Sample records for permeability vascular density

  1. Sensing of Vascular Permeability in Inflamed Vessel of Live Animal

    Directory of Open Access Journals (Sweden)

    Sang A Park


    Full Text Available Increase in vascular permeability is a conclusive response in the progress of inflammation. Under controlled conditions, leukocytes are known to migrate across the vascular barriers to the sites of inflammation without severe vascular rupture. However, when inflammatory state becomes excessive, the leakage of blood components may occur and can be lethal. Basically, vascular permeability can be analyzed based on the intensity of blood outflow. To evaluate the amount and rate of leakage in live mice, we performed cremaster muscle exteriorization to visualize blood flow and neutrophil migration. Using two-photon intravital microscopy of the exteriorized cremaster muscle venules, we found that vascular barrier function is transiently and locally disrupted in the early stage of inflammatory condition induced by N-formylmethionyl-leucyl-phenylalanine (fMLP. Measurement of the concentration of intravenously (i.v. injected Texas Red dextran inside and outside the vessels resulted in clear visualization of real-time increases in transient and local vascular permeability increase in real-time manner. We successfully demonstrated repeated leakage from a target site on a blood vessel in association with increasing severity of inflammation. Therefore, compared to other methods, two-photon intravital microscopy more accurately visualizes and quantifies vascular permeability even in a small part of blood vessels in live animals in real time.

  2. Vascular permeability in cerebral cavernous malformations

    DEFF Research Database (Denmark)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao


    Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case-controlled observ...

  3. Atrial natriuretic factor increases vascular permeability

    International Nuclear Information System (INIS)

    Lockette, W.; Brennaman, B.


    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness

  4. Gap junction protein connexin43 exacerbates lung vascular permeability.

    Directory of Open Access Journals (Sweden)

    James J O'Donnell

    Full Text Available Increased vascular permeability causes pulmonary edema that impairs arterial oxygenation and thus contributes to morbidity and mortality associated with Acute Respiratory Distress Syndrome and sepsis. Although components of intercellular adhesive and tight junctions are critical for maintaining the endothelial barrier, there has been limited study of the roles of gap junctions and their component proteins (connexins. Since connexins can modulate inflammatory signaling in other systems, we hypothesized that connexins may also regulate pulmonary endothelial permeability. The relationships between connexins and the permeability response to inflammatory stimuli were studied in cultured human pulmonary endothelial cells. Prolonged treatment with thrombin, lipopolysaccharide, or pathological cyclic stretch increased levels of mRNA and protein for the major connexin, connexin43 (Cx43. Thrombin and lipopolysaccharide both increased intercellular communication assayed by transfer of microinjected Lucifer yellow. Although thrombin decreased transendothelial resistance in these cells, the response was attenuated by pretreatment with the connexin inhibitor carbenoxolone. Additionally, the decreases of transendothelial resistance produced by either thrombin or lipopolysaccharide were attenuated by reducing Cx43 expression by siRNA knockdown. Both carbenoxolone and Cx43 knockdown also abrogated thrombin-induced phosphorylation of myosin light chain. Taken together, these data suggest that increased lung vascular permeability induced by inflammatory conditions may be amplified via increased expression of Cx43 and intercellular communication among pulmonary endothelial cells.

  5. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  6. Vascular permeability and iron deposition biomarkers in longitudinal follow-up of cerebral cavernous malformations

    DEFF Research Database (Denmark)

    Girard, Romuald; Fam, Maged D; Zeineddine, Hussein A


    OBJECTIVE Vascular permeability and iron leakage are central features of cerebral cavernous malformation (CCM) pathogenesis. The authors aimed to correlate prospective clinical behavior of CCM lesions with longitudinal changes in biomarkers of dynamic contrast-enhanced quantitative permeability (...

  7. Transcytosis Involvement in Transport System and Endothelial Permeability of Vascular Leakage during Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Chanettee Chanthick


    Full Text Available The major role of endothelial cells is to maintain homeostasis of vascular permeability and to preserve the integrity of vascular vessels to prevent fluid leakage. Properly functioning endothelial cells promote physiological balance and stability for blood circulation and fluid components. A monolayer of endothelial cells has the ability to regulate paracellular and transcellular pathways for transport proteins, solutes, and fluid. In addition to the paracellular pathway, the transcellular pathway is another route of endothelial permeability that mediates vascular permeability under physiologic conditions. The transcellular pathway was found to be associated with an assortment of disease pathogeneses. The clinical manifestation of severe dengue infection in humans is vascular leakage and hemorrhagic diatheses. This review explores and describes the transcellular pathway, which is an alternate route of vascular permeability during dengue infection that corresponds with the pathologic finding of intact tight junction. This pathway may be the route of albumin transport that causes endothelial dysfunction during dengue virus infection.

  8. PLVAP in diabetic retinopathy: A gatekeeper of angiogenesis and vascular permeability

    NARCIS (Netherlands)

    Wiśniewska-Kruk, J.


    Nowadays, approximately 4 million people worldwide experience blindness or severe vision loss caused by diabetic retinopathy. Diabetic retinopathy is a multifactorial disease that can progress from minor changes in vascular permeability, into a proliferative retinal disorder. The increasing

  9. Clinical application of subtraction CT imaging for evaluation of pulmonary vascular permeability

    International Nuclear Information System (INIS)

    Kato, Shiro; Asai, Toshihiko; Yatagai, Shigeo; Oonuma, Noboru; Ohno, Kunihiko; Nakamoto, Takaaki; Iizuka, Masahiko


    In this clinical study, one normal subject, one patient with primary interstitial pneumonia, one patient with segmental pneumonia due to Staphylococcus aureus, one patient with post-operative esophageal carcinoma, and two patients with mitral stenosis were studied. Dynamic CT scan images under continuous injection of low osmotic contrast medium were analyzed in series, in an attempt to evaluate vascular permeability quantitatively. The following results were obtained. Subtraction CT scan image 10 minutes after the start of contrast medium injection in two patients with pneumonia, showed a reduction of pulmonary vascular permeability following therapy. Subtraction CT scan image of the patient with post-operative esophageal carcinoma treated with 25 Gy radiation showed a discrepancy between pulmonary vascular permeability and other findings. In hemodynamically stable patients with mitral stenosis, subtraction CT images demonstrated that pulmonary vascular permeability was not affected by pulmonary congestion, irrespective of its severity. (author)

  10. Vascular permeability-increasing effect of the leaf essential oil of ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines ... Analysis of the differences in vascular permeability between treatment groups showed that, Ocimum oil, in intensity and duration, was significantly (p < 0.05) more effective in increasing cutaneous capillary permeability over a 24h period after ...

  11. Role of platelets in maintenance of pulmonary vascular permeability to protein

    International Nuclear Information System (INIS)

    Lo, S.K.; Burhop, K.E.; Kaplan, J.E.; Malik, A.B.


    The authors examined the role of platelets in maintenance of pulmonary vascular integrity by inducing thrombocytopenia in sheep using antiplatelet serum (APS). A causal relationship between thrombocytopenia and increase in pulmonary vascular permeability was established by platelet repletion using platelet-rich plasma (PRP). Sheep were chronically instrumented and lung lymph fistulas prepared to monitor pulmonary lymph flow (Q lym ). A balloon catheter was positioned in the left atrium to assess pulmonary vascular permeability to protein after raising the left atrial pressure (P la ). Thrombocytopenia was maintained for 3 days by daily intramuscular APS injections. In studies using cultured bovine pulmonary artery endothelial monolayers, transendothelia permeability of 125 I-labeled albumin was reduced 50 and 95%, respectively, when 2.5 x 10 7 or 5 x 10 7 platelets were added onto endothelial monolayers. However, addition of 5 x 10 6 platelets or 5 x 10 7 red blood cells did not reduce endothelial monolayer albumin permeability. Results indicate that platelets are required for the maintenance of pulmonary vascular permeability. Reduction in permeability appears to involve an interaction of platelets with the endothelium

  12. Small GTP-Binding Protein Rac Is an Essential Mediator of Vascular Endothelial Growth Factor-Induced Endothelial Fenestrations and Vascular Permeability

    DEFF Research Database (Denmark)

    Eriksson, A.; Cao, R.; Tritsaris, K.


    fenestrated endothelium, a feature linked with increased vascular permeability. A cell-permeable Rac antagonist (TAT-RacN17) converted VEGF-induced, leaky vascular plexuses into well-defined vascular networks. In addition, this Rac mutant blocked formation of VEGF-induced endothelial fenestrations...... in mediation of VEGF-induced vascular permeability but less so in neovascularization. This may have conceptual implications for applying Rac antagonists in treatment and prevention of VEGF-induced vascular leakage and edema in connection with ischemic disorders....

  13. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    Directory of Open Access Journals (Sweden)

    Yun-Liang Cui


    Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations.

  14. Suppressions of Serotonin-Induced Increased Vascular Permeability and Leukocyte Infiltration by Bixa orellana Leaf Extract

    Directory of Open Access Journals (Sweden)

    Yoke Keong Yong


    Full Text Available The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO, indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150 mg kg−1 prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats’ paws were observed with AEBO at the dose of 150 mg kg−1. Pharmacological screening of the extract showed significant (P<0.05 anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release.

  15. Effect of high density lipoproteins on permeability of rabbit aorta to low density lipoproteins

    International Nuclear Information System (INIS)

    Klimov, A.N.; Popov, V.A.; Nagornev, V.A.; Pleskov, V.M.


    A study was made on the effect of high density lipoproteins (HDL) on the permeability of rabbit aorta to low density lipoproteins (LDL) after intravenous administration of human HDL and human ( 125 I)LDL to normal and hypercholesterolemic rabbits. Evaluation of radioactivity in plasma and aorta has shown that the administration of a large dose of HDL decreased the aorta permeability rate for ( 125 I)LDL on an average by 19% in normal rabbits, and by 45% in rabbits with moderate hypercholesterolemia. A historadiographic study showed that HDL also decreased the vessel wall permeability to ( 125 I)LDL in normal and particularly in hypercholesterolemic animals. The suggestion was made that HDL at very high molar concentration can hamper LDL transportation through the intact endothelial layer into the intima due to the ability of HDL to compete with LDL in sites of low affinity on the surface of endothelial cells. (author)

  16. Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Cyran, Clemens C.; Sennino, Barbara; Fu, Yanjun; Rogut, Victor; Shames, David M.; Chaopathomkul, Bundit; Wendland, Michael F.; McDonald, Donald M.; Brasch, Robert C.; Raatschen, Hans-Juergen


    Purpose: To correlate dynamic MRI assays of macromolecular endothelial permeability with microscopic area–density measurements of vascular endothelial growth factor (VEGF) in tumors. Methods and material: This study compared tumor xenografts from two different human cancer cell lines, MDA-MB-231 tumors (n = 5), and MDA-MB-435 (n = 8), reported to express respectively higher and lower levels of VEGF. Dynamic MRI was enhanced by a prototype macromolecular contrast medium (MMCM), albumin-(Gd-DTPA)35. Quantitative estimates of tumor microvascular permeability (K PS ; μl/min × 100 cm 3 ), obtained using a two-compartment kinetic model, were correlated with immunohistochemical measurements of VEGF in each tumor. Results: Mean K PS was 2.4 times greater in MDA-MB-231 tumors (K PS = 58 ± 30.9 μl/min × 100 cm 3 ) than in MDA-MB-435 tumors (K PS = 24 ± 8.4 μl/min × 100 cm 3 ) (p < 0.05). Correspondingly, the area–density of VEGF in MDA-MB-231 tumors was 2.6 times greater (27.3 ± 2.2%, p < 0.05) than in MDA-MB-435 cancers (10.5 ± 0.5%, p < 0.05). Considering all tumors without regard to cell type, a significant positive correlation (r = 0.67, p < 0.05) was observed between MRI-estimated endothelial permeability and VEGF immunoreactivity. Conclusion: Correlation of MRI assays of endothelial permeability to a MMCM and VEGF immunoreactivity of tumors support the hypothesis that VEGF is a major contributor to increased macromolecular permeability in cancers. When applied clinically, the MMCM-enhanced MRI approach could help to optimize the appropriate application of VEGF-inhibiting therapy on an individual patient basis.

  17. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS


    Perel, Azriel


    The recent Berlin definition has made some improvements in the older definition of acute respiratory distress syndrome (ARDS), although the concepts and components of the definition remained largely unchanged. In an effort to improve both predictive and face validity, the Berlin panel has examined a number of additional measures that may reflect increased pulmonary vascular permeability, including extravascular lung water. The panel concluded that although extravascular lung water has improve...

  18. Modulation of enhanced vascular permeability by prostaglandins through alterations in blood flow (hyperemia). [/sup 85/Sr tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M G; Hay, J B; Movat, H Z


    The enhanced vascular permeability induced by histamine or bradykinin in the skin of the guinea-pig and rabbit was significantly augmented by small amounts of prostaglandins of the E type. When injected alone these prostaglandins had little effect on vascular permeability. Furthermore, E type prostaglandins were found to be more potent at inducing hyperemia than either histamine or bradykinin. Prostaglandin F/sub 2/ alpha did not enhance the vascular permeability induced by histamine or bradykinin nor did it produce hyperemia in the skin. In the rat, prostaglandins alone enhanced vascular permeability but they also increased the effect of histamine, serotonin and bradykinin. Using /sup 85/Sr-microspheres to measure blood flow a correlation was found between the degree of hyperemia produced by prostaglandins and the degree to which they augmented enhanced vascular permeability due to histamine, serotonin or bradykinin. Prostaglandins therefore can directly mimic the hyperemia of the inflammatory process and can also modulate the changes in vascular permeability caused by other mediators of inflammation.

  19. Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo. (United States)

    Schnoor, Michael; Lai, Frank P L; Zarbock, Alexander; Kläver, Ruth; Polaschegg, Christian; Schulte, Dörte; Weich, Herbert A; Oelkers, J Margit; Rottner, Klemens; Vestweber, Dietmar


    Neutrophil extravasation and the regulation of vascular permeability require dynamic actin rearrangements in the endothelium. In this study, we analyzed in vivo whether these processes require the function of the actin nucleation-promoting factor cortactin. Basal vascular permeability for high molecular weight substances was enhanced in cortactin-deficient mice. Despite this leakiness, neutrophil extravasation in the tumor necrosis factor-stimulated cremaster was inhibited by the loss of cortactin. The permeability defect was caused by reduced levels of activated Rap1 (Ras-related protein 1) in endothelial cells and could be rescued by activating Rap1 via the guanosine triphosphatase (GTPase) exchange factor EPAC (exchange protein directly activated by cAMP). The defect in neutrophil extravasation was caused by enhanced rolling velocity and reduced adhesion in postcapillary venules. Impaired rolling interactions were linked to contributions of β(2)-integrin ligands, and firm adhesion was compromised by reduced ICAM-1 (intercellular adhesion molecule 1) clustering around neutrophils. A signaling process known to be critical for the formation of ICAM-1-enriched contact areas and for transendothelial migration, the ICAM-1-mediated activation of the GTPase RhoG was blocked in cortactin-deficient endothelial cells. Our results represent the first physiological evidence that cortactin is crucial for orchestrating the molecular events leading to proper endothelial barrier function and leukocyte recruitment in vivo.

  20. Increased pulmonary vascular permeability as a cause of re-expansion edema in rabbits

    International Nuclear Information System (INIS)

    Pavlin, D.J.; Nessly, M.L.; Cheney, F.W.


    In order to study the mechanism(s) underlying re-expansion edema, we measured the concentration of labeled albumin (RISA) in the extravascular, extracellular water (EVECW) of the lung as a measure of pulmonary vascular permeability. Re-expansion edema was first induced by rapid re-expansion of rabbit lungs that had been collapsed for 1 wk by pneumothorax. The RISA in EVECW was expressed as a fraction of its plasma concentration: (RISA)L/(RISA)PL. The volume of EVECW (ml/gm dry lung) was measured using a 24 Na indicator. Results in re-expansion edema were compared with normal control lungs and with oleic acid edema as a model of permeability edema. In re-expanded lungs, EVECW (3.41 +/- SD 1.24 ml/g) and (RISA)L/(RISA)PL 0.84 +/- SD 0.15) were significantly increased when compared with normal control lungs (2.25 +/- 0.41 ml/g and 0.51 +/- 0.20, respectively). Results in oleic acid edema (5.66 +/- 2.23 ml/g and 0.84 +/- 0.23) were similar to re-expansion edema. This suggested that re-expansion edema is due to increased pulmonary vascular permeability caused by mechanical stresses applied to the lung during re-expansion

  1. Estimating retinal vascular permeability using the adiabatic approximation to the tissue homogeneity model with fluorescein videoangiography (United States)

    Tichauer, Kenneth M.; Osswald, Christian R.; Dosmar, Emily; Guthrie, Micah J.; Hones, Logan; Sinha, Lagnojita; Xu, Xiaochun; Mieler, William F.; St. Lawrence, Keith; Kang-Mieler, Jennifer J.


    Clinical symptoms of diabetic retinopathy are not detectable until damage to the retina reaches an irreversible stage, at least by today's treatment standards. As a result, there is a push to develop new, "sub-clinical" methods of predicting the onset of diabetic retinopathy before the onset of irreversible damage. With diabetic retinopathy being associated with the accumulation of long-term mild damage to the retinal vasculature, retinal blood vessel permeability has been proposed as a key parameter for detecting preclinical stages of retinopathy. In this study, a kinetic modeling approach used to quantify vascular permeability in dynamic contrast-enhanced medical imaging was evaluated in noise simulations and then applied to retinal videoangiography data in a diabetic rat for the first time to determine the potential for this approach to be employed clinically as an early indicator of diabetic retinopathy. Experimental levels of noise were found to introduce errors of less than 15% in estimates of blood flow and extraction fraction (a marker of vascular permeability), and fitting of rat retinal fluorescein angiography data provided stable maps of both parameters.

  2. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability. (United States)

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R


    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.

  3. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin

    International Nuclear Information System (INIS)

    Mintun, M.A.; Dennis, D.R.; Welch, M.J.; Mathias, C.J.; Schuster, D.P.


    We quantified pulmonary vascular permeability with positron emission tomography (PET) and gallium-68-( 68 Ga) labeled transferrin. Six dogs with oleic acid-induced lung injury confined to the left lower lobe, two normal human volunteers, and two patients with the adult respiratory distress syndrome (ARDS) were evaluated. Lung tissue-activity measurements were obtained from sequential 1-5 min PET scans collected over 60 min, after in vivo labeling of transferrin through intravenous administration of [ 68 Ga]citrate. Blood-activity measurements were measured from simultaneously obtained peripheral blood samples. A forward rate constant describing the movement of transferrin from pulmonary vascular to extravascular compartments, the pulmonary transcapillary escape rate (PTCER), was then calculated from these data using a two-compartment model. In dogs, PTCER was 49 +/- 18 in normal lung tissue and 485 +/- 114 10(-4) min-1 in injured lung. A repeat study in these dogs 4 hr later showed no significant change. Values in the human subjects showed similarly marked differences between normal and abnormal lung tissue. We conclude that PET will be a useful method of evaluating vascular permeability changes after acute lung injury

  4. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shize Jiang

    Full Text Available The blood-brain barrier (BBB impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF on BBB permeability in Kunming (KM mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse, while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI. Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001. Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.

  5. The Robo4 cytoplasmic domain is dispensable for vascular permeability and neovascularization. (United States)

    Zhang, Feng; Prahst, Claudia; Mathivet, Thomas; Pibouin-Fragner, Laurence; Zhang, Jiasheng; Genet, Gael; Tong, Raymond; Dubrac, Alexandre; Eichmann, Anne


    Vascular permeability and neovascularization are implicated in many diseases including retinopathies and diabetic wound healing. Robo4 is an endothelial-specific transmembrane receptor that stabilizes the vasculature, as shown in Robo4 -/- mice that develop hyperpermeability, but how Robo4 signals remained unclear. Here we show that Robo4 deletion enhances permeability and revascularization in oxygen-induced retinopathy (OIR) and accelerates cutaneous wound healing. To determine Robo4 signalling pathways, we generated transgenic mice expressing a truncated Robo4 lacking the cytoplasmic domain (Robo4ΔCD). Robo4ΔCD expression is sufficient to prevent permeability, and inhibits OIR revascularization and wound healing in Robo4 -/- mice. Mechanistically, Robo4 does not affect Slit2 signalling, but Robo4 and Robo4ΔCD counteract Vegfr2-Y949 (Y951 in human VEGFR2) phosphorylation by signalling through the endothelial UNC5B receptor. We conclude that Robo4 inhibits angiogenesis and vessel permeability independently of its cytoplasmic domain, while activating VEGFR2-Y951 via ROBO4 inhibition might accelerate tissue revascularization in retinopathy of prematurity and in diabetic patients.

  6. Effect of leukotriene receptor antagonists on vascular permeability during endotoxic shock

    International Nuclear Information System (INIS)

    Cook, J.A.; Li, E.J.; Spicer, K.M.; Wise, W.C.; Halushka, P.V.


    Evidence has accumulated that sulfidopeptide leukotrienes are significant pathogenic mediators of certain hematologic and hemodynamic sequelae of endotoxic shock. In the present study, the effects of a selective LTD4/E4 receptor antagonist, LY171883 (LY), or a selective LTD4 receptor antagonist, SKF-104353 (SKF), were assessed on splanchnic and pulmonary localization of 99mTechnetium-labeled human serum albumin (99mTc-HSA) in acute endotoxic shock in the rat. Dynamic gamma camera imaging of heart (H), midabdominal (GI), and lung regions of interest generated time activity curves for baseline and at 5-35 min after Salmonella enteritidis endotoxin (10 mg/kg, i.v.). Slopes of GI/H and lung/H activity (permeability index, GI/H or lung/H X 10(-3)/min) provided indices of intestinal and lung localization. Rats received LY (30 mg/kg, i.v.), LY vehicle (LY Veh), SKF (10 mg/kg), or SKF vehicle (SK Veh) 10 min prior to endotoxin or endotoxin vehicle. In rats receiving the LY Veh and endotoxin (n = 8) or SKF Veh and endotoxin (n = 12), the splanchnic permeability indices to 99mTc-HSA were increased 11.2-fold and 5.1-fold, respectively (P less than 0.05) compared to vehicle control groups not given endotoxin (n = 5). Pulmonary permeability index for 99mTc-HSA was increased (P less than 0.05) to a lesser extent (3.2-fold) by endotoxin compared to vehicle controls. Pretreatment with SKF reduced the mesenteric permeability index to control levels (P less than 0.05) during the 5-35 min time interval post-endotoxin. LY reduced the mesenteric permeability index by 70%. Pulmonary relative permeability to 99mTc-HSA was not affected by LY pretreatment. Both splanchnic and lung relative permeability to the isotope was transient; at 135-225 min post-endotoxin, splanchnic localization of 99mTc-HSA (n = 4) was not significantly different from vehicle controls in these vascular beds

  7. Extravascular lung water and the pulmonary vascular permeability index may improve the definition of ARDS. (United States)

    Perel, Azriel


    The recent Berlin definition has made some improvements in the older definition of acute respiratory distress syndrome (ARDS), although the concepts and components of the definition remained largely unchanged. In an effort to improve both predictive and face validity, the Berlin panel has examined a number of additional measures that may reflect increased pulmonary vascular permeability, including extravascular lung water. The panel concluded that although extravascular lung water has improved face validity and higher values are associated with mortality, it is infeasible to mandate on the basis of availability and the fact that it does not distinguish between hydrostatic and inflammatory pulmonary edema. However, the results of a multi-institutional study that appeared in the previous issue of Critical Care show that this latter reservation may not necessarily be true. By using extravascular lung water and the pulmonary vascular permeability index, both of which are derived from transpulmonary thermodilution, the authors could successfully differentiate between patients with ARDS and other patients in respiratory failure due to either cardiogenic edema or pleural effusion with atelectasis. This commentary discusses the merits and limitations of this study in view of the potential improvement that transpulmonary thermodilution may bring to the definition of ARDS.

  8. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    International Nuclear Information System (INIS)

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V.


    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3

  9. Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP. (United States)

    Takano, Tomomi; Ohyama, Taku; Kokumoto, Aiko; Satoh, Ryoichi; Hohdatsu, Tsutomu


    Feline infectious peritonitis virus (FIPV) causes a fatal disease called FIP in Felidae. The effusion in body cavity is commonly associated with FIP. However, the exact mechanism of accumulation of effusion remains unclear. We investigated vascular endothelial growth factor (VEGF) to examine the relationship between VEGF levels and the amounts of effusion in cats with FIP. Furthermore, we examined VEGF production in FIPV-infected monocytes/macrophages, and we used feline vascular endothelial cells to examine vascular permeability induced by the culture supernatant of FIPV-infected macrophages. In cats with FIP, the production of effusion was related with increasing plasma VEGF levels. In FIPV-infected monocytes/macrophages, the production of VEGF was associated with proliferation of virus. Furthermore, the culture supernatant of FIPV-infected macrophages induced hyperpermeability of feline vascular endothelial cells. It was suggested that vascular permeability factors, including VEGF, produced by FIPV-infected monocytes/macrophages might increase the vascular permeability and the amounts of effusion in cats with FIP. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Influence of effective stress and dry density on the permeability of municipal solid waste. (United States)

    Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi


    A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.

  11. The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. (United States)

    Stan, Radu V; Tse, Dan; Deharvengt, Sophie J; Smits, Nicole C; Xu, Yan; Luciano, Marcus R; McGarry, Caitlin L; Buitendijk, Maarten; Nemani, Krishnamurthy V; Elgueta, Raul; Kobayashi, Takashi; Shipman, Samantha L; Moodie, Karen L; Daghlian, Charles P; Ernst, Patricia A; Lee, Hong-Kee; Suriawinata, Arief A; Schned, Alan R; Longnecker, Daniel S; Fiering, Steven N; Noelle, Randolph J; Gimi, Barjor; Shworak, Nicholas W; Carrière, Catherine


    Fenestral and stomatal diaphragms are endothelial subcellular structures of unknown function that form on organelles implicated in vascular permeability: fenestrae, transendothelial channels, and caveolae. PV1 protein is required for diaphragm formation in vitro. Here, we report that deletion of the PV1-encoding Plvap gene in mice results in the absence of diaphragms and decreased survival. Loss of diaphragms did not affect the fenestrae and transendothelial channels formation but disrupted the barrier function of fenestrated capillaries, causing a major leak of plasma proteins. This disruption results in early death of animals due to severe noninflammatory protein-losing enteropathy. Deletion of PV1 in endothelium, but not in the hematopoietic compartment, recapitulates the phenotype of global PV1 deletion, whereas endothelial reconstitution of PV1 rescues the phenotype. Taken together, these data provide genetic evidence for the critical role of the diaphragms in fenestrated capillaries in the maintenance of blood composition. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effects of irradiation on the pulmonary hemodynamics and the pulmonary vascular permeability

    International Nuclear Information System (INIS)

    Ohkuda, Kazuhiro; Watanabe, Shinkichi; Okada, Shinichiroh


    In 4 sheeps, base lines of hemodynamics and lymph dynamics were observed for 2 hours, and then 1,000 rad of 60 Co was irradiated to the inferior lobes of the lung. Pulmonary hemodynamics and lymph dynamics were continuously observed, and water and protein permeability of the irradiated pulmonary vessels was evaluated. In 4 control sheeps, no change in pulmonary hemodynamics and lymph dynamics was noted. In the irradiated group, there was no remarkable change in pulmonary hemodynamics for 6 to 8 hours after 60 Co irradiation. Pulmonary lymph flow began to increase 2 hours after irradiation to about 1.7 times the base line level after 4 hours. The increase in pulmonary lymph flow was accompanied by decrease in plasma protein concentration and increase in protein concentration of the lung lymph, resulting in an apparent increase in the ratio of lymph/plasma protein concentration. Water and protein leak from the pulmonary vessels increased. A photomicroscopic observation revealed dilatation of the lymphatic vessels in the lung interstice and a mild pulmonary interstitial edema. Vascular damage, especially due to increased water and protein permeability of the lung capillary vessels, occurred immediately after 60 Co irradiation. (Ueda, J.)

  13. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability (United States)

    Li, Shuoran; Nih, Lina R.; Bachman, Haylee; Fei, Peng; Li, Yilei; Nam, Eunwoo; Dimatteo, Robert; Carmichael, S. Thomas; Barker, Thomas H.; Segura, Tatiana


    Integrin binding to bioengineered hydrogel scaffolds is essential for tissue regrowth and regeneration, yet not all integrin binding can lead to tissue repair. Here, we show that through engineering hydrogel materials to promote α3/α5β1 integrin binding, we can promote the formation of a space-filling and mature vasculature compared with hydrogel materials that promote αvβ3 integrin binding. In vitro, α3/α5β1 scaffolds promoted endothelial cells to sprout and branch, forming organized extensive networks that eventually reached and anastomosed with neighbouring branches. In vivo, α3/α5β1 scaffolds delivering vascular endothelial growth factor (VEGF) promoted non-tortuous blood vessel formation and non-leaky blood vessels by 10 days post-stroke. In contrast, materials that promote αvβ3 integrin binding promoted endothelial sprout clumping in vitro and leaky vessels in vivo. This work shows that precisely controlled integrin activation from a biomaterial can be harnessed to direct therapeutic vessel regeneration and reduce VEGF-induced vascular permeability in vivo.

  14. Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction.

    Directory of Open Access Journals (Sweden)

    Wilco P Pulskens

    Full Text Available Progressive renal disease is characterized by tubulo-interstitial injury with ongoing inflammation and fibrosis. The Nlrp3 inflammasome contributes to these pathophysiological processes through its canonical effects in cytokine maturation. Nlrp3 may additionally exert inflammasome-independent effects following tissue injury. Hence, in this study we investigated potential non-canonical effects of Nlrp3 following progressive renal injury by subjecting WT and Nlrp3-deficient (-/- mice to unilateral ureter obstruction (UUO. Our results revealed a progressive increase of renal Nlrp3 mRNA in WT mice following UUO. The absence of Nlrp3 resulted in enhanced tubular injury and dilatation and an elevated expression of injury biomarker NGAL after UUO. Moreover, interstitial edema was significantly elevated in Nlrp3-/- mice. This could be explained by increased intratubular pressure and an enhanced tubular and vascular permeability. In accordance, renal vascular leakage was elevated in Nlrp3-/- mice that associated with reduced mRNA expression of intercellular junction components. The decreased epithelial barrier function in Nlrp3-/- mice was not associated with increased apoptosis and/or proliferation of renal epithelial cells. Nlrp3 deficiency did not affect renal fibrosis or inflammation. Together, our data reveal a novel non-canonical effect of Nlrp3 in preserving renal integrity and protection against early tubular injury and interstitial edema following progressive renal injury.

  15. Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs. (United States)

    Parker, J C; Ivey, C L


    To separate the contributions of cellular and basement membrane components of the alveolar capillary barrier to the increased microvascular permeability induced by high pulmonary venous pressures (Ppv), we subjected isolated rat lungs to increases in Ppv, which increased capillary filtration coefficient (Kfc) without significant hemorrhage (31 cmH2O) and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 microM) was infused in one group (Iso) to identify a reversible cellular component of injury, and residual blood volumes were measured to assess extravasation of red blood cells through ruptured basement membranes. In untreated lungs (High Ppv group), Kfc increased 6.2 +/- 1.3 and 38.3 +/- 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2% (P Kfc increases at moderate Ppv, possibly because of an endothelial effect, but it did not affect red cell extravasation at higher vascular pressures.

  16. VE-cadherin Y685F knock-in mouse is sensitive to vascular permeability in recurrent angiogenic organs. (United States)

    Sidibé, Adama; Polena, Helena; Pernet-Gallay, Karin; Razanajatovo, Jeremy; Mannic, Tiphaine; Chaumontel, Nicolas; Bama, Soumalamaya; Maréchal, Irène; Huber, Philippe; Gulino-Debrac, Danielle; Bouillet, Laurence; Vilgrain, Isabelle


    Covalent modifications such as tyrosine phosphorylation are associated with the breakdown of endothelial cell junctions and increased vascular permeability. We previously showed that vascular endothelial (VE)-cadherin was tyrosine phosphorylated in vivo in the mouse reproductive tract and that Y685 was a target site for Src in response to vascular endothelial growth factor in vitro. In the present study, we aimed to understand the implication of VE-cadherin phosphorylation at site Y685 in cyclic angiogenic organs. To achieve this aim, we generated a knock-in mouse carrying a tyrosine-to-phenylalanine point mutation of VE-cadherin Y685 (VE-Y685F). Although homozygous VE-Y685F mice were viable and fertile, the nulliparous knock-in female mice exhibited enlarged uteri with edema. This phenotype was observed in 30% of females between 4 to 14 mo old. Histological examination of longitudinal sections of the VE-Y685F uterus showed an extensive disorganization of myometrium and endometrium with highly edematous uterine glands, numerous areas with sparse cells, and increased accumulation of collagen fibers around blood vessels, indicating a fibrotic state. Analysis of cross section of ovaries showed the appearance of spontaneous cysts, which suggested increased vascular hyperpermeability. Electron microscopy analysis of capillaries in the ovary showed a slight but significant increase in the gap size between two adjacent endothelial cell membranes in the junctions of VE-Y685F mice (wild-type, 11.5 ± 0.3, n = 78; and VE-Y685F, 12.48 ± 0.3, n = 65; P = 0.045), as well as collagen fiber accumulation around capillaries. Miles assay revealed that either basal or vascular endothelial growth factor-stimulated permeability in the skin was increased in VE-Y685F mice. Since edema and fibrotic appearance have been identified as hallmarks of initial increased vascular permeability, we conclude that the site Y685 in VE-cadherin is involved in the physiological regulation of capillary

  17. Dynamic Measurement of Tumor Vascular Permeability and Perfusion using a Hybrid System for Simultaneous Magnetic Resonance and Fluorescence Imaging. (United States)

    Ren, Wuwei; Elmer, Andreas; Buehlmann, David; Augath, Mark-Aurel; Vats, Divya; Ripoll, Jorge; Rudin, Markus


    Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system. Vascular permeability was measured using a mixture of extravascular imaging agents, GdDOTA and the dye Cy5.5, and perfusion using a mixture of intravascular agents, Endorem and a fluorescent probe (Angiosense). Dynamic fluorescence reflectance imaging (dFRI) was integrated into the hybrid system for high temporal resolution. Excellent correspondence between uptake curves of Cy5.5/GdDOTA and Endorem/Angiosense has been found with correlation coefficients R > 0.98. The two modalities revealed good agreement regarding permeability coefficients and centers-of-gravity of the imaging agent distribution. The FMT/dFRI protocol presented is able to accurately map physiological processes and poses an attractive alternative to MRI for characterizing tumor neoangiogenesis.

  18. The hydraulic permeability of blood clots as a function of fibrin and platelet density. (United States)

    Wufsus, A R; Macera, N E; Neeves, K B


    Interstitial fluid flow within blood clots is a biophysical mechanism that regulates clot growth and dissolution. Assuming that a clot can be modeled as a porous medium, the physical property that dictates interstitial fluid flow is the hydraulic permeability. The objective of this study was to bound the possible values of the hydraulic permeability in clots formed in vivo and present relationships that can be used to estimate clot permeability as a function of composition. A series of clots with known densities of fibrin and platelets, the two major components of a clot, were formed under static conditions. The permeability was calculated by measuring the interstitial fluid velocity through the clots at a constant pressure gradient. Fibrin gels formed with a fiber volume fraction of 0.02-0.54 had permeabilities of 1.2 × 10(-1)-1.5 × 10(-4)μm(2). Platelet-rich clots with a platelet volume fraction of 0.01-0.61 and a fibrin volume fraction of 0.03 had permeabilities over a range of 1.1 × 10(-2)-1.5 × 10(-5)μm(2). The permeability of fibrin gels and of clots with platelet volume fraction of platelet volume fraction of >0.2 were modeled as a Brinkman medium of coarse solids (platelets) embedded in a mesh of fine fibers (fibrin). Our data suggest that the permeability of clots formed in vivo can vary by up to five orders of magnitude, with pore sizes that range from 4 to 350 nm. These findings have important implications for the transport of coagulation zymogens/enzymes in the interstitial spaces during clot formation, as well as the design of fibrinolytic drug delivery strategies. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Effects of exogenous oxygen derived free radicals on myocardial capillary permeability, vascular tone, and incidence of ventricular arrhythmias in the canine heart

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Bjerrum, P J


    The aim was to examine the effects of exogenous oxygen derived free radicals on myocardial capillary permeability for a small hydrophilic indicator, postischaemic vascular tone, and the occurrence of arrhythmias in the canine heart in vivo.......The aim was to examine the effects of exogenous oxygen derived free radicals on myocardial capillary permeability for a small hydrophilic indicator, postischaemic vascular tone, and the occurrence of arrhythmias in the canine heart in vivo....

  20. Isthmin is a novel vascular permeability inducer that functions through cell-surface GRP78-mediated Src activation. (United States)

    Venugopal, Shruthi; Chen, Mo; Liao, Wupeng; Er, Shi Yin; Wong, Wai-Shiu Fred; Ge, Ruowen


    Isthmin (ISM) is a recently identified 60 kDa secreted angiogenesis inhibitor. Two cell-surface receptors for ISM have been defined, the high-affinity glucose-regulated protein 78 kDa (GRP78) and the low-affinity αvβ5 integrin. As αvβ5 integrin plays an important role in pulmonary vascular permeability (VP) and ISM is highly expressed in mouse lung, we sought to clarify the role of ISM in VP. Recombinant ISM (rISM) dose-dependently enhances endothelial monolayer permeability in vitro and local dermal VP when administered intradermally in mice. Systemic rISM administration through intravenous injection leads to profound lung vascular hyperpermeability but not in other organs. Mechanistic investigations using molecular, biochemical approaches and specific chemical inhibitors revealed that ISM-GRP78 interaction triggers a direct interaction between GRP78 and Src, leading to Src activation and subsequent phosphorylation of adherens junction proteins and loss of junctional proteins from inter-endothelial junctions, resulting in enhanced VP. Dynamic studies of Src activation, VP and apoptosis revealed that ISM induces VP directly via Src activation while apoptosis contributes indirectly only after prolonged treatment. Furthermore, ISM is significantly up-regulated in lipopolysaccharide (LPS)-treated mouse lung. Blocking cell-surface GRP78 by systemic infusion of anti-GRP78 antibody significantly attenuates pulmonary vascular hyperpermeability in LPS-induced acute lung injury (ALI) in mice. ISM is a novel VP inducer that functions through cell-surface GRP78-mediated Src activation as well as induction of apoptosis. It induces a direct GRP78-Src interaction, leading to cytoplasmic Src activation. ISM contributes to pulmonary vascular hyperpermeability of LPS-induced ALI in mice. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email:

  1. Calculation of density and permeability of compacted crushed salt within an engineered shaft sealing system

    International Nuclear Information System (INIS)

    Loken, M.; Statham, W.


    Crushed salt from the host Salado Formation is proposed as a sealing material in one component of a multicomponent seal system design for the shafts of the Waste Isolation Pilot Plant (WIPP), a mined geological repository for storage and disposal of transuranic radioactive wastes located near Carlsbad, New Mexico. The crushed salt will be compacted and placed at a density approaching 90% of the intact density of the host Salado salt. Creep closure of the shaft will further compact the crushed salt over time, thereby reducing the crushed-salt permeability from the initial state and creating an effective long-term seal. A structural model and a fluid flow model have been developed to provide an estimate of crushed-salt reconsolidation rate as a function of depth, time, and pore pressure. Model results are obtained in terms of crushed-salt permeability as a function of time and depth within the salt column. Model results indicate that average salt column permeability will be reduced to 3.3 x 10 -20 m 2 in about 100 years, which provides for an acceptable long-term seal component

  2. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients

    DEFF Research Database (Denmark)

    Rahbar, Elaheh; Cardenas, Jessica C; Baimukanova, Gyulnar


    of trauma patients. METHODS: Plasma samples were collected from 5 healthy consented volunteers and 22 severely injured trauma patients upon admission to the emergency department. ELISA assays were performed to quantify shed HA, HS, CS and syndecan-1 in plasma. A colloid osmometer and Electric Cell......-substrate Impedance Sensing (ECIS) system were used to measure plasma colloid osmotic pressure (COP) and cell permeability, respectively. Thrombin generation was measured using a calibrated automated thrombogram (CAT). Initial vital signs, routine laboratory values, and injury severity scores (ISS) were recorded. Non......COP (≤16 mmHg) had significantly increased syndecan-1 and HA compared to those with normal COP, which corresponded to increased cell permeability via ECIS. CS and HS did not vary between COP groups. Lastly, patients with low COP displayed reduced peak thrombin...

  3. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  4. Radiation-induced changes in the profile of spinal cord serotonin, prostaglandin synthesis, and vascular permeability

    International Nuclear Information System (INIS)

    Siegal, Tali; Pfeffer, M. Raphael


    Purpose: To investigate the profile of biochemical and physiological changes induced in the rat spinal cord by radiation, over a period of 8 months. Methods and Materials: The thoraco-lumbar spinal cords of Fisher rats were irradiated to a dose of 15 Gy. The rats were then followed and killed at various times afterward. Serotonin (5-HT) and its major metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed as well as prostaglandin synthesis. Microvessel permeability was assessed by quantitative evaluation of Evans blue dye extravasation. Results: None of the rats developed neurologic dysfunction, and histologic examination revealed only occasional gliosis in the ventral white matter at 240 days after irradiation. Serotonin levels were unchanged at 2, 14, and 56 days after radiation but increased at 120 and 240 days in the irradiated cord segments when compared to both the nonirradiated thoracic and cervical segments (p 2 (PGE 2 ), thromboxane (TXB 2 ), and prostacyclin [6 keto-PGF1α (6KPGF)] was noted, which returned to normal at 3 days. This was followed after 7 and 14 days by a significant fall off in synthesis of all three prostaglandins. Thereafter, at 28, 56, 120, and 240 days, escalated production of thromboxane followed, while prostacyclin synthesis remained markedly reduced (-88% of control level at 240 days). Up to 7 days after radiation the calculated (TXB 2 (6KPGF)) ratio remained balanced, regardless of the observed abrupt early fluctuations in their rate of synthesis. Later, between 7 and 240 days after radiation, a significant imbalance was present which became more pronounced over time. In the first 24 h after radiation, a 104% increase in microvessel permeability was observed which returned to normal by 3 days. Normal permeability was maintained at 14 and 28 days, but at 120 and 240 days a persistent and significant increase of 98% and 73% respectively above control level was noted. Conclusions: Radiation induces severe impairment in

  5. Radiation-induced changes in the profile of spinal cord serotonin, prostaglandin synthesis, and vascular permeability

    International Nuclear Information System (INIS)

    Siegal, T.; Pfeffer, M.R.


    To investigate the profile of biochemical and physiological changes induced in the rat spinal cord by radiation, over a period of 8 months. The thoraco-lumbar spinal cords of Fisher rats were irradiated to a dose of 15 Gy. The rats were then followed and killed at various times afterward. Serotonin (5-HT) and its major metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed as well as prostaglandin synthesis. Microvessel permeability was assessed by quantitative evaluation of Evans blue dye extravasation. None of the rats developed neurologic dysfunction, and histologic examination revealed only occasional gliosis in the ventral white matter at 240 days after irradiation. Serotonin levels were unchanged at 2, 14, and 56 days after radiation but increased at 120 and 240 days in the irradiated cord segments when compared to both the nonirradiated thoracic and cervical segments (p 2 (PGE 2 ), thromboxane (TXB 2 ), and prostacyclin [6 keto-PGF1α (6KPGF)] was noted, which returned to normal at 3 days. This was followed after 7 and 14 days by a significant fall off in synthesis of all three prostaglandins. Thereafter, at 28, 56, 120, and 240 days, escalated production of thromboxane followed, white prostacyclin synthesis remained markedly reduced (-88% of control level at 240 days). Up to 7 days after radiation the calculated TXB 2 /6KPGF ratio remained balanced, regardless of the observed abrupt early fluctuations in their rate of synthesis. Later, between 7 and 240 days after radiation, a significant imbalance was present which became more pronounced over time. In the first 24 h after radiation, a 104% increase in microvessel permeability was observed which returned to normal by 3 days. 57 refs., 3 figs

  6. Convection due to an unstable density difference across a permeable membrane (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    We study natural convection driven by unstable concentration differences of sodium chloride (NaCl) across a horizontal permeable membrane at Rayleigh numbers (Ra) of 1010 to 1011 and Schmidt number (Sc)=600. A layer of brine lies over a layer of distilled water, separated by the membrane, in square-cross-section tanks. The membrane is permeable enough to allow a small flow across it at higher driving potentials. Based on the predominant mode of transport across the membrane, three regimes of convection, namely an advection regime, a diffusion regime and a combined regime, are identified. The near-membrane flow in all the regimes consists of sheet plumes formed from the unstable layers of fluid near the membrane. In the advection regime observed at higher concentration differences (Bb) show a common log-normal probability density function at all Ra. We propose a phenomenology which predicts /line{lambda}_b sqrt{Z_w Z_{V_i}}, where Zw and Z_{V_i} are, respectively, the near-wall length scales in Rayleighnard convection (RBC) and due to the advection velocity. In the combined regime, which occurs at intermediate values of C/2)4/3. At lower driving potentials, in the diffusion regime, the flux scaling is similar to that in turbulent RBC.

  7. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles (United States)

    Wei, Ming-Tzo; Elbaum-Garfinkle, Shana; Holehouse, Alex S.; Chen, Carlos Chih-Hsiung; Feric, Marina; Arnold, Craig B.; Priestley, Rodney D.; Pappu, Rohit V.; Brangwynne, Clifford P.


    Many intracellular membraneless organelles form via phase separation of intrinsically disordered proteins (IDPs) or regions (IDRs). These include the Caenorhabditis elegans protein LAF-1, which forms P granule-like droplets in vitro. However, the role of protein disorder in phase separation and the macromolecular organization within droplets remain elusive. Here, we utilize a novel technique, ultrafast-scanning fluorescence correlation spectroscopy, to measure the molecular interactions and full coexistence curves (binodals), which quantify the protein concentration within LAF-1 droplets. The binodals of LAF-1 and its IDR display a number of unusual features, including 'high concentration' binodal arms that correspond to remarkably dilute droplets. We find that LAF-1 and other in vitro and intracellular droplets are characterized by an effective mesh size of ∼3-8 nm, which determines the size scale at which droplet properties impact molecular diffusion and permeability. These findings reveal how specific IDPs can phase separate to form permeable, low-density (semi-dilute) liquids, whose structural features are likely to strongly impact biological function.

  8. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo (United States)

    Broermann, Andre; Winderlich, Mark; Block, Helena; Frye, Maike; Rossaint, Jan; Zarbock, Alexander; Cagna, Giuseppe; Linnepe, Ruth; Schulte, Dörte; Nottebaum, Astrid Fee


    We have recently shown that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial membrane protein, associates with VE-cadherin and is required for optimal VE-cadherin function and endothelial cell contact integrity. The dissociation of VE-PTP from VE-cadherin is triggered by vascular endothelial growth factor (VEGF) and by the binding of leukocytes to endothelial cells in vitro, suggesting that this dissociation is a prerequisite for the destabilization of endothelial cell contacts. Here, we show that VE-cadherin/VE-PTP dissociation also occurs in vivo in response to LPS stimulation of the lung or systemic VEGF stimulation. To show that this dissociation is indeed necessary in vivo for leukocyte extravasation and VEGF-induced vascular permeability, we generated knock-in mice expressing the fusion proteins VE-cadherin-FK 506 binding protein and VE-PTP-FRB* under the control of the endogenous VE-cadherin promoter, thus replacing endogenous VE-cadherin. The additional domains in both fusion proteins allow the heterodimeric complex to be stabilized by a chemical compound (rapalog). We found that intravenous application of the rapalog strongly inhibited VEGF-induced (skin) and LPS-induced (lung) vascular permeability and inhibited neutrophil extravasation in the IL-1β inflamed cremaster and the LPS-inflamed lung. We conclude that the dissociation of VE-PTP from VE-cadherin is indeed required in vivo for the opening of endothelial cell contacts during induction of vascular permeability and leukocyte extravasation. PMID:22025303

  9. Epigalloccatechin-3-gallate Inhibits Ocular Neovascularization and Vascular Permeability in Human Retinal Pigment Epithelial and Human Retinal Microvascular Endothelial Cells via Suppression of MMP-9 and VEGF Activation

    Directory of Open Access Journals (Sweden)

    Hak Sung Lee


    Full Text Available Epigalloccatechin-3-gallate (EGCG is the main polyphenol component of green tea (leaves of Camellia sinensis. EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs and vascular endothelial growth factor (VEGF play a key role in the processes of extracellular matrix (ECM remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA and tumor necrosis factor alpha (TNF-α in human retinal pigment epithelial cells (HRPECs. EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2 by inhibiting generation of reactive oxygen species (ROS. EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs. Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31 on corneal neovascularization (CNV induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization.

  10. Cyclosporine suppression of lymphocyte recruitment, regional blood flow, and vascular permeability at sites of allogeneic cellular interactions

    International Nuclear Information System (INIS)

    Hanto, D.W.; Harty, J.T.; Hoffman, R.; Simmons, R.L.


    Although cyclosporine (CsA) has been thought to act primarily on the afferent phase of the immune response, we can demonstrate that it also acts at the efferent phase. The effect of CsA on lymphocyte recruitment (LR), regional blood flow (RBF), and vascular permeability (VP) was studied in paired, healed, subcutaneously placed urethane sponge grafts inoculated with specifically sensitized lymphocytes (SSLs) and allogeneic target cells. Intravenous injection of 111 In-labelled unsensitized lymphocytes, 86 RbCl and 125 I-labelled albumin were used to assess LR, RBF, and VP, respectively. Suspensions of SSL and targets in CsA at 10 and 1 microgram/ml prior to graft inoculation markedly reduce the preferential increase in LR to the site of interaction between SSLs and targets bearing the sensitizing alloantigen (P less than 0.002 for both). Similarly, CsA blocks the preferential increase in RBF (P . 0.017) and VP (P less than 0.002) to the graft site. These effects persist for at least 24 hours. If SSLs and targets are washed after incubation with CsA, LR is still reduced. These results are consistent with the idea that cell-bound CsA blocks the elaboration of lymphokines which results from the interaction between SSLs and specific alloantigen in vivo. These lymphokines increase RBF and VP and are accompanied by an increase in LR. Inhibition of these vascular effects may prevent the recruitment of additional lymphocytes to the graft site. CsA may, therefore, prevent or interrupt allograft rejection by blocking amplification of the rejection mechanism at the graft site

  11. Peritoneal vascular density assessment using narrow-band imaging and vascular analysis software, and cytokine analysis in women with and without endometriosis. (United States)

    Kuroda, Keiji; Kitade, Mari; Kikuchi, Iwaho; Kumakiri, Jun; Matsuoka, Shozo; Kuroda, Masako; Takeda, Satoru


    The development and onset of endometriosis is associated with angiogenesis and angiogenic factors including cytokines. We analyzed intrapelvic conditions in women with endometriosis via vascular density assessment of grossly normal peritoneum and determination of cytokine levels in peritoneal fluid. Seventy-three patients underwent laparoscopic surgery because of gynecologic disease including endometriosis in our department using a narrow-band imaging system. Each patient was analyzed for peritoneal vascular density using commercially available vascular analysis software (SolemioENDO ProStudy; Olympus Corp, Tokyo, Japan). Each patient was also subjected to analysis of interleukin 6 (IL-6), IL-8, tumor necrosis factor-alpha, and vascular endothelial growth factor concentrations in peritoneal fluid. We defined 4 groups as follows: group 1, endometriosis: gonadotropin-releasing hormone (GnRH) agonist administration group (n=27); group 2, endometriosis: GnRH agonist nonadministration group (n=15); group 3, no endometriosis: GnRH agonist administration group (n=18); and group 4, no endometriosis: GnRH agonist nonadministration group (n=13). No significant differences in peritoneal vascular density between the 4 groups were found under conventional light; however, under narrow-band light, vascular density in the endometriosis groups (groups 1 and 2) was significantly higher. Cytokine analysis of the 4 groups determined that IL-6 and IL-8 concentrations were significantly higher compared with the no endometriosis groups (groups 3 and 4). Tumor necrosis factor-alpha and vascular endothelial growth factor concentrations were not significantly different between groups. In endometriosis, peritoneal vascular density was significantly higher as assessed using the narrow-band imaging system and SolemioENDO ProStudy, whereas GnRH agonist did not obviously decrease vascular density but IL-6 concentration was lower in the GnRH agonist administration group. Copyright (c) 2010 AAGL


    Directory of Open Access Journals (Sweden)



    Full Text Available Optical coherence tomography (OCT enables in vivo imaging of port wine stains (PWS lesions. The knowledge of vascular structure and epidermal thickness (ET of PWS may aid the objective diagnosis and optimal treatment. To obtain the structural parameters more rapidly and avoid user intervention, an automated algorithm of energy map is introduced based on intensity and edge information to extract the skin surface using dynamic programming method. Subsequently, an averaged A-scan analysis is performed to obtain the mean ET and the relative intensity of dermis indicating the corresponding vascular density. This approach is currently successfully applied in clinical diagnosis and shows promising guidance and assessment of PDT treatment.

  13. Using soft computing techniques to predict corrected air permeability using Thomeer parameters, air porosity and grain density (United States)

    Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez


    Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.

  14. The Role of High-Density Lipoproteins in Diabetes and Its Vascular Complications

    Directory of Open Access Journals (Sweden)

    Nathan K. P. Wong


    Full Text Available Almost 600 million people are predicted to have diabetes mellitus (DM by 2035. Diabetic patients suffer from increased rates of microvascular and macrovascular complications, associated with dyslipidaemia, impaired angiogenic responses to ischaemia, accelerated atherosclerosis, and inflammation. Despite recent treatment advances, many diabetic patients remain refractory to current approaches, highlighting the need for alternative agents. There is emerging evidence that high-density lipoproteins (HDL are able to rescue diabetes-related vascular complications through diverse mechanisms. Such protective functions of HDL, however, can be rendered dysfunctional within the pathological milieu of DM, triggering the development of vascular complications. HDL-modifying therapies remain controversial as many have had limited benefits on cardiovascular risk, although more recent trials are showing promise. This review will discuss the latest data from epidemiological, clinical, and pre-clinical studies demonstrating various roles for HDL in diabetes and its vascular complications that have the potential to facilitate its successful translation.

  15. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    International Nuclear Information System (INIS)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.


    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of 3 H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena

  16. 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy

    Directory of Open Access Journals (Sweden)

    N. Calonne


    Full Text Available We used three-dimensional (3-D images of snow microstructure to carry out numerical estimations of the full tensor of the intrinsic permeability of snow (K. This study was performed on 35 snow samples, spanning a wide range of seasonal snow types. For several snow samples, a significant anisotropy of permeability was detected and is consistent with that observed for the effective thermal conductivity obtained from the same samples. The anisotropy coefficient, defined as the ratio of the vertical over the horizontal components of K, ranges from 0.74 for a sample of decomposing precipitation particles collected in the field to 1.66 for a depth hoar specimen. Because the permeability is related to a characteristic length, we introduced a dimensionless tensor K*=K/res2, where the equivalent sphere radius of ice grains (res is computed from the specific surface area of snow (SSA and the ice densityi as follows: res=3/(SSA×ρi. We define K and K* as the average of the diagonal components of K and K*, respectively. The 35 values of K* were fitted to snow densitys and provide the following regression: K = (3.0 ± 0.3 res2 exp((−0.0130 ± 0.0003ρs. We noted that the anisotropy of permeability does not affect significantly the proposed equation. This regression curve was applied to several independent datasets from the literature and compared to other existing regression curves or analytical models. The results show that it is probably the best currently available simple relationship linking the average value of permeability, K, to snow density and specific surface area.

  17. Density and permeability of a loess soil: long-term organic matter effect and the response to compressive stress

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per


    to compressive stress, undisturbed soil cores were collected from a long-term fertilisation experiment in Bad Lauchstädt in Germany, including combinations of animal manure and mineral fertilisers. The cores were drained to -100 hPa matric potential and exposed to uniaxial confined compression (200k......Pa). Investigated indicators for compression resistance included compression index, precompression stress, and resistance and resilience indices based on measured soil physical properties (bulk density, air-filled porosity, air permeability, and void ratio). Soil resilience was assessed following exposure...... but the correlation was not significant. However, initial bulk density (ρbi) and initial gravimetric water content (wi) were significantly positively correlated to the indices of soil compression resistance, with the effect of ρbi being significantly stronger. Significant recovery of airfilled porosity and air...

  18. CT features on increased cerebral vascular density and its pathological mechanism in patients with cyanotic congenital disease

    International Nuclear Information System (INIS)

    Liu Hui; Zhang Xintang; Wang Jin; Tian Min; He Yuping; Zhao Jinqi; He Qian; Chen Huanjun; Li Fawei


    Objective: To investigate CT features on increased cerebral vascular density and its pathological mechanism in patients with cyanotic congenital heart disease (CCHD). Methods: Preoperative brain CT scan and clinical data in 82 patients suffering from CCHD were analyzed. According to the increased levels of vascular density, patients were divided into 4 groups: normal, mild, moderate and severe. Relationships between the increased levels of vascular density and Hb, RBC, HCT, as well as the degree of cyanosis,were studied. AVONA was carried out to test blood CT value of cerebral sinuses, Hb, RBC and HCT in different groups. Descriptive analysis and linear regression were adopted to study the correlation between blood CT value and Hb concentration. The relationship of increased vascular density to degrees of cyanosis was analysed by Spearman. Results: Among 82 patients, 12 patients (14.6%) were found in the group of normal vascular density and 70 patients (85.4%) in the increased vascular density group. Among 70 patients with increased vascular density, 22 patients (26.8% ) with (55.4 ± 2.6) HU, (169 ±6)g/L of Hb, (5.8 ±0.3) × 10 12 /L of RBC and 0.51 ±0.03 of HCT, 29 patients (35.4%) with (61.3 ± 2.9) HU, (209 ± 15 ) g/L, (7.1 ± 0.4) × 10 12 /L, 0.66 ± 0.06 and 19 patients (23.2%) with (68.8 ± 4.2) HU, (242 ± 23) g/L, (8.3 ± 0.9) × 10 12 /L, 0.78 ± 0.08 were observed in the mild,moderate and severe group,respectively. There were significant differences in distribution of blood CT value (HU), Hb, RBC and HCT in different groups (F=163.263, 134.703, 120.974, 136.541; P<0.01). Blood CT value was positively correlated with Hb concentration (r=0.98, P<0.01). Vascular density was also positively correlated with the degree of cyanosis (r=0.86, P<0.01). Conclusions: Cerebral vascular density of patients suffering from CCHD presented different levels of increases based on CT scan results due to rise of RBC stimulated by anoxia. The increased level of vascular

  19. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    Directory of Open Access Journals (Sweden)

    Rosamond B. Guillermo


    Full Text Available Background: Supplementation with complex milk lipids (CML during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01, but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05, but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.

  20. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes (United States)

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei


    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  1. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes.

    Directory of Open Access Journals (Sweden)

    Chia-Yi Tseng

    Full Text Available Exposure to diesel exhaust particles (DEP is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione.

  2. The correlation of CT perfusion imaging with microvessel density and vascular endothelial growth factor in hepatic alveolar echinococcosis

    International Nuclear Information System (INIS)

    Wang Jing; Ren Bo; Liu Wenya; Wen Hao; Qing Song; Xie Weidong; Sun Yajing; Wang Haitao


    Objective: To explore the correlation of CT perfusion imaging with microvessel density (MVD) and vascular endothelial growth factor (VEGF) in hepatic alveolar echinococcosis (HAE). Methods: Multi-slice spiral CT perfusion imaging was performed in 27 patients with HAE. Time-density curves(TDC) of the HAE peripheral area was drawn from the region of interest (ROI) with perfusion functional software. CT perfusion parameters including blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) were calculated. MVD and VEGF expression of pathological specimens were examined by immunohistochemical staining with anti-CD34, anti-VEGF monoclonal antibody. The CT perfusion parameters, MVD and VEGF were compared in different types of TDC with t test. The correlation of CT perfusion parameters with MVD and VEGF were analyzed with Spearman test. Results: In this group, 21 cases which TDC lower than that of the liver were classified as type Ⅰ, the others 6 cases TDC higher than the liver were of type Ⅱ TDC. TDC perfusion parameters of the two types were as follows, BF: (111.7±27.6), (158.9±39.5) ml · 100 g -1 · min -1 , BV: (15.1±6.2) , (26.8±8.4) ml/100 g, MTT: (7.0±4.4), (7.7±3.1) s, PS: (51.7±17.3), (51.0±20.5) ml ·100 g -1 · min -1 . The significant differences of BF, BV and MVD [(20.5±5.4)/HP, (37.2±7.5)/HP, respectively] were found between two types (t=-7.897, -18.783, -5.223, P 0.05). The correlation was found between the MVD and BF and BV in the type Ⅱ TDC group (r=0.789 and 0.878, respectively) and no correlation was found between MVD and each CT perfusion parameters in the type Ⅰ TDC group (P>0.05). There was no correlation between the VEGF expression and CT perfusion parameters in two types of TDC (P>0.05). Conclusion: CT perfusion imaging with different type of TDC reflected different situation of angiogenesis in HAE peripheral area, which could be a potential technique to illustrate the

  3. Oxygen tension in human tumours measured with polarographic needle electrodes and its relationship to vascular density, necrosis and hypoxia

    International Nuclear Information System (INIS)

    Lyng, Heidi; Sundfoer, Kolbein; Rofstad, Einar K.


    Background and purpose: The use of polarographic needle electrodes for measurement of oxygen tension (pO 2 ) in tumours requires documentation of the validity of the method. In the present work the pO 2 values measured polarographically with the Eppendorf pO 2 histograph in human tumours were compared with the histological appearance of the tumour tissue, i.e. vascular density, fraction of necrosis and fraction of hypoxic tissue, to investigate whether the measurements reflected the expected pO 2 . Materials and methods: The pO 2 was measured in cervix tumours in patients and in human melanoma xenografted tumours in athymic mice. Vascular density was determined in the cervix tumours by histological analysis of biopsies from the pO 2 measurement tracks. Fraction of necrosis and fraction of hypoxic tissue, i.e. tissue binding the hypoxia marker pimonidazole, were determined in the melanomas by analysis of histological sections from the tumour planes in which the pO 2 measurements were performed. Results: The pO 2 distributions showed large intratumour heterogeneity. In cervix tumours, tumour regions with vascular density (vascular length per unit tissue volume) in the range of 47-77 mm/mm 3 showed higher pO 2 than tumour regions with vascular density in the range of 20-47 mm/mm 3 , which in turn showed higher pO 2 than tumour regions with vascular density in the range of 0-20 mm/mm 3 . In melanomas, tumour regions in which necrosis and hypoxia constituted more than 50% of the tissue showed lower pO 2 than other tumour regions. Conclusions: The pO 2 measured in the tumours was consistent with the histological appearance of the tissue in which the measurements were performed, suggesting that reliable pO 2 distributions of tumours can be obtained with polarographic needle electrodes

  4. Vascular pericyte density and angiogenesis associated with adenocarcinoma of the prostate. (United States)

    Killingsworth, Murray C; Wu, Xiaojuan


    Angiogenesis facilitates metabolism, proliferation and metastasis of adenocarcinoma cells in the prostate, as without the development of new vasculature tumor growth cannot be sustained. However, angiogenesis is variable with the well-known phenomenon of vascular 'hotspots' seen associated with viable tumor cell mass. With the recent recognition of pericytes as molecular regulators of angiogenesis, we have examined the interaction of these cells in actively growing new vessels. Pericyte interactions with developing new vessels were examined using transmission electron microscopy. Pericyte distribution was mapped from α-SMA+ immunostained histological sections and quantified using image analysis. Data was obtained from peripheral and more central regions of 27 cases with Gleason scores of 4-9. Pericyte numbers were increased around developing new vessel sprouts at sites of luminal maturation. Numbers were reduced around the actively growing tips of migrating endothelial cells and functional new vessels. Tumor regions internal to a 500-μm peripheral band showed higher microvessel pericyte density than the peripheral region. Pericytes were found to be key cellular components of developing new vessels in adenocarcinoma of the prostate. Their numbers increased at sites of luminal maturation with these cells displaying an activated phenotype different to quiescent pericytes. Increased pericyte density was found internal to the peripheral region, suggesting more mature vessels lie more centrally. Copyright © 2011 S. Karger AG, Basel.

  5. Simulated blood transport of low density lipoproteins in a three-dimensional and permeable T-junction. (United States)

    Shibeshi, Shewaferaw S; Everett, Joseph; Venable, Demetrius D; Collins, William E


    Previous studies indicate that blood flow and transport of macromolecules in the cardiovascular system and tissues are essential to understand the genesis and progression of arterial diseases and for the effective implementation of arterial grafts, as well as to devise efficient drug delivery mechanisms. In the present study, we use computational fluid dynamics to simulate the blood flow and transport of low-density lipoproteins (LDL) in a three-dimensional and permeable T junction. The Navier-Stokes equation, Darcy's Law, and the advective diffusion equations are the mathematical models used to simulate the flow and transport phenomena of the system. In the numeric model to implement the finite volume method, we used the computational fluid dynamics software Fluent 6.1. The simulation shows higher LDL concentration in the luminal surface at the junction under physiologic flow conditions. At 1 mm depth into the artery from the luminal surface, the LDL concentration is approximately 40% of the lumenal concentration, and at 2 mm depth, it reduces to 20%. Ultimately, the concentration drops further and reaches zero at the outer wall boundary.

  6. High-density expression of Ca2+-permeable ASIC1a channels in NG2 glia of rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Yen-Chu Lin

    Full Text Available NG2 cells, a fourth type of glial cell in the mammalian CNS, undergo reactive changes in response to a wide variety of brain insults. Recent studies have demonstrated that neuronally expressed acid-sensing ion channels (ASICs are implicated in various neurological disorders including brain ischemia and seizures. Acidosis is a common feature of acute neurological conditions. It is postulated that a drop in pH may be the link between the pathological process and activation of NG2 cells. Such postulate immediately prompts the following questions: Do NG2 cells express ASICs? If so, what are their functional properties and subunit composition? Here, using a combination of electrophysiology, Ca2+ imaging and immunocytochemistry, we present evidence to demonstrate that NG2 cells of the rat hippocampus express high density of Ca2+-permeable ASIC1a channels compared with several types of hippocampal neurons. First, nucleated patch recordings from NG2 cells revealed high density of proton-activated currents. The magnitude of proton-activated current was pH dependent, with a pH for half-maximal activation of 6.3. Second, the current-voltage relationship showed a reversal close to the equilibrium potential for Na+. Third, psalmotoxin 1, a blocker specific for the ASIC1a channel, largely inhibited proton-activated currents. Fourth, Ca2+ imaging showed that activation of proton-activated channels led to an increase of [Ca2+]i. Finally, immunocytochemistry showed co-localization of ASIC1a and NG2 proteins in the hippocampus. Thus the acid chemosensor, the ASIC1a channel, may serve for inducing membrane depolarization and Ca2+ influx, thereby playing a crucial role in the NG2 cell response to injury following ischemia.

  7. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability* (United States)

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André


    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  8. Assessment of vascularity and permeability in brain tumor using SPECT and [sup 99m]Tc-DTPA-human serum albumin in relation to [sup 201]Tl SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawara, Jyoji; Fukuoka, Seiji; Takahashi, Shuhei; Takahashi, Masaaki; Satoh, Katsuyasu; Suematsu, Katsumi; Nakamura, Jun-ichi (Nakamura Memorial Hospital, Sapporo (Japan))


    Single photon emission computed tomography (SPECT) using technetium-99m-DTPA-human serum albumin ([sup 99m]Tc-HSA-D) and thallium-201 chloride ([sup 201]Tl) was simultaneously performed on 25 patients with brain tumors; 10 with brain metastasis, 8 with astrocytoma (Gr. 3) and 7 with meningioma. The early image was obtained 10 minutes after [sup 99m]Tc-HSA-D (740 MBq) injection, and the delayed image was taken 5 hours after the injection. HSA-D index, based on the ratio of [sup 99m]Tc-HSA-D uptake in the tumor versus the cortical area, was calculated on each image, and compared with Tl index (tumor/contralateral cerebrum ratio). HSA-D delayed index was significantly greater than HSA-D early index in all tumor types (p<0.05 by the Wilcoxon ranked sign test). Linear correlation between HSA-D early index and HSA-D delayed index was significant in astrocytoma (GR. 3) (p<0.01) and meningioma (p<0.001), and a linear correlation between HSA-D delayed index and Tl index was significant in astrocytoma (Gr. 3) (p<0.05). It is concluded that HSA-D early index and delayed index could reflect tumor vascularity and permeability, respectively, and provide supplementary information for Tl index. (author).

  9. Hydroxysafflor yellow A suppresses oxidized low density lipoprotein induced proliferation of vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Lin Sheng


    Full Text Available To investigate the relationship between the suppression of Hydroxysafflor yellow A (HSYA on the oxidized low density lipoprotein (ox-LDL induced proliferation of vascular smooth muscle cells (VSMCs and the mRNA and protein expression of extracellular signal-regulated protein kinase 1/2 (ERK1/2 and mitogen activated protein kinase phospholipase-1 (MAKP-1, VSMCs were treated with HSYA at 10 ?mol/L and/or ox-LDL at 35 mg/L for 48 h. MTT assay was done to measure cell survival rate, flow cytometry to detect cell cycle, reverse transcription PCR and Western blot to detect the expression of ERK1/2 and MAKP-1. When compared to cells treated with ox-LDL alone, the survival rate of cells treated with two reagents was reduced and the proportion of cells in G0/G1 phase significantly increased, with increased MKP-1 expression. The study suggests HSYA can inhibit VSMC proliferation via increasing MKP-1 expression, reducing p-ERK1/2 activity and suppressing cell cycle.

  10. Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity. (United States)

    Shin, Joong Won; Lee, Jiyun; Kwon, Junki; Choi, Jaewan; Kook, Michael S


    To study whether there are global and regional relationships between peripapillary vascular density (pVD) assessed by optical coherence tomography angiography (OCT-A) and visual field (VF) mean sensitivity at different glaucoma stages. Microvascular images and peripapillary retinal nerve fibre layer (pRNFL) thicknesses were obtained using a Cirrus OCT-A device in 91 glaucoma subjects. The pVD was measured at various spatial locations according to the Garway-Heath map, using a MATLAB software (The MathWorks, Natick, Massachusetts). VF mean sensitivity (VFMS) was recorded in the 1/L scale. Global and regional vasculature-function (pVD vs VFMS) relationships were assessed in separate patient groups at mild and moderate-to-advanced stages of glaucoma. The pVDs at superotemporal and inferotemporal regions were significantly associated with corresponding VFMS in mild glaucoma (pglaucoma, there were significant associations between pVD and VFMS, regardless of location. The association between global pVD and VFMS was significantly stronger than that between global pRNFL thickness and VFMS in moderate-to-advanced stage glaucoma (p glaucoma. OCT-A may be useful in monitoring glaucoma at various stages. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Effects of reindeer density on vascular plant diversity on North Scandinavian mountains

    Directory of Open Access Journals (Sweden)

    Johan Olofsson


    Full Text Available We studied the effects of reindeer grazing on species richness and diversity of vascular plants on dolomite influenced low alpine sites in the species rich northern part of the Scandes using 8 sites with different reindeer densities. Two sites were situated inside Malla Strict Nature Reserve, where reindeer grazing have been totally prohibited since 1981, and strongly restricted since 1950s. The six other sites were located in other species rich hotspot sites standardized to be as similar to the dolomite-influenced sites in Malla Strict Reserve as possible but varying in reindeer densities commonly found in the Fennoscandian mountain chain. Each site with a habitat complex especially rich in rare vascular plants (the Dryas heath – low herb meadow complex was systematically sampled in four plots of 2 m x 10 m. The plots were divided to 20 squares of 1 m x 1 m, and complete species lists of vascular plants were compiled for each of the squares. The first DCA (detrended correspondence analysis axis was strongly related to an index of reindeer grazing, indicating that grazing has a strong impact on the composition of the vegetation. None of the characteristics indices of biodiversity (species richness, evenness or Shannon-Wiener H’ was correlated with reindeer density. The local abundances of categories consisting of relatively rare plants (Ca favored plants and red listed plants of Finland showed significant, positive correlation with the intensity of reindeer grazing. We conclude that even though the density of reindeer has no influence on the total species richness or diversity of vascular plants, reindeer may still be important for regional biodiversity as it seems to favour rare and threatened plants. Moreover, our results imply that standard diversity indices may have limited value in the context of conservation biology, as these indices are equally influenced by rarities and by trivial species.Abstract in Swedish / Sammandrag: Vi

  12. Non-invasive vascular imaging: assessing tumour vascularity

    International Nuclear Information System (INIS)

    Delorme, S.; Knopp, M.V.


    Non-invasive assessment of vascularity is a new diagnostic approach to characterise tumours. Vascular assessment is based on the pathophysiology of tumour angiogenesis and its diagnostic implications for tumour biology, prognosis and therapy response. Two current techniques investigating vascular features in addition to morphology are Doppler ultrasonography and contrast-enhanced MRI. Diagnostic differentiation has been shown to be possible with Doppler, and a high degree of observed vascularity could be linked to an aggressive course of the disease. Dynamic MRI using gadolinium chelates is already used clinically to detect and differentiate tumours. The histological correlation shows that capillary permeability is increased in malignant tumours and is the best criterion for differentiation from benign processes. Permeability and perfusion factors seem to be more diagnostic than overall vessel density. New clinical applications are currently being established for therapy monitoring. Further instrumental developments will bring harmonic imaging in Doppler, and faster imaging techniques, higher spatial resolution and novel pharmacokinetic concepts in MRI. Upcoming contrast agents for both Doppler and MRI will further improve estimation of intratumoural blood volume and vascular permeability. (orig.)

  13. Quantification of Macular Vascular Density Using Optical Coherence Tomography Angiography and Its Relationship with Retinal Thickness in Myopic Eyes of Young Adults

    Directory of Open Access Journals (Sweden)

    Shiqi Yang


    Full Text Available Purpose. To quantify macular vascular density using optical coherence tomography angiography (OCTA and to investigate its relationship with retinal thickness in myopic eyes of young adults. Methods. In this cross-sectional study, 268 myopic eyes without pathological changes were recruited and divided into three groups: mild myopia (n=81, moderate myopia (n=117, and high myopia (n=70. Macular vascular density was quantified by OCTA and compared among three groups. Average retinal thickness, central subfield thickness, and macular ganglion cell complex (mGCC thickness were also evaluated and compared. Correlations among these variables were analyzed. Results. There was no statistical difference in superficial (62.3 ± 5.7% versus 62.7 ± 5.9% versus 63.8 ± 5.5% and deep macular vascular densities (58.3 ± 9.6% versus 59.2 ± 9.3% versus 60.9 ± 7.9% among mild-myopia, moderate-myopia, and high-myopia groups (both P>0.05. Superficial and deep macular vascular densities both had correlations with mean arterial pressure. Furthermore, superficial macular vascular density was significantly correlated with mGCC thickness. Conclusions. Varying degrees of myopia did not affect macular vascular density in young healthy adults. In addition, superficial macular vascular density, as an independent factor, was positively correlated with mGCC thickness.

  14. Post-stroke gaseous hypothermia increases vascular density but not neurogenesis in the ischemic penumbra of aged rats

    DEFF Research Database (Denmark)

    Sandu, Raluca Elena; Uzoni, Adriana; Ciobanu, Ovidiu


    of several genes involved in protein degradation, thereby leading to better preservation of infarcted tissue. Further, hypothermia increased the density of newly formed blood vessels in the peri-lesional cortex did not enhance neurogenesis in the infarcted area of aged rats. Likewise, there was improved......-PCR and immunofluorescence, we assessed infarct size, vascular density, neurogenesis and as well as the expression of genes coding for proteasomal proteins as well as in post-stroke aged Sprague-Dawley rats exposed to H2S- induced hypothermia. Results: Two days exposure to mild hypothermia diminishes the expression...

  15. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor. (United States)

    Han, Jingyan; Shuvaev, Vladimir V; Muzykantov, Vladimir R


    Reactive oxygen species (ROS) superoxide anion (O(2)()) and hydrogen peroxide (H(2)O(2)) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PECAM-1) specifically bind to endothelium, quench the corresponding ROS, and alleviate vascular oxidative stress and inflammation. In the present work, we studied the effects of anti-PECAM/catalase and anti-PECAM/SOD conjugates on the abnormal permeability manifested by transendothelial electrical resistance decline, increased fluorescein isothiocyanate-dextran influx, and redistribution of vascular endothelial-cadherin in human umbilical vein endothelial cell (HUVEC) monolayers. Anti-PECAM/catalase protected HUVEC monolayers against H(2)O(2)-induced endothelial barrier dysfunction. Polyethylene glycol-conjugated catalase exerted orders of magnitude lower endothelial uptake and no protective effect, similarly to IgG/catalase. Anti-PECAM/catalase, but not anti-PECAM/SOD, alleviated endothelial hyperpermeability caused by exposure to hypoxanthine/xanthine oxidase, implicating primarily H(2)O(2) in the disruption of the endothelial barrier in this model. Thrombin-induced endothelial permeability was not affected by treatment with anti-PECAM/AOEs or the NADPH oxidase inhibitor apocynin or overexpression of AOEs, indicating that the endogenous ROS play no key role in thrombin-mediated endothelial barrier dysfunction. In contrast, anti-PECAM/SOD, but not anti-PECAM/catalase, inhibited a vascular endothelial growth factor (VEGF)-induced increase in endothelial permeability, identifying a key role of endogenous O(2)() in the VEGF-mediated regulation of endothelial barrier function. Therefore, AOEs targeted to endothelial cells provide versatile molecular tools for testing the roles of

  16. Effect of platelet activating factor on endothelial permeability to plasma macromolecules

    International Nuclear Information System (INIS)

    Handley, D.A.; Arbeeny, C.M.; Lee, M.L.; Van Valen, R.G.; Saunders, R.N.


    The effect of intrajugular administration of platelet activating factor (PAF-C16) on vascular permeability was examined in the guinea pig. To examine the loss of selective endothelial permeability, the extravasative effect of PAF was assessed by monitoring hemoconcentration and the plasma loss of 125 I-albumin (6.7 nm), 125 I-low density lipoproteins (22.0 nm) or 125 I-very low density lipoproteins (62.1 nm). Extravasation was dose-dependent and began 1 min after PAF administration, continuing for 5-7 min. During extravasation, there was no evidence for selective plasma retention of any of the labeled plasma tracers, as measured by plasma radioactivity. These results suggest that PAF-induced extravasation is dose-dependent, with increases in vascular permeability sufficient to permit similar plasma efflux rates of albumin, low density lipoproteins and very low density lipoproteins

  17. Pattern and density of vascularization in mammalian testes, ovaries, and ovotestes. (United States)

    Lupiáñez, Darío G; Real, Francisca M; Dadhich, Rajesh K; Carmona, Francisco D; Burgos, Miguel; Barrionuevo, Francisco J; Jiménez, Rafael


    According to the classical paradigm, the vasculature of the embryonic testis is more dense and complex than that of the ovary, but recent studies based on whole-mount detection of Caveolin-1 (CAV1) as an endothelial cell marker, have suggested that the level of ovarian vascularization is higher than previously assumed. However, this new hypothesis has been neither tested using alternative methodology nor investigated in other mammalian species. In this paper, we have studied the vascularization process in the gonads of males and females of two mammalian species, the mouse (Mus musculus) and the Iberian mole (Talpa occidentalis). Our results show that the pattern of testis vascularization is very well conserved among mammals, including both pre- and postnatal stages of development and, at least in the mole, it is conserved irrespectively of whether the testicular tissue is XY or XX. We have shown that CAV1 is present not only in endothelial cells but also in prefollicular oocytes and in an ovarian population of somatic cortical cells. These data clearly establish that: (1) according to the classical hypothesis, the degree of vascularization of the developing ovary is lower than that of the testis, (2) ovarian vascularization is also evolutionarily conserved as it occurs similarly both in moles and in mice, and (3) that the degree of vascular development of the mammalian ovary is age-dependent increasing significatively at puberty. The expression of CAV1 in the ovary of most animal taxa, from nematodes to mammals, strongly suggests a role for this gene in the female meiosis. © 2012 WILEY PERIODICALS, INC.

  18. The Quantitative Measurements of Vascular Density and Flow Areas of Macula Using Optical Coherence Tomography Angiography in Normal Volunteers. (United States)

    Ghassemi, Fariba; Fadakar, Kaveh; Bazvand, Fatemeh; Mirshahi, Reza; Mohebbi, Masoumeh; Sabour, Siamak


    The quantification of the density of macular vascular networks and blood flow areas in the foveal and parafoveal area in healthy subjects using optical coherence tomography angiography (OCTA). Cross-sectional, prospective study in an institutional setting at the Retina Services of Farabi Eye Hospital. One hundred twelve normal volunteers with no known ocular or systemic disease were included, including patient numbers (one or both eyes), selection procedures, inclusion/exclusion criteria, randomization procedure, and masking. En face angiogram OCTA was performed on a 3 mm × 3 mm region centered on the macula. Automated thresholding and measuring algorithm method for foveal and parafoveal blood flow and vascular density (VD) were used. The density of macular vascular networks and blood flow area in the foveal and parafoveal area were measured. A total of 224 healthy eyes from 112 subjects with a mean age of 36.4 years ± 11.3 years were included. In the foveal region, the VD of the superficial capillary network (sCN) was significantly higher than that of the deep capillary network (dCN) (31.1% ± 5.5% vs. 28.3% ± 7.2%; P < .001), whereas in the parafoveal area, VD was higher in the dCN (62.24% ± 2.8% vs. 56.5% ± 2.5%; P < .001). Flow area in the 1-mm radius circle in the sCN was less than in the dCN. Superficial foveal avascular zone (sFAZ) size was negatively correlated with the VD of the foveal sCN, but in the deep FAZ (dFAZ) was not correlated with VD or blood flow area of the fovea. There was no difference between measured VD and blood flow surface area in both eyes of the subjects. OCTA could be used as a noninvasive, repeatable, layer-free method in quantitative evaluation of VD and blood flow of macular area. The normal quantities of the vascular plexus density and flow will help in better understanding the pathophysiological basis of the vascular disease of retina. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:478-486.]. Copyright 2017, SLACK

  19. Electronegative Low-Density Lipoprotein Increases C-Reactive Protein Expression in Vascular Endothelial Cells through the LOX-1 Receptor


    Chu, Chih-Sheng; Wang, Yu-Chen; Lu, Long-Sheng; Walton, Brian; Yilmaz, H. Ramazan; Huang, Roger Y.; Sawamura, Tatsuya; Dixon, Richard A. F.; Lai, Wen-Ter; Chen, Chu-Huang; Lu, Jonathan


    Objectives Increased plasma C-reactive protein (CRP) levels are associated with the occurrence and severity of acute coronary syndrome. We investigated whether CRP can be generated in vascular endothelial cells (ECs) after exposure to the most electronegative subfraction of low-density lipoprotein (LDL), L5, which is atherogenic to ECs. Because L5 and CRP are both ligands for the lectin-like oxidized LDL receptor-1 (LOX-1), we also examined the role of LOX-1. Methods and Results Plasma LDL sa...

  20. Detection and quantification of mast cell, vascular endothelial growth factor, and microvessel density in human inflammatory periapical cysts and granulomas. (United States)

    Fonseca-Silva, T; Santos, C C O; Alves, L R; Dias, L C; Brito, M; De Paula, A M B; Guimarães, A L S


    To identify and quantify mast cell (MC), vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in human periapical cysts and granulomas. Archived samples of cysts (n = 40) and granulomas (n = 28) were sectioned and stained with toluidine blue. MCs were identified and counted. Immunohistochemical reactions were employed to evaluate the tissue expression of VEGF and vessels. MVD was estimated by determining the areas of tissue labelled with CD31 antibody. The data were analysed using the Mann-Whitney test (P cysts than in granulomas (P cysts. Moreover, the identification of VEGF and MVD was consistent with the immune mechanisms involved in the lesions. © 2012 International Endodontic Journal.

  1. Role of Lectin-Like Oxidized Low Density Lipoprotein-1 in Fetoplacental Vascular Dysfunction in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Felipe A. Zuniga


    Full Text Available The bioavailability of nitric oxide (NO represents a key marker in vascular health. A decrease in NO induces a pathological condition denominated endothelial dysfunction, syndrome observed in different pathologies, such as obesity, diabetes, kidney disease, cardiovascular disease, and preeclampsia (PE. PE is one of the major risks for maternal death and fetal loss. Recent studies suggest that the placenta of pregnant women with PE express high levels of lectin-like oxidized LDL receptor-1 (LOX-1, which induces endothelial dysfunction by increasing reactive oxygen species (ROS and decreasing intracellular NO. Besides LOX-1 activation induces changes in migration and apoptosis of syncytiotrophoblast cells. However, the role of this receptor in placental tissue is still unknown. In this review we will describes the physiological roles of LOX-1 in normal placenta development and the potential involvement of this receptor in the pathophysiology of PE.

  2. Correlations between vascular invasion, neural structures invasion and microvessel density with clinicopathological parameters in gastric cancer

    Directory of Open Access Journals (Sweden)

    Bădescu Alina


    Full Text Available Scopul: Scopul studiului efectuat a fost acela de a estima prezenţa invaziei tumorale la nivelul vaselor limfatice, sanguine şi la nivel neural în carcinoamele gastrice pe preparatele colorate hematoxilină-eozină (H-E şi, de asemenea, densitatea microvascularizatiei tumorale (MVD, detectată imunohistochimic, precum şi relaţia acestora cu parametrii clinico-patologici şi biologici ai tumorilor. Material şi metodă. Pentru evaluarea invaziei limfo-vasculare şi neurale am inclus în studiu 367 de pacienţi diagnosticaţi cu carcinoame gastrice. Pentru studiul imunohistochimic al MVD, au fost selectaţi 28 de pacienţi, din care 16 pacienţi cu gastrectomomie totală, în urma căreia s-a stabilit stadiul TNM al tumorii primare şi 12 pacienţi cu biopsie gastrică. Biopsiile gastrice şi probele chirurgicale au fost procesate folosind tehnica de includere la parafină şi coloraţia hematoxilină-eozină, iar pentru evaluarea imunohistochimică a MVD s-au utilizat anticorpii anti-CD31 şi anti-CD34. Rezultate: Prezenţa invaziei tumorale la nivelul vaselor sanguine a fost semnificativ asociată cu stadiile avansate de boală (p<0,01 şi cu carcinoamele gastrice slab diferenţiate (p<0,01, în timp ce invazia vaselor limfatice s-a asociat semnificativ doar cu stadiul avansat al tumorilor (p<0,001. În ceea ce priveşte invazia tumorală peri- sau intraneurală, s-a observat o corelaţie semnificativă a acesteia cu sexul feminin (p<0,05, cu stadiile avansate de boală (p<0,001, cu tipul difuz al carcinoamelor gastrice (p<0,05 şi cu tumorile slab diferenţiate (p<0,05. S-a observat o legătură strânsă între valoarea MVD determinată cu anticorpul anti CD34 şi doi dintre parametrii histopatologici importanţi: tipul histologic al carcinoamelor gastrice conform clasificării Lauren (tipul difuz; p<0,05 şi gradul de diferenţiere al tumorilor (tumorile slab diferenţiate; p<0,05. S-a observat de asemenea o corelaţie semnificativă a

  3. Tilted Magnetic Levitation Enables Measurement of the Complete Range of Densities of Materials with Low Magnetic Permeability. (United States)

    Nemiroski, Alex; Soh, Siowling; Kwok, Sen Wai; Yu, Hai-Dong; Whitesides, George M


    Magnetic levitation (MagLev) of diamagnetic or weakly paramagnetic materials suspended in a paramagnetic solution in a magnetic field gradient provides a simple method to measure the density of small samples of solids or liquids. One major limitation of this method, thus far, has been an inability to measure or manipulate materials outside of a narrow range of densities (0.8 g/cm(3) MagLev"-to increase the range of densities that can be levitated magnetically. Tilting the MagLev device relative to the gravitational vector enables the magnetic force to be decreased (relative to the magnetic force) along the axis of measurement. This approach enables many practical measurements over the entire range of densities observed in matter at ambient conditions-from air bubbles (ρ ≈ 0) to osmium and iridium (ρ ≈ 23 g/cm(3)). The ability to levitate, simultaneously, objects with a broad range of different densities provides an operationally simple method that may find application to forensic science (e.g., for identifying the composition of miscellaneous objects or powders), industrial manufacturing (e.g., for quality control of parts), or resource-limited settings (e.g., for identifying and separating small particles of metals and alloys).

  4. Dissociation between vascular endothelial growth factor receptor-2 and blood vessel density in the caudate nucleus after chronic hydrocephalus. (United States)

    Deshpande, Abhishek; Dombrowski, Stephen M; Leichliter, Anna; Krajcir, Natalie; Zingales, Nicholas; Inoue, Masahiro; Schenk, Soren; Fukamachi, Kiyotaka; Luciano, Mark G


    Chronic hydrocephalus (CH) is characterized by the presence of ventricular enlargement, decreased cerebral blood flow (CBF), and brain tissue oxygen delivery. Although the underlying pathophysiological role of vascular endothelial growth factor (VEGF) is not clear, ischemic-hypoxic events in CH are known to trigger its release. Previously, we have shown increased VEGF receptor-2 (VEGFR-2) and blood vessel density (BVd) in the hippocampus after CH. We investigated changes in neuronal and glial VEGFR-2 density and BVd in the caudate nucleus in an experimental model of CH. Animals with CH were divided into short term (ST, 2 to 4 weeks) and long term (LT, 12 to 16 weeks) and were compared with surgical controls (SCs, 12 to 16 weeks). The cellular and BVds were estimated using immunohistochemical and stereological counting methods. Overall, percentage (%)VEGFR-2 neurons were approximately two times greater in CH (ST, LT) than in SC. By comparison, glial cell %VEGFR-2 was greater by 10% to 17% in ST and 4% to 11% lower in LT compared with that in SC. Blood vessel density was significantly lower in CH than in SC in the superficial caudate. Changes in cerebrospinal fluid ventricular volume and pressure, as well as in CBF did not correlate with either VEGFR-2 or BVd. These observed findings suggest that destructive forces may outweigh angiogenic forces and possibly show a disassociation between VEGFR-2 and BV expressions.

  5. Role of Microvessel Density and Vascular Endothelial Growth Factor in Angiogenesis of Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Rashika Chand


    Full Text Available Angiogenesis plays an important role in progression of tumor with vascular endothelial growth factor (VEGF being key proangiogenic factor. It was intended to study angiogenesis in different hematological malignancies by quantifying expression of VEGF and MVD in bone marrow biopsy along with serum VEGF levels and observing its change following therapy. The study included 50 cases of hematological malignancies which were followed for one month after initial therapy along with 30 controls. All of them were subjected to immunostaining by anti-VEGF and factor VIII antibodies on bone marrow biopsy along with the measurement of serum VEGF levels. Significantly higher pretreatment VEGF scores, serum VEGF levels, and MVD were observed in cases as compared to controls (p<0.05. The highest VEGF score and serum VEGF were observed in chronic myeloid leukemia and maximum MVD in Non-Hodgkin’s Lymphoma. Significant decrease in serum VEGF levels after treatment was observed in all hematological malignancies except for AML. To conclude angiogenesis plays an important role in pathogenesis of all the hematological malignancies as reflected by increased VEGF expression and MVD in bone marrow biopsy along with increased serum VEGF level. The decrease in serum VEGF level after therapy further supports this view and also lays the importance of anti angiogenic therapy.

  6. Pathophysiological Consequences of a Break in S1P1-Dependent Homeostasis of Vascular Permeability Revealed by S1P1 Competitive Antagonism. (United States)

    Bigaud, Marc; Dincer, Zuhal; Bollbuck, Birgit; Dawson, Janet; Beckmann, Nicolau; Beerli, Christian; Fishli-Cavelti, Gina; Nahler, Michaela; Angst, Daniela; Janser, Philipp; Otto, Heike; Rosner, Elisabeth; Hersperger, Rene; Bruns, Christian; Quancard, Jean


    Homeostasis of vascular barriers depends upon sphingosine 1-phosphate (S1P) signaling via the S1P1 receptor. Accordingly, S1P1 competitive antagonism is known to reduce vascular barrier integrity with still unclear pathophysiological consequences. This was explored in the present study using NIBR-0213, a potent and selective S1P1 competitive antagonist. NIBR-0213 was tolerated at the efficacious oral dose of 30 mg/kg BID in the rat adjuvant-induced arthritis (AiA) model, with no sign of labored breathing. However, it induced dose-dependent acute vascular pulmonary leakage and pleural effusion that fully resolved within 3-4 days, as evidenced by MRI monitoring. At the supra-maximal oral dose of 300 mg/kg QD, NIBR-0213 impaired lung function (with increased breathing rate and reduced tidal volume) within the first 24 hrs. Two weeks of NIBR-0213 oral dosing at 30, 100 and 300 mg/kg QD induced moderate pulmonary changes, characterized by alveolar wall thickening, macrophage accumulation, fibrosis, micro-hemorrhage, edema and necrosis. In addition to this picture of chronic inflammation, perivascular edema and myofiber degeneration observed in the heart were also indicative of vascular leakage and its consequences. Overall, these observations suggest that, in the rat, the lung is the main target organ for the S1P1 competitive antagonism-induced acute vascular leakage, which appears first as transient and asymptomatic but could lead, upon chronic dosing, to lung remodeling with functional impairments. Hence, this not only raises the question of organ specificity in the homeostasis of vascular barriers, but also provides insight into the pre-clinical evaluation of a potential safety window for S1P1 competitive antagonists as drug candidates.

  7. Cloning and characterization of rat density-enhanced phosphatase-1, a protein tyrosine phosphatase expressed by vascular cells. (United States)

    Borges, L G; Seifert, R A; Grant, F J; Hart, C E; Disteche, C M; Edelhoff, S; Solca, F F; Lieberman, M A; Lindner, V; Fischer, E H; Lok, S; Bowen-Pope, D F


    We have cloned from cultured vascular smooth muscle cells a protein tyrosine phosphatase, rat density-enhanced phosphatase-1 (rDEP-1), which is a probable rat homologue of DEP-1/HPTP eta. rDEP-1 is encoded by an 8.7-kb transcript and is expressed as a 180- to 220-kD protein. The rDEP-1 gene is located on human chromosome 11 (region p11.2) and on mouse chromosome 2 (region 2E). The cDNA sequence predicts a transmembrane protein consisting of a single phosphatase catalytic domain in the intracellular region, a single transmembrane domain, and eight fibronectin type III repeats in the extracellular region (GenBank accession number U40790). In situ hybridization analysis demonstrates that rDEP-1 is widely expressed in vivo but that expression is highest in cells that form epithelioid monolayers. In cultured cells with epitheliod morphology, including endothelial cells and newborn smooth muscle cells, but not in fibroblast-like cells, rDEP-1 transcript levels are dramatically upregulated as population density increases. In vivo, quiescent endothelial cells in normal arteries express relatively high levels of rDEP-1. During repair of vascular injury, expression of rDEP-1 is downregulated in migrating and proliferating endothelial cells. In vivo, rDEP-1 transcript levels are present in very high levels in megakaryocytes, and circulating plates have high levels of the rDEP-1 protein. In vitro, initiation of differentiation of the human megakaryoblastic cell line CHRF-288-11 with phorbol 12-myristate 13-acetate leads to a very strong upregulation of rDEP-1 transcripts. The deduced structure and the regulation of expression of rDEP-1 suggest that it may play a role in adhesion and/or signaling events involving cell-cell and cell-matrix contact.

  8. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells

    NARCIS (Netherlands)

    Zuurbier, Coert J.; Demirci, Cihan; Koeman, Anneke; Vink, Hans; Ince, Can


    Hyperglycemia is becoming recognized as an important risk factor for microvascular dysfunction. We hypothesized that short-term hyperglycemia, either on the scale of hours or weeks, alters the barrier function and the volume of the endothelial glycocalyx and decreases functional capillary density

  9. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome (United States)


    Introduction Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by features other than increased pulmonary vascular permeability. Pulmonary vascular permeability combined with increased extravascular lung water content has been considered a quantitative diagnostic criterion of ALI/ARDS. This prospective, multi-institutional, observational study aimed to clarify the clinical pathophysiological features of ALI/ARDS and establish its quantitative diagnostic criteria. Methods The extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI) were measured using the transpulmonary thermodilution method in 266 patients with PaO2/FiO2 ratio ≤ 300 mmHg and bilateral infiltration on chest radiography, in 23 ICUs of academic tertiary referral hospitals. Pulmonary edema was defined as EVLWI ≥ 10 ml/kg. Three experts retrospectively determined the pathophysiological features of respiratory insufficiency by considering the patients' history, clinical presentation, chest computed tomography and radiography, echocardiography, EVLWI and brain natriuretic peptide level, and the time course of all preceding findings under systemic and respiratory therapy. Results Patients were divided into the following three categories on the basis of the pathophysiological diagnostic differentiation of respiratory insufficiency: ALI/ARDS, cardiogenic edema, and pleural effusion with atelectasis, which were noted in 207 patients, 26 patients, and 33 patients, respectively. EVLWI was greater in ALI/ARDS and cardiogenic edema patients than in patients with pleural effusion with atelectasis (18.5 ± 6.8, 14.4 ± 4.0, and 8.3 ± 2.1, respectively; P edema or pleural effusion with atelectasis patients (3.2 ± 1.4, 2.0 ± 0.8, and 1.6 ± 0.5; P edema patients. A PVPI value of 2.6 to 2.85 provided a definitive diagnosis of ALI/ARDS (specificity, 0.90 to 0.95), and a value < 1.7 ruled out an ALI/ARDS diagnosis (specificity, 0.95). Conclusion

  10. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mazière, Cécile, E-mail: [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France); Salle, Valéry [Internal Medicine, North Hospital University, Place Victor Pauchet, Amiens 80000 (France); INSERM U1088 (EA 4292), SFR CAP-Santé (FED 4231), University of Picardie – Jules Verne (France); Gomila, Cathy; Mazière, Jean-Claude [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France)


    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  11. Crustal permeability (United States)

    Gleeson, Tom; Ingebritsen, Steven E.


    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  12. Increased atrial natriuretic factor receptor density in cultured vascular smooth muscle cells of the spontaneously hypertensive rat

    International Nuclear Information System (INIS)

    Khalil, F.; Fine, B.; Kuriyama, S.; Hatori, N.; Nakamura, A.; Nakamura, M.; Aviv, A.


    To explore the role of the atrial natriuretic factor (ANF) system in the pathophysiology of hypertension we examined the binding kinetics of synthetic ANF to cultured vascular smooth muscle cells (VSMCs) derived from the spontaneously hypertensive rat (SHR) and two normotensive controls-the Wistar Kyoto (WKY) and American Wistar (W). The number of maximal binding sites (Bmax) per cell (mean +/- SEM; X10(3] were: SHR = 278.0 +/- 33.0, WKY = 28.3 +/- 7.1 and W = 26.6 +/- 4.2. The differences between the SHR and normotensive strains were significant at p less than 0.001. The equilibrium dissociation constant (Kd; X 10(-9)M) was higher in SHR VSMCs (0.94 +/- 0.14) than in WKY (0.22 +/- 0.09; p less than 0.01) and W (0.39 +/- 0.14; p less than 0.02) cells. The plasma levels of the immunoreactive ANF were higher in SHR than the normotensive controls. We suggest that the relatively greater ANF receptor density in cultured VSMCs of the SHR represents a response to the in vitro environment which is relatively more deficient in ANF for VSMCs of the SHR as compared with the normotensive rats. Thus, the capacity of the SHR VSMC to regulate ANF receptor density appears to be independent of the blood pressure level

  13. Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Creer Michael H


    Full Text Available Abstract Human stem cells from adult sources have been shown to contribute to the regeneration of muscle, liver, heart, and vasculature. The mechanisms by which this is accomplished are, however, still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDHhiLin-, and ALDHloLin- cells following transplantation to NOD/SCID or NOD/SCID β2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDHhiLin- stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDHloLin- committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was, however, a significant increase in vascular density in the central infarct zone of ALDHhiLin- cell-treated mice, as compared to PBS and ALDHloLin- cell-treated mice. Conclusions Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue, but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.

  14. Application of histogram analysis for the evaluation of vascular permeability in glioma by the K2 parameter obtained with the dynamic susceptibility contrast method: Comparisons with Ktrans obtained with the dynamic contrast enhance method and cerebral blood volume. (United States)

    Taoka, Toshiaki; Kawai, Hisashi; Nakane, Toshiki; Hori, Saeka; Ochi, Tomoko; Miyasaka, Toshiteru; Sakamoto, Masahiko; Kichikawa, Kimihiko; Naganawa, Shinji


    The "K2" value is a factor that represents the vascular permeability of tumors and can be calculated from datasets obtained with the dynamic susceptibility contrast (DSC) method. The purpose of the current study was to correlate K2 with Ktrans, which is a well-established permeability parameter obtained with the dynamic contrast enhance (DCE) method, and determine the usefulness of K2 for glioma grading with histogram analysis. The subjects were 22 glioma patients (Grade II: 5, III: 6, IV: 11) who underwent DSC studies, including eight patients in which both DSC and DCE studies were performed on separate days within 10days. We performed histogram analysis of regions of interest of the tumors and acquired 20th percentile values for leakage-corrected cerebral blood volume (rCBV20%ile), K2 (K220%ile), and for patients who underwent a DCE study, Ktrans (Ktrans20%ile). We evaluated the correlation between K220%ile and Ktrans20%ile and the statistical difference between rCBV20%ile and K220%ile. We found a statistically significant correlation between K220%ile and Ktrans20%ile (r=0.717, pK220%ile showed a statistically significant (pK2 value calculated from the DSC dataset, which can be obtained with a short acquisition time, showed a correlation with Ktrans obtained with the DCE method and may be useful for glioma grading when analyzed with histogram analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Notional Permeability

    NARCIS (Netherlands)

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; Van der Meer, J.W.


    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath

  16. Vascular density of superficial esophageal squamous cell carcinoma determined by direct observation of resected specimen using narrow band imaging with magnifying endoscopy. (United States)

    Kikuchi, D; Iizuka, T; Hoteya, S; Nomura, K; Kuribayashi, Y; Toba, T; Tanaka, M; Yamashita, S; Furuhata, T; Matsui, A; Mitani, T; Inoshita, N; Kaise, M


    Observation of the microvasculature using narrow band imaging (NBI) with magnifying endoscopy is useful for diagnosing superficial squamous cell carcinoma. Increased vascular density is indicative of cancer, but not many studies have reported differences between cancerous and noncancerous areas based on an objective comparison. We observed specimens of endoscopic submucosal dissection (ESD) using NBI magnification, and determined the vascular density of cancerous and noncancerous areas. A total of 25 lesions of esophageal squamous cell carcinoma that were dissected en bloc by ESD between July 2013 and December 2013 were subjected to NBI magnification. We constructed a device that holds an endoscope and precisely controls the movement along the vertical axis in order to observe submerged specimens by NBI magnification. NBI image files of both cancerous (pathologically determined invasion depth, m1/2) and surrounding noncancerous areas were created and subjected to vascular density assessment by two endoscopists who were blinded to clinical information. The invasion depth was m1/2 in 20, m3/sm1 in four and sm2 in one esophageal cancer lesion. Mean vascular density was significantly increased in cancerous areas (37.6 ± 16.3 vessels/mm2) compared with noncancerous areas (17.6 ± 10.0 vessels/mm2) (P squamous cell carcinoma. The rates of agreement between vascular density values determined by two independent operators were high. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For permissions, please e-mail:

  17. The Quantitative Measurements of Vascular Density and Flow Area of Optic Nerve Head Using Optical Coherence Tomography Angiography. (United States)

    Bazvand, Fatemeh; Mirshahi, Reza; Fadakar, Kaveh; Faghihi, Houshangh; Sabour, Siamak; Ghassemi, Fariba


    The purpose of this study was to evaluate the vascular density (VD) and the flow area on optic nerve head (ONH) and peripapillary area, and the impact of age and sex using optical coherence tomography angiography (OCTA) in healthy human subjects. Both eyes of each volunteer were scanned by an RTVue XR Avanti; Optovue with OCTA using the split-spectrum amplitude-decorrelation angiography algorithm technique. Masked graders evaluated enface angiodisc OCTA data. The flow area of ONH and the VD were automatically calculated. A total of 79 eyes of patients with a mean age of 37.03±11.27 were examined. The total ONH (papillary and peripapillary) area VD was 56.03%±4.55%. The flow area of the ONH was 1.74±0.10 mm/1.34 mm. The temporal and inferotemporal peripapillary VD was different between male and female patients. Increasing age causes some changes in the flow area of the ONH and the papillary VD from the third to the fourth decade (analysis of variance test; P<0.05). A normal quantitative database of the flow area and VD of the papillary and peripapillary area, obtained by RTVue XR with OCT angiography technique, is presented here.

  18. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Directory of Open Access Journals (Sweden)

    Martin Parizek


    Full Text Available The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly, polyethylene glycol (PEG, bovine serum albumin (BSA, colloidal carbon particles (C, or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs, the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.

  19. Single Low-Density Lipoprotein Apheresis Does Not Improve Vascular Endothelial Function in Chronically Treated Hypercholesterolemic Patients

    Directory of Open Access Journals (Sweden)

    Kevin D. Ballard


    Full Text Available Objective. To investigate vascular endothelial function (VEF responses to a single low-density lipoprotein (LDL apheresis session in hypercholesterolemic patients undergoing chronic treatment. Methods. We measured brachial artery flow-mediated dilation (FMD, plasma lipids, vitamin E (α- and γ-tocopherol, markers of oxidative/nitrative stress (malondialdehyde (MDA and nitro-γ-tocopherol (NGT, and regulators of NO metabolism (arginine (ARG and asymmetric dimethylarginine (ADMA prior to (Pre and immediately following (Post LDL apheresis and at 1, 3, 7, and 14 d Post in 5 hypercholesterolemic patients (52 ± 11 y. Results. Relative to Pre, total cholesterol (7.8±1.5 mmol/L and LDL-cholesterol (6.2±1.2 mmol/L were 61% and 70% lower (P<0.01, respectively, at Post and returned to Pre levels at 14 d. Brachial FMD responses (6.9 ± 3.6% and plasma MDA, ARG, and ADMA concentrations were unaffected by LDL apheresis. Plasma α-tocopherol, γ-tocopherol, and NGT concentrations were 52–69% lower at Post (P<0.01, and α-tocopherol remained 36% lower at 1 d whereas NGT remained 41% lower at d 3. Conclusions. Acute cholesterol reduction by LDL apheresis does not alter VEF, oxidative stress, or NO homeostasis in patients treated chronically for hypercholesterolemia.

  20. Receptor-mediated endocytosis and intracellular trafficking of insulin and low-density lipoprotein by retinal vascular endothelial cells. (United States)

    Stitt, A W; Anderson, H R; Gardiner, T A; Bailie, J R; Archer, D B


    The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. These results illustrate the internalization and intracellular

  1. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    International Nuclear Information System (INIS)

    Guo Yanhong; Chen Kuanghueih; Gao Wei; Li Qian; Chen Li; Wang Guisong; Tang Jian


    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE -/- mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% and 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury

  2. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Czech Academy of Sciences Publication Activity Database

    Pařízek, Martin; Kasálková-Slepičková, N.; Bačáková, Lucie; Švindrych, Zdeněk; Slepička, P.; Bačáková, Markéta; Lisá, Věra; Švorčík, V.


    Roč. 2013, č. 2013 (2013), s. 371430 ISSN 2314-6133 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : biotechnology * tissue replacements * vascular smooth muscle cells * adhesion * modification Subject RIV: JJ - Other Materials

  3. Cell-permeable and plasma-stable peptidomimetic inhibitors of the postsynaptic density-95/N-methyl-D-aspartate receptor interaction

    DEFF Research Database (Denmark)

    Bach, Anders*; Eildal, Jonas Nii Nortey*; Stuhr-Hansen, Nicolai


    of this interaction, and here, this template is exploited for the development of blood plasma-stable and cell-permeable inhibitors. Initially, we explored both the amino acid sequence of the tetrapeptide and the nature of the N-alkyl groups, which consolidated N-cyclohexylethyl-ETAV (1) as the most potent...

  4. Permeability of cork to gases. (United States)

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D


    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  5. Measurement of the perfusion fraction in brain tumors with intravoxel incoherent motion MR imaging: validation with histopathological vascular density in meningiomas. (United States)

    Togao, Osamu; Hiwatashi, Akio; Yamashita, Koji; Kikuchi, Kazufumi; Momosaka, Daichi; Yoshimoto, Koji; Kuga, Daisuke; Mizoguchi, Masahiro; Suzuki, Satoshi O; Iwaki, Toru; Van Cauteren, Marc; Iihara, Koji; Honda, Hiroshi


    To evaluate the quantification performance of the perfusion fraction (f) measured with intravoxel incoherent motion (IVIM) MR imaging in a comparison with the histological vascular density in meningiomas. 29 consecutive patients with meningioma (59.0 ± 16.8 years old, 8 males and 21 females) who underwent a subsequent surgical resection were examined with both IVIM imaging and a histopathological analysis. IVIM imaging was conducted using a single-shot SE-EPI sequence with 13 b-factors (0, 10, 20, 30, 50, 80, 100, 200, 300, 400, 600, 800, 1000 s mm - 2 ) at 3T. The perfusion fraction (f) was calculated by fitting the IVIM bi-exponential model. The 90-percentile f-value in the tumor region-of-interest (ROI) was defined as the maximum f-value (f-max). Histopathological vascular density (%Vessel) was measured on CD31-immunostainted histopathological specimens. The correlation and agreement between the f-values and %Vessel was assessed. The f-max (15.5 ± 5.5%) showed excellent agreement [intraclass correlation coefficient (ICC) = 0.754] and a significant correlation (r = 0.69, p < 0.0001) with the %Vessel (12.9 ± 9.4%) of the tumors. The Bland-Altman plot analysis showed excellent agreement between the f-max and %Vessel (bias, -2.6%; 95% limits of agreement, from -16.0 to 10.8%). The f-max was not significantly different among the histological subtypes of meningioma. An excellent agreement and a significant correlation were observed between the f-values and %Vessel. The f-value can be used as a noninvasive quantitative imaging measure to directly assess the vascular volume fraction in brain tumors. Advances in knowledge: The f-value measured by IVIM imaging showed a significant correlation and an excellent agreement with the histological vascular density in the meningiomas. The f-value can be used as a noninvasive and quantitative imaging measure to directly assess the volume fraction of capillaries in brain tumors.

  6. Regional cerebral blood flow levels as measured by xenon-CT in vascular territorial low-density areas after subarachnoid hemorrhage are not always ischemic

    International Nuclear Information System (INIS)

    Fainardi, E.; Tagliaferri, M.F.; Compagnone, C.; Tanfani, A.; Cocciolo, F.; Targa, L.; Chieregato, A.; Battaglia, R.; Frattarelli, M.; Pascarella, R.


    The aim of this study was to assess regional cerebral blood flow (rCBV) in areas of CT hypoattenuation appearing in the postoperative period in patients treated for aneurysmal subarachnoid hemorrhage (SAH) using xenon-enhanced CT scanning (Xe-CT). We analyzed 15 patients (5 male and 10 female; mean age 49.7±12.1 years) with SAH on CT performed on admission to hospital and who showed a low-density area within a well-defined vascular territory on CT scans after clipping or coiling of a saccular aneurysm. All zones of hypoattenuation were larger than 1 cm 2 and showed signs of a mass effect suggesting a subacute phase of evolution. Two aneurysms were detected in two patients. Aneurysms were located in the middle cerebral artery (n=7), in the anterior communicating artery (n=6), in the internal carotid artery (n=3), and in the posterior communicating artery (n=1). Treatments were surgical (n=8), endovascular (n=2) or both (n=1). A total of 36 Xe-CT studies were performed and rCBF values were measured in two different regions of interest (ROI): the low-density area, and an area of normal-appearing brain tissue located symmetrically in the contralateral hemisphere. rCBF levels were significantly lower in the low-density area than in the contralateral normal-appearing area (P 55 ml/100 g per minute) in 2/36 lesions (5.6%). Our study confirmed that rCBF is reduced in new low-density lesions related to specific vascular territories. However, only about one-third of the lesions showed rCBF levels consistent with irreversible ischemia and in a relatively high proportion of lesions, rCBF levels indicated penumbral, oligemic and hyperemic areas. (orig.)

  7. Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: Correlation with microvascular density and vascular endothelial growth factor expression

    International Nuclear Information System (INIS)

    Kim, Yeo Eun; Lim, Joon Seok; Kim, Myeong Jin; Kim, Ki Whang; Choi, Jun Jeong; Kim, Dae Hong; Myoung, Sung Min


    To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (K trans ) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (K trans , Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for K trans ; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for K trans ; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, K trans and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.

  8. Causes of failure to achieve the low density lipoprotein cholesterol therapeutic target in patients with high and very high vascular risk controlled in Lipid and Vascular Risk Units. EROMOT study. (United States)

    Morales, Clotilde; Plana, Núria; Arnau, Anna; Matas, Laia; Mauri, Marta; Vila, Àlex; Vila, Lluís; Soler, Cristina; Montesinos, Jesús; Masana, Lluís; Pedro-Botet, Juan

    Determination of the level of achievement of the low density lipoprotein cholesterol (LDL-C) therapeutic target in patients with high and very high vascular risk treated in Lipid Units, as well as the causes of non-achievement. Multicentre retrospective observational study that included patients over 18 years with high and very high vascular risk, according to the criteria of the 2012 European Guidelines on Cardiovascular Disease Prevention, referred consecutively to Lipid Units between January and June 2012 and with follow-up two years after the first visit. The study included a total of 243 patients from 16 lipid units. The mean age was 52.2 years (SD 13.7), of whom 62.6% were males, and 40.3% of them were very high risk. At the first visit, 86.8% (25.1% in combination) and 95.0% (47.3% in combination) in the second visit (P<.001) were treated with lipid-lowering treatment. The therapeutic target was achieved by 28% (95 CI: 22.4-34.1). As regards the causes of non-achievement, 24.6% were related to the medication (10.3% maximum tolerated dose and 10.9% due to the appearance of adverse effects), 43.4% due to the physician (19.4% by inertia, 13.7% considering that target already reached), and 46.9% due to the patient, highlighting the therapeutic non-compliance (31,4%). LDL-C targets were achieved in about one-third of patients. The low adherence of the patient, followed by medical inertia are the most frequent causes that can explain these results. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Endovascular image-guided treatment of in-vivo model aneurysms with asymmetric vascular stents (AVS): evaluation with time-density curve angiographic analysis and histology. (United States)

    Dohatcu, A; Ionita, C N; Paciorek, A; Bednarek, D R; Hoffmann, K R; Rudin, S


    In this study, we compare the results obtained from Time-Density Curve (TDC) analysis of angiographic imaging sequences with histological evaluation for a rabbit aneurysm model treated with standard stents and new asymmetric vascular stents (AVS) placed by image-guided endovascular deployment. AVSs are stents having a low-porosity patch region designed to cover the aneurysm neck and occlude blood flow inside. To evaluate the AVSs, rabbits with elastase-induced aneurysm models (n=20) were divided into three groups: the first (n=10) was treated with an AVS, the second (n=5) with a non-patch standard coronary stent, and third was untreated as a control (n=5). We used TDC analysis to measure how much contrast media entered the aneurysm before and after treatment. TDCs track contrast-media-density changes as a function of time over the region of interest in x-ray DSA cine-sequences. After 28 days, the animals were sacrificed and the explanted specimens were histologically evaluated. The first group showed an average reduction of contrast flow into the aneurysm of 95% after treatment with an AVS with fully developed thrombus at 28 days follow-up. The rabbits treated with standard stents showed an increase in TDC residency time after treatment and partial-thrombogenesis. The untreated control aneurysms displayed no reduction in flow and were still patent at follow-up. The quantitative TDC analysis findings were confirmed by histological evaluation suggesting that the new AVS has great potential as a definitive treatment for cerebro-vascular aneurysms and that angiographic TDC analysis can provide in-vivo verification.

  10. Germinated Brown Rice Attenuates Atherosclerosis and Vascular Inflammation in Low-Density Lipoprotein Receptor-Knockout Mice. (United States)

    Zhao, Ruozhi; Ghazzawi, Nora; Wu, Jiansu; Le, Khuong; Li, Chunyang; Moghadasian, Mohammed H; Siow, Yaw L; Apea-Bah, Franklin B; Beta, Trust; Yin, Zhengfeng; Shen, Garry X


    The present study investigates the impact of germinated brown rice (GBR) on atherosclerosis and the underlying mechanism in low-density lipoprotein receptor-knockout (LDLr-KO) mice. The intensity of atherosclerosis in aortas of LDLr-KO mice receiving diet supplemented with 60% GBR (weight/weight) was significantly less than that in mice fed with 60% white rice (WR) or control diet ( p mice fed with WR diet was significantly more than that from mice receiving the control diet ( p mice in comparison to the WR diet ( p mice compared to WR. The anti-atherosclerotic effect of GBR in LDLr-KO mice at least in part results from its anti-inflammatory activity.

  11. The Role of High-Density Lipoproteins in Reducing the Risk of Vascular Diseases, Neurogenerative Disorders, and Cancer

    Directory of Open Access Journals (Sweden)

    Donovan McGrowder


    Full Text Available High-density lipoprotein (HDL is one of the major carriers of cholesterol in the blood. It attracts particular attention because, in contrast with other lipoproteins, as many physiological functions of HDL influence the cardiovascular system in favourable ways unless HDL is modified pathologically. The functions of HDL that have recently attracted attention include anti-inflammatory and anti-oxidant activities. High anti-oxidant and anti-inflammatory activities of HDL are associated with protection from cardiovascular disease. Atheroprotective activities, as well as a functional deficiency of HDL, ultimately depend on the protein and lipid composition of HDL. Further, numerous epidemiological studies have shown a protective association between HDL-cholesterol and cognitive impairment. Oxidative stress, including lipid peroxidation, has been shown to be the mediator of the pathologic effects of numerous risk factors of Alzheimer's disease. Lifestyle interventions proven to increase HDL- cholesterol levels including “healthy” diet, regular exercise, weight control, and smoking cessation have also been shown to provide neuro-protective effects. This review will focus on current knowledge of the beneficial effects of HDL-cholesterol as it relates to cardiovascular diseases, breast and lung cancers, non-Hodgkin's lymphoma, as well as its neuroprotective potential in reducing the risk of Alzheimer's disease and dementia.

  12. Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Di, Ningning; Pang, Haopeng; Ren, Yan; Yao, Zhenwei; Feng, Xiaoyuan [Huashan Hospital Fudan University, Department of Radiology, Shanghai (China); Dang, Xuefei [Shang Hai Gamma Knife Hospital, Shanghai (China); Cheng, Wenna [Binzhou Medical University Affiliated Hospital, Department of Pharmacy, Binzhou (China); Wu, Jingsong; Yao, Chengjun [Huashan Hospital Fudan University, Department of Neurosurgery, Shanghai (China)


    This study was designed to determine if cerebral blood flow (CBF) derived from arterial spin labeling (ASL) perfusion imaging could be used to quantitatively evaluate the microvascular density (MVD) of brain gliomas on a ''point-to-point'' basis by matching CBF areas and surgical biopsy sites as accurate as possible. The study enrolled 47 patients with treatment-naive brain gliomas who underwent preoperative ASL, 3D T1-weighted imaging with gadolinium contrast enhancement (3D T1C+), and T2 fluid acquisition of inversion recovery (T2FLAIR) sequences before stereotactic surgery. We histologically quantified MVD from CD34-stained sections of stereotactic biopsies and co-registered biopsy locations with localized CBF measurements. The correlation between CBF and MVD was determined using Spearman's correlation coefficient. P ≤.05 was considered statistically significant. Of the 47 patients enrolled in the study, 6 were excluded from the analysis because of brain shift or poor co-registration and localization of the biopsy site during surgery. Finally, 84 biopsies from 41 subjects were included in the analysis. CBF showed a statistically significant positive correlation with MVD (ρ = 0.567; P =.029). ASL can be a useful noninvasive perfusion MR method for quantitative evaluation of the MVD of brain gliomas. (orig.)

  13. Developments in permeable and low permeability barriers

    International Nuclear Information System (INIS)

    Jefferis, S.A.; Norris, G.H.; Thomas, A.O.


    The concept of the reactive treatment zone whereby pollutants are attenuated as they move along a pathway in the ground has enabled a re-thinking of many of the concepts of containment. In particular it offers the potential for the control of the flux from a contaminated area by controlling the contaminant concentration in the pathway(s) as well as or instead of using a low permeability barrier. The paper outlines the basic concepts of the reactive treatment zone and the use of permeable and low permeability reactive systems. The paper then gives a case history of the installation of a permeable barrier using an in-situ reaction chamber

  14. Protective effect of the silkworm protein 30Kc6 on human vascular endothelial cells damaged by oxidized low density lipoprotein (Ox-LDL.

    Directory of Open Access Journals (Sweden)

    Wei Yu

    Full Text Available Although the 30K family proteins are important anti-apoptotic molecules in silkworm hemolymph, the underlying mechanism remains to be investigated. This is especially the case in human vascular endothelial cells (HUVECs. In this study, a 30K protein, 30Kc6, was successfully expressed and purified using the Bac-to-Bac baculovirus expression system in silkworm cells. Furthermore, the 30Kc6 expressed in Escherichia coli was used to generate a polyclonal antibody. Western blot analysis revealed that the antibody could react specifically with the purified 30Kc6 expressed in silkworm cells. The In vitro cell apoptosis model of HUVEC that was induced by oxidized low density lipoprotein (Ox-LDL and in vivo atherosclerosis rabbit model were constructed and were employed to analyze the protective effects of the silkworm protein 30Kc6 on these models. The results demonstrated that the silkworm protein 30Kc6 significantly enhanced the cell viability in HUVEC cells treated with Ox-LDL, decreased the degree of DNA fragmentation and markedly reduced the level of 8-isoprostane. This could be indicative of the silkworm protein 30Kc6 antagonizing the Ox-LDL-induced cell apoptosis by inhibiting the intracellular reactive oxygen species (ROS generation. Furthermore, Ox-LDL activated the cell mitogen activated protein kinases (MAPK, especially JNK and p38. As demonstrated with Western analysis, 30Kc6 inhibited Ox-LDL-induced cell apoptosis in HUVEC cells by preventing the MAPK signaling pathways. In vivo data have demonstrated that oral feeding of the silkworm protein 30Kc6 dramatically improved the conditions of the atherosclerotic rabbits by decreasing serum levels of total triglyceride (TG, high density lipoprotein cholesterol (HDL-C, low density lipoprotein cholesterol (LDL-C and total cholesterol (TC. Furthermore, 30Kc6 alleviated the extent of lesions in aorta and liver in the atherosclerotic rabbits. These data are not only helpful in understanding the anti

  15. Permeability enhancement by shock cooling (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean


    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  16. “Breakthrough” osmosis and unusually high power densities in Pressure-Retarded Osmosis in non-ideally semi-permeable supported membranes (United States)

    Yaroshchuk, Andriy


    Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allowing for even minor deviations from ideal semipermeability to solvent can give rise to a previously overlooked mode of “breakthrough” osmosis. Here the rate of osmosis is very large (compared to the conventional mode) and practically unaffected by the so-called Internal Concentration Polarization. In Pressure-Retarded Osmosis, the power densities can easily exceed the conventional mode by one order of magnitude. Much more robust support layers can be used, which is an important technical advantage (reduced membrane damage) in Pressure-Retarded Osmosis. PMID:28332607

  17. Film Permeability Determination Using Static Permeability Cells (United States)

    The permeability of tarps to soil fumigant pesticides varies depending on the active ingredient chemical: dimethyl disulfide (DMDS), methyl bromide, chloropicrin, or other. The diffusion rate can be represented by the mass transfer coefficient (MTC).

  18. Can Vascular Endothelial Growth Factor and Microvessel Density Be Used as Prognostic Biomarkers for Colorectal Cancer? A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yibaina Wang


    Full Text Available Background. Vascular endothelial growth factor (VEGF and microvessel density (MVD are associated with greater incidence of metastases and decreased survival. Whether they can be used as prognostic indicators of colorectal cancer (CRC is still controversial. Methods. The authors performed a meta-analysis using the results of a literature search of databases of PubMed and EMBASE, and the references of articles included in the analysis. Meta-analysis was performed using random effects model and hazard ratios (HRs and 95% confidence intervals (CIs as effect measures. Results. Twenty studies contributed to the analysis of VEGF, of which 16 were used for overall survival (OS and 9 for disease-free survival (DFS. High VEGF levels has a relationship with unfavorable survival (OS: HR = 1.98, 95% CI: 1.30–3.02; DFS: HR = 2.10, 95% CI: 1.26–3.49 and a 4.22-fold increase in the rate of distant metastases. Analysis was performed on 18 studies for MVD; the results showed that patients with high MVD expression in tumors appeared to have poorer overall survival (HR = 1.39, 95% CI: 1.22–1.58 and were at a greater risk of having unfavorable clinical characteristics related to prognosis. Corresponding results were obtained from quantitative and/or qualitative analysis of clinicopathological. Conclusions. The meta-analysis demonstrates that VEGF and MVD can be used as prognostic biomarkers for CRC patients.

  19. Vascular endothelial growth factor is upregulated by l-dopa in the parkinsonian brain: implications for the development of dyskinesia (United States)

    Francardo, Veronica; Lindgren, Hanna S.; Sillivan, Stephanie E.; O’Sullivan, Sean S.; Luksik, Andrew S.; Vassoler, Fair M.; Lees, Andrew J.; Konradi, Christine


    Angiogenesis and increased permeability of the blood–brain barrier have been reported to occur in animal models of Parkinson’s disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood–brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson’s disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson’s disease. PMID:21771855

  20. Preliminary study of the irradiation-induced modification of skin permeability

    International Nuclear Information System (INIS)

    Coelho, R.; Istin, M.


    Irradiation of the skin of an animal leads immediately to a strong increase in vascular permeability. If a dye is at once injected intraveinously it diffuses very rapidly in the irradiated zone, this becomes highly coloured and the colour intensity measurement gives a clue to the severity of the lesions produced. This phenomenon has been used in the past as a pharmacological test to study vascular permeability and is employed in this work to observe the effect of diosmine-titrated flavonoids on vascular permeability in inflammatory diseases. The capillary permeability increase due to local γ irradiation of rabbit skin has been accurately determined by measurement of the colouration observed after injection of Geigy Blue. Diosmine, injected intraperitoneally, protects the vascular system against increased permeability due to ionising radiations [fr

  1. Permeability prediction in chalks

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika


    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability p...... significantly using the effective specific surface as the fluid-flow concept. The FZI unit is appropriate for highly permeable sedimentary rocks such as sandstones and limestones that have small surface areas....

  2. Scintigraphic assessment of vascularity and blood-tissue barrier of human brain tumours

    International Nuclear Information System (INIS)

    Front, D.


    Assessment of vascularity and blood-tissue barrier was performed by sequential scintigraphy in 43 patients with brain tumours. The blood-tumour barrier was evaluated by use of sup(99m)Tc-pertechnetate, and vascularity using sup(99m)Tc-labelled red blood cells. Three groups of tumours were found: tumours with low vascularity and permeable barrier, tumours with high vascularity and permeable barrier, and tumours with low vascularity and relatively impermeable barrier. The first group indicates that when vessels are permeable, there may be a rapid penetration of large amounts of pertechnetate into the tumour even when vascularity is not increased. In the other two groups penetration of pertechnetate into the tumour is affected by vascularity, as it determines the total area where passage of the radiopharmaceutical takes place. It is suggested that the permeability of the blood-tumour barrier and the amount of vascularity may have an effect on the success of chemotherapy in brain tumours. (author)

  3. Promising Poly(ε-caprolactone Composite Reinforced with Weft-Knitted Polyester for Small-Diameter Vascular Graft Application

    Directory of Open Access Journals (Sweden)

    Fu-Jun Wang


    Full Text Available The present study was designed to improve the mechanical performance of a small-diameter vascular prosthesis made from a flexible membrane of poly(ε-caprolactone (PCL. PCL reinforcement was achieved by embedding a tubular fabric knitted from polyethylene terephthalate (PET yarns within the freeze-dried composite structure. The knitting density of PET fabric influenced the mechanical properties of the new vascular graft. Results showed that the composite prototype has good mechanical properties, water permeability, elastic recovery, and suture retention strength. Increases in loop density increased compressive strength and suture retention strength and decreased elastic recovery. The new composite prototype vascular graft has promising potential applications in clinics because of its excellent mechanical properties.

  4. Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells. (United States)

    Zhang, Guo-Qiang; Tao, Yong-Kang; Bai, Yong-Ping; Yan, Sheng-Tao; Zhao, Shui-Ping


    Oxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2α-subunit (eIF2α)/CCAAT/enhancer-binding protein homologous protein (CHOP) endoplasmic reticulum (ER) stress pathway in endothelial cells. Statins are cholesterol-lowering drugs that exert pleiotropic effects including suppression of oxidative stress. This study aimed to explore the roles of simvastatin on ox-LDL-induced ER stress and apoptosis in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were treated with simvastatin (0.1, 0.5, or 2.5 μmol/L) or DEVD-CHO (selective inhibitor of caspase-3, 100 μmol/L) for 1 h before the addition of ox-LDL (100 μg/ml) and then incubated for 24 h, and untreated cells were used as a control group. Apoptosis, expression of PERK, phosphorylation of eIF2α, CHOP mRNA level, and caspase-3 activity were measured. Comparisons among multiple groups were performed with one-way analysis of variance (ANOVA) followed by post hoc pairwise comparisons using Tukey's tests. A value of P LDL resulted in a significant increase in apoptosis (31.9% vs. 4.9%, P LDL-induced apoptosis (28.0%, 24.7%, and 13.8%, F = 15.039, all P LDL significantly increased the expression of PERK (499.5%, P LDL-induced expression of PERK (407.8%, 339.1%, and 187.5%, F = 10.121, all P LDL-induced expression of PERK (486.4%) and phosphorylation of eIF2α (418.8%). Exposure of HUVECs to ox-LDL also markedly induced caspase-3 activity together with increased CHOP mRNA level; these effects were inhibited by simvastatin treatment. This study suggested that simvastatin could inhibit ox-LDL-induced ER stress and apoptosis in vascular endothelial cells.

  5. Diabetes and Retinal Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin


    Full Text Available Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR. We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR.

  6. Evaluation of permeability of compacted bentonite ground considering heterogeneity by geostatistics

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Nakamura, Kunihiko; Kudo, Kohji; Hironaga, Michihiko; Nakagami, Motonori; Niwase, Kazuhito; Komatsu, Shin-ichi


    The permeability of the bentonite ground as an engineered barrier is possibly designed to the value which is lower than that determined in terms of required performance because of heterogeneous distribution of permeability in the ground, which might be considerable when the ground is created by the compaction method. The effect of heterogeneity in the ground on the permeability of the bentonite ground should be evaluated by overall permeability of the ground, whereas in practice, the effect is evaluated by the distribution of permeability in the ground. Thus, in this study, overall permeability of the bentonite ground is evaluated from the permeability of the bentonite ground is evaluated from the permeability distribution determined using the geostatistical method with the dry density data as well as permeability data of the undisturbed sample recovered from the bentonite ground. Consequently, it was proved through this study that possibility of overestimation of permeability of the bentonite ground can be reduced if the overall permeability is used. (author)

  7. Permeability of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.


    The object of the study was the water flow through the bentonite which is caused by hydraulic gradients. The study comprised laboratory tests and theoretical considerations. It was found that high bulk densities reduced the permeability to very low values. It was concluded that practically impervious conditions prevail when the gradients are low. Thus with a regional gradient of 10 -2 and a premeability of 10 -13 m/s the flow rate will not be higher than approximately 1 mm in 30 000 years. (G.B.)

  8. Permeability of porour rhyolite (United States)

    Cashman, K.; Rust, A.; Wright, H.; Roberge, J.


    The development of permeability in bubble-bearing magmas determines the efficiency of volatile escape during their ascent through volcanic conduits, which, in turn, controls their explosive potential. As permeability requires bubble connectivity, relationships between permeability and porosity in silicic magmas must be controlled by the formation, growth, deformation and coalescence of their constituent bubbles. Although permeability data on porous volcanic pyroclasts are limited, the database can be greatly extended by including data for ceramic and metallic foams1. Several studies indicate that a single number does not adequately describe the permeability of a foam because inertial effects, which predominate at high flow rates, cause deviations from Darcy's law. These studies suggest that permeability is best modeled using the Forschheimer equation to determine both the Darcy permeability (k1) and the non-Darcian (k2) permeability. Importantly, at the high porosities of ceramic foams (75-95%), both k1 and k2 are strongly dependent on pore size and geometry, suggesting that measurement of these parameters provides important information on foam structure. We determined both the connected porosity (by He-pycnometry) and the permeability (k1 and k2) of rhyolitic samples having a wide range in porosity (22-85%) and vesicle textures. In general, these data support previous observations of a power law relationship between connected porosity and Darcy permeability2. In detail, variations in k1 increase at higher porosities. Similarly, k2 generally increases in both mean and standard deviation with increasing porosity. Measurements made on three mutually perpendicular cores from individual pumice clasts suggest that some of the variability can be explained by anisotropy in the vesicle structure. By comparison with ceramic foams, we suggest that the remaining variability results from differences either in average vesicle size or, more likely, in the size of apertures

  9. Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies

    Directory of Open Access Journals (Sweden)

    Melemedjian Ohannes K


    Full Text Available Abstract Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG, which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients.

  10. Soils - Mean Permeability (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...

  11. Hydrogen permeability through metals

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tsvetkov, I.V.; Marenkov, E.D.; Yarko, S.S.


    The mechanisms of hydrogen permeability through one-layer and multi-layer membranes are considered. The effect of surface roughness, crystal defects, cracks and pores is described. Mathematical description of the processes is given [ru

  12. Permeable pavement study (Edison) (United States)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  13. Intestinal Permeability: The Basics

    Directory of Open Access Journals (Sweden)

    Ingvar Bjarnason


    Full Text Available The authors review some of the more fundamental principles underlying the noninvasive assessment of intestinal permeability in humans, the choice of test markers and their analyses, and the practical aspects of test dose composition and how these can be changed to allow the specific assessment of regional permeability changes and other intestinal functions. The implications of increased intestinal permeability in the pathogenesis of human disease is discussed in relation to findings in patients with Crohn’s disease. A common feature of increased intestinal permeability is the development of a low grade enteropathy, and while quantitatively similar changes may be found in Crohn’s disease these seem to predict relapse of disease. Moreover, factors associated with relapse of Crohn’s disease have in common an action to increase intestinal permeability. While increased intestinal permeability does not seem to be important in the etiology of Crohn’s disease it may be a central mechanism in the clinical relapse of disease.

  14. Accurate control testing for clay liner permeability

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R J


    Two series of centrifuge tests were carried out to evaluate the use of centrifuge modelling as a method of accurate control testing of clay liner permeability. The first series used a large 3 m radius geotechnical centrifuge and the second series a small 0.5 m radius machine built specifically for research on clay liners. Two permeability cells were fabricated in order to provide direct data comparisons between the two methods of permeability testing. In both cases, the centrifuge method proved to be effective and efficient, and was found to be free of both the technical difficulties and leakage risks normally associated with laboratory permeability testing of fine grained soils. Two materials were tested, a consolidated kaolin clay having an average permeability coefficient of 1.2{times}10{sup -9} m/s and a compacted illite clay having a permeability coefficient of 2.0{times}10{sup -11} m/s. Four additional tests were carried out to demonstrate that the 0.5 m radius centrifuge could be used for linear performance modelling to evaluate factors such as volumetric water content, compaction method and density, leachate compatibility and other construction effects on liner leakage. The main advantages of centrifuge testing of clay liners are rapid and accurate evaluation of hydraulic properties and realistic stress modelling for performance evaluations. 8 refs., 12 figs., 7 tabs.

  15. Radionuclide assessment of pulmonary microvascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, A.B.J. [Medical Intensive Care Unit, Department of Internal Medicine, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam (Netherlands)


    The literature has been reviewed to evaluate the technique and clinical value of radionuclide measurements of microvascular permeability and oedema formation in the lungs. Methodology, modelling and interpretation vary widely among studies. Nevertheless, most studies agree on the fact that the measurement of permeability via pulmonary radioactivity measurements of intravenously injected radiolabelled proteins versus that in the blood pool, the so-called pulmonary protein transport rate (PTR), can assist the clinician in discriminating between permeability oedema of the lungs associated with the adult respiratory distress syndrome (ARDS) and oedema caused by an increased filtration pressure, for instance in the course of cardiac disease, i.e. pressure-induced pulmonary oedema. Some of the techniques used to measure PTR are also able to detect subclinical forms of lung microvascular injury not yet complicated by permeability oedema. This may occur after cardiopulmonary bypass and major vascular surgery, for instance. By paralleling the clinical severity and course of the ARDS, the PTR method may also serve as a tool to evaluate new therapies for the syndrome. Taken together, the currently available radionuclide methods, which are applicable at the bedside in the intensive care unit, may provide a gold standard for detecting minor and major forms of acute microvascular lung injury, and for evaluating the severity, course and response to treatment. (orig.). With 2 tabs.

  16. On-treatment non-high-density lipoprotein cholesterol, apolipoprotein B, triglycerides, and lipid ratios in relation to residual vascular risk after treatment with potent statin therapy

    DEFF Research Database (Denmark)

    Mora, Samia; Glynn, Robert J; Boekholdt, S Matthijs


    The goal of this study was to determine whether residual risk after high-dose statin therapy for primary prevention individuals with reduced levels of low-density lipoprotein cholesterol (LDL-C) is related to on-treatment apolipoprotein B, non-high-density lipoprotein cholesterol (non-HDL-C), tri...

  17. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)


    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  18. Vascular endothelial growth factors and angiogenesis in eye disease

    NARCIS (Netherlands)

    Witmer, A. N.; Vrensen, G. F. J. M.; van Noorden, C. J. F.; Schlingemann, R. O.


    The vascular endothelial growth factor (VEGF) family of growth factors controls pathological angiogenesis and increased vascular permeability in important eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). The purpose of this review is to develop new insights

  19. Morphological appearance, content of extracellular matrix and vascular density of lung metastases predicts permissiveness to infiltration by adoptively transferred natural killer and T cells

    DEFF Research Database (Denmark)

    Yang, Q.; Goding, S.; Hagenaars, M.


    . Analyses of tumors for extracellular matrix (ECM) components and PECAM-1(+) vasculature, revealed that the I-R lesions are hypovascularized and contain very little laminin, collagen and fibronectin. In contrast, the I-P loose tumors are well-vascularized and they contain high amounts of ECM components....... Interestingly, the distribution pattern of ECM components in the I-P loose tumors is almost identical to that of the normal lung tissue, indicating that these tumors develop around the alveolar walls which provide the loose tumors with both a supporting tissue and a rich blood supply. In conclusion, tumor...... infiltration by activated NK and T cells correlates with the presence of ECM components and PECAM-1(+) vasculature in the malignant tissue. Thus, analysis of the distribution of ECM and vasculature in tumor biopsies may help select patients most likely to benefit from cellular adoptive immunotherapy....

  20. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Moding, Everett J. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Clark, Darin P.; Qi, Yi [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Li, Yifan; Ma, Yan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Ghaghada, Ketan [The Edward B. Singleton Department of Pediatric Radiology, Texas Children' s Hospital, Houston, Texas (United States); Johnson, G. Allan [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Badea, Cristian T., E-mail: [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States)


    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P<.05). There was a positive correlation between CT measurement of tumor FBV on day 1 and extravasated iodine on day 4 with microvascular density (MVD) on day 4 (R{sup 2}=0.53) and dextran accumulation (R{sup 2}=0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment.

  1. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction. (United States)

    Fisher, Mark


    Vascular endothelial injury has multiple elements, and this article focuses on ischemia-related processes that have particular relevance to ischemic stroke. Distinctions between necrotic and apoptotic cell death provide a basic science context in which to better understand the significance of classical core and penumbra concepts of acute stroke, with apoptotic processes particularly prominent in the penumbra. The mitochondria are understood to serve as a reservoir of proteins that mediate apoptosis. Oxidative stress pathways generating reactive oxygen species (ROS) are prominent in endothelial injury, both ischemic and nonischemic, with prominent roles of enzyme- and nonenzymemediated pathways; mitochondria once again have a critical role, particularly in the nonenzymatic pathways generating ROS. Inflammation also contributes to vascular endothelial injury, and endothelial cells have the capacity to rapidly increase expression of inflammatory mediators following ischemic challenge; this leads to enhanced leukocyte-endothelial interactions mediated by selectins and adhesion molecules. Preconditioning consists of a minor version of an injurious event, which in turn may protect vascular endothelium from injury following a more substantial event. Presence of the blood-brain barrier creates unique responses to endothelial injury, with permeability changes due to impairment of endothelial-matrix interactions compounding altered vasomotor tone and tissue perfusion mediated by nitric oxide. Pharmacological protection against vascular endothelial injury can be provided by several of the phosphodiesterases (cilostazol and dipyridamole), along with statins. Optimal clinical responses for protection of brain vascular endothelium may use preconditioning as a model, and will likely require combined protection against apoptosis, ROS, and inflammation.


    African Journals Online (AJOL)


    Jun 2, 2016 ... with the literature from South Africa over the last four decades, and reflects the high rate of interpersonal violence in the country.14,15 As expected, cervical ... via the intact circle of Willis in young patients is the most likely explanation for the lack of strokes. Five patients were referred to the Durban vascular ...

  3. Vascular Disorders (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Vascular Disorders Email to a friend * required fields ...

  4. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    International Nuclear Information System (INIS)

    Sun Wenjing; Sun De'an; Fang Lei


    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  5. Leucocyte depletion attenuates the early increase in myocardial capillary permeability to small hydrophilic solutes following ischaemia and reperfusion

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Hansen, P R; Ali, S


    The aim was to assess the significance of polymorphonuclear leucocytes on the myocardial capillary permeability to a small hydrophilic indicator, on the vascular tone of the resistance vessels, and on contractile function following ischaemia and reperfusion.......The aim was to assess the significance of polymorphonuclear leucocytes on the myocardial capillary permeability to a small hydrophilic indicator, on the vascular tone of the resistance vessels, and on contractile function following ischaemia and reperfusion....

  6. Permeability measuremens of brazilian Eucalyptus

    Directory of Open Access Journals (Sweden)

    Marcio Rogério da Silva


    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  7. Elevated microRNA-126 is associated with high vascular endothelial growth factor receptor 2 expression levels and high microvessel density in colorectal cancer

    DEFF Research Database (Denmark)

    Hansen, Torben Frøstrup; Andersen, Claus Lindbjerg; Nielsen, Boye Schnack


    was to analyse the possible relationship between miRNA-126, VEGFR-2 and angiogenesis in tumour tissue from patients with colorectal cancer (CRC). Tumour tissue was obtained from 81 patients. The miRNA-126 and VEGFR-2 gene expression levels were analysed by PCR and the protein concentrations of VEGFR-2 were...... the median as the cut-off. The median gene expression levels of VEGFR-2 were significantly lower in the tumours expressing low levels of miRNA-126, 0.30 (95% CI, 0.24‑0.36), compared to those expressing high levels of miRNA-126, 0.48 (95% CI, 0.28-0.60), p=0.02. A positive association was observed with VEGFR...... analysed by ELISA. Angiogenesis, visualised by the endothelial cell marker CD105 combined with caldesmon, was assessed by immunohistochemistry and the microvessel density (MVD) technique. In situ hybridisation was performed for miRNA-126. Tumours were classified as low or high miRNA‑126-expressing using...

  8. Measurement of radon permeability through polyethylene membrane using scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A.H.; Abou-Leila, M. [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Abdalla, A.M., E-mail: [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Department of Physics, Faculty of Sciences and Arts, Najran University, Najran, P.O. Box. 11001 (Saudi Arabia); Advanced Materials and Nano-Engineering Laboratory (AMNEL), Centre for Advanced Materials and Nano-Engineering (CAMNE), Najran University, Najran, P.O. Box. 11001 (Saudi Arabia)


    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211]method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  9. Measurement of radon permeability through polyethylene membrane using scintillation detector

    International Nuclear Information System (INIS)

    Ashry, A.H.; Abou-Leila, M.; Abdalla, A.M.


    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211] method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  10. Vascular ultrasound. (United States)

    Pilcher, D B; Ricci, M A


    Surgeon-interpreted diagnostic ultrasound has become the preferred screening test and often the definitive test for the diagnosis of arterial stenosis, aneurysm, and venous thrombosis. As a modality for surveillance, its noninvasive quality makes it particularly appealing as the test of choice to screen patients for abdominal aortic aneurysms or to perform follow-up examinations on those patients with a carotid endartectomy or in situ bypass grafts. The increasing reliance on intraoperative duplex imaging of vascular procedures demands that the surgeon learn the skills to perform the studies without a technologist or radiologist to interpret the examination.

  11. Electrokinetic effects and fluid permeability

    International Nuclear Information System (INIS)

    Berryman, J.G.


    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery

  12. Effect of permeability enhancers on paracellular permeability of acyclovir. (United States)

    Ates, Muge; Kaynak, Mustafa Sinan; Sahin, Selma


    According to Biopharmaceutics Classification System (BCS), acyclovir is a class III (high solubility, low permeability) compound, and it is transported through paracellular route by passive diffusion. The aim of this study was to investigate the effect of various pharmaceutical excipients on the intestinal permeability of acyclovir. The single-pass in-situ intestinal perfusion (SPIP) method was used to estimate the permeability values of acyclovir and metoprolol across different intestinal segments (jejunum, ileum and colon). Permeability coefficient (Peff ) of acyclovir was determined in the absence and presence of a permeation enhancer such as dimethyl β-cyclodextrin (DM-β-CD), sodium lauryl sulfate (SLS), sodium caprate (Cap-Na) and chitosan chloride. All enhancers increased the permeability of paracellularly transported acyclovir. Although Cap-Na has the highest permeability-enhancing effect in all segments, permeation-enhancing effect of chitosan and SLS was only significant in ileum. On the other hand, DM-β-CD slightly decreased the permeability in all intestinal segments. These findings have potential implication concerning the enhancement of absorption of paracellularly transported compounds with limited oral bioavailability. In the case of acyclovir, Cap-Na either alone or in combination with SLS or chitosan has the potential to improve its absorption and bioavailability and has yet to be explored. © 2016 Royal Pharmaceutical Society.

  13. Permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier

    International Nuclear Information System (INIS)

    Squier, C.A.; Hall, B.K.


    The permeability of porcine skin and keratinized and nonkeratinized oral mucosa to tritium-labeled water and horseradish peroxidase (HRPO) was determined using perfusion chambers. Small blocks from each tissue were also incubated with HRPO and the extent of penetration visualized microscopically; this enabled measurements to be made of the thickness of the permeability barrier to this water-soluble tracer. Results obtained after inverting the oral mucosa in the chambers or adding metabolic inhibitors indicated that both compounds diffuse across the tissue. The permeability constants derived directly in the study showed that skin was less permeable than oral mucosa and that the floor of the mouth was significantly more permeable than all other regions. When these constants were normalized in terms of a standard permeability barrier thickness and the different tissues compared, the values obtained for skin were again less than those of the oral regions but, of these, the buccal mucosa was significantly higher. The difference in permeability between epidermis and keratinized oral epithelium may be due to differences in the volume density of membrane-coating granules known to exist between the tissues; differences between the oral mucosal regions may reflect differences in the nature of the intercellular barrier material

  14. Comparison of extravascular lung water volume with radiographic findings in dogs with experimentally increased permeability pulmonary edema

    International Nuclear Information System (INIS)

    Takeda, A.; Okumura, S.; Miyamoto, T.; Hagio, M.; Fujinaga, T.


    The relationship between extravascular lung water volume (ELWV) and chest radiographical findings was studied in general-anesthetized beagles. The dogs were experimentally injected with oleic acid to increase pulmonary vascular permeability. When the ELWV value in the dogs increased more than approximately 37% from the control value, their chest radiographs began to show signs of pulmonary edema. At this time, the chest X-ray density increased to 10% above the control level. PaO2 decreased, and PaCO2 increased after the administration of oleic acid. This clearly showed that the pulmonary gas exchange function was reduced following increasing ELWV. This comparison showed that probably the thermal-sodium double indicator dilution measurement of ELWV can detect slight hyperpermeability pulmonary edema that does not show on chest radiographs. The chest radiograph was therefore not suitable for the detection of slight pulmonary edema, because it did not show any changes in the early stages in hyperpermeability pulmonary edema

  15. Ammonia gas permeability of meat packaging materials. (United States)

    Karim, Faris; Hijaz, Faraj; Kastner, Curtis L; Smith, J Scott


    Meat products are packaged in polymer films designed to protect the product from exterior contaminants such as light, humidity, and harmful chemicals. Unfortunately, there is almost no data on ammonia permeability of packaging films. We investigated ammonia permeability of common meat packaging films: low-density polyethylene (LDPE; 2.2 mil), multilayer polyolefin (MLP; 3 mil), and vacuum (V-PA/PE; 3 mil, 0.6 mil polyamide/2.4 mil polyethylene). The films were fabricated into 10 × 5 cm pouches and filled with 50 mL deionized water. Pouches were placed in a plexiglass enclosure in a freezer and exposed to 50, 100, 250, or 500 ppm ammonia gas for 6, 12, 24, and 48 h at -17 ± 3 °C and 21 ± 3 °C. At freezing temperatures, no ammonia residues were detected and no differences in pH were found in the water. At room temperature, ammonia levels and pH of the water increased significantly (P packaging materials have low ammonia permeability and protect meat products exposed to ammonia leaks during frozen storage.

  16. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail:


    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  17. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M


    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  18. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. (United States)

    Salmon, Andrew H J; Satchell, Simon C


    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function

  19. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana


    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  20. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters


    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  1. Morphological, functional and metabolic imaging biomarkers: assessment of vascular-disrupting effect on rodent liver tumours

    International Nuclear Information System (INIS)

    Wang, Huaijun; Li, Junjie; Keyzer, Frederik De; Yu, Jie; Feng, Yuanbo; Marchal, Guy; Ni, Yicheng; Chen, Feng; Nuyts, Johan


    To evaluate effects of a vascular-disrupting agent on rodent tumour models. Twenty rats with liver rhabdomyosarcomas received ZD6126 intravenously at 20 mg/kg, and 10 vehicle-treated rats were used as controls. Multiple sequences, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI) with the microvascular permeability constant (K), were acquired at baseline, 1 h, 24 h and 48 h post-treatment by using 1.5-T MRI. [ 18 F]fluorodeoxyglucose micro-positron emission tomography ( 18 F-FDG μPET) was acquired pre- and post-treatment. The imaging biomarkers including tumour volume, enhancement ratio, necrosis ratio, apparent diffusion coefficient (ADC) and K from MRI, and maximal standardised uptake value (SUV max ) from FDG μPET were quantified and correlated with postmortem microangiography and histopathology. In the ZD6126-treated group, tumours grew slower with higher necrosis ratio at 48 h (P max dropped at 24 h (P < 0.01). Relative K of tumour versus liver at 48 h correlated with relative vascular density on microangiography (r = 0.93, P < 0.05). The imaging biomarkers allowed morphological, functional and metabolic quantifications of vascular shutdown, necrosis formation and tumour relapse shortly after treatment. A single dose of ZD6126 significantly diminished tumour blood supply and growth until 48 h post-treatment. (orig.)

  2. Delayed effects of cold atmospheric plasma on vascular cells

    NARCIS (Netherlands)

    Stoffels, Eva; Roks, Anton J. M.; Deelmm, Leo E.


    We investigated the long-term behaviour of vascular cells (endothelial and smooth muscle) after exposure to a cold atmospheric plasma source. The cells were treated through a gas-permeable membrane, in order to simulate intravenous treatment with a gas plasma-filled catheter. Such indirect treatment

  3. Bioprinting for vascular and vascularized tissue biofabrication. (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T


    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  4. Dextran/Albumin hydrogel sealant for Dacron(R) vascular prosthesis. (United States)

    Lisman, Anna; Butruk, Beata; Wasiak, Iga; Ciach, Tomasz


    In this paper, the authors describe a novel type of hydrogel coating prepared from the copolymer of human serum albumin and oxidized dextran. The material was designed as a hydrogel sealant for polyester (Dacron®)-based vascular grafts. Dextran was chosen as a coating material due to its anti-thrombogenic properties. Prepared hydrogels were compared with similar, already known biomaterial made from gelatine with the same cross-linking agent. Obtained hydrogels, prepared from various ratios of oxidized dextran/albumin or oxidized dextran/gelatine, showed different cross-linking densities, which caused differences in swelling, degradation rate and mechanical properties. Permeability tests confirmed the complete tightness of the hydrogel-modified prosthesis. Results showed that application of the hydrogel coating provided leakage-free prosthesis and eliminated the need of pre-clotting.

  5. Effective permeability in micropores from molecular simulations

    International Nuclear Information System (INIS)

    Botan, A.; Vermorel, R.; Brochard, L.; Hantal, G.; Pellenq, R.


    Document available in extended abstract form only. Despite many years' efforts and a large numbers of proposed models, the description of transport properties in clays is still an open question. The reason for this is that structurally clay is an extremely heterogeneous material. The pore size varies from a few to 20 angstroms for interlayer (micro) porosity, from 20 A to 500 A for interparticle (meso) porosity, and 500 A to μm and more for natural (macro) fractures. One further problem with the description of the transport properties is the presence of adsorption/desorption processes onto clay particles, which are coupled with swelling/shrinkage of the particles. Any volumetric changes in the particles affect the meso-pore aperture, and thus, the total permeability of the system. The various processes affecting the permeability occur on different spatial and temporal scales, that requires a multi-scale modeling approach. The most complete model to date is a dual porosity mode. Here the total flow is often written as a sum of the macropore flow and micropore flow. The flow through macro-pores is generally considered to be laminar and obeys Darcy's law, whereas flow through the matrix (micropore flow) may be modeled using Fick's law. The micropore flow involves both Knudsen and surface diffusion mechanisms. An accurate accounting of adsorption-desorption processes or the consideration of binary mixture greatly complicate analytical description. The goal of this study is to improve macro-scale model, the dual porosity model, for the transport properties of fluids in micropores from molecular simulations. The main idea is that we reproduce an experimental set-up used for permeability measurements, as illustrated in Figure 1. High density and low density regions are settled at each end of the membrane that allows to attain a steady flow. The densities in these regions are controlled by Grand Canonical Monte Carlo simulation; the molecular motions are described by

  6. Bentonite Permeability at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniels


    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  7. EDZ and permeability in clayey rocks

    International Nuclear Information System (INIS)

    Levasseur, Severine; Collin, Frederic; Charlier, Robert; Besuelle, Pierre; Chambon, Rene; Viggiani, Cino


    Document available in extended abstract form only. Deep geological layers are being considered as potential host rocks for the high level radioactivity waste disposals. During drilling in host rocks, an excavated damaged zone - EDZ is created. The fluid transmissivity may be modified in this damaged zone. This paper deals with the permeability evolution in relation with diffuse and/or localized crack propagation in the material. We mainly focus on argillaceous rocks and on some underground laboratories: Mol URL in Boom clay, Bure URL in Callovo-Oxfordian clay and Mont-Terri URL in Opalinus clay. First, observations of damage around galleries are summarized. Structure of damage in localized zone or in fracture has been observed at underground gallery scale within the excavation damaged zone (EDZ). The first challenge for a correct understanding of all the processes occurring within the EDZ is the characterization at the laboratory scale of the damage and localization processes. The observation of the initiation and propagation of the localized zones needs for advanced techniques. X-ray tomography is a non-destructive imaging technique that allows quantification of internal features of an object in 3D. If mechanical loading of a specimen is applied inside a X-ray CT apparatus, successive 3D images at different loading steps show the evolution of the specimen. However, in general volumetric strain in a shear band is small compared to the shear strain and, unfortunately, in tomographic images grey level is mainly sensitive to the local mass density field. Such a limitation has been recently overcome by complementing X-ray tomography with 3D Volumetric Digital Image Correlation (V-DIC) which allows the determination of the full strain tensor field. Then it is possible to further explore the progression of localized deformation in the specimen. The second challenge is the robust modelling of the strain localized process. In fact, modelling the damage process with finite

  8. Diagnosis of hydrostatic versus increased permeability pulmonary edema with chest radiographic criteria in critically ILL patients

    International Nuclear Information System (INIS)

    Aberle, D.R.; Wiener-Kronish, J.P.; Webb, W.R.; Matthay, M.A.


    To evaluate chest radiographic criteria in distinguishing mechanisms of pulmonary edema, the authors studied 45 intubated patients with extensive edema. Edema type was clinically classified by the ratio of alveolar edema-to-plasma protein concentration in association with compatible clinical/hemodynamic parameters. Chest films were scored as hydrostatic, permeability, or mixed by three readers in blinded fashion based on cardiac size, vascular pedicle width, distribution of edema, effusions, peribronchial cuffs, septal lines, or air bronchograms. Overall radiographic score accurately identified 87% of patients with hydrostatic edema but only 60% of those with permeability edema. Edema distribution was most discriminating, with a patchy peripheral pattern relatively specific for clinical permeability edema. Hydrostatic features on chest radiograph were common with permeability edema, including effusions (36%), widened pedicle (56%), cuffs (72%), or septa (40%). The authors conclude that the chest radiograph is limited in distinguishing edema mechanism in the face of extensive pulmonary edema

  9. α-Defensins Induce a Post-translational Modification of Low Density Lipoprotein (LDL) That Promotes Atherosclerosis at Normal Levels of Plasma Cholesterol. (United States)

    Abu-Fanne, Rami; Maraga, Emad; Abd-Elrahman, Ihab; Hankin, Aviel; Blum, Galia; Abdeen, Suhair; Hijazi, Nuha; Cines, Douglas B; Higazi, Abd Al-Roof


    Approximately one-half of the patients who develop clinical atherosclerosis have normal or only modest elevations in plasma lipids, indicating that additional mechanisms contribute to pathogenesis. In view of increasing evidence that inflammation contributes to atherogenesis, we studied the effect of human neutrophil α-defensins on low density lipoprotein (LDL) trafficking, metabolism, vascular deposition, and atherogenesis using transgenic mice expressing human α-defensins in their polymorphonuclear leukocytes (Def(+/+)). Accelerated Def(+/+) mice developed α-defensin·LDL complexes that accelerate the clearance of LDL from the circulation accompanied by enhanced vascular deposition and retention of LDL, induction of endothelial cathepsins, increased endothelial permeability to LDL, and the development of lipid streaks in the aortic roots when fed a regular diet and at normal plasma levels of LDL. Transplantation of bone marrow from Def(+/+) to WT mice increased LDL clearance, increased vascular permeability, and increased vascular deposition of LDL, whereas transplantation of WT bone marrow to Def(+/+) mice prevented these outcomes. The same outcome was obtained by treating Def(+/+) mice with colchicine to inhibit the release of α-defensins. These studies identify a potential new link between inflammation and the development of atherosclerosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Permeability response of oil-contaminated compacted clays

    International Nuclear Information System (INIS)

    Silvestri, V.; Mikhail, N.; Soulie, M.


    This paper presents the results of a laboratory investigation on the behavior of motor oil-contaminated, partially saturated compacted clays. For the study, both a natural clay and an artificially purified kaolinite, contaminated with 0 to 8% of motor oil, were firstly compacted following the ASTM standard procedure. Secondly, permeability tests were carried out in a triaxial cell on 10 cm-diameter compacted clay specimens. The results of the investigation indicate that increasing percentages of motor oil decrease both the optimum water content and the optimum dry density of the two clays. However, whereas the optimum water content on the average decreases by about 6% when the percentage contamination increases from 0 to 8%, the corresponding decrease in the optimum dry density is less than 3%. Even though the optimum dry density decreases as the percentage of oil increases from 0 to 8%, there is, however, a range in oil content varying between 2 and 4% for which the optimum dry density is slightly greater than that of the untreated soils. As far as the permeability tests are concerned, the results indicate that as the percentage of oil increases, the coefficient of permeability decreases substantially, especially for clay specimens which were initially compacted on the dry side of optimum

  11. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia. (United States)

    Jain, Swati; Sharma, Bhupesh


    Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Thromboxane A2 increases endothelial permeability through upregulation of interleukin-8

    International Nuclear Information System (INIS)

    Kim, Su-Ryun; Bae, Soo-Kyung; Park, Hyun-Joo; Kim, Mi-Kyoung; Kim, Koanhoi; Park, Shi-Young; Jang, Hye-Ock; Yun, Il; Kim, Yung-Jin; Yoo, Mi-Ae; Bae, Moon-Kyoung


    Thromboxane A 2 (TXA 2 ), a major prostanoid formed from prostaglandin H 2 by thromboxane synthase, is involved in the pathogenesis of a variety of vascular diseases. In this study, we report that TXA 2 mimetic U46619 significantly increases the endothelial permeability both in vitro and in vivo. U46619 enhanced the expression and secretion of interleukin-8 (IL-8), a major inducer of vascular permeability, in endothelial cells. Promoter analysis showed that the U46619-induced expression of IL-8 was mainly regulated by nuclear factor-κB (NF-κB). U46619 induced the activation of NF-κB through IκB kinase (IKK) activation, IκB phosphorylation and NF-κB nuclear translocation. Furthermore, the inhibition of IL-8 or blockade of the IL-8 receptor attenuated the U46619-induced endothelial cell permeability by modulating the cell-cell junctions. Overall, these results suggest that U46619 promotes vascular permeability through the production of IL-8 via NF-κB activation in endothelial cells.

  13. A non-erasable magnetic memory based on the magnetic permeability

    International Nuclear Information System (INIS)

    Petrie, J.R.; Wieland, K.A.; Burke, R.A.; Newburgh, G.A.; Burnette, J.E.; Fischer, G.A.; Edelstein, A.S.


    A non-erasable memory based on using differences in the magnetic permeability is demonstrated. The method can potentially store information indefinitely. Initially the high permeability bits were 10–50 μm wide lines of sputtered permalloy (Ni 81 Fe 19 ) on a glass substrate. In a second writing technique a continuous film of amorphous, high permeability ferromagnetic Metglas (Fe 78 Si 13 B 9 ) was sputtered onto a similar glass substrate. Low permeability, crystalline 50 μm wide lines were then written in the film by laser heating. Both types of written media were read by applying an external probe field that is locally modified by the permeability of each bit. The modifications in the probe field were read by a nearby set of 10 micron wide magnetic tunnel junctions with a signal-to-noise ratio of up to 45 dB. This large response to changes in bit permeability is not altered after the media has been exposed to a 6400 Oe field. While being immediately applicable for data archiving and secure information storage, higher densities are possible with smaller read and write heads. - Highlights: • We demonstrate a non-erasable memory based on changes in the magnetic permeability. • Large change in permeability occur when Metglas changes from amorphous to crystalline. • Micron size regions of Metglas can be crystallized using a laser. • Permeability changes read by observing deviations of a probe field with an MTJ

  14. Quantifying Evaporation in a Permeable Pavement System (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  15. Permeable Pavement Research - Edison, New Jersey (United States)

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  16. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...... permeability estimate comparable to the measured one for shale rich in smectite. This is probably because Yang and Aplin model was calibrated in London clay which is rich in smectite....

  17. Macrophage migration inhibitory factor induces vascular leakage via autophagy

    Directory of Open Access Journals (Sweden)

    Hong-Ru Chen


    Full Text Available Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF, we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA, a ROS scavenger (NAC or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

  18. Relative permeability of the endothelium and epithelium of rabbit lungs

    International Nuclear Information System (INIS)

    Effros, R.M.; Mason, G.R.; Silverman, P.; Hukkanen, J.


    Electron micrographic studies of lungs suggest that the epithelial cells are more tightly joined than the underlying endothelium, and macromolecules penetrate the endothelium more readily than the epithelium. Comparisons of epithelial and endothelial permeability to small molecules have been based upon the relative rates at which solutes traverse the alveolar-capillary barrier in fluid filled lungs and those at which they equilibrate across the capillaries in air-filled lungs. Because the former process is much slower than the latter, it has been concluded that the epithelium is less permeable to small solutes than the endothelium. However this difference may be related to inadequate access of solutes to airway surfaces. In this study, solute losses from the vascular space were compared to those from the airspace in perfused, fluid-filled rabbit lungs. 36 Cl - and 125 I - were lost from air-spaces almost twice as rapidly as 22 Na + . In contrast, the endothelium is equally permeable to 22 Na + and these anions. Loss of 3 H-mannitol from the perfusate resembled that of 22 Na + for about 30 minutes, after which diffusion of 3 H-mannitol into the tissue nearly ceased. These observations suggest that the epithelium is more permselective than the endothelium. By resisting solute and water transport, the epithelium tends to prevent alveolar flooding and confines edema to the interstitium, where it is less likely to interfere with gas exchange

  19. Viscous fingering with permeability heterogeneity

    International Nuclear Information System (INIS)

    Tan, C.; Homsy, G.M.


    Viscous fingering in miscible displacements in the presence of permeability heterogeneities is studied using two-dimensional simulations. The heterogeneities are modeled as stationary random functions of space with finite correlation scale. Both the variance and scale of the heterogeneities are varied over modest ranges. It is found that the fingered zone grows linearly in time in a fashion analogous to that found in homogeneous media by Tan and Homsy [Phys. Fluids 31, 1330 (1988)], indicating a close coupling between viscous fingering on the one hand and flow through preferentially more permeable paths on the other. The growth rate of the mixing zone increases monotonically with the variance of the heterogeneity, as expected, but shows a maximum as the correlation scale is varied. The latter is explained as a ''resonance'' between the natural scale of fingers in homogeneous media and the correlation scale

  20. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    International Nuclear Information System (INIS)

    Gabrys, Dorota; Greco, Olga; Patel, Gaurang; Prise, Kevin M.; Tozer, Gillian M.; Kanthou, Chryso


    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain

  1. Effect of aggregate grain size distribution on properties of permeable ...

    African Journals Online (AJOL)

    ) ratio on the mechanical properties of permeable concrete is investigated. The aim of this study is to prepare permeable concrete mixture with optimum properties in terms of strength and permeability. For this purpose, five different permeable ...

  2. Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

    Directory of Open Access Journals (Sweden)

    Saboorian-Jooybari Hadi


    Full Text Available Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves. Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29] models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for

  3. Optical coherence tomography in quantifying the permeation of human plasma lipoproteins in vascular tissues (United States)

    Ghosn, M. G.; Mashiatulla, M.; Tuchin, V. V.; Morrisett, J. D.; Larin, K. V.


    Atherosclerosis is the most common underlying cause of vascular disease, occurring in multiple arterial beds including the carotid, coronary, and femoral arteries. Atherosclerosis is an inflammatory process occurring in arterial tissue, involving the subintimal accumulation of low-density lipoproteins (LDL). Little is known about the rates at which these accumulations occur. Measurements of the permeability rate of LDL, and other lipoproteins such as high-density lipoprotein (HDL) and very low-density lipoprotein (VLDL), could help gain a better understanding of the mechanisms involved in the development of atherosclerotic lesions. The permeation of VLDL, LDL, HDL, and glucose was monitored and quantified in normal and diseased human carotid endarterectomy tissues at 20°C and 37°C using optical coherence tomography (OCT). The rates for LDL permeation through normal tissue at 20°C was (3.16 +/- 0.37) × 10-5 cm/sec and at 37°C was (4.77 +/- 0.48) × 10-5 cm/sec, significantly greater (plipoproteins.

  4. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt


    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  5. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt


    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  6. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)


    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  7. Towards cavitation-enhanced permeability in blood vessel on a chip (United States)

    De Luca, R.; Silvani, G.; Scognamiglio, C.; Sinibaldi, G.; Peruzzi, G.; Chinappi, M.; Kiani, M. F.; Casciola, C. M.


    The development of targeted delivery systems releasing pharmaceutical agents directly at the desired site of action may improve their therapeutic efficiency while minimizing damage to healthy tissues, toxicity to the patient and drug waste. In this context, we have developed a bio-inspired microdevice mimicking the tumour microvasculature which represents a valuable tool for assessing the enhancement of blood vessel permeability due to cavitation. This novel system allows us to investigate the effects of ultrasound-driven microbubbles that temporarily open the endothelial intercellular junctions allowing drug to extravasate blood vessels into tumour tissues. The blood vessel on a chip consists of a tissue chamber and two independent vascular channels (width 200 µm, height 100 µm, length 2762 µm) cultured with endothelial cells placed side-by-side and separated by a series of 3 µm pores. Its geometry and dimensions mimic the three-dimensional morphology, size and flow characteristics of microvessels in vivo. The early stage of this project had a twofold objective: 1. To define the protocol for culturing of Human Umbilical Vein Endothelial Cells (HUVECs) within the vascular channel; 2. To develop a fluorescence based microscopy technique for measuring permeability. We have developed a reliable and reproducible protocol to culture endothelial cells within the artificial vessels in a realistic manner: HUVECs show the typical elongated shape in the direction of flow, exhibit tight junction formation and form a continuous layer with a central lumen that completely covers the channels wall. As expected, the permeability of cell-free device is higher than the one cultured with HUVECs in the vascular channels. The proposed blood vessel on a chip and the permeability measurement protocol have a significant potential to allow for the study of cavitation-enhanced permeability of the endothelium and improve efficiency in screening drug delivery systems.

  8. Clogging in permeable concrete: A review. (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R


    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    by two to five orders of magnitudes at lower vertical effective stress below 40 MPa as the content of clay minerals increases causing heterogeneity in shale material. Indirect permeability from consolidation can give maximum and minimum values of shale permeability needed in simulating fluid flow......Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  10. Vascular Access in Children

    International Nuclear Information System (INIS)

    Krishnamurthy, Ganesh; Keller, Marc S.


    Establishment of stable vascular access is one of the essential and most challenging procedures in a pediatric hospital. Many clinical specialties provide vascular service in a pediatric hospital. At the top of the “expert procedural pyramid” is the pediatric interventional radiologist, who is best suited and trained to deliver this service. Growing awareness regarding the safety and high success rate of vascular access using image guidance has led to increased demand from clinicians to provide around-the-clock vascular access service by pediatric interventional radiologists. Hence, the success of a vascular access program, with the pediatric interventional radiologist as the key provider, is challenging, and a coordinated multidisciplinary team effort is essential for success. However, there are few dedicated pediatric interventional radiologists across the globe, and also only a couple of training programs exist for pediatric interventions. This article gives an overview of the technical aspects of pediatric vascular access and provides useful tips for obtaining vascular access in children safely and successfully using image guidance.

  11. Pediatric vascular access

    International Nuclear Information System (INIS)

    Donaldson, James S.


    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  12. Radiological study of cerebro-vascular accidents

    International Nuclear Information System (INIS)

    Misri, H.T.; Kabawe, Bassam


    The role of computerized tomography scanner in studying the cerebro-vascular accidents has been discussed. One hundred fifty patients with cerebro-vascular accidents were studied at Aleppo University Hospital between 1989-1990. Clinical history and physical examination were recorded, as well as, computerized tomography scanning in all cases without using the contrast media mostly. Relationship between the density of the lesion (inforctionor hemorrhage) and the time has been found. This relationship can help in forensic medicine. (author). 29 refs., 5 tabs., 2 figs

  13. Low Permeability Polyimide Insulation, Phase I (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  14. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.


    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model...

  15. Vascular malformations in pediatrics

    International Nuclear Information System (INIS)

    Reith, W.; Shamdeen, M.G.


    Vascular malformations are the cause of nearly all non-traumatic intracranial hemorrhage in children beyond the neonatal stage. Therefore, any child presenting with spontaneous intracranial hemorrhage should be evaluated for child abuse and for vascular malformations. Intracerebral malformations of the cerebral vasculature include vein of Galen malformations, arteriovenous malformation (AVM), cavernomas, dural arteriovenous fistulas, venous anomalies (DVA), and capillary teleangiectasies. Although a few familial vascular malformation have been reported, the majority are sporadic. Clinical symptoms, diagnostic and therapeutic options are discussed. (orig.) [de

  16. Uterine Vascular Lesions (United States)

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash


    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  17. Magnetic resonance vascular imaging

    International Nuclear Information System (INIS)

    Axel, L


    The basis principles of MRI are reviewed in order to understand how blood flow effects arise in conventional imaging. Then some of the ways these effects have ben used in MRI techniques specifically designed for vascular imaging, are considered. (author)

  18. Ethamsylate and lung permeability in ventilated immature newborn rabbits. (United States)

    Amato, M; Sun, B; Robertson, B


    The leakage of proteins in the immature neonatal lung can reduce the effect of exogenous surfactant. The effect of ethamsylate, a more specific prostaglandin inhibitor than indomethacin and aspirin-like drugs, on alveolar albumin leak was studied in a group of 27 immature newborn rabbits (gestational age 27 days). A pilot study was carried out using 4 animals and low-dose ethamsylate (10 mg/kg). A second group of animals (n = 12) received at birth, by intravenous injection, ethamsylate (50 mg/kg) and 10% human albumin (7 ml/kg). Animals not receiving ethamsylate (n = 11) served as control group. After 30 min of artificial ventilation with standard tidal volume (10 ml/kg) the lungs were lavaged and the amount of human albumin in lung lavage fluid was determined by immunodiffusion. No statistically significant differences were found in lung-thorax compliance and vascular to alveolar albumin leak between ethamsylate-treated animals and controls (p > 0.5). However, there was a statistically significant negative correlation between protein leak and lung compliance (r = -0.41; p ethamsylate administration on neonatal lung permeability in the immature neonate confirming that lung permeability is inversely related to compliance.

  19. Crustal permeability: Introduction to the special issue (United States)

    Ingebritsen, Steven E.; Gleeson, Tom


    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  20. Determination of Intrinsic Permeability for Packed Waste of Indonesian Solid Waste

    Directory of Open Access Journals (Sweden)

    Benno Rahardyan


    Full Text Available Gas permeability and intrinsic permeability are the major parameters to promote aeration for packed waste. The objectives of this research are to identify physical parameters of gas transfer from a various type of packed wastes and examine ventilation design theory for landfill to enhance waste stabilization. Method to determine value of gas permeability and intrinsic permeability for packed waste is by flushing the packed column containing various type and physical characteristics of wastes with an air pump. Permeability was calculated by measuring pressure gradient on sampling points of the column using inclined manometer at distance 10 cm, 23 cm, 46 cm, 69 cm, 92 cm and 115 cm from origin. Gas permeability is specifically relied on physical parameters of wastes as follows, density, moisture content, particle size and gas velocity on the surface of compacted waste layer. Compost has finer pore structure and smaller pore size than leaves as well as mixed organic (65% and inorganic wastes (35%. The experiment found the intrinsic permeability of leaves waste are in the order of 10-11 to 10-8 m2, 10-11 to 10-9 m2 for compost and 10-9 m2 for mixed organic (65% and inorganic wastes (35%.

  1. Field-scale permeability and temperature of volcanic crust from borehole data: Campi Flegrei, southern Italy (United States)

    Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer


    We report combined measurements of petrophysical and geophysical parameters for a 501-m deep borehole located on the eastern side of the active Campi Flegrei caldera (Southern Italy), namely (i) in situ permeability by pumping tests, (ii) laboratory-determined permeability of the drill core, and (iii) thermal gradients by distributed fiber optic and thermocouple sensors. The borehole was drilled during the Campi Flegrei Deep Drilling Project (in the framework of the International Continental Scientific Drilling Program) and gives information on the least explored caldera sector down to pre-caldera deposits. The results allow comparative assessment of permeability obtained from both borehole (at depth between 422 a 501 m) and laboratory tests (on a core sampled at the same depth) for permeability values of 10-13 m2 (borehole test) and 10-15 m2 (laboratory test) confirm the scale-dependency of permeability at this site. Additional geochemical and petrophysical determinations (porosity, density, chemistry, mineralogy and texture), together with gas flow measurements, corroborate the hypothesis that discrepancies in the permeability values are likely related to in-situ fracturing. The continuous distributed temperature profile points to a thermal gradient of about 200 °C km-1. Our findings (i) indicate that scale-dependency of permeability has to be carefully considered in modelling of the hydrothermal system at Campi Flegrei, and (ii) improve the understanding of caldera dynamics for monitoring and mitigation of this very high volcanic risk area.

  2. Evaluation of permeability and swelling pressure of compacted bentonite using a calcium hydroxide solution

    International Nuclear Information System (INIS)

    Aoyagi, Takayoshi; Maeda, Munehiro; Mihara, Morihiro; Tanaka, Masuhiro


    Tests to determine the swelling pressure, permeability, compressive strength and elastic modulus of Ca-Na exchanged bentonite, Na-bentonite and Ca-bentonite at the Power Reactor and Nuclear Fuel Development Corporation have mainly used distilled water. However, disposal facilities for TRU waste will use cementateous material for packaging, backfill as well as structural support. In this case, a large amount of calcium will dissolve in groundwater flowing through the cementateous material. Therefore, it is important to investigate the mechanical properties of bentonite in calcium-rich water as part of the disposal research program for TRU waste. In order to understand the effect of the chemical composition of water on the basic mechanical properties of bentonite - part of evaluating the disposal concepts for TRU waste disposal - we tested the permeability of compacted bentonite under saturated conditions using a calcium hydroxide solution. The aqueous solution represents water dominated by the calcium component. Na-bentonite, Ca-Na exchanged bentonite and Ca-bentonite were used for swelling pressure measurement tests and permeability testing. Measures of the maximum and equilibrium swelling pressure as well as permeability we obtained. The dry density of bentonite was varied between tests. Results show that swelling pressure and permeability are dependent on dry density. In separate tests using Ca-bentonite, the bentonite-mixing rate was varied as an independent parameter. Results show that there is little change in the swelling pressure and permeability between tests using calcium hydroxide solution and distilled water for all bentonite types. (author)

  3. Effect of temperature on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus

    Hot water injection in geothermal sandstone aquifers is considered for seasonal energy storage in Denmark. However, an increase in the aquifer temperature might reduce permeability, and thereby increase production costs. An understanding of the factors that control permeability is required in order...... and the Klinkenberg procedure showed the expected correlation between the two measures, however, differences could be around one order of magnitude. In tight gas sandstones, permeability is often sensitive to net stress, which might change due to the pore pressure change in the Klinkenberg procedure. Besides...... affecting the Klinkenberg procedure, the combined effect of slip and changes in permeability would affect production during pressure depletion in tight gas sandstone reservoirs; therefore effects of gas slip and net stress on permeability were combined in a model based on the Klinkenberg equation. A lower...

  4. Microorganism Removal in Permeable Pavement Parking Lots ... (United States)

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers. Concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard. Fecal coliform and enterococci exceeded bathing water quality standards more than 72% and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Purpose is to evaluate the performance of permeable pavement in removing indicator organisms from infiltrating stormwater runoff.

  5. Compact rock material gas permeability properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanling, E-mail: [Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098 (China); LML, University of Lille, Cite Scientifique, 59655 Villeneuve d’Ascq (France); Xu, Weiya; Zuo, Jing [Institutes of Geotechnical Engineering, Hohai University, Nanjing 210098 (China)


    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO{sub 2,} shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10{sup −19} m{sup 2}; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10{sup −17} m{sup 2}; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens’ permeability evolution is related to the relative particle movements and microcrack closure.

  6. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.


    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  7. Permeability During Magma Expansion and Compaction (United States)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.


    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  8. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    Energy Technology Data Exchange (ETDEWEB)

    Cohen-Tanugi, David; Grossman, Jeffrey C. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)


    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000–2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m{sup 2}-h-bar assuming a nanopore density of 1.7 × 10{sup 13} cm{sup −2}.

  9. Baseline blood pressure, low- and high-density lipoproteins, and triglycerides and the risk of vascular events in the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial

    DEFF Research Database (Denmark)

    Amarenco, Pierre; Goldstein, Larry B; Callahan, Alfred


    AND RESULTS: The SPARCL trial randomized 4731 patients with recent stroke or transient ischemic attack (TIA) and no known coronary heart disease and LDL-C between 100 and 190 mg/dL to either atorvastatin 80 mg/d or placebo. Baseline assessment included SBP, DBP and measurements of low-density lipoprotein...... associated with MCVE. Atorvastatin treatment was similarly effective regardless of baseline lipoprotein levels....

  10. Sphingosine kinase inhibition alleviates endothelial permeability induced by thrombin and activated neutrophils. (United States)

    Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J


    Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.

  11. Suitability of Torrent Permeability Tester to measure air-permeability of covercrete

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.; Gonzales-Gasca, C. [Institute of Construction Sciences ' Eduardo Torroja' , Madrid (Spain); Torrent, R. [Portland Cement Institute, (Argentina)


    Suitability of the Torrent Permeability Tester (TPT) to measure the permeability of covercrete to air, both in the laboratory and the field, is investigated, and test results obtained in laboratory studies are discussed. The tests performed included the determination of air permeability (TPT method), oxygen permeability (Cembureau method) and capillary suction, rapid chloride permeability test (ASTM C 1202), as well as a one-year carbonation depth test. Concrete specimens of various compositions and curing regimes were used in the tests; the gas-permeability tests were repeated on the same specimens after 28 days, than again at 6 months and 12 months. Test results confirmed the suitability of the TPT as a useful tool in the characterization of the quality the of concrete cover. It was found to be sensitive to changes in concrete quality; repeatable for sensitive properties such as gas permeability ; also, it was found to correlate well with other durability-related properties. 10 refs., 8 tabs., 8 figs.

  12. Modeling the Hydrologic Processes of a Permeable Pavement ... (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has been developed in this study. The developed model can continuously simulate infiltration through the permeable pavement surface, exfiltration from the storage to the surrounding in situ soils, and clogging impacts on infiltration/exfiltration capacity at the pavement surface and the bottom of the subsurface storage unit. The exfiltration modeling component simulates vertical and horizontal exfiltration independently based on Darcy’s formula with the Green-Ampt approximation. The developed model can be arranged with physically-based modeling parameters, such as hydraulic conductivity, Manning’s friction flow parameters, saturated and field capacity volumetric water contents, porosity, density, etc. The developed model was calibrated using high-frequency observed data. The modeled water depths are well matched with the observed values (R2 = 0.90). The modeling results show that horizontal exfiltration through the side walls of the subsurface storage unit is a prevailing factor in determining the hydrologic performance of the system, especially where the storage unit is developed in a long, narrow shape; or with a high risk of bottom compaction and clogging. This paper presents unit

  13. Permeability Barrier Generation in the Martian Lithosphere (United States)

    Schools, Joe; Montési, Laurent


    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  14. Overview of vascular disease

    International Nuclear Information System (INIS)

    Bisset, G.S. III


    Vascular disease in the pediatric population is a poorly understood process which is often underestimated in its incidence. The common beginnings of such ubiquitous diseases as atherosclerosis manifest themselves at a cellular level shortly after birth. Other common systemic disorders, including congestive heart failure and sepsis, are also intricately associated with dysfunctional vasculature. Progress in the understanding of normal and pathophysiologic processes within the vascular system begins with the 'control center' - the endothelial cell. The purpose of this review is to consolidate a body of knowledge on the processes that occur at the cellular level within the blood vessel wall, and to simplify the understanding of how imbalances in these physiologic parameters result in vascular disease. (orig.)

  15. Permeability Tests on Silkeborg Sand No. 0000

    DEFF Research Database (Denmark)

    Lund, Willy; Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Silkeborg Sand No. 0000. The permeability is determined by use of a falling head apparatus. The apparatus, test procedures and the analysis method are described......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  16. Permeability Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Eastern Scheldt Sand. The permeability is determined by use of a falling head apparatus. Finally the test results are briefly summarised and a relationship between......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...

  17. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Directory of Open Access Journals (Sweden)

    Wei-ling Cui


    Full Text Available Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group. As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  18. Study of the therapeutic benefit of cationic copolymer administration to vascular endothelium under mechanical stress (United States)

    Giantsos-Adams, Kristina; Lopez-Quintero, Veronica; Kopeckova, Pavla; Kopecek, Jindrich; Tarbell, John M.; Dull, Randal


    Pulmonary edema and the associated increases in vascular permeability continue to represent a significant clinical problem in the intensive care setting, with no current treatment modality other than supportive care and mechanical ventilation. Therapeutic compound(s) capable of attenuating changes in vascular barrier function would represent a significant advance in critical care medicine. We have previously reported the development of HPMA-based copolymers, targeted to endothelial glycocalyx that are able to enhance barrier function. In this work, we report the refinement of copolymer design and extend our physiological studies todemonstrate that the polymers: 1) reduce both shear stress and pressure-mediated increase in hydraulic conductivity, 2) reduce nitric oxide production in response to elevated hydrostatic pressure and, 3) reduce the capillary filtration coefficient (Kfc) in an isolated perfused mouse lung model. These copolymers represent an important tool for use in mechanotransduction research and a novel strategy for developing clinically useful copolymers for the treatment of vascular permeability. PMID:20932573

  19. Borehole stoneley waves and permeability: Laboratory results

    International Nuclear Information System (INIS)

    Winkler, K.W.; Plona, T.J.; Froelich, B.; Liu, H.L.


    Recent interest in full waveform sonic logging has created the need for full waveform laboratory experiments on model boreholes. Of particular interest is the investigation of Stoneley waves and their interaction with permeable formations. The authors describe experimental results that show how Stoneley wave slowness and attenuation are affected by formation permeability. Both slowness and attenuation (1/Q) are observed to increase with formation permeability. This increase is frequency dependent, being greatest at low frequencies. The presence of simulated mudcakes on the borehole wall reduces the permeability effect on Stoneley waves, but does not eliminate it. The mudcake effect is frequency dependent, being greatest at low frequencies. In our experiments on rocks, the laboratory data is in qualitative agreement with theoretical predictions. In a very well characterized synthetic porous material, theory and experiment are in good quantitative agreement

  20. Octopus microvasculature: permeability to ferritin and carbon. (United States)

    Browning, J


    The permeability of Octopus microvasculature was investigated by intravascular injection of carbon and ferritin. Vessels were tight to carbon while ferritin penetrated the pericyte junction, and was found extravascularly 1-2 min after its introduction. Vesicles occurred rarely in pericytes; fenestrae were absent. The discontinuous endothelial layer did not consitute a permeability barrier. The basement membrane, although retarding the movement of ferritin, was permeable to it; carbon did not penetrate the basement membrane. Evidence indicated that ferritin, and thus similarly sized and smaller water soluble materials, traverse the pericyte junction as a result of bulk fluid flow. Comparisons are made with the convective (or junctional) and slower, diffusive (or vesicular) passage of materials known to occur across the endothelium of continuous capillaries in mammals. Previous macrophysiological determinations concerning the permeability of Octopus vessels are questioned in view of these findings. Possible reasons for some major structural differences in the microcirculatory systems of cephalopods and vertebrates are briefly discussed.

  1. Dentin Permeability of Carious Primary Teeth

    African Journals Online (AJOL)

    primary dental pulp make it difficult to determine which modality offers the best ... The most common pathology of the dentine is dental caries. ... to evaluate dentine permeability is to calculate its hydraulic conductance (Lp) using fluid filtration ...

  2. Permeability of gypsum samples dehydrated in air (United States)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido


    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  3. Permeability After Impact Testing of Composite Laminates (United States)

    Nettles, Alan T.


    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  4. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. (United States)

    Parker, J C; Ivey, C L; Tucker, J A


    To determine the initial signaling event in the vascular permeability increase after high airway pressure injury, we compared groups of lungs ventilated at different peak inflation pressures (PIPs) with (gadolinium group) and without (control group) infusion of 20 microM gadolinium chloride, an inhibitor of endothelial stretch-activated cation channels. Microvascular permeability was assessed by using the capillary filtration coefficient (Kfc), a measure of capillary hydraulic conductivity. Kfc was measured after ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratory pressure and with 35 cmH2O PIP with 8 cmH2O positive end-expiratory pressure. In control lungs, Kfc increased significantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In the gadolinium group, Kfc was unchanged from baseline (0.060 +/- 0.010 ml . min-1 . cmH2O-1 . 100 g-1) after any PIP ventilation period. Pulmonary vascular resistance increased significantly from baseline in both groups before the last Kfc measurement but was not different between groups. These results suggest that microvascular permeability is actively modulated by a cellular response to mechanical injury and that stretch-activated cation channels may initiate this response through increases in intracellular calcium concentration.

  5. Electron histochemical and autoradiographic studies of vascular smooth muscle cell

    International Nuclear Information System (INIS)

    Kameyama, Kohji; Aida, Takeo; Asano, Goro


    The authors have studied the vascular smooth muscle cell in the aorta and the arteries of brain, heart in autopsied cases, cholesterol fed rabbits and canine through electron histochemical and autoradiographic methods, using 3 H-proline and 3 H-thymidine. The vascular changes are variable presumably due to the functional and morphological difference of vessels. Aging, pathological condition and physiological requirement induce the disturbances of vascular functions as contractility. According to various pathological conditions, the smooth muscle cell altered their shape, surface properties and arrangement of subcellular organelles including changes in number. The morphological features of arteries during aging is characterized by the thickening of endothelium and media. Decreasing cellularity and increasing collagen contents in media. The autoradiographic and histochemical observations using periodic acid methenamine silver (PAM) and ruthenium red stains demonstrated that the smooth muscle cell is a connective tissue synthetic cell. The PAM impregnation have proved that the small bundle of microfilaments become associated with small conglomerate of collagen and elastic fibers. Cytochemical examination will provide sufficient evidence to establish the contribution of subcellular structure. The acid phosphatase play an important role in vascular disease and they are directly involved in cellular lipid metabolism in cholesterol fed animals, and the activity of Na-K ATPase on the plasma membrane may contribute to the regulation of vascular blood flow and vasospasms. Direct injury and subsequent abnormal contraction of smooth muscle cell may initiate increased permeability of plasma protein and lipid in the media layer and eventually may developed and enhance arteriosclerosis. (author)

  6. Surface sedimentation at permeable pavement systems

    DEFF Research Database (Denmark)

    Støvring, Jan; Dam, Torben; Jensen, Marina Bergen


    Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance of restorat......Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance...

  7. Negative permeability from random particle composites

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid, E-mail:


    Artificial media, such as those composed of periodically-spaced wires for negative permittivity and split ring resonators for negative permeability have been extensively investigated for negative refractive index (NRI) applications (Smith et al., 2004; Pendry et al., 1999) [1,2]. This paper presents an alternative method for producing negative permeability: granular (or particulate) composites incorporating magnetic fillers. Artificial media, such as split-ring resonators, are designed to produce a magnetic resonance feature, which results in negative permeability over a narrow frequency range about the resonance frequency. The position of the feature is dependent upon the size of the inclusion. The material in this case is anisotropic, such that the feature is only observable when the materials are orientated in a specific direction relative to the applied field. A similar resonance can be generated in magnetic granular (particulate) materials: ferromagnetic resonance from the natural spin resonance of particles. Although the theoretical resonance profiles in granular composites shows the permeability dipping to negative values, this is rarely observed experimentally due to resonance damping effects. Results are presented for iron in spherical form and in flake form, dispersed in insulating host matrices. The two particle shapes show different permeability performance, with the magnetic flakes producing a negative contribution. This is attributed to the stronger coupling with the magnetic field resulting from the high aspect ratio of the flakes. The accompanying ferromagnetic resonance is strong enough to overcome the effects of damping and produce negative permeability. The size of random particle composites is not dictated by the wavelength of the applied field, so the materials are potentially much thinner than other, more traditional artificial composites at microwave frequencies. - Highlights: • Negative permeability from random particle composites is

  8. Renal posttransplant's vascular complications

    Directory of Open Access Journals (Sweden)

    Bašić Dragoslav


    Full Text Available INTRODUCTION Despite high graft and recipient survival figures worldwide today, a variety of technical complications can threaten the transplant in the postoperative period. Vascular complications are commonly related to technical problems in establishing vascular continuity or to damage that occurs during donor nephrectomy or preservation [13]. AIM The aim of the presenting study is to evaluate counts and rates of vascular complications after renal transplantation and to compare the outcome by donor type. MATERIAL AND METHODS A total of 463 kidneys (319 from living related donor LD and 144 from cadaveric donor - CD were transplanted during the period between June 1975 and December 1998 at the Urology & Nephrology Institute of Clinical Centre of Serbia in Belgrade. Average recipients' age was 33.7 years (15-54 in LD group and 39.8 (19-62 in CD group. Retrospectively, we analyzed medical records of all recipients. Statistical analysis is estimated using Hi-squared test and Fischer's test of exact probability. RESULTS Major vascular complications including vascular anastomosis thrombosis, internal iliac artery stenosis, internal iliac artery rupture obliterant vasculitis and external iliac vein rupture were analyzed. In 25 recipients (5.4% some of major vascular complications were detected. Among these cases, 22 of them were from CD group vs. three from LD group. Relative rate of these complications was higher in CD group vs. LD group (p<0.0001. Among these complications dominant one was vascular anastomosis thrombosis which occurred in 18 recipients (17 from CD vs. one from LD. Of these recipients 16 from CD lost the graft, while the rest of two (one from each group had lethal outcome. DISCUSSION Thrombosis of renal allograft vascular anastomosis site is the most severe complication following renal transplantation. In the literature, renal allograft thrombosis is reported with different incidence rates, from 0.5-4% [14, 15, 16]. Data from the

  9. Transformable ferroelectric control of dynamic magnetic permeability (United States)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng


    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  10. Defining clogging potential for permeable concrete. (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R


    Permeable concrete is used to reduce urban flooding as it allows water to flow through normally impermeable infrastructure. It is prone to clogging by particulate matter and predicting the long-term performance of permeable concrete is challenging as there is currently no reliable means of characterising clogging potential. This paper reports on the performance of a range of laboratory-prepared and commercial permeable concretes, close packed glass spheres and aggregate particles of varying size, exposed to different clogging methods to understand this phenomena. New methods were developed to study clogging and define clogging potential. The tests involved applying flowing water containing sand and/or clay in cycles, and measuring the change in permeability. Substantial permeability reductions were observed in all samples, particularly when exposed to sand and clay simultaneously. Three methods were used to define clogging potential based on measuring the initial permeability decay, half-life cycle and number of cycles to full clogging. We show for the first time strong linear correlations between these parameters for a wide range of samples, indicating their use for service-life prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Cell permeability beyond the rule of 5. (United States)

    Matsson, Pär; Doak, Bradley C; Over, Björn; Kihlberg, Jan


    Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods. (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T


    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability (United States)

    Palomba, R.; Parodi, A.; Evangelopoulos, M.; Acciardo, S.; Corbo, C.; De Rosa, E.; Yazdi, I. K.; Scaria, S.; Molinaro, R.; Furman, N. E. Toledano; You, J.; Ferrari, M.; Salvatore, F.; Tasciotti, E.


    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.

  14. Controlling DC permeability in cast steels

    International Nuclear Information System (INIS)

    Sumner, Aaran; Gerada, Chris; Brown, Neil; Clare, Adam


    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  15. Controlling DC permeability in cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, Aaran, E-mail: [University of Nottingham, Nottingham University Park Campus, Nottingham NG7 2RD, England (United Kingdom); Gerada, Chris, E-mail: [Electrical Machines, University of Nottingham, Tower Building, Nottingham NG7 2RD, England (United Kingdom); Brown, Neil, E-mail: [Advanced Electrical Machines Research and Technology at Cummins Power Generation, Peterborough PE2 6FZ, England (United Kingdom); Clare, Adam, E-mail: [Advanced Manufacturing, University of Nottingham, University Park Campus, Nottingham NG7 2RD, England (United Kingdom)


    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  16. HIV-1 Tat reduces nephrin in human podocytes: a potential mechanism for enhanced glomerular permeability in HIV-associated nephropathy. (United States)

    Doublier, Sophie; Zennaro, Cristina; Spatola, Tiziana; Lupia, Enrico; Bottelli, Antonella; Deregibus, Maria Chiara; Carraro, Michele; Conaldi, Pier Giulio; Camussi, Giovanni


    To determine whether HIV-1 Tat may directly alter glomerular permeability in HIV-associated nephropathy (HIVAN). Heavy proteinuria is a hallmark of HIVAN. The slit diaphragm is the ultimate glomerular filtration barrier critical for maintaining the efficiency of the ultrafiltration unit of the kidney. In this study, we evaluated the direct effect of Tat protein on the permeability of isolated glomeruli and on the expression of nephrin, the main slit diaphragm component, by human cultured podocytes. Permeability was studied by measuring the permeability to albumin in isolated rat glomeruli. We also evaluated the expression of nephrin in human cultured podocytes by using immunofluorescence and Western blot. We found that Tat increased albumin permeability in isolated glomeruli, and rapidly induced the redistribution and loss of nephrin in cultured podocytes. Pretreatment of glomeruli and podocytes with blocking antibodies showed that Tat reduced nephrin expression by engaging vascular endothelial growth factor receptors types 2 and 3 and the integrin alphavbeta3. Pre-incubation of podocytes with two platelet-activating factor (PAF) receptor antagonists prevented the loss and redistribution of nephrin induced by Tat, suggesting that PAF is an intracellular mediator of Tat action. Tat induced a rapid PAF synthesis by podocytes. When podocytes transfected to overexpress PAF-acetylhydrolase, the main catabolic enzyme of PAF, were stimulated with Tat, the redistribution and loss of nephrin was abrogated. The present results define a mechanism by which Tat may reduce nephrin expression in podocytes, thus increasing glomerular permeability. This provides new insights in the understanding of HIVAN pathogenesis.

  17. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer: In vivo whole tumor assessment using volumetric perfusion computed tomography

    International Nuclear Information System (INIS)

    Ng, Q.-S.; Goh, Vicky; Milner, Jessica; Padhani, Anwar R.; Saunders, Michele I.; Hoskin, Peter J.


    Purpose: To quantitatively assess the in vivo acute vascular effects of fractionated radiotherapy for human non-small-cell lung cancer using volumetric perfusion computed tomography (CT). Methods and Materials: Sixteen patients with advanced non-small-cell lung cancer, undergoing palliative radiotherapy delivering 27 Gy in 6 fractions over 3 weeks, were scanned before treatment, and after the second (9 Gy), fourth (18 Gy), and sixth (27 Gy) radiation fraction. Using 16-detector CT, multiple sequential volumetric acquisitions were acquired after intravenous contrast agent injection. Measurements of vascular blood volume and permeability for the whole tumor volume were obtained. Vascular changes at the tumor periphery and center were also measured. Results: At baseline, lung tumor vascularity was spatially heterogeneous with the tumor rim showing a higher vascular blood volume and permeability than the center. After the second, fourth, and sixth fractions of radiotherapy, vascular blood volume increased by 31.6% (paired t test, p = 0.10), 49.3% (p = 0.034), and 44.6% (p = 0.0012) respectively at the tumor rim, and 16.4% (p = 0.29), 19.9% (p = 0.029), and 4.0% (p = 0.0050) respectively at the center of the tumor. After the second, fourth, and sixth fractions of radiotherapy, vessel permeability increased by 18.4% (p = 0.022), 44.8% (p = 0.0048), and 20.5% (p = 0.25) at the tumor rim. The increase in permeability at the tumor center was not significant after radiotherapy. Conclusion: Fractionated radiotherapy increases tumor vascular blood volume and permeability in human non-small-cell lung cancer. We have established the spatial distribution of vascular changes after radiotherapy; greater vascular changes were demonstrated at the tumor rim compared with the center

  18. A Novel Natural Product-Derived Compound, Vestaine A1, Exerts both Pro-Angiogenic and Anti-Permeability Activity via a Different Pathway from VEGF

    Directory of Open Access Journals (Sweden)

    Yoko Ishimoto


    Full Text Available Background/Aims: Vascular endothelial growth factor (VEGF is a key molecule in the regulation of both angiogenesis and vascular permeability. However, it is known that overproduction of VEGF induces abnormal blood vessel formation and these vessels cause several disease pathologies, such as diabetic retinopathy. The purpose of this study was to find novel vasoactive compounds which have different properties from VEGF. Methods/Results: We screened a natural product library using a co-culture angiogenic assay of endothelial cells and fibroblasts. By focusing on morphological changes of endothelial cells, we isolated the novel compounds vestaine A1 and vestaine B1 from the cultured broth of an actinomycete strain, Streptomyces sp. SANK 63697. Vestaine A1 enhanced tube formation of endothelial cells in Matrigel and suppressed cell death induced by serum deprivation. Vestaine A1 activated both MEK1/2 and PI-3 kinase pathways independently of the VEGF pathway in a dose- and time-dependent fashion. Finally, vestaine A1 potently suppressed VEGF-induced vascular permeability both in vitro and in vivo. Conclusion: Vestaine A1 has the potential to exhibit both pro-angiogenic and anti-permeability properties, and would therefore be useful for therapeutic treatment for abnormal vascular permeability-related diseases.

  19. Major Vascular Neurocognitive Disorder: A Reappraisal to Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Emre Kumral


    Full Text Available Major vascular neurocognitive disorder (NCD is the second leading form of dementia after Alzheimer’s disease, accounting for 17-20% of all dementias. Vascular NCD is a progressive disease caused by reduced cerebral blood flow related to multiple large volume or lacunar infarcts that induce a sudden onset and stepwise decline in cognitive abilities. Despite its prevalence and clinical importance, there is still controversy in the terminology of vascular NCD. Only after the release of Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5 (2013 did the American Psychiatric Association define vascular dementia as “major vascular NCD”. This review includes an overview of risk factors, pathophysiology, types, diagnostic and clinical features of major vascular NCD, and current treatment options of vascular NCD regarding to DSM-5 criteria

  20. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao


    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  1. Vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    N.V. Vakhnina


    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  2. Vascular Surgery and Robotics

    Directory of Open Access Journals (Sweden)

    Indrani Sen


    Full Text Available The application of robotics to Vascular surgery has not progressed as rapidly as of endovascular technology, but this is changing with the amalgamation of these two fields. The advent of Endovascular robotics is an exciting field which overcomes many of the limitations of endovascular therapy like vessel tortuosity and operator fatigue. This has much clinical appeal for the surgeon and hold significant promise of better patient outcomes. As with most newer technological advances, it is still limited by cost and availability. However, this field has seen some rapid progress in the last decade with the technology moving into the clinical realm. This review details the development of robotics, applications, outcomes, advantages, disadvantages and current advances focussing on Vascular and Endovascular robotics

  3. Fluorescein isothiocyanate (FITC)-Dextran Extravasation as a Measure of Blood-Brain Barrier Permeability (United States)

    Natarajan, Reka; Northrop, Nicole


    The blood-brain barrier (BBB) is formed in part by vascular endothelial cells that constitute the capillaries and microvessels of the brain. The function of this barrier is to maintain homeostasis within the brain microenvironment and buffer the brain from changes in the periphery. A dysfunction of the BBB would permit circulating molecules and pathogens typically restricted to the periphery to enter the brain and interfere with normal brain function. As increased permeability of the BBB is associated with several neuropathologies, it is important to have a reliable and sensitive method that determines BBB permeability and the degree of BBB disruption. A detailed protocol is presented for assessing the integrity of the BBB by transcardial perfusion of a 10,000 Da FITC labeled dextran molecule and its visualization to determine the degree of extravasation from brain microvessels. PMID:28398646

  4. Longitudinal MRI evaluation of intracranial development and vascular characteristics of breast cancer brain metastases in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heling Zhou

    Full Text Available Longitudinal MRI was applied to monitor intracranial initiation and development of brain metastases and assess tumor vascular volume and permeability in a mouse model of breast cancer brain metastases. Using a 9.4T system, high resolution anatomic MRI and dynamic susceptibility contrast (DSC perfusion MRI were acquired at different time points after an intracardiac injection of brain-tropic breast cancer MDA-MB231BR-EGFP cells. Three weeks post injection, multifocal brain metastases were first observed with hyperintensity on T2-weighted images, but isointensity on T1-weighted post contrast images, indicating that blood-tumor-barrier (BTB at early stage of brain metastases was impermeable. Follow-up MRI revealed intracranial tumor growth and increased number of metastases that distributed throughout the whole brain. At the last scan on week 5, T1-weighted post contrast images detected BTB disruption in 160 (34% of a total of 464 brain metastases. Enhancement in some of the metastases was only seen in partial regions of the tumor, suggesting intratumoral heterogeneity of BTB disruption. DSC MRI measurements of relative cerebral blood volume (rCBV showed that rCBV of brain metastases was significantly lower (mean= 0.89±0.03 than that of contralateral normal brain (mean= 1.00±0.03; p<0.005. Intriguingly, longitudinal measurements revealed that rCBV of individual metastases at early stage was similar to, but became significantly lower than that of contralateral normal brain with tumor growth (p<0.05. The rCBV data were concordant with histological analysis of microvascular density (MVD. Moreover, comprehensive analysis suggested no significant correlation among tumor size, rCBV and BTB permeability. In conclusion, longitudinal MRI provides non-invasive in vivo assessments of spatial and temporal development of brain metastases and their vascular volume and permeability. The characteristic rCBV of brain metastases may have a diagnostic value.

  5. Vascular lesions following radiation

    International Nuclear Information System (INIS)

    Fajardo, L.F.; Berthrong, M.


    The special radiation sensitivity of the vascular system is mainly linked to that of endothelial cells, which are perhaps the most radiation-vulnerable elements of mesenchymal tissues. Within the vascular tree, radiation injures most often capillaries, sinusoids, and small arteries, in that order. Lesions of veins are observed less often, but in certain tissues the veins are regularly damaged (e.g., intestine) or are the most affected structures (i.e., liver). Large arteries do suffer the least; however, when significant damage does occur in an elastic artery (e.g., thrombosis or rupture), it tends to be clinically significant and even fatal. Although not always demonstrable in human tissues, radiation vasculopathy generally is dose and time dependent. Like other radiation-induced lesions, the morphology in the vessels is not specific, but it is characteristic enough to be often recognizable. Vascular injury, especially by therapeutic radiation is not just a morphologic marker. It is a mediator of tissue damage; perhaps the most consistent pathogenetic mechanism in delayed radiation injury

  6. Vascular lumen formation. (United States)

    Lammert, Eckhard; Axnick, Jennifer


    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.

  7. Pulmonary vascular imaging

    International Nuclear Information System (INIS)

    Fedullo, P.F.; Shure, D.


    A wide range of pulmonary vascular imaging techniques are available for the diagnostic evaluation of patients with suspected pulmonary vascular disease. The characteristics of any ideal technique would include high sensitivity and specificity, safety, simplicity, and sequential applicability. To date, no single technique meets these ideal characteristics. Conventional pulmonary angiography remains the gold standard for the diagnosis of acute thromboembolic disease despite the introduction of newer techniques such as digital subtraction angiography and magnetic resonance imaging. Improved noninvasive lower extremity venous testing methods, particularly impedance plethysmography, and ventilation-perfusion scanning can play significant roles in the noninvasive diagnosis of acute pulmonary emboli when properly applied. Ventilation-perfusion scanning may also be useful as a screening test to differentiate possible primary pulmonary hypertension from chronic thromboembolic pulmonary hypertension. And, finally, angioscopy may be a useful adjunctive technique to detect chronic thromboembolic disease and determine operability. Optimal clinical decision-making, however, will continue to require the proper interpretation of adjunctive information obtained from the less-invasive techniques, applied with an understanding of the natural history of the various forms of pulmonary vascular disease and with a knowledge of the capabilities and shortcomings of the individual techniques

  8. Effect of desensitizing agents on dentin permeability. (United States)

    Ishihata, Hiroshi; Kanehira, Masafumi; Nagai, Tomoko; Finger, Werner J; Shimauchi, Hidetoshi; Komatsu, Masashi


    To investigate the in vitro efficacy of two dentin desensitizing products at reducing liquid permeability through human dentin discs. The tested hypothesis was that the products, in spite of different chemical mechanisms were not different at reducing or eliminating flow through dentin discs. Dentin slices (1 mm thick) were prepared from 16 extracted human third molars and their permeability was indirectly recorded in a split chamber model, using a chemiluminescence technique, after EDTA treatment (control), after soaking with albumin, and after desensitizer application. Two products were studied: MS Coat, a self-curing resin-containing oxalate product, and Gluma Desensitizer, a glutaraldehyde/HEMA-based agent without initiator. The dentin slices were mounted between an upper chamber, filled with an aqueous solution of 1% potassium ferricyanide and 0.3% hydrogen peroxide, and a lower chamber filled with 1% sodium hydroxide solution and 0.02% luminol. The upper solution was pressurized, and upon contact with the luminol solution a photochemical signal was generated and recorded as a measure of permeability throughout two consecutive pressurizing cycles at 2.5 and 13 kPa (26 and 133 cm H2O), respectively. The permeability of the control and albumin-soaked samples was similarly high. After application of the desensitizing agents, dentin permeability was reduced to virtually zero at both pressure levels (P < 0.001).

  9. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim


    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  10. A biodegradable vascularizing membrane: a feasibility study. (United States)

    Kaushiva, Anchal; Turzhitsky, Vladimir M; Darmoc, Marissa; Backman, Vadim; Ameer, Guillermo A


    Regenerative medicine and in vivo biosensor applications require the formation of mature vascular networks for long-term success. This study investigated whether biodegradable porous membranes could induce the formation of a vascularized fibrous capsule and, if so, the effect of degradation kinetics on neovascularization. Poly(l-lactic acid) (PLLA) and poly(dl-lactic-co-glycolic) acid (PLGA) membranes were created by a solvent casting/salt leaching method. Specifically, PLLA, PLGA 75:25 and PLGA 50:50 polymers were used to vary degradation kinetics. The membranes were designed to have an average 60mum pore diameter, as this pore size has been shown to be optimal for inducing blood vessel formation around nondegradable polymer materials. Membrane samples were imaged by scanning electron microscopy at several time points during in vitro degradation to assess any changes in pore structure. The in vivo performance of the membranes was assessed in Sprague-Dawley rats by measuring vascularization within the fibrous capsule that forms adjacent to implants. The vascular density within 100microm of the membranes was compared with that seen in normal tissue, and to that surrounding the commercially available vascularizing membrane TheraCyte. The hemoglobin content of tissue containing the membranes was measured by four-dimensional elastic light scattering as a novel method to assess tissue perfusion. Results from this study show that slow-degrading membranes induce greater amounts of neovascularization and a thinner fibrous capsule relative to fast degrading membranes. These results may be due both to an initially increased number of macrophages surrounding the slower degrading membranes and to the maintenance of their initial pore structure.

  11. In situ permeability testing of rock salt

    International Nuclear Information System (INIS)

    Peterson, E.W.; Lagus, P.L.; Broce, R.D.; Lie, K.


    Storage of transuranic (TRU) wastes in bedded salt formations requires a knowledge of the in situ permeability of SENM rock salt. Since assumptions for safety assessments have been made in which these wastes could generate gas pressures on the order of the lithostatic pressure over geologic time scales, the permeability of the surrounding formation becomes an important parameter for determining the manner in which the gases will be contained or dispersed. This report describes the series of tests conducted in the AEC-7 borehole, located near the WIPP site, to determine the in situ gas flow characteristics of the bedded salt. In these tests, compressed air was injected into the borehole and flow into the surrounding formation measured. These measured flow rates were interpreted in terms of formation permeabilities and porosities which were, in turn, used as modeling parameters for the repository response analysis. Two series of field tests were performed. The first series consisted of a number of whole-hole flow tests conducted to provide preliminary design information required for future operation of a guarded straddle packer system capable of measuring permeabilities > or = 0.1 μdarcy. The second series of tests were conducted using the Systems, Science and Software (S-Cubed) designed guarded straddle packer system. In these interval permeability tests, 100-foot lengths of borehole were isolated and the flow characteristics of the surrounding formation examined. In this report, a complete description of the test procedures, instrumentation, and measurement techniques is first given. The analytical/numerical methods used for data interpretation are then presented, followed by results of the interval and permeability tests. (The whole-hole tests are summarized in Appendix A.) Conclusions are presented in the final section

  12. Graph analysis of cell clusters forming vascular networks (United States)

    Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.


    This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

  13. Small-bowel permeability in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Madsen, Jan L; Rumessen, Jüri J


    Collagenous colitis (CC) is a chronic inflammatory bowel disease that affects the colon. However, some patients with CC present with accompanying pathologic small-bowel manifestations such as coeliac disease, defects in bile acid absorption and histopathologic changes in small-intestinal biopsies......, indicating that CC is a pan-intestinal disease. In small-intestinal disease, the intestinal barrier function may be impaired, and the permeability of the small intestine altered. The purpose of this research was to study small-bowel function in patients with CC as expressed by intestinal permeability....

  14. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas


    significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic...... groups differ in the amino acid composition of their aromatic/arginine regions. The location of the ammonia-permeable aquaporins in the body parallels that of the Rh proteins. This applies to erythrocytes and to cells associated with nitrogen homeostasis and high rates of anabolism. In the liver, AQPs 8...

  15. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    Directory of Open Access Journals (Sweden)

    Shannon L Taylor

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and hantavirus pulmonary syndrome (HPS are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF. To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS. We show that incubation of factor XII (FXII, prekallikrein (PK, and high molecular weight kininogen (HK plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL and increased liberation of bradykinin (BK. Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS, we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation

  16. Predicting carbonate permeabilities from wireline logs using a back-propagation neural network

    International Nuclear Information System (INIS)

    Wiener, J.M.; Moll, R.F.; Rogers, J.A.


    This paper explores the applicability of using Neural Networks to aid in the determination of carbonate permeability from wireline logs. Resistivity, interval transit time, neutron porosity, and bulk density logs form Texaco's Stockyard Creek Oil field were used as input to a specially designed neural network to predict core permeabilities in this carbonate reservoir. Also of interest was the comparison of the neural network's results to those of standard statistical techniques. The process of developing the neural network for this problem has shown that a good understanding of the data is required when creating the training set from which the network learns. This network was trained to learn core permeabilities from raw and transformed log data using a hyperbolic tangent transfer function and a sum of squares global error function. Also, it required two hidden layers to solve this particular problem

  17. Vascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology

    Directory of Open Access Journals (Sweden)

    Mohsen Azimi-Nezhad


    Full Text Available Vascular endothelial growth factor (VEGF is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T lymphocytes and macrophages. Six VEGF isoforms are generated as a result of alternative splicing from a single VEGF gene, consisting of 121, 145, 165, 183, 189, or 206 amino acids. VEGF121, VEGF145, and VEGF165 are secreted whereas VEGF183, VEGF189, and VEGF206 are cell membrane-bound. VEGF145 has a key role during the vascularization of the human ovarian follicle and corpus luteum, in the placentation and embryonic periods, and in bone and wound healing, while VEGF165 is the most abundant and biologically active isoform. VEGF has been linked with a number of vascular pathologies including cardiovascular diseases such ischemic heart disease, heart failure, stroke, and diabetes and its related complications. In this review we aimed to present some important roles of VEGF in a number of clinical issues and indicate its involvement in several phenomena from the initial steps of the embryonic period to cardiovascular diseases.

  18. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Chang Hyun Byon


    Full Text Available Oxidative stress represents excessive intracellular levels of reactive oxygen species (ROS, which plays a major role in the pathogenesis of cardiovascular disease. Besides having a critical impact on the development and progression of vascular pathologies including atherosclerosis and diabetic vasculopathy, oxidative stress also regulates physiological signaling processes. As a cell permeable ROS generated by cellular metabolism involved in intracellular signaling, hydrogen peroxide (H2O2 exerts tremendous impact on cardiovascular pathophysiology. Under pathological conditions, increased oxidase activities and/or impaired antioxidant systems results in uncontrolled production of ROS. In a pro-oxidant environment, vascular smooth muscle cells (VSMC undergo phenotypic changes which can lead to the development of vascular dysfunction such as vascular inflammation and calcification. Investigations are ongoing to elucidate the mechanisms for cardiovascular disorders induced by oxidative stress. This review mainly focuses on the role of H2O2 in regulating physiological and pathological signals in VSMC.

  19. Vascular remodeling and mineralocorticoids. (United States)

    Weber, K T; Sun, Y; Campbell, S E; Slight, S H; Ganjam, V K


    Circulating mineralocorticoid hormones are so named because of their important homeostatic properties that regulate salt and water balance via their action on epithelial cells. A broader range of functions in nonclassic target cellular sites has been proposed for these steroids and includes their contribution to wound healing following injury. A chronic, inappropriate (relative to intravascular volume and dietary sodium intake) elevation of these circulating hormones evokes a wound healing response in the absence of tissue injury--a wound healing response gone awry. The adverse remodeling of vascularized tissues seen in association with chronic mineralocorticoid excess is the focus of this review.

  20. The biofiltration permeable reactive barrier: Practical experience from Synthesia

    Energy Technology Data Exchange (ETDEWEB)

    Vesela, L.; Nemecek, J.; Siglova, M.; Kubal, M. [DEKONTA, Prague (Czech Republic)


    The paper refers to utilization of biological elements within permeable reactive barriers. The concept of a biofiltration permeable barrier has been tested in the laboratory and in pilot-scale. Oxyhumolite (oxidized young lignite) was examined as an absorption material and a biofilm carrier. Laboratory tests performed before the pilot verification confirmed that oxyhumolite adsorbs organic pollutants at a minimum value, but that it can be used for biofilm attachment. An experimental barrier was built on premises of a chemical factory contaminated mainly by various organic pollutants (benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorobenzenes, naphthalene, nitro-derivatives, phenols, trichloroethylene (TCE), and total petroleum hydrocarbon (TPH)). Before the barrier was installed, a preliminary survey of the unsaturated zone, hydrogeological investigation, and a microbiological survey had been performed. The barrier was designed as a trench-and-gate system with an in situ bioreactor. During the year 2004, measurements of groundwater flux and retention time under current hydrological conditions, together with chemical and microbiological monitoring, were carried out on the site. The results showed high effectiveness of organic contamination removal. Average elimination varied from 57.3% (naphthalene) to 99.9% (nitro-derivatives, BTEX); microbial density in the bioreactor was approx. 10{sup 5} CFU mL{sup -1}.

  1. Steady-state flow in a rock mass intersected by permeable fracture zones

    International Nuclear Information System (INIS)

    Lindbom, B.


    Level 1 of HYDROCOIN consists of seven well-defined test problems. This paper is concerned with Case 2, which is formulated as a generic groundwater flow situation often found in crystalline rock with highly permeable fracture zones in a less permeable rock mass. The case is two-dimensional and modelled with 8-noded, isoparametric, rectangular elements. According to the case definition, calculations of hydraulic head and particle tracking are performed. The computations are carried out with varying degree of discretisation in order to analyse possible impact on the result with respect to nodal density. Further calculations have been performed mainly devoted to mass balance deviations and how these are affected by permeability contrasts, varying degree of spatial discretisation and distortion of finite elements. The distribution of hydraulic head in the domain is less sensitive to differences in nodal density than the trajectories. The hydraulic heads show similar behaviour for three meshes with varying degrees of discretisation. The particle tracking seems to be more sensitive to the level of discretisation. The results obtained with a coarse and medium mesh indicate completely different solutions for one of the pathlines. The coarse mesh is too sparsely discretised for the specified problem. The local mass balance is evaluated for seven runs. The mass balance deviation seems to be considerably more sensitive to the level of discretisation than to both permeability contrasts and deformation of elements. The permeability contrasts between the rock mass and fracture zones vary from a factor of 1000 to 1 (homogeneous properties) with increments of a factor of 10. These calculations in fact give better mass balance with increasing permeability contrasts, contrary to what could be expected. (orig./HP)

  2. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations. (United States)

    Dahan, Arik; Miller, Jonathan M; Hilfinger, John M; Yamashita, Shinji; Yu, Lawrence X; Lennernäs, Hans; Amidon, Gordon L


    The FDA classifies a drug substance as high-permeability when the fraction of dose absorbed (F(abs)) in humans is 90% or higher. This direct correlation between human permeability and F(abs) has been recently controversial, since the β-blocker sotalol showed high F(abs) (90%) and low Caco-2 permeability. The purpose of this study was to investigate the scientific basis for this disparity between permeability and F(abs). The effective permeabilities (P(eff)) of sotalol and metoprolol, a FDA standard for the low/high P(eff) class boundary, were investigated in the rat perfusion model, in three different intestinal segments with pHs corresponding to the physiological pH in each region: (1) proximal jejunum, pH 6.5; (2) mid small intestine, pH 7.0; and (3) distal ileum, pH 7.5. Both metoprolol and sotalol showed pH-dependent permeability, with higher P(eff) at higher pH. At any given pH, sotalol showed lower permeability than metoprolol; however, the permeability of sotalol determined at pH 7.5 exceeded/matched metoprolol's at pH 6.5 and 7.0, respectively. Physicochemical analysis based on ionization, pK(a) and partitioning of these drugs predicted the same trend and clarified the mechanism behind these observed results. Experimental octanol-buffer partitioning experiments confirmed the theoretical curves. An oral dose of metoprolol has been reported to be completely absorbed in the upper small intestine; it follows, hence, that metoprolol's P(eff) value at pH 7.5 is not likely physiologically relevant for an immediate release dosage form, and the permeability at pH 6.5 represents the actual relevant value for the low/high permeability class boundary. Although sotalol's permeability is low at pH 6.5 and 7.0, at pH 7.5 it exceeds/matches the threshold of metoprolol at pH 6.5 and 7.0, most likely responsible for its high F(abs). In conclusion, we have shown that, in fact, there is no discrepancy between P(eff) and F(abs) in sotalol's absorption; the data emphasize that

  3. Permeability analysis of Asbuton material used as core layers of water resistance in the body of dam (United States)

    Rahim, H.; Tjaronge, M. W.; Thaha, A.; Djamaluddin, R.


    In order to increase consumption of the local materials and national products, large reserves of Asbuton material about 662.960 million tons in the Buton Islands became an alternative as a waterproof core layer in the body of dam. The Asbuton material was used in this research is Lawele Granular Asphalt (LGA). This study was an experimental study conducted in the laboratory by conducting density testing (content weight) and permeability on Asbuton material. Testing of the Asbuton material used Falling Head method to find out the permeability value of Asbuton material. The data of test result to be analyzed are the relation between compaction energy and density value also relation between density value and permeability value of Asbuton material. The result shows that increases the number of blow apply to the Asbuton material at each layer will increase the density of the Asbuton material. The density value of Asbuton material that satisfies the requirements for use as an impermeable core layer in the dam body is 1.53 grams/cm3. The increase the density value (the weight of the contents) of the Asbuton material will reduce its permeability value of the Asbuton material.

  4. Autoradiographic study of the permeability characteristics of the small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Kingham, J G.C.; Baker, J H; Loehry, C A [Royal Victoria Hospital, Bournemouth (UK)


    This autoradiographic study demonstrates the distribution of a range of small solutes and macromolecules in the mucosa of the guinea-pig small intestine after intracardiac injection. The substances investigated were: /sup 14/C-urea, /sup 3/H-mannose, /sup 3/H-inulin, and /sup 125/I polyvinylpyrrolidone (PVP). Small bowel biopsies were taken at intervals from one to 60 minutes after injection and the tissues processed for autoradiography. Light microscopic examination of the autoradiographs showed that the compartmental distribution depended on the molecular size of the substances being studied. Urea and mannose, as small solutes, were uniformly distributed throughout the intravascular, extravascular, and epithelial compartments. Inulin was evenly distributed in the vessel lumen and extravascular space but there was a considerable drop in concentration in the epithelium. PVP exhibited the most marked gradients, the concentration being greatest in the vascular lumina, lower in the extravascular space, least in the epithelium. Thus there appear to be two barriers to macromolecular passage which are freely permeable to small solutes: the capillary wall and the epithelium. At a light microscopical level it was not possible to observe whether the limiting membrane of each of these barriers is the cell plasmalemmal membrane or the basement membrane. The selectivity of the epithelial barrier was greater than that of the capillary barrier.

  5. Water permeability of pigmented waterborne coatings

    NARCIS (Netherlands)

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.


    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible

  6. Water permeability in human airway epithelium

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Procida, Kristina; Larsen, Per Leganger


    Osmotic water permeability (P(f)) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane ...

  7. Foam film permeability: theory and experiment. (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J


    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  8. Color-magnetic permeability of QCD vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K


    In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.

  9. The Permeability of Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Williams, A.F.; Burcharth, H. F.; Adel, H. den


    . A new series of tests designed to test for deviations from the Forchheimer equation and investigate the effects of material shape are described. While no evidence can be found to indicate a deviation from the Forchheimer equation a dependency of permeability and the surface roughness the material...

  10. Programs for the calculi of blocks permeabilities

    International Nuclear Information System (INIS)

    Gomez Hernandez, J.J.; Sovero Sovero, H.F.


    This report studies the stochastic analysis of radionuclide transport. The permeability values of blocks are necessary to do a numeric model for the flux and transport problems in ground soils. The determination of block value by function on grill value is the objective of this program

  11. Interventional vascular radiology

    International Nuclear Information System (INIS)

    Yune, H.Y.


    The papers published during this past year in the area of interventional vascular radiology presented some useful modifications and further experiences both in the area of thromboembolic therapy and in dilation and thrombolysis, but no new techniques. As an introductory subject, an excellent monograph reviewing the current spectrum of pharmacoangiography was presented in Radiographics. Although the presented material is primarily in diagnostic application of various pharmacologic agents used today to facilitate demonstration of certain diagnostic criteria of various disease processes, both vasodilatory and vasoconstrictive reaction to these agents are widely used in various therapeutic vascular procedures. This monograph should be reviewed by every angiographer whether or not he or she performs interventional procedures, and it would be very convenient to have this table available in the angiography suite. In a related subject, Bookstein and co-workers have written an excellent review concerning pharmacologic manipulations of various blood coagulative parameters during angiography. Understanding the proper method of manipulation of the bloodclotting factors during angiography, and especially during interventional angiography, is extremely important. Particularly, the method of manipulating the coagulation with the use of heparin and protamine and modification of the platelet activity by using aspirin and dipyridamole are succinctly reviewed. The systemic and selective thrombolytic activities of streptokianse are also discussed

  12. Vascular dysfunction in preeclampsia. (United States)

    Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T


    Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review. © 2013 John Wiley & Sons Ltd.

  13. Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations

    International Nuclear Information System (INIS)

    Schubert, Gerlind; Harrison, Philip


    The isotropic and anisotropic magnetic permeability of Magneto-Rheological Elastomers (MREs) is identified using a simple inverse modelling approach. This involves measuring the magnetic flux density and attractive force occurring between magnets, when MRE specimens are placed in between the magnets. Tests were conducted using isotropic MREs with 10–40% and for anisotropic MREs with 10–30%, particle volume concentration. Magnetic permeabilities were then identified through inverse modelling, by simulating the system using commercially available multi-physics finite element software. As expected, the effective permeability of isotropic MREs was found to be scalar-valued; increasing with increasing particle volume concentration (from about 1.6 at 10% to 3.7 at 30% particle volume concentration). The magnetic permeability of transversely isotropic MRE was itself found to be transversely isotropic, with permeabilities in the direction of particle chain alignment from 1.6 at 10% to 4.45 at 30%, which is up to 1.07–1.25 times higher than in the transverse directions. Results of this investigation are demonstrated to show good agreement with those reported in the literature. - Highlights: • An inverse modelling approach for permeability identification of MREs. • Comparison of magnetic flux measurements with finite element simulations. • Permeability of isotropic and anisotropic MREs of varying iron content identified. • Results compare favourably with theoretical predictions. • Simple experimental setup. • Inexpensive technique that can be conducted in most mechanical test labs.

  14. Road density (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  15. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler


    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  16. Vascular pattern formation in plants. (United States)

    Scarpella, Enrico; Helariutta, Ykä


    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  17. DNA excision repair in permeable human fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.


    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the [3H]DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells

  18. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. (United States)

    Cai, Heng; Xue, Yixue; Wang, Ping; Wang, Zhenhua; Li, Zhen; Hu, Yi; Li, Zhiqing; Shang, Xiuli; Liu, Yunhui


    Blood-tumor barrier (BTB) limits the delivery of chemotherapeutic agent to brain tumor tissues. Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in various biologic processes of tumors. However, the role of lncRNAs in BTB permeability is unclear. LncRNA TUG1 (taurine upregulated gene 1) was highly expressed in glioma vascular endothelial cells from glioma tissues. It also upregulated in glioma co-cultured endothelial cells (GEC) from BTB model in vitro. Knockdown of TUG1 increased BTB permeability, and meanwhile down-regulated the expression of the tight junction proteins ZO-1, occludin, and claudin-5. Both bioinformatics and luciferase reporter assays demonstrated that TUG1 influenced BTB permeability via binding to miR-144. Furthermore, Knockdown of TUG1 also down-regulated Heat shock transcription factor 2 (HSF2), a transcription factor of the heat shock transcription factor family, which was defined as a direct and functional downstream target of miR-144. HSF2 up-regulated the promoter activities and interacted with the promoters of ZO-1, occludin, and claudin-5 in GECs. In conclusion, our results indicate that knockdown of TUG1 increased BTB permeability via binding to miR-144 and then reducing EC tight junction protein expression by targeting HSF2. Thus, TUG1 may represent a useful future therapeutic target for enhancing BTB permeability.

  19. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin


    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  20. A high quality finger vascular pattern dataset collected using a custom designed capturing device

    NARCIS (Netherlands)

    Ton, B.T.; Veldhuis, Raymond N.J.


    The number of finger vascular pattern datasets available for the research community is scarce, therefore a new finger vascular pattern dataset containing 1440 images is prsented. This dataset is unique in its kind as the images are of high resolution and have a known pixel density. Furthermore this

  1. Sub-core permeability and relative permeability characterization with Positron Emission Tomography (United States)

    Zahasky, C.; Benson, S. M.


    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  2. Error Analysis of High Frequency Core Loss Measurement for Low-Permeability Low-Loss Magnetic Cores

    DEFF Research Database (Denmark)

    Niroumand, Farideh Javidi; Nymand, Morten


    in magnetic cores is B-H loop measurement where two windings are placed on the core under test. However, this method is highly vulnerable to phase shift error, especially for low-permeability, low-loss cores. Due to soft saturation and very low core loss, low-permeability low-loss magnetic cores are favorable...... in many of the high-efficiency high power-density power converters. Magnetic powder cores, among the low-permeability low-loss cores, are very attractive since they possess lower magnetic losses in compared to gapped ferrites. This paper presents an analytical study of the phase shift error in the core...... loss measuring of low-permeability, low-loss magnetic cores. Furthermore, the susceptibility of this measurement approach has been analytically investigated under different excitations. It has been shown that this method, under square-wave excitation, is more accurate compared to sinusoidal excitation...

  3. Uncertainty in dual permeability model parameters for structured soils (United States)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.


    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.

  4. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs. (United States)

    Elomaa, Laura; Yang, Yunzhi Peter


    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  5. In vivo quantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees

    International Nuclear Information System (INIS)

    Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Liang, Jimin; Tian, Jie; Cao, Feng


    To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance. (paper)

  6. New aspects of vascular remodelling: the involvement of all vascular cell types. (United States)

    McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J


    Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.

  7. The impact of various scaffold components on vascularized bone constructs. (United States)

    Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila


    Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct

  8. Solubility and Permeability Studies of Aceclofenac in Different Oils

    African Journals Online (AJOL)

    The solubility and permeability of aceclofenac were compared with the hydroalcoholic solution of ... the use of lipid based systems such as micro- or .... carriers/vehicles for enhanced solubility and permeability ... modifications: A recent review.

  9. Investigation clogging dynamic of permeable pavement systems using embedded sensors (United States)

    Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging mechanism of these systems that effects the infiltration. A permeable pavement site located at the Seitz Elementary...

  10. Preliminary study of soil permeability properties using principal component analysis (United States)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.


    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  11. Cardiac and vascular malformations

    International Nuclear Information System (INIS)

    Ley, S.; Ley-Zaporozhan, J.


    Malformations of the heart and great vessels show a high degree of variation. There are numerous variants and defects with only few clinical manifestations and are only detected by chance, such as a persistent left superior vena cava or a partial anomalous pulmonary venous connection. Other cardiovascular malformations are manifested directly after birth and need prompt mostly surgical interventions. At this point in time echocardiography is the diagnostic modality of choice for morphological and functional characterization of malformations. Additional imaging using computed tomography (CT) or magnetic resonance imaging (MRI) is only required in a minority of cases. If so, the small anatomical structures, the physiological tachycardia and tachypnea are a challenge for imaging modalities and strategies. This review article presents the most frequent vascular, cardiac and complex cardiovascular malformations independent of the first line diagnostic imaging modality. (orig.) [de

  12. Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics. (United States)

    Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan


    Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Development in NMR spiral imaging and application to the assessment of the permeability of the blood-brain barrier on 2 models of brain tumors

    International Nuclear Information System (INIS)

    Beaumont, M.


    The results presented in this work were obtained as part of methodological developments in magnetic resonance imaging. First of all, the setting of the rapid imaging technique using a k-space sampling scheme along a variable density spiral is described. Numerical simulations were used to optimize the acquisitions parameters and to compare different reconstruction techniques. An original approach to calibrate the k-space trajectory was proposed. Then, spiral imaging was used to implement a method to measure the blood brain barrier permeability to Gd-DOTA. This protocol was combined to blood volume and vessel size index measurements using Sinerem. The results obtained highlighted differences between the microvascular parameters measured on C6 and RG2 tumor models. The presence of Sinerem induces a mean decrease of the transfer constant across the vascular wall (Ktrans), in the tumor, of 24 per cent. This study also showed extravasation of the Sinerem, during the first two hours after the product injection, only in the RG2 tumors. (author)

  14. A dual energy CT study on vascular effects of gold nanoparticles in radiation therapy (United States)

    Ashton, Jeffrey R.; Hoye, Jocelyn; Deland, Katherine; Whitley, Melodi; Qi, Yi; Moding, Everett; Kirsch, David G.; West, Jennifer; Badea, Cristian T.


    Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and CT imaging. AuNPs are delivered to tumors via the enhanced permeability and retention effect and they preferentially accumulate in close proximity to the tumor blood vessels. AuNPs produce low-energy, short-range photoelectrons during external beam radiation therapy (RT), boosting dose. This work is focused on understanding how tumor vascular permeability is influenced by AuNP-augmented radiation therapy (RT), and how this knowledge can potentially improve the delivery of additional nanoparticle-based chemotherapeutics. We use dual energy (DE) CT to detect accumulation of AuNPs and increased vascular permeability to liposomal iodine (i.e. a surrogate for chemotherapeutics with liposome encapsulation) following RT. We used sarcoma tumors generated in LSL-KrasG12D; p53FL/FL conditional mutant mice. A total of n=37 mice were used in this study. The treated mice were injected with 20 mg AuNP (0.1 ml/25 g mouse) 24 hours before delivery of 5 Gy RT (n=5), 10 Gy RT (n=3) or 20 Gy RT (n=6). The control mice received no AuNP injection and either no RT (n=6), 5 Gy RT (n=3), 10 Gy RT (n=3), 20 Gy RT (n=11). Twenty four hours post-RT, the mice were injected with liposomal iodine (0.3 ml/25 mouse) and imaged with DE-CT three days later. The results suggest that independent of any AuNP usage, RT levels of 10 Gy and 20 Gy increase the permeability of tumor vasculature to liposomal iodine and that the increase in permeability is dose-dependent. We found that the effect of RT on vasculature may already be at its maximum response i.e. saturated at 20 Gy, and therefore the addition of AuNPs had almost no added benefit. Similarly, at 5 Gy RT, our data suggests that there was no effect of AuNP augmentation on tumor vascular permeability. However, by using AuNPs with 10 Gy RT, we observed an increase in the vascular permeability, however this is not yet statistically significant due to the small

  15. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification. (United States)

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L


    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  16. CIRSE Vascular Closure Device Registry

    NARCIS (Netherlands)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria


    Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. The CIRSE registry of closure devices

  17. Dynamic adaption of vascular morphology

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Jacobsen, Jens Christian Brings


    The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here ...

  18. Diagnostic criteria for vascular dementia

    NARCIS (Netherlands)

    Scheltens, P.; Hijdra, A. H.


    The term vascular dementia implies the presence of a clinical syndrome (dementia) caused by, or at least assumed to be caused by, a specific disorder (cerebrovascular disease). In this review, the various sets of criteria used to define vascular dementia are outlined. The various sets of criteria

  19. The vascular secret of Klotho

    DEFF Research Database (Denmark)

    Lewin, Ewa; Olgaard, Klaus


    Klotho is an evolutionarily highly conserved protein related to longevity. Increasing evidence of a vascular protecting effect of the Klotho protein has emerged and might be important for future treatments of uremic vascular calcification. It is still disputed whether Klotho is locally expressed ...

  20. Interleukin-17A and vascular remodelling in severe asthma; lack of evidence for a direct role. (United States)

    Panariti, A; Baglole, C J; Sanchez, V; Eidelman, D H; Hussain, S; Olivenstein, R; Martin, J G; Hamid, Q


    Bronchial vascular remodelling may contribute to the severity of airway narrowing through mucosal congestion. Interleukin (IL)-17A is associated with the most severe asthmatic phenotype but whether it might contribute to vascular remodelling is uncertain. To assess vascular remodelling in severe asthma and whether IL-17A directly or indirectly may cause endothelial cell activation and angiogenesis. Bronchial vascularization was quantified in asthmatic subjects, COPD and healthy subjects together with the number of IL-17A + cells as well as the concentration of angiogenic factors in the sputum. The effect of IL-17A on in vitro angiogenesis, cell migration and endothelial permeability was assessed directly on primary human lung microvascular endothelial cells (HMVEC-L) or indirectly with conditioned medium derived from normal bronchial epithelial cells (NHBEC), fibroblasts (NHBF) and airway smooth muscle cells (ASMC) after IL-17A stimulation. Severe asthmatics have increased vascularity compared to the other groups, which correlates positively with the concentrations of angiogenic factors in sputum. Interestingly, we demonstrated that increased bronchial vascularity correlates positively with the number of subepithelial IL-17A + cells. However IL-17A had no direct effect on HMVEC-L function but it enhanced endothelial tube formation and cell migration through the production of angiogenic factors by NHBE and ASMC. Our results shed light on the role of IL-17A in vascular remodelling, most likely through stimulating the synthesis of other angiogenic factors. Knowledge of these pathways may aid in the identification of new therapeutic targets. © 2018 John Wiley & Sons Ltd.

  1. Social media in vascular surgery. (United States)

    Indes, Jeffrey E; Gates, Lindsay; Mitchell, Erica L; Muhs, Bart E


    There has been a tremendous growth in the use of social media to expand the visibility of various specialties in medicine. The purpose of this paper is to describe the latest updates on some current applications of social media in the practice of vascular surgery as well as existing limitations of use. This investigation demonstrates that the use of social networking sites appears to have a positive impact on vascular practice, as is evident through the incorporation of this technology at the Cleveland Clinic and by the Society for Vascular Surgery into their approach to patient care and physician communication. Overall, integration of social networking technology has current and future potential to be used to promote goals, patient awareness, recruitment for clinical trials, and professionalism within the specialty of vascular surgery. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  2. Effect of lung injuries on [14C]urea permeability-surface area product in dogs

    International Nuclear Information System (INIS)

    Zelter, M.; Lipavsky, A.; Hoeffel, J.M.; Murray, J.F.


    To determine whether [ 14 C]urea permeability-surface area product (PS) is a reliable indicator of changes in permeability in various injuries and its relationship to indicator-dilution and gravimetric lung water contents, we studied six groups of anesthetized, paralyzed, and mechanically ventilated dogs (5 animals each). The groups consisted of control dogs, those injured by intravenous alloxan, oleic acid, or glass beads, and those exposed to acute hypoxia or increased left atrial pressure from volume loading (Pla). Interanimal variation of PS was large (3.0-15.0 ml/s), but successive hourly values in individual animals were stable for 2 h in experimental groups and for 4 h in controls. The PS increased after alloxan, elevated Pla, and 2 h of hypoxia; PS decreased after oleic acid and micremboli. The gravimetric lung water increased after alloxan, oleic acid, and microemboli, and indicator-dilution lung water increased only after alloxan. We conclude (1) that intersubject variability requires normalization to enable detection of significant deviation from base line, and (2) that decreased PS after oleic acid and microvascular injury occurred because vascular obstruction, which decreased surface area, masked probable coexisting increases in capillary permeability

  3. Intimal permeability evaluated in a short-term organ culture of diabetic guinea pig aorta

    International Nuclear Information System (INIS)

    Schlosser, M.J.; Verlangieri, A.J.


    A novel short-term organ culture system was used to evaluate intimal permeability changes by measuring aortic [ 14 C]methylated albumin accumulation. Aortic plugs were removed from the upper thoracic aorta of male guinea pigs and maintained in serum-free media. The accumulation of [ 14 C]albumin in the intimal-medial layer was determined after a 5 h incubation. In preliminary studies, albumin recovered from intimal-injured aortic plugs was significantly greater than those from non-injured plugs. Aortic plugs from streptozotocin-treated guinea pigs, diabetic for 3 weeks, also accumulated significantly more [ 14 C]albumin than plugs from nondiabetic controls. Histological changes were not observed in the aorta of either the diabetic or control group. A strong significant inverse correlation was found between plasma ascorbic acid levels and [ 14 C]-activity recovered from aortic plugs. This study demonstrates a simple and rapid method for assessing aortic permeability changes under a well-defined in vitro system, and suggests that vascular permeability changes in the streptozotocin-diabetic guinea pig may be associated with an ascorbic acid deficit

  4. Long-term Metal Performance of Three Permeable Pavements (United States)

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected...

  5. Permeability of cork for water and ethanol. (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D


    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  6. The kinetics of denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Evrard, Victor; Glud, Ronnie N.; Cook, Perran L. M.


    Permeable sediments comprise the majority of shelf sediments, yet the rates of denitrification remain highly uncertain in these environments. Computational models are increasingly being used to understand the dynamics of denitrification in permeable sediments, which are complex environments...... on sediments taken from six shallow coastal sites in Port Phillip Bay, Victoria, Australia. The results showed that denitrification commenced rapidly (within 30 min) after the onset of anoxia and the kinetics could be well described by Michaelis-Menten kinetics with half saturation constants (apparent K...... in cohesive sediments despite organic carbon contents one order of magnitude lower for the sediments studied here. The ratio of sediment O-2 consumption to V-max was in the range of 0.02-0.09, and was on average much lower than the theoretical ratio of 0.8. As a consequence, models implemented...

  7. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G


    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  8. Vascular Hyperpermeability Response in Animals Systemically Exposed to Arsenic. (United States)

    Chen, Shih-Chieh; Chang, Chao-Yuah; Lin, Ming-Lu


    The mechanisms underlying cardiovascular diseases induced by chronic exposure to arsenic remain unclarified. The objectives of this study were to investigate whether increased vascular leakage is induced by inflammatory mustard oil in mice systemically exposed to various doses of arsenic and whether an increased vascular leakage response is still present in arsenic-fed mice after arsenic discontinuation for 2 or 6 months. ICR mice were fed water or various doses of sodium arsenite (10, 15, or 20 mg/kg/day; 5 days/week) for 8 weeks. In separate experiments, the mice were treated with sodium arsenite (20 mg/kg) for 2 or 8 weeks, followed by arsenic discontinuation for 2 or 6 months. Vascular permeability to inflammatory mustard oil was quantified using Evans blue (EB) techniques. Both arsenic-exposed and water-fed (control) mice displayed similar basal levels of EB leakage in the ears brushed with mineral oil, a vehicle of mustard oil. The levels of EB leakage induced by mustard oil in the arsenic groups fed with sodium arsenite (10 or 15 mg/kg) were similar to those of water-fed mice. However, increased levels of EB leakage in response to mustard oil stimulation were significantly higher in mice treated with sodium arsenite (20 mg/kg; high dose) than in arsenic-fed (10 or 15 mg/kg; low and middle doses) or control mice. After arsenic discontinuation for 2 or 6 months, mustard oil-induced vascular EB leakage in arsenic-fed (20 mg/kg) mice was similar to that in control mice. Dramatic increases in mustard oil-induced vascular leakage were only present in mice systemically exposed to the high arsenic dose, indicating the synergistic effects of the high arsenic dose and mustard oil.

  9. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R


    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  10. Nonequilibrium gas absorption in rotating permeable media (United States)

    Baev, V. K.; Bazhaikin, A. N.


    The absorption of ammonia, sulfur dioxide, and carbon dioxide by water and aqueous solutions in rotating permeable media, a cellular porous disk, and a set of spaced-apart thin disks has been considered. The efficiency of cleaning air to remove these impurities is determined, and their anomalously high solubility (higher than equilibrium value) has been discovered. The results demonstrate the feasibility of designing cheap efficient rotor-type absorbers to clean gases of harmful impurities.

  11. A Reconciliation of Packed Column Permeability Data: Column Permeability as a Function of Particle Porosity

    Directory of Open Access Journals (Sweden)

    Hubert M. Quinn


    Full Text Available In his textbook teaching of packed bed permeability, Georges Guiochon uses mobile phase velocity as the fluid velocity term in his elaboration of the Darcy permeability equation. Although this velocity frame makes a lot of sense from a thermodynamic point of view, it is valid only with respect to permeability at a single theoretical boundary condition. In his more recent writings, however, Guiochon has departed from his long-standing mode of discussing permeability in terms of the Darcy equation and has embraced the well-known Kozeny-Blake equation. In this paper, his teaching pertaining to the constant in the Kozeny-Blake equation is examined and, as a result, a new correlation coefficient is identified and defined herein based on the velocity frame used in his teaching. This coefficient correlates pressure drop and fluid velocity as a function of particle porosity. We show that in their experimental protocols, Guiochon et al. have not adhered to a strict material balance of permeability which creates a mismatch of particle porosity and leads to erroneous conclusions regarding the value of the permeability coefficient in the Kozeny-Blake equation. By correcting the experimental data to properly reflect particle porosity we reconcile the experimental results of Guiochon and Giddings, resulting in a permeability reference chart which is presented here for the first time. This reference chart demonstrates that Guiochon’s experimental data, when properly normalized for particle porosity and other related discrepancies, corroborates the value of 267 for the constant in the Kozeny-Blake equation which was derived by Giddings in 1965.

  12. Endothelial cell permeability to water and antipyrine

    International Nuclear Information System (INIS)

    Garrick, R.A.


    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water ( 3 HHO) and 14 C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for 3 HHO through the packed cells (D), the intracellular material (D 2 ), and the extracellular material (D 1 ) were 0.682, 0.932 and 2.45 x 10 -5 cm 2 s -1 and for AP were 0.273, 0.355 and 1.13 x 10 -5 cm 2 s -1 respectively. The permeability coefficient calculated by the series-parallel pathway model for 3 HHO was higher than that for AP and for both 3 HHO and AP were lower than those calculated for isolated lung cells and erythrocytes

  13. Permeable treatment wall design and cost analysis

    International Nuclear Information System (INIS)

    Manz, C.; Quinn, K.


    A permeable treatment wall utilizing the funnel and gate technology has been chosen as the final remedial solution for one industrial site, and is being considered at other contaminated sites, such as a closed municipal landfill. Reactive iron gates will be utilized for treatment of chlorinated VOCs identified in the groundwater. Alternatives for the final remedial solution at each site were evaluated to achieve site closure in the most cost effective manner. This paper presents the remedial alternatives and cost analyses for each site. Several options are available at most sites for the design of a permeable treatment wall. Our analysis demonstrates that the major cost factor's for this technology are the design concept, length, thickness, location and construction methods for the reactive wall. Minimizing the amount of iron by placement in the most effective area and construction by the lowest cost method is critical to achieving a low cost alternative. These costs dictate the design of a permeable treatment wall, including selection of a variety of alternatives (e.g., a continuous wall versus a funnel and gate system, fully penetrating gates versus partially penetrating gates, etc.). Selection of the appropriate construction methods and materials for the site can reduce the overall cost of the wall

  14. Permeability of different size waste particles

    Directory of Open Access Journals (Sweden)

    Sabina Gavelytė


    Full Text Available The world and life style is changing, but the most popular disposal route for waste is landfill globally until now. We have to think about waste prevention and preparing for re-use or recycling firstly, according to the waste disposal hierarchy. Disposed waste to the landfill must be the last opportunity. In a landfill, during waste degradation processes leachate is formed that can potentially cause clogging of bottom drainage layers. To ensure stability of a landfill construction, the physical properties of its components have to be controlled. The hydrology of precipitation, evaporation, runoff and the hydraulic performance of the capping and liner materials are important controls of the moisture content. The water balance depends also on the waste characteristics and waste particle size distribution. The aim of this paper is to determine the hydraulic permeability in a landfill depending on the particle size distribution of municipal solid waste disposed. The lab experiment results were compared with the results calculated with DEGAS model. Samples were taken from a landfill operated for five years. The samples particle sizes are: >100 mm, 80 mm, 60 mm, 40 mm, 20 mm, 0.01 mm and <0.01 mm. The permeability test was conducted using the column test. The paper presents the results of experiment and DEGAS model water permeability with waste particle size.

  15. Laser-assisted vascular anastomosis (United States)

    Kao, Race L.; Tsao-Wu, George; Magovern, George J.


    The milliwatt CO2 laser and a thermal activated binding compound (20% serum albumin) were used for microvascular anastomoses. Under general anesthesia, the femoral arteries (0.7 to 1.0 mm diameter) of 6 rats were isolated. After the left femoral artery in each rat was clamped and transected, the vessel was held together with 3 equidistant 10-0 Xomed sutures. The cut edges were coated 3 to 4 times with the albumin solution and sealed with the CO2 laser (power density = 120 W/cm2). The binding compound solidified to a translucent tensile substance which supported the anastomosis until self healing and repair were achieved. The right femoral artery was used as sham operated control. Complete hemostasis and patency were observed in every case immediately and at 1, 3, and 6 months following surgery. The binding compound absorbed most of the laser energy thus minimizing thermal injury to the underlying tissue. Mongrel dogs weighing 28 to 33 kg were anesthetized and prepared for sterile surgical procedures. In 5 dogs, the femoral and jugular veins were exposed, transected, and anastomosed using a CO2 laser (Sharplan 1040) with the binding compound. In another 12 dogs, cephalic veins were isolated and used for aortocoronary artery bypass procedures. The Sharplan 1040 CO2 laser and 20% albumin solution were utilized to complete the coronary anastomoses in 6 dogs, and 6 dogs were used as controls by suturing the vessels. Again, hemostasis, patency, and minimal tissue damage were observed immediately and 6 weeks after the procedures. Improved surgical results, reduced operating time, minimized tissue damage, and enhanced anastomotic integrity are the advantages of laser assisted vascular anastomosis with a thermal activated binding compound.

  16. Evolution of permeability in diatomaceous rocks mediated by pressure solution

    International Nuclear Information System (INIS)

    Yasuhara, Hideaki; Kinoshita, Naoki; Kurikami, Hiroshi; Kishida, Kiyoshi


    A conceptual model is presented to follow the evolution of permeability in diatomaceous rocks mediated by pressure solution. The progress of compaction and the evolution of permeability may be followed with time. Specifically, the main minerals of diatomaceous rocks that are quartz, cristobalite, and amorphous silica, are focused to examine differences of the permeability evolutions among them at effective stresses of 5, and 10 MPa, and temperatures of 20 and 90degC. The rates and magnitudes of permeability reduction increase with increase of the dissolution rate constants. Ultimate permeabilities reduce to the order of 90% at the completion of dissolution-mediated compaction. (author)

  17. Vascular disease in cocaine addiction. (United States)

    Bachi, Keren; Mani, Venkatesh; Jeyachandran, Devi; Fayad, Zahi A; Goldstein, Rita Z; Alia-Klein, Nelly


    Cocaine, a powerful vasoconstrictor, induces immune responses including cytokine elevations. Chronic cocaine use is associated with functional brain impairments potentially mediated by vascular pathology. Although the Crack-Cocaine epidemic has declined, its vascular consequences are increasingly becoming evident among individuals with cocaine use disorder of that period, now aging. Paradoxically, during the period when prevention efforts could make a difference, this population receives psychosocial treatment at best. We review major postmortem and in vitro studies documenting cocaine-induced vascular toxicity. PubMed and Academic Search Complete were used with relevant terms. Findings consist of the major mechanisms of cocaine-induced vasoconstriction, endothelial dysfunction, and accelerated atherosclerosis, emphasizing acute, chronic, and secondary effects of cocaine. The etiology underlying cocaine's acute and chronic vascular effects is multifactorial, spanning hypertension, impaired homeostasis and platelet function, thrombosis, thromboembolism, and alterations in blood flow. Early detection of vascular disease in cocaine addiction by multimodality imaging is discussed. Treatment may be similar to indications in patients with traditional risk-factors, with few exceptions such as enhanced supportive care and use of benzodiazepines and phentolamine for sedation, and avoiding β-blockers. Given the vascular toxicity cocaine induces, further compounded by smoking and alcohol comorbidity, and interacting with aging of the crack generation, there is a public health imperative to identify pre-symptomatic markers of vascular impairments in cocaine addiction and employ preventive treatment to reduce silent disease progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [The future of vascular medicine]. (United States)

    Kroeger, K; Luther, B


    In the future vascular medicine will still have a great impact on health of people. It should be noted that the aging of the population does not lead to a dramatic increase in patient numbers, but will be associated with a changing spectrum of co-morbidities. In addition, vascular medical research has to include the intensive care special features of vascular patients, the involvement of vascular medicine in a holistic concept of fast-track surgery, a geriatric-oriented intensive monitoring and early geriatric rehabilitation. For the future acceptance of vascular medicine as a separate subject area under delimitation of cardiology and radiology is important. On the other hand, the subject is so complex and will become more complex in future specialisations that mixing of surgery and angiology is desirable, with the aim to preserve the vascular surgical knowledge and skills on par with the medical and interventional measures and further develop them. Only large, interdisciplinary guided vascular centres will be able to provide timely diagnosis and therapy, to deal with the growing multi-morbidity of the patient, to perform complex therapies even in an acute emergency and due to sufficient number of cases to present with well-trained and experienced teams. These requirements are mandatory to decrease patients' mortality step by step. Georg Thieme Verlag KG Stuttgart · New York.

  19. Contemporary vascular smartphone medical applications. (United States)

    Carter, Thomas; O'Neill, Stephen; Johns, Neil; Brady, Richard R W


    Use of smartphones and medical mHealth applications (apps) within the clinical environment provides a potential means for delivering elements of vascular care. This article reviews the contemporary availability of apps specifically themed to major vascular diseases and the opportunities and concerns regarding their integration into practice. Smartphone apps relating to major vascular diseases were identified from the app stores for the 6 most popular smartphone platforms, including iPhone, Android, Blackberry, Nokia, Windows, and Samsung. Search terms included peripheral artery (arterial) disease, varicose veins, aortic aneurysm, carotid artery disease, amputation, ulcers, hyperhydrosis, thoracic outlet syndrome, vascular malformation, and lymphatic disorders. Forty-nine vascular-themed apps were identified. Sixteen (33%) were free of charge. Fifteen apps (31%) had customer satisfaction ratings, but only 3 (6%) had greater than 100. Only 13 apps (27%) had documented medical professional involvement in their design or content. The integration of apps into the delivery of care has the potential to benefit vascular health care workers and patients. However, high-quality apps designed by clinicians with vascular expertise are currently lacking and represent an area of concern in the mHealth market. Improvement in the quality and reliability of these apps will require the development of robust regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory. (United States)

    Abdalrahman, T; Scheiner, S; Hellmich, C


    It is generally agreed on that trabecular bone permeability, a physiologically important quantity, is governed by the material׳s (vascular or intertrabecular) porosity as well as by the viscosity of the pore-filling fluids. Still, there is less agreement on how these two key factors govern bone permeability. In order to shed more light onto this somewhat open issue, we here develop a random homogenization scheme for upscaling Poiseuille flow in the vascular porosity, up to Darcy-type permeability of the overall porous medium "trabecular bone". The underlying representative volume element of the macroscopic bone material contains two types of phases: a spherical, impermeable extracellular bone matrix phase interacts with interpenetrating cylindrical pore channel phases that are oriented in all different space directions. This type of interaction is modeled by means of a self-consistent homogenization scheme. While the permeability of the bone matrix equals to zero, the permeability of the pore phase is found through expressing the classical Hagen-Poiseuille law for laminar flow in the format of a "micro-Darcy law". The upscaling scheme contains pore size and porosity as geometrical input variables; however, they can be related to each other, based on well-known relations between porosity and specific bone surface. As two key results, validated through comprehensive experimental data, it appears (i) that the famous Kozeny-Carman constant (which relates bone permeability to the cube of the porosity, the square of the specific surface, as well as to the bone fluid viscosity) needs to be replaced by an again porosity-dependent rational function, and (ii) that the overall bone permeability is strongly affected by the pore fluid viscosity, which, in case of polarized fluids, is strongly increased due to the presence of electrically charged pore walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Constructal vascularized structures (United States)

    Cetkin, Erdal


    Smart features such as self-healing and selfcooling require bathing the entire volume with a coolant or/and healing agent. Bathing the entire volume is an example of point to area (or volume) flows. Point to area flows cover all the distributing and collecting kinds of flows, i.e. inhaling and exhaling, mining, river deltas, energy distribution, distribution of products on the landscape and so on. The flow resistances of a point to area flow can be decreased by changing the design with the guidance of the constructal law, which is the law of the design evolution in time. In this paper, how the flow resistances (heat, fluid and stress) can be decreased by using the constructal law is shown with examples. First, the validity of two assumptions is surveyed: using temperature independent Hess-Murray rule and using constant diameter ducts where the duct discharges fluid along its edge. Then, point to area types of flows are explained by illustrating the results of two examples: fluid networks and heating an area. Last, how the structures should be vascularized for cooling and mechanical strength is documented. This paper shows that flow resistances can be decreased by morphing the shape freely without any restrictions or generic algorithms.

  2. Targeted modulation of reactive oxygen species in the vascular endothelium. (United States)

    Shuvaev, Vladimir V; Muzykantov, Vladimir R


    'Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-modified enzymes. Targeting of ROS generating enzymes (e.g., glucose oxidase) provides ROS- and site-specific models of endothelial oxidative stress, whereas targeting of antioxidant enzymes SOD and catalase offers site-specific quenching of superoxide anion and H(2)O(2). These targeted antioxidant interventions help to clarify specific role of endothelial ROS in vascular and pulmonary pathologies and provide basis for design of targeted therapeutics for treatment of these pathologies. In particular, antibody/catalase conjugates alleviate acute lung ischemia/reperfusion injury, whereas antibody/SOD conjugates inhibit ROS-mediated vasoconstriction and inflammatory endothelial signaling. Encapsulation in protease-resistant, ROS-permeable carriers targeted to endothelium prolongs protective effects of antioxidant enzymes, further diversifying the means for targeted modulation of endothelial ROS. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.; Salama, Amgad; Sun, S.


    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  4. Changes in microvascular permeability of the middle ear mucosa following the occulsion of the eustachian tube of rabbits

    International Nuclear Information System (INIS)

    Kikuchi, Yasutaka


    Serial changes in submucosal microvascular permeability of the middle ear and the response to histamine after occlusion of the eustachian tube were functionally investigated using radioisotope in rabbits with experimentally induced otitis media with effusion. Tritium water was administered through intravenous injection and transference of tritium water into the middle ear cavity was measured by radioactivity of the middle ear perfusate. Morphological changes were concurrently examined for comparison. Vascular permeability, as measured one, 7, and 14 days after occlusion of the eustachian tube, increased with time. A histological study showed an edematous hypertrophy of the submucosal tissue of the middle ear, suggesting a noticeable increase in microvascular permeability. The response of the middle ear mucosa to histamine, which was added to the fluid for perfusion, gradually decreased after occlusion of the eustachian tube, although the effect of histamine tended to persist for a long time, irrespective of the amount of administration. The results indicated that the mucosal membrane of the middle ear has a noticeable permeability at least up to 14 days after occlusion, and that histamine may be responsible for the increase of submucosal microvascular permeability not only in the normal middle ear cavity but also in otitis media with effusion which results in the persistance of the disease. The presence of factors permeable to the blood, other than histamine, caused microvascular peameability to increase, probably resulting in chronic or irreversible inflammation. This may be explained by markedly proliferative or parenchymatous connective tissues observed 7 and l0 weeks after occlusion. It should be noted that surgical treatment be performed as early as possible in the case of otitis media with effusion. (Namekawa, K) 80 refs

  5. Automation of cell-based drug absorption assays in 96-well format using permeable support systems. (United States)

    Larson, Brad; Banks, Peter; Sherman, Hilary; Rothenberg, Mark


    Cell-based drug absorption assays, such as Caco-2 and MDCK-MDR1, are an essential component of lead compound ADME/Tox testing. The permeability and transport data they provide can determine whether a compound continues in the drug discovery process. Current methods typically incorporate 24-well microplates and are performed manually. Yet the need to generate absorption data earlier in the drug discovery process, on an increasing number of compounds, is driving the use of higher density plates. A simple, more efficient process that incorporates 96-well permeable supports and proper instrumentation in an automated process provides more reproducible data compared to manual methods. Here we demonstrate the ability to perform drug permeability and transport assays using Caco-2 or MDCKII-MDR1 cells. The assay procedure was automated in a 96-well format, including cell seeding, media and buffer exchanges, compound dispense, and sample removal using simple robotic instrumentation. Cell monolayer integrity was confirmed via transepithelial electrical resistance and Lucifer yellow measurements. Proper cell function was validated by analyzing apical-to-basolateral and basolateral-to-apical movement of rhodamine 123, a known P-glycoprotein substrate. Apparent permeability and efflux data demonstrate how the automated procedure provides a less variable method than manual processing, and delivers a more accurate assessment of a compound's absorption characteristics.

  6. Effect of preparation conditions on properties and permeability of chitosan-sodium hexametaphosphate capsules. (United States)

    Angelova, N; Hunkeler, D


    Capsules were obtained by interpolymer complexation between chitosan (polycation) and sodium hexametaphosphate (SMP, oligoanion). The effect of the preparation conditions on the capsule characteristics was evaluated. Specifically, the influence of variables such as pH, ionic strength, reagent concentration, and additives on the capsule permeability properties was investigated using dextran as a model permeant. The capsule membrane permeability was found to increase by decreasing the chitosan/SMP ratio as well as adding mannitol to the oligoanion recipient bath. Increasing the ionic strength or the pH of the initial chitosan solution was also found to enhance the membrane permeability, moving the membrane exclusion limit to higher values. Generally, the capsules prepared tinder all tested conditions had a relatively low permeability which rarely exceeded a molecular cut-off of 40 kD based on dextran standards. Furthermore, the diffusion rate showed a strong temporal dependence, indicating that the capsules prepared under various conditions exhibit different apparent pore size densities on the surface. The results indicated that, in order to obtain the desired capsule mass-transfer properties, the preparation conditions should be carefully considered and adjusted. Adding a polyol as well as low salt amount (less than 0.15%) is preferable as a means of modulating the diffusion characteristics, without disturbing the capsule mechanical stability.

  7. Synthesis of Plate-Like Nanoalumina and Its Effect on Gas Permeability of Carbon Fiber Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Ghadamali Karimi Khozani


    Full Text Available In recent years considerable efforts have been made to develop gas impermeable polymer systems. Compared with metal system counterparts they have advantages such as low density and production costs. The most important challenge in development of impermeable polymer systems is to reduce their gas permeability by proper selection of system composition and process conditions. In this work, nanoparticles were initially synthesized using Al (NO33•9H2O and sodium dodecyl sulfate as a structure-directing agent via hydrothermal method and a plate-like structure was characterized by FESEM and EDAX analyses. In the second step, epoxy/plate-like nanoalumina nanocomposites and epoxy-carbon fiber composites containing 1, 2.5, and 5 wt% nanoalumina were prepared. The effect of nanoparticle loading level on permeability of nitrogen, argon, and carbon dioxide in epoxy/plate-like nanoalumina nanocomposites was investigated. It was observed that the permeability of epoxy/plate-like nanoalumina nanocomposites toward nitrogen, argon, and carbon dioxide gases reduced 83%, 74%, and 50%, respectively. It was deduced that the permeability reduction was clearly associated with the diameter of gas molecules. Generally speaking, the results showed that the incorporation of plate-like nanoalumina particles significantly reduced the gas permeability. Also, carbon dioxide gas permeability of carbon fiber epoxy composites containing plate-like nanoalumina was investigated to show the effect of ingredients on the gas permeability of the system. The results indicated that carbon dioxide gas permeability of epoxy carbon fiber composite containing 5 wt% of plate-like nanoalumina was totally reduced 84%.

  8. Vascular graft infections with Mycoplasma

    DEFF Research Database (Denmark)

    Levi-Mazloum, Niels Donald; Skov Jensen, J; Prag, J


    laboratory techniques, the percentage of culture-negative yet grossly infected vascular grafts seems to be increasing and is not adequately explained by the prior use of antibiotics. We have recently reported the first case of aortic graft infection with Mycoplasma. We therefore suggest the hypothesis...... that the large number of culture-negative yet grossly infected vascular grafts may be due to Mycoplasma infection not detected with conventional laboratory technique....

  9. Limb vascular function in women

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Gliemann, Lasse


    Throughout life, women are subjected to both acute fluctuations in sex hormones, associated with the menstrual cycle, and chronic changes following the onset of menopause. Female sex hormones, and in particular estrogen, strongly influence cardiovascular function such as the regulation of vascular...... studies. Physical activity should be recommended for women of all ages, but the most essential timing for maintenance of vascular health may be from menopause and onwards....

  10. Facial vascular malformations in children

    International Nuclear Information System (INIS)

    Brunelle, F.O.; Lallemand, D.; Chaumont, P.; Teillac, D.; Manach, Y.


    The authors present their experience with conventional and digital angiography of vascular malformations of the head and neck in children. 22 hemangioendotheliomas, 8 venous angiomas, and 3 arteriovenous fistula were studied. 22 patients were embolised. DSA offers many advantages during the diagnostic as well as during the therapeutic phase of angiography. Embolization appears to have a major role in treatment of such vascular malformations. (orig.)

  11. Engineered Trehalose Permeable to Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Alireza Abazari

    Full Text Available Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre and trehalose tetraacetate (4-O-Ac-Tre. Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies.

  12. Evaluation of permeable fractures in rock aquifers (United States)

    Bok Lee, Hang


    In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.

  13. Permeability log using new lifetime measurements

    International Nuclear Information System (INIS)

    Dowling, D.J.; Boyd, J.F.; Fuchs, J.A.


    Comparative measurements of thermal neutron decay time are obtained for a formation after irradiation with a pulsed neutron source. Chloride ions in formation fluids are concentrated by the electrosmosis effect using charged poles on a well logging sonde. The formation is irradiated with fast neutrons and a first comparative measure of the thermal neutron decay time or neutron lifetime is taken. The chloride ions are then dispersed by acoustic pumping with a magnetostrictive transducer. The formation is then again irradiated with fast neutrons and a comparative measure of neutron lifetime is taken. The comparison is a function of the variation in chloride concentration between the two measurements which is related to formation permeability

  14. Permeability Evolution and Rock Brittle Failure


    Sun Qiang; Xue Lei; Zhu Shuyun


    This paper reports an experimental study of the evolution of permeability during rock brittle failure and a theoretical analysis of rock critical stress level. It is assumed that the rock is a strain-softening medium whose strength can be described by Weibull’s distribution. Based on the two-dimensional renormalization group theory, it is found that the stress level λ c (the ratio of the stress at the critical point to the peak stress) depends mainly on the homogeneity index or shape paramete...

  15. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M


    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed......-nitroso-N-acetylpenicillamine (SNAP) (1) confirmed denitrification as the main NO consumption pathway, with N2O as its major product, (2) showed that denitrification combines one free NO molecule with one NO molecule formed from nitrite to produce N2O, and (3) suggested that NO inhibits N2O reduction....

  16. Gyroid Nanoporous Membranes with Tunable Permeability

    DEFF Research Database (Denmark)

    Li, Li; Schulte, Lars; Clausen, Lydia D.


    -linked 1,2-polybutadiene (1,2-PB) membranes with uniform pores that, if needed, can be rendered hydrophilic. The gyroid porosity has the advantage of isotropic percolation with no need for structure prealignment. Closed (skin) or opened (nonskin) outer surface can be simply realized by altering...... the effective diffusion coefficients of a series of antibiotics, proteins, and other biomolecules; solute permeation is discussed in terms of hindered diffusion. The combination of uniform bulk morphology, isotropically percolating porosity, controlled surface chemistry, and tunable permeability is distinctive...

  17. Angiogenesis, Cancer, and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Junji Moriya


    Full Text Available Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.

  18. Vascular endothelial growth factor in skeletal muscle following glycogen-depleting exercise in humans

    DEFF Research Database (Denmark)

    Jensen, Line; Gejl, Kasper Degn; Ørtenblad, Niels


    unclear. However, as VEGF is also considered very important for the regulation of vascular permeability, it is possible that metabolic stress may trigger muscle VEGF release. PURPOSE: To study the role of metabolic stress induced by glycogen-depleting exercise on muscle VEGF expression. METHODS: Fifteen......Vascular endothelial growth factor (VEGF) is traditionally considered important for skeletal muscle angiogenesis. VEGF is released from vascular endothelium as well as the muscle cells in response to exercise. The mechanism and the physiological role of VEGF secreted from the muscle cells remain...... levels by 24h irrespective of treatment. CONCLUSIONS: Muscle glycogen depletion induced by prolonged exercise leads to up-regulation as well as co-localization of HSP70 and VEGF primarily in type I fibers, thus suggesting that VEGF released from muscle is involved in the maintenance of muscle metabolic...

  19. Low Bone Density (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  20. Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization.

    Directory of Open Access Journals (Sweden)

    Elisa Dominguez

    Full Text Available Branch retinal vein occlusion (BRVO leads to extensive vascular remodeling and is important cause of visual impairment. Although the vascular morphological changes following experimental vein occlusion have been described in a variety of models using angiography, the underlying cellular events are ill defined.We here show that laser-induced experimental BRVO in mice leads to a wave of TUNEL-positive endothelial cell (EC apoptosis in the upstream vascular network associated with a transient edema and hemorrhages. Subsequently, we observe an induction of EC proliferation within the dilated vein and capillaries, detected by EdU incorporation, and the edema resolves. However, the pericytes of the upstream capillaries are severely reduced, which was associated with continuing EC apoptosis and proliferation. The vascular remodeling was associated with increased expression of TGFβ, TSP-1, but also FGF2 expression. Exposure of the experimental animals to hypoxia, when pericyte (PC dropout had occurred, led to a dramatic increase in endothelial cell proliferation, confirming the vascular instability induced by the experimental BRVO.Experimental BRVO leads to acute endothelial cells apoptosis and increased permeability. Subsequently the upstream vascular network remains destabilized, characterized by pericyte dropout, un-physiologically high endothelial cells turnover and sensitivity to hypoxia. These early changes might pave the way for capillary loss and subsequent chronic ischemia and edema that characterize the late stage disease.

  1. Permeability-Porosity Relationships of Subduction Zone Sediments (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.


    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  2. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems. (United States)

    Wu, Min; Frieboes, Hermann B; Chaplain, Mark A J; McDougall, Steven R; Cristini, Vittorio; Lowengrub, John S


    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the response

  3. Calcium dynamics in vascular smooth muscle


    Amberg, Gregory C.; Navedo, Manuel F.


    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  4. Estimation of permeability and permeability anisotropy in horizontal wells through numerical simulation of mud filtrate invasion

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Nelson [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Altman, Raphael; Rasmus, John; Oliveira, Jansen [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)


    This paper describes how permeability and permeability anisotropy is estimated in horizontal wells using LWD (logging-while-drilling) laterolog resistivity data. Laterolog-while-drilling resistivity passes of while-drilling and timelapse (while reaming) were used to capture the invasion process. Radial positions of water based mud invasion fronts were calculated from while-drilling and reaming resistivity data. The invasion process was then recreated by constructing forward models with a fully implicit, near-wellbore numerical simulation such that the invasion front at a given time was consistent with the position of the front predicted by resistivity inversions. The radial position of the invasion front was shown to be sensitive to formation permeability. The while-drilling environment provides a fertile scenario to investigate reservoir dynamic properties because mud cake integrity and growth is not fully developed which means that the position of the invasion front at a particular point in time is more sensitive to formation permeability. The estimation of dynamic formation properties in horizontal wells is of particular value in marginal fields and deep-water offshore developments where running wireline and obtaining core is not always feasible, and where the accuracy of reservoir models can reduce the risk in field development decisions. (author)


    Directory of Open Access Journals (Sweden)

    Helena Vučenović


    Full Text Available Geosynthetic clay liners (GCL are manufactured hydraulic barriers consisting of mineral and geosynthetic components. They belong to a group of geosynthetic products whose primary purpose is to seal and they have been used in many geotechnical and hydrotechnical applications, landfi lls and liquid waste lagoons for quite a while. They are used in landfill final cover systems to prevent the infi ltration of precipitation into the landfi ll body and the penetration of gases and liquids from the landfill into the atmosphere and environment. Laboratory and fi eld research and observations on regulated landfi lls have proven the eff ectiveness of GCL as a barrier for the infi ltration of precipitation into the landfi ll body as well as the drainage of fl uid beneath the landfill. Due to the presence of high concentrations of gases in the landfill body, there is a growing interest in determining the efficiency of GCL as a gas barrier. It was not until the last twenty years that the importance of this topic was recognized. In this article, current GCL gas permeability studies, the testing methods and test results of gas permeability in laboratory conditions are described.

  6. Haemophilia, AIDS and lung epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    O' Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G. (Haemophilia Centre and Coagulation Research Unit, Department of Nuclear Medicine, Rayne Institute, St. Thomas' Hospital, London (United Kingdom))


    Lung {sup 99m}Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung {sup 99m}Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of {sup 99m}Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au).

  7. Haemophilia, AIDS and lung epithelial permeability

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G.


    Lung 99m Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung 99m Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of 99m Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au)

  8. Permeability of protective coatings to tritium

    International Nuclear Information System (INIS)

    Braun, J.M.


    The permeability of four protective coatings to tritium gas and tritiated water was investigated. The coatings, including two epoxies, one vinyl and one urethane, were selected for their suitability in CANDU plant service in Ontario Hydro. Sorption rates of tritium gas into the coatings were considerably larger than for tritiated water, by as much as three to four orders of magnitude. However, as a result of the very large solubility of tritiated water in the coatings, the overall permeability to tritium gas and tritiated water are comparable, being somewhat larger for HTO. Marked differences were also evident among the four coatings, the vinyl proving to be unique in behaviour and morphology. Because of a highly porous surface structure water condensation takes place at high relative humidities, leading to an abnormally high retention of free water. Desorption rates from the four coatings were otherwise quite similar. Of practical importance was the observation that more effective desorption of tritiated water could be carried out at relatively high humidities, in this case 60%. It was believed that isotopic exchange was responsible for this phenomenon. It appears that epoxy coatings having a high pigment-to-binder ratio are most suited for coating concrete in tritium handling facilities

  9. Salt-saturated concrete strength and permeability

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hansen, F.D.; Knowles, M.K.


    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 x 10 -22 m 2 to 9.7 x 10 -17 m 2 . Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members

  10. Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of Alzheimer's disease (United States)

    Delafontaine-Martel, P.; Lefebvre, J.; Damseh, R.; Castonguay, A.; Tardif, P.; Lesage, F.


    In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent's brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.

  11. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)


    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  12. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu


    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  13. Therapeutic benefits of enhancing permeability barrier for atopic eczema

    Directory of Open Access Journals (Sweden)

    George Man


    Full Text Available The regulatory role of epidermal permeability barrier function in cutaneous inflammation has been well appreciated. While barrier disruption induces cutaneous inflammation, improvement of permeability barrier function alleviates inflammation. Studies have demonstrated that improvement of epidermal permeability barrier function not only prevents the development of atopic eczema, but also delays the relapse of these diseases. Moreover, enhancing the epidermal permeability barrier also alleviates atopic eczema. Furthermore, co-applications of barrier enhancing products with glucocorticoids can increase the therapeutic efficacy and reduce the adverse effects of glucocorticoids in the treatment of atopic eczema. Therefore, utilization of permeability barrier enhancing products alone or in combination with glucocorticoids could be a valuable approach in the treatment of atopic eczema. In this review, we discuss the benefits of improving the epidermal permeability barrier in the management of atopic eczema.

  14. Level densities

    International Nuclear Information System (INIS)

    Ignatyuk, A.V.


    For any applications of the statistical theory of nuclear reactions it is very important to obtain the parameters of the level density description from the reliable experimental data. The cumulative numbers of low-lying levels and the average spacings between neutron resonances are usually used as such data. The level density parameters fitted to such data are compiled in the RIPL Starter File for the tree models most frequently used in practical calculations: i) For the Gilber-Cameron model the parameters of the Beijing group, based on a rather recent compilations of the neutron resonance and low-lying level densities and included into the beijing-gc.dat file, are chosen as recommended. As alternative versions the parameters provided by other groups are given into the files: jaeri-gc.dat, bombay-gc.dat, obninsk-gc.dat. Additionally the iljinov-gc.dat, and mengoni-gc.dat files include sets of the level density parameters that take into account the damping of shell effects at high energies. ii) For the backed-shifted Fermi gas model the beijing-bs.dat file is selected as the recommended one. Alternative parameters of the Obninsk group are given in the obninsk-bs.dat file and those of Bombay in bombay-bs.dat. iii) For the generalized superfluid model the Obninsk group parameters included into the obninsk-bcs.dat file are chosen as recommended ones and the beijing-bcs.dat file is included as an alternative set of parameters. iv) For the microscopic approach to the level densities the files are: obninsk-micro.for -FORTRAN 77 source for the microscopical statistical level density code developed in Obninsk by Ignatyuk and coworkers, moller-levels.gz - Moeller single-particle level and ground state deformation data base, moller-levels.for -retrieval code for Moeller single-particle level scheme. (author)

  15. Active intestinal drug absorption and the solubility-permeability interplay. (United States)

    Porat, Daniel; Dahan, Arik


    The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Study on Surface Permeability of Concrete under Immersion


    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong


    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured af...

  17. Coupling Flow & Transport Modeling with Electromagnetic Geophysics to Better Understand Crustal Permeability (United States)

    Pepin, J.; Folsom, M.; Person, M. A.; Kelley, S.; Gomez-Velez, J. D.; Peacock, J.


    Over the last 30 years, considerable effort has focused on understanding the distribution of permeability within the earth's crust and its implications for flow and transport. The scarcity of direct observations makes the description of permeabilities beyond depths of about 3 km particularly challenging. Numerous studies have defined depth-decay relationships for basement permeability, while others note that it is too complex to be characterized by a general relationship. Hydrothermal modeling studies focusing on two geothermal systems within the tectonically active Rio Grande rift of New Mexico suggest that there may be laterally extensive regions of highly permeable (10-14 to 10-12 m2) basement rocks at depths ranging between 4 and 8 km. The NaCl groundwater signature, elevated fracture density, and secondary mineralization of fractured basement outcrops associated with these geothermal systems indicate that there may indeed be significant groundwater flow within the basement rocks of the rift. We hypothesize that there are extensive regions of highly permeable crystalline basement rocks at depths greater than 3 km within the Rio Grande rift. These fractured zones serve as large conduits for geothermal fluids before they ascend to shallow depths through gaps in overlying confining sediments or along faults. To test these hypotheses, we use a combination of geophysical observations and flow and transport modeling. We used electromagnetic geophysics (TEM & MT) to image resistivity in one of the hypothesized deep circulation geothermal systems near Truth or Consequences, NM. The resistivity dataset, in tandem with geochemical and thermal observations, is then used to calibrate a hydrothermal model of the system. This new calibration methodology has the potential to change the way researchers study crustal fluid flow and geothermal systems; thereby providing a tool to explore depths greater than 3 km where minimal data is available. In addition, it has the advantage

  18. Causation by Diesel Exhaust Particles of Endothelial Dysfunctions in Cytotoxicity, Pro-inflammation, Permeability, and Apoptosis Induced by ROS Generation. (United States)

    Tseng, Chia-Yi; Wang, Jhih-Syuan; Chao, Ming-Wei


    Epidemiological studies suggest that an increase of diesel exhaust particles (DEP) in ambient air corresponds to an increase in hospital-recorded myocardial infarctions within 48 h after exposure. Among the many theories to explain this data are endothelial dysfunction and translocation of DEP into vasculature. The mechanisms for such DEP-induced vascular permeability remain unknown. One of the major mechanisms underlying the effects of DEP is suggested to be oxidative stress. Experiments have shown that DEP induce the generation of reactive oxygen species (ROS), such as superoxide anion and H 2 O 2 in the HUVEC tube cells. Transcription factor Nrf2 is translocated to the cell nucleus, where it activates transcription of the antioxidative enzyme HO-1 and sequentially induces the release of vascular permeability factor VEGF-A. Furthermore, a recent study shows that DEP-induced intracellular ROS may cause the release of pro-inflammatory TNF-α and IL-6, which may induce endothelial permeability as well by promoting VEGF-A secretion independently of HO-1 activation. These results demonstrated that the adherens junction molecule, VE-cadherin, becomes redistributed from the membrane at cell-cell borders to the cytoplasm in response to DEP, separating the plasma membranes of adjacent cells. DEP were occasionally found in endothelial cell cytoplasm and in tube lumen. In addition, the induced ROS is cytotoxic to the endothelial tube-like HUVEC. Acute DEP exposure stimulates ATP depletion, followed by depolarization of their actin cytoskeleton, which sequentially inhibits PI3K/Akt activity and induces endothelial apoptosis. Nevertheless, high-dose DEP augments tube cell apoptosis up to 70 % but disrupts the p53 negative regulator Mdm2. In summary, exposure to DEP affects parameters influencing vasculature permeability and viability, i.e., oxidative stress and its upregulated antioxidative and pro-inflammatory responses, which sequentially induce vascular permeability

  19. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.

    Directory of Open Access Journals (Sweden)

    Michael Welter

    Full Text Available Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider-with the help of a theoretical model-the tumor IFP, interstitial fluid flow (IFF and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law and sources (vessels and sinks (lymphatics for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss

  20. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. (United States)

    Welter, Michael; Rieger, Heiko


    Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider-with the help of a theoretical model-the tumor IFP, interstitial fluid flow (IFF) and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law) and sources (vessels) and sinks (lymphatics) for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss various

  1. Measurement of the increase in the capillary permeability in skin with Evans blue labelled with iodine-125 or 131

    International Nuclear Information System (INIS)

    Sugarava, S.; Goncalves, J.M.


    The quantitative evaluation of bradykinin and histamine with Evans blue labelled with iodine -125 or 131 is described. The activity upon vascular permeability was performed in the abdominal wall of rats injecting intravenously solution of labelled Evans blue and 0,1 ml of vasoactive drugs solution intradermally. Skin discs were cut with circular punch for external counting, quantitative results being compared with control discs. By using this method, satisfactory log dose-reponse curves were obtained for bradykinin and histamine that followed the general trend of S - shaped curves [pt

  2. Pediatric interventional radiology: vascular interventions

    International Nuclear Information System (INIS)

    Kandasamy, Devasenathipathy; Gamanagatti, Shivanand; Gupta, Arun Kumar


    Pediatric interventional radiology (PIR) comprises a range of minimally invasive diagnostic and therapeutic procedures that are performed using image guidance. PIR has emerged as an essential adjunct to various surgical and medical conditions. Over the years, technology has undergone dramatic and continuous evolution, making this speciality grow. In this review, the authors will discuss various vascular interventional procedures undertaken in pediatric patients. It is challenging for the interventional radiologist to accomplish a successful interventional procedure. There are many vascular interventional radiology procedures which are being performed and have changed the way the diseases are managed. Some of the procedures are life saving and have become the treatment of choice in those patients. The future is indeed bright for the practice and practitioners of pediatric vascular and non-vascular interventions. As more and more of the procedures that are currently being performed in adults get gradually adapted for use in the pediatric population, it may be possible to perform safe and successful interventions in many of the pediatric vascular lesions that are otherwise being referred for surgery. (author)

  3. Study on road surface source pollution controlled by permeable pavement (United States)

    Zheng, Chaocheng


    The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.

  4. Calculation of Permeability inside the Basket including one Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Hwan; Bang, Kyung Sik; Lee, Ju an; Choi, Woo Seok [KAERI, Daejeon (Korea, Republic of)


    In general, the porous media model and the effective thermal conductivity were used to simply the fuel assembly. The methods of calculating permeability were compared considering the flow inside a basket which includes a nuclear fuel. Detailed fuel assembly was a computational modeling and the flow characteristics were investigated. The flow inside the basket which included a fuel assembly is analyzed by CFD. As the height of the fuel assembly increases, the pressure drop linearly increased. The inertia resistance could be neglected. Three methods to calculate the permeability were compared. The permeability by the friction factor is 50% less than the permeability by wall shear stress and pressure drop.

  5. Fast Laplace solver approach to pore-scale permeability (United States)

    Arns, C. H.; Adler, P. M.


    We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  6. Frictional stability-permeability relationships for fractures in shales (United States)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.


    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  7. In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability. (United States)

    Yamauchi, Fumio; Kamioka, Yuji; Yano, Tetsuya; Matsuda, Michiyuki


    Vascular hyperpermeability is a pathological hallmark of cancer. Previous in vitro studies have elucidated roles of various signaling molecules in vascular hyperpermeability; however, the activities of such signaling molecules have not been examined in live tumor tissues for technical reasons. Here, by in vivo two-photon excitation microscopy with transgenic mice expressing biosensors based on Förster resonance energy transfer, we examined the activity of protein kinase A (PKA), which maintains endothelial barrier function. The level of PKA activity was significantly lower in the intratumoral endothelial cells than the subcutaneous endothelial cells. PKA activation with a cAMP analogue alleviated the tumor vascular hyperpermeability, suggesting that the low PKA activity in the endothelial cells may be responsible for the tumor-tissue hyperpermeability. Because the vascular endothelial growth factor (VEGF) receptor is a canonical inducer of vascular hyperpermeability and a molecular target of anticancer drugs, we examined the causality between VEGF receptor activity and the PKA activity. Motesanib, a kinase inhibitor for VEGF receptor, activated tumor endothelial PKA and reduced the vascular permeability in the tumor. Conversely, subcutaneous injection of VEGF decreased endothelial PKA activity and induced hyperpermeability of subcutaneous blood vessels. Notably, in cultured human umbilical vascular endothelial cells, VEGF activated PKA rather than decreasing its activity, highlighting the remarkable difference between its actions in vitro and in vivo These data suggested that the VEGF receptor signaling pathway increases vascular permeability, at least in part, by reducing endothelial PKA activity in the live tumor tissue. Cancer Res; 76(18); 5266-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Assessment of canine intestinal permeability, using 51Cr-labeled ethylenediaminetetraacetate

    International Nuclear Information System (INIS)

    Hall, E.J.; Batt, R.M.; Brown, A.


    The 51 Cr-labeled EDTA was validated as a suitable permeability probe in dogs for measurement of passive, unmediated diffusion across intestinal mucosa via intercellular pathways. The 51 Cr-labeled EDTA was stable in aqueous solution and did not bind to biologic tissue and fluids. After incubation of 51 Cr-labeled EDTA in isolated jejunal loops, analytic subcellular fractionation of jejunal mucosa on reorientating sucrose-density gradients was performed, and no association of 51 Cr-labeled EDTA with particulate intracellular organelles was detected. Intravenously administered 51 Cr-labeled EDTA was rapidly and completely excreted in urine. Intestinal permeability to 51 Cr-labeled EDTA after oral administration was assessed in healthy dogs. The percentage of the administered dose of 51 Cr-labeled EDTA excreted in the urine in 24 hours ranged from 2.3 to 17.6% (median, 13%)

  9. Metal Amorphous Nanocomposite (MANC) Alloy Cores with Spatially Tuned Permeability for Advanced Power Magnetics Applications (United States)

    Byerly, K.; Ohodnicki, P. R.; Moon, S. R.; Leary, A. M.; Keylin, V.; McHenry, M. E.; Simizu, S.; Beddingfield, R.; Yu, Y.; Feichter, G.; Noebe, R.; Bowman, R.; Bhattacharya, S.


    Metal amorphous nanocomposite (MANC) alloys are an emerging class of soft magnetic materials showing promise for a range of inductive components targeted for higher power density and higher efficiency power conversion applications including inductors, transformers, and rotating electrical machinery. Magnetization reversal mechanisms within these alloys are typically determined by composition optimization as well as controlled annealing treatments to generate a nanocomposite structure composed of nanocrystals embedded in an amorphous precursor. Here we demonstrate the concept of spatially varying the permeability within a given component for optimization of performance by using the strain annealing process. The concept is realized experimentally through the smoothing of the flux profile from the inner to outer core radius achieved by a monotonic variation in tension during the strain annealing process. Great potential exists for an extension of this concept to a wide range of other power magnetic components and more complex spatially varying permeability profiles through advances in strain annealing techniques and controls.

  10. Hydrogeological evidence of low rock mass permeabilities in ordovician strata: Bruce nuclear site

    International Nuclear Information System (INIS)

    Beauheim, R.L.; Roberts, R.M.; Avis, J.D.; Heagle, D.


    One of the key attributes contributing to the suitability of the Bruce nuclear site to host a Deep Geologic Repository (DGR) for Low and Intermediate Level Waste (L&ILW) is the low permeability of the Ordovician host rock and of the overlying and underlying strata. The permeability of these rocks is so low that diffusion is a much more significant transport mechanism than advection. Hydrogeological evidence for the low permeability of the Ordovician strata comes from two principal sources, direct and indirect. Direct evidence of low permeability is provided by the hydraulic testing performed in deep boreholes, DGR-2 through DGR-6. Straddle-packer hydraulic testing was performed in 57 Ordovician intervals in these five holes. The testing provided continuous coverage using ~30-m straddle intervals of the Ordovician strata exposed in boreholes DGR-2, DGR-3, DGR-4, and DGR-5, while testing was targeted on discontinuous 10.2-m intervals in DGR-6. The average horizontal hydraulic conductivities of these intervals determined from the tests ranged from 2E-16 to 2E-10 m/s. The Lower Member of the Cobourg Formation, which is the proposed host formation for the DGR, was found to have a horizontal hydraulic conductivity of 4E-15 to 3E-14 m/s. The only horizontal hydraulic conductivity values measured that were greater than 2E-12 m/s are from the Black River Group, located at the base of the Ordovician sedimentary sequence. Indirect evidence of low permeability is provided by the observed distribution of hydraulic heads through the Ordovician sequence. Hydraulic head profiles, defined by hydraulic testing and confirmed by Westbay multilevel monitoring systems, show significant underpressures relative to a density-compensated hydrostatic condition throughout most of the Ordovician strata above the Black River Group, whereas the Black River Group is overpressured. Pressure differences of 1 MPa or more are observed between adjacent intervals in the boreholes. The observed

  11. Fetal origin of vascular aging

    Directory of Open Access Journals (Sweden)

    Shailesh Pitale


    Full Text Available Aging is increasingly regarded as an independent risk factor for development of cardiovascular diseases such as atherosclerosis and hypertension and their complications (e.g. MI and Stroke. It is well known that vascular disease evolve over decades with progressive accumulation of cellular and extracellular materials and many inflammatory processes. Metabolic syndrome, obesity and diabetes are conventionally recognized as risk factors for development of coronary vascular disease (CVD. These conditions are known to accelerate ageing process in general and vascular ageing in particular. Adverse events during intrauterine life may programme organ growth and favour disease later in life, popularly known as, ′Barker′s Hypothesis′. The notion of fetal programming implies that during critical periods of prenatal growth, changes in the hormonal and nutritional milieu of the conceptus may alter the full expression of the fetal genome, leading to permanent effects on a range of physiological.

  12. Imaging after vascular gene therapy

    International Nuclear Information System (INIS)

    Manninen, Hannu I.; Yang, Xiaoming


    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  13. Complex permeability and core loss of soft magnetic Fe-based nanocrystalline powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Füzerová, Jana, E-mail: [Faculty of Mechanical Engineering, Technical University, Letná 1, 042 00 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, P.J. Šafárik University, Park Angelinum 9, 040 23 Košice (Slovakia); Bureš, Radovan; Fáberová, Mária [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)


    Rapidly quenched ribbons of Fe{sub 73}Cu{sub 1}Nb{sub 3}Si{sub 16}B{sub 7} were ball milled and cryomilled to get powder and warm consolidated to get bulk compacts. The data presented here are relative to different experimental procedures, one corresponding to milling at room temperature (sample R1) and the other corresponding to cryomilling at temperature of liquid nitrogen (sample L1). It was found that the properties of the initial powder influenced the density, the electrical resistivity and electromagnetic properties of the resulting bulk alloys. Permeability and core loss are structure sensitive and depend on factors such as powder size and shape, porosity, purity, and internal stress. Permeability spectra of sample R1 decreases with increasing the frequency and its values are larger than that for sample L1 at low frequencies. On the other hand the permeability of sample L1 remains steady up to 1 kHz and at certain frequency is larger than that for sample R1. Also there are different frequency dependences of the imaginary parts of permeability and loss factor, respectively. The cryomilling of the amorphous ribbon positively influences on the AC magnetic properties at higher frequencies (above 100 Hz) of resulting bulk sample. - Highlights: • We prepared two different amorphous powder vitroperm samples. • We have examined changes in the properties of the bulk samples prepared by compaction. • It was found that properties of the initial powder influence the density, the electrical resistivity and electromagnetic properties of the resulting bulk alloys.

  14. Acoustic--nuclear permeability logging system

    International Nuclear Information System (INIS)

    Dowling, D.J.; Arnold, D.M.


    A down hole logging tool featuring a neutron generator, an acoustic disturbance generator, and a radiation detection system is described. An array of acoustic magnetostriction transducers is arranged about the target of a neutron accelerator. Two gamma ray sensors are separated from the accelerator target by shielding. According to the method of the invention, the underground fluid at the level of a formation is bombarded by neutrons which react with oxygen in the fluid to produce unstable nitrogen 16 particles according to the reaction 16 O(n,p) 16 N. Acoustic pulses are communicated to the fluid, and are incident on the boundary of the borehole at the formation. The resulting net flow of fluid across the boundary is determined from radiation detection measurements of the decaying 16 N particles in the fluid. A measure of the permeability of the formation is obtained from the determination of net fluid flow across the boundary

  15. Treatment for cracked and permeable Houston clay

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Leung, M.


    In this study, the treatability of a field clay (obtained from Houston, Texas) and a clay-sand mixture to reduce their hydraulic conductivity was evaluated. Remolded field clay and clay-sand mixture with and without methanol contamination were treated to reduce their hydraulic conductivity by permeating very dilute grout solutions. The concentration of sodium silicate in the grout solution was 8%, while the solid content in the cement grout was 0.3%. The hydraulic conductivity of permeable Houston clay (hydraulic conductivity >10 -5 cm/sec) could be reduced to less than 10 -7 cm/sec (U.S. EPA limit for soil barriers) by permeating with a selected combination of grout solutions

  16. Migration of particulates in permeable rock columns

    International Nuclear Information System (INIS)

    Cropper, R.L.


    The migration of radioactive material through soil and permeable rock formations have become a major topic of concern due to the interest in the licensing of new radioactive waste disposal sites. Previously, research has been conducted in relation to deep repositories; however, similar situations arise in the vadose zone, where there is a higher probability of naturally-occurring particulates of organic nature and for the incursion of water. Test data has provided information which suggests that particulates will travel through porous media subject to various delay mechnisms and must be included in any consideration of waste migration. Data concerning particulate migration must and should be considered in the future when radioactive waste disposal sites are licensed

  17. Composite binders for concrete with reduced permeability

    International Nuclear Information System (INIS)

    Fediuk, R; Yushin, A


    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m 2 , it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa). (paper)

  18. Permeability of the arterial endothelium of spontaneously hypertensive rats to plasma macromolecules

    International Nuclear Information System (INIS)

    Yurukova, Z.B.; Georgiev, P.G.


    By means of vascular labelling technique at cellular level, the permeability of the arterial endothelium of spontaneously hypertensive rats has been studied. For this purpose colloidal carbon and plasma lipoproteins were introduced into the jugular vein of the animals. Material for light- and electron-microscopic and radioautographic examinations was taken from the thoracic and abdominal parts of the aorta. The results show that in long-term hypertension substances from plasma enter the aortic wall in increased amounts through two main pathways. First, through the selective physiological pathways of transendothelial transport (through cell junctions and vesicular transport) and secondly, through discontinuities of the endothelial lining (separation of the intercellular junctions, areas of loss of one to several endothelial cells). The alteration of the arterial endothelium barrier function in chronic hypertension seems to be an important mechanism for the progression of hypertensive arterial lesions. (A.B.)

  19. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro


    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  20. Consolidation and permeability of salt in brine

    International Nuclear Information System (INIS)

    Shor, A.J.; Baes, C.F. Jr.; Canonico, C.M.


    The consolidation and loss of permeability of salt crystal aggregates, important in assessing the effects of water in salt repositories, has been studied as a function of several variables. The kinetic behavior was similar to that often observed in sintering and suggested the following expression for the time dependence of the void fraction: phi(t) = phi(0) - (A/B)ln(1 + Bt/z(0) 3 ), where A and B are rate constants and z(0) is initial average particle size. With brine present, A and phi(0) varied linearly with stress. The initial void fraction was also dependent to some extent on the particle size distribution. The rate of consolidation was most rapid in brine and least rapid in the presence of only air as the fluid. A brine containing 5 m MgCl 2 showed an intermediate rate, presumably because of the greatly reduced solubility of NaCl. A substantial wall effect was indicated by an observed increase in the void fraction of consolidated columns with distance from the top where the stress was applied and by a dependence of consolidation rate on the column height and radius. The distance through which the stress fell by a factor of phi was estimated to change inversely as the fourth power of the column diameter. With increasing temperature (to 85 0 C), consolidation proceeded somewhat more rapidly and the wall effect was reduced. The permeability of the columns dropped rapidly with consolidation, decreasing with about the sixth power of the void fraction. In general, extrapolation of the results to repository conditions confirms the self-sealing properties of bedded salt as a storage medium for radioactive waste

  1. Colloid transport in dual-permeability media (United States)

    Leij, Feike J.; Bradford, Scott A.


    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  2. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Role of vascular smooth muscle cells in vascular calcification]. (United States)

    Kurabayashi, Masahiko


    Vascular calcification is commonly seen with aging, chronic kidney disese (CKD), diabetes, and atherosclerosis, and is closely associated with cardiovascular morbidity and mortality. Vascular calcification has long been regarded as the final stage of degeneration and necrosis of arterial wall and a passive, unregulated process. However, it is now known to be an active and tightly regulated process involved with phenotypic transition of vascular smooth muscle cells (VSMC) that resembles bone mineralization. Briefly, calcium deposits of atherosclerotic plaque consist of hydroxyapatite and may appear identical to fully formed lamellar bone. By using a genetic fate mapping strategy, VSMC of the vascular media give rise to the majority of the osteochondrogenic precursor- and chondrocyte-like cells observed in the calcified arterial media of MGP (- / -) mice. Osteogenic differentiation of VSMC is characterized by the expression of bone-related molecules including bone morphogenetic protein (BMP) -2, Msx2 and osteopontin, which are produced by osteoblasts and chondrocytes. Our recent findings are that (i) Runx2 and Notch1 induce osteogenic differentiation, and (ii) advanced glycation end-product (AGE) /receptor for AGE (RAGE) and palmitic acid promote osteogenic differentiation of VSMC. To understand of the molecular mechanisms of vascular calcification is now under intensive research area.

  3. Vascular malforma- tions part 1 — normal and abnormal vascular ...

    African Journals Online (AJOL)


    to form the primitive vascular plexus. Angiogenesis is the formation of new vessels by sprouting or splitting of ... The differentiation of primitive vessels into arteries, veins or capillaries is determined by flow patterns .... identify, but it is probable that as time progresses further specific genetic defects related to the development ...

  4. Genetic Regulation of Vascular Development: Building the Zebrafish Vascular Tree

    NARCIS (Netherlands)

    R.L.J.M. Herpers (Robert)


    textabstractThe extensive networks of blood and lymphatic vessels within the vertebrate body are essential for the transport and delivery of fluids, gases, macromolecules and cells, and play important roles in facilitating immune responses. The development of the vascular tree requires a highly

  5. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 2. Effect of type of alkaline solution on permeability of compacted bentonite-sand mixture

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko


    Permeability tests were carried out using compacted bentonite-sand mixture with initial dry density of 1.55 Mg/m 3 and alkaline solutions at 50degC for about two years to estimate the alteration behavior and the change in the permeability. Bentonite-sand mixtures which contain bentonites of 15wt% were made using Na-bentonite or Ca-exchanged bentonite. 0.3M-NaOH solution with pH 13.3 and 5mM-Ca(OH) 2 solution with pH 12.0 were used to the permeability tests of Na-bentonite-sand mixture and of Ca-exchanged bentonite-sand mixture, respectively. In the case of the permeability test conducted using NaOH solution, montmorillonite and other associated minerals were dissolved, and consequently, the dry density and effective montmorillonite density of Na-bentonite-sand mixture were decreased. Furthermore, the mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Na-bentonite-sand mixture was increased 5.6 times by the end of permeability test as a result of above alteration. In the case of the permeability test conducted using Ca(OH) 2 solution, montmorillonite and other associated minerals were dissolved, and calcium silicate hydrate (C-S-H) was precipitated. Consequently, the dry density of Ca-exchanged bentonite-sand mixture was increased, while the effective montmorillonite density was decreased. The mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Ca-exchange bentonite-sand mixture was decreased by more than two orders of magnitude due to fill the pore of Ca-exchange bentonite-sand mixture by the precipitation of C-S-H. From above results, the type of alkaline solution affects the mineralogical alteration behavior of the compacted bentonite-sand mixture, and consequently, affects the changing trend of permeability. In conclusion, it is important not only to consider the dissolution of montmorillonite, but

  6. Effects of Pregnant Leach Solution Temperature on the Permeability of Gravelly Drainage Layer of Heap Leaching Structures

    Directory of Open Access Journals (Sweden)

    mehdi amini


    Full Text Available In copper heap leaching structures, the ore is leached by an acidic solution. After dissolving the ore mineral, the heap is drained off in the acidic solution using a drainage system (consisting of a network of perforated polyethylene pipes and gravelly drainage layers and is, then, transferred to the leaching plant for copper extraction where the copper is extracted and the remaining solution is dripped over the ore heap for re-leaching. In this process, the reaction between the acidic solution and copper oxide ore is exothermal and the pregnant leach solution (PLS, which is drained off the leaching heap, has a higher temperature than the dripped acidic solution. The PLS temperature variations cause some changes in the viscosity and density which affect the gravelly drainage layer's permeability. In this research, a special permeability measuring system was devised for determining the effects of the PLS temperature variations on the permeability coefficient of the gravelly drainage layer of heap leaching structures. The system, consisting of a thermal acid resistant element and a thermocouple, controls the PLS temperature, which helps measure the permeability coefficient of the gravelly drainage layer. The PLS and gravelly drainage layer of Sarcheshmeh copper mine heap leaching structure No. 1 were used in this study. The permeability coefficient of the gravelly soil was measured against the PLS and pure water at temperatures varying between 3°C to 60°C. Also, the viscosity and density of the PLS and pure water were measured at these temperatures and, using existing theoretical relations, the permeability coefficient of the gravel was computed. A comparison between the experimental and theoretical results revealed a good conformity between the two sets of results. Finally, a case (Taft heap leaching structure, Yazd, Iran was studied and its gravelly drainage layer was designed based on the results of the present research.

  7. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xia; Shi, Junpeng; Zou, Xiaoyan; Wang, Chengcheng; Yang, Yi; Zhang, Hongwu, E-mail:


    Highlights: • Short-term exposure to AgNPs at low doses induces increase HUVECs monolayer permeability. • AgNPs interact with the cell membrane and increase endothelial permeability by promoting VE-Cadherin internalization. • Particle effect is a major factor leading to endothelial dysfunction. - Abstract: The toxicological risks of silver nanoparticles (AgNPs) have attracted widespread attention, and many studies have been published that have contributed to understanding AgNPs-induced toxicity. However, little attention has been paid to the low-dose effects of AgNPs and the related toxicological mechanism is still unclear. Here, we show that short-term exposure to AgNPs at low doses induces a substantial increase in human umbilical vein endothelial cells (HUVECs) monolayer permeability, whereas Ag ions at low doses do not induce an observable increase in monolayer permeability. This effect is independent of oxidative stress and apoptosis. Scanning electron microscopy confirms that AgNPs adhere to the cell membrane after 1 h exposure. Furthermore, adhesion of AgNPs to the cell membrane can trigger vascular endothelial (VE)-cadherin phosphorylation at Y658 followed by VE-cadherin internalization, which lead to the increase in endothelial monolayer permeability. Our data show that surface interactions of AgNPs with the cell membrane, in other words, the particle effect, is a major factor leading to endothelial dysfunction following low-dose and short-term exposure. Our findings will contribute to understanding the health effects and the toxicological mechanisms of AgNPs.

  8. A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination (United States)

    Thomas, Michael; Corry, Ben


    Membranes made from nanomaterials such as nanotubes and graphene have been suggested to have a range of applications in water filtration and desalination, but determining their suitability for these purposes requires an accurate assessment of the properties of these novel materials. In this study, we use molecular dynamics simulations to determine the permeability and salt rejection capabilities for membranes incorporating carbon nanotubes (CNTs) at a range of pore sizes, pressures and concentrations. We include the influence of osmotic gradients and concentration build up and simulate at realistic pressures to improve the reliability of estimated membrane transport properties. We find that salt rejection is highly dependent on the applied hydrostatic pressure, meaning high rejection can be achieved with wider tubes than previously thought; while membrane permeability depends on salt concentration. The ideal size of the CNTs for desalination applications yielding high permeability and high salt rejection is found to be around 1.1 nm diameter. While there are limited energy gains to be achieved in using ultra-permeable CNT membranes in desalination by reverse osmosis, such membranes may allow for smaller plants to be built as is required when size or weight must be minimized. There are diminishing returns in further increasing membrane permeability, so efforts should focus on the fabrication of membranes containing narrow or functionalized CNTs that yield the desired rejection or selection properties rather than trying to optimize pore densities. PMID:26712639

  9. Modeling the Hydrologic Processes of a Permeable Pavement System (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  10. Performances of Metal Concentrations from Three Permeable Pavement Infiltrates (United States)

    The U.S. Environmental Protection Agency designed and constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements: permeable interlocking concrete pavers, pervious concrete, and porous asphalt. Water sampling was con...

  11. Permeable Pavement Research at the Edison Environmental Center (United States)

    There are few detailed studies of full-scale, replicated, actively-used permeable pavement systems. Practitioners need additional studies of permeable pavement systems in its intended application (parking lot, roadway, etc.) across a range of climatic events, daily usage conditio...

  12. Nitrogen Transformations in Three Types of Permeable Pavement (United States)

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  13. Update to Permeable Pavement Research at the Edison ... (United States)

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, pervious concrete, and porous asphalt. The permeable pavements are limited to parking spaces while adjacent driving lanes are impermeable and drain to the permeable surfaces. The parking lot is instrumented for continuous monitoring with thermistors and water content reflectometers that measure moisture as infiltrate passes through the storage gallery beneath the permeable pavements into the underlying native soil. Each permeable surface of the parking lot has four lined sections that capture infiltrate in tanks for water quality analyses; these tanks are capable of holding volumes up to 4.1 m3, which represents up to 38 mm (1.5 in.) for direct rainfall on the porous pavement and runoff from adjacent driving lanes that drain into the permeable surface.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, surface hydrology, and infiltration and evaporation rates. This presentation summarizes these past findings and addresses current water quality efforts including pH, solids analysis, total organic carbon, and chemical oxygen demand. Stormwater runoff continues to be a major cause of water pollution in

  14. Permeability dependence of streaming potential coefficient in porous media

    NARCIS (Netherlands)

    Thanh, L.D.; Sprik, R.


    In theory, the streaming potential coefficient depends not only on the zeta potential but also on the permeability of the rocks that partially determines the surface conductivity of the rocks. However, in practice, it is hard to show the permeability dependence of streaming potential coefficients

  15. A drainage data-based calculation method for coalbed permeability

    International Nuclear Information System (INIS)

    Lai, Feng-peng; Li, Zhi-ping; Fu, Ying-kun; Yang, Zhi-hao


    This paper establishes a drainage data-based calculation method for coalbed permeability. The method combines material balance and production equations. We use a material balance equation to derive the average pressure of the coalbed in the production process. The dimensionless water production index is introduced into the production equation for the water production stage. In the subsequent stage, which uses both gas and water, the gas and water production ratio is introduced to eliminate the effect of flush-flow radius, skin factor, and other uncertain factors in the calculation of coalbed methane permeability. The relationship between permeability and surface cumulative liquid production can be described as a single-variable cubic equation by derivation. The trend shows that the permeability initially declines and then increases after ten wells in the southern Qinshui coalbed methane field. The results show an exponential relationship between permeability and cumulative water production. The relationship between permeability and cumulative gas production is represented by a linear curve and that between permeability and surface cumulative liquid production is represented by a cubic polynomial curve. The regression result of the permeability and surface cumulative liquid production agrees with the theoretical mathematical relationship. (paper)

  16. Permeability of crust is key to crispness retention

    NARCIS (Netherlands)

    Hirte, A.; Hamer, R.J.; Meinders, M.B.J.; Primo-Martin, C.


    Bread loses crispness rapidly after baking because water originating from the wet crumb accumulates in the dry crust. This water accumulation might be increased by the dense and low permeable character of the bread crust. Our objective was to investigate the influence of permeability of the crust on

  17. Principal permeability determination from multiple horizontal well tests

    Energy Technology Data Exchange (ETDEWEB)

    Economides, M. [Texas A and M Univ., TX (United States); Munoz, A.; Ehlig-Economides, C.


    A method for obtaining principal permeability magnitudes and direction that requires only the linear flow regime from transient tests in three horizontal wells oriented in three distinct and arbitrary directions, is described. Well design optimization strategies require knowledge of both the principal permeability orientation as well as the horizontal permeability magnitudes. When the degree of horizontal permeability anisotropy (i.e. permeability in the bedding plane with respect to direction) is significant, the productivity of a long horizontal well will depend greatly on its direction, especially when the well is first brought into production. Productivities have been found to deviate substantially among wells in the same reservoir and this deviation has been attributed to differences in well orientation. In view of this fact, measuring permeability anisotropy becomes a compelling necessity. The success of the proposed method is illustrated by a case study in which the principal permeability magnitudes and direction from three wells were used to predict the productivity of a fourth well within 10 per cent. Use of the computed principal permeabilities from the case study, it was possible to forecast the cumulative production to show the significance of well trajectory optimization on the discounted cash flow and the net present value. 20 refs., 3 figs.

  18. Determination of hydrogen permeability in uncoated and coated superalloys (United States)

    Bhattacharyya, S.; Vesely, E. J., Jr.; Hill, V. L.


    Hydrogen permeability, diffusivity, and solubility data were obtained for eight wrought and cast high temperature alloys over the range 650 to 815 C. Data were obtained for both uncoated alloys and wrought alloys coated with four commercially available coatings. Activation energies for permeability, diffusivity and solubility were calculated.

  19. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK


    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  20. Increasing the permeability of Escherichia coli using MAC13243

    DEFF Research Database (Denmark)

    Muheim, Claudio; Götzke, Hansjörg; Eriksson, Anna U.


    molecules that make the outer membrane of Escherichia coli more permeable. We identified MAC13243, an inhibitor of the periplasmic chaperone LolA that traffics lipoproteins from the inner to the outer membrane. We observed that cells were (1) more permeable to the fluorescent probe 1-N...

  1. Three-dimensional vascular mapping of the breast by using contrast-enhanced MRI: association of unilateral increased vascularity with ipsilateral breast cancer. (United States)

    Orgüç, Şebnem; Başara, Işıl; Coşkun, Teoman; Pekindil, Gökhan


    We aimed to retrospectively compare three-dimensional vascular maps of both breasts obtained by dynamic magnetic resonance imaging (MRI) and determine the association of one-sided vascular prominence with ipsilateral breast cancer. MRI was performed using gadolinium in 194 cases. Two readers scored vascular density using maximum intensity projections (MIPs). Dynamic fat-saturated T1-weighted gradientecho MIPs were acquired. Two readers evaluated the MIPs, and vessels greater than 2 mm in diameter and longer than 3 cm were counted. The difference in vessel numbers detected in the two breasts determined the score. A total of 54 patients had malignant lesions (prevalence, 28%), including invasive ductal carcinoma (n=40), invasive mixed ductal-lobular carcinoma (n=5), invasive lobular carcinoma (n=3), ductal carcinoma in situ (n=3), mucinous carcinoma (n=1), medullary carcinoma (n=1), and leukemic metastasis (n=1). In 62 patients, there were benign lesions (fibroadenomas, fibrocysts), and four patients had inflammation (granulomatous mastitis in two patients, breast tuberculosis in two patients). There were 78 normal cases. When a difference of at least two vessels was scored as vascular asymmetry, the sensitivity, specificity, positive likelihood ratio (+LR), and negative (-LR) of unilaterally increased vascularity associated with ipsilateral malignancy were 69%, 92%, 8.72, and 0.34, respectively. When four infection and three post-operative cases with vascular asymmetry were excluded; prevalence, specificity, and +LR increased to 29%, 97%, and 22.8, respectively, with the same sensitivity and -LR. Differences in mean vascularity scores were evaluated with regard to tumor size. T1 and T2 tumors were not significantly different from each other. The mean score of T3 tumors differed significantly from T1 and T2 tumors. MRI vascular mapping is an effective method for determining breast tissue vascularization. Ipsilateral increased vascularity was commonly associated with

  2. [Vascular access guidelines for hemodialysis]. (United States)

    Rodríguez Hernández, J A; González Parra, E; Julián Gutiérrez, J M; Segarra Medrano, A; Almirante, B; Martínez, M T; Arrieta, J; Fernández Rivera, C; Galera, A; Gallego Beuter, J; Górriz, J L; Herrero, J A; López Menchero, R; Ochando, A; Pérez Bañasco, V; Polo, J R; Pueyo, J; Ruiz, Camps I; Segura Iglesias, R


    Quality of vascular access (VA) has a remarkable influence in hemodialysis patients outcomes. Dysfunction of VA represents a capital cause of morbi-mortality of these patients as well an increase in economical. Spanish Society of Neprhology, aware of the problem, has decided to carry out a revision of the issue with the aim of providing help in comprehensión and treatment related with VA problems, and achieving an homogenization of practices in three mayor aspects: to increase arteriovenous fistula utilization as first vascular access, to increment vascular access monitoring practice and rationalise central catheters use. We present a consensus document elaborated by a multidisciplinar group composed by nephrologists, vascular surgeons, interventional radiologysts, infectious diseases specialists and nephrological nurses. Along six chapters that cover patient education, creation of VA, care, monitoring, complications and central catheters, we present the state of the art and propose guidelines for the best practice, according different evidence based degrees, with the intention to provide help at the professionals in order to make aproppiate decissions. Several quality standars are also included.

  3. Image Quality in Vascular Radiology

    International Nuclear Information System (INIS)

    Vanhavere, F.; Struelens, L.


    In vascular radiology, the radiologists use the radiological image to diagnose or treat a specific vascular structure. From literature, we know that related doses are high and that large dose variability exists between different hospitals. The application of the optimization principle is therefore necessary and is obliged by the new legislation. So far, very little fieldwork has been performed and no practical instructions are available to do the necessary work. It's indisputable that obtaining quantitative data is of great interest for optimization purposes. In order to gain insight into these doses and the possible measures for dose reduction, we performed a comparative study in 7 hospitals. Patient doses will be measured and calculated for specific procedures in vascular radiology and evaluated against their most influencing parameters. In view of optimization purposes, a protocol for dose audit will be set-up. From the results and conclusions in this study, experimentally based guidelines will be proposed, in order to improve clinical practice in vascular radiology

  4. Vascular aspects of multiple sclerosis

    NARCIS (Netherlands)

    D'haeseleer, Miguel; Cambron, Melissa; Vanopdenbosch, Ludo; De Keyser, Jacques

    Three types of vascular dysfunction have been described in multiple sclerosis (MS). First, findings from epidemiological studies suggest that patients with MS have a higher risk for ischaemic stroke than people who do not have MS. The underlying mechanism is unknown, but might involve endothelial

  5. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. (United States)

    Zhang, Guoqi; Yang, Li; Kim, Gab Seok; Ryan, Kieran; Lu, Shulin; O'Donnell, Rebekah K; Spokes, Katherine; Shapiro, Nathan; Aird, William C; Kluk, Michael J; Yano, Kiichiro; Sanchez, Teresa


    The endothelium, as the interface between blood and all tissues, plays a critical role in inflammation. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid, highly abundant in plasma, that potently regulates endothelial responses through interaction with its receptors (S1PRs). Here, we studied the role of S1PR2 in the regulation of the proadhesion and proinflammatory phenotype of the endothelium. By using genetic approaches and a S1PR2-specific antagonist (JTE013), we found that S1PR2 plays a key role in the permeability and inflammatory responses of the vascular endothelium during endotoxemia. Experiments with bone marrow chimeras (S1pr2(+/+) → S1pr2(+/+), S1pr2(+/+) → S1pr2(-/-), and S1pr2(-/-) → S1pr2(+/+)) indicate the critical role of S1PR2 in the stromal compartment, in the regulation of vascular permeability and vascular inflammation. In vitro, JTE013 potently inhibited tumor necrosis factor α-induced endothelial inflammation. Finally, we provide detailed mechanisms on the downstream signaling of S1PR2 in vascular inflammation that include the activation of the stress-activated protein kinase pathway that, together with the Rho-kinase nuclear factor kappa B pathway (NF-kB), are required for S1PR2-mediated endothelial inflammatory responses. Taken together, our data indicate that S1PR2 is a key regulator of the proinflammatory phenotype of the endothelium and identify S1PR2 as a novel therapeutic target for vascular disorders.

  6. ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell Trafficking

    Directory of Open Access Journals (Sweden)

    Stephanie Smith-Berdan


    Full Text Available Despite the use of hematopoietic stem cells (HSCs in clinical therapy for over half a century, the mechanisms that regulate HSC trafficking, engraftment, and life-long persistence after transplantation are unclear. Here, we show that the vascular endothelium regulates HSC trafficking into and out of bone marrow (BM niches. Surprisingly, we found that instead of acting as barriers to cellular entry, vascular endothelial cells, via the guidance molecule ROBO4, actively promote HSC translocation across vessel walls into the BM space. In contrast, we found that the vasculature inhibits the reverse process, as induced vascular permeability led to a rapid increase in HSCs in the blood stream. Thus, the vascular endothelium reinforces HSC localization to BM niches both by promoting HSC extravasation from blood-to-BM and by forming vascular barriers that prevent BM-to-blood escape. Our results uncouple the mechanisms that regulate the directionality of HSC trafficking and show that the vasculature can be targeted to improve hematopoietic transplantation therapies.

  7. Prediction of permeability changes in an excavation response zone

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Ishii, Takashi; Kuroda, Hidetaka; Tada, Hiroyuki


    In geologic disposal of radioactive wastes, stress changes due to cavern excavation may expand the existing fractures and create possible bypasses for groundwater. This paper proposes a simple method for predicting permeability changes in the excavation response zones. Numerical analyses using this method predict that the response zones created by cavern excavation would differ greatly in thickness and permeability depending on the depth of the cavern site and the initial in-situ stress, that when the cavern site is deeper, response zones would expand more and permeability would increases more, and that if the ratio of horizontal to vertical in-situ stress is small, extensive permeable zones at the crown and the bottom would occur, whereas if the ratio is large, extensive permeable zones would occur in the side walls. (orig.)

  8. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke


    of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... to formations with a significant fraction of fine particles including clay minerals are investigated. The porosities range from 0.10 to 0.30 and permeabilities span the range from 1 to 1000 md. To compare different rock types, specific surface is determined from permeability and porosity using Kozeny’s equation...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  9. A theoretical model for gas permeability in a composite membrane

    International Nuclear Information System (INIS)

    Serrano, D. A


    We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es

  10. Steady flow in voids and closed cracks in permeable media

    International Nuclear Information System (INIS)

    Rae, J.


    This paper considers what happens when a steady flow in a permeable medium meets two concentric spheres which have different permeabilities. This can form a first stage model for water flow near an engineered cavity in rock or a concreted waste package placed in filler material as in a nuclear waste repository. Results are obtained in terms of the simplest spherical harmonics, which lets them be used easily. Included are the well-known result that a highly permeable sphere will see only a few times the flux which would occur if it had the permeability of its surroundings, and the less well-known result, though unsurprising, that a spherical region surrounded by a highly permeable shell will see almost no flow, as it will almost all by-pass. A companion paper will include more geometrical effects by replacing the spheres by ellipsoids. (author)

  11. Involvement of vascular endothelial growth factor in nasal obstruction in patients with nasal allergy

    Directory of Open Access Journals (Sweden)

    Tetsuji Yamashita


    Full Text Available It has recently been shown that vascular endothelial growth factor (VEGF enhances vascular permeability and that mast cells produce VEGF, suggesting the involvement of VEGF in allergic diseases. In the present study we quantitatively analyzed VEGF in the nasal lavage fluid of patients with nasal allergy. We performed nasal antigen challenge with Japanese cedar pollen antigen in 10 healthy adult volunteers and in 10 cedar pollen IgE-positive patients with nasal allergy. In all patients with nasal allergy, VEGF and histamine levels in the nasal lavage fluid reached a peak 30 min after antigen challenge, then returned to prechallenge values 2 h after antigen challenge. In these patients, the histamine level increased three-fold, while the VEGF level increased 10-fold. However, in all healthy adult volunteers, VEGF and histamine levels did not increase. A stronger correlation was noted between the ratio of decreased nasal cavity volume and the ratio of increased VEGF levels (R = 0.823; P < 0.001 than between the ratio of nasal cavity volume and the ratio of increased histamine levels (R = 0.660; P < 0.01. These results suggest that VEGF may contribute to the pathogenesis of nasal obstruction in the early phase of nasal allergy as a new factor involved in increasing vascular permeability.

  12. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jiwoo [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Ku, Sae-Kwang [Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610 (Korea, Republic of); Lee, Suyeon [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of); Bae, Jong-Sup, E-mail: [College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu 41566 (Korea, Republic of)


    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.

  13. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    International Nuclear Information System (INIS)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon; Bae, Jong-Sup


    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/or production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.

  14. Synergism between endotoxin priming and exotoxin challenge in provoking severe vascular leakage in rabbit lungs. (United States)

    Schütte, H; Rosseau, S; Czymek, R; Ermert, L; Walmrath, D; Krämer, H J; Seeger, W; Grimminger, F


    Lipopolysaccharides (LPS) of gram-negative bacteria prime rabbit lungs for enhanced thromboxane-mediated vasoconstriction upon subsequent challenge with the exotoxin Escherichia coli hemolysin (HlyA) (Walmrath et al. J. Exp. Med. 1994;180:1437-1443). We investigated the impact of endotoxin priming and subsequent HlyA challenge on lung vascular permeability while maintaining constancy of capillary pressure. Rabbit lungs were perfused in a pressure-controlled mode in the presence of the thromboxane receptor antagonist BM 13.505, with continuous monitoring of flow. Perfusion for 180 min with 10 ng/ml LPS did not provoke vasoconstriction or alteration of capillary filtration coefficient (Kfc) values. HlyA (0.021 hemolytic units/ml) induced thromboxane release and a transient decrease in perfusion flow in the absence of significant changes in Kfc. Similar results were obtained when LPS and HlyA were coapplied simultaneously. However, when the HlyA challenge was undertaken after 180 min of LPS priming, a manifold increase in Kfc values was noted, with concomitant severe lung edema formation, although capillary pressure remained unchanged. Thus, endotoxin primes the lung vasculature to respond with a severe increase in vascular permeability to a subsequent low-dose application of HlyA. Such synergism between endotoxin priming and exotoxin challenge in provoking lung vascular leakage may contribute to the pathogenesis of respiratory failure in sepsis and severe lung infection.

  15. Permeability, storage and hydraulic diffusivity controlled by earthquakes (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.


    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  16. Stress-dependent permeability and wave dispersion in tight cracked rocks: Experimental validation of simple effective medium models (United States)

    Sarout, Joel; Cazes, Emilie; Delle Piane, Claudio; Arena, Alessio; Esteban, Lionel


    We experimentally assess the impact of microstructure, pore fluid, and frequency on wave velocity, wave dispersion, and permeability in thermally cracked Carrara marble under effective pressure up to 50 MPa. The cracked rock is isotropic, and we observe that (1) P and S wave velocities at 500 kHz and the low-strain (S waves and 9% for P waves at 1 MPa, and (4) wave dispersion virtually vanishes above 30 MPa. Assuming no interactions between the cracks, effective medium theory is used to model the rock's elastic response and its permeability. P and S wave velocity data are jointly inverted to recover the crack density and effective aspect ratio. The permeability data are inverted to recover the cracks' effective radius. These parameters lead to a good agreement between predicted and measured wave velocities, dispersion and permeability up to 50 MPa, and up to a crack density of 0.5. The evolution of the crack parameters suggests that three deformation regimes exist: (1) contact between cracks' surface asperities up to 10 MPa, (2) progressive crack closure between 10 and 30 MPa, and (3) crack closure effectively complete above 30 MPa. The derived crack parameters differ significantly from those obtained by analysis of 2-D electron microscope images of thin sections or 3-D X-ray microtomographic images of millimeter-size specimens.

  17. Predicting skin permeability from complex chemical mixtures

    International Nuclear Information System (INIS)

    Riviere, Jim E.; Brooks, James D.


    Occupational and environmental exposure to topical chemicals is usually in the form of complex chemical mixtures, yet risk assessment is based on experimentally derived data from individual chemical exposures from a single, usually aqueous vehicle, or from computed physiochemical properties. We present an approach using hybrid quantitative structure permeation relationships (QSPeR) models where absorption through porcine skin flow-through diffusion cells is well predicted using a QSPeR model describing the individual penetrants, coupled with a mixture factor (MF) that accounts for physicochemical properties of the vehicle/mixture components. The baseline equation is log k p = c + mMF + aΣα 2 H + bΣβ 2 H + sπ 2 H + rR 2 + vV x where Σα 2 H is the hydrogen-bond donor acidity, Σβ 2 H is the hydrogen-bond acceptor basicity, π 2 H is the dipolarity/polarizability, R 2 represents the excess molar refractivity, and V x is the McGowan volume of the penetrants of interest; c, m, a, b, s, r, and v are strength coefficients coupling these descriptors to skin permeability (k p ) of 12 penetrants (atrazine, chlorpyrifos, ethylparathion, fenthion, methylparathion, nonylphenol, ρ-nitrophenol, pentachlorophenol, phenol, propazine, simazine, and triazine) in 24 mixtures. Mixtures consisted of full factorial combinations of vehicles (water, ethanol, propylene glycol) and additives (sodium lauryl sulfate, methyl nicotinate). An additional set of 4 penetrants (DEET, SDS, permethrin, ricinoleic acid) in different mixtures were included to assess applicability of this approach. This resulted in a dataset of 16 compounds administered in 344 treatment combinations. Across all exposures with no MF, R 2 for absorption was 0.62. With the MF, correlations increased up to 0.78. Parameters correlated to the MF include refractive index, polarizability and log (1/Henry's Law Constant) of the mixture components. These factors should not be considered final as the focus of these studies

  18. Subclinical hypothyroidism after vascular complicated pregnancy

    NARCIS (Netherlands)

    Zanden, M. van der; Hop-de Groot, R.J.; Sweep, F.C.; Ross, H.A.; Heijer, M. den; Spaanderman, M.E.A.


    OBJECTIVE: Women with a history of vascular complicated pregnancy are at risk for developing remote cardiovascular disease. It is associated with underlying cardiovascular risk factors both jeopardizing trophoblast and vascular function. Subclinical hypothyroidism may relate to both conditions.

  19. Pediatric central nervous system vascular malformations

    International Nuclear Information System (INIS)

    Burch, Ezra A.; Orbach, Darren B.


    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  20. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)


    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  1. ESRD QIP - Vascular Access - Payment Year 2018 (United States)

    U.S. Department of Health & Human Services — This dataset includes facility details, performance rates, vascular access topic measure score, and the state and national average measure scores for the vascular...

  2. Serpentinization: Getting water into a low permeability peridotite (United States)

    Ulven, Ole Ivar


    Fluid consuming rock transformation processes occur in a variety of settings in the Earth's crust. One such process is serpentinization, which involves hydration of ultramafic rock to form serpentine. With peridotite being one of the dominating rocks in the oceanic crust, this process changes physical and chemical properties of the crust at a large scale, increases the amount of water that enters subduction zones, and might even affect plate tectonics te{jamtveit}. A significant number of papers have studied serpentinization in different settings, from reaction fronts progressing over hundreds of meters te{rudge} to the interface scale fracture initiation te{pluemper}. However, the process represents a complicated multi-physics problem which couples external stress, mechanical deformation, volume change, fracture formation, fluid transport, the chemical reaction, heat production and heat flow. Even though it has been argued that fracture formation caused by the volume expansion allows fluid infiltration into the peridotite te{rudge}, it remains unclear how sufficient water can enter the initially low permeability peridotite to pervasively serpentinize the rock at kilometre scale. In this work, we study serpentinization numerically utilizing a thermo-hydro-mechanical model extended with a fluid consuming chemical reaction that increases the rock volume, reduces its density and strength, changes the permeability of the rock, and potentially induces fracture formation. The two-way coupled hydromechanical model is based on a discrete element model (DEM) previously used to study a volume expanding process te{ulven_1,ulven_2} combined with a fluid transport model based on poroelasticity te{ulven_sun}, which is here extended to include fluid unsaturated conditions. Finally, a new model for reactive heat production and heat flow is introduced, to make this probably the first ever fully coupled chemo-thermo-hydromechanical model describing serpentinization. With this model

  3. Effects of ketogenic diet on vascular function. (United States)

    Kapetanakis, M; Liuba, P; Odermarsky, M; Lundgren, J; Hallböök, T


    Ketogenic diet is a well-established treatment in children with difficult to treat epilepsy. Very little is known about the long-term effects on vascular atherogenic and biochemical processes of this high-fat and low carbohydrate and protein diet. We evaluated 26 children after one year and 13 children after two years of ketogenic diet. High resolution ultrasound-based assessment was used for carotid artery intima-media thickness (cIMT), carotid artery distensibility and carotid artery compliance. Blood lipids including high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol, (LDL-C), total cholesterol (TC), apolipoprotein A (apoA), apolipoprotein B (apoB) and high-sensitivity C-reactive protein (hsCRP) were analysed. A gradual decrease in carotid distensibility and an increase in LDL-C, apoB and the TC:LDL-C and LDL-C:HDL-C ratios were seen at three and 12 months of KD-treatment. These differences were not significant at 24 months. cIMT, BMI and hsCRP did not show any significant changes. The initial alterations in lipids, apoB and arterial function observed within the first year of KD-treatment appear to be reversible and not significant after 24 months of treatment. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study. (United States)

    Saito, Hiroaki; Shinoda, Wataru


    Water permeability of two different lipid bilayers of dipalmitoylphosphatidylcholine (DPPC) and palmitoylsphingomyelin (PSM) in the absence and presence of cholesterol (0-50 mol %) have been studied by molecular dynamics simulations to elucidate the molecular mechanism of the reduction in water leakage across the membranes by the addition of cholesterol. An enhanced free energy barrier was observed in these membranes with increased cholesterol concentration, and this was explained by the reduced cavity density around the cholesterol in the hydrophobic membrane core. There was an increase of trans conformers in the hydrophobic lipid chains adjacent to the cholesterol, which reduced the cavity density. The enhanced free energy barrier was found to be the main reason to reduce the water permeability with increased cholesterol concentration. At low cholesterol concentrations the PSM bilayer exhibited a higher free energy barrier than the DPPC bilayer for water permeation, while at greater than 30 mol % of cholesterol the difference became minor. This tendency for the PSM and DPPC bilayers to resemble each other at higher cholesterol concentrations was similar to commonly observed trends in several structural properties, such as order parameters, cross-sectional area per molecule, and cavity density profiles in the hydrophobic regions of bilayer membranes. These results demonstrate that DPPC and PSM bilayers with high cholesterol contents possess similar physical properties, which suggests that the solubility of cholesterol in these lipid bilayers has importance for an understanding of multicomponent lipid membranes with cholesterol. © 2011 American Chemical Society

  5. Using artificial intelligence to predict permeability from petrographic data

    Energy Technology Data Exchange (ETDEWEB)

    Maqsood Ali; Adwait Chawathe [New Mexico Petroleum Recovery Research Centre (Mexico)


    Petrographic data collected during thin section analysis can be invaluable for understanding the factors that control permeability distribution. Reliable prediction of permeability is important for reservoir characterization. The petrographic elements (mineralogy, porosity types, cements and clays, and pore morphology) interact with each other uniquely to generate a specific permeability distribution. It is difficult to quantify accurately this interaction and its consequent effect on permeability, emphasizing the non-linear nature of the process. To capture these non-linear interactions, neural networks were used to predict permeability from petrographic data. The neural net was used as a multivariate correlative tool because of its ability to learn the non-linear relationships between multiple input and output variables. The study was conducted on the upper Queen formation called the Shattuck Member (Permian age). The Shattuck Member is composed of very fine-grained arkosic sandstone. The core samples were available from the Sulimar Queen and South Lucky Lake fields located in Chaves County, New Mexico. Nineteen petrographic elements were collected for each permeability value using a combined minipermeameter-petrographic technique. In order to reduce noise and overfitting the permeability model, these petrographic elements were screened, and their control (ranking) with respect to permeability was determined using fuzzy logic. Since the fuzzy logic algorithm provides unbiased ranking, it was used to reduce the dimensionality of the input variables. Based on the fuzzy logic ranking, only the most influential petrographic elements were selected as inputs for permeability prediction. The neural net was trained and tested using data from Well 1-16 in the Sulimar Queen field. Relying on the ranking obtained from the fuzzy logic analysis, the net was trained using the most influential three, five, and ten petrographic elements. A fast algorithm (the scaled conjugate

  6. Studies on the increase of capillary permeability in rat skin under the action of pyridoxal 5' phosphate

    International Nuclear Information System (INIS)

    Garcia Agudo, N.L. del M. de.


    The activity of pyridoxal 5'-phosphate (PLP) is described on the vascular permeability response, measured in the abdominal wall of rats from the amount of extravased Evans blue labelled with radioactive iodine 125 or 131. The PLP effect is related to histamine release as it has been showed by tha use of antihistaminics. An attempt has been made in order to correlate structure and biological activity by using PLP analogs. The intact molecule of PLP seems to be the proper active substance. The critical role of calcium in histamine release is discussed in relation to our observations. In the presence of high concentrations of calcium and lantanium, PLP fails to increase the vascular permeability; magnesium does not show any influence. The calcium mobilization produced by theophylline results in inhibition of the response. The course of the reaction between PLP and histamine in vitro was followed; the synthetic cyclic product is deprived of activity and does not interfere with the intrinsic effects of PLP and histamine. (Author) [pt

  7. Water permeabilities of pulverized fuel ash; Bifuntan sekitanbai no tosui tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, T [Center for Coal Utilization, Japan, Tokyo (Japan); Nagataki, S [Niigata University, Niigata (Japan); Hosoda, N [Kumagai Gumi Co. Ltd., Tokyo (Japan); Utsuki, T [The Coal Mining Research Center, Japan, Tokyo (Japan); Kubo, H [Obayashi Corp., Tokyo (Japan)


    It is intended to establish a technology to utilize coal ash in bulk to deal with its increasing production. In order to expand its use into earth engineering materials, two kinds of combustion ashes produced from dust coal burning power plants were used for studies using different kinds of tests. The tests were carried out on strength properties, water permeability, and characteristics of dissolving trace amounts of chemical constituents, with regard to addition effects of cement into compacted and slurry-state dust coal burned ashes. The derived findings may be summarized as follows: as the strength properties, the strength for both of the compacted and slurry-state ashes increases as the cement addition ratio is increased; growth of the strength due to the cement addition ratio and material age varies depending on the kinds of dust coal burned ash; comparison of strengths of the compacted and the slurry-state ashes indicates the strength of the latter ash is about one-third to quarter of that of the former ash; water permeability of the ashes decreases both in the compacted and slurry- state ashes as the cement addition ratio is increased; and the cement addition ratio gives greater impact to the water permeability than the density of the ashes. 28 figs., 5 tabs.

  8. Factors Influencing Stormwater Mitigation in Permeable Pavement

    Directory of Open Access Journals (Sweden)

    Chun Yan Liu


    Full Text Available Permeable pavement (PP is used worldwide to mitigate surface runoff in urban areas. Various studies have examined the factors governing the hydrologic performance of PP. However, relatively little is known about the relative importance of these governing factors and the long-term hydrologic performance of PP. This study applied numerical models—calibrated and validated using existing experimental results—to simulate hundreds of event-based and two long-term rainfall scenarios for two designs of PP. Based on the event-based simulation results, rainfall intensity, rainfall volume, thickness of the storage layer and the hydraulic conductivity of the subgrade were identified as the most influential factors in PP runoff reduction. Over the long term, PP performed significantly better in a relatively drier climate (e.g., New York, reducing nearly 90% of runoff volume compared to 70% in a relatively wetter climate (e.g., Hong Kong. The two designs of PP examined performed differently, and the difference was more apparent in the relatively wetter climate. This study generated insights that will help the design and implementation of PP to mitigate stormwater worldwide.

  9. Electrically Driven Ion Separations in Permeable Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, Merlin [Michigan State Univ., East Lansing, MI (United States)


    Membranes are attractive for a wide range of separations due to their low energy costs and continuous operation. To achieve practical fluxes, most membranes consist of a thin, selective skin on a highly permeable substrate that provides mechanical strength. Thus, this project focused on creating new methods for forming highly selective ultrathin skins as well as modeling transport through these coatings to better understand their unprecedented selectivities. The research explored both gas and ion separations, and the latter included transport due to concentration, pressure and electrical potential gradients. This report describes a series of highlights of the research and then provides a complete list of publications supported by the grant. These publications have been cited more than 4000 times. Perhaps the most stunning finding is the recent discovery of monovalent/divalent cation and anion selectivities around 1000 when modifying cation- and anion-exchange membranes with polyelectrolyte multilayers (PEMs). This discovery builds on many years of exciting research. (Citation numbers refer to the journal articles in the bibliography.)

  10. A Permeable Active Amendment Concrete (PAAC) for Contaminant Remediation and Erosion Control (United States)


    system of highly permeable, interconnected voids that drain quickly. The low mortar content and high porosity combine to reduce the compressive...Initial Water Content, %: 5.5 Wet Unit Weight, pet : 88.7 Dry Unit Weight, pcf: 84.1 Compaction, %: N!A Hydraulic Conductivity, em/sec. @20 •c 4.0E...66.1 88.3 5 52.6 97.5 59.8 ~ r- 10 52.6 91.5 64.5 81.5 ~o. ofTriali Sample Max. Density Compaction Type ( pet ) % 7 1 UD N/A NIA a • SR:a of

  11. Image Analysis and Estimation of Porosity and Permeability of Arnager Greensand, Upper Cretaceous, Denmark

    DEFF Research Database (Denmark)

    Solymar, Mikael; Fabricius, Ida


    Arnager Greensand consists of unconsolidated, poorly sorted fine-grained, glauconitic quartz sand, often silty or clayey, with a few horizons of cemented coarse-grained sand. Samples from the upper part of the Arnager Greensand were used for this study to estimate permeability from microscopic...... images. Backscattered Scanning Electron Microscope images from polished thin-sections were acquired for image analysis with the software PIPPIN(R). Differences in grey levels owing to density differences allowed us to estimate porosity, clay and particle content. The images were simplified into two...

  12. Cellular Model of Atherogenesis Based on Pluripotent Vascular Wall Pericytes. (United States)

    Ivanova, Ekaterina A; Orekhov, Alexander N


    Pericytes are pluripotent cells that can be found in the vascular wall of both microvessels and large arteries and veins. They have distinct morphology with long branching processes and form numerous contacts with each other and with endothelial cells, organizing the vascular wall cells into a three-dimensional network. Accumulating evidence demonstrates that pericytes may play a key role in the pathogenesis of vascular disorders, including atherosclerosis. Macrovascular pericytes are able to accumulate lipids and contribute to growth and vascularization of the atherosclerotic plaque. Moreover, they participate in the local inflammatory process and thrombosis, which can lead to fatal consequences. At the same time, pericytes can represent a useful model for studying the atherosclerotic process and for the development of novel therapeutic approaches. In particular, they are suitable for testing various substances' potential for decreasing lipid accumulation induced by the incubation of cells with atherogenic low-density lipoprotein. In this review we will discuss the application of cellular models for studying atherosclerosis and provide several examples of successful application of these models to drug research.

  13. The Interaction Between IGF-1, Atherosclerosis and Vascular Aging (United States)

    Higashi, Yusuke; Quevedo, Henry C.; Tiwari, Summit; Sukhanov, Sergiy; Shai, Shaw-Yung; Anwar, Asif; Delafontaine, Patrice


    The process of vascular aging encompasses alterations in the function of endothelial (EC) and vascular smooth muscle cells (VSMCs) via oxidation, inflammation, cell senescence and epigenetic modifications, increasing the probability of atherosclerosis. Aged vessels exhibit decreased endothelial antithrombogenic properties, increased reactive oxygen species (ROS) generation and inflammatory signaling, increased migration of VSMCs to the subintimal space, impaired angiogenesis and increased elastin degradation. The key initiating step in atherogenesis is subendothelial accumulation of apolipoprotein-B containing low density lipoproteins resulting in activation of endothelial cells and recruitment of monocytes. Activated endothelial cells secrete “chemokines” that interact with cognate chemokine receptors on monocytes and promote directional migration. Recruitment of immune cells establishes a pro-inflammatory status, further causing elevated oxidative stress, which in turn triggers a series of events including apoptotic or necrotic death of vascular and non-vascular cells. Increased oxidative stress is also considered to be a key factor in mechanisms of aging-associated changes in tissue integrity and function. Experimental evidence indicates that insulin-like growth factor-1 (IGF-1) exerts anti-oxidant, anti-inflammatory and pro-survival effects on the vasculature, reducing atherosclerotic plaque burden and promoting features of atherosclerotic plaque stability. PMID:24943302

  14. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    International Nuclear Information System (INIS)

    Moding, Everett J.; Clark, Darin P.; Qi, Yi; Li, Yifan; Ma, Yan; Ghaghada, Ketan; Johnson, G. Allan; Kirsch, David G.; Badea, Cristian T.


    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P 2 =0.53) and dextran accumulation (R 2 =0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment

  15. Vascular neurocognitive disorders and the vascular risk factors

    Directory of Open Access Journals (Sweden)

    Carmen V. Albu


    Full Text Available Dementias are clinical neurodegenerative diseases characterized by permanent and progressive transformation of cognitive functions such as memory, learning capacity, attention, thinking, language, passing judgments, calculation or orientation. Dementias represent a relatively frequent pathology, encountered at about 10% of the population of 65-year olds and 20% of the population of 80-year olds. This review presents the main etiological forms of dementia, which include Alzheimer form of dementia, vascular dementia, dementia associated with alpha-synucleionopathies, and mixed forms. Regarding vascular dementia, the risk factors are similar to those for an ischemic or hemorrhagic cerebrovascular accident: arterial hypertension, diabetes mellitus, dyslipidemia, smoking, obesity, age, alcohol consumption, cerebral atherosclerosis/ arteriosclerosis. Several studies show that efficient management of the vascular risk factors can prevent the expression and/ or progression of dementia. Thus, lifestyle changes such as stress reduction, regular physical exercise, decreasing dietary fat, multivitamin supplementation, adequate control of blood pressure and serum cholesterol, and social integration and mental stimulation in the elderly population are important factors in preventing or limiting the symptoms of dementia, a disease with significant individual, social, and economic implications.

  16. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes (United States)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.


    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore

  17. Is vertebrate mortality correlated to potential permeability by underpasses along low-traffic roads? (United States)

    Delgado, Juan D; Morelli, Federico; Arroyo, Natalia L; Durán, Jorge; Rodríguez, Alexandra; Rosal, Antonio; Palenzuela, María Del Valle; Rodríguez, Jesús D G P


    Road permeability to animal movements depends among several factors on structures which, integrated in the road design, operate as safe conducts to mitigate vehicle collision and barrier effects. There is abundant evidence that wildlife makes use of such structures as safe passages to cross roads. We analyzed the spatial relationship between road drainage elements (N = 253; mostly culverts) as potential faunal underpasses, and mortality due to vehicle collisions in two seasons and on four relatively low-traffic roads (roads, identifying and characterizing all potential underpasses. Overall frequencies of casualties and spatial distribution were highly variable both within and among these roads. We obtained an estimation of potential permeability for the different roads. We detected, located and described a wide supply and a very variable pattern of drainage culverts and other underpasses, with differences among roads in passage attributes potentially affecting permeability for wildlife, such as spatial arrangement, number, density (frequency or concentration of passages) and dimensions. We used Mantel tests to assess spatial congruence of passages and road-killed animals. We applied generalized linear mixed models fitted by maximum likelihood through Akaike Information Criterion to explain the variation in the distance of the 238 casualties to the nearest underpasses, with road transect and season as random factors, and traffic intensity, speed and vertebrate class as fixed effects. Both road-killed animals and underpass distribution followed aggregated patterns, and casualties were not significantly related to underpasses along any of the 4 roads. There were no differences in distance of casualties to the nearest underpass for the three vertebrate classes. Although existing underpasses were abundant, we could not correlate potential permeability with reduced mortality along these roads, and other factors potentially affecting roadkill aggregations should be

  18. Effect of gas type on foam film permeability and its implications for foam flow in porous media. (United States)

    Farajzadeh, R; Muruganathan, R M; Rossen, W R; Krastev, R


    The aim of this paper is to provide a perspective on the effect of gas type on the permeability of foam films stabilized by different types of surfactant and to present a critical overview of the tracer gas experiments, which is the common approach to determine the trapped fraction of foam in porous media. In these experiments some part of the gas is replaced by a "tracer gas" during the steady-state stage of the experiments and trapped fraction of foam is determined by fitting the effluent data to a capacitance mass-transfer model. We present the experimental results on the measurement of the gas permeability of foam films stabilized with five surfactants (non-ionic, anionic and cationic) and different salt concentrations. The salt concentrations assure formation of either common black (CBF) or Newton black films (NBF). The experiments are performed with different single gasses. The permeability of the CBF is in general higher than that of the NBF. This behavior is explained by the higher density of the surfactant molecules in the NBF compared to that of CBF. It is also observed that the permeability coefficient, K(cm/s), of CBF and NBF for non-ionic and cationic surfactants are similar and K is insensitive to film thickness. Compared to anionic surfactants, the films made by the non-ionic surfactant have much lower permeability while the films made by the cationic surfactant have larger permeability. This conclusion is valid for all gasses. For all types of surfactant the gas permeability of foam film is largely dependent on the dissolution of gas in the surfactant solution and increases with increasing gas solubility in the bulk liquid. The measured values of K are consistent with rapid diffusion of tracer gasses through trapped gas adjacent to flowing gas in porous media, and difficulties in interpreting the results of tracer-foam experiments with conventional capacitance models. The implications of the results for foam flow in porous media and factors leading

  19. Permeability of WIPP Salt During Damage Evolution and Healing

    International Nuclear Information System (INIS)



    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering

  20. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Gholami


    Full Text Available Permeability is a key parameter associated with the characterization of any hydrocarbon reservoir. In fact, it is not possible to have accurate solutions to many petroleum engineering problems without having accurate permeability value. The conventional methods for permeability determination are core analysis and well test techniques. These methods are very expensive and time consuming. Therefore, attempts have usually been carried out to use artificial neural network for identification of the relationship between the well log data and core permeability. In this way, recent works on artificial intelligence techniques have led to introduce a robust machine learning methodology called support vector machine. This paper aims to utilize the SVM for predicting the permeability of three gas wells in the Southern Pars field. Obtained results of SVM showed that the correlation coefficient between core and predicted permeability is 0.97 for testing dataset. Comparing the result of SVM with that of a general regression neural network (GRNN revealed that the SVM approach is faster and more accurate than the GRNN in prediction of hydrocarbon reservoirs permeability.

  1. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers. (United States)

    Nisisako, Takasi; Portonovo, Shiva A; Schmidt, Jacob J


    Membrane permeability assays play an important role in assessing drug transport activities across biological membranes. However, in conventional parallel artificial membrane permeability assays (PAMPA), the membrane model used is dissimilar to biological membranes physically and chemically. Here, we describe a microfluidic passive permeability assay using droplet interface bilayers (DIBs). In a microfluidic network, nanoliter-sized donor and acceptor aqueous droplets are alternately formed in cross-flowing oil containing phospholipids. Subsequently, selective removal of oil through hydrophobic pseudo-porous sidewalls induces the contact of the lipid monolayers, creating arrayed planar DIBs between the donor and acceptor droplets. Permeation of fluorescein from the donor to the acceptor droplets was fluorometrically measured. From the measured data and a simple diffusion model we calculated the effective permeabilities of 5.1 × 10(-6) cm s(-1), 60.0 × 10(-6) cm s(-1), and 87.6 × 10(-6) cm s(-1) with donor droplets at pH values of 7.5, 6.4 and 5.4, respectively. The intrinsic permeabilities of specific monoanionic and neutral fluorescein species were obtained similarly. We also measured the permeation of caffeine in 10 min using UV microspectroscopy, obtaining a permeability of 20.8 × 10(-6) cm s(-1). With the small solution volumes, short measurement time, and ability to measure a wide range of compounds, this device has considerable potential as a platform for high-throughput drug permeability assays.

  2. Characterization and estimation of permeability correlation structure from performance data

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)


    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  3. Stress dependence of permeability of intact and fractured shale cores. (United States)

    van Noort, Reinier; Yarushina, Viktoriya


    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  4. Update to Permeable Pavement Research at the Edison Environmental Center - abstract (United States)

    Abstract The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable pavers...

  5. Detection of semi-volatile organic compounds in permeable pavement infiltrate (United States)

    Abstract The Edison Environmental Center (EEC) performs research on green infrastructure (GI) treatment options. One such treatment option is the use of permeable pavements. EEC constructed a parking lot comprised of three different permeable systems: permeable asphalt, porous ...

  6. Update to permeable pavement research at the Edison Environmental Center - slides (United States)

    Abstract: The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavement including: interlocking concrete permeable paver...

  7. Wave transmission over permeable submerged breakwaters; Transmision del oleaje en rompeolas sumergidos permeables

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-y-Zurvia-Flores, Jaime Roberto; Fragoso-Sandoval, Lucio [Instituto Politecnico Nacional(Mexico)


    The permeable submerged breakwaters represent a coastal protection alternative, where some degree of wave energy transmission is acceptable. Such would be the case of tourist beach protection in Mexico. In previous researches, like those performed by D'Angremond et al. (1996), Seabrook and Hall (1998), and Briganti et al. (2003), the empirical formulas developed, give only some limited information over the spatial distribution of wave energy over the structure. Therefore, a decision was made to conduct a study on a reduced physical model of a permeable submerged breakwater based on the results presented by those researchers and with possible applications. Therefore this paper presents the development of a study of wave transmission over permeable submerged breakwaters performed in a reduced physical model of different sections of a submerged rockfill breakwater of the trapezoidal type. This was done in a narrow wave flume with a hydraulic irregular wave generator controlled by a computer that was used to generate and to reproduce different types of irregular waves to be used in the tests. It also has a wave meter with four sensors, and they are connected to a computer in order to process the wave data. The main objective of the study was to determine in an experimental way the influence of the several parameters of submerged breakwater over the wave transmission coefficient. Our experimental results were comparable to those obtained by D'Angremond et al. (1996) and Seabrook and Hall (1998). The results show that the sumerged breakwater parameters of most influence over the wave transmission coefficient were relative submergence and the relative width crest of the sumerged breakwater, and that the formula by Seabrook and Hall correlates best with our results. [Spanish] Los rompeolas sumergidos permeables representan actualmente una alternativa de proteccion de costas, donde un cierto grado de transmision de energia del oleaje es aceptable, como seria el

  8. Findings of computed tomography in vascular Parkinsonism

    International Nuclear Information System (INIS)

    Tomura, Noriaki; Tamakawa, Yoshiharu; Kato, Toshio; Yamada, Shigeru; Hirota, Koichi.


    In order to evaluate the ventricular size, we measured the following A-F. A: The ratio of the ventricle-caudate nucleus distance to the maximum transverse inner diameter of skull on 4.0 cm above orbitomeatal plane. B: The ratio of the largest width of the anterior horn of the lateral ventricle to the maximum transverse inner diameter on the same level as A. C: The ratio of the maximum width of the third ventricle to the maximum transverse inner diameter of skull on the same level as A. D: The ratio of the minimal width of both cellae mediae to the maximum transverse inner diameter on 6.0 cm above orbitomeatal plane. E: The ratio of the area of both the anterior horn to the intracranial area on the same level as A. F: The ratio of the area of both the body of the lateral ventricle to the intracranial area on the same level as D. C was only statistically significant compared with controls. The enlargement of cerebral cortical sulci in patients was more prominent than that in controls. The degree of periventricular lucency in patients was more severe than that in controls. The number of small low density area in basal ganglia in patients was more than that in controls. The pathogenesis of periventricular lucency in the patients with vascular Parkinsonism differs from that in the patients with obstructive hydrocephalus. The periventricular area corresponds to border zone in the arterial angioarchitecture in the brain, therefore, the periventricular area undergoes easily ischemic changes than the other area. It is thought that the periventricular lucency in vascular Parkinsonism is due to the infarction, softening, vacuoles etc, and reflects the cerebrovascular arteriosclerosis. Furthermore, in view of the correlation between CT findings and clinical symptoms, the periventricular lucency reflects well the clinical severity. (J.P.N.)

  9. Vascular measurements correlate with estrogen receptor status

    International Nuclear Information System (INIS)

    Lloyd, Mark C; Alfarouk, Khalid O; Verduzco, Daniel; Bui, Marilyn M; Gillies, Robert J; Ibrahim, Muntaser E; Brown, Joel S; Gatenby, Robert A


    Breast carcinoma can be classified as either Estrogen Receptor (ER) positive or negative by immunohistochemical phenotyping, although ER expression may vary from 1 to 100% of malignant cells within an ER + tumor. This is similar to genetic variability observed in other tumor types and is generally viewed as a consequence of intratumoral evolution driven by random genetic mutations. Here we view cellular evolution within tumors as a classical Darwinian system in which variations in molecular properties represent predictable adaptations to spatially heterogeneous environmental selection forces. We hypothesize that ER expression is a successful adaptive strategy only if estrogen is present in the microenvironment. Since the dominant source of estrogen is blood flow, we hypothesized that, in general, intratumoral regions with higher blood flow would contain larger numbers of ER + cells when compared to areas of low blood flow and in turn necrosis. This study used digital pathology whole slide image acquisition and advanced image analysis algorithms. We examined the spatial distribution of ER + and ER- cells, vascular density, vessel area, and tissue necrosis within histological sections of 24 breast cancer specimens. These data were correlated with the patients ER status and molecular pathology report findings. ANOVA analyses revealed a strong correlation between vascular area and ER expression and between high fractional necrosis and absent ER expression (R 2 = 39%; p < 0.003 and R 2 = 46%; p < 0.001), respectively). ER expression did not correlate with tumor grade or size. We conclude that ER expression can be understood as a Darwinian process and linked to variations in estrogen delivery by temporal and spatial heterogeneity in blood flow. This correlation suggests strategies to promote intratumoral blood flow or a cyclic introduction of estrogen in the treatment schedule could be explored as a counter-intuitive approach to increase the efficacy of anti

  10. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells (United States)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana


    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  11. Vascularized osseous graft for scaphoid

    International Nuclear Information System (INIS)

    Mendez Daza, Carlos Hernan; Mathoulin, Cristophe


    The most commonly used technique for treatment of pseudo-arthrosis of the scaphoid is osteo-synthesis with Kirschnet wires and cortical sponge grafts. Results reported by different teams using this procedure show no more than 90% osseous consolidation, especially in cases where vascularisation of the proximal fragment of the scaphoid is compromised. Here we present a series of ten cases of pseudo-arthrosis of the scaphoid, treated using a new surgical technique involving a vascularized osseous graft of the distal radius. Using this procedure we obtained 100% consolidation, with no complications either during the procedure or immediately post-operatively. Patients returned to work in week 15 on average. In 4 cases we observed discomfort in the area of the scar, which was successfully treated using local cortisone injection. The results obtained are very similar to those seen in the literature on the different techniques for vascularized osseous grafts for pseudo-arthrosis of the scaphoid

  12. [Menopause: Hypertension and vascular disease]. (United States)

    Zilberman, J M

    Hypertension is the main cardiovascular risk factor affecting 25% of women. Hormone changes and hypertension after menopause may lead to higher target organ damage and cardiovascular disease such as increased arterial stiffness, coronary diseases, chronic heart failure and stroke. The physiopathological mechanisms involved in the development of hypertension and cardiovascular diseases in menopausal women are controversial. There are pharmacokinetic and pharmacodynamic differences in both sexes, the women have more coughing when using the converting-enzyme inhibitors, more cramps when using thiazide diuretics and more oedema in the inferior limbs when using calcium antagonists. The aim of this review is to analyse possible physiopathological mechanisms involved in hypertension after menopause and to gain a better understanding of the biological effects mediated by vascular ageing in women when the level of oestrogen protective effect decreases over the vascular system. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Vascular abnormalities associated with acute hypoxia in human melanoma xenografts

    International Nuclear Information System (INIS)

    Simonsen, Trude G.; Gaustad, Jon-Vidar; Leinaas, Marit N.; Rofstad, Einar K.


    Background and purpose: The fraction of hypoxic cells has been shown to differ substantially among human tumors of the same histological type. In this study, a window chamber model was used to identify possible mechanisms leading to the development of highly different hypoxic fractions in A-07 and R-18 human melanoma xenografts. Materials and methods: Chronic and acute hypoxia was assessed in intradermal tumors using an immunohistochemical and a radiobiological assay. Functional and morphological parameters of the vascular networks of tumors growing in dorsal window chambers were assessed with intravital microscopy. Results: R-18 tumors showed significantly higher hypoxic fractions than A-07 tumors, and the difference was mostly due to acute hypoxia. Compared to A-07 tumors, R-18 tumors showed low vascular densities, low vessel diameters, long vessel segments, low blood flow velocities, frequent fluctuations in blood flow, and a high fraction of narrow vessels with absent or very low and varying flux of red blood cells. Conclusion: The high fraction of acute hypoxia in R-18 tumors was a consequence of frequent fluctuations in blood flow and red blood cell flux combined with low vascular density. The fluctuations were most likely caused by high geometric resistance to blood flow in the tumor microvasculature.

  14. Determination of filtrations and permeability of an earth dam

    International Nuclear Information System (INIS)

    Gomez, H.R.; Baro, G.B.; Gillen, Ricardo.


    The aim of this work was to measure with the aid of a radioactive tracer the speed flow of the water filtrating from Sumampa Dam in northeastern Catamarca, while being in operation, and with these data determine if the actual permeability corresponds to the projected one. Iodine-131 was used as tracer and periodical samples were taken from the down stream water in order to determine its activity concentration. In previous perforations ionic interchange resines were used so as to measure simultaneously the fixed Iodine-131. The permeability of the dam was calculated from the obtained speed based on time-concentration curves and applying Darcy formulas for permeability. (author) [es

  15. Electrical conductivity and magnetic permeability measurement of case hardened steels (United States)

    Tian, Yong


    For case carburized steels, electrical conductivity and magnetic permeability profiles are needed to develop model-based case depth characterization techniques for the purpose of nondestructive quality control. To obtain fast and accurate measurement of these material properties, four-point potential drop approaches are applied on circular-shaped discs cut from steel rings with different case depths. First, a direct current potential drop (DCPD) approach is applied to measure electrical conductivity. Subsequently, an alternating current potential drop (ACPD) approach is used to measure magnetic permeability. Practical issues in measurement design and implementation are discussed. Depth profiles of electrical conductivity and magnetic permeability are reported.

  16. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes (United States)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.


    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  17. Compressible fluid flow through rocks of variable permeability

    International Nuclear Information System (INIS)

    Lin, W.


    The effectiveness of course-grained igneous rocks as shelters for burying radioactive waste can be assessed by determining the rock permeabilities at their in situ pressures and stresses. Analytical and numerical methods were used to solve differential equations of one-dimensional fluid flow through rocks with permeabilities from 10 4 to 1 nD. In these calculations, upstream and downstream reservoir volumes of 5, 50, and 500 cm 3 were used. The optimal size combinations of the two reservoirs were determined for measurements of permeability, stress, strain, acoustic velocity, and electrical conductivity on low-porosity, coarse-grained igneous rocks

  18. Effect of confining pressure on permeability behavior of Beishan granite

    International Nuclear Information System (INIS)

    Ma Like; Li Yunfeng; Zhao Xingguang; Tan Guohuan


    By using of the Electro-Hydraulic Servo-controlled Rock Mechanics Testing System (MTS 815.04) in the University of Hong Kong, a series of permeability tests were performed on specimens of Beishan granite at different confining pressures. The result indicates that: (1) there is a decrease of permeability due to progressive closure of initial microcracks and the corresponding volumetric strain is compressive when the confining pressures increase from 2.5 MPa to 15 MPa, (2) when the confining pressures decrease from 15 MPa to 2.5 MPa, there is an increase of permeability in this stage in relation with the volumetric dilation. (authors)

  19. Vascular diagnostics for Raynaud's phenomenon

    Directory of Open Access Journals (Sweden)

    Dinsdale G


    Full Text Available Graham Dinsdale, Ariane L Herrick Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Salford Royal NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Abstract: Raynaud's phenomenon (RP is common, and in most patients is primary (idiopathic when due to reversible vasospasm and does not progress to irreversible tissue injury. However, in those patients for whom RP is secondary to an underlying disease (eg, systemic sclerosis or atherosclerosis, progression to digital ulceration or critical ischemia can occur. Therefore, the key question for the clinician is “Why does this patient have RP?” Vascular diagnostics play a key role in answering this. In this review, we firstly discuss the different vascular investigations relevant to clinical practice: nail fold capillaroscopy (including the different methodologies for examining the nail fold capillaries, and the role of capillaroscopy in helping to differentiate between primary and systemic sclerosis-related RP, thermography (available in specialist centers, and evaluation of large vessel disease (for example, due to atherosclerosis. We then discuss research tools, mainly laser Doppler methods, including laser Doppler imaging and laser speckle contrast imaging. These are commercially available as complete imaging systems and are (relatively easy to use. The main current goal in vascular imaging research is to validate these novel state-of-the-art techniques as outcome measures of digital vascular disease, and then apply them in early and later phase studies of new treatment approaches, thus facilitating drug development programs. Keywords: Raynaud's phenomenon, systemic sclerosis, nail fold capillaroscopy, thermography, laser Doppler, angiography

  20. Contrast-enhanced color Doppler US in breast cancer: Tumoral vascularity correlated with angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun A; Yoon, Kwon Ha; Yun, Ki Jung; Lee, Kwang Man; Park, Ki Han; Juhng, Seon Kwan; Won, Jong Jin [Wonkwang University School of Medicine, Seoul (Korea, Republic of)


    To evaluate the effects of contrast-enhanced color Doppler ultrasonography (CDUS) on the depiction of vascularity and flow pattern in breast cancer and to determine the relationship between tumoral vascularity and angiogenesis. Twenty-one patients with breast cancer were prospectively evaluated with CDUS before and after injection of the contrast agent (SH U 508A, 2.5g, 300 mg/ml ). The tumoral vascularity was expressed as percentage of color Doppler area, which was measured quantitatively by a computerized program (Ultrasonic Imaging Tool; Soongsil University, Seoul, Korea). The flow pattern (four-patterns; spotty, linear, branching, marginal) of the vascularity was analyzed. After surgery, tumor angiogenesis was assessed by microvessel density. The relationship between the vascularity on CDUS and microvessel density was statistically analyzed. At unenhanced CDUS, tumoral flow signals were detected in 12 lesions (48%); at contrast-enhanced CDUS, 18 lesions (86%). All These 18 lesions showed increased signals, compared with those at unenhanced CDUS. The percentage color Doppler area was 1.86 {+-} 0.48% at unenhanced CDUS and 5.23 {+-} 1.18% at contrast-enhanced CDUS. The flow patterns before contrast injection were spotty pattern in 11 tumors and linear pattern in one; after contrast injection, spotty in 8, linear in 4, branching in 5, and marginal in one. The tumoral vascularity at contrast-enhanced CDUS showed no significant correlation with microvessel density. Contrast-enhanced CDUS seems to be a valuable tool in the depiction of vascularity and characterization of flow pattern in breast cancer. However, tumoral vascularity on CDUS may not reflect tumoral angiogenesis.

  1. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A


    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  2. Development of lightweight mortars targeted on the high strength, low density and low permeability

    NARCIS (Netherlands)

    Spiesz, P.R.; Yu, Q.; Brouwers, H.J.H.; Uzoegbo, H.C.; Schmidt, W.


    This article presents a mix design methodology for the development of cement-based lightweight mortars. Expanded-glass lightweight aggregates were used in this study as the lightweight material. The mix design was developed applying the packing theory using the modified Andreasen and Andersen model

  3. Metal concentrations from permeable pavement parking lot in Edison, NJ (United States)

    U.S. Environmental Protection Agency — The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements...

  4. Investigation of negative permeability metamaterials for wireless power transfer

    Directory of Open Access Journals (Sweden)

    Wenhui Xin


    Full Text Available In order to enhance the transmission efficiency of wireless power transfer (WPT, a negative permeability metamaterials (NPM with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.

  5. Xenon NMR measurements of permeability and tortuosity in reservoir rocks. (United States)

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee


    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.

  6. Investigation of negative permeability metamaterials for wireless power transfer (United States)

    Xin, Wenhui; Mi, Chunting Chris; He, Fei; Jiang, Meng; Hua, Dengxin


    In order to enhance the transmission efficiency of wireless power transfer (WPT), a negative permeability metamaterials (NPM) with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.

  7. Quantifying tidally driven benthic oxygen exchange across permeable sediments

    DEFF Research Database (Denmark)

    McGinnis, Daniel F.; Sommer, Stefan; Lorke, Andreas


    Continental shelves are predominately (approximate to 70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists...... of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O-2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive...... the variable sediment O-2 penetration depth (from approximate to 3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O-2 uptake. The O-2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange...

  8. Investigation clogging dynamic of permeable pavement systems using embeded sensors (United States)

    U.S. Environmental Protection Agency — Permeable pavement is a stormwater control measure commonly selected in both new and retrofit applications. However, there is limited information about the clogging...

  9. Investigation of stormwater quality improvements utilizing permeable friction course (PFC). (United States)


    This report describes research into the water quality and hydraulics of the Permeable Friction Course (PFC). : Water quality monitoring of 3 locations in the Austin area indicates up to a 90 percent reduction in pollutant : discharges from PFC compar...

  10. Wood Permeability in Eucalyptus grandis and Eucalyptus dunnii

    Directory of Open Access Journals (Sweden)

    Raphael Nogueira Rezende


    Full Text Available ABSTRACT The objective of this study was to evaluate the flow of air and water in Eucalyptus grandis and Eucalyptus dunnii wood. Wood was collected from four trees aged 37 years in an experimental plantation of the Federal University of Lavras, Brazil. Planks were cut off the basal logs to produce specimens for air and water permeability testing. Results indicated that the longitudinal permeability to air and water of E. grandis wood were, on average, 5% and 10% higher, respectively, than that of E. dunnii wood. E. grandis and E. dunnii wood showed neither air nor water flow in the test for permeability transversal to the fibers, and longitudinal permeability to air exceeded that to water by approximately 50 fold in both species.

  11. Measurement of relative permeability of fuel cell diffusion media

    KAUST Repository

    Hussaini, I.S.; Wang, C.Y.


    Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions

  12. Porosity, permeability, and their relationship in granite, basalt, and tuff

    International Nuclear Information System (INIS)


    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report

  13. Measurement of relative permeability of fuel cell diffusion media

    KAUST Repository

    Hussaini, I.S.


    Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented and new correlations for in-plane relative permeability of water and air are established. © 2010 Elsevier B.V. All rights reserved.

  14. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  15. Study on Surface Permeability of Concrete under Immersion. (United States)

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong


    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured after 30-day immersion. The early increase in surface permeability should be mainly attributed to the leaching of calcium hydroxide, while the later decrease to the refinement of pore structure due to hydration. The two effects work simultaneously and compete throughout the immersion period. The proposed mechanisms get support from microscopic measurements and observations.

  16. Water permeability is a measure of severity in acute appendicitis. (United States)

    Pini, Nicola; Pfeifle, Viktoria A; Kym, Urs; Keck, Simone; Galati, Virginie; Holland-Cunz, Stefan; Gros, Stephanie J


    Acute appendicitis is the most common indication for pediatric abdominal emergency surgery. Determination of the severity of appendicitis on clinical grounds is challenging. Complicated appendicitis presenting with perforation, abscess or diffuse peritonitis is not uncommon. The question remains why and when acute appendicitis progresses to perforation. The aim of this study was to assess the impact of water permeability on the severity of appendicitis. We show that AQP1 expression and water permeability in appendicitis correlate with the stage of inflammation and systemic infection parameters, leading eventually to perforation of the appendix. AQP1 is also expressed within the ganglia of the enteric nervous system and ganglia count increases with inflammation. Severity of appendicitis can be correlated with water permeability measured by AQP1 protein expression and increase of ganglia count in a progressive manner. This introduces the question if regulation of water permeability can present novel curative or ameliorating therapeutic options.

  17. Airspace Analyzer for Assessing Airspace Directional Permeability, Phase I (United States)

    National Aeronautics and Space Administration — We build a software tool which enables the user (airline or Air Traffic Service Provider (ATSP)) the ability to analyze the flight-level-by-flight-level permeability...

  18. Nestin upregulation characterizes vascular remodeling secondary to hypertension in the rat. (United States)

    Tardif, Kim; Hertig, Vanessa; Duquette, Natacha; Villeneuve, Louis; El-Hamamsy, Ismail; Tanguay, Jean-François; Calderone, Angelino


    Proliferation and hypertrophy of vascular smooth muscle cells represent hallmark features of vessel remodeling secondary to hypertension. The intermediate filament protein nestin was recently identified in vascular smooth muscle cells and in other cell types directly participated in proliferation. The present study tested the hypothesis that vessel remodeling secondary to hypertension was characterized by nestin upregulation in vascular smooth muscle cells. Two weeks after suprarenal abdominal aorta constriction of adult male Sprague-Dawley rats, elevated mean arterial pressure increased the media area and thickness of the carotid artery and aorta and concomitantly upregulated nestin protein levels. In the normal adult rat carotid artery, nestin immunoreactivity was observed in a subpopulation of vascular smooth muscle cells, and the density significantly increased following suprarenal abdominal aorta constriction. Filamentous nestin was detected in cultured rat carotid artery- and aorta-derived vascular smooth muscle cells and an analogous paradigm observed in human aorta-derived vascular smooth muscle cells. ANG II and EGF treatment of vascular smooth muscle cells stimulated DNA and protein synthesis and increased nestin protein levels. Lentiviral short-hairpin RNA-mediated nestin depletion of carotid artery-derived vascular smooth muscle cells inhibited peptide growth factor-stimulated DNA synthesis, whereas protein synthesis remained intact. These data have demonstrated that vessel remodeling secondary to hypertension was characterized in part by nestin upregulation in vascular smooth muscle cells. The selective role of nestin in peptide growth factor-stimulated DNA synthesis has revealed that the proliferative and hypertrophic responses of vascular smooth muscle cells were mediated by divergent signaling events. Copyright © 2015 the American Physiological Society.

  19. Obesity-induced vascular inflammation involves elevated arginase activity. (United States)

    Yao, Lin; Bhatta, Anil; Xu, Zhimin; Chen, Jijun; Toque, Haroldo A; Chen, Yongjun; Xu, Yimin; Bagi, Zsolt; Lucas, Rudolf; Huo, Yuqing; Caldwell, Ruth B; Caldwell, R William


    Obesity-induced vascular dysfunction involves pathological remodeling of the visceral adipose tissue (VAT) and increased inflammation. Our previous studies showed that arginase 1 (A1) in endothelial cells (ECs) is critically involved in obesity-induced vascular dysfunction. We tested the hypothesis that EC-A1 activity also drives obesity-related VAT remodeling and inflammation. Our studies utilized wild-type and EC-A1 knockout (KO) mice made obese by high-fat/high-sucrose (HFHS) diet. HFHS diet induced increases in body weight, fasting blood glucose, and VAT expansion. This was accompanied by increased arginase activity and A1 expression in vascular ECs and increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in both VAT and ECs. HFHS also markedly increased circulating inflammatory monocytes and VAT infiltration by inflammatory macrophages, while reducing reparative macrophages. Additionally, adipocyte size and fibrosis increased and capillary density decreased in VAT. These effects of HFHS, except for weight gain and hyperglycemia, were prevented or reduced in mice lacking EC-A1 or treated with the arginase inhibitor 2-( S )-amino-6-boronohexanoic acid (ABH). In mouse aortic ECs, exposure to high glucose (25 mM) and Na palmitate (200 μM) reduced nitric oxide production and increased A1, TNF-α, VCAM-1, ICAM-1, and MCP-1 mRNA, and monocyte adhesion. Knockout of EC-A1 or ABH prevented these effects. HFHS diet-induced VAT inflammation is mediated by EC-A1 expression/activity. Limiting arginase activity is a possible therapeutic means of controlling obesity-induced vascular and VAT inflammation.

  20. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla

    DEFF Research Database (Denmark)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill


    Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... on a pixel-by-pixel basis of cerebral perfusion, cerebral blood volume, and blood-brain barrier permeability.......Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model-free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 +/- 16/30 +/- 8/56 +/- 45 mL/100 g...

  1. Retinal pathology is associated with increased blood-retina barrier permeability in a diabetic and hypercholesterolaemic pig model: Beneficial effects of the LpPLA2 inhibitor Darapladib. (United States)

    Acharya, Nimish K; Qi, Xin; Goldwaser, Eric L; Godsey, George A; Wu, Hao; Kosciuk, Mary C; Freeman, Theresa A; Macphee, Colin H; Wilensky, Robert L; Venkataraman, Venkat; Nagele, Robert G


    Using a porcine model of diabetes mellitus and hypercholesterolaemia, we previously showed that diabetes mellitus and hypercholesterolaemia is associated with a chronic increase in blood-brain barrier permeability in the cerebral cortex, leading to selective binding of immunoglobulin G and deposition of amyloid-beta 1-42 peptide in pyramidal neurons. Treatment with Darapladib (GlaxoSmithKline, SB480848), an inhibitor of lipoprotein-associated phospholipase-A2, alleviated these effects. Here, investigation of the effects of chronic diabetes mellitus and hypercholesterolaemia on the pig retina revealed a corresponding increased permeability of the blood-retina barrier coupled with a leak of plasma components into the retina, alterations in retinal architecture, selective IgG binding to neurons in the ganglion cell layer, thinning of retinal layers due to cell loss and increased glial fibrillary acidic protein expression in Müller cells, all of which were curtailed by treatment with Darapladib. These findings suggest that chronic diabetes mellitus and hypercholesterolaemia induces increased blood-retina barrier permeability that may be linked to altered expression of blood-retina barrier-associated tight junction proteins, claudin and occludin, leading to structural changes in the retina consistent with diabetic retinopathy. Additionally, results suggest that drugs with vascular anti-inflammatory properties, such as Darapladib, may have beneficial effects on eye diseases strongly linked to vascular abnormalities such as diabetic retinopathy and age-related macular degeneration.

  2. Measurement of HTO permeability of materials for protective appliances

    International Nuclear Information System (INIS)

    Yamamoto, H.; Tomooka, M.; Kato, S.; Murata, M.; Kinouchi, N.; Yamamoto, H.


    Tritiated water (HTO) vapor permeabilities were measured for plastic and rubber films used for protective appliances (suits, gloves, wrappings, etc.). The measurement data prove that polyehylene and butyl rubbers are materials suitable for HTO protective appliances with their lower permeability. The data also indicate that desiccating protective appliances before reuse is effective for restoring their original resistances to penetrating HTO vapor when they are repeatedly used. (author)

  3. Transport zonation limits coupled nitrification-denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Kessler, Adam John; Glud, R.N.; Cardenas, M.B.


    - and N-15-N-2 gas. The measured two-dimensional profiles correlate with computational model simulations, showing a deep pool of N-2 gas forming, and being advected to the surface below ripple peaks. Further isotope pairing calculations on these data indicate that coupled nitrification......-denitrification is severely limited in permeable sediments because the flow and transport field limits interaction between oxic and anoxic pore water. The approach allowed for new detailed insight into subsurface denitrification zones in complex permeable sediments....

  4. Permeability model of sintered porous media: analysis and experiments (United States)

    Flórez Mera, Juan Pablo; Chiamulera, Maria E.; Mantelli, Marcia B. H.


    In this paper, the permeability of porous media fabricated from copper powder sintering process was modeled and measured, aiming the use of the porosity as input parameter for the prediction of the permeability of sintering porous media. An expression relating the powder particle mean diameter with the permeability was obtained, based on an elementary porous media cell, which is physically represented by a duct formed by the arrangement of spherical particles forming a simple or orthorhombic packing. A circular duct with variable section was used to model the fluid flow within the porous media, where the concept of the hydraulic diameter was applied. Thus, the porous is modeled as a converging-diverging duct. The electrical circuit analogy was employed to determine two hydraulic resistances of the cell: based on the Navier-Stokes equation and on the Darcýs law. The hydraulic resistances are compared between themselves and an expression to determine the permeability as function of average particle diameter is obtained. The atomized copper powder was sifted to reduce the size dispersion of the particles. The porosities and permeabilities of sintered media fabricated from powders with particle mean diameters ranging from 20 to 200 microns were measured, by means of the image analysis method and using an experimental apparatus. The permeability data of a porous media, made of copper powder and saturated with distilled water, was used to compare with the permeability model. Permeability literature models, which considers that powder particles have the same diameter and include porosity data as input parameter, were compared with the present model and experimental data. This comparison showed to be quite good.

  5. Quantitation of small intestinal permeability during normal human drug absorption


    Levitt, David G


    Background Understanding the quantitative relationship between a drug?s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorpti...

  6. Permeability and Dispersion Coefficients in Rocks with Fracture Network - 12140

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.K.; Htway, M.Z. [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, S.P. [Korea Atomic Energy Research Institute, P.O.Box 150, Yusong, Daejon, 305-600 (Korea, Republic of)


    Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures a three-fracture system is chosen in which two are parallel and the third one connects the two at different angles. Specifically the micro-cell boundary-value problems(defined through multiple scale analysis) are solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is shown that the permeability depends significantly on the pattern of the fracture distribution and the dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects the flow field) and the direction of the gradient of solute concentration on the macro-scale. From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a fracture network the following conclusions are drawn. 1. The permeability of fractured medium depends on the primary orientation of the fracture network and is influenced by the connecting fractures in the medium. 2. The cross permeability, e.g., permeability in the direction normal to the direction of the external pressure gradient is rather insensitive to the orientation of the fracture network. 3. Calculation of permeability is most efficiently achieved with optimal discretization across individual fractures and is rather insensitive to the discretization along the fracture.. 4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macro-scale concentration gradient and the direction of the flow (pressure gradient). Hence both features must be considered when investigating solute transport in a fractured medium. (authors)

  7. Role of different biodegradable polymers on the permeability of ciprofloxacin


    Chakraborti, Chandra Kanti; Sahoo, Subhashree; Behera, Pradipta Kumar


    Since permeability across biological membranes is a key factor in the absorption and distribution of drugs, drug permeation characteristics of three oral suspensions of ciprofloxacin were designed and compared. The three suspensions of ciprofloxacin were prepared by taking biodegradable polymers such as carbopol 934, carbopol 940, and hydroxypropyl methylcellulose (HPMC). The permeability study was performed by using a Franz diffusion cell through both synthetic cellulose acetate membrane and...

  8. Highly permeable, cement-bounded backfilling mortars for SMA repositories

    International Nuclear Information System (INIS)

    Jacobs, F.; Mayer, G.; Wittmann, F.H.


    In low- and intermediate-level waste repositories, gas is produced due e.g. to corrosion. This gas must be able to escape from the repository in order to prevent damage to the repository structure. A cement-based backfill should take over this function. For this purpose, the composition of cement-based materials was varied to study their influence on porosity and permeability. In parallel to this study the behaviour of fresh concrete, the liberation of the heat of hydration and the hardened concrete properties were investigated. To characterize the permeability of cement-based materials the following parameters are important: 1) composition of the material (pore fabric), 2) storage conditions (degree of saturation), 3) degree of hydration (age), 4) measuring fluid. A change in the composition of cement-based materials can vary the permeability by ten orders of magnitude. It is shown that, by using dense aggregates, the transport of the fluid takes place through the matrix and along the aggregate/matrix interface. By using porous aggregates the permeability can be increased by two orders of magnitude. In the case of a dense matrix, porous aggregates do not alter the permeability. Increasing the matrix content or interface content increases permeability. Hence light weight mortars are an obvious choice. Like-grained mixes showed higher permeabilities in combination with better mechanical properties but, in comparison to normal mixes, they showed worse flow properties. With the composition cement-: water-: aggregate content 1:0.4:5.33 the likegrained mix with aggregates ranging from 2 to 3 mm proved to be a suitable material. With a low compaction after 28 days this mix reaches a permeability of 4.10 -12 m 2 and an uniaxial cylinder compressive strength of 16 N/mm 2 . (author) 58 figs., 23 tabs., refs

  9. Experimental Validation of a Permeability Model for Enrichment Membranes

    International Nuclear Information System (INIS)

    Orellano, Pablo; Brasnarof, Daniel; Florido Pablo


    An experimental loop with a real scale diffuser, in a single enrichment-stage configuration, was operated with air at different process conditions, in order to characterize the membrane permeability.Using these experimental data, an analytical geometric-and-morphologic-based model was validated.It is conclude that a new set of independent measurements, i.e. enrichment, is necessary in order to fully characterize diffusers, because of its internal parameters are not univocally determinated with permeability experimental data only

  10. Improvement of air permeability of Bubbfil nanofiber membrane

    Directory of Open Access Journals (Sweden)

    Wang Fei-Yan


    Full Text Available Nanofiber membranes always have extremely high filter efficiency and remarkably low pressure drop. In order to further improve air permeability of bubbfil nanofiber membranes, the plasma technology is used for surface treatment in this paper. The results show that plasma treatment can improve air permeability by 4.45%. Under higher power plasma treatment, earthworm like etchings are produced on the membrane surface with fractal dimensions of about 1.138.

  11. Permeability, zonulin production, and enteropathy in dermatitis herpetiformis. (United States)

    Smecuol, Edgardo; Sugai, Emilia; Niveloni, Sonia; Vázquez, Horacio; Pedreira, Silvia; Mazure, Roberto; Moreno, María Laura; Label, Marcelo; Mauriño, Eduardo; Fasano, Alessio; Meddings, Jon; Bai, Julio César


    Dermatitis herpetiformis (DH) is characterized by variable degrees of enteropathy and increased intestinal permeability. Zonulin, a regulator of tight junctions, seems to play a key role in the altered intestinal permeability that characterizes the early phase of celiac disease. Our aim was to assess both intestinal permeability and serum zonulin levels in a group of patients with DH having variable grades of enteropathy. We studied 18 DH patients diagnosed on the basis of characteristic immunoglobulin (Ig)A granular deposits in the dermal papillae of noninvolved skin. Results were compared with those of classic celiac patients, patients with linear IgA dermatosis, and healthy controls. According to Marsh's classification, 5 patients had no evidence of enteropathy (type 0), 4 patients had type II, 2 patients had type IIIb damage, and 7 patients had a more severe lesion (type IIIc). Intestinal permeability (lactulose/mannitol ratio [lac/man]) was abnormal in all patients with DH. Patients with more severe enteropathy had significantly greater permeability ( P zonulin concentration (enzyme-linked immunosorbent assay) for patients with DH was 2.1 +/- .3 ng/mg with 14 of 16 (87.5%) patients having abnormally increased values. In contrast, patients with linear IgA dermatosis had normal histology, normal intestinal permeability, and negative celiac serology. Increased intestinal permeability and zonulin up-regulation are common and concomitant findings among patients with DH, likely involved in pathogenesis. Increased permeability can be observed even in patients with no evidence of histologic damage in biopsy specimens. Patients with linear IgA dermatosis appear to be a distinct population with no evidence of gluten sensitivity.

  12. Genome wide expression analysis suggests perturbation of vascular homeostasis during high altitude pulmonary edema.

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    Full Text Available BACKGROUND: High altitude pulmonary edema (HAPE is a life-threatening form of non-cardiogenic edema which occurs in unacclimatized but otherwise normal individuals within two to four days after rapid ascent to altitude beyond 3000 m. The precise pathoetiology and inciting mechanisms regulating HAPE remain unclear. METHODOLOGY/PRINCIPLE FINDINGS: We performed global gene expression profiling in individuals with established HAPE compared to acclimatized individuals. Our data suggests concurrent modulation of multiple pathways which regulate vascular homeostasis and consequently lung fluid dynamics. These pathways included those which regulate vasoconstriction through smooth muscle contraction, cellular actin cytoskeleton rearrangements and endothelial permeability/dysfunction. Some notable genes within these pathways included MYLK; rho family members ARGEF11, ARHGAP24; cell adhesion molecules such as CLDN6, CLDN23, PXN and VCAM1 besides other signaling intermediates. Further, several important regulators of systemic/pulmonary hypertension including ADRA1D, ECE1, and EDNRA were upregulated in HAPE. We also observed significant upregulation of genes involved in paracrine signaling through chemokines and lymphocyte activation pathways during HAPE represented by transcripts of TNF, JAK2, MAP2K2, MAP2K7, MAPK10, PLCB1, ARAF, SOS1, PAK3 and RELA amongst others. Perturbation of such pathways can potentially skew vascular homeostatic equilibrium towards altered vascular permeability. Additionally, differential regulation of hypoxia-sensing, hypoxia-response and OXPHOS pathway genes in individuals with HAPE were also observed. CONCLUSIONS/SIGNIFICANCE: Our data reveals specific components of the complex molecular circuitry underlying HAPE. We show concurrent perturbation of multiple pathways regulating vascular homeostasis and suggest multi-genic nature of regulation of HAPE.

  13. Hybrid green permeable pave with hexagonal modular pavement systems

    International Nuclear Information System (INIS)

    Rashid, M A; Abustan, I; Hamzah, M O


    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate throug