WorldWideScience

Sample records for permeable wall treatment

  1. Permeable treatment wall design and cost analysis

    International Nuclear Information System (INIS)

    Manz, C.; Quinn, K.

    1997-01-01

    A permeable treatment wall utilizing the funnel and gate technology has been chosen as the final remedial solution for one industrial site, and is being considered at other contaminated sites, such as a closed municipal landfill. Reactive iron gates will be utilized for treatment of chlorinated VOCs identified in the groundwater. Alternatives for the final remedial solution at each site were evaluated to achieve site closure in the most cost effective manner. This paper presents the remedial alternatives and cost analyses for each site. Several options are available at most sites for the design of a permeable treatment wall. Our analysis demonstrates that the major cost factor's for this technology are the design concept, length, thickness, location and construction methods for the reactive wall. Minimizing the amount of iron by placement in the most effective area and construction by the lowest cost method is critical to achieving a low cost alternative. These costs dictate the design of a permeable treatment wall, including selection of a variety of alternatives (e.g., a continuous wall versus a funnel and gate system, fully penetrating gates versus partially penetrating gates, etc.). Selection of the appropriate construction methods and materials for the site can reduce the overall cost of the wall

  2. PERMEABLE TREATMENT WALL EFFECTIVENESS MONITORING PROJECT, NEVADA STEWART MINE

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 39, Permeable Treatment Wall Effectiveness Monitoring Project, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. De...

  3. Permeable sorptive walls for treatment of hydrophobic organic contaminant plumes in groundwater

    International Nuclear Information System (INIS)

    Grathwohl, P.; Peschik, G.

    1997-01-01

    Highly hydrophobic contaminants are easily adsorbed from aqueous solutions. Since for many of these compounds sorption increases with increasing organic carbon content natural materials such as bituminous shales and coals may be used in permeable sorptive walls. This, however, only applies if sorption is at equilibrium, which may not always be the case in groundwater treatment using a funnel-and-gate system. In contrast to the natural solids, granular activated carbons (GACs) have very high sorption capacities and reasonably fast sorption kinetics. The laboratory results show that application of GACs (e.g. F100) is economically feasible for in situ removal of polycyclic aromatic hydrocarbons (PAH) from groundwater at a former manufactured gas plant site (MGP). For less sorbing compounds (such as benzene, toluene, xylenes) a combination of adsorption and biodegradation is necessary (i.e. sorptive + reactive treatment)

  4. Characteristics of wall pressure over wall with permeable coating

    Energy Technology Data Exchange (ETDEWEB)

    Song, Woo Seog; Shin, Seungyeol; Lee, Seungbae [Inha Univ., Incheon (Korea, Republic of)

    2012-11-15

    Fluctuating wall pressures were measured using an array of 16 piezoelectric transducers beneath a turbulent boundary layer. The coating used in this experiment was an open cell, urethane type foam with a porosity of approximately 50 ppi. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The boundary layer on the flat plate was measured by using a hot wire probe, and the CPM method was used to determine the skin friction coefficient. The wall pressure autospectra and streamwise wavenumber frequency spectra were compared to assess the attenuation of the wall pressure field by the coating. The coating is shown to attenuate the convective wall pressure energy. However, the relatively rough surface of the coating in this investigation resulted in a higher mean wall shear stress, thicker boundary layer, and higher low frequency wall pressure spectral levels compared to a smooth wall.

  5. Casimir effect for closed cavities with conducting and permeable walls

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Zimerman, A.H.; Ruggiero, J.R.

    1980-01-01

    The quantum electromagnetic zero point energy is calculated for rectangular cavities where some of the walls are perfect conductors and the others are made of infinitely permeable materials. It is found that for cubic systems, for some configurations the zero point electromagnetic energy is positive, while in other configurations this zero point energy is negative. The consequences of these results on possible models for the electron are discussed. (Author) [pt

  6. Air permeability for a concrete shear wall after a damaging seismic load simulation cycle

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-01-01

    A study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This paper describes an experiment performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient-pressure decay. Air permeability measurements made on the shear wall before loading fell within the range of values for concrete permeability published in the literature. As long as the structure exhibited linear load-displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked)

  7. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    Science.gov (United States)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  8. The influence of wall permeability on laminar and turbulent flows : Theory and simulations

    NARCIS (Netherlands)

    Breugem, W.P.

    2005-01-01

    The study of flows over permeable walls is relevant to many applications. Examples are flows over and through porous river beds, vegetation, snow, heat exchangers of foam metal, and oil wells. The main objectives of this thesis are to gain insight in the influence of wall permeability on both

  9. Microscopic and low Reynolds number flows between two intersecting permeable walls

    Science.gov (United States)

    Egashira, R.; Fujikawa, T.; Yaguchi, H.; Fujikawa, S.

    2018-06-01

    Two-dimensional Navier–Stokes equations are solved in an analytical way to clarify characteristics of low-Re flows in a microscopic channel consisting of two intersecting permeable walls, the intersection of which is supposed to be a sink or a source. Such flows are, therefore, considered to be an extension of the so-called Jeffery–Hamel flow to the permeable wall case. A set of nonlinear forth-order ordinary differential equations are obtained, and their solutions are sought for the small permeable velocity compared with the main flow one by a perturbation method. The solutions contain the solutions found in the past, such as the flow between two parallel permeable walls studied by Berman and the Jeffery–Hamel flow between the impermeable walls as special cases. Velocity distribution and friction loss in pressure along the main stream are represented in the explicit manner and compared with those of the Jeffery–Hamel flow. Numerical examples show that the wall permeability has a great influence on the friction loss. Furthermore, it is shown that the convergent main flow accompanied with the fluid addition through the walls is inversely directed away from the origin due to the balance of the main flow and the permeable one, while the flow accompanied with fluid suction is just directed toward the origin regardless of conditions.

  10. Phosphorous adsorption and precipitation in a permeable reactive wall: Applications for wastewater disposal systems

    International Nuclear Information System (INIS)

    Baker, M.J.; Blowes, D.W.; Placek, C.J.

    1997-01-01

    A permeable reactive mixture has been developed using low cost, readily available materials that is capable of providing effective, long-term phosphorous treatment in areas impacted by on-land wastewater disposal. The reactive mixture creates a geochemical environment suitable for P-attenuation by both adsorption and precipitation reactions. Potential benefits include significant reductions in phosphorous loading to receiving groundwater and surface water systems, and the accumulation of P-mass in a finite and accessible volume of material. The mixture may be applied as a component within surface treatment systems or in subsurface applications such as horizontal or vertical permeable reactive walls. The mixture averaged > 90% treatment efficiency over 3.6 years of continuous-flow laboratory column experiments. The mixture was further evaluated at the pilot-scale to treat municipal wastewater, and the field-scale to treat a well-characterized septic system plume using an in situ funnel and gate system. Average PO 4 -P concentrations in effluent exiting the reactive mixture range between 0 - 0.3 mg/L. Mineralogical analyses have isolated the phases responsible for phosphorous uptake, and discrete phosphate precipitates have been identified

  11. Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-07-01

    A safety concern for the proposed Special Nuclear Materials Laboratory (SNML) facility at the Los Alamos National Laboratory was air leakage from the facility if it were to experience a design basis earthquake event. To address this concern, a study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This report describes a prototype experiment developed and performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. A shear wall test structure was fabricated with standard 4000-psi concrete mix. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient pressure decay. As long as the structure exhibited linear load displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked). 17 figs., 8 tabs

  12. WATER VAPOUR PERMEABILITY PROPERTIES OF CELLULAR WOOD MATERIAL AND CONDENSATION RISK OF COMPOSITE PANEL WALLS

    Directory of Open Access Journals (Sweden)

    Janis IEJAVS

    2016-09-01

    Full Text Available Invention of light weight cellular wood material (CWM with a trade mark of Dendrolight is one of innovations in wood industry of the last decade. The aim of the research was to define the water vapour permeability properties of CWM and to analyse the condensation risk of various wall envelopes where solid wood cellular material is used. To determine the water vapour permeability of CWM, test samples were produced in the factory using routine production technology and tested according to the standard EN 12086:2014. Water vapour permeability factor (μ and other properties of six different configurations of CWM samples were determined. Using the experimental data the indicative influence of geometrical parameters such as lamella thickness, number of lamellas and material direction were investigated and evaluated. To study the condensation risk within the wall envelope containing CWM calculation method given in LVS EN ISO 13788:2012 was used. To ease the calculation process previously developed JavaScript calculation software that had only capability to calculate thermal transmittance was extended so that condensation risk in multi-layer composite walls can be analysed. Water vapour permeability factor in CWM is highly direction dependant. If parallel and perpendicular direction of CWM is compared the value of water vapour permeability factor can differentiate more than two times. Another significant factor for condensation risk analysis is overall thickness of CWM since it directly influences the equivalent air layer thickness. The influence of other factors such as lamella thickness, or groove depth is minor when water vapour permeability properties are compared. From the analysis of CWM performance in building envelope it can be concluded that uninsulated CWM panels used during winter months will pose the risk of condensation damage to structure, but the risk can be reduced or prevented if insulation layer is applied to the CWM panel wall

  13. Treatment for cracked and permeable Houston clay

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Leung, M.

    1991-01-01

    In this study, the treatability of a field clay (obtained from Houston, Texas) and a clay-sand mixture to reduce their hydraulic conductivity was evaluated. Remolded field clay and clay-sand mixture with and without methanol contamination were treated to reduce their hydraulic conductivity by permeating very dilute grout solutions. The concentration of sodium silicate in the grout solution was 8%, while the solid content in the cement grout was 0.3%. The hydraulic conductivity of permeable Houston clay (hydraulic conductivity >10 -5 cm/sec) could be reduced to less than 10 -7 cm/sec (U.S. EPA limit for soil barriers) by permeating with a selected combination of grout solutions

  14. Hydraulic performance of permeable barriers for in situ treatment of contaminated groundwater

    International Nuclear Information System (INIS)

    Smyth, D.J.A.; Shikaze, S.G.; Cherry, J.A.

    1997-01-01

    The passive interception and in situ treatment of dissolved contaminants in groundwater by permeable reactive barriers has recently gained favor at an increasing number of sites as an alternative to conventional approaches to groundwater remediation such as the pump-and-treat method. Permeable reactive barriers have two essential functions. The first is that the barriers must be installed in a position such that all of the plume passes through the reactive system. The second function is to achieve acceptable treatment of the contamination by physical, chemical or biological means within or downgradient of the barrier. In this paper, issues associated with the hydraulic performance of permeable reaction barriers are evaluated using a three-dimensional groundwater flow model. The efficiency of plume capture by permeable wall and funnel-and-gate systems is examined for some generic and for site-specific hydrogeologic systems. The results have important implications to decisions pertaining to the selection, design and installation of permeable reactive barrier systems

  15. Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies

    Science.gov (United States)

    Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  16. LONG-TERM GEOCHEMICAL BEHAVIOR OF A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM IN GROUNDWATER

    Science.gov (United States)

    Passive, in-situ reactive barriers have proven to be viable, cost-effective systems for the remediation of Cr-contaminated groundwater at some sites. Permeable reactive barriers (PRBs) are installed in the flow-path of groundwater, most typically as vertical treatment walls. Re...

  17. Quantifying Intracranial Aneurysm Wall Permeability for Risk Assessment Using Dynamic Contrast-Enhanced MRI: A Pilot Study.

    Science.gov (United States)

    Vakil, P; Ansari, S A; Cantrell, C G; Eddleman, C S; Dehkordi, F H; Vranic, J; Hurley, M C; Batjer, H H; Bendok, B R; Carroll, T J

    2015-05-01

    Pathological changes in the intracranial aneurysm wall may lead to increases in its permeability; however the clinical significance of such changes has not been explored. The purpose of this pilot study was to quantify intracranial aneurysm wall permeability (K(trans), VL) to contrast agent as a measure of aneurysm rupture risk and compare these parameters against other established measures of rupture risk. We hypothesized K(trans) would be associated with intracranial aneurysm rupture risk as defined by various anatomic, imaging, and clinical risk factors. Twenty-seven unruptured intracranial aneurysms in 23 patients were imaged with dynamic contrast-enhanced MR imaging, and wall permeability parameters (K(trans), VL) were measured in regions adjacent to the aneurysm wall and along the paired control MCA by 2 blinded observers. K(trans) and VL were evaluated as markers of rupture risk by comparing them against established clinical (symptomatic lesions) and anatomic (size, location, morphology, multiplicity) risk metrics. Interobserver agreement was strong as shown in regression analysis (R(2) > 0.84) and intraclass correlation (intraclass correlation coefficient >0.92), indicating that the K(trans) can be reliably assessed clinically. All intracranial aneurysms had a pronounced increase in wall permeability compared with the paired healthy MCA (P risk in anatomic (P = .02) and combined anatomic/clinical (P = .03) groups independent of size. We report the first evidence of dynamic contrast-enhanced MR imaging-modeled contrast permeability in intracranial aneurysms. We found that contrast agent permeability across the aneurysm wall correlated significantly with both aneurysm size and size-independent anatomic risk factors. In addition, K(trans) was a significant and size-independent predictor of morphologically and clinically defined high-risk aneurysms. © 2015 by American Journal of Neuroradiology.

  18. Magnetic field effects for copper suspended nanofluid venture through a composite stenosed arteries with permeable wall

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Noreen Sher; Butt, Adil Wahid, E-mail: adil.maths86@gmail.com

    2015-05-01

    In the present paper magnetic field effects for copper nanoparticles for blood flow through composite stenosis in arteries with permeable wall are discussed. The copper nanoparticles for the blood flow with water as base fluid is not explored yet. The equations for the Cu–water nanofluid are developed first time in the literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. The effect of various flow parameters on the flow and heat transfer characteristics is utilized. - Highlights: • It is observed that the velocity profile is symmetric for all the parameters and when we increase slip parameter α then there will be more resistance between blood and arteries, hence the blood flow slows down and velocity profile decreases. • It is seen that the velocity field rises due to high electromagnetic forces and buoyancy forces as compared to viscous forces. • It is also noticed that velocity is high for all the parameters in case of pure water as compare to Cu-water because copper makes arteries more flexible that makes the blood flow speed slow. • When we rise heat absorption parameter β then definitely temperature increases rapidly. • The wall shear stress increases for different values of the slip parameter α and the Darcy number D{sub α} with rapid change in copper as compared to pure water.

  19. Studying behavior of multilayer materials: A 1-D model correlated to magnetic domain walls through complex permeability

    International Nuclear Information System (INIS)

    Ahmadi, B.; Chazal, H.; Waeckerle, T.; Roudet, J.

    2008-01-01

    Multilayer cores are suitable for integrated planar magnetic components. We proposed here to investigate the frequency behavior of multilayer nanocrystalline cores in the frame of a one-dimensional (1-D) electromagnetic propagation model. Electromagnetic wave equations are considered to explain the phenomena from the macroscopic point of view. A domain wall description is considered to take into account non-homogeneity of magnetic media. This mesoscopic model is correlated to macroscopic model through complex permeability. The scope of validity of the model is determined by means of indirect permeability measurement. Finally, the behavior of the multilayer core is predicted by using an equivalent electrical circuit and will interest component designers

  20. Hydrogen transfer in Pb–Li forced convection flow with permeable wall

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Satoshi, E-mail: sfukada@nucl.kyushu-u.ac.jp; Muneoka, Taiki; Kinjyo, Mao; Yoshimura, Rhosuke; Katayama, Kazunari

    2015-10-15

    Highlights: • The paper presents experimental and analytical results of Pb–Li eutectic alloy forced convection flow. • Analytical results are in good agreement with ones of hydrogen permeation in Pb–Li forced convection flow. • The results are useful for the design of liquid blanket of fusion reactors. - Abstract: Transient- or steady-state hydrogen permeation from a primary fluid of Li{sub 17}Pb{sub 83} (Pb–Li) through a permeable tube of Inconel-625 alloy to a secondary Ar purge is investigated experimentally under a forced convection flow in a dual cylindrical tube system. Results of the overall hydrogen permeation flux are correlated in terms of diffusivity, solubility and an average axial velocity of Pb–Li and diffusivity and solubility of the solid wall. Analytical solutions under proper assumptions are derived to simulate the transient- and steady-state rates of the overall hydrogen permeation, and close agreement is obtained between experiment and analysis. Two things are clarified from the comparison: (i) how the steady-state permeation rate is affected by the mass-transfer properties and the average velocity of Pb–Li and the properties of Inconel-625, and (ii) how its transient behavior is done by the diffusivity of the two materials. The results obtained here will give important information to estimate or to analyze the tritium transfer rate in fluidized Pb–Li blankets of DEMO or the future commercial fusion reactors.

  1. Flow of a non-Newtonian fluid through channels with permeable wall

    Energy Technology Data Exchange (ETDEWEB)

    Martins-Costa, Maria Laura [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Lab. de Matematica Teorica e Aplicada]. E-mail: laura@mec.uff.br; Gama, Rogerio M. Saldanha da [Laboratorio Nacional de Computacao Cientifica (LNCC), Petropolis, RJ (Brazil)]. E-mail: rsgama@domain.com.br; Frey, Sergio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica. Grupo de Estudos Termicos e Energeticos

    2000-07-01

    In the present work the momentum transport in two adjacent flow regions is described by means of a continuum theory of mixtures, specially developed to model multiphase phenomena. A generalized Newtonian fluid flows through the permeable wall channel, originating a pure fluid region and a mixture region - where the fluid saturates the porous matrix. The fluid and the porous matrix are treated as continuous constituents of a binary mixture coexisting superposed, each of them occupying simultaneously the whole volume of the mixture. An Ostwald-de Waele behavior is assumed for both the fluid constituent (in the mixture region) and the fluid (in the so-called pure fluid region), while the porous matrix, represented by the solid constituent, is assumed rigid, homogeneous, isotropic and at rest. Compatibility conditions at the interface (pure fluid-mixture) for momentum transfer are proposed and discussed. Assuming no flow across the interface, the velocity should be zero on the solid parts of the boundary and should match the fluid diffusing velocity on the fluid parts of the boundary. Also the shear stress at the pure fluid region is to be balanced by a multiple of the partial shear stress at the mixture region. A minimum principle for the above-described problem, assuming fully developed flow in both regions, is presented, providing an easy and reliable way for carrying out numerical simulations. (author)

  2. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon

    2012-08-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  3. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon; Oh, Sang-gyun; Ha, Juyoung; Monteiro, Paulo M.

    2012-01-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  4. Treatment of radioactive liquid wastes on semi-permeable membranes

    International Nuclear Information System (INIS)

    Antonescu, M.; Deleanu, N.; Nechifor, G.

    1997-01-01

    At present, among the currently world-wide applied separation processes, those using membranes are thought to be most advanced due to their advantages: high efficiency, cost-effectiveness in application, universality of the utilized equipment, operation in non-destructive and non-polluting conditions. The most significant results of the treatment experiments are: - a reduction of more than 70% in the chemical oxygen consumption for the solution simulating the POD waste; - the solution simulating the secondary waste from decontamination by POD procedure, appear to be the best (with retentions of 88.5%, 76.5% and 65.7% for strontium, cobalt and manganese, respectively). Important reduction of costs and efficient technological schemes can be obtained by combining the semi-permeable membrane separation techniques with other efficient currently used procedures of separation, concentration and purification, adequate for given situations

  5. Effects of different desensitizing treatments on root dentin permeability

    Directory of Open Access Journals (Sweden)

    Raydsa Raíssa Moura ROSA

    Full Text Available Abstract The objective of this study was to evaluate the effects of diode laser and a desensitizing dentifrice on dentin permeability. Fifty-two root dentin fragments were obtained (5 × 5mm and treated with 24% EDTA gel. The samples were divided into 4 groups (n = 13: G1, control (no treatment; G2, diode laser (λ = 908 nm, 1.5 W, continuous mode, 20s; G3, application of abrasive dentifrice for 1 minute (Elmex Sensitive Professional (International Gaba; and G4, application of abrasive dentifrice for 1 minute followed by irradiation with diode laser. Ten samples per group were immersed in 2% methylene blue solution for 4h. The specimens were washed, longitudinally sectioned, observed under optical microscopy, photographed and assessed based on the degree of dye leakage. The remaining samples were observed under scanning electron microscopy (SEM. The leakage data were subjected to ANOVA test, followed by Tukey’s t-test (α = 5%. Groups 2, 3 and 4 showed less dye penetration than the control group (p < 0.05, but were similar among each other. SEM images showed that dentinal tubules were open in G1, and fused and occluded in G2. Group 3 showed dentinal tubules that were occluded by the metal ions from the toothpaste. G4 presented similar characteristics to G3, and the presence of fused dentin. The diode laser and the dentifrice were effective in reducing dentinal permeability, and the combination of the two treatments did not show better results than either one used alone.

  6. Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar

    2017-07-01

    This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.

  7. Manipulation of near-wall turbulence by surface slip and permeability

    Science.gov (United States)

    Gómez-de-Segura, G.; Fairhall, C. T.; MacDonald, M.; Chung, D.; García-Mayoral, R.

    2018-04-01

    We study the effect on near-wall turbulence of tangential slip and wall-normal transpiration, typically produced by textured surfaces and other surface manipulations. For this, we conduct direct numerical simulations (DNSs) with different virtual origins for the different velocity components. The different origins result in a relative wall-normal displacement of the near-wall, quasi-streamwise vortices with respect to the mean flow, which in turn produces a change in drag. The objective of this work is to extend the existing understanding on how these virtual origins affect the flow. In the literature, the virtual origins for the tangential velocities are typically characterised by slip boundary conditions, while the wall-normal velocity is assumed to be zero at the boundary plane. Here we explore different techniques to define and implement the three virtual origins, with special emphasis on the wall-normal one. We investigate impedance conditions relating the wall-normal velocity to the pressure, and linear relations between the velocity components and their wall-normal gradients, as is typically done to impose slip conditions. These models are first tested to represent a smooth wall below the boundary plane, with all virtual origins equal, and later for different tangential and wall-normal origins. Our results confirm that the change in drag is determined by the offset between the origins perceived by mean flow and the quasi-streamwise vortices or, more generally, the near-wall turbulent cycle. The origin for the latter, however, is not set by the spanwise virtual origin alone, as previously proposed, but by a combination of the spanwise and wall-normal origins, and mainly determined by the shallowest of the two. These observations allow us to extend the existing expression to predict the change in drag, accounting for the wall-normal effect when the transpiration is not negligible.

  8. Flow visualization and relative permeability measurements in rough-walled fractures

    International Nuclear Information System (INIS)

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media

  9. Towards improving the efficiency of blowing through a permeable wall and prospects of its use for a flow control

    Science.gov (United States)

    Kornilov, V. I.; Boiko, A. V.

    2016-10-01

    Modern achievements, status, and prospects of studies on reducing the turbulent friction and aerodynamic drag with the help of the blowing through a permeable wall are discussed. The main focus is placed upon a physical modeling of the process of boundary layer blowing in the framework of the dimensional theory, a critical analysis of experimental and numerical results for different conditions of air blowing through a high-tech finely perforated wall including the case of external-pressure-flow air supply in wind tunnel, and elicitation of the physical mechanisms responsible for the reduction of turbulent friction at flow-exposed surfaces. It is shown that the use of air supply through the micro-perforated wall with low effective roughness, which is manufactured in compliance with the highest necessary requirements to quality and geometry of orifices, is quite a justified means for easy, affordable, and reliable control of near-wall turbulent flows in laboratory experiment and numerical simulation. This approach can provide a sustained reduction of local skin friction coefficient along flat plate, which in some cases reaches 90%. At the request of all authors of the paper and with the agreement of the Proceedings Editor, an updated version of this article was published on 26 October 2016. The original version supplied to AIP Publishing contained a misrepresentation in Figure 1. This has been corrected in the updated and republished article.

  10. Use of Interface Treatment to Reduce Emissions from Residuals in Lower Permeability Zones to Groundwater flowing Through More Permeable Zones (Invited)

    Science.gov (United States)

    Johnson, P.; Cavanagh, B.; Clifton, L.; Daniels, E.; Dahlen, P.

    2013-12-01

    Many soil and groundwater remediation technologies rely on fluid flow for contaminant extraction or reactant delivery (e.g., soil vapor extraction, pump and treat, in situ chemical oxidation, air sparging, enhanced bioremediation). Given that most unconsolidated and consolidated settings have permeability contrasts, the outcome is often preferential treatment of more permeable zones and ineffective treatment of the lower permeability zones. When this happens, post-treatment contaminant emissions from low permeability zone residuals can cause unacceptable long-term impacts to groundwater in the transmissive zones. As complete remediation of the impacted lower permeability zones may not be practicable with conventional technologies, one might explore options that lead to reduction of the contaminant emissions to acceptable levels, rather than full remediation of the lower permeability layers. This could be accomplished either by creating a sustained emission reaction/attenuation zone at the high-low permeability interface, or by creating a clean soil zone extending sufficiently far into the lower permeability layer to cause the necessary reduction in contaminant concentration gradient and diffusive emission. These options are explored in proof-of-concept laboratory-scale physical model experiments. The physical models are prepared with two layers of contrasting permeability and either dissolved matrix storage or nonaqueous phase liquid (NAPL) in the lower permeability layer. A dissolved oxidant is then delivered to the interface via flow across the higher permeability layer and changes in contaminant emissions from the low permeability zone are monitored before, during, and after oxidant delivery. The use of three oxidants (dissolved oxygen, hydrogen peroxide and sodium persulfate) for treatment of emissions from petroleum hydrocarbon residuals is examined.

  11. Analytical Solution of Flow and Heat Transfer over a Permeable Stretching Wall in a Porous Medium

    Directory of Open Access Journals (Sweden)

    M. Dayyan

    2013-01-01

    Full Text Available Boundary layer flow through a porous medium over a stretching porous wall has seen solved with analytical solution. It has been considered two wall boundary conditions which are power-law distribution of either wall temperature or heat flux. These are general enough to cover the isothermal and isoflux cases. In addition to momentum, both first and second laws of thermodynamics analyses of the problem are investigated. The governing equations are transformed into a system of ordinary differential equations. The transformed ordinary equations are solved analytically using homotopy analysis method. A comprehensive parametric study is presented, and it is shown that the rate of heat transfer increases with Reynolds number, Prandtl number, and suction to the surface.

  12. MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2009-01-01

    The steady magnetohydrodynamic (MHD) mixed convection flow towards a vertical permeable surface with prescribed heat flux is investigated. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for the assisting flow, besides the solutions usually reported in the literature for the opposing fow

  13. Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability.

    Science.gov (United States)

    Liu, Dong; Zhang, Lu; Xue, Wen; Wang, Yaping; Ju, Jiansong; Zhao, Baohua

    2015-07-01

    This study focused on the alanine racemase gene (alr-2), which is involved in the synthesis of d-alanine that forms the backbone of the cell wall. A stable alr-2 knockout mutant of Aeromonas hydrophila HBNUAh01 was constructed. When the mutant was supplemented with d-alanine, growth was unaffected; deprivation of d-alanine caused the growth arrest of the starved mutant cells, but not cell lysis. No alanine racemase activity was detected in the culture of the mutant. Additionally, a membrane permeability assay showed increasing damage to the cell wall during d-alanine starvation. No such damage was observed in the wild type during culture. Scanning and transmission electron microscopy analyses revealed deficiencies of the cell envelope and perforation of the cell wall. Leakage of UV-absorbing substances from the mutants was also observed. Thus, the partial viability of the mutants and their independence of d-alanine for growth indicated that inactivation of alr-2 does not impose an auxotrophic requirement for d-alanine. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Study on hydrogen isotope behavior in Pb-Li forced convection flow with permeable wall

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Ryosuke; Fukada, Satoshi, E-mail: sfukada@nucl.kyushu-u.ac.jp; Muneoka, Taiki; Kinjo, Mao; Katayama, Kazunari

    2016-12-15

    Highlights: • Transient- and steady-state hydrogen permeation from Li-Pb forced convection flow through permeable tube to outside Ar purge gas was investigated at 600 °C. • It was found that the overall permeation rates were limited by diffusion in the Li-Pb boundary layer developed from the flow inlet. • The effect of the boundary layer was correlated in terms of mass transfer coefficient. The values of mass transfer coefficients at 600 °C were compared with those of 400 °C and 500 °C obtained beforehand. - Abstract: Transient- and steady-state hydrogen permeation from Li-Pb forced convection flow in a permeable tube to outside Ar purge gas was investigated between 400–600 °C. The values of the steady-state permeation rate increased with the increase of the Li-Pb flow rate. It was found that the overall permeation rates were limited by diffusion in a Li-Pb boundary layer developed from flow inlet. The effect of the boundary layer was correlated in terms of the mass-transfer coefficient. The values of the mass-transfer coefficient at 600 °C were compared with those of 400 °C and 500 °C obtained beforehand. Judged from these data of mass-transfer coefficients, it can be predicted that the effect of boundary layer varies with the increase of Li-Pb flow rate at different temperature conditions.

  15. Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls

    Directory of Open Access Journals (Sweden)

    Ciprian G. Gal

    2006-11-01

    Full Text Available In a previous article [7], we proposed a model of phase separation in a binary mixture confined to a bounded region which may be contained within porous walls. The boundary conditions were derived from a mass conservation law and variational methods. In the present paper, we study the problem further. Using a Faedo-Galerkin method, we obtain the existence and uniqueness of a global solution to our problem, under more general assumptions than those in [7]. We then study its asymptotic behavior and prove the existence of an exponential attractor (and thus of a global attractor with finite dimension.

  16. RCRA corrective measures using a permeable reactive iron wall US Coast Guard Support Center, Elizabeth City, North Carolina

    International Nuclear Information System (INIS)

    Schmithors, W.L.; Vardy, J.A.

    1997-01-01

    A chromic acid release was discovered at a former electroplating shop at the U.S. Coast Guard Support Center in Elizabeth City, North Carolina. Initial investigative activities indicated that chromic acid had migrated into the subsurface soils and groundwater. In addition, trichloroethylene (TCE) was also discovered in groundwater during subsequent investigations of the hexavalent chromium (Cr VI) plume. Corrective measures were required under the Resource Conservation and Recovery Act (RCRA). The in-situ remediation method, proposed under RCRA Interim Measures to passively treat the groundwater contaminants, uses reactive zero-valent iron to reductively dechlorinate the chlorinated compounds and to mineralize the hexavalent chromium. A 47 meter by 0.6 meter subsurface permeable iron wall was installed downgradient of the source area to a depth of 7 meters using a direct trenching machine. The iron filings were placed in the ground as the soils were excavated from the subsurface. This is the first time that direct trenching was used to install reactive zero-valent iron filings. Over 250 metric tons of iron filings were used as the reactive material in the barrier wall. Installation of the iron filings took one full day. Extensive negotiations with regulatory agencies were required to use this technology under the current facility Hazardous Waste Management Permit. All waste soils generated during the excavation activities were contained and treated on site. Once contaminant concentrations were reduced the waste soils were used as fill material

  17. Lubrication theory analysis of the permeability of rough-walled fractures

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Kumar, S.; Bodvarsson, G.S.

    1991-01-01

    The flow of a fluid between the rough surfaces of a rock fracture is very complex, due to the tortuous paths followed by the fluid particles. Exact analytical modeling of these flows is made difficult by the irregular geometry of rock fracture surfaces, while full three-dimensional numerical simulations of these flows are as yet still impractical. To overcome the difficulties of working with the three-dimensional Navier-Stokes equations, the simpler Reynolds lubrication equation has sometimes been used to model flow in fractures. This paper focuses on two aspects of lubrication theory. First, lubrication theory is applied to two simplified aperture profiles, sinusoidal and sawtooth, and analytical expressions are found for the permeabilities. These results are then compared with numerical results obtained by solving the lubrication equation for fractures with random surfaces. Secondly, the validity of the lubrication equations for modeling flow in rough fractures is studied by examining higher-order perturbation solutions, as well as numerical solutions, to the Navier-Stokes equations for flow in fractures with sinusoidally-varying apertures. 22 refs., 6 figs

  18. Assessment of radicular dentin permeability after irradiation with CO2 laser and endodontic irrigation treatments with thermal imaging

    Science.gov (United States)

    Cho, Heajin; Lee, Robert C.; Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have demonstrated that the permeability changes due to the surface modification of dentin can be quantified via thermal imaging during dehydration. The CO2 laser has been shown to remove the smear layer and disinfect root canals. Moreover, thermal modification via CO2 laser irradiation can be used to convert dentin into a highly mineralized enamel-like mineral. The purpose of this study is to evaluate the radicular dentin surface modification after CO2 laser irradiation by measuring the permeability with thermal imaging. Human molar specimens (n=12) were sectioned into 4 axial walls of the pulp chamber and treated with either 10% NaClO for 1 minute, 5% EDTA for 1 minute, CO2 laser or none. The CO2 laser was operated at 9.4 μm with a pulse duration of 26 μs, pulse repetition rate of 300 Hz and a fluence of 13 J/cm2. The samples were dehydrated using an air spray for 60 seconds and imaged using a thermal camera. The resulting surface morphological changes were assessed using 3D digital microscopy. The images from digital microscopy confirmed melting of the mineral phase of dentin. The area enclosed by the time-temperature curve during dehydration, ▵Q, measured with thermal imaging increased significantly with treatments with EDTA and the CO2 laser (Ptreatment increases permeability of radicular dentin.

  19. Treatment of fue diesel with a permeable reactive barrier technology

    Directory of Open Access Journals (Sweden)

    SANTIAGO ALONSO CARDONA GALLO

    2007-01-01

    Full Text Available La investigación estudió el tratamiento de diesel combustibles de producción mexicana contenidos en agua con un sistema de barrera reactiva permeables a escala de laboratorio (siete columnas. Se uso un suelo agrícola como medio reactivo. Se aplico peroxido de hidrógeno al 50% industrial como fuente de oxigeno y nitrógeno en urea al 46% como nutriente. Se caracterizo el medio reactivo con los principales parámetros de interés (humedad, materia orgánica, pH, nitrógeno total, fósforo disponible, clasificación del suelo, conductividad eléctrica, sólidos suspendidos volátiles, densidad real y aparente, porosidad, textura, color, salinidad, conductividad hidráulica, capacidad de campo y densidad de bacterias. Se determinaron las cinéticas de degradación y la capacidad de adsorción del diesel en el medio reactivo. Las barreras reactivas permeables se diseñaron con los resultados cinéticos obtenidos en los reactores por lotes. Las columnas tenían dimensiones de 30 cm de longitud y 10 cm de diámetro. Las cinéticas de determinaron durante 18 días y las columnas se corrieron durante 70 días presentando remociones arriba del 80%. Se usaron concentraciones iniciales de diesel de 15,000 mg/L. Para la modelación de la adsorción se aplicaron las ecuaciones de Freundlich y Langmuir, donde esta ultima presentó un mejor ajuste a los datos a los datos experimentales y una mayor capacidad de adsorción. Para el suministro de los nutrientes y oxigeno se aplico el modelo propuesto por McCarty y la ecuación media para diesel propuesta por Jackson. Se determinó una velocidad de degradación de 0.0908 d-1, un coeficiente de distribución del diesel en el medio reactivo de 0.8 ml/g, una capacidad de adsorción de diesel en el medio reactivo de 13.50 mg/L y un factor de retardo de 3.69

  20. Effect of kaolin treatment temperature on mortar chloride permeability

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2007-03-01

    Full Text Available The present paper discusses the results of chloride resistance tests conducted on ordinary Portland cement (OPC mortars containing a Colombian kaolin pre-treated at temperatures of from 600 to 800 ºC. The resulting metakaolin (MK was added to OPC mortar mixes in proportions of 10 and 20% by cement weight. The mortars were compared for physical and chemical properties, including capillary absorption, chloride permeability and pore microstructure as assessed by mercury porosimetry. The best performance was recorded for the samples containing 20% of the material treated at 800 ºC.En el presente trabajo se incluyen los resultados de la resistencia a la penetración de cloruros de morteros de Cemento Portland Ordinario (OPC adicionados con un caolín colombiano sometido a tratamiento térmico en un rango de temperaturas entre 600 y 800 °C. Los productos del tratamiento térmico, metacaolín (MK, son incorporados en mezclas de morteros de OPC en proporciones del 10 y 20% en relación al peso del cemento. Se comparan sus características físico-químicas, entre las cuales se incluye la microestructura de poros evaluada por la técnica de porosimetría de mercurio, con la absorción capilar y la permeabilidad a cloruros. Se concluye que las muestras adicionadas con un 20% del material tratado térmicamente a 800 °C presentan el mejor desempeño en sus propiedades finales.

  1. Gastroscopic treatment of gastric band penetrating the gastric wall

    DEFF Research Database (Denmark)

    Jess, Per; Fonnest, G

    1999-01-01

    Gastric wall penetration of a gastric band after operation for morbid obesity is a well known late complication. The treatment is usually reoperation. In this case report we show that a band penetrating the gastric wall can be successfully treated by gastroscopic operation. This technique is more...

  2. Anterior vaginal wall repair (surgical treatment of urinary incontinence) - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100110.htm Anterior vaginal wall repair (surgical treatment of urinary incontinence) - series— ... to slide 4 out of 4 Overview The vaginal opening lies just below the urethral opening, and ...

  3. Crustal permeability

    Science.gov (United States)

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  4. Green Walls as an Approach in Grey Water Treatment

    Science.gov (United States)

    Rysulova, Martina; Kaposztasova, Daniela; Vranayova, Zuzana

    2017-10-01

    Grey water contributes significantly to waste water parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total phosphorus (Ptotal), total nitrogen (Ntotal), ammonium, boron, metals, salts, surfactants, synthetic chemicals, oils and greases, xenobiotic substances and microorganisms. Concentration of these pollutants and the water quality highlights the importance of treatment process in grey water systems. Treatment technologies operating under low energy and maintenance are usually preferred, since they are more cost effective for users. Treatment technologies based on natural processes represent an example of such technology including vegetated wall. Main aim of this paper is to introduce the proposal of vegetated wall managing grey water and brief characteristic of proposed system. Is expected that prepared experiment will establish the purifying ability and the potential of green wall application as an efficient treatment technology.

  5. Revision of orthovoltage chest wall treatment using Monte Carlo simulations.

    Science.gov (United States)

    Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Mosalaei, A; Hadad, K

    2017-01-01

    Given the high local control rates observed in breast cancer patients undergoing chest wall irradiation by kilovoltage x-rays, we aimed to revisit this treatment modality by accurate calculation of dose distributions using Monte Carlo simulation. The machine components were simulated using the MCNPX code. This model was used to assess the dose distribution of chest wall kilovoltage treatment in different chest wall thicknesses and larger contour or fat patients in standard and mid sternum treatment plans. Assessments were performed at 50 and 100 cm focus surface distance (FSD) and different irradiation angles. In order to evaluate different plans, indices like homogeneity index, conformity index, the average dose of heart, lung, left anterior descending artery (LAD) and percentage target coverage (PTC) were used. Finally, the results were compared with the indices provided by electron therapy which is a more routine treatment of chest wall. These indices in a medium chest wall thickness in standard treatment plan at 50 cm FSD and 15 degrees tube angle was as follows: homogeneity index 2.57, conformity index 7.31, average target dose 27.43 Gy, average dose of heart, lung and LAD, 1.03, 2.08 and 1.60 Gy respectively and PTC 11.19%. Assessments revealed that dose homogeneity in planning target volume (PTV) and conformity between the high dose region and PTV was poor. To improve the treatment indices, the reference point was transferred from the chest wall skin surface to the center of PTV. The indices changed as follows: conformity index 7.31, average target dose 60.19 Gy, the average dose of heart, lung and LAD, 3.57, 6.38 and 5.05 Gy respectively and PTC 55.24%. Coverage index of electron therapy was 89% while it was 22.74% in the old orthovoltage method and also the average dose of the target was about 50 Gy but in the given method it was almost 30 Gy. The results of the treatment study show that the optimized standard and mid sternum treatment for different chest

  6. Implementation of a permeable reactive barrier for treatment of groundwater impacted by strontium-90

    International Nuclear Information System (INIS)

    Przepiora, A.; Bodine, D.; Dollar, P.; Smith, P.

    2014-01-01

    A funnel and gate permeable reactive barrier (PRB) system was constructed to treat strontium-90 (Sr- 90) in groundwater migrating from a legacy waste disposal area into an adjacent wetland. The PRB system was designed to contain and direct the Sr-90 impacted groundwater into treatment 'gates' containing zeolite using a low permeability 'funnel' sections constructed with soil-bentonite slurry. The constructed PRB met all dimension and permeability specifications. Initial performance monitoring results indicate that the PRB captured the Sr-90 impacted groundwater plume and the beta radiation values in groundwater emerging from the treatment gates ranged from 35 to 86 Becquerel's per litre (Bq/L), equivalent to a reduction by 88% to 99% from the influent values. Those initial performance results were influenced by residual impacts present in the aquifer material prior to PRB installation. It is anticipated that the clean-up target of 5 Bq/L will be achieved with time as treated groundwater emerging from the PRB flushes through the downgradient aquifer zone. (author)

  7. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class.

    Directory of Open Access Journals (Sweden)

    Monica Vera-Lise Tulstrup

    Full Text Available Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group were dosed by oral gavage with either amoxicillin (AMX, cefotaxime (CTX, vancomycin (VAN, metronidazole (MTZ, or water (CON daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in

  8. Role of endothelial permeability hotspots and endothelial mitosis in determining age-related patterns of macromolecule uptake by the rabbit aortic wall near branch points.

    Science.gov (United States)

    Chooi, K Yean; Comerford, Andrew; Cremers, Stephanie J; Weinberg, Peter D

    2016-07-01

    Transport of macromolecules between plasma and the arterial wall plays a key role in atherogenesis. Scattered hotspots of elevated endothelial permeability to macromolecules occur in the aorta; a fraction of them are associated with dividing cells. Hotspots occur particularly frequently downstream of branch points, where lesions develop in young rabbits and children. However, the pattern of lesions varies with age, and can be explained by similar variation in the pattern of macromolecule uptake. We investigated whether patterns of hotspots and mitosis also change with age. Evans' Blue dye-labeled albumin was injected intravenously into immature or mature rabbits and its subsequent distribution in the aortic wall around intercostal branch ostia examined by confocal microscopy and automated image analysis. Mitosis was detected by immunofluorescence after adding 5-bromo-2-deoxiuridine to drinking water. Hotspots were most frequent downstream of branches in immature rabbits, but a novel distribution was observed in mature rabbits. Neither pattern was explained by mitosis. Hotspot uptake correlated spatially with the much greater non-hotspot uptake (p hotspots were considered. The pattern of hotspots changes with age. The data are consistent with there being a continuum of local permeabilities rather than two distinct mechanisms. The distribution of the dye, which binds to elastin and collagen, was similar to that of non-binding tracers and to lesions apart from a paucity at the lateral margins of branches that can be explained by lower levels of fibrous proteins in those regions. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. Creation of a subsurface permeable treatment barrier using in situ redox manipulation

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Cole, C.R.; Williams, M.D.

    1997-01-01

    The goal of in situ redox manipulation is to create a permeable treatment zone in the subsurface for remediating redox-sensitive contaminants in groundwater. The permeable treatment zone is created just downstream of the contaminant plume or contaminant source through the injection of reagents and/or microbial nutrients to alter the redox potential of the aquifer fluids and sediments. Contaminant plumes migrating through this manipulated zone can then be destroyed or immobilized. In a field test at the Hanford Site, ∼77,000 L of buffered sodium dithionite solution were successfully injected into the unconfined aquifer at the 100-H Area in September 1995. The target contaminant was chromate. No significant plugging of the well screen or the formation was detected during any phase of the test. Dithionite was detected in monitoring wells at least 7.5 m from the injection point. Data were obtained from all three phases of the test (i.e., injection, reaction, withdrawal). Preliminary core data show that from 60% to 100% of the available reactive iron in the targeted aquifer sediments was reduced by the injected dithionite. One year after the injection, groundwater in the treatment zone remains anoxic. Total and hexavalent chromium levels in groundwater have been reduced from a preexperiment concentration of ∼60 μg/L to below the detection limit of the analytical methods

  10. AN IN SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER:VOLUME 2 PERFORMANCE MONITORING

    Science.gov (United States)

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  11. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUND WATER: VOLUME 1 DESIGN AND INSTALLATION

    Science.gov (United States)

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  12. Fifteen-year Assessment of a Permeable Reactive Barrier for Treatment of Chromate and Trichloroethylene in Groundwater

    Science.gov (United States)

    The fifteen-year performance of a granular iron, permeable reactive barrier (PRB; Elizabeth City, North Carolina) is reviewed with respect to contaminant treatment (hexavalent chromium and trichloroethylene) and hydraulic performance. Due to in-situ treatment of the chromium sou...

  13. A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls.

    Science.gov (United States)

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor

    2017-01-01

    We report on a top-down method for the controlled fabrication of three-dimensional (3D), closed, thin-shelled, hollow nanostructures (nanocages) on planar supports. The presented approach is based on conventional microelectronic fabrication processes and exploits the permeability of thin metal films to hollow-out polymer-filled metal nanocages through an oxygen-plasma process. The technique is used for fabricating arrays of cylindrical nanocages made of thin Al shells on silicon substrates. This hollow metal configuration features optical resonance as revealed by spectral reflectance measurements and numerical simulations. The fabricated nanocages were demonstrated as a refractometric sensor with a measured bulk sensitivity of 327 nm/refractive index unit (RIU). The pattern design flexibility and controllability offered by top-down nanofabrication techniques opens the door to the possibility of massive integration of these hollow 3D nano-objects on a chip for applications such as nanocontainers, nanoreactors, nanofluidics, nano-biosensors and photonic devices.

  14. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Chokejaroenrat, Chanat, E-mail: chanat@sut.ac.th [Department of Civil Engineering, University of Nebraska, Lincoln, NE 68588-0531 (United States); School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Comfort, Steve, E-mail: scomfort1@unl.edu [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Sakulthaew, Chainarong, E-mail: cvtcns@ku.ac.th [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Department of Veterinary Technology, Kasetsart University, Bangkok 10900 (Thailand); Dvorak, Bruce, E-mail: bdvorak1@unl.edu [Department of Civil Engineering, University of Nebraska, Lincoln, NE 68588-0531 (United States)

    2014-03-01

    Graphical abstract: - Highlights: • Transport experiments used transmissive and low permeability zones (LPZs). • {sup 14}C-labeled TCE was used to quantify oxidation of DNAPL in LPZs by permanganate. • Stabilization aids prevented MnO{sub 2} rind formation. • DNAPL oxidation improved when xanthan and stabilization aids were used. - Abstract: Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO{sub 4}{sup −}) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase {sup 14}C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO{sub 2} rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with {sup 14}C-TCE. Transport experiments showed that MnO{sub 4}{sup −} alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO{sub 2} rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO{sub 4}{sup −}, the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP + MnO{sub 4}{sup −} improved TCE destruction by

  15. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate

    International Nuclear Information System (INIS)

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-01-01

    Graphical abstract: - Highlights: • Transport experiments used transmissive and low permeability zones (LPZs). • 14 C-labeled TCE was used to quantify oxidation of DNAPL in LPZs by permanganate. • Stabilization aids prevented MnO 2 rind formation. • DNAPL oxidation improved when xanthan and stabilization aids were used. - Abstract: Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO 4 − ) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase 14 C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO 2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with 14 C-TCE. Transport experiments showed that MnO 4 − alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO 2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO 4 − , the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP + MnO 4 − improved TCE destruction by ∼16% over MnO 4 − alone (56.5% vs. 40.1%). These results support

  16. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

    Science.gov (United States)

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-03-15

    Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2017-06-01

    Full Text Available We report on a top-down method for the controlled fabrication of three-dimensional (3D, closed, thin-shelled, hollow nanostructures (nanocages on planar supports. The presented approach is based on conventional microelectronic fabrication processes and exploits the permeability of thin metal films to hollow-out polymer-filled metal nanocages through an oxygen-plasma process. The technique is used for fabricating arrays of cylindrical nanocages made of thin Al shells on silicon substrates. This hollow metal configuration features optical resonance as revealed by spectral reflectance measurements and numerical simulations. The fabricated nanocages were demonstrated as a refractometric sensor with a measured bulk sensitivity of 327 nm/refractive index unit (RIU. The pattern design flexibility and controllability offered by top-down nanofabrication techniques opens the door to the possibility of massive integration of these hollow 3D nano-objects on a chip for applications such as nanocontainers, nanoreactors, nanofluidics, nano-biosensors and photonic devices.

  18. The Structure Characteristics and Air Permeability of PA and PES Plain and Plated Knits Influenced of Antimicrobial Treatment Conditions

    Directory of Open Access Journals (Sweden)

    Agne MICKEVIČIENĖ

    2014-09-01

    Full Text Available Textile materials are usually exposed to thermal, physical and mechanical effects during treatment processes. These influence the changes of material dimensions. Designing knitted products it is important to predict direction and rate of dimensions change, because this can affect physical properties such as air permeability of knits. The objective of this research was to investigate the influence of antimicrobial treatment conditions on the structure characteristics, thickness and air permeability of plain and plaited knits. The investigations were carried out with two groups of plain and plated single jersey knits. The face yarns of these groups were cotton, bamboo viscose yarn and polyester (Dacron® thread. 10 tex × 2 textured polyamide (PA and 20 tex textured polyester (PES threads were used as the base threads in plated knits. Knitted samples were treated with antimicrobial material Isys AG and organic-inorganic binder Isys MTX (CHT, Germany. It was established that blank and antimicrobial treated knits changed structure parameters, thickness and air permeability. The changes of structure parameters, thickness and air permeability were more associated with conditions of treatment (temperature, treatment in solution, mechanical action rather than with antimicrobial and sol-gel substances used in treatment. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.3196

  19. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    Jefferis, S.A.; Norris, G.H.; Thomas, A.O.

    1997-01-01

    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  20. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    International Nuclear Information System (INIS)

    Bowman, Robert S.; Li, Zhaohui; Roy, Stephen J.; Burt, Todd; Johnson, Timothy L.; Johnson, Richard L.

    1999-01-01

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector

  1. SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Bowman; Zhaohui Li; Stephen J. Roy; Todd Burt; Timothy L. Johnson; Richard L. Johnson

    1999-08-30

    The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector.

  2. The synergy of permeable pavements and geothermal heat pumps for stormwater treatment and reuse.

    Science.gov (United States)

    Tota-Maharaj, K; Scholz, M; Ahmed, T; French, C; Pagaling, E

    2010-12-14

    The use of permeable pavement systems with integrated geothermal heat pumps for the treatment and recycling of urban runoff is novel and timely. This study assesses the efficiency of the combined technology for controlled indoor and uncontrolled outdoor experimental rigs. Water quality parameters such as biochemical oxygen demand, nutrients, total viable heterotrophic bacteria and total coliforms were tested before and after treatment in both rigs. The water borne bacterial community genomic deoxyribonucleic acid (DNA) was analyzed by polymerase chain reaction (PCR) amplification followed by denaturing gradient gel electrophoresis (DGGE) and was further confirmed by DNA sequencing techniques. Despite the relatively high temperatures in the indirectly heated sub-base of the pavement, potentially pathogenic organisms such as Salmonella spp., Escherichia coli, faecal Streptococci and Legionella were not detected. Moreover, mean removal rates of 99% for biochemical oxygen demand, 97% for ammonia-nitrogen and 95% for orthophosphate-phosphates were recorded. This research also supports decision-makers in assessing public health risks based on qualitative molecular microbiological data associated with the recycling of treated urban runoff.

  3. Permeable Reactive Barriers: a multidisciplinary approach of a new emerging sustainable groundwater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Diels, L.; Bastiaens, L. [Vito, Mol (BL); O' Hannessin, S. [EnviroMetal Technologies Inc., Ontario (Canada); Cortina, J.L. [Univ. Politecnica de Catalunya, Barcelona (Spain). Dept. d' Enginyeria Quimica; Alvarez, P.J. [Univ. of Iowa, Iowa-City (United States). Center for Biocatalysis and Bioprocessing; Ebert, M. [Christian-Albrechts Univ. Kiel (Germany). Inst. fuer Geowissenschaften; Schad, H. [I.M.E.S. GmbH, Amtzell (Germany)

    2003-07-01

    Permeable reactive barriers or zones are becoming an interesting sustainable and cost-effective technology for in situ treatment of contaminated groundwater. The technology is based on chemical processes as the dehalogenating activity of zerovalent iron, biological processes in bioscreens or reactive zones and on sorption technology (e.g. heavy metal adsorption or adsorption on granular activated carbon). Three technical sessions will be devoted to this nowadays becoming mature technology. This special session intends to pay attention to the discussion about some questions related to PRBs. These include the sustainability (e.g. life time and clogging) especially for zerovalent iron barriers, the need and quality of feasibility tests, drawbacks and restrictions of PRBs. Combined with long term performance monitoring os these systems will be discussed. Further attention will be paid to cost evaluation and the relationship between zerovalent barriers and bacterial growth. Also attention will be paid to new reactive materials (e.g. activated carbon for organics and inorganic materials for heavy metals) and consequences (e.g. environmental impact). Finally the session will combine al these approaches in a discussion about combined barriers or multibarriers for treatment of mixed pollution (e.g. landfill leachates contaminated groundwater). Specialists involved in these subjects will introduce these topics and allow for a large and intensive discussion to improve future applications of this technology. (orig.)

  4. In-situ porous reactive wall for treatment of Cr(VI) and trichloroethylene in groundwater

    International Nuclear Information System (INIS)

    Blowes, D.W.; Bennett, T.A.; Gillham, R.W.

    1997-01-01

    A permeable reactive wall for treating groundwater contaminated with hexavalent chromium (Cr(VI)) and trichloroethylene (TCE) was installed at the U.S. Coast Guard Support Center in Elizabeth City, NC in June, 1996. The porous reactive wall is 46 m long, 0.6 m wide, and 7.3 m deep. The reactive wall was installed in less then six hours using a continuous trenching technique which simultaneously removed the aquifer material and replaced it with reactive material. The wall is composed of 100% elemental iron in the form of iron filings. Preliminary laboratory experiments, with site groundwater and reactive materials similar to the full-scale wall components, were successful in decreasing 11 mg/L Cr(VI) to < 0.01 mg/L and 1700 μg/L TCE to < 1 μg/L. Detailed field monitoring commenced in November, 1996. The monitoring program includes groundwater sampling upgradient, downgradient and within the reactive wall, and collection of core samples for mineralogical and microbiological study. Preliminary results from the monitoring program indicate that the wall successfully removes Cr(VI) from influent concentrations of 6 mg/L to < 0.01 mg/L, and TCE from 5600 μg/L to 5.3 μg/L within the wall

  5. PERMEABLE REACTIVE BARRIERS FOR IN-SITU TREATMENT OF ARSENIC-CONTAMINATED GROUNDWATER

    Science.gov (United States)

    Laboratory and field research has shown that permeable reactive barriers (PRBs) containing a variety of materials can treat arsenic (As) contaminated groundwater. Sites where these PRBs are located include a mine tailings facility, fertilizer and chemical manufacturing sites, a...

  6. Permeability enhancers dramatically increase zanamivir absolute bioavailability in rats: implications for an orally bioavailable influenza treatment.

    Directory of Open Access Journals (Sweden)

    Eric H Holmes

    Full Text Available We have demonstrated that simple formulations composed of the parent drug in combination with generally regarded as safe (GRAS permeability enhancers are capable of dramatically increasing the absolute bioavailability of zanamivir. This has the advantage of not requiring modification of the drug structure to promote absorption, thus reducing the regulatory challenges involved in conversion of an inhaled to oral route of administration of an approved drug. Absolute bioavailability increases of up to 24-fold were observed when Capmul MCM L8 (composed of mono- and diglycerides of caprylic/capric acids in glycerol was mixed with 1.5 mg of zanamivir and administered intraduodenally to rats. Rapid uptake (t(max of 5 min and a C(max of over 7200 ng/mL was achieved. Variation of the drug load or amount of enhancer demonstrated a generally linear variation in absorption, indicating an ability to optimize a formulation for a desired outcome such as a targeted C(max for enzyme saturation. No absorption enhancement was observed when the enhancer was given 2 hr prior to drug administration, indicating, in combination with the observed tmax, that absorption enhancement is temporary. This property is significant and aligns well with therapeutic applications to limit undesirable drug-drug interactions, potentially due to the presence of other poorly absorbed polar drugs. These results suggest that optimal human oral dosage forms of zanamivir should be enteric-coated gelcaps or softgels for intraduodenal release. There continues to be a strong need and market for multiple neuraminidase inhibitors for influenza treatment. Creation of orally available formulations of inhibitor drugs that are currently administered intravenously or by inhalation would provide a significant improvement in treatment of influenza. The very simple GRAS formulation components and anticipated dosage forms would require low manufacturing costs and yield enhanced convenience. These results

  7. Prediction of Groundwater Quality Improvement Down-Gradient of In Situ Permeable Treatment Barriers and Fully-Remediated Source Zones. ESTCP Cost and Performance Report

    National Research Council Canada - National Science Library

    Johnson, Paul C; Carlson, Pamela M; Dahlen, Paul

    2008-01-01

    In situ permeable treatment barriers (PTB) are designed so that contaminated groundwater flows through an engineered treatment zone within which contaminants are eliminated or the concentrations are significantly reduced...

  8. Aneurysmal wall enhancement and perianeurysmal edema after endovascular treatment of unruptured cerebral aneurysms

    International Nuclear Information System (INIS)

    Su, I. Chang; Willinsky, Robert A.; Agid, Ronit; Fanning, Noel F.

    2014-01-01

    Perianeurysmal edema and aneurysm wall enhancement are previously described phenomenon after coil embolization attributed to inflammatory reaction. We aimed to demonstrate the prevalence and natural course of these phenomena in unruptured aneurysms after endovascular treatment and to identify factors that contributed to their development. We performed a retrospective analysis of consecutively treated unruptured aneurysms between January 2000 and December 2011. The presence and evolution of wall enhancement and perianeurysmal edema on MRI after endovascular treatment were analyzed. Variable factors were compared among aneurysms with and without edema. One hundred thirty-two unruptured aneurysms in 124 patients underwent endovascular treatment. Eighty-five (64.4 %) aneurysms had wall enhancement, and 9 (6.8 %) aneurysms had perianeurysmal brain edema. Wall enhancement tends to persist for years with two patterns identified. Larger aneurysms and brain-embedded aneurysms were significantly associated with wall enhancement. In all edema cases, the aneurysms were embedded within the brain and had wall enhancement. Progressive thickening of wall enhancement was significantly associated with edema. Edema can be symptomatic when in eloquent brain and stabilizes or resolves over the years. Our study demonstrates the prevalence and some appreciation of the natural history of aneurysmal wall enhancement and perianeurysmal brain edema following endovascular treatment of unruptured aneurysms. Aneurysmal wall enhancement is a common phenomenon while perianeurysmal edema is rare. These phenomena are likely related to the presence of inflammatory reaction near the aneurysmal wall. Both phenomena are usually asymptomatic and self-limited, and prophylactic treatment is not recommended. (orig.)

  9. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    OpenAIRE

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine; Stanley, William C.

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hyper...

  10. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    Science.gov (United States)

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  11. Abdominal wall perforation in a patient with recurrent epithelial ovarian cancer after bevacizumab treatment

    Directory of Open Access Journals (Sweden)

    Efnan Algin

    2016-08-01

    Full Text Available Bowel perforation is a rare but well-described complication of bevacizumab, a VEGF monoclonal antibody. However, bevacizumab associated abdominal wall perforation is a more serious complication. In here, a patient with recurrent epithelial ovarian cancer developing both bowel and abdominal wall perforation after bevacizumab treatment is reported with review of the literature to point out the clinical significance of this rare complication. To our knowledge, this is the first case with bevacizumab associated abdominal wall perforation.

  12. Comparative study of 6 MV and 15 MV treatment plans for large chest wall irradiation

    International Nuclear Information System (INIS)

    Prasana Sarathy, N.; Kothanda Raman, S.; Sen, Dibyendu; Pal, Bipasha

    2007-01-01

    Conventionally, opposed tangential fields are used for the treatment of chest wall irradiation. If the chest wall is treated in the linac, 4 or 6 MV photons will be the energy of choice. It is a welI-established rule that for chest wall separations up to 22 cm, one can use mid-energies, with acceptable volume of hot spots. For larger patient sizes (22 cm and above), mid-energy beams produce hot spots over large volumes. The purpose of this work is to compare plans made with 6 and 15 MV photons, for patients with large chest wall separations. The obvious disadvantage in using high-energy photons for chest wall irradiation is inadequate dose to the skin. But this can be compensated by using a bolus of suitable thickness

  13. Notional Permeability

    NARCIS (Netherlands)

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; Van der Meer, J.W.

    2012-01-01

    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath

  14. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Bychkov, Aleksey L.; Ryabchikova, E.I.; Korolev, K.G.; Lomovsky, O.I.

    2012-01-01

    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  15. Evaluation of the permeability and morphological alteration of the dental surface after apicoectomy, treatment and preparation with Er:YAG and Nd:YAG lasers

    International Nuclear Information System (INIS)

    Oliveira, Rodrigo Guerra de

    2001-01-01

    One of the objectives of endodontic treatment is to resolve pathological periapical processes caused by microbial contamination of the dental pulp. Correct execution of the necessary chemical preparation prior to surgery generally results in positive outcomes. However, a percentage of cases do not respond favorably and therefore require retreatment, a conservative therapeutic option. There are meanwhile a number of treatment failures which do not respond to these conservative measures and must therefore be subjected to paraendodontic surgical procedures. One of the principal problems of this therapeutic conduct is linked to the surface permeability of the dentin after apicoectomy and the lack of adequate marginal adaptation between the retrofilling material and the cavity walls. This permits the percolation of microorganisms and their metabolic by products from the system of root canals to the periapical region, thereby compromising the necessary tissue repair. The present work proposes the evaluation of the surface and marginal permeability of cut dentin after apicoectomy and treatment with Er:YAG and Nd:YAG lasers with fiber optics and then retrofilled with intermediate restorative material (IRM). A total of 24 single rooted teeth whose canals were endodontically treated were divided into 3 experimental groups: group I, whose apices were sectioned with an Er:YAG laser and the resulting cavity and the cut dental surface were irradiated with this laser via a 50/10 type fiber; in group II the apicoectomy was conducted with an Er:YAG laser and the resulting cavity and the cut surface were irradiated with a Nd:YAG laser; in group III, the samples were apicoectomized and the cavities were treated with a high speed bur (control group). Analysis of the infiltration of the dye methylene blue throughout the cut dental surface and the reconstruction demonstrated that the samples in the irradiated groups presented lower indices of infiltration than the control group. The

  16. Handwriting on the power plant wall: flue gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Troupe, J.S.

    1979-08-01

    This paper reviews the present state of flue gas treatment technology. Describes the operation of four basic types of devices used by electric utilities:- mechanical dust collectors, electrostatic precipitators, wet scrubbers and fabric filters. Considers their reliability and cost, and outlines possible future trends.

  17. Compressive Strength, Chloride Permeability, and Freeze-Thaw Resistance of MWNT Concretes under Different Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Xingang Wang

    2014-01-01

    Full Text Available This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4 and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane. To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  18. Compressive strength, chloride permeability, and freeze-thaw resistance of MWNT concretes under different chemical treatments.

    Science.gov (United States)

    Wang, Xingang; Rhee, Inkyu; Wang, Yao; Xi, Yunping

    2014-01-01

    This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  19. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs

    OpenAIRE

    Banks, Stan L.; Pinninti, Raghotham R.; Gill, Harvinder S.; Paudel, Kalpana S.; Crooks, Peter A.; Brogden, Nicole K.; Prausnitz, Mark R.; Stinchcomb, Audra L.

    2010-01-01

    Controlled-release delivery of 6-β-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL's hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. Micro...

  20. Aneurysmal wall enhancement and perianeurysmal edema after endovascular treatment of unruptured cerebral aneurysms.

    LENUS (Irish Health Repository)

    Su, I-Chang

    2014-06-01

    Perianeurysmal edema and aneurysm wall enhancement are previously described phenomenon after coil embolization attributed to inflammatory reaction. We aimed to demonstrate the prevalence and natural course of these phenomena in unruptured aneurysms after endovascular treatment and to identify factors that contributed to their development.

  1. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class

    DEFF Research Database (Denmark)

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, by disrupting the intricate balance between specific bacterial groups within this ecosystem...... potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (n=12 per group) were dosed by oral gavage with either amoxicillin...... (AMX), cefataxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and cecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity...

  2. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs.

    Science.gov (United States)

    Banks, Stan L; Pinninti, Raghotham R; Gill, Harvinder S; Paudel, Kalpana S; Crooks, Peter A; Brogden, Nicole K; Prausnitz, Mark R; Stinchcomb, Audra L

    2010-07-01

    Controlled-release delivery of 6-beta-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL's hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. MN pore lifetime was estimated by pharmacokinetic evaluation, transepidermal water loss (TEWL) and visualization of MN-treated skin pore diameters using light microscopy. A 3.6-fold enhancement in steady-state plasma concentration was observed in vivo with MN treated skin with NTXOL.HCl, as compared to NTXOL base. TEWL measurements and microscopic evaluation of stained MN-treated guinea pig skin indicated the presence of pores, suggesting a feasible nonlipid bilayer pathway for enhanced transdermal delivery. Overall, MN-assisted transdermal delivery appears viable for at least 48 h after MN-application. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  3. Adaptive wall treatment for a second moment closure in the industrial context

    International Nuclear Information System (INIS)

    Wald, Jean-Francois

    2016-01-01

    CFD computations of turbulent flows always begin with a complex meshing process (upper plenum, fuel assembly in the nuclear industry for example). Geometrical constraints are the first ones to be satisfied (level of details, important zones to refine regarding 'user experiences'). One has however to satisfy constraints that are inherent to the RANS model (Reynolds Averaged Navier Stokes) used for the computation. For example, if a 'High-Reynolds' (κ-ε standard, SSG,...) model is used one should only have wall cells with a dimensionless distance to the wall greater or equal to 20 to justify the use of the universal 'law of the wall'. On the other hand, if a 'Low-Reynolds' (BL-v"2/k, EB-RSM,...) model is used, one should only find wall cells with a dimensionless distance to the wall below 1. If those models are used in an inappropriate way the results could be dramatic (computations can either diverge or give unphysical results). This thesis proposes the development of a new turbulence model with adaptive wall treatments that gives satisfactory results on all types of meshes. In particular, the model will be able to cope with meshes containing both 'High-Reynolds' and 'Low-Reynolds' wall cells. Given the complex flows encountered in the nuclear industry this thesis will use a model known for its good behavior: the EB-RSM model. This model is able to reproduce the anisotropy of the turbulence and give more satisfactory results than eddy viscosity models in different configurations. This model is available in Code Saturne, an open source code developed at EDF. All the developments are made in this code. (author)

  4. Matching Electron Beams Without Secondary Collimation for Treatment of Extensive Recurrent Chest-Wall Carcinoma

    International Nuclear Information System (INIS)

    Feygelman, Vladimir; Mandelzweig, Yuri; Baral, Ed

    2015-01-01

    Matching electron beams without secondary collimators (applicators) were used for treatment of extensive, recurrent chest-wall carcinoma. Due to the wide penumbra of such beams, the homogeneity of the dose distribution at and around the junction point is clinically acceptable and relatively insensitive to positional errors. Specifically, dose around the junction point is homogeneous to within ±4% as calculated from beam profiles, while the positional error of 1 cm leaves this number essentially unchanged. The experimental isodose distribution in an anthropomorphic phantom supports this conclusion. Two electron beams with wide penumbra were used to cover the desired treatment area with satisfactory dose homogeneity. The technique is relatively simple yet clinically useful and can be considered a viable alternative for treatment of extensive chest-wall disease. The steps are suggested to make this technique more universal.

  5. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    Science.gov (United States)

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    Science.gov (United States)

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Permeation Dispersal of Treatment Agents for In Situ Remediation in Low Permeability Media: 1. Field Studies in Unconfined Test Cells

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Smuin, D.R.; Korte, N.E.; Greene, D.W.; Pickering, D.A.; Lowe, K.S.; Strong-Gunderson, J.

    2000-01-01

    Chlorocarbons like trichloroethylene (TCE) are common contaminants of concern at US Department of Energy (DOE) facilities and industrial sites across the US and abroad. These contaminants of concern are present in source areas and in soil and ground water plumes as dissolved or sorbed phase constituents as well as dense nonaqueous-phase liquids (DNAPLs). These DNAPL compounds can be released to the environment through a variety of means including leaks in storage tanks and transfer lines, spills during transportation, and land treatment of wastes. When DNAPL compounds are present in low permeability media (LPM) like silt and clay layers or deposits, there are major challenges with assessment of their behavior and implementation of effective in situ remediation technologies. This report describes a field demonstration that was conducted at the Portsmouth Gaseous Diffusion Plant (PORTS) Clean Test Site (CTS) to evaluate the feasibility of permeation and dispersal of reagents into LPM. Various reagents and tracers were injected at seven test cells primarily to evaluate the feasibility of delivery, but also to evaluate the effects of the injected reagents on LPM. The various reagents and tracers were injected at the PORTS CTS using a multi-port injection system (MPIS) developed and provided by Hayward Baker Environmental, Inc

  8. Pilot Study Report, Cape Canaveral Air Station, Florida. Permeable Reactive Treatment (PeRT) Wall Pilot Study. Revision 2

    Science.gov (United States)

    1999-11-01

    slurry was made from mixing iron, guar gum , an enzyme and borax. The guar gum was Hercules Supercol™ food grade fine (200-mesh size) powder . It was...Florida The guar gum was mixed with water in batches in a stirred open top tank to form 2 to 3% solutions. The guar gum solution was pumped first to a...holding tank, then into a truck-mounted batch mixing plant. A positive displacement pump controlled the feed rate of guar gum to the batch mixing plant

  9. Design Guidance for Application of Permeable Barriers to Remediate Dissolved Chlorinated Solvents,

    Science.gov (United States)

    1997-02-01

    fill slurry composed of a reactive medium, such as iron powder and guar gum , can then be injected into the fracture to form a reactive treatment zone...slurry (Owaidat, 1996). The slurry, which is composed of powdered guar bean, acts to maintain the integrity of the trench walls during installation of...the cell. The guar gum will later biodegrade to mostly water after wall completion, and will have minimal effect on the permeability of the trench

  10. In-situ treatment of a mixed hydrocarbon plume through a permeable reactive barrier and enhanced bio-remediation

    International Nuclear Information System (INIS)

    Aglietto, I.; Bretti, L.L.

    2005-01-01

    Groundwater is frequently polluted with mixtures of contaminants that are amenable to different types of remediation. One example is the combination of petroleum hydrocarbons (mostly BTEX) and chlorinated solvents (chlorinated ethenes and propanes), as it occurs in the groundwater beneath the industrial site that is the objective of the present case study. The site is located in Italy near a main river (Arno), which is supposed to be the final recipient of the contamination and where a possible exposure might take place. The aim of the treatment is the plume containment within the site boundaries in order to avoid further migration of the contaminants towards the river. The design of the remediation system was based on an extensive site characterization that included - but was not limited to - the following information: geological and geochemical, microbiological and hydrological data, together with analytical data (i.e. contaminant concentrations). Pilot tests were also implemented in order to collect the necessary parameters for the full-scale treatment design and calibration. The site was contaminated by a mixed plume of more than 30 different contaminants, ranging from BTEX, to MTBE, to PAH, to chlorinated solvents. The concentration peaks were in the order of 1-100 mg/l for each contaminant. Petroleum hydrocarbons are quickly degradable through oxidative mechanisms (especially aerobic biodegradation), whereas fully-chlorinated compounds are only degradable via reductive pathways. A mixed plume of both types of contaminants therefore requires a combined approach with the application of different treatment technologies. The remediation strategy elaborated combines a permeable reactive barrier (PRB) in a funnel and gate configuration for the down-gradient plume containment, with the enhanced bio-remediation of the contaminants for the control of the plume boundaries and for the abatement of the concentration peaks. Pilot tests were carried out in order to assess

  11. Changes of wood cell walls in response to hygro-mechanical steam treatment.

    Science.gov (United States)

    Guo, Juan; Song, Kunlin; Salmén, Lennart; Yin, Yafang

    2015-01-22

    The effects of compression combined with steam treatment (CS-treatment), i.e. a hygro-mechanical steam treatment on Spruce wood were studied on a cell-structure level to understand the chemical and physical changes of the secondary cell wall occurring under such conditions. Specially, imaging FT-IR microscopy, nanoindentation and dynamic vapour absorption were used to track changes in the chemical structure, in micromechanical and hygroscopic properties. It was shown that CS-treatment resulted in different changes in morphological, chemical and physical properties of the cell wall, in comparison with those under pure steam treatment. After CS-treatment, the cellular structure displayed significant deformations, and the biopolymer components, e.g. hemicellulose and lignin, were degraded, resulting in decreased hygroscopicity and increased mechanical properties of the wood compared to both untreated and steam treated wood. Moreover, CS-treatment resulted in a higher degree of degradation especially in earlywood compared to a more uniform behaviour of wood treated only by steam. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Device and method for treatment of openings in vascular and septal walls

    Science.gov (United States)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J.

    2017-06-06

    A device, system and method for treatment of an opening in vascular and/or septal walls including patent foramen ovale. The device has wings/stops on either end, an axis core covered in a shape memory foam and is deliverable via a catheter to the affected opening, finally expanding into a vascular or septal opening where it is held in place by the expandable shape memory stops or wings.

  13. Feasibility Of Coupling Permeable Bio-Barriers And Electrokinetics For The Treatment Of Diesel Hydrocarbons Polluted Soils

    International Nuclear Information System (INIS)

    Ramírez, Esperanza Mena; Jiménez, Cristina Sáez; Camacho, José Villaseñor; Rodrigo, Manuel A.Rodrigo; Cañizares, Pablo

    2015-01-01

    Highlights: • Electrokinetics and a biobarrier were combined to remediate of a diesel polluted soil. • pH gradients did not affect the biobarrier activity located in soil central position. • Microorganisms were partially detached from the biobarrier and moved across the soil. • An anionic surfactant helped the contact between pollutant and microorganisms. • A 39% of the diesel biodegradable fraction was homogeneously removed across the soil. - Abstract: In this study, the remediation of a diesel hydrocarbon-polluted clay soil using an electrochemical-biological combined technology is assessed. The polluted soil was subjected to an electrokinetic (EK) treatment with a biological permeable reactive barrier. A lab-scale electrochemical cell for soil treatment was used. The biological barrier placed in the soil was a biofilm reactor previously adapted for diesel degradation. A batch experiment of 336 h was conducted in a synthetic clay soil spiked with 10 g·kg −1 of diesel and a constant voltage gradient of 1.0 V cm −1 . Sodium dodecyl sulphate was used as an anionic surfactant in the cathodic well to allow for hydrocarbon emulsification during the treatment. At the end of the experiment, extreme pH values were observed near the electrodes. However, the pH remained constant at approximately 7.7 in the central biobarrier zone, which allowed for biological processes. Biological growth was observed in the biobarrier, and a part of the biofilm was detached and transported through the soil in both directions. Furthermore, the surfactant was transported across the soil due to electromigration and electroosmosis, which resulted in diesel emulsification. The combination of biological and EK phenomena finally resulted in a homogenous hydrocarbon removal of approximately 27% in the polluted soil, which indicated a 39% removal of the diesel biodegradable fraction. Due to the electroosmotic flow and the biological degradation, some of the water, surfactant and

  14. Improving the conductivity of single-walled carbon nanotubes films by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiaping [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Sun Jing, E-mail: jingsun@mail.sic.ac.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Gao Lian, E-mail: liangaoc@online.sh.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Liu Yangqiao; Wang Yan; Zhang Jing [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Kajiura, Hisashi; Li Yongming; Noda, Kazuhiro [Advanced Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan)

    2009-10-19

    A simple heat treatment method was applied to remove surfactants remaining in the single-walled carbon nanotubes (SWNTs) films at 300 deg. C for 5 h in air. Scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and reflected light interference microscope (RLIM) were employed to verify the elimination of surfactants. The comprehensive performance, especially the conductivity, could be improved by more than one order after heat treatment. For example, using SDBS as dispersant, the sheet resistance decreased from 782,600 OMEGA/square to 40,460 OMEGA/square with the transmittance of about 99.5% at 550 nm.

  15. Endoscopic treatment of multilocular walled-off pancreatic necrosis with the multiple transluminal gateway technique.

    Science.gov (United States)

    Jagielski, Mateusz; Smoczyński, Marian; Adrych, Krystian

    2017-06-01

    The development of minimally invasive techniques allowed access to the necrotic cavity through transperitoneal, retroperitoneal, transmural and transpapillary routes. The choice of access to walled-off pancreatic necrosis (WOPN) should depend not only on the spread of necrosis, but also on the experience of the clinical center. Herein we describe treatment of a patient with multilocular symptomatic walled-off pancreatic necrosis using minimally invasive techniques. The single transmural access (single transluminal gateway technique - SGT) to the necrotic collection of the patient was ineffective. The second gastrocystostomy was performed using the same minimally invasive technique as an extra way of access to the necrosis (multiple transluminal gateway technique - MTGT). In the described case the performance of the new technique consisting in endoscopic multiplexing transmural access (MTGT) was effective enough and led to complete recovery of the patient.

  16. Ultrastructural studies on the blood-brain barrier. Mainly as to changes in the permeability of cerebral capillary walls induced by experimental x-ray irradiation and the effect of glucocorticoid on such changes

    Energy Technology Data Exchange (ETDEWEB)

    Ichitsubo, H [Tokyo Medical Coll. (Japan)

    1977-03-01

    In the present study, an ultrastructural examination was made of the role of capillary endothelial cells of the brain which is one of the constituent factors of the blood-brain barrier. In normal cerebral capillaries, both endothelial cells and the basement membrane were demonstrated to be not crossed by a tracer (horseradish peroxidase) even in 60 minutes after its intravenous administration, thus suggesting the blood-brain barrier effect. Author investigated changes in the permeability of cerebral capillary walls induced by experimental brain irradiation and the effect of glucocorticoid on such changes. On forty-eight hours following an appropriate irradiation a marked brain edema was developed; under such circumstances when the tracer was injected intravenously, on 60 minutes thereafter the tracer was demonstrated to be transferred into the neutral tissue, and this was interpreted as indicating that capillary hyperpermeability was induced. These findings were suggested that the mechanism of capillary hyperpermeability might not be based on the passage of a tight junction of the cells of capillary wall but rather on account of activated active transport via an increased number of pinocytotic vesicles. The mechanism of increase of pinocytotic vesicle appeared to be resulting from a breakdown of the controlling system of pinocytotic vesicle production. However, the existence of this controlling system is still speculative. Pre-and post-irradiation administration of glucocorticoid proved to be effective in the prevention of irradiation-induced hyperpermeability of cerebral capillaries, and to be indicating the possible usefulness of the drug for the maintenance or repair of the aforementioned system.

  17. Permeability of cork to gases.

    Science.gov (United States)

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  18. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Park, Soo-Jin

    2010-01-01

    In this work, the hydrogen storage behaviors of chemically treated multi-walled carbon nanotubes (MWNTs) were investigated. The surface properties of the functionalized MWNTs were confirmed by Fourier transfer infrared spectroscopy, X-ray diffraction, the Boehm titration method, and zeta-potential measurements. The hydrogen storage capacity of the MWNTs was evaluated at 298 K and 100 bar. In the experimental results, it was found that the chemical treatments introduced functional groups onto the MWNT surfaces. The amount of hydrogen storage was enhanced, by acidic surface treatment, to 0.42 wt.% in the acidic-treated MWNTs compared with 0.26 wt.% in the as-received MWNTs. Meanwhile, the basic surface treatment actually reduced the hydrogen storage capacity, to 0.24 wt.% in the basic-treated MWNTs sample. Consequently, it could be concluded that hydrogen storage is greatly influenced by the acidic characteristics of MWNT surfaces, resulting in enhanced electron acceptor-donor interaction at interfaces.

  19. Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Li; Hashimoto, Yoshio; Taishi, Toshinori; Ni Qingqing

    2011-01-01

    Multi-walled carbon nanotubes (MWCNTs) with improved dispersion property have been prepared by a mild and fast hydrothermal treatment. The hydrothermal process avoids using harsh oxidants and organic solvents, which is environmental friendly and greatly decreases the damage to intrinsic structure of MWCNTs. The modified MWCNTs were highly soluble in polar solvents such as water, ethanol and dimethylformamide. Morphological observation by TEM indicated that the diameter and inherent structure were well reserved in modified MWCNTs. X-ray photoelectron spectroscopy and Raman spectroscopy were used to quantify functional groups created on the MWCNT surface, and to determine rational parameters of hydrothermal process.

  20. Topical application of Mitomycin C in the treatment of granulation tissue after Canal Wall Down mastoidectomy

    Directory of Open Access Journals (Sweden)

    Alireza Karimi-Yazdi

    2013-03-01

    Full Text Available Introduction: Otorrhea and granulation tissue in Canal Wall Down mastoidectomy (CWD is the common problem in cholesteatoma removal and leads to many discomfort for both the patient and the physician. The main objective in CWD is creating the dry cavity, so the topical antibiotic and acetic acid in variable saturations are used for this purpose. In this study we evaluate the effectiveness of topical MMC and chemical cautery by acetic acid.   Materials and Methods: Study population consists of 50 patients with cholesteatoma whom underwent CWD. All patient allocated randomly in two study groups, MMC and acetic acid. After 3 weeks, the first visit is planned, extension of granulation tissue and dryness of cavity are evaluated and topical drugs are used in blind fashion. MMC in 4% and acetic acid in 12.5% saturation are applied. Other visits are completed at next month and 3 months later.   Results: Both methods are effective in treatment of granulation tissue. In each group both treatment were effective too but MMC was more effective than acid acetic in the treatment of granulation tissue after 4 weeks.   Conclusion: Based on our findings, it is clear that topical MMC is very effective in the treatment of granulation tissue and in CWD. It results in dry cavity much better than acetic acid without any complication. 

  1. Modulated electron radiotherapy treatment planning using a photon multileaf collimator for post-mastectomized chest walls

    International Nuclear Information System (INIS)

    Salguero, Francisco Javier; Palma, Bianey; Arrans, Rafael; Rosello, Joan; Leal, Antonio

    2009-01-01

    Background and purpose: To evaluate the feasibility of using a photon MLC (xMLC) for modulated electron radiotherapy treatment (MERT) as an alternative to conventional post-mastectomy chest wall (CW) irradiation. A Monte Carlo (MC) based planning system was developed to overcome the inaccuracy of the 'pencil beam' algorithm. MC techniques are known to accurately calculate the dose distributions of electron beams, allowing the explicit simulation of electron interactions within the MLC. Materials and methods: Four real clinical CW cases were planned using MERT which were compared with the conventional electron treatments based on blocks and by a straightforward approach using the MLC, and not the blocks (as an intermediate step to MERT) to shape the same segments with SSD between 60 and 70 cm depending on PTV size. MC calculations were verified with an array of ionization chambers and radiochromic films in a solid water phantom. Results: Tests based on gamma analysis between MC dose distributions and radiochromic film measurements showed an excellent agreement. Differences in the absolute dose measured with a plane-parallel chamber at a reference point were below 3% for all cases. MERT solution showed a better PTV coverage and a significant reduction of the doses to the organs at risk (OARs). Conclusion: MERT can effectively improve the current electron treatments by obtaining a better PTV coverage and sparing healthy tissues. More directly, block-shaped treatments could be replaced by MLC-shaped non-modulated segments providing similar results.

  2. Influence of heat-treatment on lithium ion anode properties of mesoporous carbons with nanosheet-like walls

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanyan [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hou, Zhaohui, E-mail: zhqh96@163.com [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); He, Binhong [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Ge, Chongyong; Cao, Jianguo [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Kuang, Yafei, E-mail: yafeik@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2012-08-15

    Highlights: ► Mesoporous carbons possess unique nanosheet-like pore walls which can be changed by heat treatment. ► Lithium ion anode properties of mesoporous carbons could be influenced by the nanosheet-like walls. ► Mesoporous carbons with nanosheet-like walls exhibit enhanced electrochemical properties LIBs. -- Abstract: Mesoporous carbons (MCs) with nanosheet-like walls have been prepared as electrodes for lithium-ion batteries by a simple one-step infiltrating method under the action of capillary flow. The influence of heat treatment temperature on the surface topography, pore/phase structure and anode performances of as-prepared materials has been investigated. The results reveal that melted liquid-crystal polycyclic aromatic hydrocarbons could be anchored on liquid/silica interfaces by molecule engineering. After carbonization, the nanosheets are formed as the pore walls of MCs and are perpendicular to the long axis of pores. The anode properties demonstrate that C-1200 displays higher reversible capacitance than those treated in higher temperature. The rate performances of C-1200 and C-1800 are similar and more excellent than that of C-2400. These improved lithium ion anode properties could be attributed to the nanosheet-like walls of MCs which can be influenced by the heat treatment temperature.

  3. Ultrasound-guided high-intensity focused ultrasound treatment for abdominal wall endometriosis: Preliminary results

    International Nuclear Information System (INIS)

    Wang Yang; Wang Wei; Wang Longxia; Wang Junyan; Tang Jie

    2011-01-01

    Purpose: To evaluate the safety and therapeutic efficacy of ultrasound (US)-guided high-intensity focused ultrasound (HIFU) ablation for the treatment of abdominal wall endometriosis (AWE). Materials and methods: Twenty-one consecutive patients with AWE were treated as outpatients by US-guided HIFU ablation under conscious sedation. The median size of the AWE was 2.4 cm (range 1.0-5.3 cm). An acoustic power of 200-420 W was used, intermittent HIFU exposure of 1 s was applied. Treatment was considered complete when the entire nodule and its nearby 1 cm margin become hyperechoic on US. Pain relief after HIFU ablation was observed and the treated nodule received serial US examinations during follow-up. Results: All AWE was successfully ablated after one session of HIFU ablation, the ablation time lasted for 5-48 min (median 13 min), no major complications occurred. The cyclic pain disappeared in all patients during a mean follow-up of 18.7 months (range 3-31 months). The treated nodules gradually shank over time, 16 nodules became unnoticeable on US during follow-up. Conclusion: US-guided HIFU ablation appears to be safe and effective for the treatment of AWE.

  4. Ultrasound-guided high-intensity focused ultrasound treatment for abdominal wall endometriosis: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Wang Wei, E-mail: wangyang301301@yahoo.com.cn [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Wang Longxia; Wang Junyan; Tang Jie [Department of Ultrasound, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2011-07-15

    Purpose: To evaluate the safety and therapeutic efficacy of ultrasound (US)-guided high-intensity focused ultrasound (HIFU) ablation for the treatment of abdominal wall endometriosis (AWE). Materials and methods: Twenty-one consecutive patients with AWE were treated as outpatients by US-guided HIFU ablation under conscious sedation. The median size of the AWE was 2.4 cm (range 1.0-5.3 cm). An acoustic power of 200-420 W was used, intermittent HIFU exposure of 1 s was applied. Treatment was considered complete when the entire nodule and its nearby 1 cm margin become hyperechoic on US. Pain relief after HIFU ablation was observed and the treated nodule received serial US examinations during follow-up. Results: All AWE was successfully ablated after one session of HIFU ablation, the ablation time lasted for 5-48 min (median 13 min), no major complications occurred. The cyclic pain disappeared in all patients during a mean follow-up of 18.7 months (range 3-31 months). The treated nodules gradually shank over time, 16 nodules became unnoticeable on US during follow-up. Conclusion: US-guided HIFU ablation appears to be safe and effective for the treatment of AWE.

  5. Modelling the variation in rectal dose due to inter-fraction rectal wall deformation in external beam prostate treatments

    International Nuclear Information System (INIS)

    Booth, Jeremy; Zavgorodni, Sergei

    2005-01-01

    Prostate radiotherapy inevitably deposits radiation dose in the rectal wall, and the dose delivered to prostate is limited by the expected rectal complications. Accurate evaluation of the rectal dose is non-trivial due to a number of factors. One of these is variation of the shape and position of the rectal wall (with respect to the clinical target volume (CTV)), which may differ daily from that taken during planning CT acquisition. This study uses data currently available in the literature on rectal wall motion to provide estimates of mean population rectal wall dose. The rectal wall geometry is characterized by a population mean radius of the rectum as well as inter-patient and inter-fraction standard deviations in rectum radius. The model is used to evaluate the range of inter-fraction and inter-patient rectal dose variations. The simulation of individual patients with full and empty rectum in the planning CT scan showed that large variations in rectal dose (>15 Gy) are possible. Mean calculated dose accounting for treatment and planning uncertainties in the rectal wall surface was calculated as well as the map of planning dose over/underpredictions. It was found that accuracy of planning dose is dependent on the CTV-PTV margin size with larger margins producing more accurate estimates. Over a patient population, the variation in rectal dose is reduced by increasing the number of pre-treatment CT scans

  6. Detection of semi-volatile organic compounds in permeable pavement infiltrate

    Science.gov (United States)

    Abstract The Edison Environmental Center (EEC) performs research on green infrastructure (GI) treatment options. One such treatment option is the use of permeable pavements. EEC constructed a parking lot comprised of three different permeable systems: permeable asphalt, porous ...

  7. Percutaneous Treatment of Iatrogenic Pseudoaneurysms by Cyanoacrylate-Based Wall-Gluing

    Energy Technology Data Exchange (ETDEWEB)

    Del Corso, Andrea, E-mail: adelcorso2000@hotmail.com [Universita di Pisa, Division of General and Vascular Surgery, Ospedale Cisanello (Italy); Vergaro, Giuseppe [Fondazione G. Monasterio CNR-Regione Toscana, Division of Cardiovascular Medicine (Italy)

    2013-06-15

    Purpose. Although the majority of iatrogenic pseudoaneurysms (PSAs) are amenable to ultrasound (US)-guided thrombin injection, patients with those causing neuropathy, claudication, significant venous compression, or soft tissue necrosis are considered poor candidates for this option and referred to surgery. We aimed to test the effectiveness and feasibility of a novel percutaneous cyanoacrylate glue (NBCA-MS)-based technique for treatment of symptomatic and asymptomatic iatrogenic PSA. Material and Methods. During a 3-year period, we prospectively enrolled 91 patients with iatrogenic PSA [total n = 94 (femoral n = 76; brachial n = 11; radial n = 6; axillary n = 1)]. PSA were asymptomatic in 66 % of cases, and 34 % presented with symptoms due to neuropathy, venous compression, and/or soft tissue necrosis. All patients signed informed consent. All patients received NBCA-MS-based percutaneous treatment. PSA chamber emptying was first obtained by US-guided compression; superior and inferior walls of the PSA chamber were then stuck together using NBCA-MS microinjections. Successfulness of the procedure was assessed immediately and at 1-day and 1-, 3-, and 12-month US follow-up. Results. PSA occlusion rate was 99 % (93 of 94 cases). After treatment, mean PSA antero-posterior diameter decrease was 67 {+-} 22 %. Neuropathy and vein compression immediately disappeared in 91 % (29 of 32) of cases. Patients with tissue necrosis (n = 6) underwent subsequent outpatient necrosectomy. No distal embolization occurred, nor was conversion to surgery necessary. Conclusion. PSA treatment by way of NBCA-MS glue injection proved to be safe and effective in asymptomatic patients as well as those with neuropathy, venous compression, or soft-tissue necrosis (currently candidates for surgery). Larger series are needed to confirm these findings.

  8. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    Science.gov (United States)

    Neves, Luís F. F.; Krais, John J.; Van Rite, Brent D.; Ramesh, Rajagopal; Resasco, Daniel E.; Harrison, Roger G.

    2013-09-01

    This paper focuses on the targeting of single-walled carbon nanotubes (SWNTs) for the treatment of breast cancer with minimal side effects using photothermal therapy. The human protein annexin V (AV) binds specifically to anionic phospholipids expressed externally on the surface of tumour cells and endothelial cells that line the tumour vasculature. A 2 h incubation of the SWNT-AV conjugate with proliferating endothelial cells followed by washing and near-infrared (NIR) irradiation at a wavelength of 980 nm was enough to induce significant cell death; there was no significant cell death with irradiation or the conjugate alone. Administration of the same conjugate i.v. in BALB/c female mice with implanted 4T1 murine mammary at a dose of 0.8 mg SWNT kg-1 and followed one day later by NIR irradiation of the tumour at a wavelength of 980 nm led to complete disappearance of implanted 4T1 mouse mammary tumours for the majority of the animals by 11 days since the irradiation. The combination of the photothermal therapy with the immunoadjuvant cyclophosphamide resulted in increased survival. The in vivo results suggest the SWNT-AV/NIR treatment is a promising approach to treat breast cancer.

  9. Analyzing Cell Wall Elasticity After Hormone Treatment: An Example Using Tobacco BY-2 Cells and Auxin.

    Science.gov (United States)

    Braybrook, Siobhan A

    2017-01-01

    Atomic force microscopy, and related nano-indentation techniques, is a valuable tool for analyzing the elastic properties of plant cell walls as they relate to changes in cell wall chemistry, changes in development, and response to hormones. Within this chapter I will describe a method for analyzing the effect of the phytohormone auxin on the cell wall elasticity of tobacco BY-2 cells. This general method may be easily altered for different experimental systems and hormones of interest.

  10. Changes in digestibility and cell - wall constituents of some agricultural by-products due to gamma irradiation and urea treatments

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Guenther, K.D.

    2000-01-01

    The effects of different doses of gamma irradiation (0. 100, 150, 200 KGy) or different concentrations of urea (0, 2, 3, and 5 g urea/100 g DM) on in-vitro organic matter digestibility (JVOMD), digestible energy (IVDE), gross energy (GE) nd cell-wall constituents: neutral-detergent fibre, acid-detergent fibre and acid=detergent lignin, have been evaluated in wheat straw, cotton seed shell, peanut shell, soybean shell, extracted olive cake and extracted unpeeled sunflower seeds. The results indicated that gamma irradiation or urea treatments increased the digestible energy values significantly. (p<0.05) and these were attributed to the increases IVOMD and decreases cell-wall constituents of treated samples. The experimental agricultural by-products do not respond to the treatments in the same amount in increasing the IVOMD. There was no significant effect of irradiation and urea treatments on GE. Combined treatments had slightly less effect in increasing IVDE as the addition of both effects. The treatment of 200 KGy and 5% urea resulted in a larger increase in the digestible energy and a better effect by reducing the concentration of the cell-wall constituents even more than what occurred using a single treatment. However, the combination of irradiation with urea treatments could reduce the applied irradiation doses for increasing the IVDE in some studied agricultural by-products. (author)

  11. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    International Nuclear Information System (INIS)

    Welsh, James; Amini, Arya; Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt; Soh, Hendrick; Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing; Bluett, Jaques; Mohan, Radhe; Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y.

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V 20 , V 30 , or V 40 ) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within 20 was 364.0 cm 3 and 160.0 cm 3 (p 30 was 144.6 cm 3 vs 77.0 cm 3 (p = 0.0012), V 35 was 93.9 cm 3 vs 57.9 cm 3 (p = 0.005), V 40 was 66.5 cm 3 vs 45.4 cm 3 (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures

  12. Use of the breast board in the radiation treatment of breast cancer on chest wall and regional lymph nodes

    International Nuclear Information System (INIS)

    Shepherd, G.S.; Krishnan, L.; Dean, R.D.; Evans, R.G.

    1987-01-01

    Optimal treatment of the breast or chest wall and regional nodes for carcinoma of the breast is complex and time consuming. A variable angled breast board has been designed to address some of the problems responsible for complications. It has three adjustable inclinations, two L-arm locations with adjustable heights, support to the contralateral arm, and a cassette holder for port films and treatment verification. The design of the board is such that it enables us to reproduce treatment position with relative ease without sacrificing the quality of treatment. Approximately 75 patients have been treated, and to date no complications due to positional error have been documented

  13. Gastric full-thickness suturing during EMR and for treatment of gastric-wall defects (with video).

    Science.gov (United States)

    von Renteln, Daniel; Schmidt, Arthur; Riecken, Bettina; Caca, Karel

    2008-04-01

    The endoscopic full-thickness Plicator device was initially developed to provide an endoscopic treatment option for patients with GERD. Because the endoscopic full-thickness Plicator enables rapid and easy placement of transmural sutures, comparable with surgical sutures, we used the Plicator device for endoscopic treatment or prevention of GI-wall defects. To describe the outcomes and complications of endoscopic full-thickness suturing during EMR and for the treatment of gastric-wall defects. A report of 4 cases treated with the endoscopic full-thickness suturing between June 2006 and April 2007. A large tertiary-referral center. Four subjects received endoscopic full-thickness suturing. The subjects were women, with a mean age of 67 years. Of the 4 subjects, 3 received endoscopic full-thickness suturing during or after an EMR. One subject received endoscopic full-thickness suturing for treatment of a fistula. Primary outcome measurements were clinical procedural success and procedure-related adverse events. The mean time for endoscopic full-thickness suturing was 15 minutes. In all cases, GI-wall patency was restored or ensured, and no procedure-related complications occurred. All subjects responded well to endoscopic full-thickness suturing. The resection of one GI stromal tumor was incomplete. Because of the Plicator's 60F distal-end diameter, endoscopic full-thickness suturing could only be performed with the patient under midazolam and propofol sedation. The durable Plicator suture might compromise the endoscopic follow-up after EMR. The endoscopic full-thickness Plicator permits rapid and easy placement of transmural sutures and seems to be a safe and effective alternative to surgical intervention to restore GI-wall defects or to ensure GI-wall patency during EMR procedures.

  14. Borehole stoneley waves and permeability: Laboratory results

    International Nuclear Information System (INIS)

    Winkler, K.W.; Plona, T.J.; Froelich, B.; Liu, H.L.

    1987-01-01

    Recent interest in full waveform sonic logging has created the need for full waveform laboratory experiments on model boreholes. Of particular interest is the investigation of Stoneley waves and their interaction with permeable formations. The authors describe experimental results that show how Stoneley wave slowness and attenuation are affected by formation permeability. Both slowness and attenuation (1/Q) are observed to increase with formation permeability. This increase is frequency dependent, being greatest at low frequencies. The presence of simulated mudcakes on the borehole wall reduces the permeability effect on Stoneley waves, but does not eliminate it. The mudcake effect is frequency dependent, being greatest at low frequencies. In our experiments on rocks, the laboratory data is in qualitative agreement with theoretical predictions. In a very well characterized synthetic porous material, theory and experiment are in good quantitative agreement

  15. Investigation of some cleaning surface treatments for the fabrication of ITER first wall panels by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Frayssines, P.E.; Bucci, P. [CEA Grenoble (DRT/LITEN/DTH), 38 (France); Vito, E. de [CEA Grenoble (LITEN/DTH/LCPEM), 38 (France); Lorenzetto, P. [2EFDA, Garching (Germany)

    2007-07-01

    Full text of publication follows: ITER First Wall (FW) panels are the innermost part of the ITER reactor. Metallic materials used for their manufacture are 316L(N)-IG stainless steel, a copper alloy and beryllium. Stainless steel material is a support structure for the copper alloy that serves as a heat sink material and also for the beryllium tiles that are a protective armour against the plasma. All these materials are bonded together by Hot Isostatic Pressing (HIP). Thus, several types of joints (Cu/Cu, Cu/SS, SS/SS or Cu/Be) are present in a FW panels. Their manufacturing requires a very strict and advanced metallic surface preparation in order to eliminate most of the organic or oxide layers that could prevent the diffusion process between the facing materials. In this field, our laboratory practice enables to obtain sufficiently clean metallic surfaces and high strength joints are obtained when small mockups are made. However, the manufacture of a large number of FW panels in the future requires to find a new cleaning process that is industrially relevant without a strong reduction of the joint's mechanical properties. In this paper we present our investigations to find an industrial solution to clean efficiently copper alloy and stainless steel materials in order to manufacture high strength Cu/Cu, SS/SS or Cu/SS joints. Products investigated are mainly acid liquids proposed by chemical Company and a more advanced technique that uses a plasma process. HIP joints are tested mechanically by making impact toughness and tensile measurements. Results obtained with these solutions are compared to those obtained in our Laboratory by using our own cleaning route. Moreover, XPS analyses are performed on small specimens that have been submitted to the same cleaning treatments in order to better understand the mechanical results of our specimens. (authors)

  16. Proton radiotherapy for chest wall and regional lymphatic radiation; dose comparisons and treatment delivery

    International Nuclear Information System (INIS)

    MacDonald, Shannon M; Jimenez, Rachel; Paetzold, Peter; Adams, Judith; Beatty, Jonathan; DeLaney, Thomas F; Kooy, Hanne; Taghian, Alphonse G; Lu, Hsiao-Ming

    2013-01-01

    The delivery of post-mastectomy radiation therapy (PMRT) can be challenging for patients with left sided breast cancer that have undergone mastectomy. This study investigates the use of protons for PMRT in selected patients with unfavorable cardiac anatomy. We also report the first clinical application of protons for these patients. Eleven patients were planned with protons, partially wide tangent photon fields (PWTF), and photon/electron (P/E) fields. Plans were generated with the goal of achieving 95% coverage of target volumes while maximally sparing cardiac and pulmonary structures. In addition, we report on two patients with unfavorable cardiac anatomy and IMN involvement that were treated with a mix of proton and standard radiation. PWTF, P/E, and proton plans were generated and compared. Reasonable target volume coverage was achieved with PWTF and P/E fields, but proton therapy achieved superior coverage with a more homogeneous plan. Substantial cardiac and pulmonary sparing was achieved with proton therapy as compared to PWTF and P/E. In the two clinical cases, the delivery of proton radiation with a 7.2 to 9 Gy photon and electron component was feasible and well tolerated. Akimbo positioning was necessary for gantry clearance for one patient; the other was treated on a breast board with standard positioning (arms above her head). LAO field arrangement was used for both patients. Erythema and fatigue were the only noted side effects. Proton RT enables delivery of radiation to the chest wall and regional lymphatics, including the IMN, without compromise of coverage and with improved sparing of surrounding normal structures. This treatment is feasible, however, optimal patient set up may vary and field size is limited without multiple fields/matching

  17. Investigation of some cleaning surface treatments for the fabrication of ITER first wall panels by HIP

    International Nuclear Information System (INIS)

    Frayssines, P.E.; Bucci, P.; Vito, E. de; Lorenzetto, P.

    2007-01-01

    Full text of publication follows: ITER First Wall (FW) panels are the innermost part of the ITER reactor. Metallic materials used for their manufacture are 316L(N)-IG stainless steel, a copper alloy and beryllium. Stainless steel material is a support structure for the copper alloy that serves as a heat sink material and also for the beryllium tiles that are a protective armour against the plasma. All these materials are bonded together by Hot Isostatic Pressing (HIP). Thus, several types of joints (Cu/Cu, Cu/SS, SS/SS or Cu/Be) are present in a FW panels. Their manufacturing requires a very strict and advanced metallic surface preparation in order to eliminate most of the organic or oxide layers that could prevent the diffusion process between the facing materials. In this field, our laboratory practice enables to obtain sufficiently clean metallic surfaces and high strength joints are obtained when small mockups are made. However, the manufacture of a large number of FW panels in the future requires to find a new cleaning process that is industrially relevant without a strong reduction of the joint's mechanical properties. In this paper we present our investigations to find an industrial solution to clean efficiently copper alloy and stainless steel materials in order to manufacture high strength Cu/Cu, SS/SS or Cu/SS joints. Products investigated are mainly acid liquids proposed by chemical Company and a more advanced technique that uses a plasma process. HIP joints are tested mechanically by making impact toughness and tensile measurements. Results obtained with these solutions are compared to those obtained in our Laboratory by using our own cleaning route. Moreover, XPS analyses are performed on small specimens that have been submitted to the same cleaning treatments in order to better understand the mechanical results of our specimens. (authors)

  18. Film Permeability Determination Using Static Permeability Cells

    Science.gov (United States)

    The permeability of tarps to soil fumigant pesticides varies depending on the active ingredient chemical: dimethyl disulfide (DMDS), methyl bromide, chloropicrin, or other. The diffusion rate can be represented by the mass transfer coefficient (MTC).

  19. Changes During Growth in Cell Wall Components of Berseem Clover Under Different Cutting Treatments in a Mediterranean Region

    Directory of Open Access Journals (Sweden)

    Giuditta De Santis

    2007-09-01

    Full Text Available Forage digestibility of berseem clover (Trifolium Alexandrinum L. is influenced by plant cell wall composition. This study was conducted to evaluate the effects of different cutting treatments on cell-wall components of the herbage and plant fractions in two Mediterranean berseem genotypes during growth and to examine the relationship between digestibility and cell wall components in these plant fractions. Cutting treatments were initiated at sixth internode elongation (A and early flowering (B and there was an uncut control treatment (C. Spring growth of genotypes of Egyptian (cv. Giza 10 and Italian (cv. Sacromonte origins was harvested in each of two years beginning 196 days after sowing and thereafter every 6 days (twelve harvests in total to measure cell wall components. Neutral detergent fibre (NDF, acid detergent fibre (ADF and acid detergent lignin (ADL concentrations were determined for leaf, stem, and total forage of each cultivar at each harvest. Without defoliation, NDF, ADF and ADL concentrations of herbage increased linearly to a maximum of 528, 375 and 84 g kg-1 DM, respectively, by 220 days after planting, when plant height reached maximum values, then plateaued until 257 days after planting. Plant parts differed in cell-wall concentration, with stems being of higher fibre components than leaves, in the two cutting treatments. Herbage and plant fraction fibre concentrations were negatively correlated with digestibility for all cutting treatments. Defoliation induced a reduction in fibre concentrations and plant height, although a rapid regrowth was observed after cutting, in both treatments A and B. However, delaying defoliation to the early flowering stage (B increased fibre components concentrations both at cutting time and during the growing season and significantly reduced the regrowth height. Conversely, plants cut at the sixth internode elongation (treatment A showed lower concentrations of fibre fractions than initiating

  20. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Amini, Arya [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); UC Irvine School of Medicine, Irvine, CA (United States); Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Soh, Hendrick [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques; Mohan, Radhe [Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States)

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V{sub 20}, V{sub 30}, or V{sub 40}) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within < 2.5 cm of the CW. We found 260 cases; of these, chronic grade ≥ 2 CW pain was identified in 23 patients. We then selected 10 representative patients from this group and generated proton SBRT treatment plans, using the identical dose of 50 Gy in 4 fractions, and assessed potential differences in CW dose between the 2 plans. The proton SBRT plans reduced the CW doses at all dose levels measured. The median CW V{sub 20} was 364.0 cm{sup 3} and 160.0 cm{sup 3} (p < 0.0001), V{sub 30} was 144.6 cm{sup 3}vs 77.0 cm{sup 3} (p = 0.0012), V{sub 35} was 93.9 cm{sup 3}vs 57.9 cm{sup 3} (p = 0.005), V{sub 40} was 66.5 cm{sup 3}vs 45.4 cm{sup 3} (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures.

  1. Using dissolved gas analysis to investigate the performance of an organic carbon permeable reactive barrier for the treatment of mine drainage

    Science.gov (United States)

    Williams, R.L.; Mayer, K.U.; Amos, R.T.; Blowes, D.W.; Ptacek, C.J.; Bain, J.G.

    2007-01-01

    The strongly reducing nature of permeable reactive barrier (PRB) treatment materials can lead to gas production, potentially resulting in the formation of gas bubbles and ebullition. Degassing in organic C based PRB systems due to the production of gases (primarily CO2 and CH4) is investigated using the depletion of naturally occurring non-reactive gases Ar and N2, to identify, confirm, and quantify chemical and physical processes. Sampling and analysis of dissolved gases were performed at the Nickel Rim Mine Organic Carbon PRB, which was designed for the treatment of groundwater contaminated by low quality mine drainage characterized by slightly acidic pH, and elevated Fe(II) and SO4 concentrations. A simple 4-gas degassing model was used to analyze the dissolved gas data, and the results indicate that SO4 reduction is by far the dominant process of organic C consumption within the barrier. The data provided additional information to delineate rates of microbially mediated SO4 reduction and confirm the presence of slow and fast flow zones within the barrier. Degassing was incorporated into multicomponent reactive transport simulations for the barrier and the simulations were successful in reproducing observed dissolved gas trends.

  2. Increase in tumour permeability following TGF-? type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI

    OpenAIRE

    Minowa, T; Kawano, K; Kuribayashi, H; Shiraishi, K; Sugino, T; Hattori, Y; Yokoyama, M; Maitani, Y

    2009-01-01

    Background: To enhance the success rate of nanocarrier-mediated chemotherapy combined with an anti-angiogenic agent, it is crucial to identify parameters for tumour vasculature that can predict a response to the treatment of the anti-angiogenic agent. Methods: To apply transforming growth factor (TGF)-? type I receptor (T?R-I) inhibitor, A-83-01, to combined therapy, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was carried out in mice bearing colon 26 cells using gadolinium ...

  3. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of Pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Khailova, Ludmila; Baird, Christine H; Rush, Aubri A; Barnes, Christopher; Wischmeyer, Paul E

    2017-12-01

    Recent clinical trials and in vivo models demonstrate probiotic administration can reduce occurrence and improve outcome of pneumonia and sepsis, both major clinical challenges worldwide. Potential probiotic benefits include maintenance of gut epithelial barrier homeostasis and prevention of downstream organ dysfunction due to systemic inflammation. However, mechanism(s) of probiotic-mediated protection against pneumonia remain poorly understood. This study evaluated potential mechanistic targets in the maintenance of gut barrier homeostasis following Lactobacillus rhamnosus GG (LGG) treatment in a mouse model of pneumonia. Studies were performed in 6-8 week old FVB/N mice treated (o.g.) with or without LGG (10 9  CFU/ml) and intratracheally injected with Pseudomonas aeruginosa or saline. At 4, 12, and 24 h post-bacterial treatment spleen and colonic tissue were collected for analysis. Pneumonia significantly increased intestinal permeability and gut claudin-2. LGG significantly attenuated increased gut permeability and claudin-2 following pneumonia back to sham control levels. As mucin expression is key to gut barrier homeostasis we demonstrate that LGG can enhance goblet cell expression and mucin barrier formation versus control pneumonia animals. Further as Muc2 is a key gut mucin, we show LGG corrected deficient Muc2 expression post-pneumonia. Apoptosis increased in both colon and spleen post-pneumonia, and this increase was significantly attenuated by LGG. Concomitantly, LGG corrected pneumonia-mediated loss of cell proliferation in colon and significantly enhanced cell proliferation in spleen. Finally, LGG significantly reduced pro-inflammatory cytokine gene expression in colon and spleen post-pneumonia. These data demonstrate LGG can maintain intestinal barrier homeostasis by enhancing gut mucin expression/barrier formation, reducing apoptosis, and improving cell proliferation. This was accompanied by reduced pro-inflammatory cytokine expression in the

  4. The relationship between clinical findings and therapeutic approach in the treatment of fractured frontal sinus walls

    Directory of Open Access Journals (Sweden)

    Pešić Zoran

    2007-01-01

    Full Text Available Introduction The incidence of fractured frontal sinus walls vary from 6% to 12% of all craniofacial injuries. Objective Estimated relation between clinical findings and performed therapeutic procedures in treating fractured frontal sinus walls. To estimate success in performed therapeutic procedures, according to the incidence of postoperative complications and the integrity of injured regions from the functional and esthetical aspect. Method We analyzed, by retrospective clinical investigation, 19 patients with fractured frontal sinus walls and dislocated fragments, treated at the Department for Maxillofacial Surgery, Clinic of Dentistry in Niš, in the period March 1995 - March 2006. The success of therapy was estimated based on the incidence and type of complications and esthetical results in relation to preoperative findings. Results Predominant etiological factor in fractures of frontal sinus walls is trauma sustained in traffic accidents, which occurred in 52.6% of patients in our investigation. In clinical findings, the impression was the predominant sign, present in 16 patients. In 6 cases soft tissue access through already present lacerations or their extensions was employed, in 4 cases it was done by supraciliary access and in 9 by bicoronal access. As a therapeutic measure, drainage was performed in 5 cases, cranialisation in one, ostheoneogenetic access in 11 cases and a simple reposition of fragments in 2 patients with fractured frontal sinus walls. Infection as a complication was absent. All patients were satisfied with postoperative esthetical appearance of the injured region. Conclusion The infection, the lacerations and the direction of fractured lines are dominant factors in the determination of therapeutic procedures used to treat fractured frontal sinus walls. This will result in the low incidence of infection as a postoperative complication and in patient’s satisfaction with postoperative esthetical result of the injured

  5. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  6. Calculation of Permeability inside the Basket including one Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Hwan; Bang, Kyung Sik; Lee, Ju an; Choi, Woo Seok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In general, the porous media model and the effective thermal conductivity were used to simply the fuel assembly. The methods of calculating permeability were compared considering the flow inside a basket which includes a nuclear fuel. Detailed fuel assembly was a computational modeling and the flow characteristics were investigated. The flow inside the basket which included a fuel assembly is analyzed by CFD. As the height of the fuel assembly increases, the pressure drop linearly increased. The inertia resistance could be neglected. Three methods to calculate the permeability were compared. The permeability by the friction factor is 50% less than the permeability by wall shear stress and pressure drop.

  7. Permeability prediction in chalks

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika

    2011-01-01

    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability p...... significantly using the effective specific surface as the fluid-flow concept. The FZI unit is appropriate for highly permeable sedimentary rocks such as sandstones and limestones that have small surface areas....

  8. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    Science.gov (United States)

    Neves, Luis Filipe Ferreira

    To develop a therapeutic system with cancer cell selectivity, the present study evaluated a possible specific and localized tumor treatment. Phosphatidylserine (PS) exposure on the external face of the cell membrane is almost completely exclusive to cancer cells and endothelial cells in the tumor vasculature. The human protein annexin V is known to have strong calcium-dependent binding to anionic phospholipids such as PS. This protein was studied for targeting single-walled carbon nanotubes (SWNTs) to the vasculature of breast tumors. The synthesis of the protein annexin V, by a pET vector in Escherichia coli, constitutes the first phase of this study. Recombinant annexin V was purified from the cell lysate supernatant by immobilized metal affinity chromatography. The overall production of purified annexin V protein was 50 mg/L. The binding ability of the protein annexin V was evaluated by determining the dissociation constant when incubated with proliferating human endothelial cells in vitro. The dissociation constant, Kd, was measured to be 0.8 nM, indicating relatively strong binding. This value of Kd is within the range reported in the literature. Single-walled carbon nanotubes (SWNTs) were functionalized with annexin V using two intermediate linkers (containing FMOC and DSPE) resulting in stable suspensions. The SWNT and protein concentrations were 202 mg/L and 515 mg/L, respectively, using the linker with DSPE (average of nine preparations). The conjugation method that used the DSPE-PEG-maleimide linker allowed to successfully conjugate the SWNTs with final concentrations approximately five times higher than the linker containing FMOC. The conjugation method used has a non-covalent nature, and therefore the optical properties of the nanotubes were preserved. The conjugate was also visually observed using atomic force microscopy (AFM), allowing to verify the presence of the protein annexin V on the surface of the nanotubes, with an height ranging between 2

  9. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.

    Science.gov (United States)

    Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin

    2014-02-01

    The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.

  10. Mitochondrial Function, Dynamics, and Permeability Transition: A Complex Love Triangle as A Possible Target for the Treatment of Brain Aging and Alzheimer's Disease.

    Science.gov (United States)

    Stockburger, Carola; Eckert, Schamim; Eckert, Gunter P; Friedland-Leuner, Kristina; Müller, Walter E

    2018-02-28

    Because of the failure of all amyloid-β directed treatment strategies for Alzheimer's disease (AD), the concept of mitochondrial dysfunction as a major pathomechanism of the cognitive decline in aging and AD has received substantial support. Accordingly, improving mitochondrial function as an alternative strategy for new drug development became of increasing interest and many different compounds have been identified which improve mitochondrial function in preclinical in vitro and in vivo experiments. However, very few if any have been investigated in clinical trials, representing a major drawback of the mitochondria directed drug development. To overcome these problems, we used a top-down approach by investigating several older antidementia drugs with clinical evidence of therapeutic efficacy. These include EGb761® (standardized ginkgo biloba extract), piracetam, and Dimebon. All improve experimentally many aspects of mitochondrial dysfunction including mitochondrial dynamics and also improve cognition and impaired neuronal plasticity, the functionally most relevant consequences of mitochondrial dysfunction. All partially inhibit opening events of the mitochondrial permeability transition pore (mPTP) which previously has mainly been discussed as a mechanism relevant for the induction of apoptosis. However, as more recent work suggests, the mPTP as a master regulator of many mitochondrial functions, our data suggest the mPTP as a possible relevant drug target within the love triangle between mPTP regulation, mitochondrial dynamics, and mitochondrial function including regulation of neuronal plasticity. Drugs interfering with mPTP function will improve not only mitochondrial impairment in aging and AD but also will have beneficial effects on impaired neuronal plasticity, the pathomechanism which correlates best with functional deficits (cognition, behavior) in aging and AD.

  11. The long-term effects of wall attached microalgal biofilm on algae-based wastewater treatment

    DEFF Research Database (Denmark)

    Su, Yanyan; Mennerich, Artur; Urban, Brigitte

    2016-01-01

    The influence of the reactor wall attached biofilm on the nutrient removal performance was investigated in an open photobioreactor during long-term operation. Total nitrogen and phosphorus removal efficiencies were statistically similar between reactor with (reactor A) and without (reactor B......) biofilm at the Hydraulic Retention Time (HRT) of 18, 13.5 and 9days. When the HRT reduced to 8days, total nitrogen and phosphorus removal efficiencies in the reactor A were 42.95±5.11% and 97.97±1.12%, respectively, while significant lower removal efficiencies (38.06±5.80% for total nitrogen and 83.......14±8.16% for phosphorus) were obtained in the reactor B. The VSS concentrations throughout the test were statistically similar for the two reactors, with a mean value of 0.63±0.25g/l for reactor A and 0.69±0.20g/l for reactor B. This study indicated that the reactor wall attached biofilm supported high phosphorus...

  12. Permeability of porour rhyolite

    Science.gov (United States)

    Cashman, K.; Rust, A.; Wright, H.; Roberge, J.

    2003-04-01

    The development of permeability in bubble-bearing magmas determines the efficiency of volatile escape during their ascent through volcanic conduits, which, in turn, controls their explosive potential. As permeability requires bubble connectivity, relationships between permeability and porosity in silicic magmas must be controlled by the formation, growth, deformation and coalescence of their constituent bubbles. Although permeability data on porous volcanic pyroclasts are limited, the database can be greatly extended by including data for ceramic and metallic foams1. Several studies indicate that a single number does not adequately describe the permeability of a foam because inertial effects, which predominate at high flow rates, cause deviations from Darcy's law. These studies suggest that permeability is best modeled using the Forschheimer equation to determine both the Darcy permeability (k1) and the non-Darcian (k2) permeability. Importantly, at the high porosities of ceramic foams (75-95%), both k1 and k2 are strongly dependent on pore size and geometry, suggesting that measurement of these parameters provides important information on foam structure. We determined both the connected porosity (by He-pycnometry) and the permeability (k1 and k2) of rhyolitic samples having a wide range in porosity (22-85%) and vesicle textures. In general, these data support previous observations of a power law relationship between connected porosity and Darcy permeability2. In detail, variations in k1 increase at higher porosities. Similarly, k2 generally increases in both mean and standard deviation with increasing porosity. Measurements made on three mutually perpendicular cores from individual pumice clasts suggest that some of the variability can be explained by anisotropy in the vesicle structure. By comparison with ceramic foams, we suggest that the remaining variability results from differences either in average vesicle size or, more likely, in the size of apertures

  13. Evaluation of a new solid boundary implementation in the lattice Boltzmann method for porous media considering permeability and apparent slip.

    Science.gov (United States)

    Moqtaderi, Hamed; Esfahanian, Vahid

    2011-06-13

    The accuracy of solid wall treatment in the lattice Boltzmann method (LBM) simulation of porous structures affects different hydraulic parameters including integral properties, such as permeability, or local phenomena, such as apparent slip. Based on an analysis of the advantages and disadvantages of the current methods, a new technique is introduced for exact boundary extraction from binary representation. Using this technique, the LBM model can simultaneously benefit from the advantages of existing approaches, i.e. the real micro-/nanostructure obtained with X-ray computed tomography, and a reduction in the resolution requirement. To evaluate the technique, permeability and slip length on the solid walls are investigated for a porous gas diffusion layer. The results show acceptable accuracy improvement balanced with computational costs.

  14. Soils - Mean Permeability

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...

  15. Hydrogen permeability through metals

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tsvetkov, I.V.; Marenkov, E.D.; Yarko, S.S.

    2011-01-01

    The mechanisms of hydrogen permeability through one-layer and multi-layer membranes are considered. The effect of surface roughness, crystal defects, cracks and pores is described. Mathematical description of the processes is given [ru

  16. Permeable pavement study (Edison)

    Data.gov (United States)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  17. Intestinal Permeability: The Basics

    Directory of Open Access Journals (Sweden)

    Ingvar Bjarnason

    1995-01-01

    Full Text Available The authors review some of the more fundamental principles underlying the noninvasive assessment of intestinal permeability in humans, the choice of test markers and their analyses, and the practical aspects of test dose composition and how these can be changed to allow the specific assessment of regional permeability changes and other intestinal functions. The implications of increased intestinal permeability in the pathogenesis of human disease is discussed in relation to findings in patients with Crohn’s disease. A common feature of increased intestinal permeability is the development of a low grade enteropathy, and while quantitatively similar changes may be found in Crohn’s disease these seem to predict relapse of disease. Moreover, factors associated with relapse of Crohn’s disease have in common an action to increase intestinal permeability. While increased intestinal permeability does not seem to be important in the etiology of Crohn’s disease it may be a central mechanism in the clinical relapse of disease.

  18. Controlling DC permeability in cast steels

    International Nuclear Information System (INIS)

    Sumner, Aaran; Gerada, Chris; Brown, Neil; Clare, Adam

    2017-01-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  19. Controlling DC permeability in cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, Aaran, E-mail: aaran.sumner@nottingham.ac.uk [University of Nottingham, Nottingham University Park Campus, Nottingham NG7 2RD, England (United Kingdom); Gerada, Chris, E-mail: chris.gerada@nottingham.ac.uk [Electrical Machines, University of Nottingham, Tower Building, Nottingham NG7 2RD, England (United Kingdom); Brown, Neil, E-mail: neil.brown@cummins.com [Advanced Electrical Machines Research and Technology at Cummins Power Generation, Peterborough PE2 6FZ, England (United Kingdom); Clare, Adam, E-mail: adam.clare@nottingham.ac.uk [Advanced Manufacturing, University of Nottingham, University Park Campus, Nottingham NG7 2RD, England (United Kingdom)

    2017-05-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  20. Focal depth measurements of the vaginal wall: a new method to noninvasively quantify vaginal wall thickness in the diagnosis and treatment of vaginal atrophy

    NARCIS (Netherlands)

    Weber, Maaike A.; Diedrich, Chantal M.; Ince, Can; Roovers, Jan-Paul

    2016-01-01

    The aim of the study was to evaluate if vaginal focal depth measurement could be a noninvasive method to quantify vaginal wall thickness. Postmenopausal women undergoing topical estrogen therapy because of vaginal atrophy (VA) were recruited. VA was diagnosed based on the presence of symptoms and

  1. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    International Nuclear Information System (INIS)

    Zsirka, Balázs; Horváth, Erzsébet; Szabó, Péter; Juzsakova, Tatjána; Szilágyi, Róbert K.; Fertig, Dávid; Makó, Éva; Varga, Tamás

    2017-01-01

    Highlights: • Halloysite intercalation/delamination. • Thin-walled nanoscroll preparation. • Oxidative surface cleaning with H_2O_2 and heating. • X-ray diffraction, TEM, N_2 adsorption, TG/DTG and FT-IR/ATR measurements. • Nanoscroll rearrangement, periodicity along the crystallographic ‘c’-axis. - Abstract: Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N_2 adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the ‘c’-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the ‘c’-crystal direction. The d(001) value showed a diffuse pattern at 7.4–7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  2. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zsirka, Balázs, E-mail: zsirkab@almos.vein.hu [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Horváth, Erzsébet, E-mail: erzsebet.horvath@gmail.com [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Szabó, Péter, E-mail: xysma@msn.com [University of Pannonia, Department of Analytical Chemistry, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Juzsakova, Tatjána, E-mail: yuzhakova@almos.uni-pannon.hu [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Szilágyi, Róbert K., E-mail: szilagyi@montana.edu [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Fertig, Dávid, E-mail: fertig.david92@gmail.com [University of Pannonia, Department of Analytical Chemistry, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Makó, Éva, E-mail: makoe@almos.vein.hu [University of Pannonia, Institute of Materials Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Varga, Tamás, E-mail: vtamas@chem.u-szeged.hu [University of Szeged, Department of Applied and Environmental Chemistry, Rerrich B. tér 1., Szeged H-6720 Hungary (Hungary); and others

    2017-03-31

    Highlights: • Halloysite intercalation/delamination. • Thin-walled nanoscroll preparation. • Oxidative surface cleaning with H{sub 2}O{sub 2} and heating. • X-ray diffraction, TEM, N{sub 2} adsorption, TG/DTG and FT-IR/ATR measurements. • Nanoscroll rearrangement, periodicity along the crystallographic ‘c’-axis. - Abstract: Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N{sub 2} adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the ‘c’-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the ‘c’-crystal direction. The d(001) value showed a diffuse pattern at 7.4–7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  3. Genetic modification of cerebral arterial wall: implications for prevention and treatment of cerebral vasospasm.

    Science.gov (United States)

    Vijay, Anantha; Santhanam, R; Katusic, Zvonimir S

    2006-10-01

    Genetic modification of cerebral vessels represents a promising and novel approach for prevention and/or treatment of various cerebral vascular disorders, including cerebral vasospasm. In this review, we focus on the current understanding of the use of gene transfer to the cerebral arteries for prevention and/or treatment of cerebral vasospasm following subarachnoid hemorrhage (SAH). We also discuss the recent developments in vascular therapeutics, involving the autologous use of progenitor cells for repair of damaged vessels, as well as a cell-based gene delivery approach for the prevention and treatment of cerebral vasospasm.

  4. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    Science.gov (United States)

    Zsirka, Balázs; Horváth, Erzsébet; Szabó, Péter; Juzsakova, Tatjána; Szilágyi, Róbert K.; Fertig, Dávid; Makó, Éva; Varga, Tamás; Kónya, Zoltán; Kukovecz, Ákos; Kristóf, János

    2017-03-01

    Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the 'c'-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the 'c'-crystal direction. The d(001) value showed a diffuse pattern at 7.4-7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  5. Prediction of permeability changes in an excavation response zone

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Ishii, Takashi; Kuroda, Hidetaka; Tada, Hiroyuki

    1992-01-01

    In geologic disposal of radioactive wastes, stress changes due to cavern excavation may expand the existing fractures and create possible bypasses for groundwater. This paper proposes a simple method for predicting permeability changes in the excavation response zones. Numerical analyses using this method predict that the response zones created by cavern excavation would differ greatly in thickness and permeability depending on the depth of the cavern site and the initial in-situ stress, that when the cavern site is deeper, response zones would expand more and permeability would increases more, and that if the ratio of horizontal to vertical in-situ stress is small, extensive permeable zones at the crown and the bottom would occur, whereas if the ratio is large, extensive permeable zones would occur in the side walls. (orig.)

  6. Surgical Management of Severe Spontaneous Hemorrhage of the Abdominal Wall Complicating Acenocoumarol Treatment

    Directory of Open Access Journals (Sweden)

    Orestis Ioannidis

    2012-01-01

    Full Text Available Acenocoumarol is a vitamin K antagonist that is used for the treatment of acquired and congenital, both arterial and venous, thrombotic diseases. Its use is complicated by the narrow therapeutic range. Bleeding following oral anticoagulation, despite rare, remains the major complication. Most cases of hemorrhagic episodes usually require short hospitalization and transfusion, while surgical drainage of the hematoma is not recommended. However, in cases that conservative treatment isn’t successful, surgical intervention remains an option. We present a case of severe spontaneous bleeding of the rectus abdominis muscle which was successfully managed surgically.

  7. Clinical impact of ' in-treatment' wall motion abnormalities in hypertensive patients with left ventricular hypertrophy: the LIFE study

    DEFF Research Database (Denmark)

    Cicala, S.; Simone, G. de; Wachtell, K.

    2008-01-01

    Objectives Left ventricular systolic wall motion abnormalities have prognostic value. Whether wall motion detected by serial echocardiographic examinations predicts prognosis in hypertensive patients with left ventricular hypertrophy ( LVH) without clinically recognized atherosclerotic disease ha...

  8. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  9. Bioinspired Layer-by-Layer Microcapsules Based on Cellulose Nanofibers with Switchable Permeability

    DEFF Research Database (Denmark)

    Paulraj, Thomas; Riazanova, Anastasia V; Yao, Kun

    2017-01-01

    Green, all-polysaccharide based microcapsules with mechanically robust capsule walls and fast, stimuli-triggered, and switchable permeability behavior show great promise in applications based on selective and timed permeability. Taking a cue from nature, the build-up and composition of plant......-by-layer technique on sacrificial CaCO3 templates, using plant polysaccharides (pectin, cellulose nanofibers, and xyloglucan) only. In water, the capsule wall was permeable to labeled dextrans with a hydrodynamic diameter of ∼6.6 nm. Upon exposure to NaCl, the porosity of the capsule wall quickly changed allowing...

  10. Therapeutic benefits of enhancing permeability barrier for atopic eczema

    Directory of Open Access Journals (Sweden)

    George Man

    2015-06-01

    Full Text Available The regulatory role of epidermal permeability barrier function in cutaneous inflammation has been well appreciated. While barrier disruption induces cutaneous inflammation, improvement of permeability barrier function alleviates inflammation. Studies have demonstrated that improvement of epidermal permeability barrier function not only prevents the development of atopic eczema, but also delays the relapse of these diseases. Moreover, enhancing the epidermal permeability barrier also alleviates atopic eczema. Furthermore, co-applications of barrier enhancing products with glucocorticoids can increase the therapeutic efficacy and reduce the adverse effects of glucocorticoids in the treatment of atopic eczema. Therefore, utilization of permeability barrier enhancing products alone or in combination with glucocorticoids could be a valuable approach in the treatment of atopic eczema. In this review, we discuss the benefits of improving the epidermal permeability barrier in the management of atopic eczema.

  11. Abdominal wall recurrence following laparoscopic surgical treatment of colorectal cancer – case report

    Directory of Open Access Journals (Sweden)

    Kaiser de Souza Kock

    2016-10-01

    Full Text Available The treatment of colorectal diseases by videolaparoscopy (VL began in the 1990s, bringing multiple advantages in the treatment of cancers in general, especially benign tumors. Specifically, in case of colorectal cancer (CRC, the laparoscopic approach offers very attractive prospects, such as the staging of advanced lesions and palliative management of patients with incurable CCR. The most controversial aspect of this technique is the use of VL in curative resections. One questions the possibility of metastasis in portals related to tumor recurrence, as well as the violation of oncological principles. The mechanisms responsible for this phenomenon may be related to pneumoperitoneum, tissue manipulation, and biological factors. Resumo: O tratamento das doenças colorretais por vídeo-laparoscopia (VL se iniciou na década de 90, trazendo inúmeras vantagens no tratamento dos cânceres em geral, sobretudo nos cânceres benignos. Especificamente no caso do câncer colorretal (CCR o acesso laparoscópico oferece perspectivas bastante atraentes, como o estadiamento de lesões avançadas e o manuseio paliativo de pacientes com CCR incurável. O aspecto mais controverso dessa técnica reside na utilização da VL em ressecções curativas. Questiona-se a possibilidade de metástase em portais relacionadas com a recidiva tumoral, além da violação de princípios oncológicos. Os mecanismos responsáveis por esse fenômeno podem estar relacionados ao pneumoperitônio, manipulação tecidual e fatores biológicos. Keywords: Videolaparoscopy, Colorectal cancer, Recurrence, Metastasis, Palavras chave: Vídeo-Laparoscopia, Câncer Colorretal, Recidiva, Metástase

  12. Modification of in vitro and in vivo BCG cell wall-induced immunosuppression by treatment with chemotherapeutic agents or indomethacin

    International Nuclear Information System (INIS)

    DeSilva, M.A.; Wepsic, H.T.; Mizushima, Y.; Nikcevich, D.A.; Larson, C.H.

    1985-01-01

    The in vitro inhibition of spleen cell blastogenesis response and the in vivo enhancement of tumor growth are phenomena associated with BCG cell wall (BCGcw) immunization. What effect treatment with chemotherapeutic agents and the prostaglandin inhibitor indomethacin would have on the in vitro and in vivo responses to BCGcw immunization was evaluated. In vitro blastogenesis studies showed that chemotherapy pretreatment prior to immunization with BCGcw resulted in a restoration of the spleen cell blastogenesis response. In blastogenesis addback studies, where BCGcw-induced irradiated splenic suppressor cells were admixed with normal cells, less inhibition of blastogenesis occurred when spleen cells were obtained from rats that had received the combined treatment of chemotherapy and BCGcw immunization versus only BCGcw immunization. The cocultivation of spleen cells from BCGcw-immunized rats with indomethacin resulted in a 30-40% restoration of the blastogenesis response. In vivo studies showed that BCGcw-mediated enhancement of intramuscular tumor growth of the 3924a ACI rat tumor could be abrogated by either pretreatment with busulfan or mitomycin or by the feeding of indomethacin

  13. Permeability of cork for water and ethanol.

    Science.gov (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-09

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  14. Perturbative treatment of potential walls or potential cores in quantum mechanics

    International Nuclear Information System (INIS)

    Mei, W.N.

    1987-01-01

    The general problem involving an infinite potential barrier is treated by first constructing a pseudopotential H' that is shown to reproduce the effect of the barrier. A new procedure is then developed to handle the perturbative effect of H' since the standard formulae become invalid. The case of a finite potential well with large height V/sub o/ can the be solved by reducing it to that of an equivalent infinite barrier. The perturbation parameter turns out to be proportional 1/V/sub o/-E)/sup 1/2/ where E is the energy of the unperturbed state, defying, therefore, the conventional perturbation series treatment that depends on a split-off Hamiltonian for its expansion parameter. These methods are first illustrated with simple examples and then compared to more complex cases. Recently, they have extended this method to the case of degenerate perturbation. The calculation of the hydrogen-like impurity states in quantum well is in progress. Their result should also furnish a check for any specific problem involving a barrier solved by other approximate means such as the variational method

  15. Fast Laplace solver approach to pore-scale permeability

    Science.gov (United States)

    Arns, C. H.; Adler, P. M.

    2018-02-01

    We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  16. Correlating elastic and plastic deformation with magnetic permeability values

    Science.gov (United States)

    Papadopoulou, S.

    2017-12-01

    This paper investigates the utilization of magnetic permeability method in determining elastic and plastic deformation state of ferromagnetic steels. The results have shown a strong degradation of the magnetic values on plastically region due to the irreversible movements of the magnetic domain walls.

  17. Comparison of Mass Transfer Models for Determination of the Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    P Zakeri-Milani

    2008-09-01

    Full Text Available Background and the purpose of the study: In determination of the permeability of the intestinal wall by external perfusion techniques, several models have been proposed. In the present study three models were used for experimental results that differ in their convection and diffusion assumptions. Material and Methods: Permeability coefficients for 13 compounds (metoprolol, propranolol, naproxen, ketoprofen, furosemide, hydrochlorothiazide, cimetidine, ranitidine, atenolol, piroxicam, antipyrine, ibuprofen and carbamazepine with known human intestinal permeability values were determined in anaesthetized rats by different mass transfer models and plotted versus the observed human intestinal permeabilities. Results: The calculated dimensionless wall permeability values were in the range of 0.37 - 4.85, 0.38-6.54 and 0.41-16.59 for complete radial mixing, mixing tank and laminar flow models respectively. The results indicated that all of the models work relatively well for our data despite fundamentally different assumptions. The wall permeabilities were in the order laminar flow > mixing tank > complete radial mixing. Conclusion: Although laminar flow model provides the most direct measure of the intrinsic wall permeability, it has limitations for highly permeable drugs such as ibuprofen. The normal physiological hydrodynamics is more complex and more investigation is required to find out the real hydrodynamics.

  18. Scattering of atoms by a stationary sinusoidal hard wall: Rigorous treatment in (n+1) dimensions and comparison with the Rayleigh method

    International Nuclear Information System (INIS)

    Goodman, F.O.

    1977-01-01

    A rigorous treatment of the scattering of atoms by a stationary sinusoidal hard wall in (n+1) dimensions is presented, a previous treatment by Masel, Merrill, and Miller for n=1 being contained as a special case. Numerical comparisons are made with the GR method of Garcia, which incorporates the Rayleigh hypothesis. Advantages and disadvantages of both methods are discussed, and it is concluded that the Rayleigh GR method, if handled properly, will probably work satisfactorily in physically realistic cases

  19. Effect of desensitizing agents on dentin permeability.

    Science.gov (United States)

    Ishihata, Hiroshi; Kanehira, Masafumi; Nagai, Tomoko; Finger, Werner J; Shimauchi, Hidetoshi; Komatsu, Masashi

    2009-06-01

    To investigate the in vitro efficacy of two dentin desensitizing products at reducing liquid permeability through human dentin discs. The tested hypothesis was that the products, in spite of different chemical mechanisms were not different at reducing or eliminating flow through dentin discs. Dentin slices (1 mm thick) were prepared from 16 extracted human third molars and their permeability was indirectly recorded in a split chamber model, using a chemiluminescence technique, after EDTA treatment (control), after soaking with albumin, and after desensitizer application. Two products were studied: MS Coat, a self-curing resin-containing oxalate product, and Gluma Desensitizer, a glutaraldehyde/HEMA-based agent without initiator. The dentin slices were mounted between an upper chamber, filled with an aqueous solution of 1% potassium ferricyanide and 0.3% hydrogen peroxide, and a lower chamber filled with 1% sodium hydroxide solution and 0.02% luminol. The upper solution was pressurized, and upon contact with the luminol solution a photochemical signal was generated and recorded as a measure of permeability throughout two consecutive pressurizing cycles at 2.5 and 13 kPa (26 and 133 cm H2O), respectively. The permeability of the control and albumin-soaked samples was similarly high. After application of the desensitizing agents, dentin permeability was reduced to virtually zero at both pressure levels (P < 0.001).

  20. Improvement of air permeability of Bubbfil nanofiber membrane

    Directory of Open Access Journals (Sweden)

    Wang Fei-Yan

    2018-01-01

    Full Text Available Nanofiber membranes always have extremely high filter efficiency and remarkably low pressure drop. In order to further improve air permeability of bubbfil nanofiber membranes, the plasma technology is used for surface treatment in this paper. The results show that plasma treatment can improve air permeability by 4.45%. Under higher power plasma treatment, earthworm like etchings are produced on the membrane surface with fractal dimensions of about 1.138.

  1. Two Techniques of Intestinal Wall Suture in Surgical Treatment of Ileus in Dogs and the Importance of Omentalisation

    Directory of Open Access Journals (Sweden)

    M. Crha

    2008-01-01

    Full Text Available Model experimental studies focused on the intestinal suture techniques in relation to healing, postoperative narrowing of the intestinal lumen or adhesion formation can not comprise a number of clinical factors (foreign body presence in the intestine, haematological abnormalities, septic peritonitis, different age of patients, etc. that under clinical practice conditions may have an effect on the healing of the intestinal suture. The aim of this clinical study was to confirm in a group of dogs surgically treated for small bowel obstruction, whether different techniques of its wall suture may affect the frequency of possible dehiscence occurrence. This study compares two different techniques of intestinal wall suture in relation to postoperative dehiscence of the intestinal wall closure. Based on the clinical observation with regard to the risk of postoperative dehiscence and possible complications in form of adhesions, also the importance of omentalisation in the suture of small bowel was evaluated. No significant difference was demonstrated (p > 0.05 in the frequency of postoperative dehiscence at the site of the intestinal wall closure between the two-layer inverting and singlelayer appositional techniques of suture. Likewise, no significant difference was demonstrated (p > 0.05 in the frequency of dehiscence of intestinal wall suture between patients that underwent intestinal suture omentalisation and those whose intestinal wall suture was not complemented with omentalisation. Based on the results of this clinical study it may be stated that both manual single-layer approximation technique and two-layer inverting technique of the intestinal wall suture are equally safe from the viewpoint of possible dehiscence, and it depends on the surgeon's preference, which one of the said techniques he or she chooses. Concurrently it may be assumed that an exactly performed suture of the intestinal wall does not necessarily require omentalisation.

  2. Permeability measuremens of brazilian Eucalyptus

    Directory of Open Access Journals (Sweden)

    Marcio Rogério da Silva

    2010-09-01

    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  3. Evaluation of the permeability and morphological alteration of the dental surface after apicoectomy, treatment and preparation with Er:YAG and Nd:YAG lasers; Avaliacao da permeabilidade e da alteracao morfologica da superficie dentinaria apos apicectomia, tratamento e retropreparo com os lasers de Er:YAG e Nd:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rodrigo Guerra de

    2001-07-01

    One of the objectives of endodontic treatment is to resolve pathological periapical processes caused by microbial contamination of the dental pulp. Correct execution of the necessary chemical preparation prior to surgery generally results in positive outcomes. However, a percentage of cases do not respond favorably and therefore require retreatment, a conservative therapeutic option. There are meanwhile a number of treatment failures which do not respond to these conservative measures and must therefore be subjected to paraendodontic surgical procedures. One of the principal problems of this therapeutic conduct is linked to the surface permeability of the dentin after apicoectomy and the lack of adequate marginal adaptation between the retrofilling material and the cavity walls. This permits the percolation of microorganisms and their metabolic by products from the system of root canals to the periapical region, thereby compromising the necessary tissue repair. The present work proposes the evaluation of the surface and marginal permeability of cut dentin after apicoectomy and treatment with Er:YAG and Nd:YAG lasers with fiber optics and then retrofilled with intermediate restorative material (IRM). A total of 24 single rooted teeth whose canals were endodontically treated were divided into 3 experimental groups: group I, whose apices were sectioned with an Er:YAG laser and the resulting cavity and the cut dental surface were irradiated with this laser via a 50/10 type fiber; in group II the apicoectomy was conducted with an Er:YAG laser and the resulting cavity and the cut surface were irradiated with a Nd:YAG laser; in group III, the samples were apicoectomized and the cavities were treated with a high speed bur (control group). Analysis of the infiltration of the dye methylene blue throughout the cut dental surface and the reconstruction demonstrated that the samples in the irradiated groups presented lower indices of infiltration than the control group. The

  4. Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides.

    Science.gov (United States)

    Cholet, Céline; Delsart, Cristèle; Petrel, Mélina; Gontier, Etienne; Grimi, Nabil; L'hyvernay, Annie; Ghidossi, Remy; Vorobiev, Eugène; Mietton-Peuchot, Martine; Gény, Laurence

    2014-04-02

    Pulsed electric field (PEF) treatment is an emerging technology that is arousing increasing interest in vinification processes for its ability to enhance polyphenol extraction performance. The aim of this study was to investigate the effects of PEF treatment on grape skin histocytological structures and on the organization of skin cell wall polysaccharides and tannins, which, until now, have been little investigated. This study relates to the effects of two PEF treatments on harvested Cabernet Sauvignon berries: PEF1 (medium strength (4 kV/cm); short duration (1 ms)) and PEF2 (low intensity (0.7 kV/cm); longer duration (200 ms)). Histocytological observations and the study of levels of polysaccharidic fractions and total amounts of tannins allowed differentiation between the two treatments. Whereas PEF1 had little effect on the polyphenol structure and pectic fraction, PEF2 profoundly modified the organization of skin cell walls. Depending on the PEF parameters, cell wall structure was differently affected, providing variable performance in terms of polyphenol extraction and wine quality.

  5. Best possible heat treatment of steel SA 336 F22 for the production of forged shells with heavy walls

    International Nuclear Information System (INIS)

    Badeau, J.P.; Poitrault, I.S.; De Badereau, A.; Blondeau, R.P.

    1986-01-01

    The manufacturing of thick-wall components, such as shells, for petrochemical reactors normally requires the 2.25Cr-1Mo(SA 336 F22) steel. This paper deals with: 1. Experienced difficulties in producing thick-wall forgings up to a thickness of 500 mm with standard 2.25Cr-1Mo steel. 2. The solutions offered by Le Creusot Heavy Forge. The studies discussed are: (1) the effect of the structure; (2) the effect of the chemical composition on hardenability and temper embrittlement in steel making; and (3) the effect of austenitization conditions. Some examples concerning industrial forgings are presented, among them: 1. The manufacturing of shells for the petrochemical industry. 2. A thick-wall shell from a 146-metric ton hollow ingot

  6. Permeability and stress-jump effects on magnetic drug targeting in a permeable microvessel using Darcy model

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, S., E-mail: sachinshaw@gmail.com [Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye (Botswana); Sutradhar, A.; Murthy, PVSN [Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India)

    2017-05-01

    In the present paper, we investigated the influence of permeability of the carrier particle and stress jump condition on the porous spherical surface in magnetic drug targeting through a permeable microvessel. The nature of blood is defined by non-Newtonian Casson fluid in the core region of the microvessel and Newtonian fluid in the peripheral region which is located near the surface of the wall of the microvessel. The magnetic particles are considered as spherical and in nanosize, embedded in the carrier particle along with drug particles. A magnet is placed near the tumor position to generate a magnetic field. The relative motion of the carrier particle is the resultant of the fluidic force, magnetic force and Saffman drag force which are calculated for the spherical carrier particle. Trajectories of the carrier particle along the radial and axial direction are calculated. Effect of different parameters such as stress-jump constant, permeability of the carrier particle, pressure gradient, yield stress, Saffman force, volume fraction of the embedded magnetic nanoparticles, permeability of the microvessel wall, and the radius of the carrier particle on the trajectory of the carrier particle are discussed and displayed graphically. - Highlights: • In the present manuscript, we considered the porous carrier particle which provide a larger surface area contact with the fluid than the solid spherical carrier particle. It shows that the porous carrier particle are captured easily than the solid carrier particle. • Introduce Suffman force on the carrier particle which commences an additional resistance which acts opposite to the surface wall and helps the particles to go away from the tumor position. • Considered stress jump condition at the surface of the porous carrier particle which enhanced the tendency of the carrier particle to be capture near the tumor. • Used Darcy model to define the permeability of the wall of the microvessel.

  7. Radionuclide assessment of pulmonary microvascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, A.B.J. [Medical Intensive Care Unit, Department of Internal Medicine, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam (Netherlands)

    1997-04-01

    The literature has been reviewed to evaluate the technique and clinical value of radionuclide measurements of microvascular permeability and oedema formation in the lungs. Methodology, modelling and interpretation vary widely among studies. Nevertheless, most studies agree on the fact that the measurement of permeability via pulmonary radioactivity measurements of intravenously injected radiolabelled proteins versus that in the blood pool, the so-called pulmonary protein transport rate (PTR), can assist the clinician in discriminating between permeability oedema of the lungs associated with the adult respiratory distress syndrome (ARDS) and oedema caused by an increased filtration pressure, for instance in the course of cardiac disease, i.e. pressure-induced pulmonary oedema. Some of the techniques used to measure PTR are also able to detect subclinical forms of lung microvascular injury not yet complicated by permeability oedema. This may occur after cardiopulmonary bypass and major vascular surgery, for instance. By paralleling the clinical severity and course of the ARDS, the PTR method may also serve as a tool to evaluate new therapies for the syndrome. Taken together, the currently available radionuclide methods, which are applicable at the bedside in the intensive care unit, may provide a gold standard for detecting minor and major forms of acute microvascular lung injury, and for evaluating the severity, course and response to treatment. (orig.). With 2 tabs.

  8. Follow-up after initial surgical treatment of soft tissue sarcomas in the extremities and trunk wall

    DEFF Research Database (Denmark)

    Hovgaard, Thea Bechmann; Nymark, Tine; Skov, Ole

    2017-01-01

    ) with STS and BT of the extremities and trunk wall who underwent surgery from 2010 to 2013. Two-hundred-and-thirty-two patients were included in the local recurrence study and 116 patients in the lung metastasis study. We extracted information on how local recurrence and lung metastases were detected...

  9. Electrokinetic effects and fluid permeability

    International Nuclear Information System (INIS)

    Berryman, J.G.

    2003-01-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery

  10. Effect of permeability enhancers on paracellular permeability of acyclovir.

    Science.gov (United States)

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma

    2016-06-01

    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  11. Bipolar and monopolar radiofrequency treatment of osteoarthritic knee articular cartilage: acute and temporal effects on cartilage compressive stiffness, permeability, cell synthesis, and extracellular matrix composition.

    Science.gov (United States)

    Cook, James L; Kuroki, Keiichi; Kenter, Keith; Marberry, Kevin; Brawner, Travis; Geiger, Timothy; Jayabalan, Prakash; Bal, B Sonny

    2004-04-01

    The cellular, biochemical, biomechanical, and histologic effects of radiofrequency-generated heat on osteoarthritic cartilage were assessed. Articular cartilage explants (n=240) from 26 patients undergoing total knee arthroplasty were divided based on Outerbridge grade (I or II/III) and randomly assigned to receive no treatment (controls) or monopolar or bipolar radiofrequency at 15 or 30 W. Both potentially beneficial and harmful effects of radiofrequency treatment of articular cartilage were noted. It will be vital to correlate data from in vitro and in vivo study of radiofrequency thermal chondroplasty to determine the clinical usefulness of this technique.

  12. Permeable reactive barriers for pollutant removal from groundwater

    International Nuclear Information System (INIS)

    Simon, F.G.; Meggyes, T.

    2001-01-01

    The removal of pollutants from the groundwater using permeable reactive barriers is a novel in-situ groundwater remediation technology. The most relevant decontamination processes used are chemical reduction, oxidation, precipitation and sorption, for which examples are given. Some common organic pollutants are halogenated hydrocarbons, aromatic and nitroaromatic compounds which can be treated in reactive barriers successfully. Lead, chromium and, in particular, uranium are dealt with in great detail among inorganic pollutants because of their occurrence in many European countries. Construction methods for cut-off walls and reactive barriers exhibit similar features. Apart from conventional methods, drilling, deep soil mixing, jet technology, arrays of wells, injected systems and biobarriers are applied to construct permeable reactive barriers. Permeable reactive barriers bear great potential for the future in remediation engineering. (orig.)

  13. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how wall...

  14. Plasma-wall interaction

    International Nuclear Information System (INIS)

    Reichle, R.

    2004-01-01

    This document gathers the 43 slides presented in the framework of the week long lecture 'hot plasmas 2004' and dedicated to plasma-wall interaction in a tokamak. This document is divided into 4 parts: 1) thermal load on the wall, power extraction and particle recovery, 2) basic edge plasma physics, 3) processes that drive the plasma-solid interaction, and 4) material conditioning (surface treatment...) for ITER

  15. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how walls...... have encouraged architectural thinking of enclosure, materiality, construction and inhabitation in architectural history, the paper’s aim is to define new directions for the integration of LEDs in walls, challenging the thinking of inhabitation and program. This paper introduces the notion...... of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...

  16. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  17. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  18. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  19. Proposal to negotiate a collaboration agreement for the design and prototyping of a machine for laser treatment of metallic vacuum chamber walls for electron cloud mitigation at the High Luminosity LHC

    CERN Document Server

    2016-01-01

    Proposal to negotiate a collaboration agreement for the design and prototyping of a machine for laser treatment of metallic vacuum chamber walls for electron cloud mitigation at the High Luminosity LHC

  20. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques

    NARCIS (Netherlands)

    Calcagno, Claudia; Lobatto, Mark E.; Dyvorne, Hadrien; Robson, Philip M.; Millon, Antoine; Senders, Max L.; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F.; Black, Alexandra; Mulder, Willem J. M.; Fayad, Zahi A.

    2015-01-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI

  1. Modification of permeability of frog perineurium to [14C]-sucrose by stretch and hypertonicity

    International Nuclear Information System (INIS)

    Weerasuriya, A.; Rapoport, S.I.; Taylor, R.E.

    1979-01-01

    An in vitro method has been developed to determine quantitatively the permeability of the perineurium to radiotracers at room temperature. The permeability to [ 14 C]sucrose of the isolated perineurium of the sciatic nerve of the frog, Rana pipiens, was measured at rest length, when the perineurium was stretched and after the perineurium had been subjected to hypertonic treatment. Mean permeability at rest length was calculated to be 5.6 +- 0.27 (S.E.M., n=45)x10 -7 cm/sec, and both stretch and hypertonic treatment increased the permeability. A 10% stretch increased permeability reversibly, whereas a 20% stretch or immersion of the perineurium in a hypertonic bath increased permeability irreversibly. Altered permeability under these conditions might be related to changes in the ultrastructure of tight junctions in the perineurium. (Auth.)

  2. Salt-saturated concrete strength and permeability

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hansen, F.D.; Knowles, M.K.

    1996-01-01

    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 x 10 -22 m 2 to 9.7 x 10 -17 m 2 . Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members

  3. Consolidation and permeability of salt in brine

    International Nuclear Information System (INIS)

    Shor, A.J.; Baes, C.F. Jr.; Canonico, C.M.

    1981-07-01

    The consolidation and loss of permeability of salt crystal aggregates, important in assessing the effects of water in salt repositories, has been studied as a function of several variables. The kinetic behavior was similar to that often observed in sintering and suggested the following expression for the time dependence of the void fraction: phi(t) = phi(0) - (A/B)ln(1 + Bt/z(0) 3 ), where A and B are rate constants and z(0) is initial average particle size. With brine present, A and phi(0) varied linearly with stress. The initial void fraction was also dependent to some extent on the particle size distribution. The rate of consolidation was most rapid in brine and least rapid in the presence of only air as the fluid. A brine containing 5 m MgCl 2 showed an intermediate rate, presumably because of the greatly reduced solubility of NaCl. A substantial wall effect was indicated by an observed increase in the void fraction of consolidated columns with distance from the top where the stress was applied and by a dependence of consolidation rate on the column height and radius. The distance through which the stress fell by a factor of phi was estimated to change inversely as the fourth power of the column diameter. With increasing temperature (to 85 0 C), consolidation proceeded somewhat more rapidly and the wall effect was reduced. The permeability of the columns dropped rapidly with consolidation, decreasing with about the sixth power of the void fraction. In general, extrapolation of the results to repository conditions confirms the self-sealing properties of bedded salt as a storage medium for radioactive waste

  4. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  5. Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon

    International Nuclear Information System (INIS)

    Boncel, Slawomir; Koziol, Krzysztof K.K.

    2014-01-01

    Graphical abstract: - Highlights: • Annealing of the c-CVD MWCNT arrays toward complete removal of iron nanoparticles. • The ICP-AES protocol established for quantitative analysis of Fe-content in MWCNTs. • The vertical alignment from the as-grown MWCNT arrays found intact after annealing. • A route to decrease number of defects/imperfections in the MWCNT graphene walls. • A foundation for commercial purification of c-CVD derived MWCNTs. - Abstract: The effect of annealing on multi-walled carbon nanotube (MWCNT) arrays grown via catalytic Chemical Vapour Deposition (c-CVD) was studied. The treatment enabled to decrease number of defects/imperfections in the graphene walls of MWCNTs’, which was reflected in Raman spectroscopy by reduction of the I D /I G ratio by 27%. Moreover, the vertical alignment from the as-synthesized nanotube arrays was found intact after annealing. Not only graphitization of the nanotube walls occurred under annealing, but the amount of metal iron-based catalyst residues (interfering with numerous physicochemical properties, and hence applications of MWCNTs) was reduced from 9.00 wt.% (for pristine MWCNTs) to 0.02 wt.% as detected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). This value, established by a new analytical protocol, is the lowest recorded by now for purified c-CVD MWCNTs and, due to operating under atmospheric pressure, medium temperature regime (as for annealing processes), reasonable time-scale and metal residue non-specificity, it could lay the foundation for commercial purification of c-CVD derived MWCNTs

  6. Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon

    Energy Technology Data Exchange (ETDEWEB)

    Boncel, Slawomir, E-mail: slawomir.boncel@polsl.pl [Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice (Poland); Koziol, Krzysztof K.K., E-mail: kk292@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge (United Kingdom)

    2014-05-01

    Graphical abstract: - Highlights: • Annealing of the c-CVD MWCNT arrays toward complete removal of iron nanoparticles. • The ICP-AES protocol established for quantitative analysis of Fe-content in MWCNTs. • The vertical alignment from the as-grown MWCNT arrays found intact after annealing. • A route to decrease number of defects/imperfections in the MWCNT graphene walls. • A foundation for commercial purification of c-CVD derived MWCNTs. - Abstract: The effect of annealing on multi-walled carbon nanotube (MWCNT) arrays grown via catalytic Chemical Vapour Deposition (c-CVD) was studied. The treatment enabled to decrease number of defects/imperfections in the graphene walls of MWCNTs’, which was reflected in Raman spectroscopy by reduction of the I{sub D}/I{sub G} ratio by 27%. Moreover, the vertical alignment from the as-synthesized nanotube arrays was found intact after annealing. Not only graphitization of the nanotube walls occurred under annealing, but the amount of metal iron-based catalyst residues (interfering with numerous physicochemical properties, and hence applications of MWCNTs) was reduced from 9.00 wt.% (for pristine MWCNTs) to 0.02 wt.% as detected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). This value, established by a new analytical protocol, is the lowest recorded by now for purified c-CVD MWCNTs and, due to operating under atmospheric pressure, medium temperature regime (as for annealing processes), reasonable time-scale and metal residue non-specificity, it could lay the foundation for commercial purification of c-CVD derived MWCNTs.

  7. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  8. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yu, Baodan; Tan, Li; Zheng, Runhui; Tan, Huo; Zheng, Lixia

    2016-01-01

    A new type of drug delivery system (DDS) based on single-walled carbon nanotubes (SWNTs) for controlled-release of the anti-cancer drug Paclitaxel (PTX) was constructed in this study. Chitosan (CHI) was non-covalently attached to the SWNTs to improve biocompatibility. Biocompatible hyaluronan was also combined to the outer CHI layer to realise the specific targeting property. The results showed that the release of PTX was pH-triggered and was better at lower pH (pH 5.5). The modified SWNTs showed a significant improvement in intracellular reactive oxygen species (ROS), which may have enhanced mitogen-activated protein kinase activation and further promoted cell apoptosis. The results of western blotting indicated that the apoptosis-related proteins were abundantly expressed in A549 cells. Lactate dehydrogenase (LDH) release assay and cell viability assay demonstrated that PTX-loaded SWNTs could destroy cell membrane integrity, thus inducing lower cell viability of the A549 cells. Thus, this targeting DDS could effectively inhibit cell proliferation and kill A549 cells, is a promising system for cancer therapy. - Highlights: • Chitosan and hyaluronan modified single-walled carbon nanotubes (SWNTs) were prepared for delivery of Paclitaxel (PTX). • Morphology, drug loading efficiency and drug release amount of the nanotubes were studied. • Cell viability, LDH, intracellular ROS levels and western blotting were evaluated. • The drug delivery system could effectively inhibit A549 cells proliferation.

  9. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Baodan; Tan, Li; Zheng, Runhui; Tan, Huo, E-mail: tanhuo.2008@163.com; Zheng, Lixia, E-mail: 66593953@qq.com

    2016-11-01

    A new type of drug delivery system (DDS) based on single-walled carbon nanotubes (SWNTs) for controlled-release of the anti-cancer drug Paclitaxel (PTX) was constructed in this study. Chitosan (CHI) was non-covalently attached to the SWNTs to improve biocompatibility. Biocompatible hyaluronan was also combined to the outer CHI layer to realise the specific targeting property. The results showed that the release of PTX was pH-triggered and was better at lower pH (pH 5.5). The modified SWNTs showed a significant improvement in intracellular reactive oxygen species (ROS), which may have enhanced mitogen-activated protein kinase activation and further promoted cell apoptosis. The results of western blotting indicated that the apoptosis-related proteins were abundantly expressed in A549 cells. Lactate dehydrogenase (LDH) release assay and cell viability assay demonstrated that PTX-loaded SWNTs could destroy cell membrane integrity, thus inducing lower cell viability of the A549 cells. Thus, this targeting DDS could effectively inhibit cell proliferation and kill A549 cells, is a promising system for cancer therapy. - Highlights: • Chitosan and hyaluronan modified single-walled carbon nanotubes (SWNTs) were prepared for delivery of Paclitaxel (PTX). • Morphology, drug loading efficiency and drug release amount of the nanotubes were studied. • Cell viability, LDH, intracellular ROS levels and western blotting were evaluated. • The drug delivery system could effectively inhibit A549 cells proliferation.

  10. The Scandinavian Sarcoma Group Central Register: 6,000 patients after 25 years of monitoring of referral and treatment of extremity and trunk wall soft-tissue sarcoma.

    Science.gov (United States)

    Trovik, Clement; Bauer, Henrik C F; Styring, Emelie; Sundby Hall, Kirsten; Vult Von Steyern, Fredrik; Eriksson, Sigvard; Johansson, Ingela; Sampo, Mika; Laitinen, Minna; Kalén, Anders; Jónsson, Halldór; Jebsen, Nina; Eriksson, Mikael; Tukiainen, Erkki; Wall, Najme; Zaikova, Olga; Sigurðsson, Helgi; Lehtinen, Tuula; Bjerkehagen, Bodil; Skorpil, Mikael; Egil Eide, Geir; Johansson, Elisabeth; Alvegard, Thor A

    2017-06-01

    Purpose - We wanted to examine the potential of the Scandinavian Sarcoma Group (SSG) Central Register, and evaluate referral and treatment practice for soft-tissue sarcomas in the extremities and trunk wall (STS) in the Nordic countries. Background - Based on incidence rates from the literature, 8,150 (7,000-9,300) cases of STS of the extremity and trunk wall should have been diagnosed in Norway, Finland, Iceland, and Sweden from 1987 through 2011. The SSG Register has 6,027 cases registered from this period, with 5,837 having complete registration of key variables. 10 centers have been reporting to the Register. The 5 centers that consistently report treat approximately 90% of the cases in their respective regions. The remaining centers have reported all the patients who were treated during certain time periods, but not for the entire 25-year period. Results - 59% of patients were referred to a sarcoma center untouched, i.e. before any attempt at open biopsy. There was an improvement from 52% during the first 5 years to 70% during the last 5 years. 50% had wide or better margins at surgery. Wide margins are now achieved less often than 20 years ago, in parallel with an increase in the use of radiotherapy. For the centers that consistently report, 97% of surviving patients are followed for more than 4 years. Metastasis-free survival (MFS) increased from 67% to 73% during the 25-year period. Interpretation - The Register is considered to be representative of extremity and trunk wall sarcoma disease in the population of Scandinavia, treated at the reporting centers. There were no clinically significant differences in treatment results at these centers.

  11. Long-term bioventing performance in low-permeability soils

    International Nuclear Information System (INIS)

    Phelps, M.B.; Stanin, F.T.; Downey, D.C.

    1995-01-01

    Short-term and long-term bioventing treatability testing has shown that in situ air injection and extraction is a practical method for sustaining increased oxygen levels and enhancing aerobic biodegradation of petroleum hydrocarbons in low-permeability soils. At several test sites, initial physical parameter analysis of soils and air permeability tests indicated that impacted soils (fine sandy silts and clays) had low air permeabilities. Measurements of depleted soil-gas oxygen levels and increased soil-gas carbon dioxide levels indicated that the natural process of aerobic biodegradation of petroleum hydrocarbons was oxygen-limited. Initial treatability testing consisted of air permeability tests to measure the permeability of the soils to air and in situ respiration tests to measure the rates at which native microorganisms could biodegrade the contaminants when provided with sufficient oxygen. During the long-term treatment period, active air injection or extraction systems were operated for 1 year or longer. Soil gas was periodically monitored within the treatment zone to evaluate the success of the bioventing systems in increasing soil-gas oxygen levels in the low-permeability soils. Follow-up respiration tests and soil and soil-gas sampling were conducted to evaluate changes in respiration rates and contaminant concentrations with time

  12. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    Science.gov (United States)

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function

  13. Bentonite Permeability at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniels

    2017-01-01

    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  14. [Curative effect analysis on proximal frmoral nail antirotation for the treatment of femoral intertrochanteric fracture and integrity of lateral trochanteric wall].

    Science.gov (United States)

    Wei, Jie; Qin, De-an; Guo, Xiu-sheng

    2015-06-01

    To explore clinical efficacy and key matters for the treatment of femoral intertrochanteric fracture and integrity of lateral trochanteric wall by proximal frmoral nail antirotation (PFNA). From June 2010 to December 2012,210 femoral intertrochanteric fracture patients treated with PFNA were retrospectively analyzed, including 76 males and 134 females aged from 46 to 96 years old with an average of 71 years old. All fracture were caused by injury and classified to type I (5 cases) type II (16 cases), type III (73 cases) and type IV (116 cases) according to Evans classification. The time of getting out of bed, postoperative complications and displacement of screw blade and fracture healing were observed, Baumgaertner criteria were used to evaluate quality of fracture reduction, Harris criteria were used to evaulate hip joint function. All incisions were healed at stage I, no complications occurred except incomplete of lateral trochanteric wall patients without reconstruction, other patients could get out of bed with crutches at one week and all patients discharged from hospital at 10 days after operation. One hundred and seventy-eight patients were followed up from 3 to 17 months with an average of 10 months. One case occurred unhealed fracture displacement caused by screw blade cutting, 2 cases occurred screw blade transfomed to proximal and out femoral head, other patients obtained fracture healing at 12 to 16 weeks after operation. According to Baumgaertner criteria, 130 cases obtained good results, 45 cases acceptable, and 3 poor; while 107 cases obtained excellent results, 65 good, 3 good and 3 poor according to Harris score. PFNA with mechanical advantage of intramedullary fixation has advantsges of stable fixation, shorter operation time, minimally invasive. Satisfied clinical effects could obtained by grasping fixation principle, dealing with negative factors in operation. Intraoperative reconstruction for integrity of lateral trochanteric wall could assure

  15. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus

    Directory of Open Access Journals (Sweden)

    Shengli Ma

    2015-01-01

    Full Text Available Candida albicans (C.a and Candida tropicalis (C.t were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin, respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05 after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin.

  16. Investigating inlay permeability by means of labelled atoms

    Energy Technology Data Exchange (ETDEWEB)

    Rajchev, L; Chakmakov, D

    1979-01-01

    An isotope method was used in the study of marginal space permeability (space between cavity walls and obturation) and its relation to the qualities of cementing material. To this end, V class cavities were elaborated and microdentures preprared under unified conditions for recently extracted intact human teeth. The inlays were adjusted by being riveted at first and then cemented. Microdentures were fixed with ''Adhesor'' phosphate cement, zinc-eugenol paste or adhesive wax, applied upon the phase and part of the cavity wall. Twenty four hours later the teeth were covered with wax. The inlay and a strip around it remained uncovered and immersed in iodine 125 solution of sulphur 35-methionine. The teeth were then washed and incorporated in epoxide resin. Longitudinal incisions were made through the inlay and, after appropriate processing, autoradiography of the sections was made. The marginal space was shown to be permeable in a different degree, depending on the fixing material: whereas wax gluing makes it impermeable for either isotope, gluing with zinc-eugenol paste allows minor permeability for sulphur 35 and a rather high one for iodine 125. With phosphate cement gluing, iodine 125 reaches the cavity bottom, while penetration of sulphur 35 is rather limited.

  17. Polysulfone - CNT composite membrane with enhanced water permeability

    Science.gov (United States)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  18. Development of an interstitial cystitis risk score for bladder permeability.

    Directory of Open Access Journals (Sweden)

    Laura E Lamb

    Full Text Available Interstitial cystitis/bladder pain syndrome (IC is a multifactorial syndrome of severe pelvic and genitalia pain and compromised urinary function; a subset of IC patients present with Hunner's lesions or ulcers on their bladder walls (UIC. UIC is diagnosed by cystoscopy, which may be quite painful. The objective of this study was to determine if a calculated Bladder Permeability Defect Risk Score (BP-RS based on non-invasive urinary cytokines could discriminate UIC patients from controls and IC patients without Hunner's ulcers.A national crowdsourcing effort targeted IC patients and age-matched controls to provide urine samples. Urinary cytokine levels for GRO, IL-6, and IL-8 were determined using a Luminex assay.We collected 448 urine samples from 46 states consisting of 153 IC patients (147 female, 6 male, of which 54 UIC patients (50 females, 4 male, 159 female controls, and 136 male controls. A defined BP-RS was calculated to classify UIC, or a bladder permeability defect etiology, with 89% validity.The BP-RS Score quantifies UIC risk, indicative of a bladder permeability defect etiology in a subset of IC patients. The Bladder Permeability Defect Risk Score is the first validated urine biomarker assay for interstitial cystitis/bladder pain syndrome.

  19. Wetting phase permeability in a partially saturated horizontal fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.

    1994-01-01

    Fractures within geologic media can dominate the hydraulic properties of the system. Therefore, conceptual models used to assess the potential for radio-nuclide migration in unsaturated fractured rock such as that composing Yucca Mountain, Nevada, must be consistent with flow processes in individual fractures. A major obstacle to the understanding and simulation of unsaturated fracture flow is the paucity of physical data on both fracture aperture structure and relative permeability. An experimental procedure is developed for collecting detailed data on aperture and phase structure from a transparent analog fracture. To facilitate understanding of basic processes and provide a basis for development of effective property models, the simplest possible rough-walled fracture is used. Stable phase structures of varying complexity are created within the horizontal analog fracture. Wetting phase permeability is measured under steady-state conditions. A process based model for wetting phase relative permeability is then explored. Contributions of the following processes to reduced wetting phase permeability under unsaturated conditions are considered: reduction in cross-sectional flow area, increased path length, localized flow restriction, and preferential occupation of large apertures by the non-wetting phase

  20. Chronic Abdominal Wall Pain.

    Science.gov (United States)

    Koop, Herbert; Koprdova, Simona; Schürmann, Christine

    2016-01-29

    Chronic abdominal wall pain is a poorly recognized clinical problem despite being an important element in the differential diagnosis of abdominal pain. This review is based on pertinent articles that were retrieved by a selective search in PubMed and EMBASE employing the terms "abdominal wall pain" and "cutaneous nerve entrapment syndrome," as well as on the authors' clinical experience. In 2% to 3% of patients with chronic abdominal pain, the pain arises from the abdominal wall; in patients with previously diagnosed chronic abdominal pain who have no demonstrable pathological abnormality, this likelihood can rise as high as 30% . There have only been a small number of clinical trials of treatment for this condition. The diagnosis is made on clinical grounds, with the aid of Carnett's test. The characteristic clinical feature is strictly localized pain in the anterior abdominal wall, which is often mischaracterized as a "functional" complaint. In one study, injection of local anesthesia combined with steroids into the painful area was found to relieve pain for 4 weeks in 95% of patients. The injection of lidocaine alone brought about improvement in 83-91% of patients. Long-term pain relief ensued after a single lidocaine injection in 20-30% of patients, after repeated injections in 40-50% , and after combined lidocaine and steroid injections in up to 80% . Pain that persists despite these treatments can be treated with surgery (neurectomy). Chronic abdominal wall pain is easily diagnosed on physical examination and can often be rapidly treated. Any physician treating patients with abdominal pain should be aware of this condition. Further comparative treatment trials will be needed before a validated treatment algorithm can be established.

  1. Transverse Chemotactic Migration of Bacteria from High to Low Permeability Regions in a Dual Permeability Porous Microfluidic Device

    Science.gov (United States)

    Singh, R.; Olson, M. S.

    2011-12-01

    Low permeability regions sandwiched between high permeability regions such as clay lenses are difficult to treat using conventional treatment methods. Trace concentrations of contaminants such as non-aqueous phase liquids (NAPLs) remain trapped in these regions and over the time diffuse out into surrounding water thereby acting as a long term source of groundwater contamination. Bacterial chemotaxis (directed migration toward a contaminant source), may be helpful in enhancing bioremediation of such contaminated sites. This study is focused on simulating a two-dimensional dual-permeability groundwater contamination scenario using microfluidic devices and evaluating transverse chemotactic migration of bacteria from high to low permeability regions. A novel bi-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated using photolithography and soft lithography techniques to simulate contamination of a dual- permeability region due to leakage from an underground storage tank into a low permeability region. This device consists of a porous channel through which a bacterial suspension (Escherchia Coli HCB33) is flown and another channel for injecting contaminant/chemo-attractant (DL-aspertic acid) into the porous channel. The pore arrangement in the porous channel contains a 2-D low permeability region surrounded by high permeability regions on both sides. Experiments were performed under chemotactic and non-chemotactic (replacing attractant with buffer solution in the non porous channel) conditions. Images were captured in transverse pore throats at cross-sections 4.9, 9.8, and 19.6 mm downstream from the attractant injection point and bacteria were enumerated in the middle of each pore throat. Bacterial chemotaxis was quantified in terms of the change in relative bacterial counts in each pore throat at cross-sections 9.8 and 19.6 mm with respect to counts at the cross-section at 4.9 mm. Under non-chemotactic conditions, relative bacterial count was observed

  2. Effect of NaHCO3 treatments on the activity of cell wall-degrading enzymes produced by Penicillium digitatum during the pathogenesis process on grapefruit.

    Science.gov (United States)

    Venditti, Tullio; D'hallewin, Guy; Ladu, Gianfranca; Petretto, Giacomo L; Pintore, Giorgio; Labavitch, John M

    2018-03-25

    The present study was performed to clarify the strategies of Penicillium digitatum during pathogenesis on citrus, assessing, on albedo plugs, the effects of treatment with NaHCO 3 , at two different pH (5 and 8.3), on cell wall-degrading enzymes activity, over a period of 72 h. The treatment with NaHCO 3 , under alkaline pH, delayed the polygalacturonase activity for 72 h, or 48 h in the case of the pectin lyase, if compared to the control or the same treatment at pH 5. On the contrary, the pectin methyl esterase activity rapidly increased after 24 h, in plugs dipped in the same solution. In this case, the activity remained higher than untreated or pH 5 treated plugs up to 72 h. The rapid increase in pectin methyl esterase activity, under alkaline conditions, is presumably the strategy of the pathogen to lower the pH, soon after the initiation of infection, in order to restore an optimal environment for the subsequent polygalacturonase and pectin lyase action. In fact at the same time, a low pH delayed the enzymatic activity of polygalacturonase and pectin lyase, the two enzymes that actually cleave the α-1,4-linkages between the galacturonic acid residues. This article is protected by copyright. All rights reserved.

  3. Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

    Directory of Open Access Journals (Sweden)

    Saboorian-Jooybari Hadi

    2016-05-01

    Full Text Available Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves. Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29] models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for

  4. Magnetic losses versus sintering treatment in Mn-Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Beatrice, Cinzia, E-mail: c.beatrice@inrim.it [Istituto Nazionale di Ricerca Metrologica, Nanoscience and Materials Division, Torino (Italy); Tsakaloudi, Vasiliki [Laboratory of Inorganic Materials, CERTH, Thermi-Thessaloniki (Greece); Dobák, Samuel [Institute of Physics, P.J. Šafárik University, Košice (Slovakia); Zaspalis, Vassilios [Department of Chemical Engineering Aristotle University of Thessaloniki, Thessaloniki (Greece); Fiorillo, Fausto [Istituto Nazionale di Ricerca Metrologica, Nanoscience and Materials Division, Torino (Italy)

    2017-05-01

    Mn-Zn ferrites prepared by different sintering schedules at 1325 °C, 1340 °C, and 1360 °C, have been characterized from the structural, electrical, and magnetic viewpoint. Magnetic losses and complex permeability have been, in particular, measured and analyzed from quasi-static excitation up to 1 GHz. It is observed that lower sintering temperatures and shorter treatment times lead to more homogeneous grain structure and better soft magnetic response at all frequencies. It is shown, however, that, once the contribution by eddy currents is singled out, the energy losses tend to coincide beyond a few MHz in the differently treated samples. The interpretative approach consists in separating the contributions by the domain wall displacements and the magnetization rotations to complex permeability and losses as a function of frequency. This can be accomplished in a relatively simple way in the low induction region described by the Rayleigh law, where these quantities can be quantitatively related and the linear Landau-Lifshitz-Gilbert equation applies, account being taken of the distribution in amplitude and orientation of the local anisotropy fields. - Highlights: • DC-1 GHz magnetic losses and complex permeability of Mn-Zn ferrites are analyzed. • Contributions by domain wall displacements and rotations are separately obtained. • Energy losses caused by eddy currents and spin damping are separately identified. • Microstructure is shown to chiefly affect the domain wall processes. • Rotational permeability and loss are predicted through Landau-Lifshitz equation.

  5. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  6. Permeable Pavement Research - Edison, New Jersey

    Science.gov (United States)

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  7. Treatment planning comparison of electron arc therapy and photon intensity modulated radiotherapy for Askin's tumor of chest wall

    International Nuclear Information System (INIS)

    Jamema, Swamidas V.; Sharma, Pramod K.; Laskar, Siddhartha; Deshpande, Deepak D.; Shrivastava, Shyam K.

    2007-01-01

    Background and Purpose: A dosimetric study to quantitatively compare radiotherapy treatment plans for Askin's tumor using Electron Arc (EA) vs. photon Intensity Modulated Radiotherapy (IMRT). Materials and methods: Five patients treated with EA were included in this study. Treatment plans were generated for each patient using EA and IMRT. Plans were compared using dose volume histograms (DVH) of the Planning Target Volume (PTV) and Organs at Risk (OAR). Results: IMRT resulted in superior PTV coverage, and homogeneous dose distribution compared to EA. For EA, 92% of the PTV was covered to 85% of the dose compared to IMRT in which 96% was covered to 95% of the dose. V 107 that represents the hot spot within the PTV was more in IMRT compared to EA: 7.4(±2)% vs. 3(±0.5)%, respectively. With PTVs located close to the spinal cord (SC), the dose to SC was more with EA, whereas for PTVs located away from the SC, the dose to SC was more with IMRT. The cardiac dose profile was similar to that of SC. Ipsilateral lung received lower doses with IMRT while contralateral lung received higher dose with IMRT compared to EA. For non-OAR normal tissues, IMRT resulted in large volumes of low dose regions. Conclusions: IMRT resulted in superior PTV coverage and sparing of OAR compared to EA plans. Although IMRT seems to be superior to EA, one needs to keep in mind the volume of low dose regions associated with IMRT, especially while treating young children

  8. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...... permeability estimate comparable to the measured one for shale rich in smectite. This is probably because Yang and Aplin model was calibrated in London clay which is rich in smectite....

  9. Long-term Performance of Permeable Reactive Barriers Using Zero-valent Iron: An Evaluation at Two Sites

    National Research Council Canada - National Science Library

    Wilkin, Richard T; Puls, Robert W; Sewell, Guy W

    2002-01-01

    Research described in this research brief explores the geochemical and microbiological processes occurring within zero-valent iron treatment zones in permeable reactive barriers that may contribute...

  10. Effects of heat treatment on the gel properties of the body wall of sea cucumber (Apostichopus japonicus).

    Science.gov (United States)

    Zhang, Kai; Hou, Hu; Bu, Lin; Li, Bafang; Xue, Changhu; Peng, Zhe; Su, Shiwei

    2017-03-01

    The sensory texture of sea cucumber ( Apostichopus japonicus ) was dramatically affected by heat treatment. In this study, sea cucumbers were heated under different thermal conditions (HSC), and divided into five groups (HSC-80, HSC-90, HSC-100, HSC-110, and HSC-120) according to the heating temperature (from 80 to 120 °C). The changes in texture, moisture, gel structure, and biochemical parameters of the HSC were investigated. With increasing heating time (from 10 to 80 min), the hardness and gel structure changed slightly, and the water activity decreased as the proportion of T 21 increased by 133.33, 55.56, and 59.09% in the HSC-80, HSC-90, and HSC-100 groups, respectively. This indicated that moderate heating conditions (below 100 °C) caused gelation of sea cucumbers in HSC-80, HSC-90, and HSC-100 groups. However, as the water activity increased, the hardness declined rapidly by 2.56 and 2.7% in the HSC-110 and HSC-120 groups, with heating time increased from 10 to 80 min. Meanwhile, free hydroxyproline and ammonia nitrogen contents increased by 81.24 and 63.16% in the HSC-110 group; and by 63.09 and 54.99% in the HSC-120 group, as the gel structure of the sea cucumbers decomposed in these two groups. These results demonstrated that, severe heat treatment (above 100 °C) destroyed the chemical bonds, triggered the disintegration of collagen fibers and the gel structure of sea cucumbers, and transformed the migration and distribution of moisture, finally causing the deterioration of the sensory texture of the sea cucumbers.

  11. Lung epithelial permeability and inhaled furosemide. Added dimensions in asthmatics

    International Nuclear Information System (INIS)

    Bhure, U.N.; Bhure, S.U.; Bhatt, B.M.; Mistry, S.; Pednekar, S.J.; Chari, V.V.; Desai, S.A.; Joshi, J.M.; Paidhungat, A.J.

    2009-01-01

    Lung clearance rates of inhaled 99m Tc-diethylene-triamine-pentaacetic acid (DTPA) aerosols constitute a sensitive index to evaluate the permeability changes characteristic of airway epithelial damage. It was thought that edema of the airway wall which is reported in asthma could be relieved with a diuretic like furosemide, helping to relieve the symptoms. We intended to study the effect of inhaled furosemide on lung epithelial permeability in asthmatics and smokers with the help of 99m Tc-DTPA lung clearance test (LCT). The study included three groups (n=15), viz. normal healthy controls, asymptomatic chronic smokers, and chronic persistent asthmatics. Each subject underwent the LCT twice, baseline and post-furosemide (Lasix) study, within a week's interval. The post-furosemide study was carried out 15 min after inhalation of 10 mg of lasix. Lung epithelial permeability was determined in terms of clearance half-life (T 1/2 ). The baseline mean T 1/2 values for controls, smokers, and asthmatics were 50.95±16.58, 20.81±5.47, 24.06±6.19 min, respectively. Post-lasix T 1/2 values were 50.83±15.84, 20.70±5.65, 41.27±15.07 min, respectively. There was a significant difference (P<0.001) in baseline and post-lasix clearance values in asthmatics only. Baseline lung epithelial permeability was altered in smokers and asthmatics compared to the controls. Furosemide was effective only in asthmatics in reverting the permeability almost back to the normal range. Inhaled furosemide was effective even in moderate and severe asthmatics. Furosemide has multiple mechanisms of action. It possibly acts at bronchial level in view of the pathology in asthmatics lying in the airways. (author)

  12. Viscous fingering with permeability heterogeneity

    International Nuclear Information System (INIS)

    Tan, C.; Homsy, G.M.

    1992-01-01

    Viscous fingering in miscible displacements in the presence of permeability heterogeneities is studied using two-dimensional simulations. The heterogeneities are modeled as stationary random functions of space with finite correlation scale. Both the variance and scale of the heterogeneities are varied over modest ranges. It is found that the fingered zone grows linearly in time in a fashion analogous to that found in homogeneous media by Tan and Homsy [Phys. Fluids 31, 1330 (1988)], indicating a close coupling between viscous fingering on the one hand and flow through preferentially more permeable paths on the other. The growth rate of the mixing zone increases monotonically with the variance of the heterogeneity, as expected, but shows a maximum as the correlation scale is varied. The latter is explained as a ''resonance'' between the natural scale of fingers in homogeneous media and the correlation scale

  13. 21 CFR 876.5860 - High permeability hemodialysis system.

    Science.gov (United States)

    2010-04-01

    ... hemodialysis system. (a) Identification. A high permeability hemodialysis system is a device intended for use as an artificial kidney system for the treatment of patients with renal failure, fluid overload, or... system removes toxins or excess fluid from the patient's blood using the principles of convection (via a...

  14. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers

    International Nuclear Information System (INIS)

    Li Lin; Benson, Craig H.

    2010-01-01

    Ground water flow and geochemical reactive transport models were used to assess the effectiveness of five strategies used to limit fouling and to enhance the long-term hydraulic behavior of continuous-wall permeable reactive barriers (PRBs) employing granular zero valent iron (ZVI). The flow model accounted for geological heterogeneity and the reactive transport model included a geochemical algorithm for simulating iron corrosion and mineral precipitation reactions that have been observed in ZVI PRBs. The five strategies that were evaluated are pea gravel equalization zones, a sacrificial pre-treatment zone, pH adjustment, large ZVI particles, and mechanical treatment. Results of simulations show that installation of pea gravel equalization zones results in flow equalization and a more uniform distribution of residence times within the PRB. Residence times within the PRB are less affected by mineral precipitation when a pre-treatment zone is employed. pH adjustment limits the total amount of hydroxide ions in ground water to reduce porosity reduction and to retain larger residence times. Larger ZVI particles reduce porosity reduction as a result of the smaller iron surface area for iron corrosion, and retain longer residence time. Mechanical treatment redistributes the porosity uniformly throughout the PRB over time, which is effective in maintaining residence time.

  15. Development of high-strength heavy-wall sour-service seamless line pipe for deep water by applying inline heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y.; Kondo, K.; Hamada, M.; Hisamune, N.; Murao, N.; Murase, T.; Osako, H. [Sumitomo Metal Industries Ltd., Tokyo (Japan)

    2004-07-01

    This paper provided details of a new high-strength heavy-wall sour service seamless line pipe developed for use in deep water applications. Pig iron was processed in a blast furnace and refined. Molten steel was degassed to reduce impurities and poured into a continuous caster with a round mold. Billets were then heated in a walking-beam furnace and then pierced to form a hollow shell. The shell was then rolled to a specific thickness in a compact mandrel mill and rolled to a specified outer diameter by an extracting sizer. A heating furnace was used to improve the uniformity of the pipes. The heated pipes were then moved to a cooling zone, then rotated quickly while a high-pressured jet flow was injected inside the pipe at the same time as a slit laminar flow was applied to the outside of the pipe. Higher strength was achieved by using the high performance quenching device. It was noted that while pipes manufactured using the inline heat treatment process were able to achieve higher strengths, toughness was reduced. Metallurgical tests were conducted to improve the toughness value of the seamless pipe. Both the microstructure and the fracture surface of test specimens were examined using scanning electron microscopy. Results of the tests showed that lowering sulphur (S) and titanium (Ti) content improved the toughness properties of the pipes. It was concluded that control of microalloys is important to secure improved toughness for pipes manufactured using inline heat treatments. 5 tabs., 12 figs.

  16. Perfusion of surgical cavity wall enhancement in early post-treatment MR imaging may stratify the time-to-progression in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Ji Eun Park

    Full Text Available To determine if perfusion in surgical cavity wall enhancement (SCWE obtained in early post-treatment MR imaging can stratify time-to-progression (TTP in glioblastoma.This study enrolled 60 glioblastoma patients with more than 5-mm-thick SCWEs as detected on contrast-enhanced MR imaging after concurrent chemoradiation therapy. Two independent readers categorized the shape and perfusion state of SCWEs as nodular or non-nodular and as having positive or negative perfusion compared with the contralateral grey matter on arterial spin labeling (ASL. The perfusion fraction on ASL within the contrast-enhancing lesion was calculated. The independent predictability of TTP was analyzed using the Kaplan-Meier method and Cox proportional hazards modelling.The perfusion fraction was higher in the non-progression group, significantly for reader 2 (P = 0.03 and borderline significantly for reader 1 (P = 0.08. A positive perfusion state and (P = 0.02 a higher perfusion fraction of the SCWE were found to become an independent predictor of longer TTP (P = 0.001 for reader 1 and P < 0.001 for reader 2. The contrast enhancement pattern did not become a TTP predictor.Assessment of perfusion in early post-treatment MR imaging can stratify TTP in patients with glioblastoma for adjuvant temozolomide therapy. Positive perfusion in SCWEs can become a predictor of a longer TTP.

  17. Acute effects of carprofen and meloxicam on canine gastrointestinal permeability and mucosal absorptive capacity.

    Science.gov (United States)

    Craven, Melanie; Chandler, Marge L; Steiner, Jörg M; Farhadi, Ashkan; Welsh, Elizabeth; Pratschke, Kathryn; Shaw, Darren J; Williams, David A

    2007-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently prescribed to dogs for their analgesic, antipyretic, and anti-inflammatory properties. Their beneficial actions can be offset by gastrointestinal (GI) toxicosis. Endoscopy has traditionally been employed to detect GI lesions, but alterations in GI permeability precede the development of mucosal damage. Carprofen and meloxicam alter GI permeability and mucosal absorptive capacity of dogs. Twenty adult dogs treated with an NSAID for >7 days were evaluated by permeability tests while receiving either carprofen (10 dogs) or meloxicam (10 dogs). Prospective, longitudinal observational study. A 6-sugar permeability test (sucrose, lactulose, rhamnose, 3-O-methyl-D-glucose, D-xylose, and sucralose) was performed on the day before NSAID treatment, and after 3 and 8 days of treatment. There were no significant differences in the urinary recovery ratios of lactulose: rhamnose, D-xylose: 3-O-methyl-D-glucose, or sucralose recovery within either group at any time during the study. Sucrose permeability in the meloxicam group did not alter significantly over time. However, sucrose permeability in the carprofen group decreased significantly by day 3 (P = .049) and increased again by day 8 (P = .049), to a level that was not significantly different to permeability before treatment (P = .695). The absence of increased GI permeability and diminished mucosal absorptive capacity in this group of dogs does not support the development of acute GI toxicosis during treatment with either meloxicam or carprofen.

  18. Vascular permeability-increasing effect of the leaf essential oil of ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines ... Analysis of the differences in vascular permeability between treatment groups showed that, Ocimum oil, in intensity and duration, was significantly (p < 0.05) more effective in increasing cutaneous capillary permeability over a 24h period after ...

  19. Haemophilia, AIDS and lung epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    O' Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G. (Haemophilia Centre and Coagulation Research Unit, Department of Nuclear Medicine, Rayne Institute, St. Thomas' Hospital, London (United Kingdom))

    1990-01-01

    Lung {sup 99m}Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung {sup 99m}Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of {sup 99m}Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au).

  20. Haemophilia, AIDS and lung epithelial permeability

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G.

    1990-01-01

    Lung 99m Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung 99m Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of 99m Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au)

  1. [Mirror, mirror of the wall: mirror therapy in the treatment of phantom limbs and phantom limb pain].

    Science.gov (United States)

    Casale, Roberto; Furnari, Anna; Lamberti, Raul Coelho; Kouloulas, Efthimios; Hagenberg, Annegret; Mallik, Maryam

    2015-01-01

    Phantom limb and phantom limb pain control are pivotal points in the sequence of intervention to bring the amputee to functional autonomy. The alterations of perception and sensation, the pain of the residual limb and the phantom limb are therefore aspects of amputation that should be taken into account in the "prise en charge" of these patients. Within the more advanced physical therapies to control phantom and phantom limb pain there is the use of mirrors (mirror therapy). This article willfocus on its use and on the possible side effects induced by the lack of patient selection and a conflict of body schema restoration through mirror therapy with concurrent prosthetic training and trauma acceptance. Advice on the need to select patients before treatment decisions, with regard to their psychological as well as clinical profile (including time since amputation and clinical setting), and the need to be aware of the possible adverse effects matching different and somehow conflicting therapeutic approaches, are put forward. Thus a coordinated sequence of diagnostic, prognostic and therapeutic procedures carried out by an interdisciplinary rehabilitation team that works globally on all patients' problems is fundamental in the management of amputees and phantom limb pain. Further studies and the development of a multidisciplinary network to study this and other applications of mirror therapy are needed.

  2. An intelligent detecting system for permeability prediction of MBR.

    Science.gov (United States)

    Han, Honggui; Zhang, Shuo; Qiao, Junfei; Wang, Xiaoshuang

    2018-01-01

    The membrane bioreactor (MBR) has been widely used to purify wastewater in wastewater treatment plants. However, a critical difficulty of the MBR is membrane fouling. To reduce membrane fouling, in this work, an intelligent detecting system is developed to evaluate the performance of MBR by predicting the membrane permeability. This intelligent detecting system consists of two main parts. First, a soft computing method, based on the partial least squares method and the recurrent fuzzy neural network, is designed to find the nonlinear relations between the membrane permeability and the other variables. Second, a complete new platform connecting the sensors and the software is built, in order to enable the intelligent detecting system to handle complex algorithms. Finally, the simulation and experimental results demonstrate the reliability and effectiveness of the proposed intelligent detecting system, underlying the potential of this system for the online membrane permeability for detecting membrane fouling of MBR.

  3. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    International Nuclear Information System (INIS)

    Nhan, Tam; Burgess, Alison; Hynynen, Kullervo; Lilge, Lothar

    2014-01-01

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant K trans range of 0.01–0.03 min −1 . Finally, the model suggests that infusion over a short duration (20–60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration. (paper)

  4. Fracture network topology and characterization of structural permeability

    Science.gov (United States)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with

  5. Effect of aggregate grain size distribution on properties of permeable ...

    African Journals Online (AJOL)

    ) ratio on the mechanical properties of permeable concrete is investigated. The aim of this study is to prepare permeable concrete mixture with optimum properties in terms of strength and permeability. For this purpose, five different permeable ...

  6. Quantification of Horseradish Peroxidase Delivery into the Arterial Wall In Vivo as a Model of Local Drug Treatment: Comparison Between a Porous and a Gel-Coated Balloon Catheter

    International Nuclear Information System (INIS)

    Dick, Armin; Kromen, Wolfgang; Juengling, Eberhard; Grosskortenhaus, Stephanie; Kammermeier, Helmut; Vorwerk, Dierk; Guenther, Rolf W.

    1999-01-01

    Purpose: To quantify horseradish peroxidase (HRP) delivery into the arterial wall, as a model of local drug delivery, and to compare two different percutaneous delivery balloons. Methods: Perforated and hydrophilic hydrogel-coated balloon catheters were used to deliver HRP in aqueous solution into the wall of porcine iliac arteries in vivo. HRP solutions of 1 mg/ml were used together with both perforated and hydrophilic hydrogel-coated balloon catheters and 40 mg/ml HRP solutions were used with the hydrogel-coated balloon only. The amount of HRP deposited in the arterial wall was then determined photospectrometrically. Results: Using the 1 mg/ml HRP solution, the hydrogel-coated balloon absorbed 0.047 mg HRP into the coating. Treatment with this balloon resulted in a mean vessel wall concentration of 7.4 μg HRP/g tissue ± 93% (standard deviation) (n 7). Treatment with the hydrogel-coated balloon that had absorbed 1.88 mg HRP into the coating (using the 40 mg/ml HRP solution) led to a mean vessel wall concentration of 69.5 μg HRP/g tissue ± 74% (n = 7). Treatment with the perforated balloon using 1 mg/ml aqueous HRP solution led to a mean vessel wall concentration of 174 μg/g ± 81% (n = 7). Differences between the hydrogel-coated and perforated balloons (1 mg/g solutions of HRP) and between hydrogel-coated balloons (0.047 mg vs 1.88 mg absorbed into the balloon coating) were significant (p < 0.05; two-sided Wilcoxon test). Conclusions: The use of a perforated balloon catheter allowed the delivery of a higher total amount of HRP compared with the hydrogel-coated balloon, but at the cost of a higher systemic HRP application. To deliver 174 μg HRP per gram of vessel wall with the perforated balloon, 6.5 ± 1.5 mg HRP were lost into the arterial blood (delivery efficiency range = 0.2%-0.3%). With 0.047 mg HRP loaded into the coating of the hydrogel balloon, 7.4 μg HRP could be applied to 1 g of vessel wall (delivery efficiency 1.7%), and with 1.88 mg HRP loaded

  7. Permeability of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-12-01

    The object of the study was the water flow through the bentonite which is caused by hydraulic gradients. The study comprised laboratory tests and theoretical considerations. It was found that high bulk densities reduced the permeability to very low values. It was concluded that practically impervious conditions prevail when the gradients are low. Thus with a regional gradient of 10 -2 and a premeability of 10 -13 m/s the flow rate will not be higher than approximately 1 mm in 30 000 years. (G.B.)

  8. Modeling the Hydrologic Processes of a Permeable Pavement ...

    Science.gov (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has been developed in this study. The developed model can continuously simulate infiltration through the permeable pavement surface, exfiltration from the storage to the surrounding in situ soils, and clogging impacts on infiltration/exfiltration capacity at the pavement surface and the bottom of the subsurface storage unit. The exfiltration modeling component simulates vertical and horizontal exfiltration independently based on Darcy’s formula with the Green-Ampt approximation. The developed model can be arranged with physically-based modeling parameters, such as hydraulic conductivity, Manning’s friction flow parameters, saturated and field capacity volumetric water contents, porosity, density, etc. The developed model was calibrated using high-frequency observed data. The modeled water depths are well matched with the observed values (R2 = 0.90). The modeling results show that horizontal exfiltration through the side walls of the subsurface storage unit is a prevailing factor in determining the hydrologic performance of the system, especially where the storage unit is developed in a long, narrow shape; or with a high risk of bottom compaction and clogging. This paper presents unit

  9. Economics of abdominal wall reconstruction.

    Science.gov (United States)

    Bower, Curtis; Roth, J Scott

    2013-10-01

    The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Improvements of electrocatalytic activity of PtRu nanoparticles on multi-walled carbon nanotubes by a H2 plasma treatment in methanol and formic acid oxidation

    International Nuclear Information System (INIS)

    Jiang Zhongqing; Jiang Zhongjie

    2011-01-01

    Graphical abstract: A H 2 plasma, that aims at reducing the fraction of the oxidized species at the outermost perimeter of metal particles, has been used to treat the PtRu nanoparticles supported on the plasma functionalized multi-walled carbon nanotubes (PtRu/PS-MWCNTs). The plasma treated PtRu/PS-MWCNTs exhibit increased electrochemically active surface area, reduced charge transfer resistance, improved electrocatalytic activity and long term stability toward methanol and formic acid oxidation, and enhanced tolerance to carbonaceous species relative to the sample untreated with the H 2 plasma. Highlights: → A H 2 plasma technique is used to treat the PtRu nanoparticles. → The H 2 plasma treated PtRu/PS-MWCNTs exhibit improved electrocatalytic activity. → The H 2 plasma treated PtRu/PS-MWCNTs have significantly reduced charge transfer resistance. → The H 2 plasma treated PtRu/PS-MWCNTs show the increased stability. → The Pt:Ru atomic ratio of PtRu nanoparticles has a significant effect on the electrochemical activity. - Abstract: A H 2 plasma has been used to treat the PtRu nanoparticles supported on the plasma functionalized multi-walled carbon nanotubes (PtRu/PS-MWCNTs). The plasma treatment does not change the size and crystalline structure of PtRu nanoparticles, but reduces the fraction of the oxidized species at the outermost perimeter of particles. The electrochemical results show that these plasma treated PtRu/PS-MWCNTs exhibit increased electrochemically active surface area, improved electrocatalytic activity and long term stability toward methanol and formic acid oxidation, and enhanced tolerance to carbonaceous species relative to the sample untreated with the H 2 plasma. The electrocatalytic activities of the plasma treated PtRu/PS-MWCNTs are found to be dependent upon the Pt:Ru atomic ratios of PtRu nanoparticles. The catalysts with a Pt:Ru atomic ratio close to 1:1 show superior properties in the electrooxidation of methanol and formic acid

  11. First wall

    International Nuclear Information System (INIS)

    Omori, Junji.

    1991-01-01

    Graphite and C/C composite are used recently for the first wall of a thermonuclear device since materials with small atom number have great impurity allowable capacity for plasmas. Among them, those materials having high thermal conduction are generally anisotropic and have an upper limit for the thickness upon production. Then, anisotropic materials are used for a heat receiving plate, such that the surfaces of the heat receiving plate on the side of lower heat conductivity are brought into contact with each other, and the side of higher thermal conductivity is arranged in parallel with small radius direction and the toroidal direction of the thermonuclear device. As a result, the incident heat on an edge portion can be transferred rapidly to the heat receiving plate, which can suppress the temperature elevation at the surface to thereby reduce the amount of abrasion. Since the heat expansion coefficient of the anisotropic materials is great in the direction of the lower heat conductivity and small in the direction of the higher heat conductivity, the gradient of a thermal load distribution in the direction of the higher heat expansion coefficient is small, and occurrence of thermal stresses due to temperature difference is reduced, to improve the reliability. (N.H.)

  12. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  13. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  14. Cement technology for borehole plugging: an interim report on permeability measurements of cementitious solids

    International Nuclear Information System (INIS)

    McDaniel, E.W.

    1980-01-01

    The permeability of borehole plug solids and plug-wall rock junctions is a property of major interest in the Borehole Plugging Program. This report describes the equipment and techniques used to determine the permeabilities of possible borehole plugging materials and presents results from tests on various cementitious solids and plug-rock combinations. The cementitious solids were made from mixtures of cement, sand, salt, fly ash, and water. Three different types of cement and four different fly ashes were used. Permeabilities ranged from a high value of 3 x 10 -4 darcy for a neat cement paste to a low of 5 x 10 -8 darcy for a saltcrete containing 30 wt % sodium chloride. Miniature boreholes were made in the following four different types of rock: Westerly granite, Dresser basalt, Sioux quartzite, and St. Cloud granodiorite. These small holes were plugged with a mix consisting of 23 wt % Type I Portland cement, 20 wt % bituminous fy ash, 43.2 wt % sand, and 13.8 wt % water. After curing for 91 days at ambient temperature, the permeability of the plug-wall rock junctions ranged from 3 x 10 -5 to -8 darcy. Three of the four miniature plugged boreholes exhibited permeabilities of < 10 microdarcys

  15. Thin walls in regions with vacuum energy

    Energy Technology Data Exchange (ETDEWEB)

    Garfinkle, D [Florida Univ., Gainesville, FL (USA). Dept. of Physics; Vuille, C [Embry-Riddle Aeronautical Univ., Prescott, AZ (USA). Dept. of Math/Physical Science

    1989-12-01

    The motion of a thin wall is treated in the case where the regions on either side of the wall have vacuum energy. This treatment generalises previous results involving domain walls in vacuum and also previous results involving the properties of false vacuum bubbles. The equation of state for a domain wall is{tau} = {sigma} where {tau} is the tension in the wall and {sigma} is the energy density. We consider the motion of a more general class of walls having equation of state {tau}{Gamma}{sigma} with 0{le}{Gamma}{le}1. Spherically symmetric and planar symmetric walls are examined. We also find the global structure of the wall spacetime. (author).

  16. Clogging in permeable concrete: A review.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    by two to five orders of magnitudes at lower vertical effective stress below 40 MPa as the content of clay minerals increases causing heterogeneity in shale material. Indirect permeability from consolidation can give maximum and minimum values of shale permeability needed in simulating fluid flow......Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  18. Low Permeability Polyimide Insulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  19. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.

    2006-01-01

    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model...

  20. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    Science.gov (United States)

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R.P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  1. Gap junction protein connexin43 exacerbates lung vascular permeability.

    Directory of Open Access Journals (Sweden)

    James J O'Donnell

    Full Text Available Increased vascular permeability causes pulmonary edema that impairs arterial oxygenation and thus contributes to morbidity and mortality associated with Acute Respiratory Distress Syndrome and sepsis. Although components of intercellular adhesive and tight junctions are critical for maintaining the endothelial barrier, there has been limited study of the roles of gap junctions and their component proteins (connexins. Since connexins can modulate inflammatory signaling in other systems, we hypothesized that connexins may also regulate pulmonary endothelial permeability. The relationships between connexins and the permeability response to inflammatory stimuli were studied in cultured human pulmonary endothelial cells. Prolonged treatment with thrombin, lipopolysaccharide, or pathological cyclic stretch increased levels of mRNA and protein for the major connexin, connexin43 (Cx43. Thrombin and lipopolysaccharide both increased intercellular communication assayed by transfer of microinjected Lucifer yellow. Although thrombin decreased transendothelial resistance in these cells, the response was attenuated by pretreatment with the connexin inhibitor carbenoxolone. Additionally, the decreases of transendothelial resistance produced by either thrombin or lipopolysaccharide were attenuated by reducing Cx43 expression by siRNA knockdown. Both carbenoxolone and Cx43 knockdown also abrogated thrombin-induced phosphorylation of myosin light chain. Taken together, these data suggest that increased lung vascular permeability induced by inflammatory conditions may be amplified via increased expression of Cx43 and intercellular communication among pulmonary endothelial cells.

  2. Effects of a Dicalcium and Tetracalcium Phosphate-Based Desensitizer on In Vitro Dentin Permeability.

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    Full Text Available The present study evaluated the effectiveness of a dicalcium and tetracalcium phosphate-based desensitizer in reducing dentin permeability in vitro. Dentin fluid flow was measured before and after treatment of dentin with patent dentinal tubules using 1 or 3 applications of the dicalcium and tetracalcium phosphate containing agent TeethmateTM (TM and comparing the results with two sodium fluoride varnishes VellaTM (VLA and VanishTM (VAN, after storage in artificial saliva for 24 h, 48 h and 7 days. Significant differences were observed among the 4 methods employed for reducing dentin permeability (p < 0.001 and the 3 post-treatment times (p < 0.001. VLA and VAN never achieved 50% permeability reductions consistently in any of the 3 time periods. Only the calcium phosphate-based desensitizer applied for 3 times consistently reduced dentin permeability by 50% after 24 h. When applied once, the permeability reduction of TM increased progressively over the 3 time periods. After 7 days, only one and three applications of the calcium phosphate-based desensitizer consistently reduced dentin permeability by more than 50%. Permeability reductions corresponded well with scanning electron microscopy examination of dentinal tubule orifice occlusion in dentin specimens treated with the agents. Overall, the dicalcium and tetracalcium phosphate-based desensitizer is effective in reducing dentin permeability via a tubule occlusion mechanism. The ability of the agent to reduce dentin permeability renders it to be potentially useful as a clinical dentin desensitizing agent, which has to be confirmed in future clinical studies. By contrast, the two sodium fluoride varnishes are not effective in dentin permeability reduction and should be considered as topical fluoride delivering agents rather than tubular orifice-blocking agents.

  3. Temperature dependence and hysteresis of the initial permeability of the 50%Ni - 50%Fe alloy

    International Nuclear Information System (INIS)

    Kekalo, I.B.; Stolyarov, V.L.; Patsionov, V.A.

    1979-01-01

    Studied has been a temperature dependence of the initial permeability of the 50% Ni - 50% Fe alloy after primary and secondary recrystallization and effect of thermomagnetic treatment upon the dependence. For all the alloys with the structure of primary recrystallization a monotonous increase of initial permeability with temperature and the presence of slight temperature hysteresis are typical. Thermomagnetic treatment, not affecting considerably the temperature dependence of permeability for all the primarily recrystallized alloys, changes to a great extent the character of the dependence in the secondary recrystallized alloys. For 20-200-20 deg C temperature cycle of the alloys with secondary recrystallized structure are characterized after thermomagnetic treatment by the presence of gigantic hysteresis of initial permeability and a maximum on the heating branch of the curve in the vicinity of 130 deg C which are accounted for by peculiarities of temperature hysteresis of domain structure in the given alloy

  4. Crustal permeability: Introduction to the special issue

    Science.gov (United States)

    Ingebritsen, Steven E.; Gleeson, Tom

    2015-01-01

    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  5. Effect of temperature on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus

    Hot water injection in geothermal sandstone aquifers is considered for seasonal energy storage in Denmark. However, an increase in the aquifer temperature might reduce permeability, and thereby increase production costs. An understanding of the factors that control permeability is required in order...... and the Klinkenberg procedure showed the expected correlation between the two measures, however, differences could be around one order of magnitude. In tight gas sandstones, permeability is often sensitive to net stress, which might change due to the pore pressure change in the Klinkenberg procedure. Besides...... affecting the Klinkenberg procedure, the combined effect of slip and changes in permeability would affect production during pressure depletion in tight gas sandstone reservoirs; therefore effects of gas slip and net stress on permeability were combined in a model based on the Klinkenberg equation. A lower...

  6. Microorganism Removal in Permeable Pavement Parking Lots ...

    Science.gov (United States)

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers. Concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard. Fecal coliform and enterococci exceeded bathing water quality standards more than 72% and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Purpose is to evaluate the performance of permeable pavement in removing indicator organisms from infiltrating stormwater runoff.

  7. Permeable Reactive Barriers: Lessons Learned/New Directions

    Science.gov (United States)

    2005-02-01

    various • compost (various compositions), and • pecan she 2.2 Tre The basic objective of any PRB-treatment material is to either directly destroy or...barrier” of pecan shells and cottonseed admixed with gravel (to deplete dissolved oxygen, and destroy any Resource Conservation and Recovery Act [RCRA...Zone 2 San Antonio, TX, USA BP continuous wall Nov 04 Industrial facility Italy BP continuous wall Nov 04 Industrial facility Ohio, USA Continuous

  8. Altered Metabolism of LDL in the Arterial Wall Precedes Atherosclerosis Regression

    DEFF Research Database (Denmark)

    Bartels, Emil D.; Christoffersen, Christina; Lindholm, Marie W.

    2015-01-01

    and degradation of LDL particles in atherosclerotic aortas of mice by measuring the accumulation of iodinated LDL particles in the arterial wall. Methods and Results: Cholesterol-fed, LDL receptor–deficient mice were treated with either an anti-Apob antisense oligonucleotide or a mismatch control antisense...... oligonucleotide once a week for 1 or 4 weeks before injection with preparations of iodinated LDL particles. The anti-Apob antisense oligonucleotide reduced plasma cholesterol by ≈90%. The aortic LDL permeability and degradation rates of newly entered LDL particles were reduced by ≈50% and ≈85% already after 1...... week of treatment despite an unchanged pool size of aortic iodinated LDL particles. In contrast, the size, foam cell content, and aortic pool size of iodinated LDL particles of aortic atherosclerotic plaques were not reduced until after 4 weeks of treatment with the anti-Apob antisense oligonucleotide...

  9. Novel drug targets in cell wall biosynthesis exploited by gene disruption in Pseudomonas aeruginosa.

    Science.gov (United States)

    Elamin, Ayssar A; Steinicke, Susanne; Oehlmann, Wulf; Braun, Yvonne; Wanas, Hanaa; Shuralev, Eduard A; Huck, Carmen; Maringer, Marko; Rohde, Manfred; Singh, Mahavir

    2017-01-01

    For clinicians, Pseudomonas aeruginosa is a nightmare pathogen that is one of the top three causes of opportunistic human infections. Therapy of P. aeruginosa infections is complicated due to its natural high intrinsic resistance to antibiotics. Active efflux and decreased uptake of drugs due to cell wall/membrane permeability appear to be important issues in the acquired antibiotic tolerance mechanisms. Bacterial cell wall biosynthesis enzymes have been shown to be essential for pathogenicity of Gram-negative bacteria. However, the role of these targets in virulence has not been identified in P. aeruginosa. Here, we report knockout (k.o) mutants of six cell wall biosynthesis targets (murA, PA4450; murD, PA4414; murF, PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988) in P. aeruginosa PAO1, and characterized these in order to find out whether these genes and their products contribute to pathogenicity and virulence of P. aeruginosa. Except waaA k.o, deletion of cell wall biosynthesis targets significantly reduced growth rate in minimal medium compared to the parent strain. The k.o mutants showed exciting changes in cell morphology and colonial architectures. Remarkably, ΔmurF cells became grossly enlarged. Moreover, the mutants were also attenuated in vivo in a mouse infection model except ΔmurF and ΔwaaA and proved to be more sensitive to macrophage-mediated killing than the wild-type strain. Interestingly, the deletion of the murA gene resulted in loss of virulence activity in mice, and the virulence was restored in a plant model by unknown mechanism. This study demonstrates that cell wall targets contribute significantly to intracellular survival, in vivo growth, and pathogenesis of P. aeruginosa. In conclusion, these findings establish a link between cell wall targets and virulence of P. aeruginosa and thus may lead to development of novel drugs for the treatment of P. aeruginosa infection.

  10. Compact rock material gas permeability properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanling, E-mail: whl_hm@163.com [Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098 (China); LML, University of Lille, Cite Scientifique, 59655 Villeneuve d’Ascq (France); Xu, Weiya; Zuo, Jing [Institutes of Geotechnical Engineering, Hohai University, Nanjing 210098 (China)

    2014-09-15

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO{sub 2,} shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10{sup −19} m{sup 2}; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10{sup −17} m{sup 2}; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens’ permeability evolution is related to the relative particle movements and microcrack closure.

  11. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  12. Permeability During Magma Expansion and Compaction

    Science.gov (United States)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  13. Suitability of Torrent Permeability Tester to measure air-permeability of covercrete

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.; Gonzales-Gasca, C. [Institute of Construction Sciences ' Eduardo Torroja' , Madrid (Spain); Torrent, R. [Portland Cement Institute, (Argentina)

    2000-07-01

    Suitability of the Torrent Permeability Tester (TPT) to measure the permeability of covercrete to air, both in the laboratory and the field, is investigated, and test results obtained in laboratory studies are discussed. The tests performed included the determination of air permeability (TPT method), oxygen permeability (Cembureau method) and capillary suction, rapid chloride permeability test (ASTM C 1202), as well as a one-year carbonation depth test. Concrete specimens of various compositions and curing regimes were used in the tests; the gas-permeability tests were repeated on the same specimens after 28 days, than again at 6 months and 12 months. Test results confirmed the suitability of the TPT as a useful tool in the characterization of the quality the of concrete cover. It was found to be sensitive to changes in concrete quality; repeatable for sensitive properties such as gas permeability ; also, it was found to correlate well with other durability-related properties. 10 refs., 8 tabs., 8 figs.

  14. Permeability - Fluid Pressure - Stress Relationship in Fault Zones in Shales

    Science.gov (United States)

    Henry, P.; Guglielmi, Y.; Morereau, A.; Seguy, S.; Castilla, R.; Nussbaum, C.; Dick, P.; Durand, J.; Jaeggi, D.; Donze, F. V.; Tsopela, A.

    2016-12-01

    Fault permeability is known to depend strongly on stress and fluid pressures. Exponential relationships between permeability and effective pressure have been proposed to approximate fault response to fluid pressure variations. However, the applicability of these largely empirical laws remains questionable, as they do not take into account shear stress and shear strain. A series of experiments using mHPP probes have been performed within fault zones in very low permeability (less than 10-19 m2) Lower Jurassic shale formations at Tournemire (France) and Mont Terri (Switzerland) underground laboratories. These probes allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. In addition, in the Mont-Terri experiment, passive pressure sensors were installed in observation boreholes. Fracture transmissivity was estimated from single borehole pulse test, constant pressure injection tests, and cross-hole tests. It is found that the transmissivity-pressure dependency can be approximated with an exponential law, but only above a pressure threshold that we call the Fracture Opening Threshold (F.O.P). The displacement data show a change of the mechanical response across the F.O.P. The displacement below the F.O.P. is dominated by borehole response, which is mostly elastic. Above F.O.P., the poro-elasto-plastic response of the fractures dominates. Stress determinations based on previous work and on the analysis of slip data from mHPPP probe indicate that the F.O.P. is lower than the least principal stress. Below the F.O.P., uncemented fractures retain some permeability, as pulse tests performed at low pressures yield diffusivities in the range 10-2 to 10-5 m2/s. Overall, this dual behavior appears consistent with the results of CORK experiments performed in accretionary wedge decollements. Results suggest (1) that fault zones become highly permeable when approaching the critical Coulomb threshold (2

  15. Exerimental study on the water permeability of a reinforced concrete silo for radioactive waste repository

    International Nuclear Information System (INIS)

    Iriya, K.; Itoh, Y.; Hosoda, M.; Fujiwara, A.; Tsuji, Y.

    1992-01-01

    A low permeable conrete structure is required in a shallow land disposal system in order to isolate radioactive waste from the biosphere. Two model silos (7.25 m dia., 5.25 m height, 1.50 m wall thickness) will be constructed to demonstrate the performance of the concrete structure constructed by the two concepts. One concept is called the improved grouting method. We intend to inject cementitious material to the defective zone such as a crack after its construction by an ordinary construction method. The other concept is called the improved constructing method. We intend to minimize the defective zone, which influences the permeability, during the construction by an improved constructing method. The permeability of the concrete structure as a whole structure will be assessed by two large-scale-model-silos until 1992. The design, objectives, and preliminary results of this experiment are mainly described in this paper. (orig.)

  16. Effect of high density lipoproteins on permeability of rabbit aorta to low density lipoproteins

    International Nuclear Information System (INIS)

    Klimov, A.N.; Popov, V.A.; Nagornev, V.A.; Pleskov, V.M.

    1985-01-01

    A study was made on the effect of high density lipoproteins (HDL) on the permeability of rabbit aorta to low density lipoproteins (LDL) after intravenous administration of human HDL and human ( 125 I)LDL to normal and hypercholesterolemic rabbits. Evaluation of radioactivity in plasma and aorta has shown that the administration of a large dose of HDL decreased the aorta permeability rate for ( 125 I)LDL on an average by 19% in normal rabbits, and by 45% in rabbits with moderate hypercholesterolemia. A historadiographic study showed that HDL also decreased the vessel wall permeability to ( 125 I)LDL in normal and particularly in hypercholesterolemic animals. The suggestion was made that HDL at very high molar concentration can hamper LDL transportation through the intact endothelial layer into the intima due to the ability of HDL to compete with LDL in sites of low affinity on the surface of endothelial cells. (author)

  17. Gas and water permeability of concrete for reactor buildings--prototype scale specimens

    International Nuclear Information System (INIS)

    Mills, R.H.

    1987-02-01

    The permeability testing was performed on four concrete cylinders, 0.25 m in diameter and 2 m long, modelling the wall-thickness of reactor containment structures on the prototype scale. Tests were performed on the cylinders before and after artificial induction of longitudinal cracks, intented to model defects developing after some period of adverse service conditions. Permeability increased greatly with the introduction of longitudinal cracks in the concrete, and was also affected by moisture content and casting direction. The influence of reinforcing steel could not be resolved within the bounds of experimental variability. Ultrasound measurements were taken on each cylinder before and after cracking, and a correlation between increased permeability and lowered Ultrasonic Pulse Velocity was observed. Ultrasonic Pulse Velocity measurements thus show promise as a means of continuous monitoring of the integrity of the concrete barrier in service

  18. Treatment of necrotic infection on the anterior chest wall secondary to mastectomy and postoperative radiotherapy by the application of omentum and mesh skin grafting. Report of a case

    International Nuclear Information System (INIS)

    Sato, Masaaki; Tanaka, Fumihiro; Wada, Hiromi

    2002-01-01

    We report herein the case of a patient who initially underwent right radical mastectomy for breast carcinoma in 1988, followed by left breast-conserving surgery in 1997. On both occasions she was given postoperative radiation therapy of 50 Gy. Repeated dressings and the administration of antibiotics failed to heal ulcerative infected lesions that had formed on the anterior chest wall in early 1998. In 1999, the sternum and surrounding tissue were debrided and the anterior chest wall was reconstructed by omentum transposition and mesh skin grafting. The patient is currently well and alive without any evidence of recurrence of either infection or breast cancer. (author)

  19. Abdominal wall hernia and pregnancy

    DEFF Research Database (Denmark)

    Jensen, K K; Henriksen, N A; Jorgensen, L N

    2015-01-01

    PURPOSE: There is no consensus as to the treatment strategy for abdominal wall hernias in fertile women. This study was undertaken to review the current literature on treatment of abdominal wall hernias in fertile women before or during pregnancy. METHODS: A literature search was undertaken in Pub......Med and Embase in combination with a cross-reference search of eligible papers. RESULTS: We included 31 papers of which 23 were case reports. In fertile women undergoing sutured or mesh repair, pain was described in a few patients during the last trimester of a subsequent pregnancy. Emergency surgery...... of incarcerated hernias in pregnant women, as well as combined hernia repair and cesarean section appears as safe procedures. No major complications were reported following hernia repair before or during pregnancy. The combined procedure of elective cesarean section and abdominal wall hernia repair was reported...

  20. Permeability Barrier Generation in the Martian Lithosphere

    Science.gov (United States)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  1. Permeability Tests on Silkeborg Sand No. 0000

    DEFF Research Database (Denmark)

    Lund, Willy; Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Silkeborg Sand No. 0000. The permeability is determined by use of a falling head apparatus. The apparatus, test procedures and the analysis method are described......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  2. Permeability Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Eastern Scheldt Sand. The permeability is determined by use of a falling head apparatus. Finally the test results are briefly summarised and a relationship between......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  3. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  4. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  5. Beneficial Effects of Anti-Interleukin-6 Antibodies on Impaired Gastrointestinal Motility, Inflammation and Increased Colonic Permeability in a Murine Model of Sepsis Are Most Pronounced When Administered in a Preventive Setup.

    Directory of Open Access Journals (Sweden)

    Sara Nullens

    Full Text Available During sepsis, gastrointestinal ileus, mucosal barrier dysfunction and bacterial translocation are accepted to be important triggers that can maintain or exacerbate the septic state. In the caecal ligation and puncture animal model of sepsis, we demonstrated that systemic and colonic interleukin-6 levels are significantly increased coinciding with an impaired colonic barrier function. We therefore aimed to study the effect of therapeutic or curative administration of anti-IL6 antibodies on overall GI motility, colonic permeability and translocation of intestinal bacteria in blood and mesenteric lymph nodes in the mouse caecal ligation and puncture model.OF-1 mice were randomized to either the preventive or curative protocol, in which they received 1 mg/kg of antibodies to interleukin-6, or its IgG isotype control solution. They subsequently underwent either the caecal ligation and puncture procedure, or sham-surgery. GI motility was assessed 48 h following the procedure, as well as colonic permeability, serum and colon cytokines, colonic tight junction proteins at the mRNA level; cultures of blood and mesenteric lymph nodes were performed.Preventive administration of anti-interleukin-6 antibodies successfully counteracted the gastrointestinal motility disturbances and impaired colonic barrier function that could be observed in vehicle-treated septic animals. Serum and colonic levels of proinflammatory cytokines were significantly lower when animals were preventively treated with anti-interleukin-6 antibodies. A repetitive injection 24 h later resulted in the most pronounced effects. Curative treatment significantly lowered systemic and colonic inflammation markers while the effects on transit and permeability were unfortunately no longer significant.Caecal ligation and puncture resulted in septic ileus with an increased colonic permeability. Antibodies to interleukin-6 were able to ameliorate gastro-intestinal motility, suppress inflammation and

  6. Predicting skin permeability from complex chemical mixtures

    International Nuclear Information System (INIS)

    Riviere, Jim E.; Brooks, James D.

    2005-01-01

    Occupational and environmental exposure to topical chemicals is usually in the form of complex chemical mixtures, yet risk assessment is based on experimentally derived data from individual chemical exposures from a single, usually aqueous vehicle, or from computed physiochemical properties. We present an approach using hybrid quantitative structure permeation relationships (QSPeR) models where absorption through porcine skin flow-through diffusion cells is well predicted using a QSPeR model describing the individual penetrants, coupled with a mixture factor (MF) that accounts for physicochemical properties of the vehicle/mixture components. The baseline equation is log k p = c + mMF + aΣα 2 H + bΣβ 2 H + sπ 2 H + rR 2 + vV x where Σα 2 H is the hydrogen-bond donor acidity, Σβ 2 H is the hydrogen-bond acceptor basicity, π 2 H is the dipolarity/polarizability, R 2 represents the excess molar refractivity, and V x is the McGowan volume of the penetrants of interest; c, m, a, b, s, r, and v are strength coefficients coupling these descriptors to skin permeability (k p ) of 12 penetrants (atrazine, chlorpyrifos, ethylparathion, fenthion, methylparathion, nonylphenol, ρ-nitrophenol, pentachlorophenol, phenol, propazine, simazine, and triazine) in 24 mixtures. Mixtures consisted of full factorial combinations of vehicles (water, ethanol, propylene glycol) and additives (sodium lauryl sulfate, methyl nicotinate). An additional set of 4 penetrants (DEET, SDS, permethrin, ricinoleic acid) in different mixtures were included to assess applicability of this approach. This resulted in a dataset of 16 compounds administered in 344 treatment combinations. Across all exposures with no MF, R 2 for absorption was 0.62. With the MF, correlations increased up to 0.78. Parameters correlated to the MF include refractive index, polarizability and log (1/Henry's Law Constant) of the mixture components. These factors should not be considered final as the focus of these studies

  7. Decomposing the permeability spectra of nanocrystalline finemet core

    Directory of Open Access Journals (Sweden)

    Lajos K. Varga

    2018-04-01

    Full Text Available In this paper we present a theoretical and experimental investigation on the magnetization contributions to permeability spectra of normal annealed Finemet core with round type hysteresis curve. Real and imaginary parts of the permeability were determined as a function of exciting magnetic field (HAC between 40 Hz -110 MHz using an Agilent 4294A type Precision Impedance Analyzer. The amplitude of the exciting field was below and around the coercive field of the sample. The spectra were decomposed using the Levenberg–Marquardt algorithm running under Origin 9 software in four contributions: i eddy current; ii Debye relaxation of magnetization rotation, iii Debye relaxation of damped domain wall motion and iv resonant type DW motion. For small exciting amplitudes the first two components dominate. The last two contributions connected to the DW appear for relative large HAC only, around the coercive force. All the contributions will be discussed in detail accentuating the role of eddy current that is not negligible even for the smallest applied exciting field.

  8. Decomposing the permeability spectra of nanocrystalline finemet core

    Science.gov (United States)

    Varga, Lajos K.; Kovac, Jozef

    2018-04-01

    In this paper we present a theoretical and experimental investigation on the magnetization contributions to permeability spectra of normal annealed Finemet core with round type hysteresis curve. Real and imaginary parts of the permeability were determined as a function of exciting magnetic field (HAC) between 40 Hz -110 MHz using an Agilent 4294A type Precision Impedance Analyzer. The amplitude of the exciting field was below and around the coercive field of the sample. The spectra were decomposed using the Levenberg-Marquardt algorithm running under Origin 9 software in four contributions: i) eddy current; ii) Debye relaxation of magnetization rotation, iii) Debye relaxation of damped domain wall motion and iv) resonant type DW motion. For small exciting amplitudes the first two components dominate. The last two contributions connected to the DW appear for relative large HAC only, around the coercive force. All the contributions will be discussed in detail accentuating the role of eddy current that is not negligible even for the smallest applied exciting field.

  9. Electrokinetic Enhanced Permanganate Delivery for Low Permeability Soil Remediation

    Science.gov (United States)

    Chowdhury, A. I.; Gerhard, J.; Reynolds, D. A.; Sleep, B. E.; O'Carroll, D. M.

    2016-12-01

    Contaminant mass sequestered in low permeability zones (LPZ) in the subsurface has become a significant concern due to back diffusion of contaminants, leading to contaminant rebound following treatment of the high permeability strata. In-situ remediation technologies such as in-situ chemical oxidation (ISCO) are promising, however, successful delivery of oxidants into silts and clays remains a challenge. Electrokinetics (EK) has been proposed as a technique that can overcome this challenge by delivering oxidants into low permeability soils. This study demonstrates the ability of EK to facilitate permanganate delivery into silt for treatment of trichloroethene (TCE). A two-dimensional sandbox was packed with alternate vertical layers of coarse sand and silt contaminated with high concentrations of aqueous phase TCE. Nine experiments were conducted to compare EK-enhanced in-situ chemical oxidation (EK-ISCO) to ISCO alone or EK alone. Frequent groundwater sampling at multiple locations combined with image analysis provided detailed mapping of TCE, permanganate, and manganese dioxide mass distributions. EK-ISCO successfully delivered the permanganate throughout the silt cross-section while ISCO without EK resulted in permanganate delivery only to the edges of the silt layer. EK-ISCO resulted in a 4.4 order-of-magnitude (OoM) reduction in TCE concentrations in the coarse sand compared to a 3.5 OoM reduction for ISCO alone. This study suggests that electrokinetics coupled with ISCO can achieve enhanced remediation of lower permeability strata, where remediation technologies for successful contaminant mass removal would otherwise be limited.

  10. Octopus microvasculature: permeability to ferritin and carbon.

    Science.gov (United States)

    Browning, J

    1979-01-01

    The permeability of Octopus microvasculature was investigated by intravascular injection of carbon and ferritin. Vessels were tight to carbon while ferritin penetrated the pericyte junction, and was found extravascularly 1-2 min after its introduction. Vesicles occurred rarely in pericytes; fenestrae were absent. The discontinuous endothelial layer did not consitute a permeability barrier. The basement membrane, although retarding the movement of ferritin, was permeable to it; carbon did not penetrate the basement membrane. Evidence indicated that ferritin, and thus similarly sized and smaller water soluble materials, traverse the pericyte junction as a result of bulk fluid flow. Comparisons are made with the convective (or junctional) and slower, diffusive (or vesicular) passage of materials known to occur across the endothelium of continuous capillaries in mammals. Previous macrophysiological determinations concerning the permeability of Octopus vessels are questioned in view of these findings. Possible reasons for some major structural differences in the microcirculatory systems of cephalopods and vertebrates are briefly discussed.

  11. Dentin Permeability of Carious Primary Teeth

    African Journals Online (AJOL)

    primary dental pulp make it difficult to determine which modality offers the best ... The most common pathology of the dentine is dental caries. ... to evaluate dentine permeability is to calculate its hydraulic conductance (Lp) using fluid filtration ...

  12. Permeability of gypsum samples dehydrated in air

    Science.gov (United States)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  13. Permeability After Impact Testing of Composite Laminates

    Science.gov (United States)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  14. Surface sedimentation at permeable pavement systems

    DEFF Research Database (Denmark)

    Støvring, Jan; Dam, Torben; Jensen, Marina Bergen

    2018-01-01

    Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance of restorat......Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance...

  15. Negative permeability from random particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid, E-mail: shussain2@qinetiq.com

    2017-04-15

    Artificial media, such as those composed of periodically-spaced wires for negative permittivity and split ring resonators for negative permeability have been extensively investigated for negative refractive index (NRI) applications (Smith et al., 2004; Pendry et al., 1999) [1,2]. This paper presents an alternative method for producing negative permeability: granular (or particulate) composites incorporating magnetic fillers. Artificial media, such as split-ring resonators, are designed to produce a magnetic resonance feature, which results in negative permeability over a narrow frequency range about the resonance frequency. The position of the feature is dependent upon the size of the inclusion. The material in this case is anisotropic, such that the feature is only observable when the materials are orientated in a specific direction relative to the applied field. A similar resonance can be generated in magnetic granular (particulate) materials: ferromagnetic resonance from the natural spin resonance of particles. Although the theoretical resonance profiles in granular composites shows the permeability dipping to negative values, this is rarely observed experimentally due to resonance damping effects. Results are presented for iron in spherical form and in flake form, dispersed in insulating host matrices. The two particle shapes show different permeability performance, with the magnetic flakes producing a negative contribution. This is attributed to the stronger coupling with the magnetic field resulting from the high aspect ratio of the flakes. The accompanying ferromagnetic resonance is strong enough to overcome the effects of damping and produce negative permeability. The size of random particle composites is not dictated by the wavelength of the applied field, so the materials are potentially much thinner than other, more traditional artificial composites at microwave frequencies. - Highlights: • Negative permeability from random particle composites is

  16. Prioritizing Road Treatments using the Geomorphic Roads Analysis and Inventory Package (GRAIP) to Improve Watershed Conditions in the Wall Creek Watershed, Oregon

    Science.gov (United States)

    Day, K. T.; Black, T.; Clifton, C.; Luce, C.; McCune, S.; Nelson, N.

    2010-12-01

    Wall Creek, tributary to the North Fork John Day River in eastern Oregon, was identified as a priority watershed by the Umatilla National Forest for restoration in 2002. Most streams in this 518 km2 multi-ownership watershed are designated critical habitat for threatened steelhead. Eight streams are listed on the Oregon 303(d) list for elevated temperatures and excess sedimentation. Over 1000 km of public and private roads in the watershed present a major source of potential water quality and habitat impairment. We conducted a watershed-wide inventory of roads using the Geomorphic Roads Analysis and Inventory Package (GRAIP) in 2009 to quantify sediment contributions from roads to streams. GRAIP is a field and GIS-based model developed by the Forest Service Rocky Mountain Research Station and Utah State University that georeferences and quantifies road hydrologic connectivity, sediment production and delivery, mass wasting, and risk of diversion and plugging at stream crossings. Field survey and modeling produced data for 6,473 drainage locations on 726 km of road (most of the publically owned roads) quantifying the location and mass of sediment produced and delivered to streams. Findings indicate a relatively small subset of roads deliver the majority of road-produced fine sediment; 12 percent of the road length delivers 90 percent of the total fine sediment to streams. Overall fine sediment production in the watershed is relatively low (with an estimated background erosion rate of 518,000 kg/yr for the watershed) and sediment produced and delivered from the road system appears to be a modest addition. Road surfaces produce approximately 81,455 kg of fine sediment per year, with 20,976 kg/year delivered to the stream network. Fifty-nine gullies were observed, 41 of which received road runoff. Sixteen road-related landslides were also observed. The excavated volume of these features totals 3,922,000 kg which is equivalent to 175 years of fine sediment delivery at

  17. Transformable ferroelectric control of dynamic magnetic permeability

    Science.gov (United States)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  18. Defining clogging potential for permeable concrete.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2018-08-15

    Permeable concrete is used to reduce urban flooding as it allows water to flow through normally impermeable infrastructure. It is prone to clogging by particulate matter and predicting the long-term performance of permeable concrete is challenging as there is currently no reliable means of characterising clogging potential. This paper reports on the performance of a range of laboratory-prepared and commercial permeable concretes, close packed glass spheres and aggregate particles of varying size, exposed to different clogging methods to understand this phenomena. New methods were developed to study clogging and define clogging potential. The tests involved applying flowing water containing sand and/or clay in cycles, and measuring the change in permeability. Substantial permeability reductions were observed in all samples, particularly when exposed to sand and clay simultaneously. Three methods were used to define clogging potential based on measuring the initial permeability decay, half-life cycle and number of cycles to full clogging. We show for the first time strong linear correlations between these parameters for a wide range of samples, indicating their use for service-life prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Accurate control testing for clay liner permeability

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R J

    1991-08-01

    Two series of centrifuge tests were carried out to evaluate the use of centrifuge modelling as a method of accurate control testing of clay liner permeability. The first series used a large 3 m radius geotechnical centrifuge and the second series a small 0.5 m radius machine built specifically for research on clay liners. Two permeability cells were fabricated in order to provide direct data comparisons between the two methods of permeability testing. In both cases, the centrifuge method proved to be effective and efficient, and was found to be free of both the technical difficulties and leakage risks normally associated with laboratory permeability testing of fine grained soils. Two materials were tested, a consolidated kaolin clay having an average permeability coefficient of 1.2{times}10{sup -9} m/s and a compacted illite clay having a permeability coefficient of 2.0{times}10{sup -11} m/s. Four additional tests were carried out to demonstrate that the 0.5 m radius centrifuge could be used for linear performance modelling to evaluate factors such as volumetric water content, compaction method and density, leachate compatibility and other construction effects on liner leakage. The main advantages of centrifuge testing of clay liners are rapid and accurate evaluation of hydraulic properties and realistic stress modelling for performance evaluations. 8 refs., 12 figs., 7 tabs.

  20. Cell permeability beyond the rule of 5.

    Science.gov (United States)

    Matsson, Pär; Doak, Bradley C; Over, Björn; Kihlberg, Jan

    2016-06-01

    Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Analytical solution for vacuum preloading considering the nonlinear distribution of horizontal permeability within the smear zone.

    Directory of Open Access Journals (Sweden)

    Jie Peng

    Full Text Available The vacuum preloading is an effective method which is widely used in ground treatment. In consolidation analysis, the soil around prefabricated vertical drain (PVD is traditionally divided into smear zone and undisturbed zone, both with constant permeability. In reality, the permeability of soil changes continuously within the smear zone. In this study, the horizontal permeability coefficient of soil within the smear zone is described by an exponential function of radial distance. A solution for vacuum preloading consolidation considers the nonlinear distribution of horizontal permeability within the smear zone is presented and compared with previous analytical results as well as a numerical solution, the results show that the presented solution correlates well with the numerical solution, and is more precise than previous analytical solution.

  3. Permeability and elastic properties of cracked glass under pressure

    Science.gov (United States)

    Ougier-Simonin, A.; GuéGuen, Y.; Fortin, J.; Schubnel, A.; Bouyer, F.

    2011-07-01

    Fluid flow in rocks is allowed through networks of cracks and fractures at all scales. In fact, cracks are of high importance in various applications ranging from rock elastic and transport properties to nuclear waste disposal. The present work aims at investigating thermomechanical cracking effects on elastic wave velocities, mechanical strength, and permeability of cracked glass under pressure. We performed the experiments on a triaxial cell at room temperature which allows for independent controls of the confining pressure, the axial stress, and pore pressure. We produced cracks in original borosilicate glass samples with a reproducible method (thermal treatment with a thermal shock of 300°C). The evolution of the elastic and transport properties have been monitored using elastic wave velocity sensors, strain gage, and flow measurements. The results obtained evidence for (1) a crack family with identified average aspect ratio and crack aperture, (2) a very small permeability which decreases as a power (exponential) function of pressure, and depends on (3) the crack aperture cube. We also show that permeability behavior of a cracked elastic brittle solid is reversible and independent of the fluid nature. Two independent methods (permeability and elastic wave velocity measurements) give these consistent results. This study provides data on the mechanical and transport properties of an almost ideal elastic brittle solid in which a crack population has been introduced. Comparisons with similar data on rocks allow for drawing interesting conclusions. Over the timescale of our experiments, our results do not provide any data on stress corrosion, which should be considered in further study.

  4. Implant-assisted magnetic drug targeting in permeable microvessels: Comparison of two-fluid statistical transport model with experiment

    Energy Technology Data Exchange (ETDEWEB)

    ChiBin, Zhang; XiaoHui, Lin, E-mail: lxh60@seu.edu.cn; ZhaoMin, Wang; ChangBao, Wang

    2017-03-15

    In experiments and theoretical analyses, this study examines the capture efficiency (CE) of magnetic drug carrier particles (MDCPs) for implant-assisted magnetic drug targeting (IA-MDT) in microvessels. It also proposes a three-dimensional statistical transport model of MDCPs for IA-MDT in permeable microvessels, which describes blood flow by the two-fluid (Casson and Newtonian) model. The model accounts for the permeable effect of the microvessel wall and the coupling effect between the blood flow and tissue fluid flow. The MDCPs move randomly through the microvessel, and their transport state is described by the Boltzmann equation. The regulated changes and factors affecting the CE of the MDCPs in the assisted magnetic targeting were obtained by solving the theoretical model and by experimental testing. The CE was negatively correlated with the blood flow velocity, and positively correlated with the external magnetic field intensity and microvessel permeability. The predicted CEs of the MDCPs were consistent with the experimental results. Additionally, under the same external magnetic field, the predicted CE was 5–8% higher in the IA-MDT model than in the model ignoring the permeability effect of the microvessel wall. - Highlights: • A model of MDCPs for IA-MDT in permeable microvessels was established. • An experimental device was established, the CE of MDCPs was measured. • The predicted CE of MDCPs was 5–8% higher in the IA-MDT model.

  5. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  6. The influence of naphthenic acids and their fractions onto cell membrane permeability

    Directory of Open Access Journals (Sweden)

    Pavlović Ksenija

    2015-01-01

    Full Text Available The influence of naphthenic acids (NAs mixture and their narrow fractions (called NA pH 4, pH 8 and pH 10 onto permeability of beetroot cell membrane is examined. The results showed that the effect depends on treatment duration, concentration and NAs structure. Longer treatment of plant cell membranes with sodium naphthenate (Na-naph resulted in the increase of membrane permeability (e.g. 4-hour treatment with Na-naph (C=100 μmol L-1 increased membrane permeability about 3 times, while prolongation of treatment to 24 hour resulted in the 18 times increasing of the effect. NAs in the concentration range from 0.1 to 10 μmol L-1 does not change membrane permeability, while membrane permeability is increasing linearly with concentration increasing from 10-100 μmol L-1. The strongest effect expressed fraction pH 8, where bi- and tricyclic carboxylic acids are the most abundant. These structures are predominant in the total NAs mixture as well. Thereby could be explained their closest, but a little bit weaker effect, comparing to NAs present in fraction pH 8. The effect of NAs onto beetroot cell membrane is between the effects of anionic (SDS and LS and non-ionic surfactants (Triton X-100. [Projekat Ministarstva nauke Republike Srbije, br. 172006. i br. TR31036

  7. Ground-water flow in low permeability environments

    Science.gov (United States)

    Neuzil, Christopher E.

    1986-01-01

    flow phenomena, osmosis and ultrafiltration, are experimentally well established in prepared clays but have been incompletely investigated, particularly in undisturbed geologic media. Small-scale experimental results form much of the basis for analyses of flow in low-permeability environments which occurs on scales of time and size too large to permit direct observation. Such large-scale flow behavior is the focus of the second part of the review. Extrapolation of small-scale experimental experience becomes an important and sometimes controversial problem in this context. In large flow systems under steady state conditions the regional permeability can sometimes be determined, but systems with transient flow are more difficult to analyze. The complexity of the problem is enhanced by the sensitivity of large-scale flow to the effects of slow geologic processes. One-dimensional studies have begun to elucidate how simple burial or exhumation can generate transient flow conditions by changing the state of stress and temperature and by burial metamorphism. Investigation of the more complex problem of the interaction of geologic processes and flow in two and three dimensions is just beginning. Because these transient flow analyses have largely been based on flow in experimental scale systems or in relatively permeable systems, deformation in response to effective stress changes is generally treated as linearly elastic; however, this treatment creates difficulties for the long periods of interest because viscoelastic deformation is probably significant. Also, large-scale flow simulations in argillaceous environments generally have neglected osmosis and ultrafiltration, in part because extrapolation of laboratory experience with coupled flow to large scales under in situ conditions is controversial. Nevertheless, the effects are potentially quite important because the coupled flow might cause ultra long lived transient conditions. The difficulties associated with analysis are

  8. In situ permeability modification using gelled polymer systems. Topical report, June 10, 1996--April 10, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.

    1997-10-01

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program is focused on five areas: gel treatment in fractured systems; gel treatment in carbonate rocks; in-depth placement of gels; gel systems for application in carbon dioxide flooding; and gel treatment in production wells. The research program is primarily an experimental program directed at improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the first 10 months of a 28 month program is described in the following sections.

  9. In situ permeability modification using gelled polymer systems. Annual report, April 11, 1997--April 10, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.; Michnick, M.J.

    1998-09-01

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program focused on five areas: Gel treatment in fractured systems; Gel treatment in carbonate rocks; In-depth placement of gels; Gel systems for application in carbon dioxide flooding; and Gel treatment in production wells. The research program is primarily an experimental program directed toward improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the second 12 month period of a 28 month program is described.

  10. The diagnostic value of small bowel wall vascularity after sulfur hexafluoride-filled microbubble injection in patients with Crohn's disease. Correlation with the therapeutic effectiveness of specific anti-inflammatory treatment

    International Nuclear Information System (INIS)

    Quaia, Emilio; Migaleddu, Vincenzo; Baratella, Elisa; Pizzolato, Riccardo; Rossi, Alexia; Grotto, Maurizio; Cova, Maria Assunta

    2009-01-01

    Purpose: To assess the value of small bowel wall vascularity after microbubble contrast agent injection in evaluating the therapeutic effectiveness of specific anti-inflammatory treatment in patients with Crohn's disease. Materials and methods: Fifteen patients (7 male and 8 female; mean age ± SD, 40 years ± 6) with a biopsy-proven diagnosis of Crohn's disease - Crohn's disease activity index (CDAI) > 150 (n = 12 patients) or 5 mm) were included. In each patient the terminal loop was scanned by contrast-enhanced ultrasound (CEUS) after sulfur hexafluoride-filled microbubble injection before and after 6-month anti-inflammatory treatment. The vascularity of the terminal loop was quantified in gray-scale levels (0-255) by a manually drawn ROI encompassing the thickened bowel wall and it was correlated with CDAI. Result: Before the beginning of the specific treatment all patients revealed diffuse transparietal contrast enhancement after microbubble injection, except for 3 patients who revealed contrast enhancement limited to the submucosa. In 13 patients the slope of the first ascending tract and the area under the enhancement curve were significantly lower after anti-inflammatory treatment (P < 0.05; Wilcoxon test) with a significant correlation with the CDAI score (ρ = 0.85, P < 0.05). In 2 patients no significant vascularity changes were found even though a mild reduction of CDAI score was identified (from 200 to 150 gray-scale levels). Conclusion: CEUS is a useful method to assess the therapeutic effectiveness of specific medical anti-inflammatory treatment in patients with Crohn's disease.

  11. Modeling of heat and high viscous fluid distributions with variable viscosity in a permeable channel

    Directory of Open Access Journals (Sweden)

    J Hona

    2016-10-01

    Full Text Available The flow field under study is characterized by velocity components, temperature and pressure in non-dimensional formulation. The flow is driven by suction through the horizontal channel with permeable walls fixed at different temperatures. In order to ascertain a better understanding of the dynamic behavior of the flow, the Navier-Stokes equations and the energy equation are solved concurrently applying a similarity transformation technique. The hydrodynamic structures obtained from the numerical integration include flow reversal or backward flow, collision zones due to the coexistence of wall suction and flow reversal inside the channel, the inflection through temperature distribution, the growth of thermal gradients near the walls, and the sensitivity of normal pressure gradients to the difference of temperatures at boundaries. These hydrodynamic structures are investigated considering the influences of the Péclet number P and the sensitivity of viscosity to thermal variations α which are the main control parameters of the problem.

  12. Characterization of 222Rn entry into a basement structure surrounded by low permeability soil

    International Nuclear Information System (INIS)

    Ward, D.C.

    1992-01-01

    An experimental facility has been developed to monitor the entry rate and concentration of 222 Rn in two basement type structures surrounded by soil having a permeability on the order of 1- -12 m 2 . A data acquisition system recorded environmental conditions outside and inside the structures, including basement air exchange rates, every 15 min. Indoor 222 Rn concentrations ranged from 400 to 1400 Bq m -3 . The observed 222 Rn entry rate is highly variable and has two primary components; a constant input rate caused by diffusion of 222 Rn through the concrete walls and floor, and a variable rate that depends upon indoor-soil pressure differentials of only a few pascals. Pressure differentials are dependent upon wind speed and wind direction. Stack effect was not significant. During a two week period, with relatively calm winds, diffusion through the concrete walls and floor plus the floor-wall joint accounted for more than 80% of the total 222 Rn entry

  13. Abdominal wall fat pad biopsy

    Science.gov (United States)

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... is the most common method of taking an abdominal wall fat pad biopsy . The health care provider cleans the ...

  14. Chest Wall tumor: combined management

    International Nuclear Information System (INIS)

    Rao Bhaskar, N.

    1997-01-01

    Cancer is relatively rare disease among children and adolescents. The incidence of solid tumors other than CNS is less than 2/100,000. Tumors of the chest wall can arise either from the somatic tissue or ribs. These are rare, so either institutional reviews or multi institutional studies should determine optimal therapeutic management. Of the bony chest wall, Ewing's sarcoma or the family of tumor (peripheral neuro epithelioma, Askin tumor), are the most common. These lesions are lytic and have associated large extra pleural component. This large extra pleural component often necessitates major chest wall resection (3 or more ribs), and when lower ribs are involved, this entails resection of portion of diaphragm. Despite this resection, survival in the early 1970 was 10-20%. Since 1970 multi agent chemotherapy has increased survival rates. of importance, however, is these regimens have caused significant reduction of these extra pleural components so that major chest wall resections have become a rarity. With improved survival and decreased morbidity preoperative chemotherapy followed by surgery is now the accepted modality of treatment. Another major advantage of this regimen is that potential radiation therapy may be obviated. The most common chest wall lesion is rhabdomyosarcoma. In the IRS study of 1620 RMS patients, in 141 (9%) the primary lesion was in the chest wall. these are primarily alveolar histology. when lesions were superficial, wide local excision with supplemental radiation therapy was associated with low morbidity and good overall survival. however, a majority have significant intra- thoracic components. in these circumstances the resectability rate is less than 30% and the survival poor. Other lesions include non rhabdomyosarcomas, eosinophilic granuloma, chondrosarcoma, and osteomyelitis. The management of these lesions varies according to extent, histology, and patient characteristics

  15. Initial Ferritic Wall Mode studies on HBT-EP

    Science.gov (United States)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2013-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  16. In situ permeability testing of rock salt

    International Nuclear Information System (INIS)

    Peterson, E.W.; Lagus, P.L.; Broce, R.D.; Lie, K.

    1981-04-01

    Storage of transuranic (TRU) wastes in bedded salt formations requires a knowledge of the in situ permeability of SENM rock salt. Since assumptions for safety assessments have been made in which these wastes could generate gas pressures on the order of the lithostatic pressure over geologic time scales, the permeability of the surrounding formation becomes an important parameter for determining the manner in which the gases will be contained or dispersed. This report describes the series of tests conducted in the AEC-7 borehole, located near the WIPP site, to determine the in situ gas flow characteristics of the bedded salt. In these tests, compressed air was injected into the borehole and flow into the surrounding formation measured. These measured flow rates were interpreted in terms of formation permeabilities and porosities which were, in turn, used as modeling parameters for the repository response analysis. Two series of field tests were performed. The first series consisted of a number of whole-hole flow tests conducted to provide preliminary design information required for future operation of a guarded straddle packer system capable of measuring permeabilities > or = 0.1 μdarcy. The second series of tests were conducted using the Systems, Science and Software (S-Cubed) designed guarded straddle packer system. In these interval permeability tests, 100-foot lengths of borehole were isolated and the flow characteristics of the surrounding formation examined. In this report, a complete description of the test procedures, instrumentation, and measurement techniques is first given. The analytical/numerical methods used for data interpretation are then presented, followed by results of the interval and permeability tests. (The whole-hole tests are summarized in Appendix A.) Conclusions are presented in the final section

  17. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.

    Science.gov (United States)

    Wedin, Håkan; Cherubini, Stefania; Bottaro, Alessandro

    2015-07-01

    The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for

  18. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  19. Outcome of Treatment of Anterior Vaginal Wall Prolapse and Stress Urinary Incontinence with Transobturator Tension-Free Vaginal Mesh (Prolift and Concomitant Tension-Free Vaginal Tape-Obturator

    Directory of Open Access Journals (Sweden)

    Sameh Azazy

    2008-12-01

    Full Text Available Objective. It is to assess the feasibility, effectiveness, and safety of transobturator tension-free vaginal mesh (Prolift and concomitant tension-free vaginal tape-obturator (TVT-O system as a treatment of female anterior vaginal wall prolapse associated with stress urinary incontinence (SUI. Patients and Methods. Between December 2006 and July 2007, 20 patients with anterior genital prolapse and voiding dysfunction were treated with the transobturator tension-free vaginal mesh (Prolift and concomitant tension-free vaginal tape-obturator (TVT-O. Sixteen patients had stress urinary incontinence and 4 patients were considered at risk for development of de novo stress incontinence after the prolapse is repaired. All patients underwent a complete urodynamic assessment. All the patients underwent pelvic examination 4–6 weeks after the operation, and anatomical and functional outcomes were recorded. Results. Twenty cystocoeles were repaired: 6 grade II, 12 grade III, and 2 grade IV. There were no vessel or bladder injuries. Eighteen patients had optimal anatomic results and 2 patients had persistent asymptomatic stage I prolapse. Conclusion. These preliminary results suggest that Prolift system offers a safe and effective treatment for female anterior vaginal wall prolapse. However, a long-term followup is necessary in order to support the good result maintenance.

  20. Small-bowel permeability in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Madsen, Jan L; Rumessen, Jüri J

    2006-01-01

    Collagenous colitis (CC) is a chronic inflammatory bowel disease that affects the colon. However, some patients with CC present with accompanying pathologic small-bowel manifestations such as coeliac disease, defects in bile acid absorption and histopathologic changes in small-intestinal biopsies......, indicating that CC is a pan-intestinal disease. In small-intestinal disease, the intestinal barrier function may be impaired, and the permeability of the small intestine altered. The purpose of this research was to study small-bowel function in patients with CC as expressed by intestinal permeability....

  1. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic...... groups differ in the amino acid composition of their aromatic/arginine regions. The location of the ammonia-permeable aquaporins in the body parallels that of the Rh proteins. This applies to erythrocytes and to cells associated with nitrogen homeostasis and high rates of anabolism. In the liver, AQPs 8...

  2. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M; Hilfinger, John M; Yamashita, Shinji; Yu, Lawrence X; Lennernäs, Hans; Amidon, Gordon L

    2010-10-04

    The FDA classifies a drug substance as high-permeability when the fraction of dose absorbed (F(abs)) in humans is 90% or higher. This direct correlation between human permeability and F(abs) has been recently controversial, since the β-blocker sotalol showed high F(abs) (90%) and low Caco-2 permeability. The purpose of this study was to investigate the scientific basis for this disparity between permeability and F(abs). The effective permeabilities (P(eff)) of sotalol and metoprolol, a FDA standard for the low/high P(eff) class boundary, were investigated in the rat perfusion model, in three different intestinal segments with pHs corresponding to the physiological pH in each region: (1) proximal jejunum, pH 6.5; (2) mid small intestine, pH 7.0; and (3) distal ileum, pH 7.5. Both metoprolol and sotalol showed pH-dependent permeability, with higher P(eff) at higher pH. At any given pH, sotalol showed lower permeability than metoprolol; however, the permeability of sotalol determined at pH 7.5 exceeded/matched metoprolol's at pH 6.5 and 7.0, respectively. Physicochemical analysis based on ionization, pK(a) and partitioning of these drugs predicted the same trend and clarified the mechanism behind these observed results. Experimental octanol-buffer partitioning experiments confirmed the theoretical curves. An oral dose of metoprolol has been reported to be completely absorbed in the upper small intestine; it follows, hence, that metoprolol's P(eff) value at pH 7.5 is not likely physiologically relevant for an immediate release dosage form, and the permeability at pH 6.5 represents the actual relevant value for the low/high permeability class boundary. Although sotalol's permeability is low at pH 6.5 and 7.0, at pH 7.5 it exceeds/matches the threshold of metoprolol at pH 6.5 and 7.0, most likely responsible for its high F(abs). In conclusion, we have shown that, in fact, there is no discrepancy between P(eff) and F(abs) in sotalol's absorption; the data emphasize that

  3. Water permeability of pigmented waterborne coatings

    NARCIS (Netherlands)

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.

    2013-01-01

    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible

  4. Water permeability in human airway epithelium

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Procida, Kristina; Larsen, Per Leganger

    2005-01-01

    Osmotic water permeability (P(f)) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane ...

  5. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  6. Color-magnetic permeability of QCD vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-03-01

    In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.

  7. The Permeability of Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Williams, A.F.; Burcharth, H. F.; Adel, H. den

    1992-01-01

    . A new series of tests designed to test for deviations from the Forchheimer equation and investigate the effects of material shape are described. While no evidence can be found to indicate a deviation from the Forchheimer equation a dependency of permeability and the surface roughness the material...

  8. Vascular permeability in cerebral cavernous malformations

    DEFF Research Database (Denmark)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao

    2015-01-01

    Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case-controlled observ...

  9. Programs for the calculi of blocks permeabilities

    International Nuclear Information System (INIS)

    Gomez Hernandez, J.J.; Sovero Sovero, H.F.

    1993-01-01

    This report studies the stochastic analysis of radionuclide transport. The permeability values of blocks are necessary to do a numeric model for the flux and transport problems in ground soils. The determination of block value by function on grill value is the objective of this program

  10. Permeability of ferret trachea in vitro to 99m Tc-DTPA and [14C]antipyrine

    International Nuclear Information System (INIS)

    Hanafi, Z.; Webber, S.E.; Widdicombe, J.G.

    1994-01-01

    Platelet-activating factor (PAF) and vasoactive drugs were tested on permeability of ferret trachea in vitro by measuring fluxes of 99m T c -diethylenetriamine pentaacetic acid ( 99m T c -DTPA; hydrophilic) and [ 14 C]antipyrine ([ 14 C]AP; lipophilic) across the tracheal wall. Tracheae were bathed on both sides with Krebs-Henseleit buffer, with luminal buffer containing either 99m T c -DTPA or [ 14 C]AP. Luminal and abluminal radioactivities, potential difference, and tracheal smooth muscle tone were measured. Baseline 99m T c -DTPA and [ 14 C]AP permeability coefficients were - 4.7 ± 0.6 (SE) x 10 -7 and -2.2 ± 0.1 x 10 -5 cm/s, respectively. PAF (10 μM) increased permeability to 99m T c -DTPA to -35.3 ± 7.6 x 10 -7 cm/s (P 14 C]AP did not change, suggesting that paracellular but not transcellular transport was affected. Abluminal and luminal applications of methacholine (MCh, 20 μM), phenylephrine (PE, 100 μM), and albuterol (Alb, 100 μM) caused no change in permeability to 99m T c -DTPA before or after exposure to luminal PAF, but abluminal histamine (Hist, 10 μM) significantly increased permeability. Abluminal Hist decreased permeability to [ 14 C]AP before and after exposure to PAF. MCh, PE, and Hist increased smooth muscle tone; Alb and PAF had no effect. Thus, only PAF and Hist altered permeability to 99m T c -DTPA, and MCh, PE, and Hist changed smooth muscle tone. Tracheal permeability changes were greater for the hydrophilic than for the lipophilic agent. 37 refs., 11 figs., 1 tab

  11. DNA excision repair in permeable human fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the [3H]DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells

  12. Re-Use of Clean Coal Technology By-Products in the Construction of Low Permeability Liners. Final report, 10/1/1996 - 3/31/2000

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, William E. [The Ohio State Univ., Columbus, OH (United States); Butalia, Tarunjit S. [The Ohio State Univ., Columbus, OH (United States); Whitlach, Jr., E. Earl [The Ohio State Univ., Columbus, OH (United States); Mitsch, William [The Ohio State Univ., Columbus, OH (United States)

    2000-12-31

    This final project report presents the results of a research program conducted at The Ohio State University from October 1, 1996 to March 31, 2000 to investigate the use of stabilized flue gas desulfurization (FGD) materials in the construction of low permeability liners. The objective of the research program was to establish field-verified time-dependent relationships for the performance of liners constructed from stabilized FGD by-products generated in Ohio. The project objective was accomplished with a coordinated program of testing and analyzing small scale laboratory specimens under controlled conditions, medium-scale wetland mesocosms, and a full-scale pond facility. Although the specific uses directly addressed by this report include liners for surface impoundments, the results presented in this study are also useful in other applications including design of daily cover and liners for landfills, seepage cutoff walls and trenches and for nutrient retention and pollution mitigation wetlands. The small scale laboratory tests, medium scale mesocosm wetland experiments, and construction and monitoring of a full-scale FGD lined facility (capacity of one million gallons) shows that stabilized FGD materials can be used as low permeability liners in the construction of water and manure holding ponds, and constructed wetlands for wastewater treatment. Actual permeability coefficients in the range of 10-7 cm/sec (3 x 10-9 ft/sec) can be obtained in the field by properly compacting lime and fly ash enriched stabilized FGD materials. Leachate from the FGD material meets Ohio’s non-toxic criteria for coal combustion by-products, and for most potential contaminants the national primary and secondary drinking water standards are also met. The low permeability non-toxic FGD material investigated in this study poses very minimal risks, if any, for groundwater contamination. Constructed FGD-lined wetlands offer the opportunity for increased phosphorous

  13. 'Ad hoc' Analytical Equations and Probabilistic Treatment of Uncertainties for the Seismic Assessment and Amelioration of a XVI Century Retaining Wall in Central Rome

    International Nuclear Information System (INIS)

    De Miceli, Enrica; Monti, Giorgio; Bianco, Vincenzo; Filetici, Maria Grazia

    2016-01-01

    This paper presents a study aiming at assessing the seismic safety and developing the rehabilitation design of a masonry retaining wall, known as 'Bastione Farnesiano', and placed around the Palatinum hill, in the central archeological area of Rome, in Italy. It is a singular artifact of its kind and hardly identifiable with known stereotypes or constructive models. The phase of survey, together with both the material and degradation analyses, showed the impossibility to define with certainty some features, even geometrical, of the monument, necessary to reach a judgment about its safety. Therefore, it was necessary to formulate the risk assessment problem by taking into due consideration all uncertainties and evaluating them in probabilistic terms. A simple mechanical model, considering different and alternative collapse modes, was developed and, after characterizing the uncertain parameters in probabilistic terms, Monte Carlo simulations were carried out. Based on the obtained results: a) the value of the current risk index has been determined, and b) a sensitivity analysis has been performed in order to identify the parameters that mostly affect the monument safety. This analysis has provided useful information that has allowed to orient the seismic amelioration design strategy by acting on one of the parameters that have greater impact on the risk reduction.

  14. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment.

    Science.gov (United States)

    Ambuchi, John J; Zhang, Zhaohan; Shan, Lili; Liang, Dandan; Zhang, Peng; Feng, Yujie

    2017-06-15

    The accelerated use of iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs) in the consumer and industrial sectors has triggered the need to understand their potential environmental impact. The response of anaerobic granular sludge (AGS) to IONPs and MWCNTs during the anaerobic digestion of beet sugar industrial wastewater (BSIW) was investigated in this study. The IONPs increased the biogas and subsequent CH 4 production rates in comparison with MWCNTs and the control samples. This might be due to the utilization of IONPs and MWCNTs as conduits for electron transfer toward methanogens. The MWCNTs majorly enriched the bacterial growth, while IONP enrichment mostly benefitted the archaea population. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed that AGS produced extracellular polymeric substances, which interacted with the IONPs and MWCNTs. This provided cell protection and prevented the nanoparticles from piercing through the membranes and thus cytotoxicity. The results provide useful information and insights on the adjustment of anaerobic microorganisms to the natural complex environment based on nanoparticles infiltration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of Taiwan Roselle anthocyanin treatment and single-walled carbon nanotube addition on the performance of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chou, C S; Huang, Y H; Chen, Y S; Tsai, P J; Wu, P; Shu, G G

    2014-01-01

    This study investigates the relationship between the performance of a dye-sensitized solar cell (DSSC) sensitized by a natural sensitizer of Taiwan Roselle anthocyanin (TRA) and fabrication process conditions of the DSSC. A set of systematic experiments has been carried out at various soaking temperatures, soaking periods, sensitizer concentrations, pH values, and additions of single-walled carbon nanotube (SWCNT). An absorption peak (520 nm) is found for TRA, and it is close to that of the N719 dye (518 nm). At a fixed concentration of TRA and a fixed soaking period, a lower pH of the extract or a lower soaking temperature is found favorable to the formation of pigment cations, which leads to an enhanced power conversion efficiency (η) of DSSC. For instance, by applying 17.53 mg/100ml TRA at 30 for 10 h, as the pH of the extract decreases to 2.00 from 2.33 (the original pH of TRA), the η of DSSC with TiO 2 +SWCNT electrode increases to 0.67% from 0.11% of a traditional DSSC with TiO 2 electrode. This performance improvement can be explained by the combined effect of the pH of sensitizer and the additions of SWCNT, a first investigation in DSSC using the natural sensitizer with SWCNT.

  16. Effects of Taiwan Roselle anthocyanin treatment and single-walled carbon nanotube addition on the performance of dye-sensitized solar cells

    Science.gov (United States)

    Chou, C. S.; Tsai, P. J.; Wu, P.; Shu, G. G.; Huang, Y. H.; Chen, Y. S.

    2014-04-01

    This study investigates the relationship between the performance of a dye-sensitized solar cell (DSSC) sensitized by a natural sensitizer of Taiwan Roselle anthocyanin (TRA) and fabrication process conditions of the DSSC. A set of systematic experiments has been carried out at various soaking temperatures, soaking periods, sensitizer concentrations, pH values, and additions of single-walled carbon nanotube (SWCNT). An absorption peak (520 nm) is found for TRA, and it is close to that of the N719 dye (518 nm). At a fixed concentration of TRA and a fixed soaking period, a lower pH of the extract or a lower soaking temperature is found favorable to the formation of pigment cations, which leads to an enhanced power conversion efficiency (η) of DSSC. For instance, by applying 17.53 mg/100ml TRA at 30 for 10 h, as the pH of the extract decreases to 2.00 from 2.33 (the original pH of TRA), the η of DSSC with TiO2+SWCNT electrode increases to 0.67% from 0.11% of a traditional DSSC with TiO2 electrode. This performance improvement can be explained by the combined effect of the pH of sensitizer and the additions of SWCNT, a first investigation in DSSC using the natural sensitizer with SWCNT.

  17. Fluorescence microscopical studies on chitin distribution in the cell wall of giant cells of Saccharomyces uvarum, grown following X-radiaiton treatment

    International Nuclear Information System (INIS)

    Hoschka, L.

    1982-01-01

    Teast cells are synchronized and modiated with X-rays (1.0 kGy) in the Cr, phase. Their growth behaviour is observed in suspension cultures and the formation of giant cells noted. The chitin structures are selectively stained with the fluorescent dye Calcofluor white. In the unradiated cells the chitin is deposited at the bud constriction site in the form of rings in the mother cell wall, whereas for irradiated cells only one chitin ring of normal appearance is formed between the mother cell and first bud equivalent. Between further bud equivalents an intensification of fluorescence is occasionally noted, however the organisation of the chitin into a regular ring arrangement is disturbed. In giant cells the facility for primary and secondary septa formation is missing and these are essential for successful cell division. By further experiments it was possible to identify the cause of disturbance in the cell cycle of irradiated cells. Giant cells only form one chitin ring because its DNA is replicated one time only. The major cause triggering the actual formation of giant cells must be considered the missing distribution of the once-rephicated DNA. All processes in the cell cycle dependent on this step are therefore stopped and only bud formation which occurs independently continues along its rhytmical path. (orig./MG) [de

  18. Sub-core permeability and relative permeability characterization with Positron Emission Tomography

    Science.gov (United States)

    Zahasky, C.; Benson, S. M.

    2017-12-01

    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  19. Effects of an elastic membrane on tube waves in permeable formations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H; Johnson, D

    1996-10-01

    In this paper, the modified properties were calculated for tube wave propagation in a fluid-filled borehole penetrating a permeable rock due to the presence of a mudcake which forms on the borehole wall. The mudcake was characterized by an impermeable elastic layer. The mudcake partial sealing mechanism was simulated using a finite membrane stiffness. Consequently, it was shown that the mudcake can reduce, but not eliminate, the permeability effects on the tube wave slowness and attenuation. Moreover, this paper discusses a variety of values for the relevant parameters especially the mudcake thickness and membrane stiffness. The important combinations of mudcake parameters were clarified by using an analytic expression for the low-frequency limit.

  20. Wall Finishes; Carpentry: 901895.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline is designed to provide instruction in selecting, preparing, and installing wall finishing materials. Prerequisites for the course include mastery of building construction plans, foundations and walls, and basic mathematics. Intended for use in grades 11 and 12, the course contains five blocks of study totaling 135 hours of…

  1. Wall Construction; Carpentry: 901892.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The curriculum guide outlines a course designed to provide instruction in floor and wall layout, and in the diverse methods and construction of walls. Upon completion of this course the students should have acquired a knowledge of construction plans and structural foundations in addition to a basic knowledge of mathematics. The course consists of…

  2. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, Lineke

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful,

  3. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  4. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    Ibrahim, O.A.A.

    2011-01-01

    The presence of toxic pollutants in groundwater brings about significant changes in the properties of water resources and has to be avoided in order to preserve the environmental quality. Heavy metals are among the most dangerous inorganic water pollutants, that related to many anthropogenic sources and their compounds are extremely toxic. The treatment of contaminated groundwater is among the most difficult and expensive environmental problems. Over the past years, permeable reactive barriers have provided an increasingly important role in the passive insitu treatment of contaminated groundwater. There are a large number of materials that are able to immobilize contaminants by sorption, including granulated active carbon, zeolite, montmorillonite, peat, compost, sawdust, etc. Zeolite X is a synthetic counterpart of the naturally occurring mineral Faujasite. It has one of the largest cavities and cavity entrances of any known zeolites. The main aim of this work is to examine the possibility of using synthetic zeolite X as an engineering permeable reactive barrier to remove heavy metals from a contaminated groundwater. Within this context, the following investigations were carried out: 1. Review on the materials most commonly used as engineered permeable reactive barriers to identify the important features to be considered in the examination of the proposed permeable reactive barrier material (zeolite X). 2. Synthesis of zeolite X and characterization of the synthesized material using different techniques. 3. Batch tests were carried out to characterize the equilibrium and kinetic sorption properties of the synthesized zeolite X towards the concerned heavy metals; zinc and cadmium ions. 4. Column tests were also performed to determine the design factors for permeable reactive barrier against zinc and cadmium ions solutions.Breakthrough curves measured in such experiments used to determine the hydrodynamic dispersion coefficients for both metal ions. 5. Analytical

  5. Solubility and Permeability Studies of Aceclofenac in Different Oils

    African Journals Online (AJOL)

    The solubility and permeability of aceclofenac were compared with the hydroalcoholic solution of ... the use of lipid based systems such as micro- or .... carriers/vehicles for enhanced solubility and permeability ... modifications: A recent review.

  6. Investigation clogging dynamic of permeable pavement systems using embedded sensors

    Science.gov (United States)

    Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging mechanism of these systems that effects the infiltration. A permeable pavement site located at the Seitz Elementary...

  7. Preliminary study of soil permeability properties using principal component analysis

    Science.gov (United States)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  8. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    Science.gov (United States)

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-05

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  9. Chenodeoxycholic acid reduces intestinal permeability in newly weaned piglets

    DEFF Research Database (Denmark)

    van der Meer, Y; Gerrits, W J J; van den Bosch, M

    2012-01-01

    weaned (21 d) piglets offered a diet with or without 60 mg CDCA/kg feed (n = 24/treatment). Upon weaning, piglets were fasted for 16 h and then intragastrically dosed with 20 g test feed in 40 g water. Subsequently, a jugular blood sample was taken on 45, 90, 135, or 180 min for analysis of GLP-2......, peptide YY (PYY), and glucose. Afterwards, piglets were offered the experimental diets ad libitum. On days 3.5, 7.5, and 10.5 after weaning, serum responses to an intragastric dose of lactulose and Co-EDTA were tested at 2 h after dosing in 8 piglets per treatment. Immediately thereafter, piglets were...... to newly weaned piglets, implying that CDCA deserves further study as a means for improving intestinal health. The positive correlation found between Co-EDTA and lactulose indicates that both marker molecules measure similar change in permeability....

  10. The Effect of DA-6034 on Intestinal Permeability in an Indomethacin-Induced Small Intestinal Injury Model.

    Science.gov (United States)

    Kwak, Dong Shin; Lee, Oh Young; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon

    2016-05-23

    DA-6034 has anti-inflammatory activities and exhibits cytoprotective effects in acute gastric injury models. However, explanations for the protective effects of DA-6034 on intestinal permeability are limited. This study sought to investigate the effect of DA-6034 on intestinal permeability in an indomethacin-induced small intestinal injury model and its protective effect against small intestinal injury. Rats in the treatment group received DA-6034 from days 0 to 2 and indomethacin from days 1 to 2. Rats in the control group received indomethacin from days 1 to 2. On the fourth day, the small intestines were examined to compare the severity of inflammation. Intestinal permeability was evaluated by using fluorescein isothiocyanate-labeled dextran. Western blotting was performed to confirm the association between DA-6034 and the extracellular signal-regulated kinase (ERK) pathway. The inflammation scores in the treatment group were lower than those in the control group, but the difference was statistically insignificant. Hemorrhagic lesions in the treatment group were broader than those in the control group, but the difference was statistically insignificant. Intestinal permeability was lower in the treatment group than in the control group. DA-6034 enhanced extracellular signal-regulated kinase expression, and intestinal permeability was negatively correlated with ERK expression. DA-6034 may decrease intestinal permeability in an indomethacin-induced intestinal injury model via the ERK pathway.

  11. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  12. Experimental study of heavy oil-water flow structure effects on relative permeabilities in a fracture filled with heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Shad, S.; Gates, I.D.; Maini, B.B. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    An experimental apparatus was used to investigate the flow of water in the presence of heavy oil within a smooth-walled fracture. Different flow patterns were investigated under a variety of flow conditions. Results of the experiments were used to determine the accuracy of VC, Corey, and Shad and Gates models designed to represent the behaviour of oil wet systems. The relative permeability concept was used to describe the behaviour of multiple phases flowing through porous media. A smooth-walled plexiglass Hele-Shaw cell was used to visualize oil and water flow. Changes in flow rates led to different flow regimes. The experiment demonstrated that water flowed co-currently in the form of droplets or slugs. Decreases in the oil flow rate enlarged the size of the water droplets as well as the velocity, until eventually the droplets coalesced and became water slugs. Droplet appearance or disappearance directly impacted the oil and water saturation levels. Changes in fluid saturation altered the pressure gradient. Darcy's law for the 2 liquid phases were used to calculate relative permeability curves. The study showed that at low water saturation, oil relative permeability reached as high as 2.5, while water relative permeability was lower than unity. In the presence of a continuous water channel, water drops formed in oil, and the velocity of the drops was lower than their velocity under a discontinuous water flow regime. It was concluded that the Shad and Gates model overestimated oil relative permeability and underestimated water relative permeability. 38 refs., 2 tabs., 9 figs.

  13. Retrospective analysis of a VACM (vacuum-assisted closure and mesh-mediated fascial traction treatment manual for temporary abdominal wall closure – results of 58 consecutive patients

    Directory of Open Access Journals (Sweden)

    Beltzer, Christian

    2016-07-01

    Full Text Available Introduction: The optimal treatment concept for temporary abdominal closure (TAC in critically ill visceral surgery patients with open abdomen (OA continues to be unclear. The VACM (vacuum-assisted closure and mesh-mediated fascial traction therapy seems to permit higher delayed primary fascial closure rates (FCR than other TAC procedures. Material and methods: Patients of our clinic (n=58 who were treated by application of a VAC/VACM treatment manual in the period from 2005 to 2008 were retrospectively analysed. Results: The overall FCR of all patients was 48.3% (95% confidence interval: 34.95–61.78. An FCR of 61.3% was achieved in patients who had a vicryl mesh implanted at the fascial level (VACM therapy in the course of treatment. Mortality among patients treated with VACM therapy was 45.2% (95% CI: 27.32–63.97.Conclusions: The results of our own study confirm the results of previous studies which showed an acceptable FCR among non-trauma patients who were treated with VACM therapy. VACM therapy currently appears to be the treatment regime of choice for patients with OA requiring TAC.

  14. Long-term Metal Performance of Three Permeable Pavements

    Science.gov (United States)

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected...

  15. Towards cavitation-enhanced permeability in blood vessel on a chip

    Science.gov (United States)

    De Luca, R.; Silvani, G.; Scognamiglio, C.; Sinibaldi, G.; Peruzzi, G.; Chinappi, M.; Kiani, M. F.; Casciola, C. M.

    2017-08-01

    The development of targeted delivery systems releasing pharmaceutical agents directly at the desired site of action may improve their therapeutic efficiency while minimizing damage to healthy tissues, toxicity to the patient and drug waste. In this context, we have developed a bio-inspired microdevice mimicking the tumour microvasculature which represents a valuable tool for assessing the enhancement of blood vessel permeability due to cavitation. This novel system allows us to investigate the effects of ultrasound-driven microbubbles that temporarily open the endothelial intercellular junctions allowing drug to extravasate blood vessels into tumour tissues. The blood vessel on a chip consists of a tissue chamber and two independent vascular channels (width 200 µm, height 100 µm, length 2762 µm) cultured with endothelial cells placed side-by-side and separated by a series of 3 µm pores. Its geometry and dimensions mimic the three-dimensional morphology, size and flow characteristics of microvessels in vivo. The early stage of this project had a twofold objective: 1. To define the protocol for culturing of Human Umbilical Vein Endothelial Cells (HUVECs) within the vascular channel; 2. To develop a fluorescence based microscopy technique for measuring permeability. We have developed a reliable and reproducible protocol to culture endothelial cells within the artificial vessels in a realistic manner: HUVECs show the typical elongated shape in the direction of flow, exhibit tight junction formation and form a continuous layer with a central lumen that completely covers the channels wall. As expected, the permeability of cell-free device is higher than the one cultured with HUVECs in the vascular channels. The proposed blood vessel on a chip and the permeability measurement protocol have a significant potential to allow for the study of cavitation-enhanced permeability of the endothelium and improve efficiency in screening drug delivery systems.

  16. The kinetics of denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Evrard, Victor; Glud, Ronnie N.; Cook, Perran L. M.

    2013-01-01

    Permeable sediments comprise the majority of shelf sediments, yet the rates of denitrification remain highly uncertain in these environments. Computational models are increasingly being used to understand the dynamics of denitrification in permeable sediments, which are complex environments...... on sediments taken from six shallow coastal sites in Port Phillip Bay, Victoria, Australia. The results showed that denitrification commenced rapidly (within 30 min) after the onset of anoxia and the kinetics could be well described by Michaelis-Menten kinetics with half saturation constants (apparent K...... in cohesive sediments despite organic carbon contents one order of magnitude lower for the sediments studied here. The ratio of sediment O-2 consumption to V-max was in the range of 0.02-0.09, and was on average much lower than the theoretical ratio of 0.8. As a consequence, models implemented...

  17. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin.

    Science.gov (United States)

    Kuck, Jamie L; Bastarache, Julie A; Shaver, Ciara M; Fessel, Joshua P; Dikalov, Sergey I; May, James M; Ware, Lorraine B

    2018-01-01

    Increased endothelial permeability is central to shock and organ dysfunction in sepsis but therapeutics targeted to known mediators of increased endothelial permeability have been unsuccessful in patient studies. We previously reported that cell-free hemoglobin (CFH) is elevated in the majority of patients with sepsis and is associated with organ dysfunction, poor clinical outcomes and elevated markers of oxidant injury. Others have shown that Vitamin C (ascorbate) may have endothelial protective effects in sepsis. In this study, we tested the hypothesis that high levels of CFH, as seen in the circulation of patients with sepsis, disrupt endothelial barrier integrity. Human umbilical vein endothelial cells (HUVEC) were grown to confluence and treated with CFH with or without ascorbate. Monolayer permeability was measured by Electric Cell-substrate Impedance Sensing (ECIS) or transfer of 14 C-inulin. Viability was measured by trypan blue exclusion. Intracellular ascorbate was measured by HPLC. CFH increased permeability in a dose- and time-dependent manner with 1 mg/ml of CFH increasing inulin transfer by 50% without affecting cell viability. CFH (1 mg/ml) also caused a dramatic reduction in intracellular ascorbate in the same time frame (1.4 mM without CFH, 0.23 mM 18 h after 1 mg/ml CFH, p < 0.05). Pre-treatment of HUVECs with ascorbate attenuated CFH induced permeability. CFH increases endothelial permeability in part through depletion of intracellular ascorbate. Supplementation of ascorbate can attenuate increases in permeability mediated by CFH suggesting a possible therapeutic approach in sepsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Nonequilibrium gas absorption in rotating permeable media

    Science.gov (United States)

    Baev, V. K.; Bazhaikin, A. N.

    2016-08-01

    The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.

  19. A Reconciliation of Packed Column Permeability Data: Column Permeability as a Function of Particle Porosity

    Directory of Open Access Journals (Sweden)

    Hubert M. Quinn

    2014-01-01

    Full Text Available In his textbook teaching of packed bed permeability, Georges Guiochon uses mobile phase velocity as the fluid velocity term in his elaboration of the Darcy permeability equation. Although this velocity frame makes a lot of sense from a thermodynamic point of view, it is valid only with respect to permeability at a single theoretical boundary condition. In his more recent writings, however, Guiochon has departed from his long-standing mode of discussing permeability in terms of the Darcy equation and has embraced the well-known Kozeny-Blake equation. In this paper, his teaching pertaining to the constant in the Kozeny-Blake equation is examined and, as a result, a new correlation coefficient is identified and defined herein based on the velocity frame used in his teaching. This coefficient correlates pressure drop and fluid velocity as a function of particle porosity. We show that in their experimental protocols, Guiochon et al. have not adhered to a strict material balance of permeability which creates a mismatch of particle porosity and leads to erroneous conclusions regarding the value of the permeability coefficient in the Kozeny-Blake equation. By correcting the experimental data to properly reflect particle porosity we reconcile the experimental results of Guiochon and Giddings, resulting in a permeability reference chart which is presented here for the first time. This reference chart demonstrates that Guiochon’s experimental data, when properly normalized for particle porosity and other related discrepancies, corroborates the value of 267 for the constant in the Kozeny-Blake equation which was derived by Giddings in 1965.

  20. Bistable Bacterial Growth Rate in Response to Antibiotics with Low Membrane Permeability

    Science.gov (United States)

    Elf, Johan; Nilsson, Karin; Tenson, Tanel; Ehrenberg, Måns

    2006-12-01

    We demonstrate that growth rate bistability for bacterial cells growing exponentially at a fixed external antibiotic concentration can emerge when the cell wall permeability for the drug is low and the growth rate sensitivity to the intracellular drug concentration is high. Under such conditions, an initially high growth rate can remain high, due to dilution of the intracellular drug concentration by rapid cell volume increase, while an initially low growth rate can remain low, due to slow cell volume increase and insignificant drug dilution. Our findings have implications for the testing of novel antibiotics on growing bacterial strains.

  1. Atrial natriuretic factor increases vascular permeability

    International Nuclear Information System (INIS)

    Lockette, W.; Brennaman, B.

    1990-01-01

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness

  2. Ammonia gas permeability of meat packaging materials.

    Science.gov (United States)

    Karim, Faris; Hijaz, Faraj; Kastner, Curtis L; Smith, J Scott

    2011-03-01

    Meat products are packaged in polymer films designed to protect the product from exterior contaminants such as light, humidity, and harmful chemicals. Unfortunately, there is almost no data on ammonia permeability of packaging films. We investigated ammonia permeability of common meat packaging films: low-density polyethylene (LDPE; 2.2 mil), multilayer polyolefin (MLP; 3 mil), and vacuum (V-PA/PE; 3 mil, 0.6 mil polyamide/2.4 mil polyethylene). The films were fabricated into 10 × 5 cm pouches and filled with 50 mL deionized water. Pouches were placed in a plexiglass enclosure in a freezer and exposed to 50, 100, 250, or 500 ppm ammonia gas for 6, 12, 24, and 48 h at -17 ± 3 °C and 21 ± 3 °C. At freezing temperatures, no ammonia residues were detected and no differences in pH were found in the water. At room temperature, ammonia levels and pH of the water increased significantly (P packaging materials have low ammonia permeability and protect meat products exposed to ammonia leaks during frozen storage.

  3. Endothelial cell permeability to water and antipyrine

    International Nuclear Information System (INIS)

    Garrick, R.A.

    1986-01-01

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water ( 3 HHO) and 14 C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for 3 HHO through the packed cells (D), the intracellular material (D 2 ), and the extracellular material (D 1 ) were 0.682, 0.932 and 2.45 x 10 -5 cm 2 s -1 and for AP were 0.273, 0.355 and 1.13 x 10 -5 cm 2 s -1 respectively. The permeability coefficient calculated by the series-parallel pathway model for 3 HHO was higher than that for AP and for both 3 HHO and AP were lower than those calculated for isolated lung cells and erythrocytes

  4. Permeability of different size waste particles

    Directory of Open Access Journals (Sweden)

    Sabina Gavelytė

    2015-10-01

    Full Text Available The world and life style is changing, but the most popular disposal route for waste is landfill globally until now. We have to think about waste prevention and preparing for re-use or recycling firstly, according to the waste disposal hierarchy. Disposed waste to the landfill must be the last opportunity. In a landfill, during waste degradation processes leachate is formed that can potentially cause clogging of bottom drainage layers. To ensure stability of a landfill construction, the physical properties of its components have to be controlled. The hydrology of precipitation, evaporation, runoff and the hydraulic performance of the capping and liner materials are important controls of the moisture content. The water balance depends also on the waste characteristics and waste particle size distribution. The aim of this paper is to determine the hydraulic permeability in a landfill depending on the particle size distribution of municipal solid waste disposed. The lab experiment results were compared with the results calculated with DEGAS model. Samples were taken from a landfill operated for five years. The samples particle sizes are: >100 mm, 80 mm, 60 mm, 40 mm, 20 mm, 0.01 mm and <0.01 mm. The permeability test was conducted using the column test. The paper presents the results of experiment and DEGAS model water permeability with waste particle size.

  5. Plasma-wall interactions

    International Nuclear Information System (INIS)

    Behrisch, Rainer

    1978-01-01

    The plasma wall interactions for two extreme cases, the 'vacuum model' and the 'cold gas blanket' are outlined. As a first step for understanding the plasma wall interactions the elementary interaction processes at the first wall are identified. These are energetic ion and neutral particle trapping and release, ion and neutral backscattering, ion sputtering, desorption by ions, photons and electrons and evaporation. These processes have only recently been started to be investigated in the parameter range of interest for fusion research. The few measured data and their extrapolation into regions not yet investigated are reviewed

  6. [Removal of nitrate from groundwater using permeable reactive barrier].

    Science.gov (United States)

    Li, Xiu-Li; Yang, Jun-Jun; Lu, Xiao-Xia; Zhang, Shu; Hou, Zhen

    2013-03-01

    To provide a cost-effective method for the remediation of nitrate-polluted groundwater, column experiments were performed to study the removal of nitrate by permeable reactive barrier filled with fermented mulch and sand (biowall), and the mechanisms and influence factors were explored. The experimental results showed that the environmental condition in the simulated biowall became highly reduced after three days of operation (oxidation-reduction potential was below - 100 mV), which was favorable for the reduction of nitrate. During the 15 days of operation, the removal rate of nitrate nitrogen (NO3(-) -N) by the simulated biowall was 80%-90% (NO3(-)-N was reduced from 20 mg x L(-1) in the inlet water to 1.6 mg x L(-1) in the outlet water); the concentration of nitrite nitrogen (NO2(-) -N) in the outlet water was below 2.5 mg x L(-1); the concentration of ammonium nitrogen (NH4(+) -N) was low in the first two days but increased to about 12 mg x L(-1) since day three. The major mechanisms involved in the removal of nitrate nitrogen were adsorption and biodegradation. When increasing the water flow velocity in the simulated biowall, the removal rate of NO3(-) -N was reduced and the concentration of NH4(+) -N in the outlet water was significantly reduced. A simulated zeolite wall was set up following the simulated biowall and 98% of the NH4(+) -N could be removed from the water.

  7. Autoradiographic study of the permeability characteristics of the small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Kingham, J G.C.; Baker, J H; Loehry, C A [Royal Victoria Hospital, Bournemouth (UK)

    1978-02-01

    This autoradiographic study demonstrates the distribution of a range of small solutes and macromolecules in the mucosa of the guinea-pig small intestine after intracardiac injection. The substances investigated were: /sup 14/C-urea, /sup 3/H-mannose, /sup 3/H-inulin, and /sup 125/I polyvinylpyrrolidone (PVP). Small bowel biopsies were taken at intervals from one to 60 minutes after injection and the tissues processed for autoradiography. Light microscopic examination of the autoradiographs showed that the compartmental distribution depended on the molecular size of the substances being studied. Urea and mannose, as small solutes, were uniformly distributed throughout the intravascular, extravascular, and epithelial compartments. Inulin was evenly distributed in the vessel lumen and extravascular space but there was a considerable drop in concentration in the epithelium. PVP exhibited the most marked gradients, the concentration being greatest in the vascular lumina, lower in the extravascular space, least in the epithelium. Thus there appear to be two barriers to macromolecular passage which are freely permeable to small solutes: the capillary wall and the epithelium. At a light microscopical level it was not possible to observe whether the limiting membrane of each of these barriers is the cell plasmalemmal membrane or the basement membrane. The selectivity of the epithelial barrier was greater than that of the capillary barrier.

  8. Control of BTEX migration using a biologically enhanced permeable barrier

    International Nuclear Information System (INIS)

    Borden, R.C.; Goin, R.T.; Kao, C.M.

    1997-01-01

    A permeable barrier system, consisting of a line of closely spaced wells, was installed perpendicular to ground water flow to control the migration of a dissolved hydrocarbon plume. The wells were charged with concrete briquets that release oxygen and nitrate at a controlled rate, enhancing aerobic biodegradation in the downgradient aquifer. Laboratory batch reactor experiments were conducted to identify concrete mixtures that slowly released oxygen over an extended time period. A full-scale permeable barrier system using ORC was constructed at a gasoline-spill site. During the first 242 days of operation, total BTEX decreased from 17 to 3.4 mg/L and dissolved oxygen increased from 0.4 to 1.8 mg/L during transport through the barrier. Over time, BTEX treatment efficiencies declined, indicating the barrier system had become less effective in releasing oxygen and nutrients to the highly contaminated portion of the aquifer. Point dilution tests and sediment analyses performed at the conclusion of the project indicated that the aquifer in the vicinity of the remediation wells had been clogged by precipitation with iron minerals

  9. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    Science.gov (United States)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  10. Design and installation of a ferromagnetic wall in tokamak geometry

    International Nuclear Information System (INIS)

    Hughes, P. E.; Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A.

    2015-01-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability

  11. Design and installation of a ferromagnetic wall in tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P. E., E-mail: peh2109@columbia.edu; Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A. [Columbia University Plasma Physics Laboratory, Columbia University, 102 S.W. Mudd, 500 W. 120th St., New York, New York 10027 (United States)

    2015-10-15

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.

  12. Evolution of permeability in diatomaceous rocks mediated by pressure solution

    International Nuclear Information System (INIS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Kurikami, Hiroshi; Kishida, Kiyoshi

    2007-01-01

    A conceptual model is presented to follow the evolution of permeability in diatomaceous rocks mediated by pressure solution. The progress of compaction and the evolution of permeability may be followed with time. Specifically, the main minerals of diatomaceous rocks that are quartz, cristobalite, and amorphous silica, are focused to examine differences of the permeability evolutions among them at effective stresses of 5, and 10 MPa, and temperatures of 20 and 90degC. The rates and magnitudes of permeability reduction increase with increase of the dissolution rate constants. Ultimate permeabilities reduce to the order of 90% at the completion of dissolution-mediated compaction. (author)

  13. Impact of chemical leaching on permeability and cadmium removal from fine-grained soils.

    Science.gov (United States)

    Lin, Zhongbing; Zhang, Renduo; Huang, Shuang; Wang, Kang

    2017-08-01

    The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl 2 , FeCl 3 , citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl 3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl 3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl 3 , Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

  14. Advanced walling systems

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The question addressed by this chapter is: How should advanced walling systems be planned, designed, built, refurbished, and end their useful lives, to classify as smart, sustainable, green or eco-building environments?...

  15. Fusion: first wall problems

    International Nuclear Information System (INIS)

    Behrisch, R.

    1976-01-01

    Some of the relevant elementary atomic processes which are expected to be of significance to the first wall of a fusion reactor are reviewed. Up to the present, most investigations have been performed at relatively high ion energies, typically E greater than 5 keV, and even in this range the available data are very poor. If the plasma wall interaction takes place at energies of E greater than 1 keV the impurity introduction and first wall erosion which will take place predominantly by sputtering, will be large and may severely limit the burning time of the plasma. The wall bombardment and surface erosion will presumably not decrease substantially by introducing a divertor. The erosion can only be kept low if the energy of the bombarding ions and neutrals can be kept below the threshold for sputtering of 1 to 10 eV. 93 refs

  16. Effects of eddy current and dispersion of magnetic anisotropy on the high-frequency permeability of Fe-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Han, M., E-mail: mangui@gmail.com [State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China); Rozanov, K.N.; Zezyulina, P.A. [Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, Moscow (Russian Federation); Wu, Yan-Hui [State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China)

    2015-06-01

    Fe–Cu–Nb–Si–B microflakes have been prepared by ball milling. The structural, magnetostatic and microwave permeability of the flakes and flake-filled composites have been studied. Two ferromagnetic phases, nanograins and amorphous matrix, are found in the flakes. The Mössbauer study shows that the nanograins are α-Fe{sub 3}(Si) with D0{sub 3} superlattice structure. High resolution transmission electron microscopy shows that the nanograins are well dispersed in the matrix. The microwave permeability of composites containing the flakes has been measured. The comparison of the intrinsic permeability of the flakes obtained from the permeability measurements and from the anisotropy field distribution reveals a disagreement in the magnetic loss peak location. It is concluded that the low-frequency loss in the composites is not due to the effect of eddy currents. The low-frequency loss may be attributed to other sources, such as domain wall motion or peculiarities of the magnetic structure of the flakes in the composite. - Highlights: • Hyperfine interactions have been studied for the Fe-based nanocomposites. Please see Fig. 3. • The distribution of magnetic anisotropy has been derived from the initial magnetization curve of the composite. Please see Fig. 6. • The magnetic loss peak has been reconstructed from the measured permeability of composites and from the anisotropy field distribution. Please see Fig. 9.

  17. Effects of eddy current and dispersion of magnetic anisotropy on the high-frequency permeability of Fe-based nanocomposites

    International Nuclear Information System (INIS)

    Han, M.; Rozanov, K.N.; Zezyulina, P.A.; Wu, Yan-Hui

    2015-01-01

    Fe–Cu–Nb–Si–B microflakes have been prepared by ball milling. The structural, magnetostatic and microwave permeability of the flakes and flake-filled composites have been studied. Two ferromagnetic phases, nanograins and amorphous matrix, are found in the flakes. The Mössbauer study shows that the nanograins are α-Fe 3 (Si) with D0 3 superlattice structure. High resolution transmission electron microscopy shows that the nanograins are well dispersed in the matrix. The microwave permeability of composites containing the flakes has been measured. The comparison of the intrinsic permeability of the flakes obtained from the permeability measurements and from the anisotropy field distribution reveals a disagreement in the magnetic loss peak location. It is concluded that the low-frequency loss in the composites is not due to the effect of eddy currents. The low-frequency loss may be attributed to other sources, such as domain wall motion or peculiarities of the magnetic structure of the flakes in the composite. - Highlights: • Hyperfine interactions have been studied for the Fe-based nanocomposites. Please see Fig. 3. • The distribution of magnetic anisotropy has been derived from the initial magnetization curve of the composite. Please see Fig. 6. • The magnetic loss peak has been reconstructed from the measured permeability of composites and from the anisotropy field distribution. Please see Fig. 9

  18. EDZ and permeability in clayey rocks

    International Nuclear Information System (INIS)

    Levasseur, Severine; Collin, Frederic; Charlier, Robert; Besuelle, Pierre; Chambon, Rene; Viggiani, Cino

    2010-01-01

    Document available in extended abstract form only. Deep geological layers are being considered as potential host rocks for the high level radioactivity waste disposals. During drilling in host rocks, an excavated damaged zone - EDZ is created. The fluid transmissivity may be modified in this damaged zone. This paper deals with the permeability evolution in relation with diffuse and/or localized crack propagation in the material. We mainly focus on argillaceous rocks and on some underground laboratories: Mol URL in Boom clay, Bure URL in Callovo-Oxfordian clay and Mont-Terri URL in Opalinus clay. First, observations of damage around galleries are summarized. Structure of damage in localized zone or in fracture has been observed at underground gallery scale within the excavation damaged zone (EDZ). The first challenge for a correct understanding of all the processes occurring within the EDZ is the characterization at the laboratory scale of the damage and localization processes. The observation of the initiation and propagation of the localized zones needs for advanced techniques. X-ray tomography is a non-destructive imaging technique that allows quantification of internal features of an object in 3D. If mechanical loading of a specimen is applied inside a X-ray CT apparatus, successive 3D images at different loading steps show the evolution of the specimen. However, in general volumetric strain in a shear band is small compared to the shear strain and, unfortunately, in tomographic images grey level is mainly sensitive to the local mass density field. Such a limitation has been recently overcome by complementing X-ray tomography with 3D Volumetric Digital Image Correlation (V-DIC) which allows the determination of the full strain tensor field. Then it is possible to further explore the progression of localized deformation in the specimen. The second challenge is the robust modelling of the strain localized process. In fact, modelling the damage process with finite

  19. Dynamic wall demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsui, L.; Mayhew, W.

    1990-12-01

    The dynamic wall concept is a ventilation strategy that can be applied to a single family dwelling. With suitable construction, outside air can be admitted through the exterior walls of the house to the interior space to function as ventilation air. The construction and performance monitoring of a demonstration house built to test the dynamic wall concept in Sherwood Park, Alberta, is described. The project had the objectives of demonstrating and assessing the construction methods; determining the cost-effectiveness of the concept in Alberta; analyzing the operation of the dynamic wall system; and determining how other components and systems in the house interact with the dynamic wall. The exterior wall construction consisted of vinyl siding, spun-bonded polyolefin-backed (SBPO) rigid fiberglass sheathing, 38 mm by 89 mm framing, fiberglass batt insulation and 12.7 mm drywall. The mechanical system was designed to operate in the dynamic (negative pressure) mode, however flexibility was provided to allow operation in the static (balanced pressure) mode to permit monitoring of the walls as if they were in a conventional house. The house was monitored by an extensive computerized monitoring system. Dynamic wall operation was dependent on pressure and temperature differentials between indoor and outdoor as well as wind speed and direction. The degree of heat gain was found to be ca 74% of the indoor-outdoor temperature differential. Temperature of incoming dynamic air was significantly affected by solar radiation and measurement of indoor air pollutants found no significant levels. 4 refs., 34 figs., 11 tabs.

  20. Plasma Membrane Ca2+-Permeable Channels are Differentially Regulated by Ethylene and Hydrogen Peroxide to Generate Persistent Plumes of Elevated Cytosolic Ca2+ During Transfer Cell Trans-Differentiation.

    Science.gov (United States)

    Zhang, Hui-ming; van Helden, Dirk F; McCurdy, David W; Offler, Christina E; Patrick, John W

    2015-09-01

    The enhanced transport capability of transfer cells (TCs) arises from their ingrowth wall architecture comprised of a uniform wall on which wall ingrowths are deposited. The wall ingrowth papillae provide scaffolds to amplify plasma membranes that are enriched in nutrient transporters. Using Vicia faba cotyledons, whose adaxial epidermal cells spontaneously and rapidly (hours) undergo a synchronous TC trans-differentiation upon transfer to culture, has led to the discovery of a cascade of inductive signals orchestrating deposition of ingrowth wall papillae. Auxin-induced ethylene biosynthesis initiates the cascade. This in turn drives a burst in extracellular H2O2 production that triggers uniform wall deposition. Thereafter, a persistent and elevated cytosolic Ca(2+) concentration, resulting from Ca(2+) influx through plasma membrane Ca(2+)-permeable channels, generates a Ca(2+) signal that directs formation of wall ingrowth papillae to specific loci. We now report how these Ca(2+)-permeable channels are regulated using the proportionate responses in cytosolic Ca(2+) concentration as a proxy measure of their transport activity. Culturing cotyledons on various combinations of pharmacological agents allowed the regulatory influence of each upstream signal on Ca(2+) channel activity to be evaluated. The findings demonstrated that Ca(2+)-permeable channel activity was insensitive to auxin, but up-regulated by ethylene through two independent routes. In one route ethylene acts directly on Ca(2+)-permeable channel activity at the transcriptional and post-translational levels, through an ethylene receptor-dependent pathway. The other route is mediated by an ethylene-induced production of extracellular H2O2 which then acts translationally and post-translationally to up-regulate Ca(2+)-permeable channel activity. A model describing the differential regulation of Ca(2+)-permeable channel activity is presented. © The Author 2015. Published by Oxford University Press on

  1. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  2. Preliminary assessment, by means of Radon exhalation rate measurements, of the bio-sustainability of microwave treatment to eliminate biodeteriogens infesting stone walls of monumental historical buildings.

    Science.gov (United States)

    Mancini, S.; Caliendo, E.; Guida, M.; Bisceglia, B.

    2017-10-01

    The main purpose of the work described in this paper has been to establish the protocol for a new non-disruptive technique of intervention, based on microwave treatment, for cleaning operations on monumental historical buildings, to eliminate biodeteriogens infesting stones. Non-destructive methods in the cleaning operations, should not only preserve the physical integrity, the chemical-mineralogical and structural identity of materials, but, when the exhalation of pollutant agents (like for example Radon gas) from building materials is considered, also, make the indoor air quality (IAQ) levels healthy. Therefore, one of the main steps of the protocol proposed in this paper is concerned with the assessment of the Radon exhalation rate in order to verify that microwave treatments do not increase the Radon naturally exhalated by building materials. In this paper, the preliminary results of the Radon measurements performed on two different type of tuff samples (grey tuff and yellow tuff), typical of the Italian traditional construction heritage, with the E-PERM passive technique at the Environmental Radioactivity Laboratory (Amb.Ra.), University of Salerno, Italy, ISO 9001:2008 certified, are summarized.

  3. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.; Salama, Amgad; Sun, S.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  4. Regulation of endothelial cell shape and monolayer permeability by atrial natriuretic peptide

    International Nuclear Information System (INIS)

    Lofton-Day, C.E.

    1989-01-01

    Atrial natriuretic peptide (ANP), considered to be an important regulator of intravascular fluid volume, binds specifically to receptors on endothelial cells. In this study, the role of ANP-specific binding was investigated by examining the effect of ANP on the morphology and macromolecular permeability of monolayer cultures of bovine aortic endothelial cells. ANP alone had no observable effect on the monolayers. However, incubation of monolayers with ANP antagonized thrombin- or glucose oxidase-induced cell shape changes and intercellular gap formation. ANP pretreatment also opposed the effect of thrombin and glucose oxidase on actin filament distribution as observed by rhodamine-phalloidin staining and digital image analysis of F0actin staining. In addition, ANP reversed cell shape changes and cytoskeletal alterations induced by thrombin treatment but did not reverse alternations induced by glucose oxidase treatment. ANP significantly reduced increases in monolayer permeability to albumin resulting from thrombin or glucose oxidases treatment. Thrombin caused a 2-fold increase in monolayer permeability to 125 I-labeled albumin, which was abolished by 10 -8 -10 -6 M ANP pretreatment. Glucose oxidase caused similar increases in permeability and was inhibited by ANP at slightly shorter time periods

  5. Quantification and Control of Wall Effects in Porous Media Experiments

    Science.gov (United States)

    Roth, E. J.; Mays, D. C.; Neupauer, R.; Crimaldi, J. P.

    2017-12-01

    Fluid flow dynamics in porous media are dominated by media heterogeneity. This heterogeneity can create preferential pathways in which local seepage velocities dwarf system seepage velocities, further complicating an already incomplete understanding of dispersive processes. In physical models of porous media flows, apparatus walls introduce preferential flow paths (i.e., wall effects) that may overwhelm other naturally occurring preferential pathways within the apparatus, leading to deceptive results. We used planar laser-induced fluorescence (PLIF) in conjunction with refractive index matched (RIM) porous media and pore fluid to observe fluid dynamics in the porous media, with particular attention to the region near the apparatus walls in a 17 cm x 8 cm x 7 cm uniform flow cell. Hexagonal close packed spheres were used to create an isotropic, homogenous porous media field in the interior of the apparatus. Visualization of the movement of a fluorescent dye revealed the influence of the wall in creating higher permeability preferential flow paths in an otherwise homogenous media packing. These preferential flow paths extended approximately one half of one sphere diameter from the wall for homogenously packed regions, with a quickly diminishing effect on flow dynamics for homogenous media adjacent to the preferential pathway, but with major influence on flow dynamics for adjoining heterogeneous regions. Multiple approaches to mitigate wall effects were investigated, and a modified wall was created such that the fluid dynamics near the wall mimics the fluid dynamics within the homogenous porous media. This research supports the design of a two-dimensional experimental apparatus that will simulate engineered pumping schemes for use in contaminant remediation. However, this research could benefit the design of fixed bed reactors or other engineering challenges in which vessel walls contribute to unwanted preferential flow.

  6. The influence of slip velocity and temperature on permeability during and after high-velocity fault slip

    Science.gov (United States)

    Tanikawa, W.; Mukoyoshi, H.; Tadai, O.; Hirose, T.; Lin, W.

    2011-12-01

    Fluid transport properties in fault zones play an important role in dynamic processes during large earthquakes. If the permeability in a fault zone is low, high pore-fluid pressures caused by thermal pressurization (Sibson, 1973) or shear-induced compaction (Blanpied et al., 1992) can lead to an apparent reduction of fault strength. Changes in porosity and permeability of fault rocks within a fault zone during earthquakes and the subsequent progressive recovery of these properties may have a large influence on earthquake recurrence (Sleep and Blanpied, 1992). A rotary shear apparatus was used to investigate changes of fluid transport properties in a fault zone by real-time measurement of gas flow rates during and after shearing of hollow sandstone and granite cylinders at various slip rates. Our apparatus measures permeability parallel to the slip plane in both the slip zone and wall rocks. In all cases, permeability decreased rapidly with an increase of friction, but recovered soon after slip, reaching a steady state within several tens of minutes. The rate of reduction of permeability increased with increasing slip velocity. Permeability did not recover to pre-slip levels after low-velocity tests but recovered to exceed them after high-velocity tests. Frictional heating of gases at the slip surface increased gas viscosity, which increased gas flow rate to produce an apparent permeability increase. The irreversible permeability changes of the low-velocity tests were caused by gouge formation due to wearing and smoothing of the slip surface. The increase of permeability after high-velocity tests was caused by mesoscale fracturing in response to rapid temperature rise. Changes of pore fluid viscosity contributed more to changes of flow rate than did permeability changes caused by shear deformation, although test results from different rocks and pore fluids might be different. References Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism

  7. KETERASINGAN DALAM FILM WALL-E

    Directory of Open Access Journals (Sweden)

    Rahmadya Putra Nugraha

    2017-05-01

    Full Text Available Modern society nowadays technological advances at first create efficiency in human life. Further development of the technology thus drown human in a routine and automation of work created. The State is to be one of the causes of man separated from fellow or the outside world and eventually experiencing alienation. The movie as a mass media function to obtain the movie and entertainment can be informative or educative function is contained, even persuasive. The purpose of this research was conducted to find out the alienation in the movie Wall E. The concepts used to analyze the movie Wall E this is communication, movie, and alienation. The concept of alienation of human alienation from covering its own products of human alienation from its activities, the human alienation from nature of his humanity and human alienation from each other. Paradigm used is a critical paradigm with type a descriptive research with qualitative approach. The method used is the analysis of semiotics Roland Barthes to interpretation the scope of social alienation and fellow humans in the movie.This writing research results found that alienation of humans with other humans influenced the development of the technology and how the human it self represented of technology, not from our fellow human beings. Masyarakat modern saat ini kemajuan teknologi pada awalnya membuat efisiensi dalam kehidupan manusia. Perkembangan selanjutnya teknologi justru menenggelamkan manusia dalam suatu rutinitas dan otomatisasi kerja yang diciptakan. Keadaan itulah yang menjadi salah satu penyebab manusia terpisah dari sesama atau dunia luar dan akhirnya mengalami keterasingan. Film sebagai media massa berfungsi untuk memperoleh hiburan dan dalam film dapat terkandung fungsi informatif maupun edukatif, bahkan persuasif. Tujuan Penelitian ini dilakukan untuk mengetahui Keterasingan dalam film Wall E. Konsep-konsep yang digunakan untuk menganalisis film Wall E ini adalah komunikasi, film, dan

  8. Permeability and flammability study of composite sandwich structures for cryogenic applications

    Science.gov (United States)

    Bubacz, Monika

    Fiber reinforced plastics offer advantageous specific strength and stiffness compared to metals and has been identified as candidates for the reusable space transportation systems primary structures including cryogenic tanks. A number of carbon and aramid fiber reinforced plastics have been considered for the liquid hydrogen tanks. Materials selection is based upon mechanical properties and containment performance (long and short term) and upon manufacturing considerations. The liquid hydrogen tank carries shear, torque, end load, and bending moment due to gusts, maneuver, take-off, landing, lift, drag, and fuel sloshing. The tank is pressurized to about 1.5 atmosphere (14.6psi or 0.1 MPa) differential pressure and on ascent maintains the liquid hydrogen at a temperature of 20K. The objective of the research effort into lay the foundation for developing the technology required for reliable prediction of the effects of various design, manufacturing, and service parameters on the susceptibility of composite tanks to develop excessive permeability to cryogenic fuels. Efforts will be expended on developing the materials and structural concepts for the cryogenic tanks that can meet the functional requirements. This will include consideration for double wall composite sandwich structures, with inner wall to meet the cryogenic requirements. The structure will incorporate nanoparticles for properties modifications and developing barriers. The main effort will be extended to tank wall's internal skin design. The main requirements for internal composite stack are: (1) introduction of barrier film (e.g. honeycomb material paper sheet) to reduce the wall permeability to hydrogen, (2) introduction of nanoparticles into laminate resin to prevent micro-cracking or crack propagation. There is a need to characterize and analyze composite sandwich structural damage due to burning and explosion. Better understanding of the flammability and blast resistance of the composite structures

  9. Mitochondrial Membrane Permeability Inhibitors in Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Cory Trankle, MD

    2016-10-01

    Full Text Available Despite therapeutic advances, acute myocardial infarction (AMI remains a leading cause of morbidity and mortality worldwide. One potential limitation of the current treatment paradigm is the lack of effective therapies to optimize reperfusion after ischemia and prevent reperfusion-mediated injury. Experimental studies indicate that this process accounts for up to 50% of the final infarct size, lending it importance as a potential target for cardioprotection. However, multiple therapeutic approaches have shown potential in pre-clinical and early phase trials but a paucity of clear clinical benefit when expanded to larger studies. Here we explore this history of trials and errors of the studies of cyclosporine A and other mitochondrial membrane permeability inhibitors, agents that appeared to have a promising pre-clinical record yet provided disappointing results in phase III clinical trials.

  10. Engineered Trehalose Permeable to Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Alireza Abazari

    Full Text Available Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre and trehalose tetraacetate (4-O-Ac-Tre. Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies.

  11. Evaluation of permeable fractures in rock aquifers

    Science.gov (United States)

    Bok Lee, Hang

    2015-04-01

    In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.

  12. Influence of Three Permeable Pavement Surfaces on Nitrogen Treatment

    Science.gov (United States)

    Nitrogen is a stressor of concern in many nutrient sensitive watersheds often associated with algal blooms and resulting fish kills. Communities are increasingly installing green infrastructure stormwater control measures (SCMs) to reduce pollutant loads associated with stormwat...

  13. Permeability log using new lifetime measurements

    International Nuclear Information System (INIS)

    Dowling, D.J.; Boyd, J.F.; Fuchs, J.A.

    1975-01-01

    Comparative measurements of thermal neutron decay time are obtained for a formation after irradiation with a pulsed neutron source. Chloride ions in formation fluids are concentrated by the electrosmosis effect using charged poles on a well logging sonde. The formation is irradiated with fast neutrons and a first comparative measure of the thermal neutron decay time or neutron lifetime is taken. The chloride ions are then dispersed by acoustic pumping with a magnetostrictive transducer. The formation is then again irradiated with fast neutrons and a comparative measure of neutron lifetime is taken. The comparison is a function of the variation in chloride concentration between the two measurements which is related to formation permeability

  14. Permeability Evolution and Rock Brittle Failure

    OpenAIRE

    Sun Qiang; Xue Lei; Zhu Shuyun

    2015-01-01

    This paper reports an experimental study of the evolution of permeability during rock brittle failure and a theoretical analysis of rock critical stress level. It is assumed that the rock is a strain-softening medium whose strength can be described by Weibull’s distribution. Based on the two-dimensional renormalization group theory, it is found that the stress level λ c (the ratio of the stress at the critical point to the peak stress) depends mainly on the homogeneity index or shape paramete...

  15. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed......-nitroso-N-acetylpenicillamine (SNAP) (1) confirmed denitrification as the main NO consumption pathway, with N2O as its major product, (2) showed that denitrification combines one free NO molecule with one NO molecule formed from nitrite to produce N2O, and (3) suggested that NO inhibits N2O reduction....

  16. Gyroid Nanoporous Membranes with Tunable Permeability

    DEFF Research Database (Denmark)

    Li, Li; Schulte, Lars; Clausen, Lydia D.

    2011-01-01

    -linked 1,2-polybutadiene (1,2-PB) membranes with uniform pores that, if needed, can be rendered hydrophilic. The gyroid porosity has the advantage of isotropic percolation with no need for structure prealignment. Closed (skin) or opened (nonskin) outer surface can be simply realized by altering...... the effective diffusion coefficients of a series of antibiotics, proteins, and other biomolecules; solute permeation is discussed in terms of hindered diffusion. The combination of uniform bulk morphology, isotropically percolating porosity, controlled surface chemistry, and tunable permeability is distinctive...

  17. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability

    Directory of Open Access Journals (Sweden)

    Karin ede Punder

    2015-05-01

    Full Text Available Chronic non-communicable diseases (NCDs are the leading causes of work absence, disability and mortality worldwide. Most of these diseases are associated with low-grade inflammation. Here we hypothesize that stresses (defined as homeostatic disturbances can induce low-grade inflammation by increasing the availability of water, sodium and energy-rich substances to meet the increased metabolic demand induced by the stressor. One way of triggering low-grade inflammation is by increasing intestinal barrier permeability through activation of various components of the stress system. Although beneficial to meet the demands necessary during stress, increased intestinal barrier permeability also raises the possibility of the translocation of bacteria and their toxins across the intestinal lumen into the blood circulation. In combination with modern life-style factors, the increase in bacteria/bacterial toxin translocation arising from a more permeable intestinal wall causes a low-grade inflammatory state. We support this hypothesis with numerous studies finding associations with NCDs and markers of endotoxemia, suggesting that this process plays a pivotal and perhaps even a causal role in the development of low-grade inflammation and its related diseases.

  18. Clinical value of the alveolar epithelial permeability in various pulmonary diseases

    International Nuclear Information System (INIS)

    Todisco, T.; Dottorini, M.; Rossi, F.; Polidori, A.; Bruni, B.; Iannacci, L.; Palumbo, R.; Fedeli, L.

    1984-01-01

    The authors have measured the pulmonary epithelial permeability in normals, smokers, ex-smokers and in various pulmonary diseases, using the sup(99m)Tc-DTPA monodisperse radioaerosol delivered by a newly designed nebulizer. Reference values for alveolar epithelial permeability were those of their own laboratory. Accelerated clearance of small idrophylic solutes from the lungs to the blood was found in smokers and in all the patients with idiopathic diffuse pulmonary fibrosis, chronic obstructive lung disease, congestive heart failure, acute viral pneumonia and adult respiratory distress syndrome. The greatest increase of alveolar epithelial clearance was found in the lung zone affected by the viral infection. The normal upper-lover lobe gradient of epithelial clearance was lost only in some patients. The increased permeability of the alveolar wall, although not specific, is characteristic and early feature of many acute and chronic pulmonary disease. For practical purposes, this parameter, rather than diagnostic, should be considered as a sensitive index of alveolar damage and repair, especially suitable for the follow-up of patients with spontaneous or therapeutic reversibility of parenchimal lung diseases. (orig.)

  19. Permeability and long-term durability of concrete in final repository conditions

    International Nuclear Information System (INIS)

    Pihlajavaara, S.

    1990-02-01

    The interrelation of the permeability properties and longterm durability especially in wet repository conditions has been studied. The study is based on the author's long-term experience, literary survey and experiments on the durability, service life prediction, and on water and gas permeability. Degradation models and experimental results on water and gas permeability are presented. The experiments made indicated that high class concrete is practically water and gas tight, especially in the long run when stored under water. This meant that there will hardly be any mass transfer into concrete or out of it, if concrete is of good quality. Concrete structures can be designed to meet the required service life. It can be said that practically the precision increases and the scatter decreases in the service life estimation significantly when the thickness of the anticipated deteriorated surface layer is smaller due to the higher concrete quality. The service life of well-designed concrete silo walls made of high class concrete can be predicted to be at least 1000 years in the repository conditions. (orig.)

  20. Permeability-Porosity Relationships of Subduction Zone Sediments

    Science.gov (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2008-12-01

    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  1. Kinetic wall from Israel

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1985-05-01

    An unusual solar mass wall is described. At the turn of a handle it can change from a solar energy collector to a heat-blocker. An appropriate name for it might be the rotating prism wall. An example of the moving wall is at work in an adobe test home in Sede Boqer. Behind a large south-facing window stand four large adobe columns that are triangular in plan. One face of each of them is painted black to absorb sunlight, a second is covered with panels of polystyrene insulation, and a third is painted to match the room decor. These columns can rotate. On winter nights, the insulated side faces the glass, keeping heat losses down. The same scheme works in summer to keep heat out of the house. Small windows provide ventilation.

  2. Estimation of permeability and permeability anisotropy in horizontal wells through numerical simulation of mud filtrate invasion

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Nelson [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Altman, Raphael; Rasmus, John; Oliveira, Jansen [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper describes how permeability and permeability anisotropy is estimated in horizontal wells using LWD (logging-while-drilling) laterolog resistivity data. Laterolog-while-drilling resistivity passes of while-drilling and timelapse (while reaming) were used to capture the invasion process. Radial positions of water based mud invasion fronts were calculated from while-drilling and reaming resistivity data. The invasion process was then recreated by constructing forward models with a fully implicit, near-wellbore numerical simulation such that the invasion front at a given time was consistent with the position of the front predicted by resistivity inversions. The radial position of the invasion front was shown to be sensitive to formation permeability. The while-drilling environment provides a fertile scenario to investigate reservoir dynamic properties because mud cake integrity and growth is not fully developed which means that the position of the invasion front at a particular point in time is more sensitive to formation permeability. The estimation of dynamic formation properties in horizontal wells is of particular value in marginal fields and deep-water offshore developments where running wireline and obtaining core is not always feasible, and where the accuracy of reservoir models can reduce the risk in field development decisions. (author)

  3. GAS PERMEABILITY OF GEOSYNTHETIC CLAY LINERS

    Directory of Open Access Journals (Sweden)

    Helena Vučenović

    2017-01-01

    Full Text Available Geosynthetic clay liners (GCL are manufactured hydraulic barriers consisting of mineral and geosynthetic components. They belong to a group of geosynthetic products whose primary purpose is to seal and they have been used in many geotechnical and hydrotechnical applications, landfi lls and liquid waste lagoons for quite a while. They are used in landfill final cover systems to prevent the infi ltration of precipitation into the landfi ll body and the penetration of gases and liquids from the landfill into the atmosphere and environment. Laboratory and fi eld research and observations on regulated landfi lls have proven the eff ectiveness of GCL as a barrier for the infi ltration of precipitation into the landfi ll body as well as the drainage of fl uid beneath the landfill. Due to the presence of high concentrations of gases in the landfill body, there is a growing interest in determining the efficiency of GCL as a gas barrier. It was not until the last twenty years that the importance of this topic was recognized. In this article, current GCL gas permeability studies, the testing methods and test results of gas permeability in laboratory conditions are described.

  4. Permeability of protective coatings to tritium

    International Nuclear Information System (INIS)

    Braun, J.M.

    1987-10-01

    The permeability of four protective coatings to tritium gas and tritiated water was investigated. The coatings, including two epoxies, one vinyl and one urethane, were selected for their suitability in CANDU plant service in Ontario Hydro. Sorption rates of tritium gas into the coatings were considerably larger than for tritiated water, by as much as three to four orders of magnitude. However, as a result of the very large solubility of tritiated water in the coatings, the overall permeability to tritium gas and tritiated water are comparable, being somewhat larger for HTO. Marked differences were also evident among the four coatings, the vinyl proving to be unique in behaviour and morphology. Because of a highly porous surface structure water condensation takes place at high relative humidities, leading to an abnormally high retention of free water. Desorption rates from the four coatings were otherwise quite similar. Of practical importance was the observation that more effective desorption of tritiated water could be carried out at relatively high humidities, in this case 60%. It was believed that isotopic exchange was responsible for this phenomenon. It appears that epoxy coatings having a high pigment-to-binder ratio are most suited for coating concrete in tritium handling facilities

  5. Effective permeability in micropores from molecular simulations

    International Nuclear Information System (INIS)

    Botan, A.; Vermorel, R.; Brochard, L.; Hantal, G.; Pellenq, R.

    2012-01-01

    Document available in extended abstract form only. Despite many years' efforts and a large numbers of proposed models, the description of transport properties in clays is still an open question. The reason for this is that structurally clay is an extremely heterogeneous material. The pore size varies from a few to 20 angstroms for interlayer (micro) porosity, from 20 A to 500 A for interparticle (meso) porosity, and 500 A to μm and more for natural (macro) fractures. One further problem with the description of the transport properties is the presence of adsorption/desorption processes onto clay particles, which are coupled with swelling/shrinkage of the particles. Any volumetric changes in the particles affect the meso-pore aperture, and thus, the total permeability of the system. The various processes affecting the permeability occur on different spatial and temporal scales, that requires a multi-scale modeling approach. The most complete model to date is a dual porosity mode. Here the total flow is often written as a sum of the macropore flow and micropore flow. The flow through macro-pores is generally considered to be laminar and obeys Darcy's law, whereas flow through the matrix (micropore flow) may be modeled using Fick's law. The micropore flow involves both Knudsen and surface diffusion mechanisms. An accurate accounting of adsorption-desorption processes or the consideration of binary mixture greatly complicate analytical description. The goal of this study is to improve macro-scale model, the dual porosity model, for the transport properties of fluids in micropores from molecular simulations. The main idea is that we reproduce an experimental set-up used for permeability measurements, as illustrated in Figure 1. High density and low density regions are settled at each end of the membrane that allows to attain a steady flow. The densities in these regions are controlled by Grand Canonical Monte Carlo simulation; the molecular motions are described by

  6. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding....... It was found that the specific damages made to the vapour barrier as part of the test did not have any provable effect on the moisture content. In general elements with an intact vapour barrier did not show a critical moisture content at the wind barrier after four years of exposure....

  7. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  8. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  9. Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Fangtian Wang

    2017-09-01

    Full Text Available A thin coal seam mined as a protective coal seam above a gas outburst coal seam plays a central role in decreasing the degree of stress placed on a protected seam, thus increasing gas permeability levels and desorption capacities to dramatically eliminate gas outburst risk for the protected seam. However, when multiple layers of coal seams are present, stress-relieved gas from adjacent coal seams can cause a gas explosion. Thus, the post-drainage of gas from fractured and de-stressed strata should be applied. Comprehensive studies of gas permeability evolution mechanisms and gas seepage rules of protected seams close to protective seams that occur during protective seam mining must be carried out. Based on the case of the LongWall (LW 23209 working face in the Hancheng coal mine, Shaanxi Province, this paper presents a seepage model developed through the FLAC3D software program (version 5.0, Itasca Consulting Group, Inc., Minneapolis, MI, USA from which gas flow characteristics can be reflected by changes in rock mass permeability. A method involving theoretical analysis and numerical simulation was used to analyze stress relief and gas permeability evolution mechanisms present during broken rock mass compaction in a goaf. This process occurs over a reasonable amount of extraction time and in appropriate locations for comprehensive gas extraction technologies. In using this comprehensive gas drainage technological tool, the safe and efficient co-extraction of thin coal seams and gas resources can be realized, thus creating a favorable environment for the safe mining of coal and gas outburst seams.

  10. Assessing the permeability of engineered capillary networks in a 3D culture.

    Directory of Open Access Journals (Sweden)

    Stephanie J Grainger

    Full Text Available Many pathologies are characterized by poor blood vessel growth and reduced nutrient delivery to the surrounding tissue, introducing a need for tissue engineered blood vessels. Our lab has developed a 3D co-culture method to grow interconnected networks of pericyte-invested capillaries, which can anastamose with host vasculature following implantation to restore blood flow to ischemic tissues. However, if the engineered vessels contain endothelial cells (ECs that are misaligned or contain wide junctional gaps, they may function improperly and behave more like the pathologic vessels that nourish tumors. The purpose of this study was to test the resistance to permeability of these networks in vitro, grown with different stromal cell types, as a metric of vessel functionality. A fluorescent dextran tracer was used to visualize transport across the endothelium and the pixel intensity was quantified using a customized MATLAB algorithm. In fibroblast-EC co-cultures, the dextran tracer easily penetrated through the vessel wall and permeability was high through the first 5 days of culture, indicative of vessel immaturity. Beyond day 5, dextran accumulated at the periphery of the vessel, with very little transported across the endothelium. Quantitatively, permeability dropped from initial levels of 61% to 39% after 7 days, and to 7% after 2 weeks. When ECs were co-cultured with bone marrow-derived mesenchymal stem cells (MSCs or adipose-derived stem cells (AdSCs, much tighter control of permeability was achieved. Relative to the EC-fibroblast co-cultures, permeabilities were reduced 41% for the EC-MSC co-cultures and 50% for the EC-AdSC co-cultures after 3 days of culture. By day 14, these permeabilities decreased by 68% and 77% over the EC-fibroblast cultures. Co-cultures containing stem cells exhibit elevated VE-cadherin levels and more prominent EC-EC junctional complexes when compared to cultures containing fibroblasts. These data suggest the stromal

  11. Effect of persistent high intraocular pressure on microstructure and hydraulic permeability of trabecular meshwork

    International Nuclear Information System (INIS)

    Mei Xi; Ren Lin; Xu Qiang; Liu Zhi-Cheng; Zheng Wei

    2015-01-01

    As the aqueous humor leaves the eye, it first passes through the trabecular meshwork (TM). Increased flow resistance in this region causes elevation of intraocular pressure (IOP), which leads to the occurrence of glaucoma. To quantitatively evaluate the effect of high IOP on the configuration and hydraulic permeability of the TM, second harmonic generation (SHG) microscopy was used to image the microstructures of the TM and adjacent tissues in control (normal) and high IOP conditions. Enucleated rabbit eyes were perfused at a pressure of 60 mmHg to achieve the high IOP. Through the anterior chamber of the eye, in situ images were obtained from different depths beneath the surface of the TM. Porosity and specific surface area of the TM in control and high IOP conditions were then calculated to estimate the effect of the high pressure on the permeability of tissue in different depths. We further photographed the histological sections of the TM and compared the in situ images. The following results were obtained in the control condition, where the region of depth was less than 55 μm with crossed branching beams and large pores in the superficial TM. The deeper meshwork is a silk-like tissue with abundant fluorescence separating the small size of pores. The total thickness of pathway tissues composed of TM and juxtacanalicular (JCT) is more than 100 μm. After putting a high pressure on the inner wall of the eye, the TM region progressively collapses and decreases to be less than 40 μm. Fibers of the TM became dense, and the porosity at 34 μm in the high IOP condition is comparable to that at 105 μm in the control condition. As a consequent result, the permeability of the superficial TM decreases rapidly from 120 μm 2 to 49.6 μm 2 and that of deeper TM decreases from 1.66 μm 2 to 0.57 μm 2 . Heterogeneity reflected by descent in permeability reduces from 12.4 μm of the control condition to 3.74 μm of the high IOP condition. The persistently high IOP makes the

  12. Connective tissue alteration in abdominal wall hernia

    DEFF Research Database (Denmark)

    Henriksen, N A; Yadete, D H; Sørensen, Lars Tue

    2011-01-01

    The aetiology and pathogenesis of abdominal wall hernia formation is complex. Optimal treatment of hernias depends on a full understanding of the pathophysiological mechanisms involved in their formation. The aim of this study was to review the literature on specific collagen alterations in abdom...

  13. Active intestinal drug absorption and the solubility-permeability interplay.

    Science.gov (United States)

    Porat, Daniel; Dahan, Arik

    2018-02-15

    The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Study on Surface Permeability of Concrete under Immersion

    OpenAIRE

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-01

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured af...

  15. Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain.

    Science.gov (United States)

    Guervilly, Céline; Wood, Toby S; Brummell, Nicholas H

    2013-11-01

    We present a numerical study of dynamo action in a conducting fluid encased in a metallic spherical shell. Motions in the fluid are driven by differential rotation of the outer metallic shell, which we refer to as "the wall." The two hemispheres of the wall are held in counter-rotation, producing a steady, axisymmetric interior flow consisting of differential rotation and a two-cell meridional circulation with radial inflow in the equatorial plane. From previous studies, this type of flow is known to maintain a stationary equatorial dipole by dynamo action if the magnetic Reynolds number is larger than about 300 and if the outer boundary is electrically insulating. We vary independently the thickness, electrical conductivity, and magnetic permeability of the wall to determine their effect on the dynamo action. The main results are the following: (a) Increasing the conductivity of the wall hinders the dynamo by allowing eddy currents within the wall, which are induced by the relative motion of the equatorial dipole field and the wall. This processes can be viewed as a skin effect or, equivalently, as the tearing apart of the dipole by the differential rotation of the wall, to which the field lines are anchored by high conductivity. (b) Increasing the magnetic permeability of the wall favors dynamo action by constraining the magnetic field lines in the fluid to be normal to the wall, thereby decoupling the fluid from any induction in the wall. (c) Decreasing the wall thickness limits the amplitude of the eddy currents, and is therefore favorable for dynamo action, provided that the wall is thinner than the skin depth. We explicitly demonstrate these effects of the wall properties on the dynamo field by deriving an effective boundary condition in the limit of vanishing wall thickness.

  16. Clear-cutting affects habitat connectivity for a forest amphibian by decreasing permeability to juvenile movements.

    Science.gov (United States)

    Popescu, Viorel D; Hunter, Malcolm L

    2011-06-01

    Conservation of forest amphibians is dependent on finding the right balance between management for timber production and meeting species' habitat requirements. For many pond-breeding amphibians, successful dispersal of the juvenile stage is essential for long-term population persistence. We investigated the influence of timber-harvesting practices on the movements of juvenile wood frogs (Lithobates sylvaticus). We used a chronosequence of stands produced by clear-cutting to evaluate how stand age affects habitat permeability to movements. We conducted experimental releases of juveniles in 2008 (n = 350) and 2009 (n = 528) in unidirectional runways in four treatments: mature forest, recent clearcut, 11-year-old, and 20-year-old regeneration. The runways were 50 x 2.5-m enclosures extending into each treatment, perpendicular to a distinct edge, with four tracking stations at 10, 20, 30, and 40 m from the edge. We recorded the number of animals reaching each tracking station, and the proportion of animals changing their direction of movement at each distance. We found that the mature forest was 3.1 and 3.7 times more permeable than the 11-year-old regeneration and the recent clearcut, respectively. Animals actively avoided open-canopy habitats and sharp edges; significantly more animals returned toward the closed-canopy forest at 0 m and 10 m in the less permeable treatments. There were no significant differences in habitat permeability between the mature forest and the 20-year-old regeneration. Our study is the first to directly assess habitat permeability to juvenile amphibian movement in relation to various forestry practices. We argue that habitat permeability at this scale is largely driven by the behavior of animals in relation to habitat disturbance and that caution needs to be used when using spatial modeling and expert-derived permeability values to assess connectivity of amphibian populations. The effects of clear-cutting on the migratory success of juvenile

  17. Study on road surface source pollution controlled by permeable pavement

    Science.gov (United States)

    Zheng, Chaocheng

    2018-06-01

    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  18. Frictional stability-permeability relationships for fractures in shales

    Science.gov (United States)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  19. eWALL

    DEFF Research Database (Denmark)

    Kyriazakos, Sofoklis; Mihaylov, Mihail; Anggorojati, Bayu

    2016-01-01

    challenge with impact in multiple sectors. In this paper we present an innovative ICT solution, named eWALL, that aims to address these challenges by means of an advanced ICT infrastructure and home sensing environment; thus differentiating from existing eHealth and eCare solutions. The system of e...

  20. Abdominal wall surgery

    Science.gov (United States)

    ... as liposuction , which is another way to remove fat. But, abdominal wall surgery is sometimes combined with liposuction. ... from the middle and lower sections of your abdomen to make it firmer ... removes excess fat and skin (love handles) from the sides of ...

  1. Occupy Wall Street

    DEFF Research Database (Denmark)

    Jensen, Michael J.; Bang, Henrik

    2013-01-01

    This article analyzes the political form of Occupy Wall Street on Twitter. Drawing on evidence contained within the profiles of over 50,000 Twitter users, political identities of participants are characterized using natural language processing. The results find evidence of a traditional...

  2. Endometriosis Abdominal wall

    International Nuclear Information System (INIS)

    Alvarez, M.; Carriquiry, L.

    2003-01-01

    Endometriosis of abdominal wall is a rare entity wi ch frequently appears after gynecological surgery. Case history includes three cases of parietal endometriosis wi ch were treated in Maciel Hospital of Montevideo. The report refers to etiological diagnostic aspects and highlights the importance of total resection in order to achieve definitive healing

  3. Air-injection field tests to determine the effect of a heat cycle on the permeability of welded tuff

    International Nuclear Information System (INIS)

    Lee, K.H.; Ueng, Tzou-Shin.

    1991-01-01

    As part of a series of prototype tests conducted in preparation for site characterization of the potential nuclear-waste repository site at Yucca Mountain, Nevada, air-injection tests were conducted in the welded tuffs in G-Tunnel at the Nevada Test Site. The objectives were to characterize the permeability of the highly fractured tuff around a horizontal heater emplacement borehole, and to determine the effect of a heating and cooling cycle on the rock-mass permeability. Air was injected into packed-off intervals along the heater borehole. The bulk permeability of the rock adjacent to the test interval and the aperture of fractures intersecting the interval were computed from the air-flow rate, temperature, and pressure at steady state. The bulk permeability of intervals along with borehole varied from a minimum of 0.08 D to a maximum of over 144 D and the equivalent parallel-plate apertures of fractures intersecting the borehole varied from 70 to 589 μm. Higher permeabilities seemed to correlate spatially with the mapped fractures. The rock was then heated for a period of 6.5 months with an electrical-resistive heater installed in the borehole. After heating, the rock was allowed to cool down to the ambient temperature. The highest borehole wall temperature measured was 242 degree C. Air injection tests were repeated following the heating and cooling cycle, and the results showed significant increases in bulk permeability ranging from 10 to 1830% along the borehole. 8 ref., 6 figs., 3 tabs

  4. Permeable reactive barrier - innovative technology for ground-water remediation

    International Nuclear Information System (INIS)

    Vidic, D.R.

    2002-01-01

    Significant advances in the application of permeable reactive barriers (PRBs) for ground-water remediation have been witnessed in the last 5 years. From only a few full-scale systems and pilot-scale demonstrations, there are currently at least 38 full-scale PRBs using zero-valent iron (ZVI) as a reactive material. Of those, 26 are continuous reactive walls, 9 are funnel-and- gate systems and 3 are in situ reactive vessels. Most of the PRB systems have used granular iron media and have been applied to address the control of contamination caused by chlorinated volatile organic compounds or heavy metals. Many regulatory agencies have expressed interest in PRB systems and are becoming more comfortable in issuing permits. The main advantage of PRB systems is that the installation costs are comparable with those of other ground-water remediation technologies, while the O and M costs are significantly lower and are mostly due to monitoring requirements, which are required for all remediation approaches. In addition, the land use can resume after the installation of the PRB systems, since there are few visible signs of the installation above grounds except for the monitoring wells. It is difficult to make any definite conclusions about the long-term performance of PRB systems because there is no more than 5 years of the record of performance that can be used for such analysis. The two main challenges still facing this technology are: (1) evaluating the longevity (geochemistry) of a PRB; and (2) ensuring/verifying hydraulic performance. A number of public/private partnerships have been established in recent years that are working together to resolve some of these problems. This organized approach by combining the efforts of several government agencies and private companies will likely result in better understanding and, hopefully, better acceptance of this technology in the future. (author)

  5. Redox-active media for permeable reactive barriers

    International Nuclear Information System (INIS)

    Sivavec, T.M.; Mackenzie, P.D.; Horney, D.P.; Baghel, S.S.

    1997-01-01

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe 3 O 4 ), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  6. Characterization of the mechanical and hydraulic damage in the excavation damaged zone of MHM with gas permeability measurement

    International Nuclear Information System (INIS)

    Yang, D.

    2008-09-01

    On the feasibility evaluation of nuclear waste storage in deep formations, the essential issues are as follows: the stability of underground structures over the reversible period, the influence of cavity excavation on geomechanical properties of the wall rock and the variation of those properties during the different phases while storage realization. The work presented here covers the investigations on the variation of geomechanical properties of the approximately 500 m deep MHM in France (mudstone in the departments of Meuse/Haute-Marne), chosen as a potential medium for nuclear waste disposal by ANDRA. In order to measure the very low permeability of mudstone and to observe the dependency on saturation, a special test scheme on measurement of gas permeability has been developed. In the scheme, in situ referenced stresses have been chosen as the stresses acting on the solid matrix. The gas permeability has been determined with both analytical and numerical methods. To estimate the mechanical damage of storage induced by the excavation, laboratory tests on gas permeability have been conducted on samples recovered from different locations situated at different distances from the wall of the main access shaft of the MHM (from 0,1 m to 12,5 m). Results of gas permeability obtained under an isotropic stress of 11 MPa vary between 10 -21 and 10 -22 m 2 and do not show significant variations between damaged zones (near the wall) and intact zones (sample located 12 m from the wall). The observations in laboratory tests coincide with in situ damage characterizations. The variation of gas permeability under the cycle of loading and unloading is an order less than the initial value under the isotropic stress. Taking into account the precision of the testing system, this variation is not significant. The oviparous intact samples have been imposed different saturations by salt solutions (with a relative humidity from 25 % to 98 %) to form a cycle of de- and re-saturation. The

  7. Slug flow in horizontal pipes with transpiration at the wall

    Science.gov (United States)

    Loureiro, J. B. R.; Silva Freire, A. P.

    2011-12-01

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  8. Slug flow in horizontal pipes with transpiration at the wall

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: jbrloureiro@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  9. Slug flow in horizontal pipes with transpiration at the wall

    International Nuclear Information System (INIS)

    Loureiro, J B R; Freire, A P Silva

    2011-01-01

    The present work investigates the behaviour of slug flows in horizontal pipes with a permeable wall. Measurements of pressure drop and of local velocity are given for nine different flow conditions. The liquid phase velocity was measured with laser Doppler anemometry. Single-phase data are compared with the results of other authors. The influence of flow transpiration and of roughness on the features of slug flows is shown to be pronounced. A Shadow Sizer system coupled with Particle Image Velocimetry is used to account for the properties of the slug cell.

  10. Acoustic--nuclear permeability logging system

    International Nuclear Information System (INIS)

    Dowling, D.J.; Arnold, D.M.

    1978-01-01

    A down hole logging tool featuring a neutron generator, an acoustic disturbance generator, and a radiation detection system is described. An array of acoustic magnetostriction transducers is arranged about the target of a neutron accelerator. Two gamma ray sensors are separated from the accelerator target by shielding. According to the method of the invention, the underground fluid at the level of a formation is bombarded by neutrons which react with oxygen in the fluid to produce unstable nitrogen 16 particles according to the reaction 16 O(n,p) 16 N. Acoustic pulses are communicated to the fluid, and are incident on the boundary of the borehole at the formation. The resulting net flow of fluid across the boundary is determined from radiation detection measurements of the decaying 16 N particles in the fluid. A measure of the permeability of the formation is obtained from the determination of net fluid flow across the boundary

  11. Migration of particulates in permeable rock columns

    International Nuclear Information System (INIS)

    Cropper, R.L.

    1982-01-01

    The migration of radioactive material through soil and permeable rock formations have become a major topic of concern due to the interest in the licensing of new radioactive waste disposal sites. Previously, research has been conducted in relation to deep repositories; however, similar situations arise in the vadose zone, where there is a higher probability of naturally-occurring particulates of organic nature and for the incursion of water. Test data has provided information which suggests that particulates will travel through porous media subject to various delay mechnisms and must be included in any consideration of waste migration. Data concerning particulate migration must and should be considered in the future when radioactive waste disposal sites are licensed

  12. Composite binders for concrete with reduced permeability

    International Nuclear Information System (INIS)

    Fediuk, R; Yushin, A

    2016-01-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m 2 , it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa). (paper)

  13. Comparison of Dentin Permeability After Tooth Cavity Preparation with Diamond Bur and Er:YAG Laser

    Directory of Open Access Journals (Sweden)

    Masoumeh Hasani Tabatabaei

    2016-05-01

    Full Text Available Objectives: The aim of this study was to compare the permeability of dentin after using diamond bur and Er:YAG laser.Materials and Methods: Seventy-two recently extracted, intact, and restoration-free human permanent molars were used in this study. The samples were randomly divided into three groups of 24 each and class I cavities were prepared as follows. Group 1: High speed diamond bur with air and water spray. Group 2: Er:YAG laser. Group 3: Er:YAG laser followed by additional sub-ablative laser treatment. Each group consisted of two subgroups with different cavity depths of 2mm and 4mm.  The entire cavity floor was in dentin. Two samples from each subgroup were observed under scanning electron microscope (SEM. The external surfaces of other samples were covered with nail varnish (except the prepared cavity and immersed in 0.5% methylene blue solution for 48 hours.  After irrigation of samples with water, they were sectioned in bucco-lingual direction. Then, the samples were evaluated under a stereomicroscope at ×160 magnification. The data were analyzed using two-way ANOVA and Tukey’s HSD test.Results: Two-way ANOVA showed significant difference in permeability between groups 2 and 3 (laser groups with and without further treatment and group 1 (bur group. The highest permeability was seen in the group 1. There was no significant difference in dentin permeability between groups 2 and 3 and no significant difference was observed between different depths (2mm and 4mm.Conclusion: Cavities prepared by laser have less dentin permeability than cavities prepared by diamond bur.

  14. Magnetohydrodynamic peristaltic motion of a Newtonian fluid through porous walls through suction and injection

    Science.gov (United States)

    Sivaiah, R.; Hemadri Reddy, R.

    2017-11-01

    In this paper, we investigate the peristaltic transport of a conducting Newtonian fluid bounded by permeable walls with suction and injection moving with constant velocity of the wave in the wave frame of reference under the consideration of long wavelength and low Reynolds number. The analytical solution for the velocity field, pressure gradient and the frictional force are obtained. The effect of suction/injection parameter, amplitude ratio and the permeability parameter including slip on the flow quantities are discussed graphically. It is found that the greater the suction/injection parameter, the smaller the pressure rise against the pump works. Further, the pressure rise increases with increasing Magnetic parameter.

  15. Colloid transport in dual-permeability media

    Science.gov (United States)

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  16. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS.

    Science.gov (United States)

    Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni; Lupia, Enrico

    2017-01-01

    CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability.

  17. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS.

    Directory of Open Access Journals (Sweden)

    Sophie Doublier

    Full Text Available CD40/CD40 ligand (CD40L dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs. We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS, and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS, and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability.

  18. Wind tunnels with adapted walls for reducing wall interference

    Science.gov (United States)

    Ganzer, U.

    1979-01-01

    The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.

  19. Rising damp in building walls: the wall base ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.S.; Delgado, J.M.P.Q.; Freitas, V.P. de [Faculdade de Engenharia da Universidade do Porto, Laboratorio de Fisica das Construcoes (LFC), Departamento de Engenharia Civil, Porto (Portugal)

    2012-12-15

    This work intends to validate a new system for treating rising damp in historic buildings walls. The results of laboratory experiments show that an efficient way of treating rising damp is by ventilating the wall base, using the HUMIVENT technique. The analytical model presented describes very well the observed features of rising damp in walls, verified by laboratory tests, who contributed for a simple sizing of the wall base ventilation system that will be implemented in historic buildings. (orig.)

  20. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shize Jiang

    Full Text Available The blood-brain barrier (BBB impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF on BBB permeability in Kunming (KM mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse, while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI. Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001. Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.

  1. Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies.

    Science.gov (United States)

    Monteiro, Lidiane M; Lione, Viviane F; do Carmo, Flavia A; do Amaral, Lilian H; da Silva, Julianna H; Nasciutti, Luiz E; Rodrigues, Carlos R; Castro, Helena C; de Sousa, Valeria P; Cabral, Lucio M

    2012-01-01

    Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using Gastroplus™ software. The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model. This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system.

  2. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  3. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  4. A full-scale porous reactive wall for prevention of acid mine drainage

    International Nuclear Information System (INIS)

    Benner, S.G.; Blowes, D.W.; Ptacek, C.J.

    1997-01-01

    The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problems is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years

  5. In-situ infiltration performance of different permeable pavements in a employee used parking lot--A four-year study.

    Science.gov (United States)

    Kumar, Kuldip; Kozak, Joseph; Hundal, Lakhwinder; Cox, Albert; Zhang, Heng; Granato, Thomas

    2016-02-01

    Permeable pavements are being adopted as a green solution in many parts of the world to manage urban stormwater quantity and quality. This paper reports on the measured in-situ infiltration performance over a four-year period since construction and use of three permeable parking sections (permeable pavers, permeable concrete and permeable asphalt) of an employee car parking lot. There was only a marginal decline in infiltration rates of all three pavements after one year of use. However, between years two to four, the infiltration rates declined significantly due to clogging of pores either by dry deposition of particles and/or shear stress of vehicles driving and degrading the permeable surfaces; during the last two years, a greater decline was also observed in driving areas of the parking lots compared to parking slots, where minimal wear and tear are expected. Maintenance strategies were employed to reclaim some of the lost infiltration rate of the permeable pavements to limited success. Despite this decline, the infiltration rates were still four to five times higher than average rainstorm intensity in the region. Thus, these permeable pavement parking lots may have significant ecological importance due to their ability to infiltrate rainwater quickly, reduce the runoff in the catchment area, and also dampen runoff peak flows that could otherwise enter the collection system for treatment in a combined sewer area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  7. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  8. Modeling the Hydrologic Processes of a Permeable Pavement System

    Science.gov (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  9. Performances of Metal Concentrations from Three Permeable Pavement Infiltrates

    Science.gov (United States)

    The U.S. Environmental Protection Agency designed and constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements: permeable interlocking concrete pavers, pervious concrete, and porous asphalt. Water sampling was con...

  10. Permeable Pavement Research at the Edison Environmental Center

    Science.gov (United States)

    There are few detailed studies of full-scale, replicated, actively-used permeable pavement systems. Practitioners need additional studies of permeable pavement systems in its intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditio...

  11. Nitrogen Transformations in Three Types of Permeable Pavement

    Science.gov (United States)

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  12. Update to Permeable Pavement Research at the Edison ...

    Science.gov (United States)

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, pervious concrete, and porous asphalt. The permeable pavements are limited to parking spaces while adjacent driving lanes are impermeable and drain to the permeable surfaces. The parking lot is instrumented for continuous monitoring with thermistors and water content reflectometers that measure moisture as infiltrate passes through the storage gallery beneath the permeable pavements into the underlying native soil. Each permeable surface of the parking lot has four lined sections that capture infiltrate in tanks for water quality analyses; these tanks are capable of holding volumes up to 4.1 m3, which represents up to 38 mm (1.5 in.) for direct rainfall on the porous pavement and runoff from adjacent driving lanes that drain into the permeable surface.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, surface hydrology, and infiltration and evaporation rates. This presentation summarizes these past findings and addresses current water quality efforts including pH, solids analysis, total organic carbon, and chemical oxygen demand. Stormwater runoff continues to be a major cause of water pollution in

  13. Permeability dependence of streaming potential coefficient in porous media

    NARCIS (Netherlands)

    Thanh, L.D.; Sprik, R.

    2015-01-01

    In theory, the streaming potential coefficient depends not only on the zeta potential but also on the permeability of the rocks that partially determines the surface conductivity of the rocks. However, in practice, it is hard to show the permeability dependence of streaming potential coefficients

  14. A drainage data-based calculation method for coalbed permeability

    International Nuclear Information System (INIS)

    Lai, Feng-peng; Li, Zhi-ping; Fu, Ying-kun; Yang, Zhi-hao

    2013-01-01

    This paper establishes a drainage data-based calculation method for coalbed permeability. The method combines material balance and production equations. We use a material balance equation to derive the average pressure of the coalbed in the production process. The dimensionless water production index is introduced into the production equation for the water production stage. In the subsequent stage, which uses both gas and water, the gas and water production ratio is introduced to eliminate the effect of flush-flow radius, skin factor, and other uncertain factors in the calculation of coalbed methane permeability. The relationship between permeability and surface cumulative liquid production can be described as a single-variable cubic equation by derivation. The trend shows that the permeability initially declines and then increases after ten wells in the southern Qinshui coalbed methane field. The results show an exponential relationship between permeability and cumulative water production. The relationship between permeability and cumulative gas production is represented by a linear curve and that between permeability and surface cumulative liquid production is represented by a cubic polynomial curve. The regression result of the permeability and surface cumulative liquid production agrees with the theoretical mathematical relationship. (paper)

  15. Permeability of crust is key to crispness retention

    NARCIS (Netherlands)

    Hirte, A.; Hamer, R.J.; Meinders, M.B.J.; Primo-Martin, C.

    2010-01-01

    Bread loses crispness rapidly after baking because water originating from the wet crumb accumulates in the dry crust. This water accumulation might be increased by the dense and low permeable character of the bread crust. Our objective was to investigate the influence of permeability of the crust on

  16. Principal permeability determination from multiple horizontal well tests

    Energy Technology Data Exchange (ETDEWEB)

    Economides, M. [Texas A and M Univ., TX (United States); Munoz, A.; Ehlig-Economides, C.

    1998-12-31

    A method for obtaining principal permeability magnitudes and direction that requires only the linear flow regime from transient tests in three horizontal wells oriented in three distinct and arbitrary directions, is described. Well design optimization strategies require knowledge of both the principal permeability orientation as well as the horizontal permeability magnitudes. When the degree of horizontal permeability anisotropy (i.e. permeability in the bedding plane with respect to direction) is significant, the productivity of a long horizontal well will depend greatly on its direction, especially when the well is first brought into production. Productivities have been found to deviate substantially among wells in the same reservoir and this deviation has been attributed to differences in well orientation. In view of this fact, measuring permeability anisotropy becomes a compelling necessity. The success of the proposed method is illustrated by a case study in which the principal permeability magnitudes and direction from three wells were used to predict the productivity of a fourth well within 10 per cent. Use of the computed principal permeabilities from the case study, it was possible to forecast the cumulative production to show the significance of well trajectory optimization on the discounted cash flow and the net present value. 20 refs., 3 figs.

  17. Determination of hydrogen permeability in uncoated and coated superalloys

    Science.gov (United States)

    Bhattacharyya, S.; Vesely, E. J., Jr.; Hill, V. L.

    1981-01-01

    Hydrogen permeability, diffusivity, and solubility data were obtained for eight wrought and cast high temperature alloys over the range 650 to 815 C. Data were obtained for both uncoated alloys and wrought alloys coated with four commercially available coatings. Activation energies for permeability, diffusivity and solubility were calculated.

  18. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  19. Increasing the permeability of Escherichia coli using MAC13243

    DEFF Research Database (Denmark)

    Muheim, Claudio; Götzke, Hansjörg; Eriksson, Anna U.

    2017-01-01

    molecules that make the outer membrane of Escherichia coli more permeable. We identified MAC13243, an inhibitor of the periplasmic chaperone LolA that traffics lipoproteins from the inner to the outer membrane. We observed that cells were (1) more permeable to the fluorescent probe 1-N...

  20. Shadows on the wall

    International Nuclear Information System (INIS)

    Swift, Diana.

    1984-01-01

    Canadian antinuclear groups, because of their shifting stances and fluid overlapping membership, are compared with shadows on a wall. They can be roughly classified as environmental, pacifist, concerned with energy, religious, or dedicated to nuclear responsibility. The author considers that such groups, despite their arguably unrealistic attitudes, have raised public awareness of the ethical, practical and financial aspects of power development in Canada and the world

  1. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason; Johnson, Andrew; Renambot, Luc; Peterka, Tom; Jeong, Byungil; Sandin, Daniel J.; Talandis, Jonas; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung; Sun, Yiwen

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  2. Biofilm treatment of soil for waste containment and remediation

    International Nuclear Information System (INIS)

    Turner, J.P.; Dennis, M.L.; Osman, Y.A.; Chase, J.; Bulla, L.A.

    1997-01-01

    This paper examines the potential for creating low-permeability reactive barriers for waste treatment and containment by treating soils with Beijerinckia indica, a bacterium which produces an exopolysaccharide film. The biofilm adheres to soil particles and causes a decrease in soil hydraulic conductivity. In addition, B. Indica biodegrades a variety of polycyclic aromatic hydrocarbons and chemical carcinogens. The combination of low soil hydraulic conductivity and biodegradation capabilities creates the potential for constructing reactive biofilm barriers from soil and bacteria. A laboratory study was conducted to evaluate the effects of B. Indica on the hydraulic conductivity of a silty sand. Soil specimens were molded with a bacterial and nutrient solution, compacted at optimum moisture content, permeated with a nutrient solution, and tested for k sat using a flexible-wall permeameter. Saturated hydraulic conductivity (k sat ) was reduced from 1 x 10 -5 cm/sec to 2 x 10 -8 cm/sec: by biofilm treatment. Permeation with saline, acidic, and basic solutions following formation of a biofilm was found to have negligible effect on the reduced k sat , for up to three pore volumes of flow. Applications of biofilm treatment for creating low-permeability reactive barriers are discussed, including compacted liners for bottom barriers and caps and creation of vertical barriers by in situ treatment

  3. Light shining through walls

    International Nuclear Information System (INIS)

    Redondo, Javier; Ringwald, Andreas

    2010-11-01

    Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)

  4. Light shining through walls

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)

  5. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  6. Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers.

    Science.gov (United States)

    Clifton, Lisa M; Dahlen, Paul R; Johnson, Paul C

    2014-05-06

    Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites.

  7. Fatty acids are required for epidermal permeability barrier function.

    Science.gov (United States)

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-08-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.

  8. Wall Street som kreationistisk forkynder

    DEFF Research Database (Denmark)

    Ekman, Susanne

    2016-01-01

    Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong......Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong...

  9. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... to formations with a significant fraction of fine particles including clay minerals are investigated. The porosities range from 0.10 to 0.30 and permeabilities span the range from 1 to 1000 md. To compare different rock types, specific surface is determined from permeability and porosity using Kozeny’s equation...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  10. A theoretical model for gas permeability in a composite membrane

    International Nuclear Information System (INIS)

    Serrano, D. A

    2009-01-01

    We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es

  11. Steady flow in voids and closed cracks in permeable media

    International Nuclear Information System (INIS)

    Rae, J.

    1985-03-01

    This paper considers what happens when a steady flow in a permeable medium meets two concentric spheres which have different permeabilities. This can form a first stage model for water flow near an engineered cavity in rock or a concreted waste package placed in filler material as in a nuclear waste repository. Results are obtained in terms of the simplest spherical harmonics, which lets them be used easily. Included are the well-known result that a highly permeable sphere will see only a few times the flux which would occur if it had the permeability of its surroundings, and the less well-known result, though unsurprising, that a spherical region surrounded by a highly permeable shell will see almost no flow, as it will almost all by-pass. A companion paper will include more geometrical effects by replacing the spheres by ellipsoids. (author)

  12. Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina.

    Science.gov (United States)

    Puls, R W; Blowes, D W; Gillham, R W

    1999-08-12

    A continuous hanging iron wall was installed in June, 1996, at the U. S. Coast Guard (USCG) Support Center near Elizabeth City, NC, United States, to treat overlapping plumes of chromate and chlorinated solvent compounds. The wall was emplaced using a continuous trenching machine whereby native soil and aquifer sediment was removed and the iron simultaneously emplaced in one continuous excavation and fill operation. To date, there have been seven rounds (November 1996, March 1997, June 1997, September 1997, December 1997, March 1998, and June 1998) of performance monitoring of the wall. At this time, this is the only full-scale continuous 'hanging' wall installed as a permeable reactive barrier to remediate both chlorinated solvent compounds and chromate in groundwater. Performance monitoring entails the following: sampling of 10-5 cm PVC compliance wells and 15 multi-level samplers for the following constituents: TCE, cis-dichloroethylene (c-DCE), vinyl chloride, ethane, ethene, acetylene, methane, major anions, metals, Cr(VI), Fe(II), total sulfides, dissolved H(2), Eh, pH, dissolved oxygen, specific conductance, alkalinity, and turbidity. Electrical conductivity profiles have been conducted using a Geoprobe to verify emplacement of the continuous wall as designed and to locate upgradient and downgradient wall interfaces for coring purposes. Coring has been conducted in November, 1996, in June and September, 1997, and March, 1998, to evaluate the rate of corrosion on the iron surfaces, precipitate buildup (particularly at the upgradient interface), and permeability changes due to wall emplacement. In addition to several continuous vertical cores, angled cores through the 0.6-m thick wall have been collected to capture upgradient and downgradient wall interfaces along approximate horizontal flow paths for mineralogic analyses.

  13. Build an Interactive Word Wall

    Science.gov (United States)

    Jackson, Julie

    2018-01-01

    Word walls visually display important vocabulary covered during class. Although teachers have often been encouraged to post word walls in their classrooms, little information is available to guide them. This article describes steps science teachers can follow to transform traditional word walls into interactive teaching tools. It also describes a…

  14. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  15. Altered Mycobacterium tuberculosis Cell Wall Metabolism and Physiology Associated With RpoB Mutation H526D

    Directory of Open Access Journals (Sweden)

    Victoria L. Campodónico

    2018-03-01

    Full Text Available Background:Mycobacterium tuberculosis (Mtb rpoB mutations are associated with global metabolic remodeling. However, the net effects of rpoB mutations on Mtb physiology, metabolism and function are not completely understood. Based on previous work, we hypothesized that changes in the expression of cell wall molecules in Mtb mutant RpoB 526D lead to changes in cell wall permeability and to altered resistance to environmental stresses and drugs.Methods: The phenotypes of a fully drug-susceptible clinical strain of Mtb and its paired rifampin-monoresistant, RpoB H526D mutant progeny strain were compared.Results: The rpoB mutant showed altered colony morphology, bacillary length and cell wall thickness, which were associated with increased cell wall permeability and susceptibility to the cell wall detergent sodium dodecyl sulfate (SDS after exposure to nutrient starvation. Relative to the isogenic rifampin-susceptible strain, the RpoB H526D mutant showed altered bacterial cellular metabolic activity and an eightfold increase in susceptibility to the cell-wall acting drug vancomycin.Conclusion: Our data suggest that RpoB mutation H526D is associated with altered cell wall physiology and resistance to cell wall-related stress. These findings are expected to contribute to an improved understanding of the pathogenesis of drug-resistant M. tuberculosis infections.

  16. Tc-99m Radiolabeled Alendronate Sodium Microemulsion: Characterization and Permeability Studies Across Caco-2 Cells.

    Science.gov (United States)

    Elitez, Yetkin; Ekinci, Meliha; Ilem-Ozdemir, Derya; Gundogdu, Evren; Asikoglu, Makbule

    2018-01-01

    Alendronate sodium (ALD) is used orally but it is poorly absorbed from the gastrointestinal (GI) tract. For this reason, microemulsion system was chosen to evaluate ALD from the GI tract after oral delivery. This study was aimed to prepare water-in-oil (w/o) microemulsion formulation of ALD and evaluate the permeability of ALD microemulsion from Caco-2 cell lines with radioactive and nonradioactive studies. The ALD microemulsion was developed by using pseudo-ternary phase diagram and composed of Soybean oil, Colliphor EL, Tween 80, Transcutol and distilled water. The prepared ALD microemulsion was characterized by physical appearance, droplet size, viscosity, pH, electrical conductivity and refractive index. The stability of the formulation was investigated for 6 months at 25±2°C/60±5% of relative humidity (RH) as well as at 40±2°C/75±5% RH. After that 1 mg of ALD was radiolabeled with 99mTc and added to microemulsion. The permeability studies were performed with both 99mTc-ALD microemulsion and ALD microemulsion. The experimental results suggested that ALD microemulsion presented adequate stability with droplet size varying from 37.8±0.9 to 39.9±1.2 nm during incubation time. In addition, ALD microemulsion was radiolabeled with high labeling efficiency (>95%). In a non-radioactive study, ALD permeability was found to be 45 µg.mL-1 and microemulsion has high permeability percentage when compared to another study. The novel w/o microemulsion formulation has been developed for oral delivery of ALD. Based on the results, permeability of ALD could be significantly improved by the microemulsion formulation. In addition, 99mTc-ALD microemulsion in capsule can be used for bone disease treatment and diagnosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies

    Directory of Open Access Journals (Sweden)

    Monteiro LM

    2012-09-01

    Full Text Available Lidiane M Monteiro,1 Viviane F Lione,1 Flavia A do Carmo,1 Lilian H do Amaral,1 Julianna H da Silva,2 Luiz E Nasciutti,2 Carlos R Rodrigues,1 Helena C Castro,3 Valeria P de Sousa,1 Lucio M Cabral11Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 2Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 3Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, BrasilBackground: Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using GastroplusTM software.Methods and results: The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model.Conclusion: This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system.Keywords: dapsone, nanoemulsions, antibacterial, permeability, Caco-2 cell, GastroplusTM

  18. Hydraulic, water-quality, and temperature performance of three types of permeable pavement under high sediment loading conditions

    Science.gov (United States)

    Selbig, William R.; Buer, Nicolas

    2018-05-11

    Three permeable pavement surfaces - asphalt (PA), concrete (PC), and interlocking pavers (PIP) - were evaluated side-by-side to measure changes to the infiltrative capacity and water quality of stormwater runoff originating from a conventional asphalt parking lot in Madison, Wisconsin. During the 24-month monitoring period (2014-16), all three permeable pavements resulted in statistically significant reductions in the cumulative load of solids (total suspended solids and suspended sediment), total phosphorus, Escherichia coli (E. coli), and Enterococci. Most of the removal occurred through capture and retention in the void spaces of each permeable surface and aggregate base. The largest reduction in total suspended solids was for PC at 80 percent, followed by PIP and PA at 69 and 65 percent, respectively. Reductions (generally less than 50 percent) in total phosphorus also were observed, which might have been tempered by increases in the dissolved fraction observed in PIP and PA. Conversely, PC results indicated a slight reduction in dissolved phosphorus but failed to meet statistical significance. E. coli and Enterococci were reduced by about 80 percent for PC, almost twice the amount observed for PIP and PA.Results for the PIP and PC surfaces initially indicated higher pollutant load reduction than results for the PA surface. The efficiency of PIP and PC surfaces capturing sediment, however, led to a decline in infiltration rates that resulted in more runoff flowing over, not through, the permeable surface. This result led to a decline in treatment until the permeable surface was partially restored through maintenance practices, to which PIP responded more dramatically than PC or PA. Conversely, the PA surface was capable of infiltrating most of the influent runoff volume during the monitoring period and, thus, continued to provide some level of treatment. The combined effect of underdrain and overflow drainage resulted in similar pollutant treatment for all

  19. Using artificial intelligence to predict permeability from petrographic data

    Energy Technology Data Exchange (ETDEWEB)

    Maqsood Ali; Adwait Chawathe [New Mexico Petroleum Recovery Research Centre (Mexico)

    2000-10-01

    Petrographic data collected during thin section analysis can be invaluable for understanding the factors that control permeability distribution. Reliable prediction of permeability is important for reservoir characterization. The petrographic elements (mineralogy, porosity types, cements and clays, and pore morphology) interact with each other uniquely to generate a specific permeability distribution. It is difficult to quantify accurately this interaction and its consequent effect on permeability, emphasizing the non-linear nature of the process. To capture these non-linear interactions, neural networks were used to predict permeability from petrographic data. The neural net was used as a multivariate correlative tool because of its ability to learn the non-linear relationships between multiple input and output variables. The study was conducted on the upper Queen formation called the Shattuck Member (Permian age). The Shattuck Member is composed of very fine-grained arkosic sandstone. The core samples were available from the Sulimar Queen and South Lucky Lake fields located in Chaves County, New Mexico. Nineteen petrographic elements were collected for each permeability value using a combined minipermeameter-petrographic technique. In order to reduce noise and overfitting the permeability model, these petrographic elements were screened, and their control (ranking) with respect to permeability was determined using fuzzy logic. Since the fuzzy logic algorithm provides unbiased ranking, it was used to reduce the dimensionality of the input variables. Based on the fuzzy logic ranking, only the most influential petrographic elements were selected as inputs for permeability prediction. The neural net was trained and tested using data from Well 1-16 in the Sulimar Queen field. Relying on the ranking obtained from the fuzzy logic analysis, the net was trained using the most influential three, five, and ten petrographic elements. A fast algorithm (the scaled conjugate

  20. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  1. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    International Nuclear Information System (INIS)

    Zhu, Xiao Fang; Wang, Zhi Wei; Dong, Fang; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2013-01-01

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd 2+ ) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd 2+ concentration and rescued Cd 2+ -induced chlorosis in Arabidopsis thaliana. Under Cd 2+ stress conditions, NAA increased Cd 2+ retention in the roots and most Cd 2+ in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd 2+ , whereas it significantly increased the content of hemicellulose 1 and the amount of Cd 2+ retained in it. There were highly significant correlations between Cd 2+ concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd 2+ or NAA + Cd 2+ treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd 2+ in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd 2+ toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd 2+ fixation in the root, thus reducing the translocation of Cd 2+ from roots to shoots

  2. Factors Influencing Stormwater Mitigation in Permeable Pavement

    Directory of Open Access Journals (Sweden)

    Chun Yan Liu

    2017-12-01

    Full Text Available Permeable pavement (PP is used worldwide to mitigate surface runoff in urban areas. Various studies have examined the factors governing the hydrologic performance of PP. However, relatively little is known about the relative importance of these governing factors and the long-term hydrologic performance of PP. This study applied numerical models—calibrated and validated using existing experimental results—to simulate hundreds of event-based and two long-term rainfall scenarios for two designs of PP. Based on the event-based simulation results, rainfall intensity, rainfall volume, thickness of the storage layer and the hydraulic conductivity of the subgrade were identified as the most influential factors in PP runoff reduction. Over the long term, PP performed significantly better in a relatively drier climate (e.g., New York, reducing nearly 90% of runoff volume compared to 70% in a relatively wetter climate (e.g., Hong Kong. The two designs of PP examined performed differently, and the difference was more apparent in the relatively wetter climate. This study generated insights that will help the design and implementation of PP to mitigate stormwater worldwide.

  3. Electrically Driven Ion Separations in Permeable Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, Merlin [Michigan State Univ., East Lansing, MI (United States)

    2017-04-21

    Membranes are attractive for a wide range of separations due to their low energy costs and continuous operation. To achieve practical fluxes, most membranes consist of a thin, selective skin on a highly permeable substrate that provides mechanical strength. Thus, this project focused on creating new methods for forming highly selective ultrathin skins as well as modeling transport through these coatings to better understand their unprecedented selectivities. The research explored both gas and ion separations, and the latter included transport due to concentration, pressure and electrical potential gradients. This report describes a series of highlights of the research and then provides a complete list of publications supported by the grant. These publications have been cited more than 4000 times. Perhaps the most stunning finding is the recent discovery of monovalent/divalent cation and anion selectivities around 1000 when modifying cation- and anion-exchange membranes with polyelectrolyte multilayers (PEMs). This discovery builds on many years of exciting research. (Citation numbers refer to the journal articles in the bibliography.)

  4. Small GTP-Binding Protein Rac Is an Essential Mediator of Vascular Endothelial Growth Factor-Induced Endothelial Fenestrations and Vascular Permeability

    DEFF Research Database (Denmark)

    Eriksson, A.; Cao, R.; Tritsaris, K.

    2003-01-01

    fenestrated endothelium, a feature linked with increased vascular permeability. A cell-permeable Rac antagonist (TAT-RacN17) converted VEGF-induced, leaky vascular plexuses into well-defined vascular networks. In addition, this Rac mutant blocked formation of VEGF-induced endothelial fenestrations...... in mediation of VEGF-induced vascular permeability but less so in neovascularization. This may have conceptual implications for applying Rac antagonists in treatment and prevention of VEGF-induced vascular leakage and edema in connection with ischemic disorders....

  5. Polarized and persistent Ca²⁺ plumes define loci for formation of wall ingrowth papillae in transfer cells.

    Science.gov (United States)

    Zhang, Hui-Ming; Imtiaz, Mohammad S; Laver, Derek R; McCurdy, David W; Offler, Christina E; van Helden, Dirk F; Patrick, John W

    2015-03-01

    Transfer cell morphology is characterized by a polarized ingrowth wall comprising a uniform wall upon which wall ingrowth papillae develop at right angles into the cytoplasm. The hypothesis that positional information directing construction of wall ingrowth papillae is mediated by Ca(2+) signals generated by spatiotemporal alterations in cytosolic Ca(2+) ([Ca(2+)]cyt) of cells trans-differentiating to a transfer cell morphology was tested. This hypothesis was examined using Vicia faba cotyledons. On transferring cotyledons to culture, their adaxial epidermal cells synchronously trans-differentiate to epidermal transfer cells. A polarized and persistent Ca(2+) signal, generated during epidermal cell trans-differentiation, was found to co-localize with the site of ingrowth wall formation. Dampening Ca(2+) signal intensity, by withdrawing extracellular Ca(2+) or blocking Ca(2+) channel activity, inhibited formation of wall ingrowth papillae. Maintenance of Ca(2+) signal polarity and persistence depended upon a rapid turnover (minutes) of cytosolic Ca(2+) by co-operative functioning of plasma membrane Ca(2+)-permeable channels and Ca(2+)-ATPases. Viewed paradermally, and proximal to the cytosol-plasma membrane interface, the Ca(2+) signal was organized into discrete patches that aligned spatially with clusters of Ca(2+)-permeable channels. Mathematical modelling demonstrated that these patches of cytosolic Ca(2+) were consistent with inward-directed plumes of elevated [Ca(2+)]cyt. Plume formation depended upon an alternating distribution of Ca(2+)-permeable channels and Ca(2+)-ATPase clusters. On further inward diffusion, the Ca(2+) plumes coalesced into a uniform Ca(2+) signal. Blocking or dispersing the Ca(2+) plumes inhibited deposition of wall ingrowth papillae, while uniform wall formation remained unaltered. A working model envisages that cytosolic Ca(2+) plumes define the loci at which wall ingrowth papillae are deposited. © The Author 2014. Published by Oxford

  6. Regulation of cell wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  7. Don't Forget the Abdominal Wall: Imaging Spectrum of Abdominal Wall Injuries after Nonpenetrating Trauma.

    Science.gov (United States)

    Matalon, Shanna A; Askari, Reza; Gates, Jonathan D; Patel, Ketan; Sodickson, Aaron D; Khurana, Bharti

    2017-01-01

    Abdominal wall injuries occur in nearly one of 10 patients coming to the emergency department after nonpenetrating trauma. Injuries range from minor, such as abdominal wall contusion, to severe, such as abdominal wall rupture with evisceration of abdominal contents. Examples of specific injuries that can be detected at cross-sectional imaging include abdominal muscle strain, tear, or hematoma, including rectus sheath hematoma (RSH); traumatic abdominal wall hernia (TAWH); and Morel-Lavallée lesion (MLL) (closed degloving injury). These injuries are often overlooked clinically because of (a) a lack of findings at physical examination or (b) distraction by more-severe associated injuries. However, these injuries are important to detect because they are highly associated with potentially grave visceral and vascular injuries, such as aortic injury, and because their detection can lead to the diagnosis of these more clinically important grave traumatic injuries. Failure to make a timely diagnosis can result in delayed complications, such as bowel hernia with potential for obstruction or strangulation, or misdiagnosis of an abdominal wall neoplasm. Groin injuries, such as athletic pubalgia, and inferior costochondral injuries should also be considered in patients with abdominal pain after nonpenetrating trauma, because these conditions may manifest with referred abdominal pain and are often included within the field of view at cross-sectional abdominal imaging. Radiologists must recognize and report acute abdominal wall injuries and their associated intra-abdominal pathologic conditions to allow appropriate and timely treatment. © RSNA, 2017.

  8. Electroweak bubble wall speed limit

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  9. Permeability of WIPP Salt During Damage Evolution and Healing

    International Nuclear Information System (INIS)

    BODNER, SOL R.; CHAN, KWAI S.; MUNSON, DARRELL E.

    1999-01-01

    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering

  10. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    International Nuclear Information System (INIS)

    Sun Wenjing; Sun De'an; Fang Lei

    2012-01-01

    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  11. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Gholami

    2012-01-01

    Full Text Available Permeability is a key parameter associated with the characterization of any hydrocarbon reservoir. In fact, it is not possible to have accurate solutions to many petroleum engineering problems without having accurate permeability value. The conventional methods for permeability determination are core analysis and well test techniques. These methods are very expensive and time consuming. Therefore, attempts have usually been carried out to use artificial neural network for identification of the relationship between the well log data and core permeability. In this way, recent works on artificial intelligence techniques have led to introduce a robust machine learning methodology called support vector machine. This paper aims to utilize the SVM for predicting the permeability of three gas wells in the Southern Pars field. Obtained results of SVM showed that the correlation coefficient between core and predicted permeability is 0.97 for testing dataset. Comparing the result of SVM with that of a general regression neural network (GRNN revealed that the SVM approach is faster and more accurate than the GRNN in prediction of hydrocarbon reservoirs permeability.

  12. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers.

    Science.gov (United States)

    Nisisako, Takasi; Portonovo, Shiva A; Schmidt, Jacob J

    2013-11-21

    Membrane permeability assays play an important role in assessing drug transport activities across biological membranes. However, in conventional parallel artificial membrane permeability assays (PAMPA), the membrane model used is dissimilar to biological membranes physically and chemically. Here, we describe a microfluidic passive permeability assay using droplet interface bilayers (DIBs). In a microfluidic network, nanoliter-sized donor and acceptor aqueous droplets are alternately formed in cross-flowing oil containing phospholipids. Subsequently, selective removal of oil through hydrophobic pseudo-porous sidewalls induces the contact of the lipid monolayers, creating arrayed planar DIBs between the donor and acceptor droplets. Permeation of fluorescein from the donor to the acceptor droplets was fluorometrically measured. From the measured data and a simple diffusion model we calculated the effective permeabilities of 5.1 × 10(-6) cm s(-1), 60.0 × 10(-6) cm s(-1), and 87.6 × 10(-6) cm s(-1) with donor droplets at pH values of 7.5, 6.4 and 5.4, respectively. The intrinsic permeabilities of specific monoanionic and neutral fluorescein species were obtained similarly. We also measured the permeation of caffeine in 10 min using UV microspectroscopy, obtaining a permeability of 20.8 × 10(-6) cm s(-1). With the small solution volumes, short measurement time, and ability to measure a wide range of compounds, this device has considerable potential as a platform for high-throughput drug permeability assays.

  13. Characterization and estimation of permeability correlation structure from performance data

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-08-01

    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  14. Stress dependence of permeability of intact and fractured shale cores.

    Science.gov (United States)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  15. Update to Permeable Pavement Research at the Edison Environmental Center - abstract

    Science.gov (United States)

    Abstract The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers...

  16. Update to permeable pavement research at the Edison Environmental Center - slides

    Science.gov (United States)

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable paver...

  17. Wave transmission over permeable submerged breakwaters; Transmision del oleaje en rompeolas sumergidos permeables

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-y-Zurvia-Flores, Jaime Roberto; Fragoso-Sandoval, Lucio [Instituto Politecnico Nacional(Mexico)

    2008-10-15

    The permeable submerged breakwaters represent a coastal protection alternative, where some degree of wave energy transmission is acceptable. Such would be the case of tourist beach protection in Mexico. In previous researches, like those performed by D'Angremond et al. (1996), Seabrook and Hall (1998), and Briganti et al. (2003), the empirical formulas developed, give only some limited information over the spatial distribution of wave energy over the structure. Therefore, a decision was made to conduct a study on a reduced physical model of a permeable submerged breakwater based on the results presented by those researchers and with possible applications. Therefore this paper presents the development of a study of wave transmission over permeable submerged breakwaters performed in a reduced physical model of different sections of a submerged rockfill breakwater of the trapezoidal type. This was done in a narrow wave flume with a hydraulic irregular wave generator controlled by a computer that was used to generate and to reproduce different types of irregular waves to be used in the tests. It also has a wave meter with four sensors, and they are connected to a computer in order to process the wave data. The main objective of the study was to determine in an experimental way the influence of the several parameters of submerged breakwater over the wave transmission coefficient. Our experimental results were comparable to those obtained by D'Angremond et al. (1996) and Seabrook and Hall (1998). The results show that the sumerged breakwater parameters of most influence over the wave transmission coefficient were relative submergence and the relative width crest of the sumerged breakwater, and that the formula by Seabrook and Hall correlates best with our results. [Spanish] Los rompeolas sumergidos permeables representan actualmente una alternativa de proteccion de costas, donde un cierto grado de transmision de energia del oleaje es aceptable, como seria el

  18. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells

    Science.gov (United States)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana

    2014-05-01

    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  19. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  20. Transformation of Reactive Iron Minerals in a Permeable Reactive Barrier (Biowall) Used to Treat TCE in Groundwater

    Science.gov (United States)

    Abstract: Iron and sulfur reducing conditions are generally created in permeable reactive barrier (PRB) systems constructed for groundwater treatment, which usually leads to formation of iron sulfide phases. Iron sulfides have been shown to play an important role in degrading ch...

  1. Determination of filtrations and permeability of an earth dam

    International Nuclear Information System (INIS)

    Gomez, H.R.; Baro, G.B.; Gillen, Ricardo.

    1975-11-01

    The aim of this work was to measure with the aid of a radioactive tracer the speed flow of the water filtrating from Sumampa Dam in northeastern Catamarca, while being in operation, and with these data determine if the actual permeability corresponds to the projected one. Iodine-131 was used as tracer and periodical samples were taken from the down stream water in order to determine its activity concentration. In previous perforations ionic interchange resines were used so as to measure simultaneously the fixed Iodine-131. The permeability of the dam was calculated from the obtained speed based on time-concentration curves and applying Darcy formulas for permeability. (author) [es

  2. Electrical conductivity and magnetic permeability measurement of case hardened steels

    Science.gov (United States)

    Tian, Yong

    2015-03-01

    For case carburized steels, electrical conductivity and magnetic permeability profiles are needed to develop model-based case depth characterization techniques for the purpose of nondestructive quality control. To obtain fast and accurate measurement of these material properties, four-point potential drop approaches are applied on circular-shaped discs cut from steel rings with different case depths. First, a direct current potential drop (DCPD) approach is applied to measure electrical conductivity. Subsequently, an alternating current potential drop (ACPD) approach is used to measure magnetic permeability. Practical issues in measurement design and implementation are discussed. Depth profiles of electrical conductivity and magnetic permeability are reported.

  3. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    Science.gov (United States)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  4. Compressible fluid flow through rocks of variable permeability

    International Nuclear Information System (INIS)

    Lin, W.

    1977-01-01

    The effectiveness of course-grained igneous rocks as shelters for burying radioactive waste can be assessed by determining the rock permeabilities at their in situ pressures and stresses. Analytical and numerical methods were used to solve differential equations of one-dimensional fluid flow through rocks with permeabilities from 10 4 to 1 nD. In these calculations, upstream and downstream reservoir volumes of 5, 50, and 500 cm 3 were used. The optimal size combinations of the two reservoirs were determined for measurements of permeability, stress, strain, acoustic velocity, and electrical conductivity on low-porosity, coarse-grained igneous rocks

  5. Effect of confining pressure on permeability behavior of Beishan granite

    International Nuclear Information System (INIS)

    Ma Like; Li Yunfeng; Zhao Xingguang; Tan Guohuan

    2012-01-01

    By using of the Electro-Hydraulic Servo-controlled Rock Mechanics Testing System (MTS 815.04) in the University of Hong Kong, a series of permeability tests were performed on specimens of Beishan granite at different confining pressures. The result indicates that: (1) there is a decrease of permeability due to progressive closure of initial microcracks and the corresponding volumetric strain is compressive when the confining pressures increase from 2.5 MPa to 15 MPa, (2) when the confining pressures decrease from 15 MPa to 2.5 MPa, there is an increase of permeability in this stage in relation with the volumetric dilation. (authors)

  6. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  7. Free Convection over a Permeable Horizontal Flat Plate Embedded in a Porous Medium with Radiation Effects and Mixed Thermal Boundary Conditions

    OpenAIRE

    Najiyah S. Khasi'ie; Roziena Khairuddin; Najihah Mohamed; Mohd Zuki Salleh; Roslinda Nazar; Ioan Pop

    2012-01-01

    Problem statement: In this study, the mathematical modeling of free convection boundary layer flow over a permeable horizontal flat plate embedded in a porous medium under mixed thermal boundary conditions and radiation effects is considered. Approach: The transformed boundary layer equations are solved numerically using the shooting method. Results: Numerical solutions are obtained for the wall temperature, the heat transfer coefficient, as well as the velocity and temperature profiles. The ...

  8. Measurement of the increase in the capillary permeability in skin with Evans blue labelled with iodine-125 or 131

    International Nuclear Information System (INIS)

    Sugarava, S.; Goncalves, J.M.

    1976-01-01

    The quantitative evaluation of bradykinin and histamine with Evans blue labelled with iodine -125 or 131 is described. The activity upon vascular permeability was performed in the abdominal wall of rats injecting intravenously solution of labelled Evans blue and 0,1 ml of vasoactive drugs solution intradermally. Skin discs were cut with circular punch for external counting, quantitative results being compared with control discs. By using this method, satisfactory log dose-reponse curves were obtained for bradykinin and histamine that followed the general trend of S - shaped curves [pt

  9. Magnetic loss, permeability, and anisotropy compensation in CoO-doped Mn-Zn ferrites

    Science.gov (United States)

    Beatrice, Cinzia; Dobák, Samuel; Tsakaloudi, Vasiliki; Ragusa, Carlo; Fiorillo, Fausto; Martino, Luca; Zaspalis, Vassilis

    2018-04-01

    Mn-Zn ferrite samples prepared by conventional solid state reaction method and sintering at 1325 °C were Co-enriched by addition of CoO up to 6000 ppm and characterized versus frequency (DC - 1GHz), peak polarization (2 mT - 200 mT), and temperature (23 °C - 120 °C). The magnetic losses at room temperature are observed to pass through a deep minimum value around 4000 ppm CoO at all polarizations values. This trend is smoothed out either by approaching the MHz range or by increasing the temperature. Conversely, the initial permeability attains its maximum value around the same CoO content, while showing moderate monotonical decrease with increasing CoO at the typical working temperatures of 80 - 100 °C. The energy losses, measured by a combination of fluxmetric and transmission line methods, are affected by the eddy currents, on the conventional 5 mm thick ring samples, only beyond a few MHz. Their assessment relies on the separation of rotational and domain wall processes, which can be done by analysis of the complex permeability and its frequency behavior. This permits one, in particular, to calculate the magnetic anisotropy and its dependence on CoO content and temperature and bring to light its decomposition into the host lattice and Co2+ temperature dependent contributions. The temperature and doping dependence of initial permeability and magnetic losses can in this way be qualitatively justified, without invoking the passage through zero value of the effective anisotropy constant upon doping.

  10. Effects of the air–steam mixture on the permeability of damaged concrete

    Energy Technology Data Exchange (ETDEWEB)

    Medjigbodo, Sonagnon [LUNAM Université, Institut de Recherche en Génie Civil et Mécanique (GeM UMR CNRS 6183), Centrale Nantes, 1 rue de la Noe, BP 92101, F-44321 CEDEX 3 Nantes (France); Darquennes, Aveline [LMT/ENS Cachan/CNRS UMR 8535/UPMC/PRES Université Sud Paris, Cachan (France); Aubernon, Corentin [LUNAM Université, Institut de Recherche en Génie Civil et Mécanique (GeM UMR CNRS 6183), Centrale Nantes, 1 rue de la Noe, BP 92101, F-44321 CEDEX 3 Nantes (France); Khelidj, Abdelhafid [LUNAM Université, Institut de Recherche en Génie Civil et Mécanique (GeM UMR CNRS 6183), IUT de Saint Nazaire, 58 rue Michel Ange, BP 420 Heinlex, F-44600 Saint-Nazaire (France); Loukili, Ahmed, E-mail: ahmed.loukili@ec-nantes.fr [LUNAM Université, Institut de Recherche en Génie Civil et Mécanique (GeM UMR CNRS 6183), Centrale Nantes, 1 rue de la Noe, BP 92101, F-44321 CEDEX 3 Nantes (France)

    2013-12-15

    Massive concrete structures such as the containments of nuclear power plant must maintain their tightness at any circumstances to prevent the escape of radioactive fission products into the environment. In the event of an accident like a Loss of Coolant Accident (LOCA), the concrete wall is submitted to both hydric and mechanical loadings. A new experimental device reproducing these extreme conditions (water vapor transfer, 140 °C and 5 bars) is developed in the GeM Laboratory to determine the effect of the saturation degree, the mechanical loading and the flowing fluid type on the concrete transfer properties. The experimental tests show that the previous parameters significantly affect the concrete permeability and the gas leakage rate. Their evolution as a function of the mechanical loading is characterized by two phases that are directly related to concrete microstructure and crack development.

  11. Constructing Asymmetric Polyion Complex Vesicles via Template Assembling Strategy: Formulation Control and Tunable Permeability

    Directory of Open Access Journals (Sweden)

    Junbo Li

    2017-11-01

    Full Text Available A strategy for constructing polyion complex vesicles (PICsomes with asymmetric structure is described. Poly(methylacrylic acid-block-poly(N-isopropylacrylamide modified gold nanoparticles (PMAA-b-PNIPAm-@-Au NPs were prepared and then assembled with poly(ethylene glycol-block-poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine] (PEG-b-PMMPImB via polyion complex of PMMA and PMMPImB. After removing the Au NPs template, asymmetric PICsomes composed of a PNIPAm inner-shell, PIC wall, and PEG outer-corona were obtained. These PICsomes have low protein absorption and thermally tunable permeability, provided by the PEG outer-corona and the PNIPAm inner-shell, respectively. Moreover, PICsome size can be tailored by using templates of predetermined sizes. This novel strategy for constructing asymmetric PICsomes with well-defined properties and controllable size is valuable for applications such as drug delivery, catalysis and monitoring of chemical reactions, and biomimetics.

  12. Permeability of the arterial endothelium of spontaneously hypertensive rats to plasma macromolecules

    International Nuclear Information System (INIS)

    Yurukova, Z.B.; Georgiev, P.G.

    1979-01-01

    By means of vascular labelling technique at cellular level, the permeability of the arterial endothelium of spontaneously hypertensive rats has been studied. For this purpose colloidal carbon and plasma lipoproteins were introduced into the jugular vein of the animals. Material for light- and electron-microscopic and radioautographic examinations was taken from the thoracic and abdominal parts of the aorta. The results show that in long-term hypertension substances from plasma enter the aortic wall in increased amounts through two main pathways. First, through the selective physiological pathways of transendothelial transport (through cell junctions and vesicular transport) and secondly, through discontinuities of the endothelial lining (separation of the intercellular junctions, areas of loss of one to several endothelial cells). The alteration of the arterial endothelium barrier function in chronic hypertension seems to be an important mechanism for the progression of hypertensive arterial lesions. (A.B.)

  13. Bactericidal Permeability-Increasing Proteins Shape Host-Microbe Interactions

    Directory of Open Access Journals (Sweden)

    Fangmin Chen

    2017-04-01

    Full Text Available We characterized bactericidal permeability-increasing proteins (BPIs of the squid Euprymna scolopes, EsBPI2 and EsBPI4. They have molecular characteristics typical of other animal BPIs, are closely related to one another, and nest phylogenetically among invertebrate BPIs. Purified EsBPIs had antimicrobial activity against the squid’s symbiont, Vibrio fischeri, which colonizes light organ crypt epithelia. Activity of both proteins was abrogated by heat treatment and coincubation with specific antibodies. Pretreatment under acidic conditions similar to those during symbiosis initiation rendered V. fischeri more resistant to the antimicrobial activity of the proteins. Immunocytochemistry localized EsBPIs to the symbiotic organ and other epithelial surfaces interacting with ambient seawater. The proteins differed in intracellular distribution. Further, whereas EsBPI4 was restricted to epithelia, EsBPI2 also occurred in blood and in a transient juvenile organ that mediates hatching. The data provide evidence that these BPIs play different defensive roles early in the life of E. scolopes, modulating interactions with the symbiont.

  14. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance.

    Science.gov (United States)

    Bindels, Laure B; Neyrinck, Audrey M; Loumaye, Audrey; Catry, Emilie; Walgrave, Hannah; Cherbuy, Claire; Leclercq, Sophie; Van Hul, Matthias; Plovier, Hubert; Pachikian, Barbara; Bermúdez-Humarán, Luis G; Langella, Philippe; Cani, Patrice D; Thissen, Jean-Paul; Delzenne, Nathalie M

    2018-04-06

    Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium ( Faecalibacterium prausnitzii ) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis.

  15. Permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier

    International Nuclear Information System (INIS)

    Squier, C.A.; Hall, B.K.

    1985-01-01

    The permeability of porcine skin and keratinized and nonkeratinized oral mucosa to tritium-labeled water and horseradish peroxidase (HRPO) was determined using perfusion chambers. Small blocks from each tissue were also incubated with HRPO and the extent of penetration visualized microscopically; this enabled measurements to be made of the thickness of the permeability barrier to this water-soluble tracer. Results obtained after inverting the oral mucosa in the chambers or adding metabolic inhibitors indicated that both compounds diffuse across the tissue. The permeability constants derived directly in the study showed that skin was less permeable than oral mucosa and that the floor of the mouth was significantly more permeable than all other regions. When these constants were normalized in terms of a standard permeability barrier thickness and the different tissues compared, the values obtained for skin were again less than those of the oral regions but, of these, the buccal mucosa was significantly higher. The difference in permeability between epidermis and keratinized oral epithelium may be due to differences in the volume density of membrane-coating granules known to exist between the tissues; differences between the oral mucosal regions may reflect differences in the nature of the intercellular barrier material

  16. Enhanced wall pumping in JET

    International Nuclear Information System (INIS)

    Ehrenberg, J.; Harbour, P.J.

    1991-01-01

    The enhanced wall pumping phenomenon in JET is observed for hydrogen or deuterium plasmas which are moved from the outer (larger major radius) limiter position either to the inner wall or to the top/bottom wall of the vacuum vessel. This phenomenon is analysed by employing a particle recycling model which combines plasma particle transport with particle re-emission from and retention within material surfaces. The model calculates the important experimentally observable quantities, such as particle fluxes, global particle confinement time, plasma density and density profile. Good qualitative agreement is found and, within the uncertainties, the agreement is quantitative if the wall pumping is assumed to be caused by two simultaneously occurring effects: (1) Neutral particle screening at the inner wall and the top/bottom wall is larger than that at the outer limiter because of different magnetic topologies at different poloidal positions; and (2) although most of the particles (≥ 90%) impacting on the wall can be promptly re-emitted, a small fraction (≤ 10%) of them must be retained in the wall for a period of time which is similar to or larger than the global plasma particle confinement time. However, the wall particle retention time need not be different from that of the outer limiter, i.e. pumping can occur when there is no difference between the material properties of the limiter and those of the wall. (author). 45 refs, 18 figs

  17. Metal Amorphous Nanocomposite (MANC) Alloy Cores with Spatially Tuned Permeability for Advanced Power Magnetics Applications

    Science.gov (United States)

    Byerly, K.; Ohodnicki, P. R.; Moon, S. R.; Leary, A. M.; Keylin, V.; McHenry, M. E.; Simizu, S.; Beddingfield, R.; Yu, Y.; Feichter, G.; Noebe, R.; Bowman, R.; Bhattacharya, S.

    2018-06-01

    Metal amorphous nanocomposite (MANC) alloys are an emerging class of soft magnetic materials showing promise for a range of inductive components targeted for higher power density and higher efficiency power conversion applications including inductors, transformers, and rotating electrical machinery. Magnetization reversal mechanisms within these alloys are typically determined by composition optimization as well as controlled annealing treatments to generate a nanocomposite structure composed of nanocrystals embedded in an amorphous precursor. Here we demonstrate the concept of spatially varying the permeability within a given component for optimization of performance by using the strain annealing process. The concept is realized experimentally through the smoothing of the flux profile from the inner to outer core radius achieved by a monotonic variation in tension during the strain annealing process. Great potential exists for an extension of this concept to a wide range of other power magnetic components and more complex spatially varying permeability profiles through advances in strain annealing techniques and controls.

  18. Myocardial capillary permeability for small hydrophilic indicators during normal physiological conditions and after ischemia and reperfusion

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup

    1991-01-01

    Myocardial capillary permeability for small hydrophilic solutes (51Cr-EDTA or 99mTc-DTPA) has been measured using intracoronary indicator bolus injection and external radioactivity registration (the single injection, residue detection method). The method is based on kinetic separation of the inje......Myocardial capillary permeability for small hydrophilic solutes (51Cr-EDTA or 99mTc-DTPA) has been measured using intracoronary indicator bolus injection and external radioactivity registration (the single injection, residue detection method). The method is based on kinetic separation...... including microvascular alterations. In open chest dogs transitory increases in capillary extraction fraction and PdS for small hydrophilic solutes were seen following 20 minutes of regional myocardial ischemia and reperfusion. This response could be inhibited by treatment directed against superoxide...

  19. Elastic and electrical properties and permeability of serpentinites from Atlantis Massif, Mid-Atlantic Ridge

    Science.gov (United States)

    Falcon-Suarez, Ismael; Bayrakci, Gaye; Minshull, Tim A.; North, Laurence J.; Best, Angus I.; Rouméjon, Stéphane

    2017-11-01

    Serpentinized peridotites co-exist with mafic rocks in a variety of marine environments including subduction zones, continental rifts and mid-ocean ridges. Remote geophysical methods are crucial to distinguish between them and improve the understanding of the tectonic, magmatic and metamorphic history of the oceanic crust. But, serpentinite peridotites exhibit a wide range of physical properties that complicate such a distinction. We analysed the ultrasonic P- and S-wave velocities (Vp, Vs) and their respective attenuation (Qp-1, Qs-1), electrical resistivity and permeability of four serpentinized peridotite samples from the southern wall of the Atlantis Massif, Mid-Atlantic Ridge, collected during International Ocean Discovery Program Expedition 357. The measurements were taken over a range of loading-unloading stress paths (5-45 MPa), using ∼1.7 cm length, 5 cm diameter samples horizontally extracted from the original cores drilled on the seafloor. The measured parameters showed variable degrees of stress dependence, but followed similar trends. Vp, Vs, resistivity and permeability show good inter-correlations, while relationships that included Qp-1 and Qs-1 are less clear. Resistivity showed high contrast between highly serpentinized ultramafic matrix (>50 Ω m) and mechanically/geochemically altered (magmatic/hydrothermal-driven alteration) domains (serpentinization and the alteration state of the r