permeation flux was similar in both methods. Taking the uncertainties of both measurements into consideration, both results are supposed to be consistent. The enhancement of hydrogen permeation flux was observed from the sample of which outer surface was mechanically polished. Through the present experiments, it has been demonstrated that the vacuum thermo-balance method is effective for the measurement of hydrogen permeation rate of F82H. (author)

  20. Tritium permeation and recovery

    International Nuclear Information System (INIS)

    Bond, R.A.; Hamilton, A.M.

    1987-01-01

    The paper is an appendix to a study of the reactor relevance of the NET design concept. The latter study examines whether the technologies and design principles proposed for NET can be directly extrapolated to a demonstration (DEMO) reactor. In this appendix, tritium transport in the DEMO breeding blanket is considered with emphasis on the permeation rate from the lithium-lead breeder into the coolant. A computational model used to calculate the tritium transport in the breeder blanket is described. Results are reported for the tritium transport in the NET/INTOR type blanket as well as the DEMO blanket in order to provide a comparison. In addition, results are presented for the helium coolant tritium extraction analysis. (U.K.)

  1. Reemission and permeation of deuterium implanted into metals

    International Nuclear Information System (INIS)

    Tanabe, T.; Furuyama, Y.; Imoto, S.

    1984-01-01

    Focusing on the marked depression of deuterium permeation rate during the deuteron bombardment, implantation experiments coupled with gaseous permeation experiments are performed on pure Ni and Ni with evaporated MnO. It is concluded that the reemission of implanted deuterium is initially depressed, but it soon becomes enhanced with increase of fluence leading to a rapid decrease of permeation rate at the intermediate temperatures 600-1000 K, which is attributed to the formation of short diffusion paths from the projected range to the front surface. (orig.)

  2. Enhanced transdermal delivery of ondansetron using nanovesicular systems: Fabrication, characterization, optimization and ex-vivo permeation study-Box-Cox transformation practical example.

    Science.gov (United States)

    Habib, Basant A; Sayed, Sinar; Elsayed, Ghada M

    2018-03-30

    This study aimed to formulate suitable nanovesicles (NVs) for transdermal delivery of Ondansetron. It also illustrated a practical example for the importance of Box-Cox transformation. A 2 3 full factorial design was used to enable testing transfersomes, ethosomes, and transethosomes of Ondansetron simultaneously. The independent variables (IVs) studied were sodium taurocholate amount, ethanol volume in hydration medium and sonication time. The studied dependent variables (DVs) were: particle size (PS), zeta potential (ZP) and entrapment efficiency (EE). Polynomial equations were used to study the influence of IVs on each DV. Numerical multiple response optimization was applied to select an optimized formula (OF) with the goals of minimizing PS and maximizing ZP absolute value and EE. Box-Cox transformation was adopted to enable modeling PS raised to the power of 1.2 with an excellent prediction R 2 of 1.000. ZP and EE were adequately represented directly with prediction R 2 of 0.9549 and 0.9892 respectively. Response surface plots helped in explaining the influence of IVs on each DV. Two-sided 95% prediction interval test and percent deviation of actual values from predicted ones proved the validity of the elucidated models. The OF was a transfersomal formula with desirability of 0.866 and showed promising results in ex-vivo permeation study. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Implantation driven permeation behavior of deuterium through pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi E-mail: nakamura@tpl.tokai.jaeri.go.jp; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-09-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 {mu}m thickness under conditions of incident flux of 1.9x10{sup 18}-1.1x10{sup 19} D{sup +}/m{sup 2}s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten.

  4. Implantation driven permeation behavior of deuterium through pure tungsten

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Hayashi, Takumi; Nishi, Masataka; Arita, Makoto; Okuno, Kenji

    2001-01-01

    Implantation driven permeation behavior of deuterium through pure tungsten has been investigated to estimate the amount of tritium permeation through its barrier in a thermo-nuclear fusion device. The permeation experiments were performed on pure tungsten foil of 25 μm thickness under conditions of incident flux of 1.9x10 18 -1.1x10 19 D + /m 2 s, incident ion energy of 200-2000 eV, and specimen temperature of 512-660 K. As a result of this steady-state permeation experiment, the rate-determining process of deuterium permeation was found to be controlled by diffusion at both implanted and permeated sides. On the other hand, transient permeation was strongly affected by trap effect in the specimen. Simulation analysis using TMAP code on transient permeation behavior indicates the existence of a trap site with a trap energy of nearly 1eV and with a trap density of over several ten's ppm in tungsten

  5. Permeation of sumatriptan succinate across human skin using multiple types of self-dissolving microneedle arrays fabricated from sodium hyaluronate.

    Science.gov (United States)

    Wu, Dan; Katsumi, Hidemasa; Quan, Ying-Shu; Kamiyama, Fumio; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira

    2016-09-01

    Available formulations of sumatriptan succinate (SS) have low bioavailability or are associated with site reactions. We developed various types of self-dissolving microneedle arrays (MNs) fabricated from sodium hyaluronate as a new delivery system for SS and evaluated their skin permeation and irritation in terms of clinical application. In vitro permeation studies with human skin, physicochemical properties (needle length, thickness and density), and penetration enhancers (glycerin, sodium dodecyl sulfate and lauric acid diethanolamide) were investigated. SS-loaded high-density MNs of 800 µm in length were the optimal formulation and met clinical therapeutic requirements. Penetration enhancers did not significantly affect permeation of SS from MNs. Optical coherence tomography images demonstrated that SS-loaded high-density MNs (800 µm) uniformly created drug permeation pathways for the delivery of SS into the skin. SS-loaded high-density MNs induced moderate primary skin irritations in rats, but the skin recovered within 72 h of removal of the MNs. These findings suggest that high-density MNs of 800 µm in length are an effective and promising formulation for transdermal delivery of SS. To our knowledge, this is the first report of SS permeation across human skin using self-dissolving MNs.

  6. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    Science.gov (United States)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  7. Improved permeation barriers for tritiated waste packaging

    International Nuclear Information System (INIS)

    Vassallo, G.; Van Den Bergh, R.; Forcey, K.S.; Perujo, A.

    1994-01-01

    High-density polyethylene (HDPE) is extensively used as flexible bagging or packaging for soft tritiated waste in the tritium community because of its low permeability to the more radiotoxic form of tritium, i.e., tritiated water (HTO). However, HDPE does not represent a perfect barrier to HTO nor does it effectively hinder the permeation of elemental tritium, i.e, HT. This latter drawback is particularly important considering that the elemental form may readily convert to HTO outside of the waste package. The possible use of a multilayer film as packing material for the conditioning of tritiated waste is assessed, and its capability to hinder the permeation of elemental tritium is measured and compared with that of bare HDPE. The material investigated is readily available from the food industry. 5 refs., 1 tab

  8. Permeation studies of novel terbinafine formulations containing hydrophobins through human nails in vitro.

    Science.gov (United States)

    Vejnovic, Ivana; Huonder, Cornelia; Betz, Gabriele

    2010-09-15

    Existing treatments of onychomycosis are not satisfactory. Oral therapies have many side effects and topical formulations are not able to penetrate into the human nail plate and deliver therapeutical concentrations of active agent in situ. The purpose of the present study was to determine the amount of terbinafine, which permeates through the human nail plate, from liquid formulations containing enhancers, namely hydrophobins A-C in the concentration of 0.1% (w/v). The used reference solution contained 10% (w/v) of terbinafine in 60% (v/v) ethanol/water without enhancer. Permeability studies have been performed on cadaver nails using Franz diffusion cells modified to mount nail plates and filled with 60% (v/v) ethanol/water in the acceptor chamber. Terbinafine was quantitatively determined by HPLC. The amount of terbinafine remaining in the nail was extracted by 96% ethanol from pulverized nail material after permeation experiment and presented as percentage of the dry nail weight before the milling test. Permeability coefficient (PC) of terbinafine from reference solution was determined to be 1.52E-10 cm/s. Addition of hydrophobins improved PC in the range of 3E-10 to 2E-9 cm/s. Remaining terbinafine reservoir in the nail from reference solution was 0.83% (n=2). An increase of remaining terbinafine reservoir in the nail was observed in two out of three tested formulations containing hydrophobins compared to the reference. In all cases, known minimum inhibitory concentration of terbinafine for dermatophytes (0.003 microg/ml) has been exceeded in the acceptor chamber of the diffusion cells. All tested proteins (hydrophobins) facilitated terbinafine permeation after 10 days of permeation experiment, however one of them achieved an outstanding enhancement factor of 13.05 compared to the reference. Therefore, hydrophobins can be included in the list of potential enhancers for treatment of onychomycosis. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide

    Science.gov (United States)

    Li, Mingming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Li, Jing; Lv, Hanming; Qian, Xiaoming; Jiao, Xiaoning

    2017-03-01

    Nanoparticles may have suffered from low modification efficiency in hybrid membranes due to embedding and aggregating in polymer matrix. In order to analyze the modification mechanisms of nanoparticle migration and dispersion on the properties of hybrid membranes, we designed different F/ O ratios ( R F/ O ) of fluorinated graphene oxide (FGO, diameter = 1.5 17.5 μm) by carbon tetrafluoride (CF4) plasma treatment GO for 3, 5, 10, 15, and 20 min and successfully prepared novel PVDF hybrid membranes containing FGO via the phase inversion method. After a prolonged plasma treatment, the R F/ O of FGO was enhanced sharply, indicating an increasing compatibility of FGO with the matrix, especially FGO-20 (GO treated for 20 min). FGO contents in the top layer, sublayer, and the whole of membranes were probed by X-ray photoelectron spectroscopy, energy-dispersive spectrometer, and indirect computation, respectively. In the top layer of membranes, FGO contents declined from 13.14 wt% (PVDF/GO) to 4.00 wt% (PVDF/FGO-10) and 1.96 wt% (PVDF/FGO-20) due to the reduced migration ability of FGO. It is worth mentioning that PVDF/FGO-10 membranes exhibited an excellent water flux and flux recovery rate (up to 406.90 L m-2 h-1 and 88.9%), which were improved by 67.3% and 14.6% and 52.5% and 24.0% compared with those of PVDF/GO and PVDF/FGO-20 membranes, respectively, although the dispersion and migration ability of FGO-10 was maintained at a moderate level. It indicated that the migration and dispersion of FGO in membranes could result in dynamic equilibrium, which played a key role in making the best use of nanomaterials to optimize membrane performance.

  10. Azone® decreases the buccal mucosal permeation of Diazepam in a concentration-dependent manner via a reservoir effect

    DEFF Research Database (Denmark)

    Meng-Lund, Emil; Jacobsen, Jette; Jin, Liang

    2014-01-01

    The purpose of this study was to examine concentration-dependent effects of Azone® (AZ) on the buccal absorption of diazepam (DIAZ). Porcine buccal mucosa was placed in modified Ussing chambers and pretreated with 10 μL of 0%, 5%, 20%, and 50% (w/v) AZ in ethanol. DIAZ was administered to the don...

  11. Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes

    KAUST Repository

    Louie, Jennifer Sarah; Pinnau, Ingo; Reinhard, Martin

    2011-01-01

    are impacted by the coating process steps, and investigates how such effects could contribute to lower water flux. On one hand, simply pre-soaking dry aromatic polyamide composite membranes in aliphatic alcohols results in a significant increase in water flux

  12. Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei, E-mail: xuzhiwei@tjpu.edu.cn; Li, Jing; Lv, Hanming; Qian, Xiaoming, E-mail: qianxiaoming@tjpu.edu.cn; Jiao, Xiaoning [Tianjin Polytechnic University, State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles (China)

    2017-03-15

    Nanoparticles may have suffered from low modification efficiency in hybrid membranes due to embedding and aggregating in polymer matrix. In order to analyze the modification mechanisms of nanoparticle migration and dispersion on the properties of hybrid membranes, we designed different F/O ratios (R{sub F/O}) of fluorinated graphene oxide (FGO, diameter = 1.5 ~ 17.5 μm) by carbon tetrafluoride (CF{sub 4}) plasma treatment GO for 3, 5, 10, 15, and 20 min and successfully prepared novel PVDF hybrid membranes containing FGO via the phase inversion method. After a prolonged plasma treatment, the R{sub F/O} of FGO was enhanced sharply, indicating an increasing compatibility of FGO with the matrix, especially FGO-20 (GO treated for 20 min). FGO contents in the top layer, sublayer, and the whole of membranes were probed by X-ray photoelectron spectroscopy, energy-dispersive spectrometer, and indirect computation, respectively. In the top layer of membranes, FGO contents declined from 13.14 wt% (PVDF/GO) to 4.00 wt% (PVDF/FGO-10) and 1.96 wt% (PVDF/FGO-20) due to the reduced migration ability of FGO. It is worth mentioning that PVDF/FGO-10 membranes exhibited an excellent water flux and flux recovery rate (up to 406.90 L m{sup −2} h{sup −1} and 88.9%), which were improved by 67.3% and 14.6% and 52.5% and 24.0% compared with those of PVDF/GO and PVDF/FGO-20 membranes, respectively, although the dispersion and migration ability of FGO-10 was maintained at a moderate level. It indicated that the migration and dispersion of FGO in membranes could result in dynamic equilibrium, which played a key role in making the best use of nanomaterials to optimize membrane performance.

  13. What Is the Mechanism Behind Increased Permeation Rate of a Poorly Soluble Drug from Aqueous Dispersions of an Amorphous Solid Dispersion?

    DEFF Research Database (Denmark)

    Frank, K. J.; Westedt, U.; Rosenblatt, K. M.

    2014-01-01

    of amorphous microparticles present in aqueous dispersions induces lasting supersaturation maintaining enhanced permeation. The hypothesis is supported by a slower drug permeation when the microparticles were removed. (c) 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci...

  14. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures

    Science.gov (United States)

    Zhang, Lesi; Ling, Ling; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2017-06-01

    A novel self-assembled composite membrane, Nafion-[PDDA/ZrP]n with nacre-like nanostructures was successfully fabricated by a layer-by-layer (LbL) method and used as proton exchange membrane for vanadium redox flow battery applications. Poly(diallyldimethylammonium chloride) (PDDA) with positive charges and zirconium phosphate (ZrP) nanosheets with negative charges can form ultra-thin nacre-like nanostructure on the surface of Nafion membrane via the ionic crosslinking of tightly folded macromolecules. The lamellar structure of ZrP nanosheets and Donnan exclusion effect of PDDA can greatly decrease the vanadium ion permeability and improve the selectivity of proton conductivity. The fabricated Nafion-[PDDA/ZrP]4 membrane shows two orders of magnitude lower vanadium ion permeability (1.05 × 10-6 cm2 min-1) and 12 times higher ion selectivity than those of pristine Nafion membrane at room temperature. Consequently, the performance of vanadium redox flow batteries (VRFBs) assembled with Nafion-[PDDA/ZrP]3 membrane achieved a highly coulombic efficiency (CE) and energy efficiency (EE) together with a very slow self-discharge rate. When comparing with pristine Nafion VRFB, the CE and EE values of Nafion-[PDDA/ZrP]3 VRFB are 10% and 7% higher at 30 mA cm-2, respectively.

  15. In-pile tritium permeation experiment

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Miller, L.G.; Watts, K.D.; Kershner, C.J.; Rogers, M.L.

    1982-01-01

    The experiments in progress are examining various aspects of the permeation of hydrogen isotopes through fusion materials. Of particular importance will be the measurement of permeation due to ion implantation in the presence of a neutron radiation field. Theoretical and early experimental results for these experiments have suggested that sufficient tritium will permeate fusion reactor interior structures that development of a permeation barrier will be needed. (orig.)

  16. In-pile tritium permeation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Miller, L.G.; Watts, K.D. (Idaho National Engineering Lab., Idaho Falls (USA)); Kershner, C.J.; Rogers, M.L. (Monsanto Research Corp., Miamisburg, OH (USA). Mound Facility)

    The experiments in progress are examining various aspects of the permeation of hydrogen isotopes through fusion materials. Of particular importance will be the measurement of permeation due to ion implantation in the presence of a neutron radiation field. Theoretical and early experimental results for these experiments have suggested that sufficient tritium will permeate fusion reactor interior structures that development of a permeation barrier will be needed.

  17. Measurement of skin permeation/penetration of nanoparticles for their safety evaluation.

    Science.gov (United States)

    Kimura, Eriko; Kawano, Yuichiro; Todo, Hiroaki; Ikarashi, Yoshiaki; Sugibayashi, Kenji

    2012-01-01

    The aim of the present study was to quantitatively evaluate the skin permeation/penetration of nanomaterials and to consider their penetration pathway through skin. Firstly, penetration/permeation of a model fluorescent nanoparticle, Fluoresbrite®, was determined through intact rat skin and several damaged skins. Fluoresbrite® permeated through only needle-punctured skin. The permeation profiles of soluble high molecular compounds, fluorescein isothiocyanate-dextrans (FITC-dextrans, FDs), with different molecular weights were also measured for comparison. The effects of molecular sizes and different skin pretreatments on the skin barrier were determined on the skin penetration/permeation of Fluoresbrite® and FDs. Fluoresbrite® was not permeated the intact skin, but FDs were permeated the skin. The skin distribution of titanium dioxide and zinc oxide nanoparticles was also observed after topical application of commercial cosmetics. Nanoparticles in sunscreen cosmetics were easily distributed into the groove and hair follicles after their topical application, but seldom migrated from the groove or follicles to viable epidermis and dermis. The obtained results suggested that nanoparticles did not permeate intact skin, but permeated pore-created skin. No or little permeation was observed for these nanomaterials through the stratum corneum.

  18. Organic fluid permeation through fluoropolymer membranes

    Science.gov (United States)

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  19. Deuterium permeation through Flibe facing materials

    International Nuclear Information System (INIS)

    Fukada, S.; Anderl, R.A.; Smolik, G.R.

    2004-01-01

    Experiment of deuterium permeation through Ni facing with purified Flibe is being carried out under the Japan-US joint research project (JUPITER-II). The experiment has been proceeding in the following phases; (i) fabrication and assembly of a dual-probe permeation apparatus, (ii) a single-probe Ni/D 2 , permeation experiment without Flibe, (iii) a dual-probe Ar/Ni/D 2 permeation experiment without Flibe, (iv) Flibe chemical purification by HF/H 2 gas bubbling, (v) physical purification by Flibe transport through a porous Ni filter, (vi) Ar/Ni/Flibe/Ni/D 2 permeation experiment using the dual Ni probe, and (vii) Ar/Ni/Flibe/Ni/HT permeation experiment. The present paper describe results until the Ar/Ni/Flibe/Ni/D 2 permeation experiment in detail. (author)

  20. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    International Nuclear Information System (INIS)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D’Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-01-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  1. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    Science.gov (United States)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  2. Formulation of sage essential oil (Salvia officinalis, L.) monoterpenes into chitosan hydrogels and permeation study with GC-MS analysis.

    Science.gov (United States)

    Kodadová, Alexandra; Vitková, Zuzana; Herdová, Petra; Ťažký, Anton; Oremusová, Jarmila; Grančai, Daniel; Mikuš, Peter

    2015-01-01

    This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.

  3. Enhancing managerial effectiveness in dietetics.

    Science.gov (United States)

    Hoover, L W

    1983-01-01

    Environmental pressures from such sources as economic conditions, the government, third-party payers, and inter-institutional competition create managerial challenges. Although cost-containment has received considerable attention, long-term cost-effectiveness is probably the significant issue. Dietitians must become more cost-conscious and effective in resource management to attain desired performance outcomes. Some of the skills and characteristics essential to managerial effectiveness are a marketing orientation, systems design skill, quantitative operations management techniques, financial expertise, and leadership. These abilities facilitate decision-making and achievement of long-term cost-effectiveness. Curriculum enhancement and continuing education are two strategies for improving managerial competency in the dietetics profession. In dietetics education, study of management topics should be enhanced to provide more advanced coverage of management theories and quantitative models so that managerial performance can be at a higher level of sophistication and competency. To assure the viability of the dietetics profession, the emphasis on management must be more comprehensive and rigorous.

  4. Permeation behavior of deuterium implanted into beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; O' hira, Shigeru; Nishi, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    Study on Implantation Driven Permeation (IDP) behavior of deuterium through pure beryllium was investigated as a part of the research to predict the tritium permeation through the first wall components ITER (International Thermonuclear Experimental Reactor). The permeation experiments were carried out with two beryllium specimens, one was an unannealed specimen and the other was that annealed at 1173 K. The permeation flux was measured as a function of specimen temperature and incident ion flux. Surface analysis of specimen was also carried out after the permeation experiment. Permeation was observed only with the annealed specimen and no significant permeation was observed with unannealed specimen under the present experimental condition (maximum temperature: 685 K, detection limit: 1x10{sup 13} D atoms/m{sup 2}s). It could be attributed that the intrinsic lattice defects, which act as diffusion preventing site, decreased with the specimen annealing. Based on the result of steady and transient permeation behavior and surface analysis, it was estimated that the deuterium permeation implanted into annealed beryllium was controlled by surface recombination due to the oxide layer on the surface of the permeated side. (author)

  5. Buccal delivery of thiocolchicoside: in vitro and in vivo permeation studies.

    Science.gov (United States)

    Artusi, M; Santi, P; Colombo, P; Junginger, H E

    2003-01-02

    Thiocolchicoside, a muscle-relaxant agent, is administered by the oral, intra-muscular and topical route. After oral administration the extent of bioavailability compared with intra-muscular administration is low, due to a first pass effect. In this paper, the delivery of thiocolchicoside through oral mucosa is studied to improve the bioavailability. Thiocolchicoside in vitro permeation through porcine oral mucosa and in vivo buccal transport in humans were investigated. Two dosage forms, a bioadhesive disc and a fast dissolving disc for buccal and sublingual administration of thiocolchicoside, respectively, were designed. The in vitro permeation of thiocolchicoside through porcine buccal mucosa from these dosage forms was evaluated and compared with in vivo absorption. Results from in vitro studies demonstrated that thiocolchicoside is quite permeable across porcine buccal mucosa and that permeation enhancers, such as sodium taurocholate and sodium taurodeoxycholate, were not able to increase its flux. The in vivo thiocolchicoside absorption experiments, in which the drug loss from oral cavity was measured, indicated that both formulations could be useful for therapeutic application. The fast dissolving (sublingual) form resulted in a quick uptake of 0.5 mg of thiocolchicoside within 15 min whereas with the adhesive buccal form the same dose can be absorbed over an extended period of time.

  6. Brush border membrane vesicle and Caco-2 cell line: Two experimental models for evaluation of absorption enhancing effects of saponins, bile salts, and some synthetic surfactants

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2016-01-01

    Full Text Available The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6-carboxyfluorescein (CF across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate , and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers.

  7. Deuterium permeation and diffusion in high-purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.; Riehm, M.P.; Thompson, D.A.; Smeltzer, W.W.

    1990-01-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. Using multilayer permeation theory the effects of surface oxide were eliminated and the diffusion coefficients of the bulk beryllium determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 =6.7x10 -9 m 2 /s and E D =28.4 kJ/mol. For the high-grade beryllium samples (99%) the parameters are D 0 =8.0x10 -9 m 2 /s and E D =35.1 kJ/mol. (orig.)

  8. Deuterium permeation and diffusion in high purity beryllium

    International Nuclear Information System (INIS)

    Abramov, E.

    1990-05-01

    The permeation rate of deuterium through high-purity beryllium membranes was measured using the gas-driven permeation technique. The time-dependent and the steady-state deuterium flux data were analyzed and the effective diffusivities of the samples were determined. A multilayer permeation theory was used in order to eliminate the surface oxide effects and the diffusion coefficients of the bulk beryllium were determined. The diffusion parameters obtained for the extra-grade beryllium samples (99.8%) are D 0 = 6.7 x 10 -9 [m 2 /s] and E D = 28.4 [KJ/mol]; and for the high-grade beryllium samples (99%) the parameters are D 0 = 8.0 x 10 -9 [m 2 /s] and E D = 35.1 [KJ/mol

  9. The formation of tritium permeation barriers by CVD

    International Nuclear Information System (INIS)

    Forcey, K.S.; Perujo, A.; Reiter, F.; Lolli-Ceroni, P.L.

    1993-01-01

    The effectiveness as permeation barriers of the following CVD coatings have been investigated: TiC (1 to 2 μm in thickness); a bi-layer of TiN on TiC (3 μm total thickness) and CVD Al 2 O 3 on a TiN/TiC bi-layer. The substrate materials were TZM (a Mo alloy) and 316L stainless steel in the form of discs of diameter 48 mm and thickness 0.1 or 1 mm. Permeation measurements were performed in the temperature range 515-742 K using deuterium at pressures in the range 1-50 kPa. CVD layers were shown to form reasonably effective permeation barriers. At a temperature of 673 K TiC is around 6000 times less permeable to deuterium than 316L stainless steel. (orig.)

  10. Maintainability effectiveness evaluations and enhancement

    International Nuclear Information System (INIS)

    Seminara, J.L.

    1985-01-01

    In the mid-seventies EPRI initiated a research project to review the human factors aspects of nuclear power plant control rooms. In the course of investigating operator-control room interfaces in five operational control rooms, it became evident that many plant outages had either been caused or prolonged by human factors problems associated with maintenance activities. Consequently, as one of several follow-on projects, EPRI sponsored a review of nine power plants (five nuclear and four fossil) to examine the human factors aspects of plant maintainability. This survey revealed a wide variety of generic human factors problems that could negatively impact the effectiveness of plant maintenance personnel. It was clear that plant maintainability features deserved no less attention to human factors concerns than the operational features of the control room. This paper describes subsequent EPRI-initiated efforts to assist the utilities in conducting self-reviews of maintainability effectiveness and effect needed enhancements

  11. Hydrogen permeation through metallic foils

    International Nuclear Information System (INIS)

    Bernardi, M.I.B.; Rodrigues, J.A.

    1987-01-01

    The process of electrolytic permeation of hydrogen through metallic foils is studied. A double electrolytic cell, in glass, in which the two compartments of reaction are separated by a metallic foil to be studied, was built. As direct result, the hydrogen diffusion coefficient in the metal is obtained. The hydrogen diffusion coefficients in the palladium and, in austenitic stainless steels 304 and 304 L, used in the Angra-1 reactor, were obtained. Samples of stainless steels with and without welding, were used. (Author) [pt

  12. A multicenter, open-label, long-term safety and tolerability study of DFN-02, an intranasal spray of sumatriptan 10 mg plus permeation enhancer DDM, for the acute treatment of episodic migraine.

    Science.gov (United States)

    Munjal, Sagar; Brand-Schieber, Elimor; Allenby, Kent; Spierings, Egilius L H; Cady, Roger K; Rapoport, Alan M

    2017-12-01

    DFN-02 is a novel intranasal spray formulation composed of sumatriptan 10 mg and a permeation-enhancing excipient comprised of 0.2% 1-O-n-Dodecyl-β-D-Maltopyranoside (DDM). This composition of DFN-02 allows sumatriptan to be rapidly absorbed into the systemic circulation and exhibit pharmacokinetics comparable to subcutaneously administered sumatriptan. Rapid rate of absorption is suggested to be important for optimal efficacy. The objective of this study was to evaluate the safety and tolerability of DFN-02 (10 mg) in the acute treatment of episodic migraine with and without aura over a 6-month period based on the incidence of treatment-emergent adverse events and the evaluation of results of clinical laboratory tests, vital signs, physical examination, and electrocardiograms. This was a multi-center, open-label, repeat-dose safety study in adults with episodic migraine with and without aura. Subjects diagnosed with migraine with or without aura according to the criteria set forth in the International Classification of Headache Disorders, 2nd edition, who experienced 2 to 6 attacks per month with fewer than 15 headache days per month and at least 48 headache-free hours between attacks, used DFN-02 to treat their migraine attacks acutely over the course of 6 months. A total of 173 subjects was enrolled, 167 (96.5%) subjects used at least 1 dose of study medication and were evaluable for safety, and 134 (77.5%) subjects completed the 6-month study. A total of 2211 migraine attacks was reported, and 3292 doses of DFN-02 were administered; mean per subject monthly use of DFN-02 was 3.6 doses. Adverse events were those expected for triptans, as well as for nasally administered compounds. No new safety signals emerged. Dysgeusia and application site pain were the most commonly reported treatment-emergent adverse events over 6 months (21% and 30.5%, respectively). Most of the treatment-emergent adverse events were mild. There were 5 serious adverse events, all

  13. Tailored nanostructured platforms for boosting transcorneal permeation: Box-Behnken statistical optimization, comprehensive in vitro, ex vivo and in vivo characterization.

    Science.gov (United States)

    Elsayed, Ibrahim; Sayed, Sinar

    2017-01-01

    Ocular drug delivery systems suffer from rapid drainage, intractable corneal permeation and short dosing intervals. Transcorneal drug permeation could increase the drug availability and efficiency in the aqueous humor. The aim of this study was to develop and optimize nanostructured formulations to provide accurate doses, long contact time and enhanced drug permeation. Nanovesicles were designed based on Box-Behnken model and prepared using the thin film hydration technique. The formed nanodispersions were evaluated by measuring the particle size, polydispersity index, zeta potential, entrapment efficiency and gelation temperature. The obtained desirability values were utilized to develop an optimized nanostructured in situ gel and insert. The optimized formulations were imaged by transmission and scanning electron microscopes. In addition, rheological characters, in vitro drug diffusion, ex vivo and in vivo permeation and safety of the optimized formulation were investigated. The optimized insert formulation was found to have a relatively lower viscosity, higher diffusion, ex vivo and in vivo permeation, when compared to the optimized in situ gel. So, the lyophilized nanostructured insert could be considered as a promising carrier and transporter for drugs across the cornea with high biocompatibility and effectiveness.

  14. Tailored nanostructured platforms for boosting transcorneal permeation: Box–Behnken statistical optimization, comprehensive in vitro, ex vivo and in vivo characterization

    Science.gov (United States)

    Elsayed, Ibrahim; Sayed, Sinar

    2017-01-01

    Ocular drug delivery systems suffer from rapid drainage, intractable corneal permeation and short dosing intervals. Transcorneal drug permeation could increase the drug availability and efficiency in the aqueous humor. The aim of this study was to develop and optimize nanostructured formulations to provide accurate doses, long contact time and enhanced drug permeation. Nanovesicles were designed based on Box–Behnken model and prepared using the thin film hydration technique. The formed nanodispersions were evaluated by measuring the particle size, polydispersity index, zeta potential, entrapment efficiency and gelation temperature. The obtained desirability values were utilized to develop an optimized nanostructured in situ gel and insert. The optimized formulations were imaged by transmission and scanning electron microscopes. In addition, rheological characters, in vitro drug diffusion, ex vivo and in vivo permeation and safety of the optimized formulation were investigated. The optimized insert formulation was found to have a relatively lower viscosity, higher diffusion, ex vivo and in vivo permeation, when compared to the optimized in situ gel. So, the lyophilized nanostructured insert could be considered as a promising carrier and transporter for drugs across the cornea with high biocompatibility and effectiveness. PMID:29133980

  15. Tritium permeation in fusion reactors: INTOR

    International Nuclear Information System (INIS)

    Baskes, M.I.; Bauer, W.; Kerst, R.A.; Swansiger, W.A.; Wilson, K.L.

    1981-12-01

    Tritium permeation through the first wall of advanced fusion reactors is examined. A fraction of the D-T which bombards the first wall as charge exchange neutral particles will permeate through the first wall and enter the coolant. Calculations of the steady state permeation rate for the US INTOR Tokamak design result in values of less than or equal to 0.002 grams of tritium per day under the most favorable conditions. For unfavorable surface conditions the rate is greater than or equal to 0.1 g/day. The magnitude of these permeation rates is critically dependent on the temperatures and surface conditions of the wall. The introduction of permeation barriers at the wall-coolant interface can significantly reduce permeation rates and hence may be desirable for reactor applications

  16. Effects of radiochemical impurities on measurements of transfer constants for [14C]sucrose permeation of normal and injured blood-brain barrier of rats.

    Science.gov (United States)

    Preston, E; Foster, D O; Mills, P A

    1998-01-01

    Radiolabeled sucrose is often used to assess blood-brain barrier (BBB) injury in the rat, but published transfer constants (K[i]s) for sucrose permeation of the intact BBB (control K[i]s) are highly discrepant. A potential problem with the commonly used tracer, [14C(U)]sucrose, is radiolytic generation, preuse, of radiocontaminants that might readily penetrate the BBB. How such contaminants might affect measurements of sucrose K(i)s was examined for both the intact and the ischemically injured BBB. Three stocks of [14C(U)]sucrose were studied: newly purchased ("new"), 4-year-old, and 7-year-old. A high purity (99.9%) "new" and a 2-year-old stock of [3H(fructose-1)]sucrose were also tested. Pentobarbital-anesthetized male Sprague-Dawley rats were injected i.v. with each tracer separately (six to eight rats) and K(i)s in five brain regions were measured by the multiple-time graphical method. The "new" 14C-, "new" 3H-, and 2-year-old 3H-sucrose yielded comparable K(i)s , ranging from 1.2 +/- 0.1 to 2.4 +/- 0.3 nl x g(-1) x s(-1) (mean +/- SE) across the regions. The two old stocks of 14C-sucrose yielded significantly higher regional K(i)s : 5.1-6.3 (4-year-old) and 8.4-9.7 (7-year-old). Thin-layer chromatography of the three 14C-tracers revealed that each contained radioimpurities (ca. 2% in both the "new" and 4-year-old, and 9% in the 7-year-old), but that the old stocks contained larger amounts of relatively mobile (more lipophilic) impurities, which can be suspected as the main cause of the elevated K(i)s obtained. Additional rats were subjected to 10 min of cerebral ischemia, which effects a delayed BBB injury, and 6 h later the "new" 3H- and the 4-year-old 14C-sucrose were injected together. The K(i)s for both tracers were elevated by like, absolute amounts (deltaK[i]s), but by very different percentages, over their disparate baseline values in uninjured rats (for striatum and hippocampus, the most injured regions, deltaK(i)s were 3.9 to 4.4 nl x g[-1] x s[-1

  17. Mechanisms of oxygen permeation through plastic films and barrier coatings

    Science.gov (United States)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian

    2017-10-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.

  18. Mechanisms of oxygen permeation through plastic films and barrier coatings

    International Nuclear Information System (INIS)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Dahlmann, Rainer; Hopmann, Christian; Mitschker, Felix; Awakowicz, Peter

    2017-01-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µ m) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities. (paper)

  19. Tritium permeation characterization of Al{sub 2}O{sub 3}/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feilong; Xiang, Xin; Lu, Guangda; Zhang, Guikai, E-mail: zhangguikai@caep.cn; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-09-15

    Accurate tritium transport properties of prospective tritium permeation barriers (TPBs) are essential to tritium systems in fusion reactors. By passing a temperature and rate-controlled sweeping gas over specimen surfaces to carry the permeated tritium to an ion chamber, the gas-driven permeation of tritium has been performed on 321 type stainless steel containers with Al{sub 2}O{sub 3}/FeAl barriers, to determine the T-permeation resistant performance and mechanism of the barrier. The tritium permeability of the Al{sub 2}O{sub 3}/FeAl coated container was reduced by 3 orders of magnitude at 500–700 °C by contrast with that of the bare one, which meets the requirement of the tritium permeation reduction factor (PRF) of TPBs for tritium operating components in the CN-HCCB TBM. The Al{sub 2}O{sub 3}/FeAl barrier resists the tritium permeation by the diffusion in the bulk substrate at a limited number of defect sites with an effective area and thickness, suggesting that the TPB quality is a very important factor for efficient T-permeation resistance. - Highlights: • T-permeation has been measured on bare and coated type 321 SS containers. • Al{sub 2}O{sub 3}/FeAl coating give a reduction of T-permeability of 3 orders of magnitude. • Mechanism of Al{sub 2}O{sub 3}/FeAl barrier resisting T-permeation has obtained. • Quality of TPB is a very important factor for efficient T-permeating reduction.

  20. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs.

    Science.gov (United States)

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-11-01

    Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68

    International Nuclear Information System (INIS)

    El Hajjami, A.; Gigandet, M.P.; De Petris-Wery, M.; Catonne, J.C.; Duprat, J.J.; Thiery, L.; Raulin, F.; Starck, B.; Remy, P.

    2008-01-01

    The inhibition of hydrogen permeation and barrier effect by zinc-nickel plating was investigated using the Devanathan-Stachurski permeation technique. The hydrogen permeation and hydrogen diffusion for the zinc-nickel (12-15%) plating on steel XC68 is compared with zinc and nickel. Hydrogen permeation and hydrogen diffusion were followed as functions of time at current density applied (cathodic side) and potential permanent (anodic side). The hydrogen permeation inhibition for zinc-nickel is intermediate to that of nickel and zinc. This inhibition was due to nickel-rich layer effects at the Zn-Ni alloy/substrate interface, is shown by GDOES. Zinc-nickel plating inhibited the hydrogen diffusion greater as compared to zinc. This diffusion resistance was due to the barrier effect caused by the nickel which is present at the interface and transformed the hydrogen atomic to Ni 2 H compound, as shown by GIXRD.

  2. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68

    Energy Technology Data Exchange (ETDEWEB)

    El Hajjami, A. [Institut UTINAM, UMR CNRS 6213, Sonochimie et Reactivite des Surfaces, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Coventya S.A.S., 51 rue Pierre, 92588 Clichy Cedex (France); Gigandet, M.P. [Institut UTINAM, UMR CNRS 6213, Sonochimie et Reactivite des Surfaces, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: marie-pierre.gigandet@univ-fcomte.fr; De Petris-Wery, M. [Institut Universitaire de Technologie d' Orsay, Universite Paris XI, Plateau de Moulon, 91400 Orsay (France); Catonne, J.C. [Professeur Honoraire du Conservatoire national des arts et metiers (CNAM), Paris (France); Duprat, J.J.; Thiery, L.; Raulin, F. [Coventya S.A.S., 51 rue Pierre, 92588 Clichy Cedex (France); Starck, B.; Remy, P. [Lisi Automotive, 28 faubourg de Belfort, BP 19, 90101 Delle Cedex (France)

    2008-12-30

    The inhibition of hydrogen permeation and barrier effect by zinc-nickel plating was investigated using the Devanathan-Stachurski permeation technique. The hydrogen permeation and hydrogen diffusion for the zinc-nickel (12-15%) plating on steel XC68 is compared with zinc and nickel. Hydrogen permeation and hydrogen diffusion were followed as functions of time at current density applied (cathodic side) and potential permanent (anodic side). The hydrogen permeation inhibition for zinc-nickel is intermediate to that of nickel and zinc. This inhibition was due to nickel-rich layer effects at the Zn-Ni alloy/substrate interface, is shown by GDOES. Zinc-nickel plating inhibited the hydrogen diffusion greater as compared to zinc. This diffusion resistance was due to the barrier effect caused by the nickel which is present at the interface and transformed the hydrogen atomic to Ni{sub 2}H compound, as shown by GIXRD.

  3. Permeation of Mixed Penetrants through Glassy Polymer Membranes.

    Science.gov (United States)

    1985-03-15

    and LOPE. Also, ESCA was used in conjunction with plasma etching to determine the effects of the gas phase fluorine concentration and fluorination...at 35 3C. ARD-AISS5 65 PERMEATION OF MIXED PENETRANTS THROUGH GLASSY POLYMER 213 MENBRANES (U) NORTH CAROLINA STATE UNIV AT RALEIGH R T CHERN ET AL. 15

  4. Implanted-tritium permeation experiments

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Holland, D.F.; Casper, L.A.; Hsu, P.Y.; Miller, L.G.; Schmunk, R.E.; Watts, K.D.; Wilson, C.J.; Kershner, C.J.; Rogers, M.L.

    1982-04-01

    In fusion reactors, charge exchange neutral atoms of tritium coming from the plasma will be implanted into the first wall and other interior structures. EG and G Idaho is conducting two experiments to determine the magnitude of permeation into the coolant streams and the retention of tritium in those structures. One experiment uses an ion gun to implant deuterium. The ion gun will permit measurements to be made for a variety of implantation energies and fluxes. The second experiment utilizes a fission reactor to generate a tritium implantation flux by the 3 He(n,p) 3 H reaction. This experiment will simulate the fusion reactor radiation environment. We also plan to verify a supporting analytical code development program, in progress, by these experiments

  5. Permeation Tests on Polypropylene Fiber Materials

    Science.gov (United States)

    2018-03-16

    Permeation Tests on Polypropylene Fiber Materials Brandy J. White Martin H. Moore Brian J. Melde Laboratory for the Study of Molecular Interfacial...ABSTRACT Permeation Tests on Polypropylene Fiber Materials Brandy J. White, Martin H. Moore, Brian J. Melde Center for Bio/Molecular Science

  6. Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Saura Cardoso, Vinicius, E-mail: vscfisio@ufpi.edu.br [Research Center in Biodiversity and Biotechnology, Biotec, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Physiotherapy Department, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Carvalho Filgueiras, Marcelo de; Medeiros Dutra, Yago; Gomes Teles, Ramon Handerson [Physiotherapy Department, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Morphology and Muscle Physiology Laboratory, LAMFIM, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Rodrigues de Araújo, Alyne [Research Center in Biodiversity and Biotechnology, Biotec, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí (Brazil); Primo, Fernando Lucas [Faculdade de Ciências Farmacêuticas, UNESP, Universidade Estadual Paulista, Campus de Araraquara, Departamento de Bioprocessos e Biotecnologia, 14800903 Araraquara, São Paulo (Brazil); Mafud, Ana Carolina; Batista, Larissa Fernandes; Mascarenhas, Yvonne Primerano [Institute of Physics of São Carlos, IFSC, University of São Paulo, USP, 13566590 São Carlos, SP (Brazil); and others

    2017-05-01

    Collagen is considered the most abundant protein in the animal kingdom, comprising 30% of the total amount of proteins and 6% of the human body by weight. Studies that examine the interaction between silver nanoparticles and proteins have been highlighted in the literature in order to understand the stability of the nanoparticle system, the effects observed in biological systems, and the appearance of new chemical pharmaceutical products. The objective of this study was to analyze the behavior of silver nanoparticles stabilized with collagen (AgNPcol) and to check the skin permeation capacity and action in paw edema induced by carrageenan. AgNPcol synthesis was carried out using solutions of reducing agent sodium borohydride (NaBH{sub 4}), silver nitrate (AgNO{sub 3}) and collagen. Characterization was done by using dynamic light scattering (DLS) and X-ray diffraction (XRD) and AFM. Cellular viability testing was performed by using flow cytometry in human melanoma cancer (MV3) and murine fibroblast (L929) cells. The skin permeation study was conducted using a Franz diffusion cell, and the efficiency of AgNPcol against the formation of paw edema in mice was evaluated. The hydrodynamic diameter and zeta potential of AgNPcol were 140.7 ± 7.8 nm and 20.1 ± 0.7 mV, respectively. AgNPcol failed to induce early apoptosis, late apoptosis, and necrosis in L929 cells; however, it exhibited enhanced toxicity in cancer cells (MV3) compared to normal cells (L929). AgNPcol demonstrated increased toxicological effects in cancer MV3 cells, promoting skin permeation, and preventing paw edema. - Highlights: • Silver nanoparticles were synthesized with type I collagen (AgNPcol). • AgNPcol which was characterized by XRD and DLS. • AgNPcol exhibited enhanced toxicity in cancer cells. • The efficiency of the AgNPcol against the paw edema was evaluated.

  7. Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition

    International Nuclear Information System (INIS)

    Saura Cardoso, Vinicius; Carvalho Filgueiras, Marcelo de; Medeiros Dutra, Yago; Gomes Teles, Ramon Handerson; Rodrigues de Araújo, Alyne; Primo, Fernando Lucas; Mafud, Ana Carolina; Batista, Larissa Fernandes; Mascarenhas, Yvonne Primerano

    2017-01-01

    Collagen is considered the most abundant protein in the animal kingdom, comprising 30% of the total amount of proteins and 6% of the human body by weight. Studies that examine the interaction between silver nanoparticles and proteins have been highlighted in the literature in order to understand the stability of the nanoparticle system, the effects observed in biological systems, and the appearance of new chemical pharmaceutical products. The objective of this study was to analyze the behavior of silver nanoparticles stabilized with collagen (AgNPcol) and to check the skin permeation capacity and action in paw edema induced by carrageenan. AgNPcol synthesis was carried out using solutions of reducing agent sodium borohydride (NaBH 4 ), silver nitrate (AgNO 3 ) and collagen. Characterization was done by using dynamic light scattering (DLS) and X-ray diffraction (XRD) and AFM. Cellular viability testing was performed by using flow cytometry in human melanoma cancer (MV3) and murine fibroblast (L929) cells. The skin permeation study was conducted using a Franz diffusion cell, and the efficiency of AgNPcol against the formation of paw edema in mice was evaluated. The hydrodynamic diameter and zeta potential of AgNPcol were 140.7 ± 7.8 nm and 20.1 ± 0.7 mV, respectively. AgNPcol failed to induce early apoptosis, late apoptosis, and necrosis in L929 cells; however, it exhibited enhanced toxicity in cancer cells (MV3) compared to normal cells (L929). AgNPcol demonstrated increased toxicological effects in cancer MV3 cells, promoting skin permeation, and preventing paw edema. - Highlights: • Silver nanoparticles were synthesized with type I collagen (AgNPcol). • AgNPcol which was characterized by XRD and DLS. • AgNPcol exhibited enhanced toxicity in cancer cells. • The efficiency of the AgNPcol against the paw edema was evaluated.

  8. Electrical insulator assembly with oxygen permeation barrier

    Science.gov (United States)

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  9. Tritium permeation model for plasma facing components

    Science.gov (United States)

    Longhurst, G. R.

    1992-12-01

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included.

  10. Tritium permeation model for plasma facing components

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1992-12-01

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included

  11. Effect of various enhancers on transdermal penetration of indomethacin and urea, and relationship between penetration parameters and enhancement factors.

    Science.gov (United States)

    Ogiso, T; Iwaki, M; Paku, T

    1995-04-01

    The enhancing capacity of various chemicals, which are widely recognized as enhancers, for the transdermal penetration into full-thickness rat skin of a model lipophilic drug [indomethacin (IND)] and a hydrophilic permeant (urea) was estimated by an in vitro technique. In addition, the fluidity of the stratum corneum lipids, the partitioning of IND into skin, the lipid (ceramides) extraction from the stratum corneum by enhancers, and the IND solubility in enhancer vehicle were measured and related to the enhancing capacity. In vitro permeation experiments with hairless rat skin unequivocally revealed that the enhancers varied in abilities to enhance the fluxes of both agents. Laurocapram, isopropylmyristate (IPM), sodium oleate, and cineol increased fluxes of both agents to a great extent, but N-methyl-2-pyrrolidone (NMP), N,N-diethyl-m-tolamide (DEET), and oleyl oleate were less effective acclerants. Many enhancers increased the fluidity of the lipids [with a threshold of approximately 0.6-0.8 ns at 37 degrees C in the rotational correlation time (tau c)], the skin partitioning of IND, the extraction of ceramides from the cornified cells, and the thermodynamic activity of IND in vehicle (calculated from the solubility) to varying extents. A good correlation was observed between the increase in the fluidity of stratum corneum lipids and the partitioning of IND into skin, between the increase in the fluidity and the flux or the decrease in lag time for IND, between the removal of ceramides and the skin partitioning of IND, and between the removal of ceramides and the flux of urea (p < 0.05 in all cases).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. The formation of hydrogen permeation barriers on steels by aluminising

    Science.gov (United States)

    Forcey, K. S.; Ross, D. K.; Wu, C. H.

    1991-06-01

    An extensive investigation has been carried out into the effectiveness of aluminised layers as permeation barriers on AISI 316L stainless and DIN 1.4914 martensitic steels. The study involved measurement of the hydrogen permeation rate through commercially aluminised steel discs of thicknesses in the range 1-1.6 mm, at temperatures between 250 and 600 °C and for an upstream hydrogen pressure of 10 5 Pa. The composition and structure of the aluminide layers were investigated by a number of techniques such as SEM, electron beam microprobe and X-ray diffraction. Accelerator based techniques such as RBS and NRA were employed to study the top micron or so of the surfaces of the samples. By these techniques it was found that the effectiveness of the permeation barrier depended on the formation of a thin surface oxide layer consisting of Al 2O 3. It was found that the permeation rate through the aluminised steels could be reduced by 3-4 orders of magnitude by forming a surface oxide layer up to a micron or so in thickness.

  13. Assessment of permeation of lipoproteins in human carotid tissue

    Science.gov (United States)

    Ghosn, Mohamad G.; Syed, Saba H.; Leba, Michael; Morrisett, Joel D.; Tuchin, Valery V.; Larin, Kirill V.

    2010-02-01

    Cardiovascular disease is among the leading causes of death in the United States. Specifically, atherosclerosis is an increasingly devastating contributor to the tally and has been found to be a byproduct of arterial permeability irregularities in regards to lipoprotein penetration. To further explore arterial physiology and molecular transport, the imaging technique of Optical Coherence Tomography (OCT) was employed. With OCT, the permeation of glucose (MW = 180 Da), low density lipoprotein (LDL; MW = 2.1 × 106 Da), and high density lipoprotein (HDL; MW = 2.5 × 105 Da) in human carotid tissue was studied to determine the effect of different molecular characteristics on permeation in atherosclerotic tissues. The permeability rates calculated from the diffusion of the molecular agents into the abnormal carotid tissue samples is compared to those of normal, healthy tissue. The results show that in the abnormal tissue, the permeation of agents correlate to the size constraints. The larger molecules of LDL diffuse the slowest, while the smallest molecules of glucose diffuse the fastest. However, in normal tissue, LDL permeates at a faster rate than the other two agents, implying the existence of a transport mechanism that facilitates the passage of LDL molecules. These results highlight the capability of OCT as a sensitive and specific imaging technique as well as provide significant information to the understanding of atherosclerosis and its effect on tissue properties.

  14. In vitro permeation of palladium powders through intact and damaged human skin.

    Science.gov (United States)

    Crosera, Matteo; Mauro, Marcella; Bovenzi, Massimo; Adami, Gianpiero; Baracchini, Elena; Maina, Giovanni; Larese Filon, Francesca

    2018-05-01

    The use of palladium (Pd) has grown in the last decades, commonly used in automotive catalytic converters, jewellery and dental restorations sectors. Both general and working population can be exposed to this metal, which may act as skin sensitizer. This study investigated in vitro palladium powders permeation through excised intact and damaged human skin using the Franz diffusion cell method and the effect of rapid skin decontamination using sodium laureth-sulphate. 1 mL of a 10 min sonicated suspension made of 2.5 g of Pd powder in 50 mL synthetic sweat at pH 4.5 and room temperature was applied to the outer surface of the skin membranes for 24 h. Pd permeation, assessed by ICP-MS, was higher when damaged skin was used (p = 0.03). Final flux permeation values and lag times were 0.02 ± 0.01 μg cm -2  h -1 and 6.00 ± 3.95 h for intact, and 0.10 ± 0.02 μg cm -2  h -1 and 2.05 ± 1.49 h for damaged skin samples, respectively. Damaged skin protocol enhances Pd skin penetration inside dermal layer (p = 0.04), thus making the metal available for systemic uptake. Pd penetration (p = 0.02) and permeation (p = 0.012) through intact skin decreased significantly when a cleaning procedure was applied. This study demonstrates that after skin exposure to Pd powders a small permeation of the metal happen both through intact and damaged skin and that an early decontamination with a common cleanser can significantly decrease the final amount of metal available forsystemic uptake. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The influence of pH on the in vitro permeation of rhodium through human skin.

    Science.gov (United States)

    Jansen Van Rensburg, Sané; Franken, Anja; Du Plessis, Jeanetta; Du Plessis, Johannes Lodewykus

    2017-06-01

    Workers in precious metals refineries are at risk of exposure to salt compounds of the platinum group metals through inhalation, as well as through the skin. Rhodium salt permeation through the skin has previously been proven using rhodium trichloride (RhCl 3 ) dissolved in synthetic sweat at a pH of 6.5. However, the skin surface pH of refinery workers may be lower than 6.5. The aim of this study was to investigate the influence of pH 6.5 and 4.5 on the in vitro permeation of rhodium through intact Caucasian skin using Franz diffusion cells. A concentration of 0.3 mg mL -1 rhodium was used and analyses were performed using inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. Results indicated a cumulative increase in permeation over 24 h. Rhodium permeation after 12 h was significantly greater at pH 4.5 (1.56 ± 0.24 ng cm -2 ) than at 6.5 (0.85 ± 0.13 ng cm -2 ; p = 0.02). At both pH levels, there was a highly significant difference ( p rhodium remaining in the skin (1428.68 ± 224.67 ng cm -2 at pH 4.5 and 1029.90 ± 115.96 ng cm -2 at pH 6.5) and the mass that diffused through (0.88 ± 0.17 ng cm -2 at pH 4.5 and 0.62 ± 0.10 ng cm -2 at pH 6.5). From these findings, it is evident that an acidic working environment or low skin surface pH may enhance permeation of rhodium salts, contributing to sensitization and adverse health effects.

  16. Uses and evaluation methods of potential hydrogen permeation barriers for nuclear reactor materials

    International Nuclear Information System (INIS)

    Noga, J.O.; Piercy, G.R.; Bowker, J.T.

    1985-07-01

    This report summarizes results on the use of coatings as hydrogen permeation barriers on nuclear reactor component materials. Two classes of base materials were considered, exothermic hydrogen absorbers and endothermic hydrogen absorbers. The results of the tests indicate that substantial reductions in the amount of hydrogen absorbed by a metal can be achieved through the use of hydrogen permeation barrier coatings. Gold was determined to provide an effective hydrogen permeation barrier on Zr-2-1/2 Nb pressure tube material. Tin was determined to be a suitable hydrogen permeation barrier when applied on AISI 410 stainless steel and iron. Both gas phase and electrochemical permeation techniques were used to determine hydrogen permeabilities through coatings and base materials

  17. Design and characterization of submicron formulation for a poorly soluble drug: the effect of Vitamin E TPGS and other solubilizers on skin permeability enhancement.

    Science.gov (United States)

    Ghosh, Indrajit; Michniak-Kohn, Bozena

    2012-09-15

    In transdermal drug delivery systems (TDDS), it is a challenge to achieve stable and prolonged high permeation rates across the skin since the concentrations of the drug dissolved in the matrix have to be high in order to maintain zero order release kinetics. Several attempts have been reported to improve the permeability of poorly soluble drug compounds using supersaturated systems, however, due to thermodynamic challenges, there was a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of drug crystals at the submicron/nano range in presence of different solubilizers to improve the permeation rate. Effect of several solubilizers, e.g. Pluronic F-127, Vitamin E TPGS, propylene glycol were studied on the submicron suspension systems of ibuprofen as a model drug. Various stabilizers such as hydroxylpropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were examined to evaluate their crystal inhibitory effects on particle growth of the drug compound at submicron range. The overall permeation enhancement process through the skin seems to be influenced by the presence of solubilizers and also the presence of submicron drug crystal. The most promising stable formulation was developed with Vitamin E TPGS+HPMC submicron suspension, which produced higher permeation rate compared to other vehicles. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. SAMPA: A free software tool for skin and membrane permeation data analysis.

    Science.gov (United States)

    Bezrouk, Aleš; Fiala, Zdeněk; Kotingová, Lenka; Krulichová, Iva Selke; Kopečná, Monika; Vávrová, Kateřina

    2017-10-01

    Skin and membrane permeation experiments comprise an important step in the development of a transdermal or topical formulation or toxicological risk assessment. The standard method for analyzing these data relies on the linear part of a permeation profile. However, it is difficult to objectively determine when the profile becomes linear, or the experiment duration may be insufficient to reach a maximum or steady state. Here, we present a software tool for Skin And Membrane Permeation data Analysis, SAMPA, that is easy to use and overcomes several of these difficulties. The SAMPA method and software have been validated on in vitro and in vivo permeation data on human, pig and rat skin and model stratum corneum lipid membranes using compounds that range from highly lipophilic polycyclic aromatic hydrocarbons to highly hydrophilic antiviral drug, with and without two permeation enhancers. The SAMPA performance was compared with the standard method using a linear part of the permeation profile and a complex mathematical model. SAMPA is a user-friendly, open-source software tool for analyzing the data obtained from skin and membrane permeation experiments. It runs on a Microsoft Windows platform and is freely available as a Supporting file to this article. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. In vitro-in vivo correlation in skin permeation.

    Science.gov (United States)

    Mohammed, D; Matts, P J; Hadgraft, J; Lane, M E

    2014-02-01

    In vitro skin permeation studies have been used extensively in the development and optimisation of delivery of actives in vivo. However, there are few reported correlations of such in vitro studies with in vivo data. The aim of this study was to investigate the skin permeation of a model active, niacinamide, both in vitro and in vivo. Conventional diffusion cell studies were conducted in human skin to determine niacinamide permeation from a range of vehicles which included dimethyl isosorbide (DMI), propylene glycol (PG), propylene glycol monolaurate (PGML), N-methyl 2-pyrrolidone (NMP), Miglyol 812N® (MG), and mineral oil (MO). Single, binary or ternary systems were examined. The same vehicles were subsequently examined to investigate niacinamide delivery in vivo. For this proof-of-concept study one donor was used for the in vitro studies and one volunteer for the in vivo investigations to minimise biovariability. Analysis of in vitro samples was conducted using HPLC and in vivo uptake of niacinamide was evaluated using Confocal Raman spectroscopy (CRS). The amount of niacinamide permeated through skin in vitro was linearly proportional to the intensity of the niacinamide signal determined in the stratum corneum in vivo. A good correlation was observed between the signal intensities of selected vehicles and niacinamide signal intensity. The findings provide further support for the use of CRS to monitor drug delivery into and across the skin. In addition, the results highlight the critical role of the vehicle and its disposition in skin for effective dermal delivery.

  20. Hydrogen permeation behavior through F82H at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, S.; Katayama, K.; Shimozori, M.; Fukada, S. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kyushu (Japan); Ushida, H. [Energy Science and Engineering, Faculty of Engineering, Kyushu University, Kyushu (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur (Malaysia)

    2015-03-15

    F82H is a primary candidate of structural material and coolant pipe material in a blanket of a fusion reactor. Understanding tritium permeation behavior through F82H is important. In a normal operation of a fusion reactor, the temperature of F82H will be controlled below 550 C. degrees because it is considered that F82H can be used up to 30,000 hours at 550 C. degrees. However, it is necessary to assume the situation where F82H is heated over 550 C. degrees in a severe accident. In this study, hydrogen permeation behavior through F82H was investigated in the temperature range from 500 to 800 C. degrees. In some cases, water vapor was added in a sample gas to investigate an effect of water vapor on hydrogen permeation. The permeability of hydrogen in the temperature range from 500 to 700 C. degrees agreed well with the permeability reported by E. Serra et al. The degradation of the permeability by water vapor was not observed. After the hydrogen permeation reached in a steady state at 700 C. degrees, the F82H sample was heated to 800 C. degrees. The permeability of hydrogen through F82H sample which was once heated up to 800 C. degrees was lower than that of the original one. (authors)

  1. Development of lidocaine gels for enhanced local anesthetic action.

    Science.gov (United States)

    Shin, Sang-Chul; Cho, Cheong-Weon; Yang, Kyu-Ho

    2004-12-09

    In relieving local pains, lidocaine, one of ester type local anesthetics, has been used. To develop the lidocaine gels of enhanced local anesthetic effects, hydroxypropyl methylcellulose (HPMC) based bioadhesive polymer gel containing an enhancer was formulated. As the drug concentration in the gels increased up to 3%, the permeation rate of drug linearly increased, thereafter reaching a plateau. As the temperature of surrounding solutions increased, the permeation of drug increased. The activation energy of drug permeation was 3.29 kcal/mol for lidocaine. The permeation rate of drug through skin was studied using various enhancers, such as glycols, non-ionic surfactants, and bile salts. Among the enhancers studied, diethylene glycol showed the greatest enhancing effects on drug permeation through skin. The analgesic activity was examined using a tail-flick analgesimeter. In the area under the efficacy curve (AUEC) of the rat-tail flick tests, lidocaine gel containing diethylene glycol showed about 3.89-fold increase in analgesic activity compared with the control. The addition of vasoconstrictor in the gels prolonged the analgesic effects. The result of this study supports that the bioadhesive gel with efficient anesthetic effect could be developed using HPMC with combination of enhancer and vasoconstrictor.

  2. Fabrication of lipidic nanocarriers of loratadine for facilitated intestinal permeation using multivariate design approach.

    Science.gov (United States)

    Verma, Samridhi; Singh, Sandeep Kumar; Verma, Priya Ranjan Prasad

    2016-01-01

    In this investigation, multivariate design approach was employed to develop self-nanoemulsifying drug delivery system (SNEDDS) of loratadine and to exploit its potential for intestinal permeability. Drug solubility was determined in various vehicles and existence of self-nanoemulsifying region was evaluated by phase diagram studies. The influence of formulation variables X1 (Capmul MCM C8) and X2 (Solutol HS15) on SNEDDS was assessed for mean globule sizes in different media (Y1-Y3), emulsification time (Y4) and drug-release parameters (Y5-Y6), to improve quality attributes of SNEDDS. Significant models were generated, statistically analyzed by analysis of variance and validated using the residual and leverage plots. The interaction, contour and response plots explicitly demonstrated the influence of one factor on the other and displayed trend of factor-effect on responses. The pH-independent optimized formulation was obtained with appreciable global desirability (0.9266). The strenuous act of determining emulsification time is innovatively replaced by the use of oil-soluble dye to produce visibly distinct globules that otherwise may be deceiving. TEM images displayed non-aggregated state of spherical globules (size < 25 nm) and also revealed the structural transitions occurring during emulsification. Optimized formulation exhibited non-Newtonian flow justified by the model-fit and also presented the stability to dilution effects and thermodynamic stress testing. The ex vivo permeation study using confocal laser scanning microscopy indicate strong potential of rhodamine 123-loaded loratadine-SNEDDS to inhibit P-gp efflux and facilitate intestinal permeation. To conclude, the effectiveness of design yields a stable optimized SNEDDS with enhanced permeation potential, which is expected to improve oral bioavailability of loratadine.

  3. Towards a unified model of passive drug permeation I: origins of the unstirred water layer with applications to ionic permeation.

    Science.gov (United States)

    Ghosh, Avijit; Scott, Dennis O; Maurer, Tristan S

    2014-02-14

    In this work, we provide a unified theoretical framework describing how drug molecules can permeate across membranes in neutral and ionized forms for unstirred in vitro systems. The analysis provides a self-consistent basis for the origin of the unstirred water layer (UWL) within the Nernst-Planck framework in the fully unstirred limit and further provides an accounting mechanism based simply on the bulk aqueous solvent diffusion constant of the drug molecule. Our framework makes no new assumptions about the underlying physics of molecular permeation. We hold simply that Nernst-Planck is a reasonable approximation at low concentrations and all physical systems must conserve mass. The applicability of the derived framework has been examined both with respect to the effect of stirring and externally applied voltages to measured permeability. The analysis contains data for 9 compounds extracted from the literature representing a range of permeabilities and aqueous diffusion coefficients. Applicability with respect to ionized permeation is examined using literature data for the permanently charged cation, crystal violet, providing a basis for the underlying mechanism for ionized drug permeation for this molecule as being due to mobile counter-current flow. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Permeation of deuterium implanted into vanadium alloys

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1986-05-01

    Permeation of deuterium through the vanadium alloy, V-15Cr-5Ti, was investigated using 3-keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurements of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5-mm thick specimens heated to tempertures from 623 to 823 0 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). Analyses of these measurements indicate that for the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This corresponds to approximately 1000 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates D = 1.4 x 10 -8 exp(-.11 eV/kT) (m 2 /s)

  5. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  6. Permeation of Ionic Liquids through the skin

    Directory of Open Access Journals (Sweden)

    Ana Júlio

    2017-12-01

    Full Text Available Alternative forms of drug delivery such as delivery through the skin, have been developed to explore other routes. However, the incorporation of poorly soluble or partially insoluble drugs into these delivery systems represents a major problem. Ionic liquids (ILs may be incorporated in aqueous, oily or hydroalcoholic solutions and thus, may be used as excipients in drug delivery systems to increase/improve the topical and transdermal drug delivery. However, it is fundamental to consider the cytotoxicity of these salts and it is also crucial to evaluate if these compounds permeate through the skin. Herein, three imidazole-based ILs: [C2mim][Br], [C4mim][Br] and [C6mim][Br], were synthesized and each IL was incorporated within caffeine saturated solutions. Permeation studies of the active (caffeine in these solutions were performed to evaluate the amount of IL that permeated through the porcine ear skin in the presence of the active. To achieve this, gravimetric studies of the receptor compartment were performed. Results showed that the more lipophilic IL [C6mim][Br] presented the highest permeation through the skin. The permeation is dependent upon the size of the alkyl chain of the IL, and as more than 60% of the ILs permeate is it vital to consider the cytotoxicity of these salts when considering their incorporation in topical systems.

  7. Changes in chemical permeation of disposable latex, nitrile, and vinyl gloves exposed to simulated movement.

    Science.gov (United States)

    Phalen, Robert N; Le, Thi; Wong, Weng Kee

    2014-01-01

    Glove movement can affect chemical permeation of organic compounds through polymer glove products. However, conflicting reports make it difficult to compare the effects of movement on chemical permeation through commonly available glove types. The aim of this study was to evaluate the effect of movement on chemical permeation of an organic solvent through disposable latex, nitrile, and vinyl gloves. Simulated whole-glove permeation testing was conducted using ethyl alcohol and a previously designed permeation test system. With exposure to movement, a significant decrease (p ≤ 0.001) in breakthrough time (BT) was observed for the latex (-23%) and nitrile gloves (-31%). With exposure to movement, only the nitrile glove exhibited a significant increase (p ≤ 0.001) in steady-state permeation rate (+47%) and cumulative permeation at 30 min (+111%). Even though the nitrile glove provided optimum chemical resistance against ethyl alcohol, it was most affected by movement. With exposure to movement, the latex glove was an equivalent option for overall worker protection, because it was less affected by movement and the permeation rate was lower than that of the nitrile glove. In contrast, the vinyl glove was the least affected by movement, but did not provide adequate chemical resistance to ethyl alcohol in comparison with the nitrile and latex gloves. Glove selection should take movement and polymer type into account. Some glove polymer types are less affected by movement, most notably the latex glove in this test. With nitrile gloves, at least a factor of three should be used when attempting to assign a protection factor when repetitive hand motions are anticipated. Ultimately, the latex gloves outperformed nitrile and vinyl in these tests, which evaluated the effect of movement on chemical permeation. Future research should aim to resolve some of the observed discrepancies in test results with latex and vinyl gloves.

  8. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases

  9. Facile and cost-effective preparation of PVA/modified calcium carbonate nanocomposites via ultrasonic irradiation: Application in adsorption of heavy metal and oxygen permeation property.

    Science.gov (United States)

    Mallakpour, Shadpour; Khadem, Elham

    2017-11-01

    This work is focused on the fabrication and determination of physicochemical behaviors of new poly(vinyl alcohol) (PVA) nanocomposites (NCs) containing various contents of calcium carbonate (CC) nanoparticles modified with γ-aminopropyl triethoxy silane (ATS) (henceforth designated as CC-ATS) which could be a crucial treatment for their application as gas barrier to O 2 gas and uptake of metal ions in waste waters. Samples were produced through the solution casting method under ultrasound irradiation. Thermal and mechanical performances were also evaluated for all ultrasonically synthesized nanocomposites and the results indicated that thermal and mechanical stability are dramatically enhanced by addition of a small amount of modified CC-ATS within PVA up to 5wt% and higher amounts has low effect on the composite properties. The result of oxygen gas permeability of PVA showed a 25.44% reduction by adding of 5wt% of CC-ATS into polymer matrix. Experimental adsorption isotherm data indicated that PVA NC has more efficiency for Cu(II) adsorption relative to pure PVA and well simulated by Langmuir model with maximum adsorption capacity of 45.45mgg -1 . Moreover, study of sorption kinetic indicated that the solute adsorption on PVA/CC-ATS NC 5wt% was well modeled using the pseudo-second-order. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes

    Science.gov (United States)

    Mazzuca, James W.; Haut, Nathaniel K.

    2018-06-01

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  11. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes.

    Science.gov (United States)

    Mazzuca, James W; Haut, Nathaniel K

    2018-06-14

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  12. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone

    Science.gov (United States)

    Ban, Junfeng; Zhang, Yan; Huang, Xin; Deng, Guanghan; Hou, Dongzhi; Chen, Yanzhong; Lu, Zhufen

    2017-01-01

    Drug delivery carriers can maintain effective therapeutic concentrations in the eye. To this end, we developed lipid nanoparticles (L/NPs) in which the surface was modified with positively charged chitosan, which engaged in hydrogen bonding with the phospholipid membrane. We evaluated in vitro corneal permeability and release characteristics, ocular irritation, and drug dynamics of modified and unmodified L/NPs in aqueous humor. The size of L/NPs was uniform and showed a narrow distribution. Corneal permeation was altered by the presence of chitosan and was dependent on particle size; the apparent permeability coefficient of dexamethasone increased by 2.7 and 1.8 times for chitosan-modified and unmodified L/NPs, respectively. In conclusion, a chitosan-modified system could be a promising method for increasing the ocular bioavailability of unmodified L/NPs by enhancing their retention time and permeation into the cornea. These findings provide a theoretical basis for the development of effective drug delivery systems in the treatment of ocular disease. PMID:28243093

  13. Increased albumin permeation in eyes, aorta, and kidney of hypertensive rats fed galactose

    International Nuclear Information System (INIS)

    Tilton, R.G.; LaRose, L.; Chang, K.; Weigel, C.J.; Williamson, J.R.

    1986-01-01

    These experiments were undertaken to determine whether ingestion of galactose increases albumin permeation in the vasculature of hypertensive rats. 50% dextrin (control) or 50% galactose diets were fed to unilaterally nephrectomized, male Sprague-Dawley rats weighing 200 g. Hypertension (systolic pressure >175 mmHg) was induced by weekly IM injections of 25 mg/kg DOCA and 1% saline drinking water; 3 months later 125 I-albumin permeation was assessed in whole eyes, aorta and kidneys. 125 I-albumin permeation was significantly increased in all 3 tissues of hypertensive rats (n = 9) vs controls (n = 9): aorta (3.30 +/- 0.19 (SD) vs 2.87 +/- 0.14), eye (3.15 +/- 0.14 vs 2.59 +/- 0.11), and kidney (6.58 +/- 0.63 vs 3.85 +/- 0.50). Albumin permeation was increased still further in hypertensive rats fed the galactose diet (n = 8): aorta (3.75 +/- 0.38), eye (3.82 +/- 0.17), and kidney (10.74 +/- 3.13). Hypertension +/- galactose feeding had no effect on albumin permeation in lung, skin, or brain. These findings indicate that: (1) hypertension increases albumin permeation in vessels affected by diabetic vascular diseases, and 2) hypertension-induced increases in albumin permeation are increased still further by galactose ingestion, presumably mediated by imbalances in polyol/insitol metabolism (analogous to those induced by diabetes) independent of hyperglycemia and/or insulinopenia

  14. Evaluation of whey, milk, and delactosed permeates as salt substitutes.

    Science.gov (United States)

    Smith, S T; Metzger, L; Drake, M A

    2016-11-01

    Whey and milk permeates are by-products of high-protein dairy powder manufacture. Previous work has shown that these permeates contribute to salty taste without contributing significantly to sodium content. The objective of this study was to explore the sensory characteristics and compositional analysis of permeates from different milk and whey streams and a low-sodium product application made from them. Skim milk, Cheddar, cottage, and Mozzarella cheese whey permeates were manufactured in triplicate, and delactosed whey permeate was obtained in triplicate. Composition (protein, fat, solids, minerals) was conducted on permeates. Organic acid composition was determined using HPLC. Volatile compounds were extracted from permeates by solid phase microextraction with gas chromatography-mass spectrometry. A trained sensory panel documented sensory attributes of permeates and cream of broccoli soups with and without salt or permeates followed by consumer acceptance testing (n=105) on the soups. Cottage cheese whey permeate contained a higher lactic acid content than other permeates, which has been shown to contribute to a higher salty taste. Cottage cheese whey permeate also contained potato or brothy and caramel flavors and sour and salty tastes, whereas delactosed whey permeate had high intensities of cardboard and beefy or brothy flavors and salty taste. Milk, Cheddar, and Mozzarella cheese whey permeates were characterized by sweet taste and cooked milky flavor. Permeates with higher cardboard flavor had higher levels of aldehydes. All permeates contributed to salty taste and to salty taste perception in soups; although the control soup with added salt was perceived as saltier and was preferred by consumers over permeate soups. Soup with permeate from cottage cheese was the least liked of all soups, likely due to its sour taste. All other permeate soups scored at parity for liking. These results demonstrate the potential for milk, whey, and delactosed permeates from

  15. Tritium permeation barriers for fusion technology

    International Nuclear Information System (INIS)

    Perujo, A.; Forcey, K.

    1994-01-01

    An important issue concerning the safety, feasibility and fueling (i.e., tritium breeding ratio and recovery from the breeding blanket) of a fusion reactor is the possible tritium leakages through the structural materials and in particular through those operating at high temperatures. The control of tritium permeation could be a critical factor in determining the viability of a future fusion power reactor. The formation of tritium permeation barriers to prevent the loss of tritium to the coolant by diffusion though the structural material seems to be the most practical method to minimize such losses. Many authors have discussed the formation of permeation barriers to reduce the leakage of hydrogen isotopes through proposed first wall and structural materials. In general, there are two routes for the formation of such a barrier, namely: the growth of oxide layers (e.g., Cr 2 O 3 , Al 2 O 3 , etc.) or the application of surface coatings. Non-metals are the most promising materials from the point of view of the formation of permeation barriers. Oxides such as Al 2 O 3 or Cr 2 O 3 or carbides such as SiC or TiC have been proposed. Amongst the metals only tungsten or gold are sufficiently less permeable than steel to warrant investigation as candidate materials for permeation barriers. It is of course possible to grow oxide layers on steel directly by heating in the atmosphere or under a variety of conditions (first route above). The direct oxidizing is normally done in an environment of open-quotes wet hydrogenclose quotes to promote the growth of chromia on, for example, nickel steels or ternary oxides on 316L to prevent corrosion. The application of surface layers (second route above), offers a greater range of materials for the formation of permeation barriers. In addition to reducing permeation, such layers should be adhesive, resistant to attack by corrosive breeder materials and should not crack during thermal cycling

  16. A comparison of implantation-driven permeation characteristics of fusion reactor structural materials

    Science.gov (United States)

    Longhurst, G. R.; Anderl, R. A.; Struttmann, D. A.

    1986-11-01

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D 3+ ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation "spike" followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Sputtering of the steel surface resulted in enhanced reemission, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. We conclude that for conditions comparable to those of these experiments, tritium retention and permeation loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti.

  17. Comparison on implantation-driven permeation characteristics of fusion reactor structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A. (Idaho National Engineering Lab., Idaho Falls)

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D{sub 3}{sup +} ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation spike followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Sputtering of the steel surface resulted in enhanced reemission, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. We conclude that for conditions comparable to those of these experiments, tritium retention and permeation loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti.

  18. Skin penetration and tissue permeation after topical administration of diclofenac.

    Science.gov (United States)

    Hagen, Martina; Baker, Mark

    2017-09-01

    Topical delivery of drugs is an alternative to oral administration, often with similar efficacy but potentially a more favorable tolerability profile. However, topical formulations need to be able to penetrate the skin and permeate to the target areas in quantities sufficient to exert a therapeutic effect. Many factors can affect this process, including the physicochemical properties of the drug, the formulation used, and the site and mode of application. It is believed that measurement of drug concentrations at the sites of action may be an indicator of their likely efficacy. This review addresses these issues, with reference to topically administered diclofenac in osteoarthritis. Articles relevant to this review were identified after a systematic search of Medline and Embase, using the key words "diclofenac", "topical administration" and "osteoarthritis" in the search strategy. The sparse data available indicate that topical diclofenac can penetrate and permeate to deeper tissues, with a lower plasma to tissue ratio than oral diclofenac. The tissue diclofenac levels after topical delivery are sustained over time (at least several hours). However, there is not enough data to establish how diclofenac levels in the joint compare with IC 50 levels (50% of the maximum inhibition of prostaglandin synthesis) established following oral administration. After topical application, diclofenac can penetrate the skin and permeate to deeper tissues, where it reaches a concentration that appears to be sufficient to exert a therapeutic effect. More robust methods are required for in vivo characterization to better estimate the clinical efficacy of topically applied drugs.

  19. Permeation of Comite through protective gloves.

    Science.gov (United States)

    Zainal, Hanaa; Que Hee, Shane S

    2006-09-01

    The goal of the study was to assess how protective disposable (Safeskin) and chemical protective (Sol-Vex) nitrile gloves were against Comite emulsifiable concentrate formulation containing propargite (PROP) as active pesticidal ingredient, because there were no explicit recommendations for the gloves that should be worn for hand protection. The glove material was exposed in ASTM-type I-PTC-600 permeation cells at 30.0+/-0.5 degrees C, and gas chromatography-mass spectrometry used for PROP analysis. Aqueous solutions of Comite at 40.4 mg/mL permeated both Safeskin and Sol-Vex nitrile by 8h. Safeskin showed a mean PROP mass permeated of 176+/-27 microg after 8h compared with a mean mass permeated for Sol-Vex of 3.17+/-4.08 microg. Thus, Sol-Vex was about 56 times more protective than Safeskin for an 8-h exposure. However, the kinetics of the permeation revealed that Safeskin can be worn for at least 200 min before disposal. When undiluted Comite challenged both types of nitrile, much faster permeation was observed. Safeskin gloves showed two steady state periods. The first had lag times (t(l)) values of about 1h, although normalized breakthrough times (t(b)) were gloves exposed continuously to undiluted Comite permeated above the normalized breakthrough threshold beyond 2.7h. A risk assessment revealed that the PROP skin permeation rate of 7.1 ng cm(-2)h(-1) was much slower than the first steady state Safeskin glove P(s) of 62,000 ng cm(-2)h(-1). Infrared analysis showed that the glove surfaces were not degraded by the Comite challenge. The chemically protective Sol-Vex gloves protected adequately against undiluted formulation for about 2.7h, whereas they provided protection for nearly 8h when the formulation was diluted with water to the highest concentration for field application. In contrast, the disposable Safeskin gloves did not protect at all for the undiluted formulation, but did for 200 min when the formulation was diluted with water to the highest

  20. Gas permeation process for post combustion CO2 capture

    International Nuclear Information System (INIS)

    Pfister, Marc

    2017-01-01

    CO 2 Capture and Storage (CCS) is a promising solution to separate CO 2 from flue gas, to reduce the CO 2 emissions in the atmosphere, and hence to reduce global warming. In CCS, one important constraint is the high additional energy requirement of the different capture processes. That statement is partly explained by the low CO 2 fraction in the inlet flue gas and the high output targets in terms of CO 2 capture and purity (≥90%). Gas permeation across dense membrane can be used in post combustion CO 2 capture. Gas permeation in a dense membrane is ruled by a mass transfer mechanism and separation performance in a dense membrane are characterized by component's effective permeability and selectivity. One of the newest and encouraging type of membrane in terms of separation performance is the facilitated transport membrane. Each particular type of membrane is defined by a specific mass transfer law. The most important difference to the mass transfer behavior in a dense membrane is related to the facilitated transport mechanism and the solution diffusion mechanism and its restrictions and limitations. Permeation flux modelling across a dense membrane is required to perform a post combustion CO 2 capture process simulation. A CO 2 gas permeation separation process is composed of a two-steps membrane process, one drying step and a compression unit. Simulation on the energy requirement and surface area of the different membrane modules in the global system are useful to determine the benefits of using dense membranes in a post combustion CO 2 capture technology. (author)

  1. Preparation of Essential Oil-Based Microemulsions for Improving the Solubility, pH Stability, Photostability, and Skin Permeation of Quercetin.

    Science.gov (United States)

    Lv, Xia; Liu, Tiantian; Ma, Huipeng; Tian, Yan; Li, Lei; Li, Zhen; Gao, Meng; Zhang, Jianbin; Tang, Zeyao

    2017-11-01

    Quercetin can bring many benefits to skin based on its various bioactivities. However, the therapeutic effect of quercetin is limited due to the poor water solubility, pH instability, light instability, and skin permeation. The aim of the present work was applying essential oil-based microemulsions to improve the solubility, pH stability, photostability, and skin permeation of quercetin for topical application. Peppermint oil (PO-ME), clove oil (CO-ME), and rosemary oil (RMO-ME) were selected as model essential oils. Microemulsions composed of Cremophor EL/1,2-propanediol/essential oils (47:23:30, w/w) were selected as model formulations, based on the pseudo-ternary phase diagram and the characterizations. In the solubility study, the solubility of quercetin was improved dozens of times by microemulsions. Quercetin was found instable under alkaline condition, with 50% degraded in the solution of pH 13. However, PO-ME, CO-ME, and RMO-ME could protect quercetin from the hydroxide ions, with 47, 9, and 12% of quercetin degraded. In the photostability study, the essential oil-based microemulsions showed the capability of protecting quercetin from degradation under UV radiation. Where more than 67% of quercetin was degraded in aqueous solution, while less than 7% of quercetin degraded in microemulsions. At last, the in vitro skin permeation study showed that the essential oil-based microemulsions could enhance the permeation capacity of quercetin by 2.5-3 times compared to the aqueous solution. Hence, the prepared essential oil microemulsions could improve the solubility, pH stability, photostability, and skin permeation of quercetin, which will be beneficial for its topical application.

  2. STRUCTURAL INTERACTIONS OF HYDROGEN WITH BULK AMORPHOUS MICROSTRUCTURES IN METALLIC SYSTEMS UNDERSTANDING THE ROLE OF PARTIAL CRYSTALLINITY ON PERMEATION AND EMBRITTLEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle; Fox, Elise; Korinko, Paul; Adams, Thad

    2010-05-10

    The development of metallic glasses in bulk form has led to a resurgence of interest into the utilization of these materials for a variety of applications. A potentially exciting application for these bulk metallic glass (BMG) materials is their use as composite membranes to replace high cost Pd/Pd-alloy membranes for enhanced gas separation processes. One of the major drawbacks to the industrial use of Pd/Pd-alloy membranes is that during cycling above and below a critical temperature an irreversible change takes place in the palladium lattice structure which can result in significant damage to the membrane. Furthermore, the cost associated with Pd-based membranes is a potential detractor for their continued use and BMG alloys offer a potentially attractive alternative. Several BMG alloys have been shown to possess high permeation rates, comparable to those measured for pure Pd metal. In addition, high strength and toughness when either in-situ or ex-situ second phase dispersoids are present. Both of these properties, high permeation and high strength/toughness, potentially make these materials attractive for gas separation membranes that could resist hydrogen 'embrittlement'. However, a fundamental understanding of the relationship between partially crystalline 'structure'/devitrification and permeation/embrittlement in these BMG materials is required in order to determine the operating window for separation membranes and provide additional input to the material synthesis community for improved alloy design. This project aims to fill the knowledge gap regarding the impact of crystallization on the permeation properties of metallic glass materials. The objectives of this study are to (i) determine the crystallization behavior in different gas environments of Fe and Zr based commercially available bulk metallic glass and (ii) quantify the effects of partial crystallinity on the hydrogen permeation properties of these metallic glass membranes.

  3. Studies on Tasar Cocoon Cooking Using Permeation Method

    Science.gov (United States)

    Javali, Uday C.; Malali, Kiran B.; Ramya, H. G.; Naik, Subhas V.; Padaki, Naveen V.

    2018-02-01

    Cocoon cooking is an important process before reeling of tasar silk yarn. Cooking ensures loosening of the filaments in the tasar cocoons thereby easing the process of yarn withdrawal during reeling process. Tasar cocoons have very hard shell and hence these cocoons need chemical cooking process to loosen the silk filaments. Attempt has been made in this article to study the effect of using vacuum permeation chamber for tasar cocoon cooking in order to reduce the cooking time and improve the quality of tasar silk yarn. Vacuum assisted permeation cooking method has been studied in this article on tasar daba cocoons for cooking efficiency, deflossing and reelability. Its efficiency has been evaluated with respect to different cooking methods viz, traditional and open pan cooking methods. The tasar silk produced after reeling process has been tested for fineness, strength and cohesion properties. Results indicate that permeation method of tasar cooking ensures uniform cooking with higher efficiency along with better reeling performance and improved yarn properties.

  4. Formation of permeation barriers on ceramic SiC/SiC composites

    International Nuclear Information System (INIS)

    Racault, C.; Fenici, P.

    1996-01-01

    The effectiveness as permeation barriers of the following CVD and PVD (sputtering) coatings has been investigated: TiC+Al 2 O 3 (CVD), SiC(CVD), SiO 2 (CVD), TiN(CVD), TiN(CVD)+TiN(PVD) and SiC(CVD)+Al 2 O 3 (PVD). The substrate material was a SiC/SiC composite, proposed as low activation structural material for fusion applications. Permeation measurements were performed in the temperature range 300-750 K using deuterium at pressures in the range 0.5-150 kPa. A linear dependence of permeation rate on pressure was measured. The efficiency of the coatings as deuterium permeation barriers is discussed in terms of coating microstructure. The best result was obtained with a bilayer of TiN(CVD) (15 μm) +TiN(PVD) (8 μm). (orig.)

  5. Tritium permeation barriers in contact with liquid lithium-lead eutectic (Pb-17Li)

    International Nuclear Information System (INIS)

    Forcey, K.S.; Perujo, A.

    1995-01-01

    The permeation of deuterium through coated stainless steel tubes containing liquid lithium-lead eutectic (Pb-17Li) has been studied and compared to measurements through tubes without the lithium compound. The measurements form part of an investigation into the effect of a potential tritium breeder material on permeation barriers for fusion reactors. The coatings studied were CVD TiC and Al 2 O 3 and a pack aluminised layer. Without the lithium-lead, the CVD coatings reduced the permeation rate up to 1 order of magnitude, and the aluminised layer up to 2 orders of magnitude. A CVD layer was unaffected by Pb-17Li whilst in the case of the aluminised tube, the lithium-lead completely removed the permeation barrier, presumably by attacking the surface oxide. Furthermore, the aluminised sample presented a large number of cracks and poor adheren ce to the substrate. ((orig.))

  6. Ion-driven permeation of deuterium through tungsten under simultaneous helium and deuterium irradiation

    International Nuclear Information System (INIS)

    Lee, H.T.; Tanaka, H.; Ohtsuka, Y.; Ueda, Y.

    2011-01-01

    Ion-driven permeation of D through tungsten under simultaneous irradiation with He-D was measured as a function of temperature, flux, and energy. He reduced the permeation flux with the reduction increasing with decreasing temperature. The reduction in permeation flux followed a linear dependence to the incident flux at T > 1000 K, but shifted to a square root dependence at T < 1000 K. The results were interpreted as shifts from diffusion limited to recombination limited H transport according to Doyle and Brice's theory. Arrhenius functions of front diffusivity and recombination coefficients were derived and used to calculate the transport parameter W. The effect of He can be interpreted as changes to the front diffusivity that approaches H diffusion behavior in the absence of traps. The reduction in total concentration results in a shallower concentration gradient that can describe the observed decrease in permeation.

  7. In-site coatings to reduce H and Tr permeation

    International Nuclear Information System (INIS)

    Stoever, D.; Buchkremer, H.P.; Hecker, R.; Jonas, H.; Schaefer, J.; Zink, U.; Forsyth, N.; Thiele, W.

    1982-01-01

    The main goal of this project is the development of protective coatings to reduce or prevent Tr and H permeation through the heat exchanger walls of HTR components. The tasks of the project are: Measurement of the permeation inhibition efficiency of oxidic coatings on the high-temperature- resistant heat exchanger walls; establishing the parameters influencing permeation by variation of the process gas and steam parameters, temperature and mechanical stress; characterisation of coatings and correlation of coating characteristics with permeation measurements; investigation of permeation and corrosion mechanisms; quantitative description of H and Tr permeation by means of mathematical/physical models. (orig./IHOE) [de

  8. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam; Zhao, Jiajun; Prather, Wayne E.; Wu, Ying; Zhang, Likun

    2018-01-01

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  9. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam

    2018-03-13

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  10. Preparation, characterization and gas permeation study of PSf/MgO nanocomposite membrane

    Directory of Open Access Journals (Sweden)

    S. M. Momeni

    2013-09-01

    Full Text Available Nanocomposite membranes composed of polymer and inorganic nanoparticles are a novel method to enhance gas separation performance. In this study, membranes were fabricated from polysulfone (PSf containing magnesium oxide (MgO nanoparticles and gas permeation properties of the resulting membranes were investigated. Membranes were prepared by solution blending and phase inversion methods. Morphology of the membranes, void formations, MgO distribution and aggregates were observed by SEM analysis. Furthermore, thermal stability, residual solvent in the membrane film and structural ruination of membranes were analyzed by thermal gravimetric analysis (TGA. The effects of MgO nanoparticles on the glass transition temperature (Tg of the prepared nanocomposites were studied by differential scanning calorimetry (DSC. The Tg of nanocomposite membranes increased with MgO loading. Fourier transform infrared (FTIR spectra of nanocomposite membranes were analyzed to identify the variations of the bonds. The results obtained from gas permeation experiments with a constant pressure setup showed that adding MgO nanoparticles to the polymeric membrane structure increased the permeability of the membranes. At 30 wt% MgO loading, the CO2 permeability was enhanced from 25.75×10-16 to 47.12×10-16 mol.m/(m².s.Pa and the CO2/CH4 selectivity decreased from 30.84 to 25.65 when compared with pure PSf. For H2, the permeability was enhanced from 44.05×10-16 to 67.3×10-16 mol.m/(m².s.Pa, whereas the H2/N2 selectivity decreased from 47.11 to 33.58.

  11. Visual distinctiveness can enhance recency effects.

    Science.gov (United States)

    Bornstein, B H; Neely, C B; LeCompte, D C

    1995-05-01

    Experimental efforts to meliorate the modality effect have included attempts to make the visual stimulus more distinctive. McDowd and Madigan (1991) failed to find an enhanced recency effect in serial recall when the last item was made more distinct in terms of its color. In an attempt to extend this finding, three experiments were conducted in which visual distinctiveness was manipulated in a different manner, by combining the dimensions of physical size and coloration (i.e., whether the stimuli were solid or outlined in relief). Contrary to previous findings, recency was enhanced when the size and coloration of the last item differed from the other items in the list, regardless of whether the "distinctive" item was larger or smaller than the remaining items. The findings are considered in light of other research that has failed to obtain a similar enhanced recency effect, and their implications for current theories of the modality effect are discussed.

  12. Enhancing Placebo Effects: Insights From Social Psychology

    Science.gov (United States)

    SLIWINSKI, JIM; ELKINS, GARY R.

    2012-01-01

    Placebo effects are widely recognized as having a potent impact upon treatment outcomes in both medical and psychological interventions, including hypnosis. In research utilizing randomized clinical trials, there is usually an effort to minimize or control placebo effects. However, in clinical practice there may be significant benefits in enhancing placebo effects. Prior research from the field of social psychology has identified three factors that may enhance placebo effects, namely: priming, client perceptions, and the theory of planned behavior. These factors are reviewed and illustrated via a case example. The consideration of social-psychological factors to enhance positive expectancies and beliefs has implications for clinical practice as well as future research into hypnotic interventions. PMID:23488251

  13. Promotores de permeação para a liberação transdérmica de fármacos: uma nova aplicação para as ciclodextrinas Permeation enhancers in transdermal drug delivery systems: a new application of cyclodextrins

    Directory of Open Access Journals (Sweden)

    Maria Rita Fernandes Morais Martins

    2002-03-01

    Full Text Available No presente trabalho é feita uma breve revisão sobre promotores de permeação cutânea, descrevendo-se os seus mecanismos de ação e alguns exemplos. Abordam-se as vias de permeação de fármacos através da pele e liberação transdérmica. São também focadas as ciclodextrinas e seus derivados, a sua estrutura e propriedades físico-químicas, formação de complexos de inclusão e o seu papel como excipientes em sistemas transdérmicos. As ciclodextrinas constituem um grupo de excipientes que têm um papel de grande importância em formulação farmacêutica. Uma das mais extraordinárias propriedades destas moléculas é a sua capacidade de incrementar a liberação de fármacos através da pele sem, no entanto, afetar a sua função barreira.The present work is a short revision about transdermal permeation enhancers, their mechanism of action including some examples. Routes of permeation across the skin and transdermal delivery are also described. We focus cyclodextrins and their derivatives, structure, chemical properties, formation of inclusion complexes and their action as excipients in transdermal drug delivery systems. Cyclodextrins are a very important group of excipients used in pharmaceutical technology. One of the most extraordinary properties of cyclodextrins is their ability to increase transdermal drug delivery without affecting the barrier function of the skin.

  14. Modus operandi for maximizing energy efficiency and increasing permeate flux of community scale solar powered reverse osmosis systems

    International Nuclear Information System (INIS)

    Vyas, Harsh; Suthar, Krunal; Chauhan, Mehul; Jani, Ruchita; Bapat, Pratap; Patel, Pankaj; Markam, Bhupendra; Maiti, Subarna

    2015-01-01

    Highlights: • Experimental data on energy efficient photovoltaic powered reverse osmosis system. • Synergetic management of electrical, thermal and hydraulic energies. • Use of reflectors, heat exchanger and turgo turbine. - Abstract: Photovoltaic powered reverse osmosis systems can only be made cost effective if they are made highly energy efficient. In this work we describe a protocol to maximize energy efficiency and increase permeate flux in a fully integrated installation of such a system. The improved system consisted of (i) photovoltaic array fitted with suitably positioned and aligned North–South V-trough reflectors to enhance power output from the array; (ii) direct contact heat exchanger fitted on the rear of the photovoltaic modules for active cooling of the same while safeguarding the terminals from short-circuit and corrosion; (iii) use of reverse osmosis feed water as heat exchange medium while taking due care to limit the temperature rise of feed water; (iv) enhancing permeate flux through the rise in feed water temperature; (v) turgo-turbine for conversion of hydraulic energy in reverse osmosis reject water into mechanical energy to provide part of the energy to replace booster pump utilized in the reverse osmosis unit. The V-trough reflectors onto the photovoltaic modules with thermal energy recovery system brought about an increase in power output of 40% and the synergistic effect of (i)–(iv) gave rise to total permeate volume boost of 59%. Integration of (v) resulted in 56% and 26% saving of electrical power when the reverse osmosis plant was operated by battery bank and direct photovoltaic array respectively

  15. High permeation rates in liposome systems explain rapid glyphosate biodegradation associated with strong isotope fractionation.

    Science.gov (United States)

    Ehrl, Benno; Mogusu, Emmanuel O; Kim, Kyoungtea; Hofstetter, Heike; Pedersen, Joel A; Elsner, Martin

    2018-05-23

    Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes, pH-dependent membrane permeation coefficients (Papp) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from Papp(pH 7.0) = 3.7 (+/-0.3) × 10-7 m∙s-1 to Papp(pH 4.1) = 4.2 (+/-0.1) × 10-6 m∙s-1. This surprisingly rapid membrane permeation depended on glyphosate speciation and was, at physiological pH, in the range of polar, non-charged molecules suggesting that passive membrane permeation is a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, two orders of magnitudes higher than glyphosate degradation rates. Moreover, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect of AKIEcarbon= 1.014 ± 0.003. This value is consistent with unmasked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was little mass transfer-limited and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.

  16. Hydrogen permeation modification of 4140 steel by ion nitriding with pulsed plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzoni, P.; Ortiz, M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Bruehl, S.P.; Gomez, B.J.A.; Feugeas, J.N. [Inst. de Fisica Rosario (UNR-CONICET), Rosario (Argentina); Nosei, L. [Inst. de Mecanica Aplicada y Estructuras (UNR), Rosario (Argentina)

    1998-11-10

    It is widely known that the hydrogen in steel produces embrittlement. This effect may cause the failure of the elements (confining walls, mechanical parts, etc.) whose surfaces are in contact with this gas or with processes in which hydrogen is continuously generated. In this work it is shown that the ion nitriding of the surface of AISI 4140 is a good mechanism to act as a barrier against hydrogen permeation in its bulk. The ion nitriding was performed using a square wave DC glow discharge. The development of a compound layer of iron nitrides was observed as the cause of the hydrogen permeation reduction. For equal duration of treatment, thicker compound layers were developed in higher discharge/post-discharge ratios in the square wave of the applied voltage onto the sample (cathode), with a greater reduction of hydrogen permeation coefficient as a consequence. Nevertheless, the permeation was not reduced to zero in any of the treatment conditions used. The results of the analysis of the permeation tests and the image of the photomicrographs showed that the existence of cracks, fractures, failures, etc. in the compound layer (pre-existing in the AISI 4140 steel) could be the cause of the residual hydrogen permeation. This can be attributed to the movement of the hydrogen through these defects diffusing through the original {alpha}-Fe phase of the non-treated steel. (orig.) 11 refs.

  17. Crystallization and deuterium permeation behaviors of yttrium oxide coating prepared by metal organic decomposition

    Directory of Open Access Journals (Sweden)

    Takumi Chikada

    2016-12-01

    Full Text Available Yttrium oxide coatings were fabricated on reduced activation ferritic/martensitic steels by metal organic decomposition with a dip-coating technique, and their deuterium permeation behaviors were investigated. The microstructure of the coatings varied with heat-treatment temperature: amorphous at 670ºC (amorphous coating and crystallized at 700ºC (crystallized coating. Deuterium permeation flux of the amorphous coating was lower than the uncoated steel by a factor of 5 at 500ºC, while that of the crystallized coating was lower by a factor of around 100 at 400‒550ºC. The permeation fluxes of both coatings were drastically decreased during the measurements at higher temperatures by a factor of up to 790 for the amorphous coating and 1000 for the crystallized one, indicating a microstructure modification occurred by an effect of test temperature with hydrogen flux. Temperature dependence of deuterium diffusivity in the coatings suggests that the decrease of the permeation flux has been derived from a decrease of the diffusivity. Characteristic permeation behaviors were observed with different annealing conditions; however, they can be interpreted using the permeation mechanism clarified in the previous erbium oxide coating studies.

  18. Preparation of Silica Nanoparticles Loaded with Nootropics and Their In Vivo Permeation through Blood-Brain Barrier

    OpenAIRE

    Jampilek, Josef; Zaruba, Kamil; Oravec, Michal; Kunes, Martin; Babula, Petr; Ulbrich, Pavel; Brezaniova, Ingrid; Opatrilova, Radka; Triska, Jan; Suchy, Pavel

    2015-01-01

    The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an i...

  19. On the intrinsic moisture permeation rate of remote microwave plasma-deposited silicon nitride layers

    NARCIS (Netherlands)

    van Assche, F. J. H.; Unnikrishnan, S.; Michels, J. J.; van Mol, A. M. B.; van de Weijer, P.; M. C. M. van de Sanden,; Creatore, M.

    2014-01-01

    We report on a low substrate temperature (110 °C) remote microwave plasma-enhanced chemical vapor deposition (PECVD) process of silicon nitride barrier layers against moisture permeation for organic light emitting diodes (OLEDs) and other moisture sensitive devices such as organic

  20. LIBRETTO-3: modelling tritium extraction/permeation and evaluation of permeation barriers under irradiation

    International Nuclear Information System (INIS)

    Sedano, L.A.; Fuetterer, M.A.; Viola, R.; Dies, X.

    1996-01-01

    Permeation barriers are required in order to limit the size and cost of the detritiation plants for future fusion reactor blankets of the water-cooled Pb-17Li type. The LIBRETTO irradiations were performed to evaluate the efficiency of permeation barriers under high flux reactor (HFR) conditions. Tritium extraction and permeation characteristics from Pb-17Li under variable temperatures 553-723 K, H 2 doping (0-1 vol%) and purge gas flow rates 20-100 scc/min were tested in LIBRETTO-3. An external TiC coating, an internal (TiC+Al 2 O 3 ), both produced by chemical vapour deposition (CVD), and an internal Al 2 O 3 produced by pack cementation (PC) on AISI 316L steel were tested as permeation barriers. The release mechanisms, experimental uncertainties and method for permeation barriers qualification are presented. As a result permeation reduction factors (PRF) at 0.1 dpa of 17 and 34 were obtained for the CVD-Al 2 O 3 at 498 K and for the PC-Al 2 O 3 at 508 K, respectively. These values were confirmed by a residence time analysis and are higher than in a preliminary analysis. (orig.)

  1. Status of surfactants as penetration enhancers in transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Iti Som

    2012-01-01

    Full Text Available Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs.

  2. In vitro skin permeation and anti-atopic efficacy of lipid nanocarriers containing water soluble extracts of Houttuynia cordata.

    Science.gov (United States)

    Kwon, Taek Kwan; Kim, Jin-Chul

    2014-10-01

    The aims of this work are to enhance the in vitro skin permeation of Houttuynia cordata (water-soluble extract of H. cordata; HCWSE) and to boost the efficacy of HCWSE against atopic dermatitis (AD) - like skin lesion in hairless mice using lipid nano-carriers (liposome and cubosome). HCWSE was obtained by a hot water extraction. Monoolein cubosomal suspension containing HCWSE and egg phosphatidylcholine liposomal suspension containing the same was prepared by a sonication and a film hydration method, respectively. The lipid nano-carriers, especially cubosome, enhanced the in vitro skin permeation of HCWSE. The inhibitory effects of HCWSE-containing lipid carrier suspensions on the development of 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like skin lesion in hairless mice were investigated by observing appearance of skin surface, serum immunoglobulin E (IgE) level and cytokine expression. HCWSE-containing preparations suppressed IgE production and interleukin 4 expression, whereas they promoted interferon gamma expression. The order of lymphocyte (B-cell, Th1 cell and Th2 cell) modulating effect was HCWSE-containing cubosomal suspension > HCWSE-containing liposomal suspension > HCWSE solution in phosphate buffered saline, indicating that the cubosomal suspension, among the preparations, was the most efficacious in inhibiting the development of DNCB-induced AD-like skin lesion. It is believed that the cubosomal suspension containing HCWSE would be an efficacious preparation for the treatment of AD.

  3. In vitro profiling of the vaginal permeation potential of anti-HIV microbicides and the influence of formulation excipients.

    Science.gov (United States)

    Grammen, Carolien; Augustijns, Patrick; Brouwers, Joachim

    2012-11-01

    In the search for an effective anti-HIV microbicidal gel, limited drug penetration into the vaginal submucosa is a possible reason for failed protection against HIV transmission. To address this issue in early development, we here describe a simple in vitro strategy to predict the tissue permeation potential of vaginally applied drugs, based on solubility, permeability and flux assessment. We demonstrated this approach for four model microbicides (tenofovir, darunavir, saquinavir mesylate and dapivirine) and additionally examined the influence of formulation excipients on the permeation potential. When formulated in an aqueous-based HEC gel, high flux values across an HEC-1A cell layer were reached by tenofovir, as a result of its high aqueous solubility. In contrast, saquinavir and dapivirine fluxes remained low due to poor permeability and solubility, respectively. These low fluxes suggest limited in vivo tissue penetration, possibly leading to lack of efficacy. Dapivirine fluxes, however, could be enhanced up to 30-fold, by including formulation excipients such as polyethylene glycol 1000 (20%) or cyclodextrins (5%) in the HEC gels. Alternative formulations, i.e. emulsions or silicone elastomer gels, were less effective in flux enhancement compared to cyclodextrin-HEC gels. In conclusion, implementing the proposed solubility and permeability profiling in early microbicide development may contribute to the successful selection of promising microbicide candidates and appropriate formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Enhancement effect of irradiation by methotrexate

    International Nuclear Information System (INIS)

    Shehata, W.M.; Meyer, R.L.

    1980-01-01

    Three cases are described in which complications developed which were believed to be due to the enhancement effect of irradiation by methotrexate during the course of therapy for lung, kidney, and bladder cancer. These included esophageal and large bowel complications. In two of these cases, the patients improved with conservative therapy

  5. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin

    Directory of Open Access Journals (Sweden)

    Kumar A

    2011-06-01

    Full Text Available Amit Kumar, Xinran Li, Michael A Sandoval, B Leticia Rodriguez, Brian R Sloat, Zhengrong CuiUniversity of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, USABackground: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection.Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection.Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection.Keywords: antibody responses, safety of microneedles, transepidermal water loss

  6. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin

    Science.gov (United States)

    Kumar, Amit; Li, Xinran; Sandoval, Michael A; Rodriguez, B Leticia; Sloat, Brian R; Cui, Zhengrong

    2011-01-01

    Background: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection. Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection. Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection. PMID:21753877

  7. Comparison of implantation-driven permeation characteristics of fusion reactor structural materials

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A.

    1986-01-01

    Implantation-driven permeation experiments have been conducted on samples of the ferritic steel HT-9, the austenitic Primary Candidate Alloy (PCA) and the vanadium alloy V-15Cr-5Ti using D 3 + ions under conditions that simulate charge-exchange neutral loading on a fusion reactor first wall. The steels all exhibited an initially intense permeation ''spike'' followed by an exponential decrease to low steady-state values. That spike was not evident in the V-15Cr-5Ti experiments. Steady-state permeation was highest in the vanadium alloy and lowest in the austenitic steel. Though permeation rates in the HT-9 were lower than those in V-15Cr-5Ti, permeation transients were much faster in HT-9 than in other materials tested. Ion-beam sputtering of the surface in the steel experiments resulted in enhanced remission at the front surface, whereas in the vanadium tests, recombination and diffusivity both appeared to diminish as the deuterium concentration rose. This may be due to a phase change in the material. We conclude that for conditions comparable to those of these experiments, tritium retention and loss in first wall structures made of steels will be less than in structures made of V-15Cr-5Ti

  8. Implications of recent implantation-driven permeation experiments for fusion reactor safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Struttmann, D.A.

    1986-01-01

    Metal structures exposed to the plasma in tritium-burning fusion reactors will be subject to implantation-driven permeation (IDP) of tritium. Permeation rates for IDP in fusion structural materials are usually high because the tritium atoms enter the material without having to go through the dissociation and solution steps required of tritium-bearing gas molecules. These surface processes, which may be rate limiting in PDP, actually enhance permeation in IDP by inhibiting the return of tritium to the plasma side of the structure. Experiments have been conducted at the Idaho National Engineering Laboratory (INEL) to investigate the nature of IDP by simulating conditions experienced by structures exposed to the plasma. These experiments have shown that surface conditions are important to tritium permeation in materials endothermic to hydrogen solution such as austenitic and ferritic steels. In reactive metals such as vanadium, surface processes appear to totally control the permeation. The purpose of this paper is to review the progress of those experiments and to discuss the implications that the results have regarding the tritium-related safety concerns of fusion reactors

  9. In vitro permeation studies of nanoemulsions containing ketoprofen as a model drug.

    Science.gov (United States)

    Kim, Beom Su; Won, Myoung; Lee, Kang Min; Kim, Cheo Sang

    2008-09-01

    We prepared a nanoemulsion system with benzyl alcohol/ ethanol/Solutol/smash(R) HS 15 /water. Ketoprofen was used as a model drug in this study. The nanoemulsions of this system evidenced a high degree of stability. The droplet diameter did not change over a period of at least 3 months. The nanoemulsion containing 4% benzyl alcohol evidenced a permeation rate higher than was observed with the 1% and 2% nanoemulsions. Also the nanoemulsion containing 1% Solutol(R) HS 15 provided a permeation rate higher than was seen with the 2% and 4% nanoemulsions. All ketoprofen-loaded nanoemulsions enhanced the in vitro permeation rate through mouse skins as compared to the control.

  10. Enhanced Nonlinear Effects in Metamaterials and Plasmonics

    Directory of Open Access Journals (Sweden)

    C. Argyropoulos

    2012-07-01

    Full Text Available In this paper we provide an overview of the anomalous and enhanced nonlinear effects available when optical nonlinear materials are combined inside plasmonic waveguide structures. Broad, bistable and all-optical switching responses are exhibited at the cut-off frequency of these waveguides, characterized by reduced Q-factor resonances. These phenomena are due to the large field enhancement obtained inside specific plasmonic gratings, which ensures a significant boosting of the nonlinear operation. Several exciting applications are proposed, which may potentially lead to new optical components and add to the optical nanocircuit paradigm.

  11. Enhanced delivery of cosmeceuticals by microdermabrasion.

    Science.gov (United States)

    Zhou, Yingcong; Banga, Ajay K

    2011-09-01

    Microdermabrasion (MDA) is one of the top five nonsurgical cosmetic procedures performed. It is a well-established technology with widespread applications in the cosmetic industry. To investigate the effects of MDA on skin and delivery of cosmeceuticals. The alternation of skin structure post-MDA was examined by histological sectioning and transepidermal water loss measurements. The effect of MDA treatment on skin permeation profiles of hydrophilic and lipophilic molecules was investigated by laser scanning confocal microscopy and in vitro permeation studies. Confocal images indicated different absorption profiles and permeation depths for hydrophilic and lipophilic molecules. Microdermabrasion enhanced the transdermal delivery of nicotinamide, the model hydrophilic compound employed. On the other hand, permeation of retinol, the model lipophilic compound, did not improve after treatment with MDA. When treated with 20 passes, the skin recovered from MDA induced changes in 4 days. Permeation of cosmeceuticals into skin was found to be affected by their lipophilicity. Application of skin care products post-MDA therapy may be promising to improve their dermal uptake. © 2011 Wiley Periodicals, Inc.

  12. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli.

    Science.gov (United States)

    Pasotti, Lorenzo; Zucca, Susanna; Casanova, Michela; Micoli, Giuseppina; Cusella De Angelis, Maria Gabriella; Magni, Paolo

    2017-06-02

    Whey permeate is a lactose-rich effluent remaining after protein extraction from milk-resulting cheese whey, an abundant dairy waste. The lactose to ethanol fermentation can complete whey valorization chain by decreasing dairy waste polluting potential, due to its nutritional load, and producing a biofuel from renewable source at the same time. Wild type and engineered microorganisms have been proposed as fermentation biocatalysts. However, they present different drawbacks (e.g., nutritional supplements requirement, high transcriptional demand of recombinant genes, precise oxygen level, and substrate inhibition) which limit the industrial attractiveness of such conversion process. In this work, we aim to engineer a new bacterial biocatalyst, specific for dairy waste fermentation. We metabolically engineered eight Escherichia coli strains via a new expression plasmid with the pyruvate-to-ethanol conversion genes, and we carried out the selection of the best strain among the candidates, in terms of growth in permeate, lactose consumption and ethanol formation. We finally showed that the selected engineered microbe (W strain) is able to efficiently ferment permeate and concentrated permeate, without nutritional supplements, in pH-controlled bioreactor. In the conditions tested in this work, the selected biocatalyst could complete the fermentation of permeate and concentrated permeate in about 50 and 85 h on average, producing up to 17 and 40 g/l of ethanol, respectively. To our knowledge, this is the first report showing efficient ethanol production from the lactose contained in whey permeate with engineered E. coli. The selected strain is amenable to further metabolic optimization and represents an advance towards efficient biofuel production from industrial waste stream.

  13. Water Vapor Permeation in Plastics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.

  14. Extraction of tritium from liquid lithium by permeation

    International Nuclear Information System (INIS)

    Alire, R.M.

    1978-01-01

    This paper assesses a method for extracting tritium from liquid lithium for specific application to the conceptual laser fusion reactor that uses a continuous lithium ''waterfall.'' The tritium diffuses through a refractory metal that contains a getter and is then stored in a hydride-forming alloy. There are various uncertainties with this method including helium-4 extraction, unknown impurities that may accumulate in liquid lithium, the effects of these impurities on tritium separation, and the maintenance of tritium-contaminated equipment. Our study indicates that major tritium losses will occur during equipment maintenance rather than as a result of permeation losses through the primary vessel

  15. Enzymatic hydrolysis of lactose of whey permeate

    Directory of Open Access Journals (Sweden)

    Karina Nascimento de Almeida

    2015-09-01

    Full Text Available The whey permeate is the residual of the concentration process of the whey proteins by ultrafiltration method. It contains important nutrients such as lactose, minerals and some proteins and lipids. It is without an ending industrial waste that causes serious damage to the environment. For its full use the lactose must be hydrolyzed to enable its consumption by intolerant people. The enzymatic hydrolysis by lactase (β-galactosidase of Kluyveromyces lactis yeast is a safe method that does not compromise the integrity of other nutrients, enabling further use of the permeate as a raw material. This study aimed to perform tests of enzymatic hydrolysis of lactose in whey permeate formulations in a concentration of 0.2%, 0.7% and 1% at 30, 60 and 90 minutes with pH 6.3 medium and 37 °C. The reactions were monitored by high performance liquid chromatography which showed that the enzyme concentration of 0.7% at time 30 minutes formulations became safe for consumption by lactose intolerant people, according to minimum levels established by law.

  16. Flibe-D2 Permeation Experiment and Analysis

    International Nuclear Information System (INIS)

    Fukada, S.; Anderl, R.A.; Pawelko, R.J.; Smolik, G.R.; Schuetz, S.T.; O'Brien, J.E.; Nishimura, H.; Hatano, Y.; Terai, T.; Petti, D.A.; Sze, D.-K.; Tanaka, S.

    2003-01-01

    Experiment of D 2 permeation through Ni facing with purified Flibe is being carried out under the Japan-US joint research project (JUPITER-II). The experiment is proceeding in the following phases; (i) fabrication and assembly of a dual-probe permeation apparatus, (ii) a single-probe Ni/D 2 permeation experiment without Flibe, (iii) a dual-probe Ni/D 2 permeation experiment without Flibe, (iv) Flibe chemical purification by HF/H 2 gas bubbling, (v) physical purification by Flibe transport through a porous Ni filter, (vi) Ni/Flibe/D 2 permeation experiment, and (vii) Ni/Flibe/HT permeation experiment. The present paper describes results of the single and dual Ni/D 2 permeation experiments in detail

  17. Enhancement and inhibition effects on the corneal permeability of timolol maleate: Polymers, cyclodextrins and chelating agents.

    Science.gov (United States)

    Rodríguez, Isabel; Vázquez, José Antonio; Pastrana, Lorenzo; Khutoryanskiy, Vitaliy V

    2017-08-30

    This study investigates how both bioadhesive polymers (chitosan, hyaluronic acid and alginate) and permeability enhancers (ethylene glycol- bis(2-aminoethylether)- N, N, N', N'- tetraacetic acid (EGTA) and hydroxypropyl-ß-cyclodextrin) influence the permeability of the anti-glaucoma drug timolol maleate through ex vivo bovine corneas. Our results showed that only the permeability enhancers alone were able to increase drug permeability, whereas the polymers significantly reduced drug permeation, and however, they increased the pre-corneal residence of timolol. Ternary systems (polymer-enhancer-drug) showed a reduced drug permeability compared to the polymers alone. Fluorescence microscopy analysis of the epithelium surface confirmed there was no evidence of epithelial disruption caused by these formulations, suggesting that polymer-enhancer interactions reduce drug solubilization and counteract the disruptive effect of the permeability enhancers on the surface of the cornea. Further mucoadhesive tests, revealed a stable interaction of chitosan and hyaluronic acid with the epithelium, while alginate showed poor mucoadhesive properties. The differences in mucoadhesion correlated with the permeability of timolol maleate observed, i.e. formulations containing mucoadhesive polymers showed lower drug permeabilities. The results of the present study indicate polymers acting as an additional barrier towards drug permeability which is even more evident in the presence of permeability enhancers like EGTA and hydroxypropyl-ß-cyclodextrin. Then, this study highlights the need to adequately select additives intended for ocular applications since interactions between them can have opposite results to what expected in terms of drug permeability. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Influence of nitrogen ion implantation on hydrogen permeation in an extra mild steel

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.; Pivin, J.C.

    1989-01-01

    This paper presents the first results on the effect of nitrogen implantation on hydrogen permeation in steels. Nitrogen can modify superficially the steel's chemistry and/or microstructure depending on the fluence and thereby affect the processes of hydrogen diffusion and trapping. The implantations were performed on low carbon steel specimens with different nominal doses (1% to 10% and 33% nitrogen in a superficial layer of approximately 100 to 120 nm). The corresponding microstructures were characterized and permeation tests were conducted at room temperature in a double electrolytic cell. The nitrogen implanted layers on iron affects the electrochemical behaviour of the surface and the permeation in the material. This effect depends on the nitrogen concentration in the layer and on the corresponding microstructure. A continuous Fe 2 N layer acts as an efficient barrier to hydrogen entry and permeation when the layer is located on the entry face of the permeation membrane. This effect is stronger when the implanted layer is on the downstream face of the membrane. The low permeability values are mainly attributed to a lower hydrogen solubility in the implanted layer, whereas hydrogen trapping on defects and nitride precipitates delay hydrogen penetration. (author)

  19. Alfuzosin hydrochloride transdermal films: evaluation of physicochemical, in vitro human cadaver skin permeation and thermodynamic parameters

    Directory of Open Access Journals (Sweden)

    Satyanarayan Pattnaik

    2009-12-01

    Full Text Available Purpose: The main objective of the investigation was to develop a transdermal therapeutic system for alfuzosin hydrochloride and to study the effects of polymeric system and loading dose on the in vitro skin permeation pattern. Materials and methods: Principles of experimental design have been exploited to develop the dosage form. Ratio of ethyl cellulose (EC and polyvinyl pyrrolidone (PVP and loading dose were selected as independent variables and their influence on the cumulative amount of alfuzosin hydrochloride permeated per cm2 of human cadaver skin at 24 h (Q24, permeation flux (J and steady state permeability coefficient (P SS were studied using experimental design. Various physicochemical parameters of the transdermal films were also evaluated. Activation energy for in vitro transdermal permeation has been estimated. Results: Ratio of EC and PVP was found to be the main influential factor for all the dependent variables studied. Drug loading dose was also found to influence the dependent variables but to a lesser extent. Physicochemical parameters of the prepared films were evaluated and found satisfactory. Activation energy for alfuzosin permeation has also been estimated and reported. Conclusion: The therapeutic system was found to be dermatologically non-irritant and hence, a therapeutically effective amount of alfuzosin hydrochloride can be delivered via a transdermal route.

  20. Cardiovascular Effects of Performance-Enhancing Drugs.

    Science.gov (United States)

    La Gerche, André; Brosnan, Maria J

    2017-01-03

    Exercise and competitive sports should be associated with a wide range of health benefits with the potential to inspire a positive community health legacy. However, the reputation of sports is being threatened by an ever-expanding armamentarium of agents with real or perceived benefits in performance enhancement. In addition to the injustice of unfair advantage for dishonest athletes, significant potential health risks are associated with performance-enhancing drugs. Performance-enhancing drugs may have an effect on the cardiovascular system by means of directly altering the myocardium, vasculature, and metabolism. However, less frequently considered is the potential for indirect effects caused through enabling athletes to push beyond normal physiological limits with the potential consequence of exercise-induced arrhythmias. This review will summarize the known health effects of PEDs but will also focus on the potentially greater health threat posed by the covert search for performance-enhancing agents that have yet to be recognized by the World Anti-Doping Agency. History has taught us that athletes are subjected to unmonitored trials with experimental drugs that have little or no established efficacy or safety data. One approach to decrease drug abuse in sports would be to accept that there is a delay from when athletes start experimenting with novel agents to the time when authorities become aware of these drugs. This provides a window of opportunity for athletes to exploit with relative immunity. It could be argued that all off-label use of any agent should be deemed illegal. © 2016 American Heart Association, Inc.

  1. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  2. Flux flow and cleaning enhancement in a spiral membrane element ...

    African Journals Online (AJOL)

    The effect of backpulsing, into the permeate space of a 2.5 inch spiral wrap membrane, on the prevention of fouling (flux enhancement) was investigated experimentally. These experiments were performed using a 500 mg∙ℓ-1 dextrin solution and a 100 000 MCWO polypropylene membrane, with a feed pressure of 100 kPa ...

  3. Effect of soybean-lecithin as an enhancer of buccal mucosa absorption of insulin.

    Science.gov (United States)

    Tian, Weiqun; Hu, Qiaolin; Xu, Ying; Xu, Yi

    2012-01-01

    Transmucosal delivery is a suitable route for insulin non-injection administration. In order to understand how insulin passes through mucosa with soybean-lecithin as an enhancing absorption. The penetration rate of insulin molecular through porcine buccal mucosa was investigated by measuring transbuccal fluxes in the Ussing Chambers. The imaging morphology of rabbits buccal mucosa was analyzed by using non-contact mode atomic force microscopy. The permeation rate can be increased by co-administration of soybean-lecithin. Untreated buccal mucosa showed relatively smooth surface characteristics, with many small crater-like pits and indentations spread over mucosa surfaces. Buccal mucosa that had been treated with 1.0% (w/v) sodium deoxycholic acid (pH 7.4) appeared to much more indentations characteristic, which treated with 2.5% (w/v) soybean-lecithin (pH 7.4) and 2.5% (w/v) Azone or laurocapram (pH 7.4) appeared rather different, the surface mucosa treated with soybean-lecithin emulsion showed a fine, rippling effect whereas those exposed to Azone display a more coarse, undulating surface feature. As a result of that Azone could damage the surface of the buccal mucosa, but soybean-lecithin could not. This study demonstrated that soybean-lecithin is a better and safer enhancer for insulin transmucosal delivery.

  4. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies.

    Science.gov (United States)

    Estracanholli, Eder André; Praça, Fabíola Silva Garcia; Cintra, Ana Beatriz; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2014-12-01

    Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

  5. Microstructural Study on Oxygen Permeated Arc Beads

    Directory of Open Access Journals (Sweden)

    Kuan-Heng Liu

    2015-01-01

    Full Text Available We simulated short circuit of loaded copper wire at ambient atmosphere and successfully identified various phases of the arc bead. A cuprous oxide flake was formed on the surface of the arc bead in the rapid solidification process, and there were two microstructural constituents, namely, Cu-κ eutectic structure and solutal dendrites. Due to the arc bead formed at atmosphere during the local equilibrium solidification process, the phase of arc bead has segregated to the cuprous oxide flake, Cu-κ eutectic, and Cu phase solutal dendrites, which are the fingerprints of the arc bead permeated by oxygen.

  6. Hydrogen isotope permeation in elastomeric materials

    International Nuclear Information System (INIS)

    Steinmeyer, R.H.; Braun, J.D.

    1976-01-01

    The permeabilities of elastomeric and polymeric materials to hydrogen isotopes were measured at room temperature. The technique for measuring permeation rates is based on the following constant-volume method: a fixed pressure of gas is applied to one side of the specimen to be studied and the permeability constant is determined from the observed rate of pressure increase in an initially evacuated volume on the other side of the specimen. Permeability constants for hydrogen, deuterium, and tritium were measured for Mylar, Teflon, Kapton, Saran, Buna-N, and latex rubber. Results were compared with literature values for hydrogen and deuterium where available and showed excellent agreement

  7. Tritium permeation losses in HYLIFE-II heat exchanger tubes

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1990-01-01

    Tritium permeation through the intermediate heat exchanger of the HYLIFE-II inertial fusion design concept is evaluated for routine operating conditions. The permeation process is modelled using the Lewis analogy combined with surface recombination. It is demonstrated that at very low driving potentials, permeation becomes proportional to the first power of the driving potential. The model predicts that under anticipated conditions the primary cooling loop will pass about 6% of the tritium entering it to the intermediate coolant. Possible approached to reducing tritium permeation are explored. Permeation is limited by turbulent diffusion transport through the molten salt. Hence, surface barriers with impendance factors typical of present technology can do very little to reduce permeation. Low Flibe viscosity is desirable. An efficient tritium removal system operating on the Flibe before it gets to the intermediate heat exchanger is required. Needs for further research are highlighted. 9 refs., 2 figs., 1 tab

  8. Importance of the Direct Contact of Amorphous Solid Particles with the Surface of Monolayers for the Transepithelial Permeation of Curcumin.

    Science.gov (United States)

    Kimura, Shunsuke; Kasatani, Sachiha; Tanaka, Megumi; Araki, Kaeko; Enomura, Masakazu; Moriyama, Kei; Inoue, Daisuke; Furubayashi, Tomoyuki; Tanaka, Akiko; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-01

    The amorphization has been generally known to improve the absorption and permeation of poorly water-soluble drugs through the enhancement of the solubility. The present study focused on the direct contact of amorphous solid particles with the surface of the membrane using curcumin as a model for water-insoluble drugs. Amorphous nanoparticles of curcumin (ANC) were prepared with antisolvent crystallization method using a microreactor. The solubility of curcumin from ANC was two orders of magnitude higher than that of crystalline curcumin (CC). However, the permeation of curcumin from the saturated solution of ANC was negligible. The transepithelial permeation of curcumin from ANC suspension was significantly increased as compared to CC suspension, while the permeation was unlikely correlated with the solubility, and the increase in the permeation was dependent on the total concentration of curcumin in ANC suspension. The absorptive transport of curcumin (from apical to basal, A to B) from ANC suspension was much higher than the secretory transport (from basal to apical, B to A). In vitro transport of curcumin through air-interface monolayers is large from ANC but negligible from CC particles. These findings suggest that the direct contact of ANC with the absorptive membrane can play an important role in the transport of curcumin from ANC suspension. The results of the study suggest that amorphous particles may be directly involved in the transepithlial permeation of curcumin.

  9. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-02-01

    The interactions between oxygen permeation and homogeneous fuel oxidation reactions on the sweep side of an ion transport membrane (ITM) are examined using a comprehensive model, which couples the dependency of the oxygen permeation rate on the membrane surface conditions and detailed chemistry and transport in the vicinity of the membrane. We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. Results show that increasing the sweep gas inlet temperature and fuel concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases the gas temperature near the membrane. Faster reactions at higher fuel concentration and higher inlet gas temperature support substantial fuel conversion and lead to a higher oxygen permeation flux without the contribution of surface catalytic activity. Beyond a certain maximum in the fuel concentration, extensive heat loss to the membrane (and feed side) reduces the oxidation kinetic rates and limits oxygen permeation as the reaction front reaches the membrane. The sweep gas flow rate and channel height have moderate impacts on oxygen permeation and fuel conversion due to the residence time requirements for the chemical reactions and the location of the reaction zone relative to the membrane surface. © 2012 Elsevier B.V.

  10. Gastrointestinal ecosystem and immunological responses in E.coli challenged pigs after weaning fed liquid diets containing whey permeate fermented with different lactic acid bacteria

    DEFF Research Database (Denmark)

    Sugiharto, Sugiharto; Lauridsen, Charlotte; Jensen, Bent Borg

    2015-01-01

    The objective of this study was to investigate the effect of feeding liquid feed containing whey permeate (WP) fermented with different lactic acid bacteria (LAB) on the microbiota and mucosal immune responses of Escherichia coli F4 inoculated piglets post weaning. The study consisted of 52 weaned...... diet tended (P = 0.069) to lower total coliform and enhanced (P = 0.050) LAB:coliform ratio in GIT digesta. The faecal LAB:coliform ratio was higher (P .... Intestinal immunoglobulin (Ig) A decreased (P liquid feed containing W. viridescens-fermented WP improved the intestinal health...

  11. Development of a Contact Permeation Test Fixture and Method

    Science.gov (United States)

    2013-04-01

    Permeation and Analytical Solutions Team Quality System documentation and the guidance found in the ISO 17025 standard. All permeation and...annular ring (left) and no pressure (right). 2.2.4 Quality Controls Analytical permeation testing was conducted in accordance with ISO 17025 quality...internal standard. This mixture was vortexed for 20–30 s then centrifuged at 15,000 rpm for 5 min in a Micromax microcentrifuge (Thermo IEC ; Needham

  12. Preparation and Skin Permeation Study of N, N- Diethyl- meta-Toluamide Semi Solid Formulations

    Directory of Open Access Journals (Sweden)

    Solmaz Ghaffari

    2013-06-01

    Full Text Available N,N-Diethyl meta Toluamide (DEET is an insect repellent agent that contrary to its benefits, if is used in formulations with high skin permeation, will produce side effects of different severity. This study attempted to achieve a semi-solid DEET containing formulation with good appearance, sufficient spreadity, suitable viscosity for tube and jar filling, compatible pH with skin, reasonable stability, longer release time, and the less skin permeation. To obtain such a formulation, three types of DEET containing semi solids including gels (hydrophile, creams (emulsion and ointments (lipophile, and their characteristics were compared with each other and with Off! Brand. Results showed that one of the prepared creams with the proper viscosity, stability, appearance and spreadity, had the least drug release in six hours and less skin permeation of DEET as compared with Off!. Hence the preparation was introduced as the optimal formulation.

  13. In situ measurement of tritium permeation through stainless steel

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  14. Separation of aromatics by vapor permeation through solvent swollen membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ito, A.; Adachi, K.; Feng, Y. [Niigata University, Niigata (Japan)

    1995-12-20

    A vapor permeation process for aromatics separation from a hydrocarbon mixture was studied by means of the simultaneous permeation of dimethylsulfoxide vapor as an agent for membrane swelling and preferential permeation of aromatics. The separation performance of the process was demonstrated by a polyvinylalcohol membrane for mixed vapors of benzene/cyclohexane, xylene/octane and a model gasoline. The aromatic vapors preferentially permeated from these mixed vapor feeds. The separation factor was over 10. The separation mechanism of the process mainly depends on the relative salability of the vapors between aromatics and other hydrocarbons in dimethylsulfoxide. 14 refs., 9 figs., 1 tab.

  15. Enhancing Thermoelectric Performance Using Nonlinear Transport Effects

    Science.gov (United States)

    Jiang, Jian-Hua; Imry, Yoseph

    2017-06-01

    We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.

  16. CriticalSorb™ promotes permeation of flux markers across isolated rat intestinal mucosae and Caco-2 monolayers.

    Science.gov (United States)

    Brayden, D J; Bzik, V A; Lewis, A L; Illum, L

    2012-09-01

    CriticalSorb™ is a novel absorption enhancer based on Solutol(®) HS15, one that has been found to enhance the nasal transport. It is in clinical trials for nasal delivery of human growth hormone. The hypothesis was that permeating enhancement effects of the Solutol(®)HS15 component would translate to the intestine. Rat colonic mucosae were mounted in Ussing chambers and Papp values of [(14)C]-mannitol, [(14)C]-antipyrine, FITC-dextran 4000 (FD-4), and TEER values were calculated in the presence of CriticalSorb™. Tissues were fixed for H & E staining. Caco-2 monolayers were grown on Transwells™ for similar experiments. CriticalSorb™(0.01% v/v) significantly increased the Papp of [(14)C]-mannitol, FD-4 [(14)C]-antipyrine across ileal and colonic mucosae, accompanied by a decrease in TEER. In Caco-2 monolayers, it also increased the Papp of [(14)C]-mannitol FD-4 and [(14)C]-antipyrine over 120 min. In both monolayers and tissues, it acted as a moderately effective P-glycoprotein inhibitor. There was no evidence of cytotoxicity in Caco-2 at concentrations of 0.01% for up to 24 h and histology of tissues showed intact epithelia at 120 min. Solutol(®) HS15 is the key component in CriticalSorb™ that enables non-cytotoxic in vitro intestinal permeation and its mechanism of action is a combination of increased paracellular and transcellular flux.

  17. Preparation, characterization and permeation studies of a nanovesicular system containing diclofenac for transdermal delivery.

    Science.gov (United States)

    Gaur, Praveen Kumar; Purohit, Suresh; Kumar, Yatendra; Mishra, Shikha; Bhandari, Anil

    2014-02-01

    Transdermal formulations contain permeation enhancer which causes skin damage. Ceramide 2 is natural lipid found in stratum corneum (SC). Drug-loaded nanovesicles of ceramide-2, cholesterol, palmitic acid, cholesteryl sulfate were formulated and analyzed for physical and biological properties. Diclofenac was used as a model drug. The vesicles were prepared using the film hydration method and characterized for physical parameters, in vitro drug release, accelerated stability studies and formulated into gel. Respective gels were compared with a commercial formulation (CEG) and plain carbopol gel (CG) containing drug for ex vivo, in vivo drug permeation and anti-inflammatory activity. The vesicles were stable with optimum physical parameters. DCG-1 showed 92.89% in vitro drug release. Ceramide vesicles showed drug release between 18 and 25 μg/cm(2) whereas CG and CEG released 0.33 and 1.35 μg/cm(2) drug, respectively. DCG-1 and CEG showed corresponding Cmax at 6 and 4 h, respectively. DCG-1 showed six times AUC than CEG. DCG-1 inhibited edema by 86.37% by 4th hour of application. The presence of ceramide 2 specifically promotes the drug permeation through SC and dermis and also contribute towards stability and non-irritancy. The composition of the nanovesicle played an important role in physical properties and drug permeation.

  18. Effects of Chemical and Physical Enhancement Techniques on Transdermal Delivery of Cyanocobalamin (Vitamin B12 In Vitro

    Directory of Open Access Journals (Sweden)

    Ajay K. Banga

    2011-08-01

    Full Text Available Vitamin B12 deficiency, which may result in anemia and nerve damage if left untreated, is currently treated by administration of cyanocobalamin via oral or intramuscular routes. However, these routes are associated with absorption and compliance issues which have prompted us to investigate skin as an alternative site of administration. Delivery through skin, however, is restricted to small and moderately lipophilic molecules due to the outermost barrier, the stratum corneum (SC. In this study, we have investigated the effect of different enhancement techniques, chemical enhancers (ethanol, oleic acid, propylene glycol, iontophoresis (anodal iontophoresis and microneedles (soluble maltose microneedles, which may overcome this barrier and improve cyanocobalamin delivery. Studies with different chemical enhancer formulations indicated that ethanol and oleic acid decreased the lag time while propylene glycol based formulations increased the lag time. The formulation with ethanol (50%, oleic acid (10% and propylene glycol (40% showed the maximum improvement in delivery. Iontophoresis and microneedle treatments resulted in enhanced permeation levels compared to passive controls. These enhancement approaches can be explored further to develop alternative treatment regimens.

  19. Testing of Disposable Protective Garments Against Isocyanate Permeation From Spray Polyurethane Foam Insulation.

    Science.gov (United States)

    Mellette, Michael P; Bello, Dhimiter; Xue, Yalong; Yost, Michael; Bello, Anila; Woskie, Susan

    2018-05-12

    Diisocyanates (isocyanates), including methylene diphenyl diisocyanate (MDI), are the primary reactive components of spray polyurethane foam (SPF) insulation. They are potent immune sensitizers and a leading cause of occupational asthma. Skin exposure to isocyanates may lead to both irritant and allergic contact dermatitis and possibly contribute to systemic sensitization. More than sufficient evidence exists to justify the use of protective garments to minimize skin contact with aerosolized and raw isocyanate containing materials during SPF applications. Studies evaluating the permeation of protective garments following exposure to SPF insulation do not currently exist. To conduct permeation testing under controlled conditions to assess the effectiveness of common protective gloves and coveralls during SPF applications using realistic SPF product formulations. Five common disposable garment materials [disposable latex gloves (0.07 mm thickness), nitrile gloves (0.07 mm), vinyl gloves (0.07 mm), polypropylene coveralls (0.13 mm) and Tyvek coveralls (0.13 mm)] were selected for testing. These materials were cut into small pieces and assembled into a permeation test cell system and coated with a two-part slow-rise spray polyurethane foam insulation. Glass fiber filters (GFF) pretreated with 1-(9-anthracenylmethyl)piperazine) (MAP) were used underneath the garment to collect permeating isocyanates. GFF filters were collected at predetermined test intervals between 0.75 and 20.00 min and subsequently analyzed using liquid chromatography-tandem mass spectrometry. For each garment material, we assessed (i) the cumulative concentration of total isocyanate, including phenyl isocyanate and three MDI isomers, that effectively permeated the material over the test time; (ii) estimated breakthrough detection time, average permeation rate, and standardized breakthrough time; from which (iii) recommendations were developed for the use of similar protective garments following

  20. Effects of intentionally enhanced chocolate on mood.

    Science.gov (United States)

    Radin, Dean; Hayssen, Gail; Walsh, James

    2007-01-01

    A double-blind, randomized, placebo-controlled experiment investigated whether chocolate exposed to "good intentions" would enhance mood more than unexposed chocolate. Individuals were assigned to one of four groups and asked to record their mood each day for a week by using the Profile of Mood States. For days three, four and five, each person consumed a half ounce of dark chocolate twice a day at prescribed times. Three groups blindly received chocolate that had been intentionally treated by three different techniques. The intention in each case was that people who ate the chocolate would experience an enhanced sense of energy, vigor, and well-being. The fourth group blindly received untreated chocolate as a placebo control. The hypothesis was that mood reported during the three days of eating chocolate would improve more in the intentional groups than in the control group. Stratified random sampling was used to distribute 62 participants among the four groups, matched for age, gender, and amount of chocolate consumed on average per week. Most participants lived in the same geographic region to reduce mood variations due to changes in weather, and the experiment was conducted during one week to reduce effects of current events on mood fluctuations. On the third day of eating chocolate, mood had improved significantly more in the intention conditions than in the control condition (P = .04). Analysis of a planned subset of individuals who habitually consumed less than the grand mean of 3.2 ounces of chocolate per week showed a stronger improvement in mood (P = .0001). Primary contributors to the mood changes were the factors of declining fatigue (P = .01) and increasing vigor (P = .002). All three intentional techniques contributed to the observed results. The mood-elevating properties of chocolate can be enhanced with intention.

  1. In situ measurement of tritium permeation through stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G., E-mail: walter.luscher@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Senor, David J., E-mail: david.senor@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Clayton, Kevin K., E-mail: kevin.clayton@inl.gov [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States); Longhurst, Glen R., E-mail: glenlonghurst@suu.edu [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2013-06-15

    Highlights: ► In situ tritium permeation measurements collected over broad pressure range. ► Test conditions relevant to 316 SS in commercial light water reactors. ► Comparisons between in- and ex-reactor measurements provided. ► Correlation between tritium permeation, temperature, and pressure developed. -- Abstract: The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a {sup 4}He carrier gas mixed with a specified quantity of tritium (T{sub 2}) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He–Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of {sup 3}He to T, was also evaluated by introducing a {sup 4}He carrier gas mixed with {sup 3}He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from {sup 3}He transmutation contributed to tritium permeation.

  2. Re-evaluation of SiC permeation coefficients at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yasushi, E-mail: yama3707@kansai-u.ac.jp [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Murakami, Yuichiro; Yamaguchi, Hirosato; Yamamoto, Takehiro; Yonetsu, Daigo [Faculty of Engineering Science, Kansai Univ., Yamate-cho, Suita, Osaka 564-8680 (Japan); Noborio, Kazuyuki [Hydrogen Isotope Research Center, Univ. of Toyama, Toyama, Toyama 930-8555 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto Univ., Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • The deuterium permeation coefficients of CVD-SiC at 600–950 °C were evaluated. • The wraparound flow was reduced to less than 1/100th of the permeation flow. • CVD-SiC materials are very effective as hydrogen isotope permeation barriers. - Abstract: Since 2007, our group has studied the deuterium permeation and diffusion coefficients for SiC materials at temperatures above 600 °C as a means of evaluating the tritium inventory and permeation in fusion blankets. During such measurements, control and evaluation of the wraparound flow through the sample holder are important, and so the heated sample holder is enclosed by a glass tube and kept under vacuum during experimental trials. However, detailed studies regarding the required degree of vacuum based on model calculations have shown that the wraparound flow is much larger than expected, and so can affect measurements at high temperatures. We therefore modified the measurement apparatus based on calculations involving reduced pressure in the glass tube, and are now confident that the measurement error is only several percent, even at 950 °C. In this paper, recent experimental results obtained with a chemical vapor deposition (CVD)-SiC sample over the temperature range of 600–950 °C are presented, showing that the permeation coefficient for CVD-SiC is more than three orders of magnitude smaller than that for stainless steel (SS316) at 600 °C, and that at 950 °C, the coefficient for CVD-SiC is almost equal to that for SUS316 at 550 °C.

  3. Ultrasound in Biomedical Engineering: Ultrasound Microbubble Contrast Agents Promote Transdermal Permeation of Drugs

    OpenAIRE

    Ai-Ho Liao

    2016-01-01

    This report discusses a new development in the use of ultrasound microbubble contrast agents on transdermal drug delivery. The medium surrounding the microbubbles at the optimum concentration from liquid to gel can be modified and it can still achieve the same enhancement for transdermal drug permeation as liquid medium. It was also found that under the same ultrasound power density, microbubbles of larger particle sizes can extend the penetration depths of dye at the phantom surface.

  4. Enhancing Organizational Effectiveness in Research Reactors

    International Nuclear Information System (INIS)

    Khalafi, H.; Kojouri, N. Mataji; Sedghgooya, E.; Dabiri, J.; Ezzati, A.

    2016-01-01

    Bearing in mind even one simple definition of “organization” as a social unit of structured people working together in a managed manner to achieve some common goal which is the purpose of establishing that organization, we can understand the importance of the matter in achieving goals. Organization of the nuclear complex shall be considered, by all stakeholders not only in national scale but also in international relations and communities, as one of the most important pillars of the effective and reliable, safe and secure use of the nuclear technology. Effectiveness of the nuclear technology is obtained through a good, safe and secure technology, skilled and committed personnel who work well in interaction with technology and a good and established organization which conducts and regulates activities upon whole of the complex system via management and leadership in harmonised manner. Although, effectiveness of the nuclear complex is a complicate function of the above mentioned affecting factors, but a good organization besides solving its day to day business, can minimise the problems, resolve or eliminate unnecessary challenges and save resources and energies and help to identify issues and difficulties. Simply viewed, any organization has a theoretical base and consists of necessary elements. In order to be effective one organization first of all shall include good theoretical base, then armed with good instruments and then shall be run well. Enhancing the effectiveness of any organization can be achieved by enhancing any of the above mentioned elements individually or collectively in a harmonic way. For improving the Research Reactors effectiveness as a nuclear complex or facility in order to satisfactorily meet research and production needs, we must work in some different areas in parallel and simultaneously including technical, administrative, organizational and human resource issues. First we should identify and fix the real situation in all interested

  5. Investigating the influence of diffusional coupling on mixture permeation across porous membranes

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2013-01-01

    A careful analysis of published experimental data on permeation of a variety of binary mixtures reveals that there are fundamentally two types of diffusional coupling effects that need to be recognized. The first type of coupling occurs when the less-mobile species slows down its more mobile partner

  6. Hydrogen permeation through sol-gel-coated iron during galvanostatic charging

    International Nuclear Information System (INIS)

    Zakorchemna, I.; Carmona, N.; Zakroczymski, T.

    2008-01-01

    One-layer sol-gel silica-zirconia and two-layer silica-zirconia and zirconia coatings were deposited on one side of iron membranes by spin-coating, densified in air and annealed up to 800 deg. C in vacuum. Hydrogen permeation through the membranes, coated and uncoated, polarised cathodically under galvanostatic control in 0.1 M NaOH solution was studied using the electrochemical permeation technique. During the initial period, the effect of the sol-gel coatings was insignificant. However, the coatings quite efficiently prevented the iron surface become more active to hydrogen entry during a long-lasting cathodic polarisation. In addition, the electrochemical-corrosion behaviour of the coated iron and the effect of the sol-gel coatings on the effective diffusivity of hydrogen in the coated membranes were studied. On the basis of the polarisation curves and the hydrogen permeation data it was proved that the sol-gel coatings blocked the iron surface for the hydrogen evolution reaction and, consequently, for the hydrogen entry into iron. The effective coating coverage was determined by comparison of the hydrogen fluxes permeating the coated and uncoated membranes. Finally the real concentration of hydrogen beneath the uncoated iron sites and the amount of hydrogen stored in a membrane were evaluated

  7. Gas Permeation Related to the Moisture Sorption in Films of Glassy Hydrophilic Polymers

    NARCIS (Netherlands)

    Laksmana, F. L.; Kok, P. J. A. Hartman; Frijlink, H. W.; Vromans, H.; Maarschalk, K. Van Der Voort

    2010-01-01

    The purpose of this article is to elucidate the effect of integral sorption of moisture on gas permeation in glassy hydrophilic polymers. The oxygen and the simultaneous moisture sorption into various hydroxypropyl methylcellulose (HPMC) films were measured under a wide range of relative humidities

  8. Permeation of Light Gases through Hexagonal Ice

    Directory of Open Access Journals (Sweden)

    Luis Gales

    2012-09-01

    Full Text Available Gas separation using porous solids have attracted great attention due to their energetic applications. There is an enormous economic and environmental interest in the development of improved technologies for relevant processes, such as H2 production, CO2 separation or O2 and N2 purification from air. New materials are needed for achieving major improvements. Crystalline materials, displaying unidirectional and single-sized pores, preferentially with low pore tortuosity and high pore density, are promising candidates for membrane synthesis. Herein, we study hexagonal ice crystals as an example of this class of materials. By slowly growing ice crystals inside capillary tubes we were able to measure the permeation of several gas species through ice crystals and investigate its relation with both the size of the guest molecules and temperature of the crystal.

  9. Permeation of Telone EC through protective gloves.

    Science.gov (United States)

    Zainal, Hanaa; Que Hee, Shane S

    2005-09-30

    Telone is a potent fumigant that is based on the chlorinated unsaturated hydrocarbon, 1,3-dichloropropene (1,3-DCP). It is often applied without dilution and so poses severe inhalation and air pollution threats. Urinary metabolites of 1,3-DCP have been detected after Telone skin exposure, so that preventing dermal exposure is also important. The objective of the study was to assess if nitrile and multi-layer ("laminated") gloves provide adequate protection against Telone EC formulation. To accomplish this, disposable (Safeskin) and chemically resistant (Sol-Vex) nitrile and laminated (Barrier mark and Silver Shield) glove materials were challenged by Telone EC with hexane liquid collection in an ASTM-type I-PTC-600 permeation cell. Analyses of cis- and trans-1,3-DCP in the collection fluid at specified times were performed on a moderately polar capillary column by gas chromatography-electron capture detection. Telone EC caused microholes in both nitrile materials, though the chemically protective material was degraded slower than the disposable nitrile. The laminated gloves offered limited protection. Silver Shield protected best because 1.5-2.3 mg 1,3-DCP permeated by 8 h relative to 2.5-7.6 mg for Barrier, implying about 2.5 times more protection for 8 h. Even for Silver Shield, the extent of protection was inadequate as illustrated by a risk assessment of the skin exposure situation. The normalized breakthrough times for both types of laminated gloves varied between 27 and 60 min. It is recommended that Viton gloves still be worn for protection.

  10. An unheated permeation device for calibrating atmospheric VOC measurements

    Directory of Open Access Journals (Sweden)

    J. Brito

    2011-10-01

    Full Text Available The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as on board aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, so that the instantaneous permeation rate can be ascribed to a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii a water bath as heat buffer, and (iii a vacuum-panel based insulation, in which features (ii and (iii minimize temperature drifts to ~30 mK h−1 per Kelvin temperature difference to the environment. The respective uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1%. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm dominates.

  11. Gastrointestinal behavior of nano- and microsized fenofibrate: In vivo evaluation in man and in vitro simulation by assessment of the permeation potential.

    Science.gov (United States)

    Hens, Bart; Brouwers, Joachim; Corsetti, Maura; Augustijns, Patrick

    2015-09-18

    The purpose of this study was (i) to evaluate the gastrointestinal behavior of micro- and nanosized fenofibrate in humans and (ii) to develop a simple yet qualitatively predictive in vitro setup that simulates the observed absorption-determining factors. Commercially available micro- and nanoparticles of fenofibrate (Lipanthyl® and Lipanthylnano®, respectively) were administered orally to five healthy volunteers in fasting and postprandial conditions. Intraluminal and systemic drug concentrations were determined as reference data for the development of a predictive in vitro setup. To capture the observed solubility/permeability interplay, in vitro dissolution testing was performed in the presence of a permeation bag with sink conditions. In fasting conditions, intake of nanosized fenofibrate generated increased duodenal concentrations compared to microsized fenofibrate, which was reflected in an improved systemic exposure. In postprandial conditions, duodenal concentrations were greatly enhanced for both formulations, however without an accompanying increase in systemic exposure. It appeared that micellar encapsulation of the highly lipohilic fenofibrate limited its potential to permeate from fed state intestinal fluids. To capture these in vivo observations in an in vitro setup, classic dissolution testing was combined with permeation assessment into a permeation bag with sink conditions. In case of fasting conditions, the dissolution/permeation approach allowed for an improved discriminative power between micro- and nanosized fenofibrate by better simulating the dynamic interplay of dissolution and absorption. In case of postprandial conditions, the observed solubility-permeability interplay could be simulated using the dissolution/permeation approach in combination with biorelevant media (FeSSGFFortimel and FeSSIF-V2) to mimic micellar entrapment and reduced permeation potential of fenofibrate. For the first time, reduced permeation of a lipophilic drug

  12. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production

    International Nuclear Information System (INIS)

    Fan, Senqing; Xiao, Zeyi; Li, Minghai; Li, Sizhong

    2016-01-01

    Graphical abstract: Pervaporation membrane bioreactor with permeate partial condensation and mechanical vapor compression is developed for an energy efficient ethanol production. - Highlights: • PVMBR-MVC for energy efficient ethanol production. • Process separation factor of 20–44 for ethanol achieved by fractional condensation. • Energy production of 20.25 MJ and hourly energy production of 56.25 kJ/h achieved. • Over 50% of energy saved in PVMBR-MVC compared with PVMBR-LTC. • Integrated heat pump with COP of 7–9 for the energy recovery of the permeate. - Abstract: Improved process separation factor and heat integration are two key issues to increase the energy efficiency of ethanol production in a pervaporation membrane bioreactor (PVMBR). A PVMBR with permeate fractional condensation and mechanical vapor compression was developed for energy efficient ethanol production. A condensation model based on the mass balance and thermodynamic equilibrium in the partial vacuum condenser was developed for predicting the purification performance of the permeate vapor. Three runs of ethanol fermentation-pervaporation experiment were carried out and ethanol concentration of higher than 50 wt% could be achieved in the final condensate, with the separation factor of the process for ethanol increased to 20. Ethanol production could be enhanced in the bioreactor and 17.1 MJ of the energy could be produced in per liter of fermentation broth, owing to 27.0 MJ/kg heating value of the recovered ethanol. Compared with the traditional pervaporation process with low temperature condensation for ethanol production, 50% of the energy would be saved in the process. The energy consumption would be further reduced, if the available energy of the permeate vapor was utilized by integrating the mechanical vapor compression heat pump.

  13. Permeation of aromatic solvent mixtures through nitrile protective gloves.

    Science.gov (United States)

    Chao, Keh-Ping; Hsu, Ya-Ping; Chen, Su-Yi

    2008-05-30

    The permeation of binary and ternary mixtures of benzene, toluene, ethyl benzene and p-xylene through nitrile gloves were investigated using the ASTM F739 test cell. The more slowly permeating component of a mixture was accelerated to have a shorter breakthrough time than its pure form. The larger differences in solubility parameter between a solvent mixture and glove resulted in a lower permeation rate. Solubility parameter theory provides a potential approach to interpret the changes of permeation properties for BTEX mixtures through nitrile gloves. Using a one-dimensional diffusion model based on Fick's law, the permeation concentrations of ASTM F739 experiments were appropriately simulated by the estimated diffusion coefficient and solubility. This study will be a fundamental work for the risk assessment of the potential dermal exposure of workers wearing protective gloves.

  14. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  15. Comparative enhancing effects of electret with chemical enhancers on transdermal delivery of meloxicam in vitro

    International Nuclear Information System (INIS)

    Cui, L L; Hou, X M; Li, G D; Jiang, J; Liang, Y Y; Xin, X

    2008-01-01

    Electret offers enhancing effect in transdermal drug delivery for altering of the arrangement of lipid molecules in the stratum corneum, forming many transient permeable apertures and enhancing the transdermal drug delivery. In this paper, meloxicam patch formulations were developed to make the comparative study of transdermal drug delivery between electret and chemical enhancers. Patches were made into control, electret, chemical enhancer and electret with chemical enhancer ones, according to the preparation procedure. The electret combined with chemical enhancer patch was designed to probe the incorporation between electret and chemical enhancer in transdermal drug delivery. The meloxicam release from the patch was found to increase in order of blank, chemical enhancer, electret and electret with chemical enhancer patch, in general.

  16. Protection efficacy of gloves against components of the solvent in a sprayed isocyanate coating utilizing a reciprocating permeation panel.

    Science.gov (United States)

    Ceballos, Diana M; Reeb-Whitaker, Carolyn; Sasakura, Miyoko; Dills, Russell; Yost, Michael G

    2015-04-01

    Determine protection effectiveness of 5-mil natural rubber latex (0.13-mm), 5-mil nitrile rubber (0.13-mm), and 13-mil butyl rubber (0.33-mm) glove materials against solvents present in a commonly used automotive clear coat formulation using a novel permeation panel. The latex and nitrile gloves were the type commonly used by local autobody spray painters. Glove materials were tested by spraying an automotive clear coat onto an automated reciprocating permeation panel (permeation panel II). Temperature, relative humidity, and spray conditions were controlled to optimize clear coat loading homogeneity as evaluated by gravimetric analysis. Solvent permeation was measured using charcoal cloth analyzed by the National Institute for Occupational Safety and Health 1501 method. Natural rubber latex allowed 3-5 times the permeation of solvents relative to nitrile rubber for all 10 solvents evaluated: ethyl benzene, 2-heptanone, 1-methoxy-2-propyl acetate, o-xylene, m-xylene, p-xylene, n-butyl acetate, methyl isobutyl ketone, petroleum distillates, and toluene. There is a distinct behavior in solvent permeation before and after the coating dry time. Solvent permeation increased steadily before coating dry time and remained fairly constant after coating dry time. Butyl was not permeated by any of the solvents under the conditions tested. Commonly used 5-mil thick (0.13-mm) latex and nitrile gloves were ineffective barriers to solvents found in a commonly used clear coat formulation. Conversely, 13-mil (0.33-mm) butyl gloves were found to be protective against all solvents in the clear coat formulation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Enhancing the Effectiveness of ICT Applications and Tools for ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Enhancing the Effectiveness of ICT Applications and Tools for Disaster ... of disaster management in the Caribbean, including early warning systems and collection ... to enhancing regional strategies to respond to natural hazards using ICTs.

  18. Optimisation of cosolvent concentration for topical drug delivery III--influence of lipophilic vehicles on ibuprofen permeation.

    Science.gov (United States)

    Watkinson, R M; Guy, R H; Oliveira, G; Hadgraft, J; Lane, M E

    2011-01-01

    Previously, we have reported the effects of water, ethanol, propylene glycol and various binary and ternary mixtures of these solvents on the permeation of ibuprofen in model membranes and in skin. The present study investigates the influence of lipophilic vehicles on the transport of ibuprofen in silicone membrane and in human skin. The permeation of ibuprofen was measured from mineral oil (MO), Miglyol® 812 (MG) and binary mixtures of MO and MG. The solubility of ibuprofen was 5-fold higher in MG than in MO, however, the permeation of ibuprofen from the pure vehicles and combinations of both was comparable in silicone membrane. Additionally, there were no significant differences in skin permeation for MO and MG vehicles. When the permeation of various hydrophilic and lipophilic vehicles is considered, a trend between flux values for the model membrane and skin is evident (r(2) = 0.71). The findings suggest that silicone membrane may provide information on qualitative trends in skin permeation for vehicles of diverse solubility and partition characteristics. Copyright © 2010 S. Karger AG, Basel.

  19. Development of Acyclovir-Loaded Albumin Nanoparticles and Improvement of Acyclovir Permeation Across Human Corneal Epithelial T Cells.

    Science.gov (United States)

    Suwannoi, Panita; Chomnawang, Mullika; Sarisuta, Narong; Reichl, Stephan; Müller-Goymann, Christel C

    2017-12-01

    The aim of the present study was to develop acyclovir (ACV) ocular drug delivery systems of bovine serum albumin (BSA) nanoparticles as well as to assess their in vitro transcorneal permeation across human corneal epithelial (HCE-T) cell multilayers. The ACV-loaded BSA nanoparticles were prepared by desolvation method along with physicochemical characterization, cytotoxicity, as well as in vitro transcorneal permeation studies across HCE-T cell multilayers. The nanoparticles appeared to be spherical in shape and nearly uniform in size of about 200 nm. The size of nanoparticles became smaller with decreasing BSA concentration, while the ratios of water to ethanol seemed not to affect the size. Increasing the amount of ethanol in desolvation process led to significant reduction of drug entrapment of nanoparticles with smaller size and more uniformity. The ACV-loaded BSA nanoparticles prepared were shown to have no cytotoxic effect on HCE-T cells used in permeation studies. The in vitro transcorneal permeation results revealed that ACV could permeate through the HCE-T cell multilayers significantly higher from BSA nanoparticles than from aqueous ACV solutions. The ACV-loaded BSA nanoparticles could be prepared by desolvation method without glutaraldehyde in the formulation. ACV could increasingly permeate through the multilayers of HCE-T cells from the ACV-loaded BSA nanoparticles. Therefore, the ACV-loaded BSA nanoparticles could be a highly potential ocular drug delivery system.

  20. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    Science.gov (United States)

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Essential oil from Zanthoxylum bungeanum Maxim. and its main components used as transdermal penetration enhancers: a comparative study.

    Science.gov (United States)

    Lan, Yi; Li, Hui; Chen, Yan-yan; Zhang, Ye-wen; Liu, Na; Zhang, Qing; Wu, Qing

    2014-11-01

    Our previous studies had confirmed that the essential oil from Zanthoxylum bungeanum Maxim. (Z. bungeanum oil) could effectively enhance the percutaneous permeation of drug molecules as a natural transdermal penetration enhancer. The aim of the present study is to investigate and compare the skin penetration enhancement effect of Z. bungeanum oil and its main components on traditional Chinese medicine (TCM) active components. Toxicities of Z. bungeanum oil and three selected terpene compounds (terpinen-4-ol, 1,8-cineole, and limonene) in epidermal keratinocytes (HaCaT) and dermal fibroblast (CCC-ESF-1) cell lines were measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Five model drugs in TCM external preparations, namely osthole (OT), tetramethylpyrazine (TMP), ferulic acid (FA), puerarin (PR), and geniposide (GP), which were selected based on their lipophilicity denoted by logKo/w, were tested using in vitro permeation studies in which vertical Franz diffusion cells and rat abdominal skin were employed. The secondary structure changes of skin stratum corneum (SC) and drug thermodynamic activities were investigated to understand their mechanisms of action using Fourier transform infrared (FTIR) spectroscopy and saturation solubility studies, respectively. It was found that Z. bungeanum oil showed lower toxicities in both HaCaT cells and CCC-ESF-1 cells compared with three terpene compounds used alone. The enhancement permeation capacities by all tested agents were in the following increasing order: terpinen-4-ol≈1,8-cineolepermeation enhancement suggested that these enhancers promoted the skin permeation of drugs mainly by affecting SC lipids. These results indicated that Z. bungeanum oil exhibited better performance in enhancing the skin permeation of active components in TCM preparations.

  2. In vitro human skin permeation of endoxifen: potential for local transdermal therapy for primary prevention and carcinoma in situ of the breast

    Directory of Open Access Journals (Sweden)

    Lee O

    2011-07-01

    Full Text Available Oukseub Lee1, David Ivancic1, Robert T Chatterton Jr2, Alfred W Rademaker3, Seema A Khan11Department of Surgery, 2Department of Obstetrics/Gynecology, 3Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USAPurpose: Oral tamoxifen, a triphenylethylene (TPE, is useful for breast cancer prevention, but its adverse effects limit acceptance by women. Tamoxifen efficacy is related to its major metabolites 4-hydroxytamoxifen (4-OHT and N-desmethyl-4-hydroxytamoxifen (endoxifen [ENX]. Transdermal delivery of these to the breast may avert the toxicity of oral tamoxifen while maintaining efficacy. We evaluated the relative efficiency of skin permeation of 4-OHT and ENX in vitro, and tested oleic acid (OA as a permeation-enhancer.Methods: 4-OHT, ENX, and estradiol (E2 (0.2 mg/mL of 0.5 µCi 3H/mg were dissolved in 60% ethanol-phosphate buffer, ±OA (0.1%–5%. Permeation through EpiDermTM (Matek Corp, Ashland, MA and split-thickness human skin was calculated based on the amount of the agents recovered from the receiver fluid and skin using liquid scintillation counting over 24 hours.Results: In the EpiDerm model, the absorption of 4-OHT and ENX was 10%–11%; total penetration (TP was 26%–29% at 24 hours and was decreased by OA. In normal human skin, the absorption of 4-OHT and ENX was 0.3%; TP was 2%–4% at 24 hours. The addition of 1% OA improved the permeation of ENX significantly more than that of 4-OHT (P < 0.004; further titration of OA at 0.25%–0.5% further improved the permeation of ENX to a level similar to that of estradiol.Conclusion: The addition of OA to ENX results in a favorable rapid delivery equivalent to that of estradiol, a widely used transdermal hormone. The transdermal delivery of ENX to the breast should be further developed in preclinical and clinical studies.Keywords: endoxifen, breast cancer prevention, human skin, transdermal, oleic acid

  3. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng; Heijman, Sebastiaan G J; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  4. Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate

    KAUST Repository

    Li, Sheng

    2012-09-01

    In this study, the effect of demineralized water backwashing on fouling control of seawater ultrafiltration was investigated. Seawater from Scheveningen beach in The Hague and a desalination plant of Evides Company at Zeeland in the Netherlands was used as feed water, while demineralized water and UF permeate were used as backwash water for a fouling control efficiency comparison under different fluxes and backwash durations. Furthermore, demineralized waters with 5 or 50 mmol/l NaCl were applied for backwashing as well, to check the influence of monovalent cations on UF fouling control. Additionally, SWRO permeate was used for backwashes in long-term experiments to check the possibility of it replacing demineralized water. Results show that seawater UF fouling control is substantially improved by demineralized water backwashing. However, due to the high salinity of seawater, more water was required to dilute the cation concentration and limit the dispersion effect near the membrane surface than was needed for surface water. A 2-min demineralized water backwash showed better fouling control efficiency than a 1-min backwash. Furthermore, the presence of monovalent cations in the backwash water deteriorated the fouling control efficiency of the backwash, indicating the existence of a charge screening effect. The demineralized water with 5 and 50 mmol/l NaCl both showed a similar fouling control efficiency which is better than the UF permeate backwash. The calcium ions in UF permeate probably deteriorates the fouling control efficiency by maintaining a Ca-bridging effect between the membranes and NOM. SWRO permeate backwashing successfully controls membrane fouling as well. © 2012 Elsevier B.V. All rights reserved.

  5. Characterization and in vitro permeation study of microemulsions and liquid crystalline systems containing the anticholinesterase alkaloidal extract from Tabernaemontana divaricata

    DEFF Research Database (Denmark)

    Chaiyana, Wantida; Rades, Thomas; Okonogi, Siriporn

    2013-01-01

    The aims of the present study were to characterize the microstructure and study the skin permeation enhancement of formulations containing the alkaloidal extract from Tabernaemontana divaricata. The extract was loaded in the formulations composed of Zingiber cassumunar oil, Triton X-114, ethanol ...

  6. Vapour permeation for the recovery of organic solvents from waste air streams: separation capacities and process optimization

    NARCIS (Netherlands)

    Leemann, M.; Leemann, M.; Eigenberger, G.; Strathmann, H.

    1996-01-01

    Vapour permeation is a potentially suitable technology for the recovery of organic solvents from waste air streams. New solvent stable capillary membrane modules that are currently emerging on the market provide large membrane areas for an acceptable price and enhance the competitiveness of this

  7. Possible edge effect in enhanced network

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H P; Brown, D R [National Aeronautics and Space Administration, Greenbelt, Md. (USA). Goddard Space Flight Center

    1977-05-01

    K-line observations of enhanced network taken with the NASA/SPO Multichannel Spectrometer on 28 September 1975 in support of OSO-8 are discussed. The data show a correlation between core brightness and asymmetry for spatial scans which cross enhanced network boundaries. The implications of this result concerning mass flow in and near supergranule boundaries are discussed.

  8. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles

    Science.gov (United States)

    Elnaggar, Yosra SR; El-Massik, Magda A; Abdallah, Ossama Y

    2011-01-01

    Although sildenafil citrate (SC) is used extensively for erectile dysfunction, oral delivery of SC encounters many obstacles. Furthermore, the physicochemical characteristics of this amphoteric drug are challenging for delivery system formulation and transdermal permeation. This article concerns the assessment of the potential of nanomedicine for improving SC delivery and transdermal permeation. SC-loaded nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) were fabricated using a modified high-shear homogenization technique. Nanoparticle optimization steps included particle size analysis, entrapment efficiency (EE) determination, freeze-drying and reconstitution, differential scanning calorimetry, in vitro release, stability study and high-performance liquid chromatography analysis. Transdermal permeation of the nanocarriers compared with SC suspension across human skin was assessed using a modified Franz diffusion cell assembly. Results revealed that SLNs and NLCs could be optimized in the nanometric range (180 and 100 nm, respectively) with excellent EE (96.7% and 97.5%, respectively). Nanoparticles have significantly enhanced in vitro release and transdermal permeation of SC compared with its suspensions. Furthermore, transdermal permeation of SC exhibited higher initial release from both SLN and NLC formulations followed by controlled release, with promising implications for faster onset and longer drug duration. Nanomedicines prepared exhibited excellent physical stability for the study period. Solid nanoparticles optimized in this study successfully improved SC characteristics, paving the way for an efficient topical Viagra® product. PMID:22238508

  9. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    International Nuclear Information System (INIS)

    Li Shuai; He Di; Liu Xiaopeng; Wang Shumao; Jiang Lijun

    2012-01-01

    Highlights: ► Deuterium permeation behavior of alumina coating by MOCVD is investigated. ► The as-prepared alumina is amorphous. ► The alumina coating is dense and well adherent to substrate. ► Deuterium permeation rate of alumina coating is 2–3 orders of magnitude lower than martensitic steels. - Abstract: The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51–60 times less than that of the 316L stainless steel and 153–335 times less than that of the referred low activation martensitic steels at 860–960 K.

  10. Measurement of blood-brain barrier permeation in rats during exposure to 2450-MHz microwaves

    International Nuclear Information System (INIS)

    Ward, T.R.; Elder, J.A.; Long, M.D.; Svendsgaard, D.

    1982-01-01

    Adult rats anesthesized with pentobarbital and injected intravenously with a mixture of [ 14 C] sucrose and [ 3 H] inulin were exposed for 30 min to an environment at an ambient temperature of 22, 30, or 40 degrees C, or were exposed at 22 degrees C to 2450-MHz CW microwave radiation at power densities of 0, 10, 20, or 30 mW/cm2. Following exposure, the brain was perfused and sectioned into eight regions, and the radioactivity in each region was counted. The data were analyzed by two methods. First, the data for each of the eight regions and for each of the two radioactive tracers were analyzed by regression analysis for a total of 16 analyses and Bonferroni's Inequality was applied to prevent false positive results from numerous analyses. By this conservative test, no statistically significant increase in permeation was found for either tracer in any brain region of rats exposed to microwaves. Second, a profile analysis was used for a general change in tracer uptake across all brain regions. Using this statistical method, a significant increase in permeation was found for sucrose but not for inulin. A correction factor was then derived from the warm-air experiments to correct for the increase in permeation of the brain associated with change in body temperature. This correction factor was applied to the data for the irradiated animals. After correcting the data for thermal effects of the microwave radiation, no significant increase in permeation was found

  11. Fully automatic flow-based device for monitoring of drug permeation across a cell monolayer.

    Science.gov (United States)

    Zelená, Lucie; Marques, Sara S; Segundo, Marcela A; Miró, Manuel; Pávek, Petr; Sklenářová, Hana; Solich, Petr

    2016-01-01

    A novel flow-programming setup based on the sequential injection principle is herein proposed for on-line monitoring of temporal events in cell permeation studies. The permeation unit consists of a Franz cell with its basolateral compartment mixed under mechanical agitation and thermostated at 37 °C. The apical compartment is replaced by commercially available Transwell inserts with a precultivated cell monolayer. The transport of drug substances across epithelial cells genetically modified with the P-glycoprotein membrane transporter (MDCKII-MDR1) is monitored on-line using rhodamine 123 as a fluorescent marker. The permeation kinetics of the marker is obtained in a fully automated mode by sampling minute volumes of solution from the basolateral compartment in short intervals (10 min) up to 4 h. The effect of a P-glycoprotein transporter inhibitor, verapamil as a model drug, on the efficiency of the marker transport across the cell monolayer is thoroughly investigated. The analytical features of the proposed flow method for cell permeation studies in real time are critically compared against conventional batch-wise procedures and microfluidic devices.

  12. Investigation on hydrogen permeation on heat exchanger materials in conditions of steam coal gasification

    International Nuclear Information System (INIS)

    Moellenhoff, H.

    1984-01-01

    The permeation of hydrogen through iron-based alloys of different compositions in the temperature range between 700 and 1000 0 C was examined in a laboratory fluidized bed in the conditions of steam/coal gasification. Apart from tests on bright metal samples, measurement in the gasification atmosphere at a maximum pressure of 1 bar were carried out during oxidation of the metal. Experiments in a steam/hydrogen/argon mixture with the same oxidation potential were used for comparison purposes. The hydrogen permeated through the metal sample was taken to a gas chromatograph with argon flushing gas and analyzed there. The investigations on bright steel samples of various composition showed that their permeabilities for hydrogen at temperatures around 900 0 C only differed by a maximum of ± 30%. Effective prevention of permeation is therefore not possible simply by choosing a suitable alloy. If the steels are oxidized during permeation measurements, there is a reduction of the hydrogen permeability by 2 or 3 orders of magnitude due to the oxidation process, both in the steam/coal gasification fluidized bed and in a pure steam/hydrogen/argon mixture. (orig./GG) [de

  13. Development of tritium permeation barriers on Al base in Europe

    Science.gov (United States)

    Benamati, G.; Chabrol, C.; Perujo, A.; Rigal, E.; Glasbrenner, H.

    The development of the water cooled lithium lead (WCLL) DEMO fusion reactor requires the production of a material capable of acting as a tritium permeation barrier (TPB). In the DEMO blanket reactor permeation barriers on the structural material are required to reduce the tritium permeation from the Pb-17Li or the plasma into the cooling water to acceptable levels (HIP) technology and spray (this one developed also for repair) deposition techniques. The final goal is to select a reference technique to be used in the blanket of the DEMO reactor and in the ITER test module fabrication. The activities performed in four European laboratories are summarised here.

  14. Permeation rates for RTF metal hydride vessels

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    Contamination rates have been estimated for the RTF nitrogen heating and cooling system (NH and CS) due to tritium permeation through the walls of metal hydride vessels. Tritium contamination of the NH and CS will be seen shortly after start-up of the RTF with the majority of it coming from the TCAP units. Contamination rates of the NH and CS are estimated to exceed 400 Ci/year after three years of operation and will elevate tritium concentrations in the NH and CS above 6 x 10 -3 μCi/cc. To reduce tritium activity in the NH and CS, a stripper or ''getter'' bed may need to be installed in the NH and CS. Increasing the purge rate of nitrogen from the NH and CS is shown to be an impractical method for reducing tritium activity due to the high purge rates required. Stripping of the NH and CS nitrogen in the glove box stripper system will give a temporary lowering of tritium activity in the NH and CS, but tritium activity will return to its previous level in approximately two weeks

  15. Dose enhancement effects of X ray radiation in bipolar transistors

    International Nuclear Information System (INIS)

    Chen Panxun

    1997-01-01

    The author has presented behaviour degradation and dose enhancement effects of bipolar transistors in X ray irradiation environment. The relative dose enhancement factors of X ray radiation were measured in bipolar transistors by the experiment methods. The mechanism of bipolar device dose enhancement was investigated

  16. Enhancing effect of bile salts on gastrointestinal absorption of insulin ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of co-administration of two absorption enhancing bile alts, sodium glycocholate (NaGc) and sodium salicylate (NaSal), on insulin absorption via intestinal targeted delivery system. Methods: Insulin (10 IU/kg), associated with and without absorption enhancers (5 % enhancer solution of ...

  17. Effect of the mixed liquor suspended solid on permeate in a membrane bioreactor system applied for the treatment of sewage mixed with wastewater of the milk from the dairy industry.

    Science.gov (United States)

    Poyatos, José M; Molina-Muñoz, Marisa; Moreno, Begoña; González-López, Jesús; Hontoria, Ernesto

    2007-06-01

    The performance of a bench-scale submerged membrane bioreactor (MBR) equipped with ultrafiltration membranes (ZENON) was investigated at different mixed liquor suspended solid (MLSS) concentrations (3069, 4314 and 6204 mg/L). The pilot plant was located in the wastewater treatment plant of the city of Granada (Puente de los Vados, Granada, Spain), which receives the wastewater of the milk from the dairy industry of Granada. The results showed the capacity of the MBR systems to remove organic material (COD and BOD5), suspended solids, turbidity, color and microbial indicators such as E. coli and coliphages. Therefore, the results suggest that the transmembrane pressure (TMP) was influence by the MLSS concentration assayed. However, an increase in the MLSS concentration increases the nitrification processes and consequently the amount of NO3- in permeate.

  18. The influence of functional groups on the permeation and distribution of antimycobacterial rhodamine chelators.

    Science.gov (United States)

    Moniz, T; Leite, A; Silva, T; Gameiro, P; Gomes, M S; de Castro, B; Rangel, M

    2017-10-01

    We formerly hypothesized a mechanism whereby the antimycobacterial efficiency of a set of rhodamine labelled iron chelators is improved via the rhodamine fluorophore which enhances the chelators' permeation properties through membranes. To validate our hypothesis in a cellular context and to understand the influence of the structure of the fluorophore on the chelator's uptake and distribution within macrophages we now report comparative confocal microscopy studies performed with a set of rhodamine labelled chelators. We identify the functional groups of the chelator's framework that favor uptake by macrophages and conclude that the antimycobacterial effect is strongly related with the capacity of the chelator to distribute within the host cell and its compartments, a property that is closely related with the chelators' ability to interact with membranes. The quantification of the chelators' interaction with membranes was assessed through measurement of the corresponding partition constants in liposomes. The overall results support that the compounds which are preferentially taken up are the most efficient antimycobacterial chelators and for that reason we infer that the biological activity is modulated by the structural features of the fluorophore. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Influence of bulk and surface phenomena on the hydrogen permeation through metals

    International Nuclear Information System (INIS)

    Waelbroeck, F.; Wienhold, P.; Winter, J.; Rota, E.; Bauno, T.

    1984-12-01

    We discuss the permeation of hydrogen through metals and alloys such as iron, nickel, steels and Inconel wherein H dissolves endothermically from an H 2 gas. We assume first that trapping centers, surface contamination layers, the saturation of the H surface coverage and the implantation profile - when energetic ions drive the permeation - can be neglected, that a quasi-equilibrium exists between the H atom concentration ν in the adsorbed layer and c in the near surface layers and that the H solubility and diffusivity are homogeneous in the membrane. We evaluate thereafter separately the influence of these various effects and identify the parameter domains where appreciable corrections result. The permeation phenomenon is complex even when these simplifications are made: the penetration rate is proportional to the flux of thermal molecules, atoms or energetic ions - depending upon the case - which strike the surface; the diffusion in the metal is proportional to the gradient of c; the release rate depends on c 2 ; the time-dependent diffusion equation includes a double spatial derivative of c. Permeation can only be fully described when computer codes such as PERI is used. Simple analytical relations are however obtained in several limiting cases. They are the object of this report. Some of them had already been derived by other authors but they were not shown to be part of a single, self consistent permeation model. A comparison of predicted and experimental results shows that the simplified model describes surprisingly accurately the hydrogen exchange between gas and metal solutions. (orig./GSCH)

  20. Study of tritium permeation through Peach Bottom Steam Generator tubes

    International Nuclear Information System (INIS)

    Yang, L.; Baugh, W.A.; Baldwin, N.L.

    1977-06-01

    The report describes the equipment developed, samples tested, procedures used, and results obtained in the tritium permeation tests conducted on steam generator tubing samples which were removed from the Peach Bottom Unit No. 1 reactor

  1. Recent results on implantation and permeation into fusion reactor materials

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.; Struttman, D. A.

    This paper reports on implantation-driven permeation experiments that have been made for primary candidate alloy (PCA) and the ferritic steel HT-9 using deuterium ion beams from an accelerator. The results include measurements of the implantation flux and fluence dependence of the deuterium reemission and permeation for specimens heated to approximately 430(0)C. Simultaneous measurements of the ions sputtered from the specimen front surface with a secondary ion mass spectrometer provided some characterization of the surface condition throughout an experiment. For both materials, the permeation rate was lowered by the implantation process. However, the steady state permeation rate for HT-9 was found to be at least a factor of 5 greater than that for PCA.

  2. Phase Change Permeation Technology for Environmental Control & Life Support Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is evaluating Dutyion™, a phase change permeation membrane technology developed by Design Technology and Irrigation (DTI), for use in future advanced life...

  3. Measurement of tritium permeation through resistant materials near room temperature

    International Nuclear Information System (INIS)

    Maienschein, J.; DuVal, V.; McMurphy, F.; Uribe, F.; Musket, R.; Brown, D.

    1985-01-01

    To measure tritium permeation through low-permeability materials at 50 to 170 0 C, we use highly-sensitive liquid scintillation counting to detect the permeating tritium. To validate our method, we conducted extensive experiments with copper, for which much data exists for comparison. We report permeability of tritium through copper at 50, 100, and 170 0 C, and discuss details of the experimental technique. Further plans are outlined. 15 refs., 5 figs., 1 tab

  4. DA 5505: a novel topical formulation of terbinafine that enhances skin penetration and retention.

    Science.gov (United States)

    Thapa, Raj Kumar; Han, Sang-Duk; Park, Hyoung Geun; Son, Miwon; Jun, Joon Ho; Kim, Jong Oh

    2015-01-01

    Topical fungal infections can become severe if left untreated. Efficient treatment modalities for topical fungal infections aid the penetration of antifungal agents deep into viable skin layers. Terbinafine is a fungicidal agent that inhibits ergosterol, an essential fungal component. The main objective of this study was to evaluate skin permeation and retention of a terbinafine-loaded solution containing chitosan as a film former. Comparative assessment of skin permeation and retention was performed using a prepared formulation (DA 5505) and marketed formulations of terbinafine in murine and porcine skin. To mimic fungal infection of skin, keratinized skin was induced in NC/Nga mice. In comparison with the marketed formulations, DA 5505 exhibited significantly better skin permeation. The flux, permeation coefficient, and enhancement ratio of terbinafine were remarkably increased by DA 5505 in comparison with the marketed formulations, and lag time was dramatically reduced. DA 5505 significantly increased cumulative terbinafine retention in viable skin layers in comparison with the marketed solution, suggesting enhanced efficacy. Furthermore, DA 5505 exhibited superior skin permeation in normal skin and keratinized skin. Thus, the DA 5505 formulation has the potential to effectively deliver terbinafine to superficial and deep cutaneous fungal infections.

  5. Investigation of aluminised steel as a barrier to tritium using accelerator-based and hydrogen permeation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sokhi, R S; Forcey, K S; Ross, D K; Earwaker, L G [Birmingham Univ. (UK). School of Physics and Space Research

    1989-04-01

    Aluminised steel has been proposed as a barrier to tritium permeation in fusion reactors. The properties of these materials as tritium barriers have been studied using accelerator-based techniques and hydrogen permeation methods. The aluminide layers has been characterised by Rutherford backscattering spectroscopy (RBS) and nuclear reaction analysis (NRA) techniques using the 3 MV Dynamitron accelerator based at the School of Physics and Space Research Radiation Centre. The effectiveness of the aluminide layer as a tritium barrier has been measured directly by a conventional permeation apparatus over a range of temperatures. The effect of high temperatures on the structure of the aluminide layer has been examined. Any correlation between the composition of the layer and its effectiveness as a tritium barrier is also discussed. (orig.).

  6. Effect of gas sparging on flux enhancement and phytochemical properties of clarified pineapple juice by microfiltration

    KAUST Repository

    Laorko, Aporn

    2011-08-01

    Membrane fouling is a major obstacle in the application of microfiltration. Several techniques have been proposed to enhance the permeate flux during microfiltration. Gas sparging is a hydrodynamic method for improving the performance of the membrane process. In this study, a 0.2 μm hollow fiber microfiltration membrane was used to study the effect of cross flow velocity (CFV) and gas injection factor () on the critical and limiting flux during microfiltration of pineapple juice. In addition, the phytochemical properties of clarified juice were investigated. In the absence of gas sparging, the critical and limiting flux increased as the CFV or shear stress number increased. The use of gas sparging led to a remarkable improvement in both the critical and limiting flux but it was more effective at the lower CFV (1.5 m s-1), compared to those at higher CFV (2.0 and 2.5 m s-1). When the gas injection factor was applied at 0.15, 0.25 and 0.35 with a CFV of 1.5 m s -1, the enhancement of 55.6%, 75.5% and 128.2% was achieved for critical flux, while 65.8%, 69.7% and 95.2% was achieved for limiting flux, respectively. The results also indicated that the use of gas sparging was an effective method to reduce reversible fouling and external irreversible fouling rather than internal irreversible fouling. In addition, the CFV and gas sparging did not affect pH, total soluble solids, colour, total phenolic content and the antioxidant property of the clarified juice. The l-ascorbic acid and total vitamin C were significantly decreased when the higher CFV and high gas injection factor were applied. The results also indicated that the use of gas sparging with low CFV was beneficial for flux enhancement while most of the phytochemical properties of the clarified juice was preserved. © 2011 Elsevier B.V. All rights reserved.

  7. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1987-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electro-chemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current on the extraction side is produced by the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the potentiostatic current, and that of permeated tritium was determined by measuring the radioactivity of the electrolyte sampled from the anodic side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the cathodic electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the tritium and hydrogen permeation by using time lag technique. For annealed iron at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9 % cold-worked iron at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  8. NMR experiments on ion permeation in irradiated model membranes

    International Nuclear Information System (INIS)

    Sprinz, H.; Winkler, E.; Schaefer, H.

    1981-01-01

    In aqueous solutions of egg-lecithin vesicles treated with ultrasonics the 1 H NMR parameters line width, area, and chemical shift of the signal of the (CH 3 ) 3 N + group were determined as a function of the gamma dose (0 ... 12 kGy). Using europium and the line shape analysis, it has been possible to calculate these parameters for the inside as well as for the outside lipid layer. Increasing 60 Co radiation dose leads to linear increases of the line widths, which are significantly more rapid for the outer than for the inner layer. From that it can be concluded that the outside lipid layer has been more damaged by irradiation. The asymmetry may be the consequence of a radiation effect induced by the radicals of water radiolysis. From the temporal changes of the NMR parameters information can be obtained about the radiation effect on transport processes in the vesicles. Beginning at a threshold (approx. 5 kGy) the permeation of Eu +++ ions to the (CH 3 ) 3 N + head groups, previously not accessible, increases significantly. (author)

  9. Transcorneal permeation of diclofenac as a function of temperature from film formulation in presence of triethanolamine and benzalkonium chloride.

    Science.gov (United States)

    Mohapatra, Rajaram; Senapati, Sibananda; Sahoo, Chinmaya; Mallick, Subrata

    2014-11-01

    The objective of this report was to evaluate the transcorneal permeation of diclofenac potassium (DCP) as a function of temperature from hydroxypropyl methylcellulose (HPMC) matrix film containing triethanolamine (TEM) as plasticizer and benzalkonium chloride (BKC) as preservative. Activation energy (Ea), enthalpy (ΔH), entropy (ΔS) and free energy (ΔG) of permeation, diffusion and partition were evaluated to understand the underlying mechanism of permeation. Permeation improved with the presence of both the plasticizer and preservative compared to preservative alone. Further, increased amount of TEM in the film increased drug transport across the cornea. Decreased Ea value of the film supported the fact. Rise of temperature from 26 to 30, 34 and 40 °C increased permeation in all the films. Ocular residence of the film in vivo in the rabbit revealed that the film swelled by pronounced lachrymal fluid uptake and traces of hydrogel remained still at the end of 6 h of application. Absence of characteristic exothermic peak of the drug in the thermogram of film formulations indicated the molecular dispersion of drug in polymer matrix. Scanning electron microscopy indicated that the drug crystal size decreased with increasing concentration of TEM in presence of BKC due to effective wetting of drug particles by the polymer. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Permeation of hair dye ingredients, p-phenylenediamine and aminophenol isomers, through protective gloves.

    Science.gov (United States)

    Lee, Hsiao-Shu; Lin, Yu-Wen

    2009-04-01

    Skin irritation and contact allergies are skin disorders common to hairdressers. The predominant oxidative hair dye components, such as p-phenylenediamine (PPD) and aminophenol isomers, can cause contact dermatitis. Use of protective gloves can prevent dermal contact with skin irritants. This study investigates the permeation behaviors of p-aminophenol (PAP), m-aminophenol (MAP), o-aminophenol (OAP) and PPD in single and mixed challenge solutions with disposable natural rubber latex (NRL) gloves, disposable polyvinylchloride (PVC) gloves and neoprene (NP) gloves. The challenge solutions were 4% PPD (w/v), 3% OAP (w/v), 2% PAP (w/v) and 2% MAP (w/v) in ethanol or 12% hydrogen peroxide solutions. The cocktail solutions of the four chemicals were also tested. An American Society for Testing and Materials type permeation cell, ethanol liquid collection and gas chromatography-flame ionization detection of samples taken from the collection medium every 10 min facilitated determination of breakthrough times (BTs), cumulative permeated masses and steady-state permeation rates (SSPRs). Experiments were 4 h long for the NRL and PVC gloves and 8 h for NP gloves. No chemicals tested broke through the NP gloves when exposed for 8 h. In the ethanol solution, PPD and OAP started breaking through the PVC gloves at 40 min. The SSPRs of PVC gloves were higher than those for NRL gloves in all challenge conditions for both single chemicals and mixtures. No tested chemicals in hydrogen peroxide solutions permeated the gloves during the 4-h tests. The chemical composition of the challenge solution was a main effecter of BTs and SSPRs for the NRL glove. For disposable PVC gloves, the main factors of BTs were molecular size [molar volume (MV)] and polarity (logK(ow)), and the primary factors of SSPRs were concentration, MV and logK(ow). In conclusion, disposable NRL gloves and disposable PVC gloves should not be used repeatedly for handling the hair dye products. Hydrogen peroxide did not

  11. A phytomodulatory hydrogel with enhanced healing effects.

    Science.gov (United States)

    Vasconcelos, Mirele S; Souza, Tamiris F G; Figueiredo, Ingrid S; Sousa, Emília T; Sousa, Felipe D; Moreira, Renato A; Alencar, Nylane M N; Lima-Filho, José V; Ramos, Márcio V

    2018-04-01

    The healing performance of a hydrogel composed of hemicelluloses extracted from seeds of Caesalpinia pulcherrima (Fabaceae) and mixed with phytomodulatory proteins obtained from the latex of Calotropis procera was characterized on excisional wounds. The hydrogel did not induce dermal irritability. When topically used on excisional wounds, the hydrogel enhanced healing by wound contraction. Histology and the measurement of inflammatory mediators (myeloperoxidase, interleukin-1β, and interleukin-6) suggested that the inflammatory phase of the healing process was intensified, stimulating fibroplasia and neovascularization (proliferative phase) and tissue remodeling by increasing new collagen fiber deposition. In addition, reduction on levels of malondialdehyde in the groups that the hydrogel was applied suggested that the oxidative stress was reduced. The hydrogel performed better than the reference drug used, as revealed by the extended thickness of the remodeled epithelium. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Distinctiveness and Bidirectional Effects in Input Enhancement for Vocabulary Learning

    Science.gov (United States)

    Barcroft, Joe

    2003-01-01

    This study examined input enhancement and second language (L2) vocabulary learning while exploring the role of "distinctiveness," the degree to which an item in the input diverges from the form in which other items in the input are presented, with regard to the nature and direction of the effects of enhancement. In this study,…

  13. Hydrogen permeation properties of plasma-sprayed tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Hankins, M.R.; Longhurst, G.R.; Neiser, R.A.

    1994-01-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D + 3 ion beam with fluxes of similar 6.5x10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  14. Hydrogen permeation properties of plasma-sprayed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Pawelko, R.J. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Hankins, M.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Longhurst, G.R. (Idaho National Engineering Lab., EG and G Idaho Inc., Idaho Falls, ID (United States)); Neiser, R.A. (Sandia National Laboratories, Albuquerque, NM 87185 (United States))

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D[sup +][sub 3] ion beam with fluxes of similar 6.5x10[sup 19] D/m[sup 2] s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity. ((orig.))

  15. Hydrogen permeation properties of plasma-sprayed tungsten*1

    Science.gov (United States)

    Anderl, R. A.; Pawelko, R. J.; Hankins, M. R.; Longhurst, G. R.; Neiser, R. A.

    1994-09-01

    Tungsten has been proposed as a plasma-facing component material for advanced fusion facilities. This paper reports on laboratory-scale studies that were done to assess the hydrogen permeation properties of plasma-sprayed tungsten for such applications. The work entailed deuterium permeation measurements for plasma-sprayed (PS) tungsten coatings, sputter-deposited (SP) tungsten coatings, and steel substrate material using a mass-analyzed, 3 keV D 3+ ion beam with fluxes of ˜6.5 × 10 19 D/m 2 s. Extensive characterization analyses for the plasma-sprayed tungsten coatings were made using Auger spectrometry and scanning electron microscopy (SEM). Observed permeation rates through composite PS-tungsten/steel specimens were several orders of magnitude below the permeation levels observed for SP-tungsten/steel composite specimens and pure steel specimens. Characterization analyses indicated that the plasma-sprayed tungsten coating had a nonhomogeneous microstructure that consisted of splats with columnar solidification, partially-melted particles with grain boundaries, and void regions. Reduced permeation levels can be attributed to the complex microstructure and a substantial surface-connected porosity.

  16. Recent developments in skin mimic systems to predict transdermal permeation.

    Science.gov (United States)

    Waters, Laura J

    2015-01-01

    In recent years there has been a drive to create experimental techniques that can facilitate the accurate and precise prediction of transdermal permeation without the use of in vivo studies. This review considers why permeation data is essential, provides a brief summary as to how skin acts as a natural barrier to permeation and discusses why in vivo studies are undesirable. This is followed by an in-depth discussion on the extensive range of alternative methods that have been developed in recent years. All of the major 'skin mimic systems' are considered including: in vitro models using synthetic membranes, mathematical models including quantitative structure-permeability relationships (QSPRs), human skin equivalents and chromatographic based methods. All of these model based systems are ideally trying to achieve the same end-point, namely a reliable in vitro-in vivo correlation, i.e. matching non-in vivo obtained data with that from human clinical trials. It is only by achieving this aim, that any new method of obtaining permeation data can be acknowledged as a potential replacement for animal studies, for the determination of transdermal permeation. In this review, the relevance and potential applicability of the various models systems will also be discussed.

  17. Permeation of cytotoxic formulations through swatches from selected medical gloves.

    Science.gov (United States)

    Klein, Michael; Lambov, Nikolai; Samev, Nikola; Carstens, Gerhard

    2003-05-15

    The permeability of selected medical glove materials to various cytotoxic agents is described. Fifteen cytotoxic agents were prepared at the highest concentrations normally encountered by hospital personnel. Four single-layer and two double-layer glove systems made of two materials--latex and neoprene--were exposed to the drugs for 30, 60, 90, 120, 150, and 180 minutes. Circular sections of the glove material were cut from the cuff and evaluated without any pretreatment. Permeability tests were conducted in an apparatus consisting of a donor chamber containing the cytotoxic solution and a collection chamber filled with water (the acceptor medium). The two sections were separated by the glove material. Permeating portions, collected in water as the acceptor medium, were analyzed by either ultraviolet-visible light spectrophotometry or high-performance liquid chromatography (HPLC). Permeation rates were calculated on the basis of the concentration of the cytotoxic agent in the acceptor medium. Spectrophotometric measurements were taken every 30 minutes, and HPLC analysis was performed at the end of the three-hour period. Average permeation rates for 14 drugs were low (materials. All glove materials tested were impermeable to most of the cytotoxic agents over a period of three hours. Carmustine was the only agent that substantially permeated single-layer latex glove materials. Permeation of most tested cytotoxic formulations was low through swatches of material from various medical gloves.

  18. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment.

    Science.gov (United States)

    Zhang, Suohui; Qiu, Yuqin; Gao, Yunhua

    2014-02-01

    The aims of this study were to investigate the utility of solid microneedle arrays (150 µm in length) in enhancing transdermal delivery of peptides and to examine the relationship between peptide permeation rates and D2O flux. Four model peptides were used (Gly-Gln-Pro-Arg [tetrapeptide-3, 456.6 Da], Val-Gly-Val-Ala-Pro-Gly [hexapeptide, 498.6 Da], AC-Glu-Glu-Met-Gln-Arg-Arg-NH2 [acetyl hexapeptide-3, 889 Da] and Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2 [oxytocin, 1007.2 Da]). The influence of microneedle pretreatment on skin permeation was evaluated using porcine ear skin with Franze diffusion cell. Peptide permeation across the skin was significantly enhanced by microneedle pretreatment, and permeation rates were dependent on peptide molecular weights. A positive correlation between D2O flux and acetyl hexapeptide-3 clearances suggests that convective solvent flow contributes to the enhanced transdermal peptide delivery. It is concluded that solid microneedle arrays are effective devices to enhance skin delivery of peptides.

  19. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment

    Directory of Open Access Journals (Sweden)

    Suohui Zhang

    2014-02-01

    Full Text Available The aims of this study were to investigate the utility of solid microneedle arrays (150 µm in length in enhancing transdermal delivery of peptides and to examine the relationship between peptide permeation rates and D2O flux. Four model peptides were used (Gly–Gln–Pro–Arg [tetrapeptide-3, 456.6 Da], Val–Gly–Val–Ala–Pro–Gly [hexapeptide, 498.6 Da], AC–Glu–Glu–Met–Gln–Arg–Arg–NH2 [acetyl hexapeptide-3, 889 Da] and Cys–Tyr–Ile–Gln–Asn–Cys–Pro–Leu–Gly–NH2 [oxytocin, 1007.2 Da]. The influence of microneedle pretreatment on skin permeation was evaluated using porcine ear skin with Franze diffusion cell. Peptide permeation across the skin was significantly enhanced by microneedle pretreatment, and permeation rates were dependent on peptide molecular weights. A positive correlation between D2O flux and acetyl hexapeptide-3 clearances suggests that convective solvent flow contributes to the enhanced transdermal peptide delivery. It is concluded that solid microneedle arrays are effective devices to enhance skin delivery of peptides.

  20. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    Science.gov (United States)

    Li, Shuai; He, Di; Liu, Xiaopeng; Wang, Shumao; Jiang, Lijun

    2012-01-01

    The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51-60 times less than that of the 316L stainless steel and 153-335 times less than that of the referred low activation martensitic steels at 860-960 K.

  1. Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This practice gives a procedure for the evaluation of hydrogen uptake, permeation, and transport in metals using an electrochemical technique which was developed by Devanathan and Stachurski. While this practice is primarily intended for laboratory use, such measurements have been conducted in field or plant applications. Therefore, with proper adaptations, this practice can also be applied to such situations. 1.2 This practice describes calculation of an effective diffusivity of hydrogen atoms in a metal and for distinguishing reversible and irreversible trapping. 1.3 This practice specifies the method for evaluating hydrogen uptake in metals based on the steady-state hydrogen flux. 1.4 This practice gives guidance on preparation of specimens, control and monitoring of the environmental variables, test procedures, and possible analyses of results. 1.5 This practice can be applied in principle to all metals and alloys which have a high solubility for hydrogen, and for which the hydrogen permeation is ...

  2. Protein permeation through polymer membranes for hybrid-type artificial pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Burczak, K; Fujisato, Toshiya; Ikada, Yoshito [Kyoto Univ. (Japan); Hatada, Motoyoshi

    1991-05-01

    Hydrogel membranes were prepared by radiation crosslinking of poly (vinyl alcohol) (PVA) in aqueous solutions. Effects of PVA concentration, PVA molecular weight, and radiation dose on the permeation of insulin and immunoglobulin through the membranes were investigated. Glucose permeation was also studied. The crosslinking density affected the size of macromolecular mesh of hydrogel network as well as the water content of membrane responsible for the diffusion of the solutes. The diffusion coefficient linearly increased for all the solutes with the increasing water content in PVA hydrogels, indicating that diffusion occurs primarily through the water hydrating the polymer network. The increase in crosslinking density of hydrogels by changing PVA molecular weight brought about the decrease in mesh size of the hydrogels, which, in turn, had an influence on the diffusion of immunoglobulin, but not of insulin and glucose. (author).

  3. The effects of enhanced access to antiretroviral therapy: a qualitative ...

    African Journals Online (AJOL)

    The effects of enhanced access to antiretroviral therapy: a qualitative study of community perceptions in ... Twenty FGDs comprising of 190 participants and 12 KI interviews were conducted. ... All data was tape recorded with consent from

  4. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Y.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Department of Chemistry and Chemical Engineering, Huaihua College, Huaihua 418008 (China); Yu, G., E-mail: yuganghnu@163.co [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ou, A.L.; Hu, L.; Xu, W.J. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2011-06-15

    Highlights: {yields} Designed an amperometric hydrogen sensor with double electrolytes. {yields} Explained the principle of determining hydrogen permeation rate. {yields} Verified good stability, reproducibility and correctness of the developed sensor. {yields} Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm{sup -3} KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  5. Double electrolyte sensor for monitoring hydrogen permeation rate in steels

    International Nuclear Information System (INIS)

    Ouyang, Y.J.; Yu, G.; Ou, A.L.; Hu, L.; Xu, W.J.

    2011-01-01

    Highlights: → Designed an amperometric hydrogen sensor with double electrolytes. → Explained the principle of determining hydrogen permeation rate. → Verified good stability, reproducibility and correctness of the developed sensor. → Field on-line monitoring the susceptivity of hydrogen induced cracks. - Abstract: An amperometric hydrogen sensor with double electrolytes composed of a gelatiniform electrolyte and KOH solution has been developed to determine the permeation rate of hydrogen atoms in steel equipment owing to hydrogen corrosion. The gelatiniform electrolyte was made of sodium polyacrylate (PAAS), carboxyl methyl cellulose (CMC) and 0.2 mol dm -3 KOH solution. The results show that the gelatiniform electrolyte containing 50 wt.% polymers has suitable viscosity and high electrical conductivity. The consistent permeation curves were detected by the sensor of the double electrolyte and single liquid KOH electrolyte, respectively. The developed sensor has good stability and reproducibility at room temperature.

  6. Control of tritium permeation through fusion reactor strucural materials

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1978-01-01

    The intention of this paper is to provide a brief synopsis of the status of understanding and technology pertaining to the dissolution and permeation of tritium in fusion reactor materials. The following sections of this paper attempt to develop a simple perspective for understanding the consequences of these phenomena and the nature of the technical methodology being contemplated to control their impact on fusion reactor operation. Considered in order are: (1) the occurrence of tritium in the fusion fuel cycle, (2) a set of tentative criteria to guide the analysis of tritium containment and control strategies, (3) the basic mechanisms by which tritium may be released from a fusion plant, and (4) the methods currently under development to control the permeation-related release mechanisms. To provide background and support for these considerations, existing solubility and permeation data for the hydrogen isotopes are compared and correlated under conditions to be expected in fusion reactor systems

  7. Permeation of "Hydromer" Film: An Elastomeric Hydrogen-Capturing Biopolymer.

    Energy Technology Data Exchange (ETDEWEB)

    Karnesky, Richard A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Friddle, Raymond William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Whaley, Josh A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Smith, Geoffrey [New Mexico State Univ., Las Cruces, NM (United States)

    2015-12-01

    This report analyzes the permeation resistance of a novel and proprietary polymer coating for hydrogen isotope resistance that was developed by New Mexico State University. Thermal gravimetric analysis and thermal desoprtion spectroscopy show the polymer is stable thermally to approximately 250 deg C. Deuterium gas-driven permeation experiments were conducted at Sandia to explore early evidence (obtained using Brunauer - Emmett - Teller) of the polymer's strong resistance to hydrogen. With a relatively small amount of the polymer in solution (0.15%), a decrease in diffusion by a factor of 2 is observed at 100 and 150 deg C. While there was very little reduction in permeability, the preliminary findings reported here are meant to demonstrate the sensitivity of Sandia's permeation measurements and are intended to motivate the future exploration of thicker barriers with greater polymer coverage.

  8. Ion-driven deuterium permeation through tungsten at high temperatures

    Science.gov (United States)

    Gasparyan, Yu. M.; Golubeva, A. V.; Mayer, M.; Pisarev, A. A.; Roth, J.

    2009-06-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17-10 18 D/m 2s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  9. Ion-driven deuterium permeation through tungsten at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, Yu.M., E-mail: yury.gasparyan@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany); Moscow Engineering and Physics Institute, Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Golubeva, A.V. [RRC ' Kurchatov Institute' , Ac. Kurchatov sq., 1/1, Moscow RU-123182 (Russian Federation); Mayer, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany); Pisarev, A.A. [Moscow Engineering and Physics Institute, Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Roth, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany)

    2009-06-15

    The ion-driven permeation (IDP) through 50 mum thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D{sup +} ion beam with a flux of 10{sup 17}-10{sup 18} D/m{sup 2}s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 +- 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  10. Ion-driven deuterium permeation through tungsten at high temperatures

    International Nuclear Information System (INIS)

    Gasparyan, Yu.M.; Golubeva, A.V.; Mayer, M.; Pisarev, A.A.; Roth, J.

    2009-01-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17 -10 18 D/m 2 s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  11. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1988-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current of the extraction side stands for the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the charging electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the time lag of tritium and hydrogen permeation. For annealed specimens at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9% cold-worked specimens at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  12. Tritium inventory and permeation in the ITER breeding blanket

    International Nuclear Information System (INIS)

    Violante, V.; Tosti, S.; Sibilia, C.; Felli, F.; Casadio, S.; Alvani, C.

    2000-01-01

    A model has allowed us to perform the analysis of the tritium inventory and permeation in the international thermonuclear experimental reactor (ITER) breeding blanket under the hypothesis of steady state conditions. Li 2 ZrO 3 (reference) and Li 2 TiO 3 (alternative) have been studied as breeding materials. The total breeder inventory assessed is 7.64 g for the Li 2 ZrO 3 at reference temperature. The model has also been used for a parametric analysis of the tritium permeation. At reference temperature and purge helium velocity of 0.01 m/s, the HT partial pressure is ranging from 10 to 30 Pa in the breeder and 1.5x10 -3 Pa in the beryllium. At 0.1 m/s of purge helium velocity, the HT partial pressure is reduced of one order by magnitude in the breeder and becomes 5x10 -5 Pa in the beryllium. The tritium permeation into the coolant for the whole blanket is ranging from 100 to 250 mCi per day for purge helium velocity of 0.01 m/s. The analysis of the tritium inventory and permeation for the alternative Li 2 TiO 3 breeding material has been carried out too. The tritium inventory in the breeder is in the range from 6 to 375 g larger than in Li 2 ZrO 3 by about a factor 5; the tritium permeation into coolant is comparable to the Li 2 ZrO 3 one. This analysis provides indications on the influence of the operating parameters on the tritium control in the ITER breeding blanket; particularly the control of the tritium inventory by the temperature and the tritium permeation by the purge gas velocity

  13. Research on Crack-Filling Heat Treatment and Hydrogen Permeation Test of Self-healing Tritium Permeation Barriers

    Science.gov (United States)

    Liu, Dawei; Wang, Yan; Zhang, Ying; Ouyang, Taoyuan; Zhou, Tong; Fang, Xuanwei; Suo, Jinping

    2018-03-01

    A TiC + mixture (TiC/Al2O3 (1:1 wt.%)) +Al2O3 self-healing triple layer coating (TLC) was designed and manufactured by our group, and the crack-filling heat treatment process had been roughly explored in the past. In this work, the accelerating test with a thick TiC + mixture (TiC/Al2O3 (1:1 wt.%)) double-layer coating (DLC) was carried out. The DLC coating warped when the heat treatment temperature was lower than 550 °C, which was rare in similar researches, and it crushed into fan-shaped pieces when the treatment temperature was higher than 650 °C. The two different spalling failures were explained by weight gain, porosity and stress analyses. The heating rate had a significant effect. The bonding strength and hydrogen permeation of the TLC samples were also tested. Remaining at 650 °C for 40 h was proved to be an optimal crack-filling heat treatment process, considering the hydrogen resistance.

  14. Enhancing the production effect in memory.

    Science.gov (United States)

    Quinlan, Chelsea K; Taylor, Tracy L

    2013-01-01

    The production effect is the finding that subsequent memory is better for words that are produced than for words that are not produced. Whereas the current literature demonstrates that reading aloud is the most effective form of production, the distinctiveness account used to explain the production effect predicts that there is nothing special about reading aloud per se: Other forms of vocal production that include an additional distinct element should produce even greater subsequent memory benefits than reading aloud. To test this, we presented participants with study words that they were instructed to read aloud loudly, read aloud, or read silently (Experiment 1); sing, read aloud, or read silently (Experiment 2); and sing, read aloud loudly, read aloud, or read silently (Experiment 3). We observed that both reading items aloud loudly (Experiments 1 and 3) and singing items (Experiments 2 and 3) at study resulted in greater subsequent recognition than reading items aloud in a normal voice; singing had a larger memory benefit than reading aloud loudly (Experiment 3). Our findings support the distinctiveness hypothesis by demonstrating that there are other forms of production, such as singing and reading aloud loudly that have a more pronounced effect on memory than reading aloud.

  15. Six Concepts to Enhance School Effectiveness.

    Science.gov (United States)

    Gleave, Doug

    1984-01-01

    An action research method, consisting of data collection, diagnosis, action planning, and evaluation, was used by the Saskatoon Schools (Canada) to facilitate school self-diagnosis and problem solving. The organizational model that helped categorize research findings on school effectiveness and innovation is explored in this article. (DF)

  16. Implantation measurements to determine tritium permeation in first wall structures

    International Nuclear Information System (INIS)

    Holland, D.F.; Causey, R.A.

    1983-01-01

    A principal safety concern for a D-T burning fusion reactor is release of tritium during routine operation. Tritium implantation into first wall structures, and subsequent permeation into coolants, is potentially an important source of tritium loss. This paper reports on an experiment in which an ion accelerator was used to implant deuterium atoms in a stainless steel disk to simulate tritium implantation in first wall structures. The permeation rate was measured under various operating conditions. These results were used in the TMAP computer code to determine potential tritium loss rates for fusion reactors

  17. Permeation Barrier Coatings for the Helical Heat Exchanger

    International Nuclear Information System (INIS)

    Korinko, P.S.

    1999-01-01

    A permeation barrier coating was specified for the Helical Heat Exchanger (HHE) to minimize contamination through emissions and/or permeation into the nitrogen system for ALARA reasons. Due to the geometry of the HHE, a special coating practice was needed since the conventional method of high temperature pack aluminization was intractable. A survey of many coating companies was undertaken; their coating capabilities and technologies were assessed and compared to WSRC needs. The processes and limitations to coating the HHE are described. Slurry coating appears to be the most technically sound approach for coating the HHE

  18. X-ray therapy with enhanced effectiveness

    International Nuclear Information System (INIS)

    Silberbauer, F.

    1989-01-01

    The introduction of iodine atoms into a malignant tumor by intravenous injection of a contrast medium that is excreted by way of the kidneys selectively increases the tumor's capacity for the absorption of X-ray photons. This effect is exploited in CCT, but in high-voltage X-ray therapy it leads to an elevated focal dose while the incident dose remains the same. (orig.) [de

  19. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes

    International Nuclear Information System (INIS)

    Song Wenhai; Long Bin

    1997-01-01

    A set of oxide coatings was formed on the surface of an Al alloy (wt%: Fe, 0.24; Si, 1.16; Cu, 0.05-0.2; Zn, 0.1; Al, residual) by means of various oxidation processes. The hydrogen permeability through the aluminum alloy and its coating materials was determined by a vapor phase permeation technique at temperatures ranging from 400 to 500 C using high-purity H 2 (99.9999%) gas with an upstream hydrogen pressure of 10 4 -10 5 Pa. The experimental results show that the hydrogen permeability through aluminum oxide coating is 100-2000 times lower than that through the aluminum alloy substrate. This means that the aluminum oxide is a significant hydrogen permeation barrier. A high hydrogen permeation resistance was observed in an oxide layer prefilmed in 200 C water, while an anodized aluminum oxide film had a less obstructive effect, possibly caused by the porous structure of the anodic oxide. The hydrogen permeability through films of aluminum oxide was not a simple function of the aluminum-oxide phase configuration. (orig.)

  20. Hyperglycemia enhances the effectiveness of PDT

    Science.gov (United States)

    Fan, Keichun; Huang, Yingcai; Li, Junheng

    1995-05-01

    The effect of injection of 10 mg/g 50% glucose on photodynamic therapy of mouse transplantable S-180 sarcoma was studied. The concentration of hematoporphyrin monomethylether in plasma, skin, and tumor was measured by recording spectrofluorophotometer. tumor pathological section was made and necrosis area of tumor longitudinal section was measured by image processing after photoradiation of gold vapor laser. The results of this study suggested that the uptake of photosensitizer in tumor significantly increased while the uptake of photosensitizer in skin remained unchanged after glucose administration. Furthermore, glucose administration combined with PDT produced a greater tumor necrosis area than using PDT alone. The mechanisms and clinical significance were also discussed.

  1. Conjugation of a cell-penetrating peptide to parathyroid hormone affects its structure, potency, and transepithelial permeation

    DEFF Research Database (Denmark)

    Kristensen, Mie; de Groot, Anne Marit; Berthelsen, Jens

    2015-01-01

    hormone, i.e. PTH(1-34), and to evaluate the effect with regards to secondary structure, potency in Saos-2 cells, immunogenicity, safety as well as the transepithelial permeation across monolayers by using the Caco-2 cell culture model. Further, co-administration of CPP and PTH(1-34) as an alternative...

  2. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii

    Directory of Open Access Journals (Sweden)

    Johnson David R

    2011-11-01

    Full Text Available Abstract Background Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000. These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. Results Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the

  3. Permeation of deuterium implanted into V-15Cr-5Ti

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1987-01-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4x10 -8 exp(-0.11 eV/kT)(m 2 /s), over the temperature range 723 K to 823 K. (orig.)

  4. Hydrogen ion-driven permeation in carbonaceous films

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1989-01-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C:H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D 3 + ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5x10 14 D/cm 2 s to 5x10 15 D/cm 2 s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C:H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C:H films. (orig.)

  5. Permeation of deuterium implanted into V-15Cr-5Ti

    Science.gov (United States)

    Anderl, R. A.; Longhurst, G. R.; Struttmann, D. A.

    1987-02-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3+ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4 × 10 -8 exp( -0.11 eV/ kT) (m 2/s), over the temperature range 723 K to 823 K.

  6. Hydrogen ion-driven permeation in carbonaceous films

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1989-04-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C:H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D/sub 3//sup +/ ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5x10/sup 14/ D/cm/sup 2/ s to 5x10/sup 15/ D/cm/sup 2/ s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C:H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C:H films. (orig.).

  7. Hydrogen ion-driven permeation in carbonaceous films

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1989-04-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C: H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D +3 ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5 × 10 14D/ cm2 s to 5 × 10 15D/ cm2 s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C : H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C : H films.

  8. Permeation of deuterium implanted into V-15Cr-5Ti

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1987-02-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D/sub 3//sup +/ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4x10/sup -8/ exp(-0.11 eVkT)(m/sup 2/s), over the temperature range 723 K to 823 K.

  9. GAS PERMEATION PROPERTIES OF POLY(LACTIC ACID). (R826733)

    Science.gov (United States)

    AbstractThe need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen...

  10. Phase Change Permeation Technology For Environmental Control Life Support Systems

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.

  11. In vitro permeation of platinum through African and Caucasian skin.

    Science.gov (United States)

    Franken, A; Eloff, F C; du Plessis, J; Badenhorst, C J; Du Plessis, J L

    2015-02-03

    The majority of the South African workforce are Africans, therefore potential racial differences should be considered in risk and exposure assessments in the workplace. Literature suggests African skin to be a superior barrier against permeation and irritants. Previous in vitro studies on metals only included skin from Caucasian donors, whereas this study compared the permeation of platinum through African and Caucasian skin. A donor solution of 0.3 mg/ml of potassium tetrachloroplatinate (K₂PtCl₄) dissolved in synthetic sweat was applied to the vertical Franz diffusion cells with full thickness abdominal skin. Skin from three female African and three female Caucasian donors were included (n=21). The receptor solution was removed at various intervals during the 24 h experiment, and analysed with high resolution inductively coupled plasma-mass spectrometry (ICP-MS). Skin was digested and analysed by inductively coupled plasma-optical emission spectrometry (ICP-OES). Significantly higher permeation of platinum through intact African skin (p=0.044), as well as a significantly higher mass of platinum retention in African skin in comparison with Caucasian skin (p=0.002) occurred. Significant inter-donor variation was found in both racial groups (pskin and further investigation is necessary to explain the higher permeation through African skin. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes

    NARCIS (Netherlands)

    Patil, V.E.; Broeke, van den L.J.P.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Permeation of carbon dioxide was measured for two types of composite polymeric hollow fiber membranes for feed pressures up to 18 MPa at a temp. of 313 K. support membrane. The membranes consist of a polyamide copolymer (IPC) layer or a poly(vinyl alc.) (PVA) layer on top of a polyethersulfone

  13. Preventing method and device for underground permeation of hazardous material

    International Nuclear Information System (INIS)

    Funabashi, Kiyomi; Kurokawa, Hideaki; Fukazawa, Tetsuo; Yamazaki, Tadashi.

    1996-01-01

    In a method of preventing hazardous materials from permeating into ground by burying adsorbing materials underground, a plurality of adsorbing layers are laminated being spaced apart from each other, the concentration of the hazardous materials between each of the adsorbent layers is measured. When the concentration reaches a predetermined value, the adsorbent layers are regenerated. A suppression means for preventing hazardous materials from permeating into the ground are formed by an upper adsorbent layer and a lower adsorbent layer, and a means for measuring the concentration of hazardous materials passing through the upper adsorbent layer and a means for charging and discharging regenerated liquid are disposed. When it is detected that the poisonous materials can not be eliminated, the poisonous materials are already permeated to the adsorbent layer, and they start to inflow into underground water. In order to prevent it, an adsorbent layer is additionally disposed at the lower side of the place of detection to eliminate the poisonous materials completely thereby enabling to prevent poisonous materials from permeating into underground for a long period of time. (T.M.)

  14. Comparing pervaporation and vapor permeation hybrid distillation processes

    NARCIS (Netherlands)

    Fontalvo, J.; Cuellar, P.; Timmer, J.M.K.; Vorstman, M.A.G.; Wijers, J.G.; Keurentjes, J.T.F.

    2005-01-01

    Previous studies have shown that hybrid distillation processes using either pervaporation or vapor permeation can be very attractive for the separation of mixtures. In this paper, a comparison between these two hybrid processes has been made. A tool has been presented that can assist designers and

  15. Permeated defect detecting test method and device in reactor

    International Nuclear Information System (INIS)

    Sakurai, Yoshishige.

    1996-01-01

    The present invention provides a method of and a device capable of performing a test for entire inner surfaces of the reactor upon periodical inspection of a BWR type reactor while sufficiently taking countermeasures for radiation rays into consideration. Namely, the present invention comprises following steps. (1) A provisional step for taking a shroud head of a reactor core shroud and incore structural components above and below the shroud out of the reactor, discharging reactor water and water tightly closing openings such as reactor wall perforation holes, (2) a pretreatment step for washing exposed inner surfaces of the reactor and peeling deteriorated materials, (3) a first drying step for drying portions washed and peeled in the step (2), (4) a permeation step for applying a permeation liquid of a defect detecting medium on the exposed inner surfaces of the reactor, (5) a permeation liquid removing step for removing the an excess permeation liquid in the step (4), (6) a second drying step for drying corresponding portions after performing the step (5), and (7) a flaw detecting step for optically observing the corresponding portions after performing the step (6) and detecting flaws. (I.S.)

  16. In vitro permeation of platinum and rhodium through Caucasian skin.

    Science.gov (United States)

    Franken, A; Eloff, F C; Du Plessis, J; Badenhorst, C J; Jordaan, A; Du Plessis, J L

    2014-12-01

    During platinum group metals (PGMs) refining the possibility exists for dermal exposure to PGM salts. The dermal route has been questioned as an alternative route of exposure that could contribute to employee sensitisation, even though literature has been focused on respiratory exposure. This study aimed to investigate the in vitro permeation of platinum and rhodium through intact Caucasian skin. A donor solution of 0.3mg/ml of metal, K2PtCl4 and RhCl3 respectively, was applied to the vertical Franz diffusion cells with full thickness abdominal skin. The receptor solution was removed at various intervals during the 24h experiment, and analysed with high resolution ICP-MS. Skin was digested and analysed by ICP-OES. Results indicated cumulative permeation with prolonged exposure, with a significantly higher mass of platinum permeating after 24h when compared to rhodium. The mass of platinum retained inside the skin and the flux of platinum across the skin was significantly higher than that of rhodium. Permeated and skin retained platinum and rhodium may therefore contribute to sensitisation and indicates a health risk associated with dermal exposure in the workplace. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Development of a plasma driven permeation experiment for TPE

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean, E-mail: dabuche@sandia.gov [Sandia National Laboratories, Livermore, CA (United States); Kolasinski, Robert [Sandia National Laboratories, Livermore, CA (United States); Shimada, Masa [Idaho National Laboratory, Idaho Falls, ID (United States); Donovan, David [Sandia National Laboratories, Livermore, CA (United States); Youchison, Dennis [Sandia National Laboratories, Albuquerque, NM (United States); Merrill, Brad [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-10-15

    Highlights: • We have designed and fabricated a novel tritium permeation membrane holder for use in the Tritium Plasma Experiment (TPE). • The membrane temperature is controlled by varying the cooling flow rate and proximity of a spiral cooling channel. • Sealing tests have demonstrated adequate helium leak rates up to temperatures of 1000 °C. • Flow modeling indicates a minimal helium pressure drop across the membrane holder (<700 Pa). • Thermal modeling shows good heat removal and minimal membrane temperature variation (±2%) even up to peak TPE ion fluxes. - Abstract: Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 °C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 °C, a new TPE membrane holder has been built to hold test specimens (≤1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE's vacuum chamber has been demonstrated by sealing tests performed up to 1000 °C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (∼700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 °C are expected at the highest TPE fluxes.

  18. Development of a plasma driven permeation experiment for TPE

    International Nuclear Information System (INIS)

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; Donovan, David; Youchison, Dennis; Merrill, Brad

    2014-01-01

    Highlights: • We have designed and fabricated a novel tritium permeation membrane holder for use in the Tritium Plasma Experiment (TPE). • The membrane temperature is controlled by varying the cooling flow rate and proximity of a spiral cooling channel. • Sealing tests have demonstrated adequate helium leak rates up to temperatures of 1000 °C. • Flow modeling indicates a minimal helium pressure drop across the membrane holder (<700 Pa). • Thermal modeling shows good heat removal and minimal membrane temperature variation (±2%) even up to peak TPE ion fluxes. - Abstract: Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 °C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 °C, a new TPE membrane holder has been built to hold test specimens (≤1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE's vacuum chamber has been demonstrated by sealing tests performed up to 1000 °C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (∼700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 °C are expected at the highest TPE fluxes

  19. Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina.

    Directory of Open Access Journals (Sweden)

    Sachin S Thakur

    Full Text Available Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM. The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye.

  20. Changes in the physical properties of the dynamic layer and its correlation with permeate quality in a self-forming dynamic membrane bioreactor.

    Science.gov (United States)

    Guan, Dao; Dai, Ji; Watanabe, Yoshimasa; Chen, Guanghao

    2018-09-01

    The self-forming dynamic membrane bioreactor (SFDMBR) is a biological wastewater treatment technology based on the conventional membrane bioreactor (MBR) with membrane material modification to a large pore size (30-100 μm). This modification requires a dynamic layer formed by activated sludge to provide effective filtration function for high-quality permeate production. The properties of the dynamic layer are therefore important for permeate quality in SFDMBRs. The interaction between the structure of the dynamic layer and the performance of SFDMBRs is little known but understandably complex. To elucidate the interaction, a lab-scale SFDMBR system coupled with a nylon woven mesh as the supporting material was operated. After development of a mature dynamic layer, excellent solid-liquid separation was achieved, as evidenced by a low permeate turbidity of less than 2 NTU. The permeate turbidity stayed below this level for nearly 80 days. In the fouling phase, the dynamic layer was compressed with an increase in the trans-membrane pressure and the quality of the permeate kept deteriorating until the turbidity exceeded 10 NTU. The investigation revealed that the majority of permeate particles were dissociated from the dynamic layer on the back surface of the supporting material, which is caused by the compression, breakdown, and dissociation of the dynamic layer. This phenomenon was observed directly in experiment instead of model prediction or conjecture for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Studies on the permeation of hydrogen through steam generator tubes at high temperatures using an electrochemical method

    International Nuclear Information System (INIS)

    Giraudeau, F.; Yang, L.; Steward, F.R.; DeBouvier, O.

    1998-01-01

    The permeation of hydrogen through steam generator tubes at high temperatures (∼ 300 degrees C) has been studied using an electrochemical technique. With this technique, hydrogen is generated on one side of the tube and monitored on the other side. The time for the hydrogen to reach the other side is used to determine the diffusion coefficient of hydrogen in the tube. Boundary conditions at the entry and exit sides have been investigated separately. Preliminary studies were performed on Stainless Steel 316 and Nickel Alloy 800 to better understand the influence of the solution chemistry on the electrochemical evolution of hydrogen. The surface phenomena effect and the trapping effect are discussed to account for differences observed in the permeation response. The hydrogen permeation through oxides at the exit side has been studied. Two nickel alloys (Alloy 800 and Alloy 600), materials widely used for steam generator tubes, have been investigated. The tubes were prefilmed using two different treatments. The oxides were formed in dry air at high temperatures (300 degrees C to 600 degrees C), or in humid gas at 300 degrees C. The diffusion coefficients at 300 degrees C in Stainless Steel 316 and Alloy 800 were determined to be of the order of 10 -6 - 10 -7 cm 2 /s for the bare metal. This is in agreement with results obtained by gas phase permeation techniques in the literature. (author)

  2. Measurement of Skin Permeation/Penetration of Nanoparticles for Their Safety Evaluation

    OpenAIRE

    木村, 恵理子; 河野, 雄一郎; 藤堂, 浩明; 五十嵐, 良明; 杉林, 堅次

    2012-01-01

    The aim of the present study was to quantitatively evaluate the skin permeation/penetration of nanomaterials and to consider their penetration pathway through skin. Firstly, penetration/permeation of a model fluorescent nanoparticle, Fluoresbrite?, was determined through intact rat skin and several damaged skins. Fluoresbrite? permeated through only needle-punctured skin. The permeation profiles of soluble high molecular compounds, fluorescein isothiocyanate-dextrans (FITC-dextrans, FDs), wit...

  3. The Effectiveness of Neurofeedback Training in Algorithmic Thinking Skills Enhancement.

    Science.gov (United States)

    Plerou, Antonia; Vlamos, Panayiotis; Triantafillidis, Chris

    2017-01-01

    Although research on learning difficulties are overall in an advanced stage, studies related to algorithmic thinking difficulties are limited, since interest in this field has been recently raised. In this paper, an interactive evaluation screener enhanced with neurofeedback elements, referring to algorithmic tasks solving evaluation, is proposed. The effect of HCI, color, narration and neurofeedback elements effect was evaluated in the case of algorithmic tasks assessment. Results suggest the enhanced performance in the case of neurofeedback trained group in terms of total correct and optimal algorithmic tasks solution. Furthermore, findings suggest that skills, concerning the way that an algorithm is conceived, designed, applied and evaluated are essentially improved.

  4. 40 CFR 1060.521 - How do I test fuel caps for permeation emissions?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test fuel caps for permeation... EQUIPMENT Test Procedures § 1060.521 How do I test fuel caps for permeation emissions? If you measure a fuel tank's permeation emissions with a nonpermeable covering in place of the fuel cap under § 1060.520(b)(5...

  5. Counter-diffusion and -permeation of deuterium and hydrogen through metals

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Tanabe,; Tetsuo, [Nagoya Univ. (Japan)

    1998-03-01

    The first experiments for counter-diffusion and -permeation of deuterium and hydrogen through palladium were performed. Deuterium permeation rates against D{sub 2} pressure were measured under the condition where hydrogen permeated to opposite direction by supplying H{sub 2} gas at the permeated side of D{sub 2}. It was found that not a small amount of deuterium was clearly permeated even if the deuterium pressure was much smaller than the hydrogen pressure. Deuterium permeation rate was gradually reduced by increasing the counter H permeation. The deuterium permeation rate under the counter H permeation is well represented by a simple model in which the ratio of the deuterium permeation rates with and without the counter H permeation was proportional to the fractional concentration of deuterium in the bulk. As increasing the hydrogen counter flow, however, the deuterium permeation rate deviates from the model. This means that adsorption (absorption) of D{sub 2} from gas phase is inhibited and surface recombination of deuterium is blocked by hydrogen. (author)

  6. Co-delivery of evodiamine and rutaecarpine in a microemulsion-based hyaluronic acid hydrogel for enhanced analgesic effects on mouse pain models.

    Science.gov (United States)

    Zhang, Yong-Tai; Li, Zhe; Zhang, Kai; Zhang, Hong-Yu; He, Ze-Hui; Xia, Qing; Zhao, Ji-Hui; Feng, Nian-Ping

    2017-08-07

    The aim of this study was to improve the analgesic effect of evodiamine and rutaecarpine, using a microemulsion-based hydrogel (ME-Gel) as the transdermal co-delivery vehicle, and to assess hyaluronic acid as a hydrogel matrix for microemulsion entrapment. A microemulsion was formulated with ethyl oleate as the oil core to improve the solubility of the alkaloids and was loaded into a hyaluronic acid-structured hydrogel. Permeation-enhancing effects of the microemulsion enabled evodiamine and rutaecarpine in ME-Gel to achieve 2.60- and 2.59-fold higher transdermal fluxes compared with hydrogel control (pmicroemulsion exhibited good skin biocompatibility, whereas effective ME-Gel co-delivery of evodiamine and rutaecarpine through the skin enhanced the analgesic effect in mouse pain models compared with hydrogel. Notably, evodiamine and rutaecarpine administered using ME-Gel effectively down-regulated serum levels of prostaglandin E 2 , interleukin 6, and tumor necrosis factor α in formaldehyde-induced mouse pain models, possibly reflecting the improved transdermal permeability of ME-Gel co-delivered evodiamine and rutaecarpine, particularly with hyaluronic acid as the hydrogel matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    International Nuclear Information System (INIS)

    Jiang Erkang; Wu Lijun

    2009-01-01

    In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy α-particle irradiated and non-irradiated bystander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensitive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)- 4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose α-particle radiation-induced damage in irradiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE). (ion beam bioengineering)

  8. Enhancement of the spin Peltier effect in multilayers

    Science.gov (United States)

    Uchida, K.; Iguchi, R.; Daimon, S.; Ramos, R.; Anadón, A.; Lucas, I.; Algarabel, P. A.; Morellón, L.; Aguirre, M. H.; Ibarra, M. R.; Saitoh, E.

    2017-05-01

    The spin Peltier effect (SPE), heat-current generation as a result of spin-current injection, has been investigated in alternately stacked Pt/Fe3O4 multilayer films. The temperature modulation induced by the SPE in the [Pt/Fe3O4]×n films was found to be significantly enhanced with increasing the number of Pt/Fe3O4 bilayers n . This SPE enhancement is much greater than that expected for a simple stack of independent Pt/Fe3O4 bilayers. The observed n dependence of the SPE can be explained by introducing spin-current redistribution in the multilayer films in the thickness direction, in a manner similar to the enhancement of the spin Seebeck effect in multilayers.

  9. The application of anethole, menthone, and eugenol in transdermal penetration of valsartan: Enhancement and mechanistic investigation.

    Science.gov (United States)

    Ahad, Abdul; Aqil, Mohd; Ali, Asgar

    2016-01-01

    The main barrier for transdermal delivery is the obstacle property of the stratum corneum. Many types of chemical penetration enhancers have been used to breach the skin barrier; among the penetration enhancers, terpenes are found as the most highly advanced, safe, and proven category. In the present investigation, the terpenes anethole, menthone, and eugenol were used to enhance the permeation of valsartan through rat skin in vitro and their enhancement mechanism was investigated. Skin permeation studies of valsartan across rat skin in the absence and the presence of terpenes at 1% w/v, 3% w/v, and 5% w/v in vehicle were carried out using the transdermal diffusion cell sampling system across rat skin and samples were withdrawn from the receptor compartment at 1, 2, 3, 4, 6, 8, 10, 12, and 24 h and analysed for drug content by the HPLC method. The mechanism of skin permeation enhancement of valsartan by terpenes treatment was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and differential scanning calorimetry (DSC). All the investigated terpenes provided a significant (p valsartan flux at a concentration of 1%, and less so at 3% and 5%. The effectiveness of terpenes at 1% concentration was in the following order: anethole > menthone > eugenol with 4.4-, 4.0-, and 3.0-fold enhancement ratio over control, respectively. DSC study showed that the treatment of stratum corneum with anethole shifted endotherm down to lower melting point while FTIR studies revealed that anethole produced maximum decrease in peak height and area than other two terpenes. The investigated terpenes can be successfully used as potential enhancers for the enhancement of skin permeation of lipophilic drug.

  10. Effectiveness of resource-enhancing family-oriented intervention.

    Science.gov (United States)

    Häggman-Laitila, Arja; Tanninen, Hanna-Mari; Pietilä, Anna-Maija

    2010-09-01

    The purpose of the study was to assess the effectiveness of a resource-enhancing family-oriented intervention. There is very little empirical knowledge of how nurses working in a home context develop relationships with families, what methods they use to enhance families' resources and how such relationships affect the families' health outcomes. The study was designed as a descriptive service evaluation. A total of 129 family members from 30 families with small children participated in the study. Data were collected with family care plans and client reports in 2004-2005. Data were analysed by qualitative content analysis and by descriptive statistical methods. Resource-enhancing discussions were carried out in all family meetings. Other methods were video guidance, creation of a family tree and parents' role map, network collaboration, observation and parent-child group activity. The families needed support mostly in parents' health and well-being, coping with parenthood, upbringing and child care, parents' relationships, social relations and children's health and growth. The families had an average of five support needs at the beginning of the intervention and 1·8 needs at the completion. The families set on average 3·6 and achieved 4·5 goals during the family nursing process. The resource-enhancing family nursing can be used for supporting parenthood, the raising of and caring for the children, strengthening of social support networks, decreasing the need for support from the authorities and enhancing the parents' resources to manage the duties related to their work and studies. The study resulted in empirically based concepts that can be used in the future to construct instruments to evaluate the effectiveness of resource-enhancing family nursing from the perspective of families and family health. The findings add to our professional understanding of resource-enhancing family nursing. © 2010 Blackwell Publishing Ltd.

  11. Effectiveness of liquid organic-nitrogen fertilizer in enhancing ...

    African Journals Online (AJOL)

    The ever increasing price of nitrogenous (N) fertilizers coupled with the deleterious effects of imbalanced N fertilizers on the environment necessitates the enhancement of N use efficiency of plants. The objectives of this study were to: (1) Evaluate the uptake of selected nutrients due to application of liquid organic-N ...

  12. Effects of enhances ultra violet irradiation on photosynthesis in ...

    African Journals Online (AJOL)

    Effects of enhances ultra violet irradiation on photosynthesis in anabaena variabilis and phormidium uncinatum. VA Donkor. Abstract. No Abstract. Journal of the Ghana Association Vol. 2 (3) 1999: pp.16-23. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  13. The Pretesting Effect: Do Unsuccessful Retrieval Attempts Enhance Learning?

    Science.gov (United States)

    Richland, Lindsey E.; Kornell, Nate; Kao, Liche Sean

    2009-01-01

    Testing previously studied information enhances long-term memory, particularly when the information is successfully retrieved from memory. The authors examined the effect of unsuccessful retrieval attempts on learning. Participants in 5 experiments read an essay about vision. In the test condition, they were asked about embedded concepts before…

  14. Dissolution enhancement of drugs. part i: technologies and effect of ...

    African Journals Online (AJOL)

    and steam aided granulation. In these techniques carrier plays an important role in improving solubility and dissolution rate. Polymers, superdisintegrants, surfactants are extensively studied in recent years for dissolution enhancement in drugs. This part of this review discusses technological overview and effect of polymers,

  15. A Tool For Enhancing Supervisory Effectiveness In Nigerian ...

    African Journals Online (AJOL)

    This paper examined the relevance of Information and Communication Technology (ICT) as a tool for enhancing supervisory effectiveness in Nigerian educational institutions. The paper highlighted various tools of ICT that could be used in educational supervision such as Closed Circuit Television (CCTV) Cameras, e-mails ...

  16. Employment Competence based Management to enhance Training Effectiveness

    NARCIS (Netherlands)

    Le Goff, Solenn; Ristol, Santi; Estévez, José Antonio

    2006-01-01

    Please, cite this publication as: Le Goff, S., Ristol, S., & Estévez, J.A. (2006). Employing Competence based Management to enhance Training Effectiveness. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence Conference. March 30th-31st,

  17. Enhancing Transfer of Knowledge in Physics through Effective Teaching Strategies

    Science.gov (United States)

    Akinbobola, Akinyemi Olufunminiyi

    2015-01-01

    The study assessed the enhancement of transfer of knowledge in physics through the use of effective teaching strategies in Nigerian senior secondary schools. Non-randomized pretest-posttest control group design was adopted for the study. A total of 278 physics students took part in the study. Transfer of Knowledge Test in Physics (TKTP) with the…

  18. In vitro permeation through porcine buccal mucosa of Salvia desoleana Atzei & Picci essential oil from topical formulations.

    Science.gov (United States)

    Ceschel, G C; Maffei, P; Moretti, M D; Demontis, S; Peana, A T

    2000-02-15

    In the light of recent studies, which have shown that the essential oil derived from some Lamiaceae species has appreciable anti-inflammatory activity, moderate anti-microbial action and the ability to inhibit induced hyperalgesia, an assessment of the diffusion and permeation of Salvia desoleana Atzei & Picci (S. desoleana) essential oil through porcine buccal mucosa was considered useful for a possible application in the stomatological field. Topical formulations (microemulsions, hydrogels and microemulsion-hydrogels) were prepared for application to the buccal mucosa. The mucosa permeation of the oil from the formulations was evaluated using Franz cells, with porcine buccal mucosa as septum between the formulations (donor compartment) and the receptor phase chambers. The study also aimed at optimising the permeability of the S. desoleana essential oil by means of an enhancer, the diethylene glycol monoethyl ether Transcutol. The diffusion of the oil through the membrane was determined by evaluating the amount of essential oil components present in the receiving solution, the flux and the permeation coefficient (at the steady state) in the different formulations at set intervals. Qualitative and quantitative determinations were done by gas chromatographic analysis. All the formulations allow a high permeability coefficient in comparison with the pure essential oil. In particular, the components with a terpenic structure (beta-pinene, cineole, alpha-terpineol and linalool) have the highest capacity to pass through the porcine buccal mucosa when compared to the other components (linalyl acetate and alpha-terpinil acetate). Moreover, the enhancer, diethylene glycol monoethyl ether largely increases the permeation of the essential oil components in relation to the concentration.

  19. In-pile tritium permeation experiment

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Miller, L.G.; Watts, K.D.; Kershner, C.J.; Rogers, M.L.

    1982-01-01

    To examine radiation and implantation effects simultaneously, an experiment has been designed which makes use of the Coupled Fast Reactivity Measurement Facility (CFRMF), a small pool reactor at the INEL. The neutron flux is low in this reactor, but the high cross section (5300 b) for the 3 He(n,p) 3 H reaction with thermal neutrons gives a sufficiently intense flux of protons and tritons to a simulated fusion first wall for meaningful results

  20. Study on low temperature plasma driven permeation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    It is one of the most important problem in PWI of fusion devices from the point of view of tritium leakage that hydrogen diffuses in the wall of the device and permeates through it, which results in hydrogen being released to the coolant side. In this study, plasma driven permeation experiments were carried out with several kinds of metal membranes in the low temperature plasma where ionic and atomic hydrogen as well as electron existed in order to survey PDP mechanism from the many view points. In addition, incident flux rate from the plasma to the membrane surface was evaluated by calculation analysis. As a result the mechanism of low temperature PDP was found out and described as PDP models. The simulation of the membrane pump system was executed and the system performance was estimated with the models. (author). 135 refs.

  1. Gas Permeation Characteristics across Nano-Porous Inorganic Membranes

    Directory of Open Access Journals (Sweden)

    M.R Othman, H. Mukhtar

    2012-10-01

    Full Text Available An overview of parameters affecting gas permeation in inorganic membranes is presented. These factors include membrane physical characteristics, operational parameters and gas molecular characteristics. The membrane physical characteristics include membrane materials and surface area, porosity, pore size and pore size distribution and membrane morphology. The operational parameters include feed flow rate and concentration, stage cut, temperature and pressure. The gas molecular characteristics include gas molecular weight, diameter, critical temperature, critical pressure, Lennard-Jones parameters and diffusion volumes. The current techniques of material characterization may require complementary method in describing microscopic heterogeneity of the porous ceramic media. The method to be incorporated in the future will be to apply a stochastic model and/or fractal dimension. Keywords: Inorganic membrane, surface adsorption, Knudsen diffusion, Micro-porous membrane, permeation, gas separation.

  2. Intact penetratin metabolite permeates across Caco-2 monolayers

    DEFF Research Database (Denmark)

    Birch, Ditlev; Christensen, Malene Vinther; Stærk, Dan

    . Previous studies have demonstrated that cell-penetrating peptides (CPPs) may be used as carriers in order to improve the bioavailability of a therapeutic cargo like insulin after oral administration. Penetratin, a commonly used CPP, has been shown to increase the uptake of insulin across Caco-2 cell......-2 cells cultured on permeable filter inserts and in cell lysates, respectively. The epithelial permeation of penetratin and the formed metabolites was assessed by using Caco-2 monolayers cultured on permeable filter inserts. Results Preliminary data revealed that at least one specific metabolite...... is formed upon both intracellular and extracellular degradation of penetratin (figure 1A). Following incubation with epithelium for 4 hours, the metabolite permeated the Caco-2 monolayer and the concentration increased approximately 10-fold when compared to a sample collected following 15 minutes...

  3. Study on low temperature plasma driven permeation of hydrogen

    International Nuclear Information System (INIS)

    Takizawa, Masayuki

    1998-03-01

    It is one of the most important problem in PWI of fusion devices from the point of view of tritium leakage that hydrogen diffuses in the wall of the device and permeates through it, which results in hydrogen being released to the coolant side. In this study, plasma driven permeation experiments were carried out with several kinds of metal membranes in the low temperature plasma where ionic and atomic hydrogen as well as electron existed in order to survey PDP mechanism from the many view points. In addition, incident flux rate from the plasma to the membrane surface was evaluated by calculation analysis. As a result the mechanism of low temperature PDP was found out and described as PDP models. The simulation of the membrane pump system was executed and the system performance was estimated with the models. (author). 135 refs

  4. Tritium breeders and tritium permeation barrier coatings for fusion reactor

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Kawamura, Hiroshi; Tsuchiya, Kunihiko

    2004-01-01

    A state of R and D of tritium breeders and tritium permeation barrier coatings for fusion reactor is explained. A list of candidate for tritium breeders consists of ceramics containing lithium, for examples, Li 2 O, Li 2 TiO 3 , Li 2 ZrO 3 , Li 4 SiO 4 and LiAlO 2 . The characteristics and form are described. The optimum particle size is from 1 to 10 μm. The production technologies of tritium breeders in the world are stated. Characteristics of ceramics with lithium as tritium breeders are compared. TiC, TiN/TiC, Al 2 O 3 and Cr 2 O 3 -SiO 2 -P 2 O 5 are tritium permeation barrier coating materials. These production methods and evaluation of characteristics are explained. (S.Y.)

  5. Structural and functional significance of water permeation through cotransporters

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Gorraitz, Edurne; Her, Ka

    2016-01-01

    Membrane transporters, in addition to their major role as specific carriers for ions and small molecules, can also behave as water channels. However, neither the location of the water pathway in the protein nor their functional importance is known. Here, we map the pathway for water and urea...... through the intestinal sodium/glucose cotransporter SGLT1. Molecular dynamics simulations using the atomic structure of the bacterial transporter vSGLT suggest that water permeates the same path as Na+ and sugar. On a structural model of SGLT1, based on the homology structure of vSGLT, we identified...... to be due to alterations in steric hindrance to water and urea, and/or changes in protein folding caused by mismatching of side chains in the water pathway. Water permeation through SGLT1 and other transporters bears directly on the structural mechanism for the transport of polar solutes through...

  6. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    International Nuclear Information System (INIS)

    Kirchheim, Dennis; Jaritz, Montgomery; Hopmann, Christian; Dahlmann, Rainer; Mitschker, Felix; Awakowicz, Peter; Gebhard, Maximilian; Devi, Anjana; Brochhagen, Markus; Böke, Marc

    2017-01-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments. (paper)

  7. Permeation barrier properties of thin oxide films on flexible polymer substrates

    International Nuclear Information System (INIS)

    Fahlteich, John; Fahland, Matthias; Schoenberger, Waldemar; Schiller, Nicolas

    2009-01-01

    Solar cells and organic electronic devices require an encapsulation to ensure sufficient lifetime. Key parameters of the encapsulation are permeation barrier, UV stability, temperature stability, optical transmission spectra and mechanical stability. The requirements depend very much on the specific application. Many work groups suggest multilayer stacks to meet the permeation requirements. In this paper the permeation barrier properties of the different constituents of such a multilayer stack are characterized. Different layer materials are compared regarding their water vapour and oxygen permeability as well as the influence of process parameters is examined. Finally temperature dependent permeation measurements are used to characterize the permeation mechanisms in the different constituents of the multilayer barrier

  8. Preparation of Poly(Vinyl Alcohol) Grafted With Acrylic Acid/Styrene Binary Monomers For Selective Permeation of Heavy Metals

    International Nuclear Information System (INIS)

    Hegazy El-Sayed, A.; Abd El-Rehim, H.A.; Ali, A.M.; Aly, H.F.

    1999-01-01

    A study has been made to modify water-soluble poly(vinyl alcohol) (PVA), by grafting acrylic acid and styrene (AAc/Sty) binary monomers using gamma rays as initiator. The factors that affect the preparation process and grafting yield were studied and more economical grafts under the most favorable reaction conditions were obtained. It was found that the high degree of grafting of such system was obtained in presence of ethanol-water mixture in which water plays a significant role in enhancing the graft copolymerization. The critical amount of water to afford maximum grafting yield has been evaluated. The effect of comonomer composition on the grafting yield was also investigated and it was observed that using a mixture of AAc/Sty monomers influence the extent of grafting of each monomer onto the PVA substrate and the phenomenon of synergism occurs during such reaction. Also, degree of grafting increases as the content of the solvent decreases in the reaction medium. The permeation of heavy metals such as Ni and Co through the grafted membranes was investigated and efficiency of separation process is also determined

  9. Low-Volatility Agent Permeation (LVAP) Verification and Validation Report

    Science.gov (United States)

    2015-05-01

    custody procedures were obtained from the ISO / IEC 17025 :2005 standard13 as well as the current version of Permeation and Analytical Solutions Branch...Testing and Calibration Laboratories; ISO / IEC 17025 :2005; International Organization for Standardization: Geneva, Switzerland, 2005. 14. Box, G.E...ECBC, as detailed in Section 6.4.4 The International Organization for Standardization ( ISO ) method, 5725-3 (1994), was used to calculate the standard

  10. Assessment of permeation quality of concrete through mercury intrusion porosimetry

    International Nuclear Information System (INIS)

    Kumar, Rakesh; Bhattacharjee, B.

    2004-01-01

    Permeation quality of laboratory cast concrete beams was determined through initial surface absorption test (ISAT). The pore system characteristics of the same concrete beam specimens were determined through mercury intrusion porosimetry (MIP). Data so obtained on the measured initial surface absorption rate of water by concrete and characteristics of pore system of concrete estimated from porosimetry results were used to develop correlations between them. Through these correlations, potential of MIP in assessing the durability quality of concrete in actual structure is demonstrated

  11. Gas Permeation Processes in Biogas Upgrading: A Short Review

    Czech Academy of Sciences Publication Activity Database

    Kárászová, Magda; Sedláková, Zuzana; Izák, Pavel

    2015-01-01

    Roč. 69, č. 10 (2015), s. 1277-1283 ISSN 0366-6352 R&D Projects: GA MŠk(CZ) LD14094; GA MŠk LH14006; GA ČR GA14-12695S Institutional support: RVO:67985858 Keywords : biogas upgrading * memranes * gas permeation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.326, year: 2015

  12. Hydrogen diffusion, dissolution and permeation of nonmetallic solids

    International Nuclear Information System (INIS)

    Elleman, T.S.; Rao, D.; Verghese, K.; Zumwalt, L.

    1979-01-01

    A review of hydrogen diffusion, dissolution and permeation in metal oxides, carbides, nitrides, halides and hydrides is presented. Results are organized by compound and an effort has been made to resolve differences between measured results where wide disparities exist. The document has been prepared to provide needed data for the development of fusion reactor blankets but the results should be generally useful in technologies that involve interactions between hydrogen and non-metals

  13. Tritium inventory and permeation in liquid breeder blankets

    International Nuclear Information System (INIS)

    Reiter, F.

    1990-01-01

    This report reviews studies of the transport of hydrogen isotopes in the DEMO relevant water-cooled Pb-17Li blanket to be tested in NET and in a self-cooled blanket which uses Pb-17Li or Flibe as a liquid breeder material and V or Fe as a first wall material. The time dependences of tritium inventory and permeation in these blankets and of deuterium and tritium recycling in the self-cooled blanket are presented and discussed

  14. A simplified model for tritium permeation transient predictions when trapping is active

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1994-01-01

    This report describes a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. Comparison calculations with the verified and validated TMAP4 transient code show good agreement. ((orig.))

  15. A simplified model for tritium permeation transient predictions when trapping is active*1

    Science.gov (United States)

    Longhurst, G. R.

    1994-09-01

    This report describes a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. Comparison calculations with the verified and validated TMAP4 transient code show good agreement.

  16. A simplified model for tritium permeation transient predictions when trapping is active

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. (Fusion Safety Program, Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States))

    1994-09-01

    This report describes a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. Comparison calculations with the verified and validated TMAP4 transient code show good agreement. ((orig.))

  17. Study of poli (ethylene tereftalate) thin films submitted to radiations by using permeation and spectroscopic techniques

    International Nuclear Information System (INIS)

    Andrade, L.A.

    1986-06-01

    Properties of poly (ethylene terephthalate P.E.T. thin films submitted to electric discharges, electron, He + ion and proton beams were investigated using permeation technique, electronic paramagnetic resonance resonance (E.P.R.) and visible and infrared spectroscopies. Experimental apparatuses and procedures are described and the results of the analyses are presented and discussed. The existence of structural modifications in irradiated P.E.T. thin films is confirmed. It is shown that the kind of effects occuring in irradiated P.E.T. depends on the nature of the incident radiation. (author) [pt

  18. A Review of Wettability Effect on Boiling Heat Transfer Enhancement

    International Nuclear Information System (INIS)

    Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2012-01-01

    Critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are the key parameters characterizing pool boiling heat transfer. These variables are complicatedly related to thermal-hydraulic parameters of surface wettability, nucleation site density, bubble departure diameter and frequency, to mention a few. In essence, wettability effect on pool boiling heat transfer has been a major fuel to enhance the CHF. Often, however, the improved wettability effect hinders the nucleate boiling. Thus a comprehensive review of such wettability effect may enlighten a further study in this boiling heat transfer area. Phan et al. described surface wettability effects on boiling heat transfer

  19. Penetration of radionuclides across the skin. Rat age dependent promethium permeation through skin in vitro

    International Nuclear Information System (INIS)

    Kassai, Z.; Kassai, A.; Bauerova, K.; Koprda, V.; Harangozo, M.; Bendova, P.; Bujnova, A.

    2003-01-01

    The composition and the permeation properties of the skin are dependent on age. In the animal models for permation studies, age affects the mechanical as well as the permeation properties significantly. The time dependence of permeation of 147 Pm 3+ from aqueous solution was established by the animal skin model and the age dependence of promethium permeation through the skin was examined. The aim was to find the optimum rat skin age model for radionuclide permeation studies and to assess the relative importance of the main permeation pathways: transepidermal and transfollicular permeation. The skin from 5-day-old rats (5DR) was found to represent the optimum animal model to study transepidermal permeation of ions. The skin from 9-day-old rats (9DR) was selected to study transfollicular permeation of ions. Comparison of the permeated amounts of promethium through the skin without hairs (3 DR to 6 DR) and with hairs (7DR to 12DR) showed that the additional permation mode via follicles significantly contributed to the permeation rate and extent. (author)

  20. Evaluation of a Silicone Membrane as an Alternative to Human Skin for Determining Skin Permeation Parameters of Chemical Compounds.

    Science.gov (United States)

    Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji

    2016-01-01

    We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated.

  1. An effective one-dimensional anisotropic fingerprint enhancement algorithm

    Science.gov (United States)

    Ye, Zhendong; Xie, Mei

    2012-01-01

    Fingerprint identification is one of the most important biometric technologies. The performance of the minutiae extraction and the speed of the fingerprint verification system rely heavily on the quality of the input fingerprint images, so the enhancement of the low fingerprint is a critical and difficult step in a fingerprint verification system. In this paper we proposed an effective algorithm for fingerprint enhancement. Firstly we use normalization algorithm to reduce the variations in gray level values along ridges and valleys. Then we utilize the structure tensor approach to estimate each pixel of the fingerprint orientations. At last we propose a novel algorithm which combines the advantages of onedimensional Gabor filtering method and anisotropic method to enhance the fingerprint in recoverable region. The proposed algorithm has been evaluated on the database of Fingerprint Verification Competition 2004, and the results show that our algorithm performs within less time.

  2. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    Science.gov (United States)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  3. Physics-Based Modeling of Permeation: Simulation of Low-Volatility Agent Permeation and Aerosol Vapor Liquid Assessment Group Experiments

    Science.gov (United States)

    2015-06-01

    methylphosphonothiolate (VX) through natural latex rubber and neoprene resulting from LVAP tests. 2. The permeation model is used to study the sensitivity of...Styrene–Butadiene– Rubber , Ethylene–Propylene–Diene Terpolymer, and Natural Rubber Versus Hydrocarbons (C8–C16). Macromolecules 1991, 24 (9), 2598–2605...22 14. Harogoppad, S.B.; Aminabhavi, T.M. Diffusion and Sorption of Organic Liquids through Polymer Membranes 2. Neoprene, SBR, EPDM, NBR , and

  4. Gas phase hydrogen permeation through ferritic iron, austenitic stainless steel and neutron irradiated austenitic stainless steel from near 3000K to 8730K

    International Nuclear Information System (INIS)

    Quick, N.R.

    1976-01-01

    Hydrogen permeation through iron was studied over the temperature range 300 to 873 0 K by an ultra high vacuum, monopole gas analyzer technique. Hydrogen gas input pressures were varied from 0.0043 to 0.62 atm and membrane thicknesses from 0.0165 to 0.243 cm. Volume diffusion control of the permeation process was demonstrated by the pressure and membrane thickness dependence of the steady state flux. The permeation coefficient, with an activation enthalpy found to be 8.1 +-.4 kcal/mole, was independent of both gas pressure and membrane thickness. At temperatures below approximately 600 0 K, the effective diffusivity increased with both increasing hydrogen gas pressure and increasing membrane thickness. The transition temperature from classical to anomalous behavior decreases with increasing thickness. Apparent activation enthalpies for diffusion were found to range from 1.6 to 8.2 kcal/mole with the lower values associated with thicker membranes. The permeation coefficient activation enthalpy was found to be 13.1 +- .4 kcal/mole while that for diffusivity was found to be 11.2 +- .45 kcal/mole. However, samples neutron irradiated at a fluence of 10 17 n/cm 2 showed anomalous effects in that both effective diffusivity and permeation were reduced in value

  5. Preparation of Silica Nanoparticles Loaded with Nootropics and Their In Vivo Permeation through Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2015-01-01

    Full Text Available The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics, which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.

  6. Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier.

    Science.gov (United States)

    Jampilek, Josef; Zaruba, Kamil; Oravec, Michal; Kunes, Martin; Babula, Petr; Ulbrich, Pavel; Brezaniova, Ingrid; Opatrilova, Radka; Triska, Jan; Suchy, Pavel

    2015-01-01

    The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.

  7. Dual-phase gas-permeation flow-injection thermometric analysis for the determination of carbon dioxide.

    Science.gov (United States)

    Liu, S J; Tubino, M

    1998-11-01

    A flow-injection configuration based on a dual-phase gas-permeation system from a liquid donor to a gas acceptor stream with a thermistor flow-through detector is proposed for the direct analysis of the gas in the acceptor. This system was applied for the determination of carbon dioxide (in the form of carbonate) using the following chemical reaction: CO(2)(g)+2NH(3)(g)+H(2)O(g)=(NH(4))(2)CO(3)(s), with a linear response from 1x10(-3) to 50x10(-3) mol l(-1) of CO(3)(2-). Carbon dioxide was produced in the liquid donor and permeated into the gaseous acceptor stream of air/water vapor. The detection limit is 1x10(-3) mol l(-1) of carbonate, and a sampling frequency of 60 h(-1) is achieved with a relative standard deviation of 4.1% for replicate injections. The dual-phase gas-permeation flow-injection manifold, along with the membrane and phase separations, as well as the chemical reaction, provides enhanced selectivity when compared with the system employing a liquid acceptor stream, as serious interferents in this system, for instance, acetate and formate, among others, do not interfere in the proposed system.

  8. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    International Nuclear Information System (INIS)

    Moreira dos Santos, Margarida; Queiroz, Margarida João; Baptista, Pedro V.

    2012-01-01

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle–antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  9. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreira dos Santos, Margarida, E-mail: margarida.santos@fct.unl.pt; Queiroz, Margarida Joao; Baptista, Pedro V. [Universidade Nova de Lisboa, CIGMH, Departamento Ciencias da Vida, Faculdade de Ciencias e Tecnologia (Portugal)

    2012-05-15

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 {+-} 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a {beta}-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  10. Entanglement enhanced thermometry in the detection of the Unruh effect

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zehua, E-mail: zehuatian@126.com [Institute of Theoretical Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Wang, Jieci [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Jing, Jiliang, E-mail: jljing@hunn.edu.cn [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Dragan, Andrzej, E-mail: dragan@fuw.edu.pl [Institute of Theoretical Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2017-02-15

    We show how the use of entanglement can enhance the precision of the detection of the Unruh effect with an accelerated probe. We use a two-level atom interacting relativistically with a quantum field as the probe, and treat it as an open quantum system to derive the master equation governing its evolution. By means of quantum state discrimination, we detect the accelerated motion of the atom by examining its time evolving state. It turns out that the optimal strategy for the detection of the Unruh effect, to which the accelerated atom is sensitive, involves letting the atom-thermometer equilibrate with the thermal bath. However, introducing initial entanglement between the detector and an external degree of freedom leads to an enhancement of the sensitivity of the detector. Also, the maximum precision is attained within finite time, before equilibration takes place.

  11. Enhancing quantum effects via periodic modulations in optomechanical systems

    Science.gov (United States)

    Farace, Alessandro; Giovannetti, Vittorio

    2012-07-01

    Parametrically modulated optomechanical systems have been recently proposed as a simple and efficient setting for the quantum control of a micromechanical oscillator: relevant possibilities include the generation of squeezing in the oscillator position (or momentum) and the enhancement of entanglement between mechanical and radiation modes. In this paper we further investigate this modulation regime, considering an optomechanical system with one or more parameters being modulated over time. We first apply a sinusoidal modulation of the mechanical frequency and characterize the optimal regime in which the visibility of purely quantum effects is maximal. We then introduce a second modulation on the input laser intensity and analyze the interplay between the two. We find that an interference pattern shows up, so that different choices of the relative phase between the two modulations can either enhance or cancel the desired quantum effects, opening new possibilities for optimal quantum control strategies.

  12. Methods and Effects of Safety Enhancement in Korean PSR

    International Nuclear Information System (INIS)

    Kim, Young Gab; Park, Jong Woon

    2009-01-01

    Periodic Safety Review (PSR) is a comprehensive study on a nuclear power plant safety, taking into account aspects such as operational history, ageing, safety analyses and advances in code and standards since the time of construction. In Korea, PSRs have been performed for 20 units and have been effectively used to obtain an overall view of actual plant safety to determine reasonable and practical modifications that should be made in order to obtain a higher level of safety approaching that of modern plants. Among many safety enhancements achieved from Korean PSRs, new safety analyses are the important methods to confirm plant safety by increasing safety margin for specific safety issues. Methods and effects of safety enhancements applied in Korean PSRs are reviewed in this paper in light of new safety analyses to obtain additional safety margins

  13. Assessing the Use of Tactical Clouds to Enhance Warfighter Effectiveness

    Science.gov (United States)

    2014-04-01

    Assessing the use of tactical clouds to enhance warfighter effectiveness Alan Magar Sphyrna Security Inc . Prepared By...Sphyrna Security Inc . 340 Ridgeside Farm Drive Kanata, ON K2W 0A1 Project Manager: Darcy Simmelink (613) 998-1451 PWGSC Contract Number... Armoured Vehicle (LAV) – Within this report, a LAV is a generic term used to denote a mechanized infantry vehicle used to support warfighters in ground

  14. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    Science.gov (United States)

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Evaluation of drug permeation under fed state conditions using mucus-covered Caco-2 cell epithelium

    DEFF Research Database (Denmark)

    Birch, Ditlev; Diedrichsen, Ragna G; Christophersen, Philip C

    2018-01-01

    The absence of a surface-lining mucus layer is a major pitfall for the Caco-2 epithelial model. However, this can be alleviated by applying biosimilar mucus (BM) to the apical surface of the cell monolayer, thereby constructing a mucosa mimicking in vivo conditions. This study aims to elucidate...... the influence of BM as a barrier towards exogenic compounds such as permeation enhancers, and components of fed state simulated intestinal fluid (FeSSIF). Caco-2 cell monolayers surface-lined with BM were exposed to several compounds with distinct physicochemical properties, and the cell viability...... and permeability of the cell monolayer was compared to that of cell monolayers without BM and well-established mucus-secreting epithelial models (HT29 monolayers and HT29/Caco-2 co-culture monolayers). Exposure of BM-covered cells to constituents from FeSSIF revealed that it comprised a strong, hydrophilic barrier...

  16. Cellulose acetate butyrate membrane containing TiO{sub 2} nanoparticle: Preparation, characterization and permeation study

    Energy Technology Data Exchange (ETDEWEB)

    Asgarkhani, Mohammad Ali Haj; Mousavi, Seyed Mahmoud; Saljoughi, Ehsan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2013-09-15

    Cellulose acetate butyrate/TiO{sub 2} hybrid membranes were prepared via phase inversion by dispersing the TiO{sub 2} nanoparticles in casting solutions. The influence of TiO{sub 2} nanoparticles on the morphology and performance of membranes was investigated. The scanning electron microscope images and experiments of membrane performance showed that the membrane thickness and pure water flux were first increased by adding the TiO{sub 2} nanoparticles to the casting solution up to 4 wt% and then decreased with the addition of further nanoparticles to it. The obtained results indicated that the addition of TiO{sub 2} in the casting solution enhanced the rejection and permeate flux in filtration of bovine serum albumin solution. Furthermore, increasing the TiO{sub 2} nanoparticle concentration in the casting solution increased the flux recovery and consequently decreased the fouling of membrane.

  17. On correct evaluation techniques of brightness enhancement effect measurement data

    Science.gov (United States)

    Kukačka, Leoš; Dupuis, Pascal; Motomura, Hideki; Rozkovec, Jiří; Kolář, Milan; Zissis, Georges; Jinno, Masafumi

    2017-11-01

    This paper aims to establish confidence intervals of the quantification of brightness enhancement effects resulting from the use of pulsing bright light. It is found that the methods used so far may yield significant bias in the published results, overestimating or underestimating the enhancement effect. The authors propose to use a linear algebra method called the total least squares. Upon an example dataset, it is shown that this method does not yield biased results. The statistical significance of the results is also computed. It is concluded over an observation set that the currently used linear algebra methods present many patterns of noise sensitivity. Changing algorithm details leads to inconsistent results. It is thus recommended to use the method with the lowest noise sensitivity. Moreover, it is shown that this method also permits one to obtain an estimate of the confidence interval. This paper neither aims to publish results about a particular experiment nor to draw any particular conclusion about existence or nonexistence of the brightness enhancement effect.

  18. Effects of computed tomography contrast medium factors on contrast enhancement

    International Nuclear Information System (INIS)

    Terasawa, Kazuaki; Hatcho, Atsushi; Okuda, Itsuko

    2011-01-01

    The various nonionic iodinated contrast media used in contrast computed tomography (CT) studies differ in terms of their composition, characteristics, and iodine concentration (mgI/ml), as well as the volume injected (ml). Compared with ionic iodinated contrast media, nonionic iodinated contrast media are low-osmolar agents, with different agents having different osmotic pressures. Using a custom-made phantom incorporating a semipermeable membrane, the osmotic flow rate (hounsfield unit (HU)/s) could easily be measured based on the observed increase in CT numbers, and the relationship between the osmotic pressure and the osmotic flow rate could be obtained (r 2 =0.84). In addition, taking the effects of patient size into consideration, the levels of contrast enhancement in the abdominal aorta (AA) and inferior vena cava (IVC) were compared among four types of CT contrast medium. The results showed differences in contrast enhancement in the IVC during the equilibrium phase depending on the type of contrast medium used. It was found that the factors responsible for the differences observed in enhancement in the IVC were the osmotic flow rate and the volume of the blood flow pathways in the circulatory system. It is therefore considered that the reproducibility of contrast enhancement is likely to be reduced in the examination of parenchymal organs, in which scanning must be performed during the equilibrium phase, even if the amount of iodine injected per unit body weight (mgI/kg) is maintained at a specified level. (author)

  19. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    International Nuclear Information System (INIS)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-01-01

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  20. Corrosion behaviour of Al based tritium permeation barriers in flowing Pb-17Li

    International Nuclear Information System (INIS)

    Glasbrenner, H.; Konys, J.; Voss, Z.; Wedemeyer, O.

    2002-01-01

    Tritium permeation barriers on low-activation steels are required in fusion technology in order to reduce the tritium permeation rate through the structural material into the cooling water system. Al-Fe layers with alumina on top can fulfil the required reduction rate. Three techniques were selected to produce such a multi-layered coating system: chemical vapour deposition (CVD) by CEA, hot-dip aluminising (HDA) by FZK and vacuum plasma spraying (VPS) by JRC Ispra. A sufficient corrosion resistance against Pb-17Li attack is also required for the coating. Therefore, the corrosion behaviour of these three coatings on ferritic-martensitic steels was studied in the PICOLO loop of FZK in flowing Pb-17Li at 480 deg. C up to 10 000 h. Corrosion effects could not be found on HDA and VPS coated specimens even up to the longest time of exposure. The total thickness of the two-layered system remained unchanged at around 130 μm for all examined HDA and VPS specimens. In contrast to this, corrosion effects could be inspected on CVD coated specimens

  1. On nutrients and trace metals: Effects from Enhanced Weathering

    Science.gov (United States)

    Amann, T.; Hartmann, J.

    2015-12-01

    The application of rock flour on suitable land ("Enhanced Weathering") is one proposed strategy to reduce the increase of atmospheric CO2 concentrations. At the same time it is an old and established method to add fertiliser and influence soil properties. Investigations of this method focused on the impact on the carbonate system, as well as on engineering aspects of a large-scale application, but potential side effects were never discussed quantitatively. We analysed about 120,000 geochemically characterised volcanic rock samples from the literature. Applying basic statistics, theoretical release rates of nutrients and potential contaminants by Enhanced Weathering were evaluated for typical rock types. Applied rock material can contain significant amounts of essential or beneficial nutrients (potassium, phosphorus, micronutrients). Their release can partly cover the demand of major crops like wheat, rice or corn, thereby increasing crop yield on degraded soils. However, the concentrations of considered elements are variable within a specific rock type, depending on the geological setting. High heavy metal concentrations are found in (ultra-) basic rocks, the class with the highest CO2 drawdown potential. More acidic rocks contain less or no critical amounts, but sequester less CO2. Findings show that the rock selection determines the capability to supply significant amounts of nutrients, which could partly substitute industrial mineral fertiliser usage. At the same time, the release of harmful trace element has to be considered. Through careful selection of regionally available rocks, benefits could be maximised and drawbacks reduced. The deployment of Enhanced Weathering to sequester CO2 and to ameliorate soils necessitates an ecosystem management, considering the release and fate of weathered elements in plants, soils and water. Cropland with degraded soils would benefit while having a net negative CO2 effect, while other carbon dioxide removal strategies, like

  2. Development of a hydrogen permeation sensor for future tritium applications

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S.; Abellà, J., E-mail: sergi.colominas@iqs.es

    2014-10-15

    Highlights: • Designing and testing of a hydrogen permeation sensor. • Palladium and α-iron have been used as a hydrogen permeation materials in the sensor. • The experiments performed using both membranes showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure. - Abstract: Tritium monitoring in lithium–lead eutectic is of great importance for the performance of liquid blankets in fusion reactors. In addition, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. In this work, an experimental set up was designed in order to test the permeation hydrogen sensors at 500 °C. This experimental set-up allowed working with controlled environments (different hydrogen partial pressures) and the temperature was measured using a thermocouple connected to a temperature controller that regulated an electrical heater. In a first set of experiments, a hydrogen sensor was constructed using an α-iron capsule as an active hydrogen area. The sensor was mounted and tested in the experimental set up. In a second set of experiments the α-iron capsule was replaced by a welded thin palladium disk in order to minimize the death volume. The experiments performed using both membranes (α-iron and palladium) showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure.

  3. Feasibility of permeation grouting for constructing subsurface barriers

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1994-04-01

    Efforts are being made to devise technologies that provide interim containment of waste sites while final remediation alternatives are developed. Permeation grouting, a technique used extensively in the civil and mining engineering industry has been investigated as a method for emplacing a subsurface containment barrier beneath existing waste sites. Conceptually an underlying barrier is placed by injecting grout into the formation at less than fracturing pressure from a series of directionally drilled boreholes beneath the waste site. This study evaluated the penetration and performance characteristics in varying soil conditions of four different grout materials (two microfine cements, mineral wax, and sodium silicate) at a field scale. Field testing consisted of grout injection via sleeve (tube-a'-manchette) pipe into both vertical and horizontal borehole configurations at the Mixed Waste Landfill Integrated Demonstration site at Sandia National Laboratories. Prior to, during, and after grout injection non-intrusive geophysical techniques were used to map grout flow. Following the tests, the site was excavated to reveal details of the grout permeation, and grouted soil samples were cored for laboratory characterization. The non-intrusive and intrusive grout mapping showed preferential flow patterns, i.e., the grout tended to follow the path of least resistance. Preliminary testing indicates that permeation grouting is a feasible method for emplacing a low permeability subsurface barrier in the semi-arid unconsolidated alluvial soils common to the Southwest. Despite the success of this project, difficulties in predicting grout flow in heterogeneous soils and non-intrusive methods for imaging grout location and continuity are issues that need more attention

  4. Ionic Selectivity and Permeation Properties of Human PIEZO1 Channels.

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Gnanasambandam

    Full Text Available Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2 form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1 for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35-55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection.

  5. Use of an in vitro human skin permeation assay to assess bioequivalence of two topical cream formulations containing butenafine hydrochloride (1%, w/w).

    Science.gov (United States)

    Mitra, Amitava; Kim, Nanhye; Spark, Darren; Toner, Frank; Craig, Susan; Roper, Clive; Meyer, Thomas A

    2016-12-01

    The primary objective of this work was to investigate, using an in vitro human skin permeation study, whether changes in the excipients of butenafine hydrochloride cream would have any effect on bioperformance of the formulation. Such in vitro data would be a surrogate for any requirement of a bioequivalence (BE) study to demonstrate formulation similarity. A LC-MS/MS method for quantitation of butenafine in various matrices was developed and validated. A pilot study was performed to validate the in vitro skin permeation methodology using three cream formulations containing butenafine hydrochloride at concentrations of 0.5, 1.0 and 1.5% (w/w). Finally, a definitive in vitro human skin permeation study was conducted, comparing the extent of butenafine hydrochloride permeation from the new formulation to that from the current formulation. The results of the study comparing the two formulations showed that there was no statistically significant difference in the extent of butenafine permeation into human skin. In conclusion, these in vitro data demonstrated that the formulation change is likely to have no significant impact on the bioperformance of 1% (w/w) butenafine hydrochloride cream. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Tritium management and anti-permeation strategies for three different breeding blanket options foreseen for the European Power Plant Physics and Technology Demonstration reactor study

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D., E-mail: david.demange@kit.edu [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Boccaccini, L.V.; Franza, F. [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Santucci, A.; Tosti, S. [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati (RM) (Italy); Wagner, R. [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    In DT fusion reactors like DEMO, the commonly accepted tritium (T) losses through the steam generator (SG) shall not exceed about 2 mg/d that are more than 5 orders of magnitude lower than the T production rate of about 360 g/d in the breeding blanket (BB). A very effective mitigation strategy is required balancing the size and efficiency of the processes in the breeding and cooling loops, and the availability and efficiency of anti-permeation barriers. A numerical study is presented using the T permeation code FUS-TPC that computes all T flows and inventories considering the design and operation of the BB, the SG, and the T systems. Many scenarios are numerically analyzed for three breeding blankets concepts – helium cooled pebbles bed (HCPB), helium cooled lithium lead (HCLL), and water cooled lithium lead (WCLL) – varying the T processes throughput and efficiency, and the permeation regimes through the BB and SG to be either surface-limited or diffusion-limited with possible permeation reduction factor. For each BB concept, we discuss workable operation scenarios and suggest specific anti-permeation strategies.

  7. Evaluation of a dynamic dissolution/permeation model

    DEFF Research Database (Denmark)

    Sironi, Daniel; Christensen, Mette; Rosenberg, Jörg

    2017-01-01

    -steady state). To this end, a model case was construed: compacts of pure crystalline hydrocortisone methanolate (HC·MeOH) of slow release rates were prepared, and their dissolution and permeation determined simultaneously in a side-by-side setup, separated by a biomimetic barrier (Permeapad...... dissolution rate and flux influenced each other. Interestingly, for all the dynamic scenarios, the incremental flux values obtained correlated nicely with the corresponding actual donor concentrations. Furthermore, donor depletion was tested using a HC solution. The dynamic interplay between decrease in donor...

  8. Field enhancement due to anomalous skin effect inside a target

    International Nuclear Information System (INIS)

    Ma, G.; Tan, W.

    1996-01-01

    A new method based on Fourier transformation to study the skin effects is presented. Using this method, the field amplitude in plasma is represented in terms of electric conductivity, and the normal and anomalous skin effects are described through one formula by omitting the plasma dispersion or not. The results are in agreement with other publications [e.g., J. P. Matte and K. Aguenaou, Phys. Rev. A 45, 2558 (1992)] for equivalent parameters. But for deeper positions inside a target, which have not been studied by others, it is found that the field amplitude is considerably enhanced due to an anomalous skin effect, even for constant collision frequency. In addition, the skin absorptions and some calculations on an anomalous skin effect for different collision frequencies are also presented. copyright 1996 American Institute of Physics

  9. Design and tritium permeation analysis of China HCCB TBM port cell

    International Nuclear Information System (INIS)

    Jiangfeng, S.; Guoqiang, H.; Zhiyong, H.; Chang'an, C.; Deli, L.

    2015-01-01

    China is planning to develop a helium-cooled ceramic breeder (HCCB) test blanket module (TBM) on ITER to test key blanket technologies. In this paper, the design and tritium permeation analysis of China HCCB TBM port cell are introduced. A theoretical model has been developed to estimate tritium permeation rates and leak rates from the components and pipes which China has scheduled to house in the port cell. It is shown that on normal working conditions, the permeation and leak rate of the systems in the port cell will be no higher than 1.58 Ci/d without the use of tritium permeation barriers, and 0.10 Ci/d with the use of tritium permeation barriers. It also appears that tritium permeation barriers are necessary for high temperature components such as the reduction bed and the heater

  10. Design and tritium permeation analysis of China HCCB TBM port cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiangfeng, S.; Guoqiang, H.; Zhiyong, H.; Chang' an, C.; Deli, L. [China Academy of Engineering Physics, Mianyang, Sichuan (China)

    2015-03-15

    China is planning to develop a helium-cooled ceramic breeder (HCCB) test blanket module (TBM) on ITER to test key blanket technologies. In this paper, the design and tritium permeation analysis of China HCCB TBM port cell are introduced. A theoretical model has been developed to estimate tritium permeation rates and leak rates from the components and pipes which China has scheduled to house in the port cell. It is shown that on normal working conditions, the permeation and leak rate of the systems in the port cell will be no higher than 1.58 Ci/d without the use of tritium permeation barriers, and 0.10 Ci/d with the use of tritium permeation barriers. It also appears that tritium permeation barriers are necessary for high temperature components such as the reduction bed and the heater.

  11. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  12. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  13. Ratio of dialytic coefficients of hydrogen and tritium in permeation through palladium alloy film

    International Nuclear Information System (INIS)

    Fujita, Haruyuki; Fujita, Kunio; Sakamoto, Hiroshi; Higashi, Kunio; Okada, Sakae.

    1982-01-01

    The dialytic coefficient for hydrogen is especially large in palladium and its alloys. Recently, with the research on fusion reactors, the dialytic coefficient of tritium permeating through solids and its isotopic effect have been the object of interest. The ratio of the dialytic coefficients of tritium and hydrogen has been usually assumed to be 3. The measurement of the dialytic coefficient in solids using pure tritium is practically difficult. Therefore, the authors carried out the experiment to determine the ratio of the dialytic coefficients of pure T 2 and pure H 2 by permeating the mixed gas of T and H through Pd-Au-Ag alloy. The mixed hydrogen gas was filled in a separation cell containing a palladium alloy tube, and the separation factor of tritium and hydrogen was measured by changing pressure, flow rate and temperature. The separation factor depends mainly on the relative dialytic coefficients of tritium and hydrogen, therefore, the ratio of dialytic coefficients can be determined by the simple analysis of the experimental results. This experimental method is suitable to determine the relative value of dialytic coefficients, and the obtained ratio was about 2.1. (Kako, I.)

  14. A 2D Finite Element Modelling of Tritium Permeation Through Cooling Plates for The HCLL DEMO Blanket Module

    International Nuclear Information System (INIS)

    Gabriel, F.; Escuriol, Y.; Dabbene, F.; Salavy, J.F.; Giancarli, L.; Gastaldi, O.

    2006-01-01

    As the Tritium self sufficiency is one of the major challenges for fusion reactor, breeding blankets represent one of the major technological breakthroughs required from passing from ITER to the next step reactor, usually called DEMO. One of the two blanket concepts developed in the EU is the Helium Cooled Lithium Lead (HCLL) blanket which uses the eutectic Pb-15.7Li metal liquid as both breeder and neutron multiplier. The structures, made of EUROFER, a low activation ferritic martensitic steel, are cooled by pressurized helium at 8 MPa and inlet/outlet temperature 300/500 o C. In this concept, the LiPb is fed from the top of the blanket and distributed in parallel vertical channels among pairs of cells (one cell for the radial movement towards the plasma, the other for the return). The liquid metal fills the in-box volume and is slowly re-circulated (few mm per seconds) to remove the produced tritium. In this paper, a local finite element modelling of the tritium permeation rate through the HCLL breeder unit cooling plates is presented. The tritium concentration in the helium circuit and remaining in the lithium lead circuit are evaluated by solving partial differential equations governing the tritium concentration balance, the thermal field and the lithium lead velocity field for a simplified 2D geometrical representation of the breeder unit. This allows estimating the sensitivity effect of coupling these different equations in order to deduce a relevant but simplified modelling for tritium permeation. This is to compare with tritium inventories studies, were the tritium permeation rate is estimated using simplified analytical modelling which generally leads to over estimate the tritium permeation rate to the coolant and so has strong influence on the coolant purification plant design. The finite element modelling performed shows that the Tritium permeation is considerable lower than the one obtained in previous estimations where nominal values of the governing

  15. The effect of nonlinear ionospheric conductivity enhancement on magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    E. Spencer

    2013-06-01

    Full Text Available We introduce the effect of enhanced ionospheric conductivity into a low-order, physics-based nonlinear model of the nightside magnetosphere called WINDMI. The model uses solar wind and interplanetary magnetic field (IMF parameters from the ACE satellite located at the L1 point to predict substorm growth, onset, expansion and recovery measured by the AL index roughly 50–60 min in advance. The dynamics introduced by the conductivity enhancement into the model behavior is described, and illustrated through using synthetically constructed solar wind parameters as input. We use the new model to analyze two well-documented isolated substorms: one that occurred on 31 July 1997 from Aksnes et al. (2002, and another on 13 April 2000 from Huang et al. (2004. These two substorms have a common feature in that the solar wind driver sharply decreases in the early part of the recovery phase, and that neither of them are triggered by northward turning of the IMF Bz. By controlling the model parameters such that the onset time of the substorm is closely adhered to, the westward auroral electrojet peaks during substorm expansion are qualitatively reproduced. Furthermore, the electrojet recovers more slowly with enhanced conductivity playing a role, which explains the data more accurately.

  16. Influence of He ions irradiation on the deuterium permeation and retention behavior in the CLF-1 steel

    International Nuclear Information System (INIS)

    Xu, Yu-Ping; Lu, Tao; Li, Xiao-Chun; Liu, Feng; Liu, Hao-Dong; Wang, Jing; An, Zhong-Qing; Ding, Fang; Hong, Suk-Ho; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-01-01

    To evaluate the influence of He ions irradiation on the deuterium permeation and retention behavior in RAFM steels, samples made of the CLF-1 steel was irradiated with 3.5 MeV He ions. Gas driven permeation experiments were performed, and the permeability of virgin sample and pre-irradiated sample were obtained and compared. In order to characterize the effect of He ions irradiation on the deuterium retention behavior, deuterium gas exposure was carried out at 623 K, followed by thermal desorption spectra experiments. The total deuterium retention of the CLF-1 steel increased owing to He ions implantation, which could be attributed to the increase in trapping site for deuterium by the He pre-irradiation.

  17. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon

    2015-01-01

    hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate...... to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may decrease the permeability. In conclusion, acylated sCT acts as its own in vitro intestinal permeation enhancer, with reversible effects...... on Caco-2 cells, indicating that acylation of sCT may represent a promising tool to increase intestinal permeability without adding oral permeation enhancers....

  18. The Effect and Mechanism of Transdermal Penetration Enhancement of Fu's Cupping Therapy: New Physical Penetration Technology for Transdermal Administration with Traditional Chinese Medicine (TCM) Characteristics.

    Science.gov (United States)

    Xie, Wei-Jie; Zhang, Yong-Ping; Xu, Jian; Sun, Xiao-Bo; Yang, Fang-Fang

    2017-03-27

    In this paper, a new type of physical penetration technology for transdermal administration with traditional Chinese medicine (TCM) characteristics is presented. Fu's cupping therapy (FCT), was established and studied using in vitro and in vivo experiments and the penetration effect and mechanism of FCT physical penetration technology was preliminarily discussed. With 1-(4-chlorobenzoyl)-5-methoxy-2-methylindole-3-ylacetic acid (indomethacin, IM) as a model drug, the establishment of high, medium, and low references was completed for the chemical permeation system via in vitro transdermal tests. Furthermore, using chemical penetration enhancers (CPEs) and iontophoresis as references, the percutaneous penetration effect of FCT for IM patches was evaluated using seven species of in vitro diffusion kinetics models and in vitro drug distribution; the IM quantitative analysis method in vivo was established using ultra-performance liquid chromatography-tandem mass spectrometry technology (UPLC-MS/MS), and pharmacokinetic parameters: area under the zero and first moment curves from 0 to last time t (AUC 0-t , AUMC 0-t ), area under the zero and first moment curves from 0 to infinity (AUC 0-∞ , AUMC 0-∞ ), maximum plasma concentration (C max ) and mean residence time (MRT), were used as indicators to evaluate the percutaneous penetration effect of FCT in vivo. Additionally, we used the 3 K factorial design to study the joint synergistic penetration effect on FCT and chemical penetration enhancers. Through scanning electron microscopy (SEM) and transmission electron microscope (TEM) imaging, micro- and ultrastructural changes on the surface of the stratum corneum (SC) were observed to explore the FCT penetration mechanism. In vitro and in vivo skin permeation experiments revealed that both the total cumulative percutaneous amount and in vivo percutaneous absorption amount of IM using FCT were greater than the amount using CPEs and iontophoresis. Firstly, compared with

  19. REINFORCEMENT ENHANCING EFFECTS OF ACUTE NICOTINE VIA ELECTRONIC CIGARETTES

    Science.gov (United States)

    Perkins, Kenneth A.; Karelitz, Joshua L.; Michael, Valerie C.

    2015-01-01

    Background Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. Methods We assessed acute effects of nicotine via electronic cigarettes (“e-cigarettes”) on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10 ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled “36 mg/ml”) or placebo (“0”) e-cigarette, or no e-cigarette use. A fourth session involved smoking one’s own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Results Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Conclusions Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. PMID:26070455

  20. Reinforcement enhancing effects of acute nicotine via electronic cigarettes.

    Science.gov (United States)

    Perkins, Kenneth A; Karelitz, Joshua L; Michael, Valerie C

    2015-08-01

    Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. We assessed acute effects of nicotine via electronic cigarettes ("e-cigarettes") on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled "36mg/ml") or placebo ("0″) e-cigarette, or no e-cigarette use. A fourth session involved smoking one's own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Economic Effects of Precipitation Enhancement in the Corn Belt.

    Science.gov (United States)

    Gapcia, Philip; Changnon, Stanley; Pinar, Musa

    1990-01-01

    Policy formulation in weather modification requires an understanding of the economic effects from altered weather. The focus of this study is to provide insight into the beneficiaries of a functioning weather modification technology when applied at various spatial and temporal levels. An econometric model which links the corn/scybean production to U.S. cattle, hog and poultry sectors is used to determine the effects of precipitation enhancement in the U.S. Corn Belt, a humid climatic region. A regional supply formulation permits assessment of weather modification on production, prices, revenues to producers, and savings in consumers expenditures on meat. The results provide insight into the distribution of economic effects, emphasize the importance of careful planning in the use of weather modification technology, and provide useful information on the roles of local, state, and federal governments in the support of weather modification.

  2. Contextualizing Intergroup Contact: Do Political Party Cues Enhance Contact Effects?

    DEFF Research Database (Denmark)

    Sønderskov, Kim Mannemar; Thomsen, Jens Peter Frølund

    2015-01-01

    This article examines intergroup contact effects in different political contexts. We expand on previous efforts of social psychologists by incorporating the messages of political parties as a contextual trigger of group membership awareness in contact situations. We argue that the focus among...... political parties on us-them categorizations heightens the awareness of group memberships. This focus in turn enhances the positive intergroup contact effect by stimulating majority members to perceive contacted persons as prototypical outgroup members. A multilevel analysis of 22 countries and almost 37......,000 individuals confirms that the ability of intergroup contact to reduce antiforeigner sentiment increases when political parties focus intensively on immigration issues and cultural differences. Specifically, both workplace contact and interethnic friendship become more effective in reducing antiforeigner...

  3. Skin permeation and antioxidant efficacy of topically applied resveratrol.

    Science.gov (United States)

    Alonso, Cristina; Martí, M; Barba, C; Carrer, V; Rubio, L; Coderch, L

    2017-08-01

    The permeation of resveratrol was assessed by in vitro and in vivo experiments 24 h after topical administration. The in vitro profile of resveratrol was assessed by Raman spectroscopy. Human skin permeation was analysed in vivo by the tape stripping method with the progressive removal of the stratum corneum layers using adhesive tape strips. Moreover, the free radical scavenging activity of resveratrol after its topical application was determined using the DPPH assay. The Raman spectra indicated that the topically applied resveratrol penetrates deep into the skin. The results showed high amounts of resveratrol in the different stratum corneum layers close to the surface and a constant lower amount in the upper layers of the viable epidermis. The concentration of resveratrol present in the outermost stratum corneum layers was obtained by tape stripping after in vivo application. The results demonstrated that resveratrol mainly remained in the human stratum corneum layers. After topical application, resveratrol maintained its antiradical activity. The antioxidant efficacy of the compound was higher in the inner layers of the stratum corneum. As these results have demonstrated, topically applied resveratrol reinforces the antioxidant system of the stratum corneum and provides an efficient means of increasing the tissue levels of antioxidants in the human epidermis.

  4. Tritium permeation barrier based on self-healing composite materials

    International Nuclear Information System (INIS)

    Gao Jifeng; Zhang Dan; Suo Jinping

    2010-01-01

    Pores and cracks in ceramic coatings is one of the most important problems to be solved for the thermally sprayed tritium permeation barriers (TPBs) in fusion reactor. In this work, we developed a self-healing composite coating to address this problem. The coating composed of TiC + mixture(TiC/Al 2 O 3 ) + Al 2 O 3 was deposited on martensitic steels by means of atmospheric plasma spraying (APS). Before and after heat treatment, the morphology and phase of the coating were comparatively investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In the experiment, NiAl + Al 2 O 3 , mixture(TiC/Al 2 O 3 ) + Al 2 O 3 and NiAl + TiC + mixture(TiC/Al 2 O 3 ) + Al 2 O 3 films were also fabricated and studied, respectively. The results showed that the TiC + mixture(TiC/Al 2 O 3 ) + Al 2 O 3 coating exhibited the best self-healing ability and good thermal shock resistance among the four samples after heat treatment under normal atmosphere. The SEM images analyzed by Image Pro software indicated that the porosity of the TiC + mixture(TiC/Al 2 O 3 ) + Al 2 O 3 coating decreased more than 90% in comparison with the sample before heat treatment. This self-healing coating made by thermal spraying might be a good candidate for tritium permeation barrier in fusion reactors.

  5. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand.

    Science.gov (United States)

    Banaee, Sean; S Que Hee, Shane

    2017-03-28

    The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm 2 /min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving.

  6. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand

    Science.gov (United States)

    Banaee, Sean; S Que Hee, Shane

    2017-01-01

    Objectives: The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). Methods: This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). Results: The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm2/min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Conclusions: Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving. PMID:28111415

  7. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall

    KAUST Repository

    Wang, Kai Yu; Yang, Qian; Chung, Tai-Shung; Rajagopalan, Raj

    2009-01-01

    To develop high-flux and high-rejection forward osmosis (FO) membranes for water reuses and seawater desalination, we have fabricated polybenzimidazole (PBI) nanofiltration (NF) hollow fiber membranes with a thin wall and a desired pore size via non-solvent induced phase inversion and chemically cross-linking modification. The cross-linking by p-xylylene dichloride can finely tune the mean pore size and enhance the salt selectivity. High water permeation flux and improved salt selectivity for water reuses were achieved by using the 2-h modified PBI NF membrane which has a narrow pore size distribution. Cross-linking at a longer time produces even a lower salt permeation flux potentially suitable for desalination but at the expense of permeation flux due to tightened pore sizes. It is found that draw solution concentration and membrane orientations are main factors determining the water permeation flux. In addition, effects of membrane morphology and operation conditions on water and salt transport through membrane have been investigated. © 2008 Elsevier Ltd. All rights reserved.

  8. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall

    KAUST Repository

    Wang, Kai Yu

    2009-04-01

    To develop high-flux and high-rejection forward osmosis (FO) membranes for water reuses and seawater desalination, we have fabricated polybenzimidazole (PBI) nanofiltration (NF) hollow fiber membranes with a thin wall and a desired pore size via non-solvent induced phase inversion and chemically cross-linking modification. The cross-linking by p-xylylene dichloride can finely tune the mean pore size and enhance the salt selectivity. High water permeation flux and improved salt selectivity for water reuses were achieved by using the 2-h modified PBI NF membrane which has a narrow pore size distribution. Cross-linking at a longer time produces even a lower salt permeation flux potentially suitable for desalination but at the expense of permeation flux due to tightened pore sizes. It is found that draw solution concentration and membrane orientations are main factors determining the water permeation flux. In addition, effects of membrane morphology and operation conditions on water and salt transport through membrane have been investigated. © 2008 Elsevier Ltd. All rights reserved.

  9. Enhancing the Effectiveness of Work Groups and Teams: A Reflection.

    Science.gov (United States)

    Kozlowski, Steve W J

    2018-03-01

    Teamwork has been at the core of human accomplishment across the millennia, and it was a focus of social psychological inquiry on small group behavior for nearly half a century. However, as organizations world-wide reorganized work around teams over the past two decades, the nature of teamwork and factors influencing it became a central focus of research in organizational psychology and management. In this article, I reflect on the impetus, strategy, key features, and scientific contribution of "Enhancing the Effectiveness of Work Groups and Teams," by Kozlowski and Ilgen, a review monograph published in Psychological Science in the Public Interest in 2006.

  10. Memory-enhancing effects of Cuscuta japonica Choisy via enhancement of adult hippocampal neurogenesis in mice.

    Science.gov (United States)

    Moon, Minho; Jeong, Hyun Uk; Choi, Jin Gyu; Jeon, Seong Gak; Song, Eun Ji; Hong, Seon-Pyo; Oh, Myung Sook

    2016-09-15

    It is generally accepted that functional and structural changes within the hippocampus are involved in learning and memory and that adult neurogenesis in this region may modulate cognition. The extract of Cuscuta japonica Choisy (CJ) is a well-known traditional Chinese herbal medicine that has been used since ancient times as a rejuvenation remedy. The systemic effects of this herb are widely known and can be applied for the treatment of a number of physiological diseases, but there is a lack of evidence describing its effects on brain function. Thus, the present study investigated whether CJ would enhance memory function and/or increase hippocampal neurogenesis using mice orally administered with CJ water extract or vehicle for 21days. Performance on the novel object recognition and passive avoidance tests revealed that treatment with CJ dose-dependently improved the cognitive function of mice. Additionally, CJ increased the Ki-67-positive proliferating cells and the number of doublecortin-stained neuroblasts in the dentate gyrus (DG) of the hippocampus, and double labeling with 5-bromo-2-deoxyuridine and neuronal specific nuclear protein showed that CJ increased the number of mature neurons in the DG. Finally, CJ resulted in the upregulated expression of neurogenic differentiation factor, which is essential for the maturation and differentiation of granule cells in the hippocampus. Taken together, the present findings indicate that CJ stimulated neuronal cell proliferation, differentiation, and maturation, which are all processes associated with neurogenesis. Additionally, these findings suggest that CJ may improve learning and memory via the enhancement of adult hippocampal neurogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effective corrective actions to enhance operational safety of nuclear installations

    International Nuclear Information System (INIS)

    2005-07-01

    The safe operation of nuclear power plants around the world and the prevention of incidents in these installations remain key concerns for the nuclear community. In this connection the feedback of operating experience plays a major role: every nuclear plant operator needs to have a system in place to identify and feed back the lessons learned from operating experience and to implement effective corrective actions to prevent safety events from reoccurring. An effective operating experience programme also includes a proactive approach that is aimed at preventing the first-time occurrence of safety events. In April 2003, the IAEA issued the PROSPER guidelines for nuclear installations to strengthen and enhance their own operating experience process and for self-assessment on the effectiveness of the feedback process. Subsequently, in the course of the Operational Safety Review Teams missions conducted by the IAEA that focused on the operational safety practices of nuclear power plants, the IAEA enhanced the review of the operating experience in nuclear power plants by implementing a new module that is derived from these guidelines. In order to highlight the effective implementation of the operating experience programme and to provide practical assistance in this area, the IAEA organized workshops and conferences to discuss recent trends in operating experience. The IAEA also performed assistance and review missions at plants and corporate organizations. The IAEA is further developing advice and assistance on operating experience feedback programmes and is reporting on good practices. The present publication is the outcome of two years of coordinated effort involving the participation of experts of nuclear organizations in several Member States. It provides information and good practices for successfully establishing an effective corrective actions programme. This publication forms part of a series that develops the principles set forth in these guidelines

  12. Effective Factors in Enhancing School Managers' Job Motivation

    Directory of Open Access Journals (Sweden)

    S. Mahmoud Mirzamani

    2011-10-01

    Full Text Available "nObjective: This study examines the effective factors in enhancing school managers' job motivation from viewpoint of school mangers, teachers, education department managerial and staff experts in teaching, and also identifies and prioritizes each of these factors and indicators. "nMethod: For selecting a representative sample and increasing measurement precision, 587 people were selected using classified random sampling. The measurement tool was a 79-questionnaire made by the researcher. The questionnaire was collected using motivation theories and observing the findings of previous researches. Then, according to the three-stage Delphi technique, the questionnaire was sent to experts in education. The reliability of instruments was measured by calculating Cronbach's Alpha coefficient, and total reliability of the test was 0.99; the validity of the instrument was assessed by factor analysis (Construct Validity and its load factor was 0.4 which was high. "nResults: The results from factor analysis shows that the effective factors in enhancing managers' job motivation are as follows: self- actualization (51% including 28 indices; social factor (7/9% including 22 indices; self-esteem (3.2% including 17 indices; job desirable features (2.2% including 4 indices; physiologic (1.8% including 4 indices; and job richness (1.6% including 4 indices. "nConclusions: The results show that the six mentioned factors determine 68% of the total variance of managers' motivation.

  13. Quantifying the effect of colorization enhancement on mammogram images

    Science.gov (United States)

    Wojnicki, Paul J.; Uyeda, Elizabeth; Micheli-Tzanakou, Evangelia

    2002-04-01

    Current methods of radiological displays provide only grayscale images of mammograms. The limitation of the image space to grayscale provides only luminance differences and textures as cues for object recognition within the image. However, color can be an important and significant cue in the detection of shapes and objects. Increasing detection ability allows the radiologist to interpret the images in more detail, improving object recognition and diagnostic accuracy. Color detection experiments using our stimulus system, have demonstrated that an observer can only detect an average of 140 levels of grayscale. An optimally colorized image can allow a user to distinguish 250 - 1000 different levels, hence increasing potential image feature detection by 2-7 times. By implementing a colorization map, which follows the luminance map of the original grayscale images, the luminance profile is preserved and color is isolated as the enhancement mechanism. The effect of this enhancement mechanism on the shape, frequency composition and statistical characteristics of the Visual Evoked Potential (VEP) are analyzed and presented. Thus, the effectiveness of the image colorization is measured quantitatively using the Visual Evoked Potential (VEP).

  14. Effects of Sun ginseng on memory enhancement and hippocampal neurogenesis.

    Science.gov (United States)

    Lee, Chang Hwan; Kim, Jong Min; Kim, Dong Hyun; Park, Se Jin; Liu, Xiaotong; Cai, Mudan; Hong, Jin Gyu; Park, Jeong Hill; Ryu, Jong Hoon

    2013-09-01

    Panax ginseng C.A. Meyer has been used in traditional herb prescriptions for thousands of years. A heat-processing method has been used to increase the efficacy of ginseng, yielding what is known as red ginseng. In addition, recently, a slightly modified heat-processing method was applied to ginseng, to obtain a new type of processed ginseng with increased biological activity; this new form of ginseng is referred to as Sun ginseng (SG). The aim of this study was to investigate the effect of SG on memory enhancement and neurogenesis in the hippocampal dentate gyrus (DG) region. The subchronic administration of SG (for 14 days) significantly increased the latency time in the passive avoidance task relative to the administration of the vehicle control (P memory-enhancing activities and that these effects are mediated, in part, by the increase in the levels of pERK and pAkt and by the increases in cell proliferation and cell survival. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Effect of an electrolyte flow on electrochemical hydrogen permeation

    Directory of Open Access Journals (Sweden)

    Ana María Pérez-Ceballos

    2014-01-01

    Full Text Available Se ha estudiado el efecto de la aplicación de un flujo de elect rolito sobre la superficie de detección de una membrana de hier ro puro en ensayos de permeación electroquímica de hidrógeno. Para la real ización de los ensayos se usó una celda del tipo Devanathan mod ificada, de tal manera que un flujo de electrolito fue inyectado directa mente sobre la superficie de salida de hidrógeno. La generación de hidrógeno se realizó aplicando una corriente catódica de 2,85mA y se usó una solución de NaOH 0,1M + 2mgL-1 As2O3. La celda de detección fue mantenida bajo control potenciostático y se usó u na solución buffer de borato de sodio (pH=8,4. No se observó u na variación significativa de la corriente de permeación en los en sayos realizados aplicando flujo de electrolito.

  16. Effect of Nutrient Formulations on Permeation of Proteins and Lipids ...

    African Journals Online (AJOL)

    Due to the specific uptake system of the GI tract, small peptides ... with phosphate buffer saline (pH 7.4) and maintained at 37 oC using a .... Protein digestion and amino acid and ... and carbohydrate absorption in the perfused human jejunum.

  17. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  18. Emotion experienced during encoding enhances odor retrieval cue effectiveness.

    Science.gov (United States)

    Herz, R S

    1997-01-01

    Emotional potentiation may be a key variable in the formation of odor-associated memory. Two experiments were conducted in which a distinctive ambient odor was present or absent during encoding and retrieval sessions and subjects were in an anxious or neutral mood during encoding. Subjects' mood at retrieval was not manipulated. The laboratory mood induction used in Experiment 1 suggested that anxiety might increase the effectiveness of an odor retrieval cue. This trend was confirmed in Experiment 2 by capturing a naturally stressful situation. Subjects who had an ambient odor cue available and were in a preexam state during encoding recalled more words than subjects in any other group. These data are evidence that heightened emotion experienced during encoding with an ambient odor can enhance the effectiveness of an odor as a cue to memory.

  19. Counteracting effect of threat on reward enhancements during working memory.

    Science.gov (United States)

    Choi, Jong Moon; Padmala, Srikanth; Pessoa, Luiz

    2015-01-01

    Cognitive performance has been shown to be enhanced when performance-based rewards are at stake. On the other hand, task-irrelevant threat processing has been shown to have detrimental effects during several cognitive tasks. Crucially, the impact of reward and threat on cognition has been studied largely independently of one another. Hence, our understanding of how reward and threat simultaneously contribute to performance is incomplete. To fill in this gap, the present study investigated how reward and threat interact with one another during a cognitive task. We found that threat of shock counteracted the beneficial effect of reward during a working memory task. Furthermore, individual differences in self-reported reward-sensitivity and anxiety were linked to the extent to which reward and threat interacted during behaviour. Together, the current findings contribute to a limited but growing literature unravelling how positive and negative information processing jointly influence cognition.

  20. Employment effects through enhanced use of renewable energy sources

    International Nuclear Information System (INIS)

    Eichelbroenner, M.

    1998-01-01

    The Bonn-based association Forum fuer Zukunftsenergien e.V., (forum for energies of the future), carried out a study investigating whether and to what extent enhanced use of renewable energy sources may contribute to improving in the future the employment situation in Germany. Taking as a basis the current conditions determining expenses and profits in the energy sector and the related employment situation, the study elaborates several scenarios and analyses their conceivable effects. The objective of the study presented in this issue was to assess the gross and net employment effects possibly to be achieved by programmes fostering power generation from renewable sources, and the financial input required in form of investments by industry and governmental grants. (orig./CB) [de