WorldWideScience

Sample records for peripherally administered lps

  1. Systemic LPS Translocation Activates Cross-Presenting Dendritic Cells but Is Dispensable for the Breakdown of CD8+ T Cell Peripheral Tolerance in Irradiated Mice.

    Directory of Open Access Journals (Sweden)

    Gabriel Espinosa-Carrasco

    Full Text Available Lymphodepletion is currently used to enhance the efficacy of cytotoxic T lymphocyte adoptive transfer immunotherapy against cancer. This beneficial effect of conditioning regimens is due, at least in part, to promoting the breakdown of peripheral CD8+ T cell tolerance. Lymphodepletion by total body irradiation induces systemic translocation of commensal bacteria LPS from the gastrointestinal tract. Since LPS is a potent activator of the innate immune system, including antigen presenting dendritic cells, we hypothesized that LPS translocation could be required for the breakdown of peripheral tolerance observed in irradiated mice. To address this issue, we have treated irradiated mice with antibiotics in order to prevent LPS translocation and utilized them in T cell adoptive transfer experiments. Surprisingly, we found that despite of completely blocking LPS translocation into the bloodstream, antibiotic treatment did not prevent the breakdown of peripheral tolerance. Although irradiation induced the activation of cross-presenting CD8+ dendritic cells in the lymphoid tissue, LPS could not solely account for this effect. Activation of dendritic cells by mechanisms other than LPS translocation is sufficient to promote the differentiation of potentially autoreactive CD8+ T cells into effectors in irradiated mice. Our data indicate that LPS translocation is dispensable for the breakdown of CD8+ T cell tolerance in irradiated mice.

  2. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice.

    Science.gov (United States)

    Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping; Souza, Gianne; Krueger, James M

    2013-08-01

    Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.

  3. Leptomeningeal Cells Transduce Peripheral Macrophages Inflammatory Signal to Microglia in Reponse to Porphyromonas gingivalis LPS

    Directory of Open Access Journals (Sweden)

    Yicong Liu

    2013-01-01

    Full Text Available We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g. LPS. The expression of Toll-like receptor 2 (TLR2, TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis.

  4. [The effect of isoflurane on the secretion of TNF-alpha and IL-1 beta from LPS-stimulated human peripheral blood monocytes].

    Science.gov (United States)

    Sato, W; Enzan, K; Masaki, Y; Kayaba, M; Suzuki, M

    1995-07-01

    The cytokines such as tumor necrosis factor and interleukin-1 secreted from macrophages/monocytes proved to play important roles in the pathogenesis of endotoxemia, severe pancreatitis and other surgical injuries. However, it is still unclear how inhalational anesthetic agents influence the secretion of these cytokines from macrophages/monocytes. We investigated the effects of isoflurane on TNF-alpha and IL-1 beta secretions from human peripheral blood monocytes stimulated by lipopolysaccharide. TNF-alpha and IL-1 beta secretions increased after LPS stimulation and this increase was inhibited by isoflurane in dose-dependent fashion. The inhibitory action of isoflurane disappeared between 1 and 3 hours after stopping isoflurane inhalation. We concluded that isoflurane could inhibit TNF-alpha and IL-1 beta secretions from peripheral blood monocytes stimulated by LPS in a dose-dependent fashion and that the inhibitory action of isoflurane was reversible.

  5. Analysis of infusion-site reactions in renal transplant recipients receiving peripherally administered rabbit antithymocyte globulin as compared with basiliximab.

    Science.gov (United States)

    Erickson, Abbie L; Roberts, Keri; Malek, Sayeed K; Chandraker, Anil K; Tullius, Stefan G; Gabardi, Steven

    2010-06-01

    Antithymocyte globulin rabbit (r-ATG) has been used for the treatment and prevention of acute rejection in renal transplant recipients (RTR). Current manufacturer recommendations for r-ATG dictate the need for administration through a high-flow vein (central line). Previous studies have shown peripheral administration of r-ATG to be safe; however, these studies suggest the co-administration of heparin and hydrocortisone and did not compare the infusion-site reaction rates to a control group. A retrospective analysis was conducted of adult RTR receiving r-ATG or basiliximab between January 2004 and October 2006. Each agent was administered through a dedicated peripheral line. The primary endpoint was the incidence of infusion-site reactions. Other endpoints included the need to replace the intravenous catheter and the incidence of systemic thrombosis within 1 month of transplantation. During the study period, 152 peripheral infusions of r-ATG and 92 peripheral infusions of basiliximab were administered. No difference in infusion-site reactions was noted between the groups. There was also no difference either in the need for peripheral line replacement or the rates of systemic thrombosis. Peripheral administration of r-ATG is safe and can be infused without concomitant heparin and hydrocortisone. This method of r-ATG infusion was shown to be as safe as peripherally administered basiliximab.

  6. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    Full Text Available Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI. However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran intranasally.For the mouse model of direct ALI, lipopolysaccharide (LPS was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model.In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  7. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.

    Science.gov (United States)

    Chen, Honglei; Wu, Shaoping; Lu, Rong; Zhang, Yong-guo; Zheng, Yuanyuan; Sun, Jun

    2014-01-01

    Several different methods have been used to assess pulmonary permeability in response to acute lung injury (ALI). However, these methods often involve complicated procedures and algorithms that are difficult to precisely control. The purpose of the current study is to establish a feasible method to evaluate alterations in lung permeability by instilling fluorescently labeled dextran (FITC-Dextran) intranasally. For the mouse model of direct ALI, lipopolysaccharide (LPS) was administered intranasally. FITC-Dextran was instilled intranasally one hour before the mice were euthanized. Plasma fluorescence intensities from the LPS group were significantly higher than in the control group. To determine the reliability and reproducibility of the procedure, we also measured the lung wet-to-dry weight ratio, the protein concentration of the bronchoalveolar lavage fluid, tight and adherens junction markers and pathological changes. Consistent results were observed when the LPS group was compared with the control group. Simultaneously, we found that the concentration of plasma FITC-Dextran was LPS dose-dependent. The concentration of plasma FITC-Dextran also increased with initial intranasal FITC-Dextran doses. Furthermore, increased fluorescence intensity of plasma FITC-Dextran was found in the intraperitoneally LPS-induced ALI model. In conclusion, the measurement of FITC-Dextran in plasma after intranasal instillation is a simple, reliable, and reproducible method to evaluate lung permeability alterations in vivo. The concentration of FITC-Dextran in the plasma may be useful as a potential peripheral biomarker of ALI in experimental clinical studies.

  8. Peripheral and central mediators of lipopolysaccharide induced suppression of defensive rage behavior in the cat.

    Science.gov (United States)

    Bhatt, S; Bhatt, R S; Zalcman, S S; Siegel, A

    2009-11-10

    Based upon recent findings in our laboratory that cytokines microinjected into the medial hypothalamus or periaqueductal gray (PAG) powerfully modulate defensive rage behavior in cat, the present study determined the effects of peripherally released cytokines following lipopolysaccharide (LPS) challenge upon defensive rage. The study involved initial identification of the effects of peripheral administration of LPS upon defensive rage by electrical stimulation from PAG and subsequent determination of the peripheral and central mechanisms governing this process. The results revealed significant elevation in response latencies for defensive rage from 60 to 300 min, post LPS injection, with no detectable signs of sickness behavior present at 60 min. In contrast, head turning behavior elicited by stimulation of adjoining midbrain sites was not affected by LPS administration, suggesting a specificity of the effects of LPS upon defensive rage. Direct administration of LPS into the medial hypothalamus had no effect on defensive rage, suggesting that the effects of LPS were mediated by peripheral cytokines rather than by any direct actions upon hypothalamic neurons. Complete blockade of the suppressive effects of LPS by peripheral pretreatment with an Anti-tumor necrosis factor-alpha (TNFalpha) antibody but not with an anti- interleukin-1 (IL-1) antibody demonstrated that the effects of LPS were mediated through TNF-alpha rather than through an IL-1 mechanism. A determination of the central mechanisms governing LPS suppression revealed that pretreatment of the medial hypothalamus with PGE(2) or 5-HT(1A) receptor antagonists each completely blocked the suppressive effects of LPS, while microinjections of a TNF-alpha antibody into the medial hypothalamus were ineffective. Microinjections of -Iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) benzamide monohydrochloride (p-MPPI) into lateral hypothalamus (to test for anatomical specificity) had no effect upon

  9. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    Science.gov (United States)

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  10. New sonographic measures of peripheral nerves: a tool for the diagnosis of peripheral nerve involvement in leprosy

    Directory of Open Access Journals (Sweden)

    Marco Andrey Cipriani Frade

    2013-05-01

    Full Text Available To evaluate ultrasonographic (US cross-sectional areas (CSAs of peripheral nerves, indexes of the differences between CSAs at the same point (∆CSAs and between tunnel (T and pre-tunnel (PT ulnar CSAs (∆TPTs in leprosy patients (LPs and healthy volunteers (HVs. Seventy-seven LPs and 49 HVs underwent bilateral US at PT and T ulnar points, as well as along the median (M and common fibular (CF nerves, to calculate the CSAs, ∆CSAs and ∆TPTs. The CSA values in HVs were lower than those in LPs (p 80% and ∆TPT had the highest specificity (> 90%. New sonographic peripheral nerve measurements (∆CSAs and ∆TPT provide an important methodological improvement in the detection of leprosy neuropathy.

  11. Repetitive immunization enhances the susceptibility of mice to peripherally administered prions.

    Directory of Open Access Journals (Sweden)

    Juliane Bremer

    Full Text Available The susceptibility of humans and animals to prion infections is determined by the virulence of the infectious agent, by genetic modifiers, and by hitherto unknown host and environmental risk factors. While little is known about the latter two, the activation state of the immune system was surmised to influence prion susceptibility. Here we administered prions to mice that were repeatedly immunized by two initial injections of CpG oligodeoxynucleotides followed by repeated injections of bovine serum albumin/alum. Immunization greatly reduced the required dosage of peripherally administered prion inoculum necessary to induce scrapie in 50% of mice. No difference in susceptibility was observed following intracerebral prion challenge. Due to its profound impact onto scrapie susceptibility, the host immune status may determine disease penetrance after low-dose prion exposure, including those that may give rise to iatrogenic and variant Creutzfeldt-Jakob disease.

  12. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  13. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    International Nuclear Information System (INIS)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-01

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  14. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin.

    Science.gov (United States)

    Jacquier, Vincent; Estellé, Jordi; Schmaltz-Panneau, Barbara; Lecardonnel, Jérôme; Moroldo, Marco; Lemonnier, Gaëtan; Turner-Maier, Jason; Duranthon, Véronique; Oswald, Isabelle P; Gidenne, Thierry; Rogel-Gaillard, Claire

    2015-01-23

    Our purpose was to obtain genome-wide expression data for the rabbit species on the responses of peripheral blood mononuclear cells (PBMCs) after in vitro stimulation by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) and ionomycin. This transcriptome profiling was carried out using microarrays enriched with immunity-related genes, and annotated with the most recent data available for the rabbit genome. The LPS affected 15 to 20 times fewer genes than PMA-Ionomycin after both 4 hours (T4) and 24 hours (T24), of in vitro stimulation, in comparison with mock-stimulated PBMCs. LPS induced an inflammatory response as shown by a significant up-regulation of IL12A and CXCL11 at T4, followed by an increased transcription of IL6, IL1B, IL1A, IL36, IL37, TNF, and CCL4 at T24. Surprisingly, we could not find an up-regulation of IL8 either at T4 or at T24, and detected a down-regulation of DEFB1 and BPI at T24. A concerted up-regulation of SAA1, S100A12 and F3 was found upon stimulation by LPS. PMA-Ionomycin induced a very early expression of Th1, Th2, Treg, and Th17 responses by PBMCs at T4. The Th1 response increased at T24 as shown by the increase of the transcription of IFNG and by contrast to other cytokines which significantly decreased from T4 to T24 (IL2, IL4, IL10, IL13, IL17A, CD69) by comparison to mock-stimulation. The granulocyte-macrophage colony-stimulating factor (CSF2) was by far the most over-expressed gene at both T4 and T24 by comparison to mock-stimulated cells, confirming a major impact of PMA-Ionomycin on cell growth and proliferation. A significant down-regulation of IL16 was observed at T4 and T24, in agreement with a role of IL16 in PBMC apoptosis. We report new data on the responses of PBMCs to LPS and PMA-Ionomycin in the rabbit species, thus enlarging the set of mammalian species for which such reports exist. The availability of the rabbit genome assembly together with high throughput genomic tools should pave the way for more

  16. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.

    Science.gov (United States)

    Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam

    2017-11-01

    The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.

  17. Fluctuations in Brain Temperature Induced by Lypopolysaccharides: Central and Peripheral Contributions

    Directory of Open Access Journals (Sweden)

    Jeremy S. Tang

    2010-01-01

    Full Text Available In this study, we examined changes in central (anterior-preoptic hypothalamus and peripheral (temporal muscle and facial skin temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS at low doses (1 and 10 μg/kg at thermoneutral conditions (28˚C. Recordings were made with high temporal resolution (5-s bin and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/ body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  18. Fluctuations in brain temperature induced by lipopolysaccharides: central and peripheral contributions.

    Science.gov (United States)

    Tang, Jeremy S; Kiyatkin, Eugene A

    2010-01-01

    In this study, we examined changes in central (anterior-preoptic hypothalamus) and peripheral (temporal muscle and facial skin) temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS) at low doses (1 and 10 μg/kg) at thermoneutral conditions (28°C). Recordings were made with high temporal resolution (5-s bin) and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle, and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose, and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min) suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  19. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    Science.gov (United States)

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (Panorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia. © 2015 Society for Endocrinology.

  20. Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system.

    Science.gov (United States)

    Godbout, Jonathan P; Moreau, Maïté; Lestage, Jacques; Chen, Jing; Sparkman, Nathan L; O'Connor, Jason; Castanon, Nathalie; Kelley, Keith W; Dantzer, Robert; Johnson, Rodney W

    2008-09-01

    Exposure to peripheral infections may be permissive to cognitive and behavioral complications in the elderly. We have reported that peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes an exaggerated neuroinflammatory response and prolonged sickness behavior in aged BALB/c mice. Because LPS also causes depressive behavior, the purpose of this study was to determine whether aging is associated with an exacerbated depressive-like response. We confirmed that LPS (0.33 mg/kg intraperitoneal) induced a protracted sickness response in aged mice with reductions in locomotor and feeding activities 24 and 48 h postinjection, when young adults had fully recovered. When submitted to the forced swim test 24 h post-LPS, both young adult and aged mice exhibited an increased duration of immobility. However, when submitted to either the forced swim test or the tail suspension test 72 h post-LPS, an increased duration of immobility was evident only in aged mice. This prolonged depressive-like behavior in aged LPS-treated mice was associated with a more pronounced induction of peripheral and brain indoleamine 2,3-dioxygenase and a markedly higher turnover rate of brain serotonin (as measured by the ratio of 5-hydroxy-indoleacetic acid over 5-hydroxy-tryptamine) compared to young adult mice at 24 post-LPS injection. These results provide the first evidence that age-associated reactivity of the brain cytokine system could play a pathophysiological role in the increased prevalence of depression observed in the elderly.

  1. Repeated exposure to intra-amniotic LPS partially protects against adverse effects of intravenous LPS in preterm lambs.

    Science.gov (United States)

    Gisslen, Tate; Hillman, Noah H; Musk, Gabrielle C; Kemp, Matthew W; Kramer, Boris W; Senthamaraikannan, Paranthaman; Newnham, John P; Jobe, Alan H; Kallapur, Suhas G

    2014-02-01

    Histologic chorioamnionitis, frequently associated with preterm births and adverse outcomes, results in prolonged exposure of preterm fetuses to infectious agents and pro-inflammatory mediators, such as LPS. Endotoxin tolerance-type effects were demonstrated in fetal sheep following repetitive systemic or intra-amniotic (i.a.) exposures to LPS, suggesting that i.a. LPS exposure would cause endotoxin tolerance to a postnatal systemic dose of LPS in preterm sheep. In this study, randomized pregnant ewes received either two i.a. injections of LPS or saline prior to preterm delivery. Following operative delivery, the lambs were treated with surfactant, ventilated, and randomized to receive either i.v. LPS or saline at 30  min of age. Physiologic variables and indicators of systemic and lung inflammation were measured. Intravenous LPS decreased blood neutrophils and platelets values following i.a. saline compared to that after i.a. LPS. Intra-amniotic LPS prevented blood pressure from decreasing following the i.v. LPS, but also caused an increased oxygen index. Intra-amniotic LPS did not cause endotoxin tolerance as assessed by cytokine expression in the liver, lung or plasma, but increased myeloperoxidase-positive cells in the lung. The different compartments of exposure to LPS (i.a. vs i.v.) are unique to the fetal to newborn transition. Intra-amniotic LPS incompletely tolerized fetal lambs to postnatal i.v. LPS.

  2. Radiosensitizing activity and pharmacokinetics of multiple dose administered KU-2285 in peripheral nerve tissue in mice

    International Nuclear Information System (INIS)

    Iwai, Hiroyuki; Matsuno, Etsuko; Sasai, Keisuke; Abe, Mitsuyuki; Shibamoto, Yuta

    1994-01-01

    In a clinical trial in which a 2-nitroimidazole radiosensitizer was administered repeatedly, the dose-limiting toxicity was found to be peripheral neuropathy. In the present study, the in vivo radiosensitizing activity of KU-2285 in combination with radiation dose fractionation, and the pharmacokinetics of cumulative dosing of KU-2285 in the peripheral nerves were examined. The ability of three nitroimidazoles, misonidazole (MISO), etanidazole (SR-2508) and KU-2285, to sensitize SCCVII tumors to radiation treatment has been compared for drug doses in the range 0-200 mg/kg. Single radiation doses or two different fractionation schedules (6 Gy/fractions x three fractions/48 h or 5 Gy/fractions x five fractions/48 h) were used; the tumor cell survival was determined using an in vivo/in vitro colony assay. The pharmacokinetics in the sciatic nerves were undertaken, when KU-2285 or etanidazole were injected at a dose of 200 mg/kg intravenously one, two, three, or four times at 2-h intervals. At less than 100 mg/kg, KU-2285 sensitized SCCVII tumors more than MISO and SR-2508 by fractionated irradiation. Evaluation of pharmacokinetics in the peripheral nerves showed that the apparent biological half-life of SR-2508 increased with the increases in the number of administrations, whereas that of KU-2285 became shorter. Since most clinical radiotherapy is given in small multiple fractions, KU-2285 appears to be a hypoxic cell radiosensitizer that could be useful in such regimens, and that poses no risk of chronic peripheral neurotoxicity. 12 refs., 5 figs., 1 tab

  3. Synthetic LPS-Binding Polymer Nanoparticles

    Science.gov (United States)

    Jiang, Tian

    Lipopolysaccharide (LPS), one of the principal components of most gram-negative bacteria's outer membrane, is a type of contaminant that can be frequently found in recombinant DNA products. Because of its strong and even lethal biological effects, selective LPS removal from bioproducts solution is of particular importance in the pharmaceutical and health care industries. In this thesis, for the first time, a proof-of-concept study on preparing LPS-binding hydrogel-like NPs through facile one-step free-radical polymerization was presented. With the incorporation of various hydrophobic (TBAm), cationic (APM, GUA) monomers and cross-linkers (BIS, PEG), a small library of NPs was constructed. Their FITC-LPS binding behaviors were investigated and compared with those of commercially available LPS-binding products. Moreover, the LPS binding selectivity of the NPs was also explored by studying the NPs-BSA interactions. The results showed that all NPs obtained generally presented higher FITC-LPS binding capacity in lower ionic strength buffer than higher ionic strength. However, unlike commercial poly-lysine cellulose and polymyxin B agarose beads' nearly linear increase of FITC-LPS binding with particle concentration, NPs exhibited serious aggregation and the binding quickly saturated or even decreased at high particle concentration. Among various types of NPs, higher FITC-LPS binding capacity was observed for those containing more hydrophobic monomers (TBAm). However, surprisingly, more cationic NPs with higher content of APM exhibited decreased FITC-LPS binding in high ionic strength conditions. Additionally, when new cationic monomer and cross-linker, GUA and PEG, were applied to replace APM and BIS, the obtained NPs showed improved FITC-LPS binding capacity at low NP concentration. But compared with APM- and BIS-containing NPs, the FITC-LPS binding capacity of GUA- and PEG-containing NPs saturated earlier. To investigate the NPs' binding to proteins, we tested the NPs

  4. Compound list: LPS [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available LPS LPS 00A07 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro.../LPS.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/LPS.Rat.in..._vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/LPS.Rat.in_vivo.Liver.Single.zip ...

  5. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    Science.gov (United States)

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Peripheral tumors alter neuroinflammatory responses to lipopolysaccharide in female rats.

    Science.gov (United States)

    Pyter, Leah M; El Mouatassim Bih, Sarah; Sattar, Husain; Prendergast, Brian J

    2014-03-13

    Cancer is associated with an increased prevalence of depression. Peripheral tumors induce inflammatory cytokine production in the brain and depressive-like behaviors. Mounting evidence indicates that cytokines are part of a pathway by which peripheral inflammation causes depression. Neuroinflammatory responses to immune challenges can be exacerbated (primed) by prior immunological activation associated with aging, early-life infection, and drug exposure. This experiment tested the hypothesis that peripheral tumors likewise induce neuroinflammatory sensitization or priming. Female rats with chemically-induced mammary carcinomas were injected with either saline or lipopolysaccharide (LPS, 250μg/kg; i.p.), and expression of mRNAs involved in the pathway linking inflammation and depression (interleukin-1beta [Il-1β], CD11b, IκBα, indolamine 2,3-deoxygenase [Ido]) was quantified by qPCR in the hippocampus, hypothalamus, and frontal cortex, 4 or 24h post-treatment. In the absence of LPS, hippocampal Il-1β and CD11b mRNA expression were elevated in tumor-bearing rats, whereas Ido expression was reduced. Moreover, in saline-treated rats basal hypothalamic Il-1β and CD11b expression were positively correlated with tumor weight; heavier tumors, in turn, were characterized by more inflammatory, necrotic, and granulation tissue. Tumors exacerbated CNS proinflammatory gene expression in response to LPS: CD11b was greater in hippocampus and frontal cortex of tumor-bearing relative to tumor-free rats, IκBα was greater in hippocampus, and Ido was greater in hypothalamus. Greater neuroinflammatory responses in tumor-bearing rats were accompanied by attenuated body weight gain post-LPS. The data indicate that neuroinflammatory pathways are potentiated, or primed, in tumor-bearing rats, which may exacerbate future negative behavioral consequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Correlation of rectal temperature and peripheral temperature from implantable radio-frequency microchips in Holstein steers challenged with lipopolysaccharide under thermoneutral and high ambient temperatures.

    Science.gov (United States)

    Reid, E D; Fried, K; Velasco, J M; Dahl, G E

    2012-12-01

    Early detection of disease can speed treatment, slow spread of disease in a herd, and improve health status of animals. Immune stimulation increases rectal temperature (RT). Injectable radio-frequency implants (RFI) can provide temperature at the site of implantation. The fidelity of peripheral site temperature, determined by RFI, relative to RT is unknown in cattle. We hypothesized that during lipopolysaccharide (LPS) challenge, temperature at 3 peripheral sites would be similar to RT in steers (n = 4; BW 77 ± 2.1 kg). The 3 sites were 1) subcutaneous (SC) at the base of the ear (ET); 2) SC posterior to the poll (PT); and 3) SC beneath the umbilical fold (UT). Steers were housed in controlled temperature (CT) rooms (between 18 and 21°C; n = 2/room). Rectal temperature, ET, PT, and UT were recorded every 8 h daily. On d 7, 21, 22, 36, and 37, RT and RFI were taken every 5 min for 6 h, every 15 min for 3 h, and every 30 min for 15 h. To test RFI during a simulated immune challenge, LPS (E. coli 055:B5) was injected intravenously (i.v.) at 1000 h on d 22 and 37. Basal temperatures (°C) were RT (38.7 ± 0.20), ET (37.1 ± 0.86), PT (36.7 ± 0.57), and UT (36.3 ± 0.97). Rectal temperature increased to 39.9 ± 0.30°C after LPS, but ET, PT, and UT decreased. Heat stress also increases RT, which makes it difficult to identify sick animals using RT. The second hypothesis tested was that ET positively correlates to RT and negatively correlates to RT during LPS under heat stress. Four steers (127 ± 7.3 kg) were housed in CT chambers (n = 2/chamber), implanted with a RFI, and allowed 2 wk to acclimate. One chamber remained at 20°C, the other was increased to 34°C starting at 0800 h for a period of 48 h. The LPS was administered i.v. to all steers at 1000 h on d 2. After a 2-wk recovery at 20°C, the temperature was increased in the other chamber, resulting in a crossover design with each steer serving as its own control. Pearson's correlation coefficients for ET and

  8. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo

    Science.gov (United States)

    Li, Peng; Chen, Dan; Huang, Yang

    2018-01-01

    Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways. PMID:29568876

  9. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo.

    Science.gov (United States)

    Li, Peng; Chen, Dan; Huang, Yang

    2018-07-01

    Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways.

  10. LPS levels in root canals after the use of ozone gas and high frequency electrical pulses

    Directory of Open Access Journals (Sweden)

    Tiago André Fontoura de MELO

    2016-01-01

    Full Text Available Abstract The present study aims to verify the effect of ozone gas (OZY® System and high frequency electric pulse (Endox® System systems on human root canals previously contaminated with Escherichia colilipopolysaccharide (LPS. Fifty single-rooted teeth had their dental crowns removed and root lengths standardized to 16 mm. The root canals were prepared up to #60 hand K-files and sterilized using gamma radiation with cobalt 60. The specimens were divided into the following five groups (n = 10 based on the disinfection protocol used: OZY® System, one 120-second-pulse (OZY 1p; OZY® System, four 24-second-pulses (OZY 4p; and Endox® System (ENDOX. Contaminated and non-contaminated canals were exposed only to apyrogenic water and used as positive (C+ and negative (C- controls, respectively. LPS (O55:B55 was administered in all root canals except those belonging to group C-. After performing disinfection, LPS samples were collected from the canals using apyrogenic paper tips. Limulus Amoebocyte Lysate (LAL was used to quantify the LPS levels, and the data obtained was analyzed using one-way ANOVA. The disinfection protocols used were unable to reduce the LPS levels significantly (p = 0.019. The use of ozone gas and high frequency electric pulses was not effective in eliminating LPS from the root canals.

  11. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis

    Directory of Open Access Journals (Sweden)

    Xichun Wang

    2018-01-01

    Full Text Available Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS- induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg, and a dexamethasone (DEX (5 mg/kg group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.

  12. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis

    Science.gov (United States)

    Feng, Shibin; Ding, Nana; He, Yanting; Li, Cheng; Li, Manman; Ding, Xuedong; Ding, Hongyan; Li, Jinchun

    2018-01-01

    Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS-) induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg), and a dexamethasone (DEX) (5 mg/kg) group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.

  13. Ciliary neurotrophic factor inhibits brain and peripheral tumor necrosis factor production and, when coadministered with its soluble receptor, protects mice from lipopolysaccharide toxicity.

    Science.gov (United States)

    Benigni, F; Villa, P; Demitri, M T; Sacco, S; Sipe, J D; Lagunowich, L; Panayotatos, N; Ghezzi, P

    1995-07-01

    The receptor of ciliary neurotrophic factor (CNTF) contains the signal transduction protein gp130, which is also a component of the receptors of cytokines such as interleukin (IL)-6, leukemia-inhibitory factor (LIF), IL-11, and oncostatin M. This suggests that these cytokines might share common signaling pathways. We previously reported that CNTF augments the levels of corticosterone (CS) and of IL-6 induced by IL-1 and induces the production of the acute-phase protein serum amyloid A (SAA). Since the elevation of serum CS is an important feedback mechanism to limit the synthesis of proinflammatory cytokines, particularly tumor necrosis factor (TNF), we have investigated the effect of CNTF on both TNF production and lipopolysaccharide (LPS) toxicity. To induce serum TNF levels, LPS was administered to mice at 30 mg/kg i.p. and CNTF was administered as a single dose of 10 micrograms/mouse i.v., either alone or in combination with its soluble receptor sCNTFR alpha at 20 micrograms/mouse. Serum TNF levels were the measured by cytotoxicity on L929 cells. In order to measure the effects of CNTF on LPS-induced TNF production in the brain, mice were injected intracerebroventricularly (i.c.v.) with 2.5 micrograms/kg LPS. Mouse spleen cells cultured for 4 hr with 1 microgram LPS/ml, with or without 10 micrograms CNTF/ml, were also analyzed for TNF production. CNTF, administered either alone or in combination with its soluble receptor, inhibited the induction of serum TNF levels by LPS. This inhibition was also observed in the brain when CNTF and LPS were administered centrally. In vitro, CNTF only marginally affected TNF production by LPS-stimulated mouse splenocytes, but it acted synergistically with dexamethasone (DEX) in inhibiting TNF production. Most importantly, CNTF administered together with sCNTFR alpha protected mice against LPS-induced mortality. These data suggest that CNTF might act as a protective cytokine against TNF-mediated pathologies both in the brain and

  14. Long-term nicotine exposure dampens LPS-induced nerve-mediated airway hyperreactivity in murine airways.

    Science.gov (United States)

    Xu, Yuan; Cardell, Lars-Olaf

    2017-09-01

    Nicotine is a major component of cigarette smoke. It causes addiction and is used clinically to aid smoke cessation. The aim of the present study is to investigate the effect of nicotine on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and to explore the potential involvement of neuronal mechanisms behind nicotine's effects in murine models in vivo and in vitro. BALB/c mice were exposed to nicotine in vivo via subcutaneous Alzet osmotic minipumps containing nicotine tartate salt solution (24 mg·kg -1 ·day -1 ) for 28 days. LPS (0.1 mg/ml, 20 µl) was administered intranasally for 3 consecutive days during the end of this period. Lung functions were measured with flexiVent. For the in vitro experiments, mice tracheae were organcultured with either nicotine (10 μM) or vehicle (DMSO, 0.1%) for 4 days. Contractile responses of the tracheal segments were measured in myographs following electric field stimulation (EFS; increasing frequencies of 0.2 to 12.8 Hz) before and after incubation with 10 µg/ml LPS for 1 h. Results showed that LPS induced AHR to methacholine in vivo and increased contractile responses to EFS in vitro. Interestingly, long-term nicotine exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. Tetrodotoxin (TTX) inhibited LPS-induced AHR but did not further inhibit nicotine-suppressed AHR in vivo. In conclusion, long-term nicotine exposure dampened LPS-induced AHR. The effect of nicotine was mimicked by TTX, suggesting the involvement of neuronal mechanisms. This information might be used for evaluating the long-term effects of nicotine and further exploring of how tobacco products interact with bacterial airway infections. Copyright © 2017 the American Physiological Society.

  15. Prenatal Exposure to LPS Alters The Intrarenal RAS in Offspring, Which Is Ameliorated by Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Ding, Xian-Fei; Sun, Mou; Guan, Fang-Xia; Guo, Li-Na; Zhang, Yan-Yan; Wan, You-Dong; Zhang, Xiao-Juan; Yu, Yan-Wu; Ma, Shan-Shan; Yao, Hai-Mu; Yao, Rui; Zhang, Rui-Fang; Sun, Tong-Wen; Kan, Quan-Cheng

    2017-11-06

    Prenatal lipopolysaccharide (LPS) exposure causes hypertension in rat offspring through an unknown mechanism. Here, we investigated the role of the intrarenal renin-angiotensin system (RAS) in hypertension induced by prenatal LPS exposure and also explored whether adipose tissue-derived mesenchymal stem cells (ADSCs) can ameliorate the effects of prenatal LPS exposure in rat offspring. Sixty-four pregnant rats were randomly divided into 4 groups (n = 16 in each), namely, a control group and an LPS group, which were intraperitoneally injected with vehicle and 0.79 mg/kg LPS, respectively, on the 8th, 10th, and 12th days of gestation; an ADSCs group, which was intravenously injected with 1.8 × 107 ADSCs on the 8th, 10th, and 12th days of gestation; and an LPS + ADSCs group, which received a combination of the treatments administered to the LPS and ADSCs groups. Prenatal LPS exposure increased blood pressure, Ang II expression, Ang II-positive, monocyte and lymphocyte, apoptotic cells in the kidney, and induced renal histological changes in offspring; however, the LPS and control groups did not differ significantly with respect to plasma renin activity levels, Ang II levels, or renal function. ADSCs treatment attenuated the blood pressure and also ameliorated the other effects of LPS-treated adult offspring. Prenatal exposure to LPS activates the intrarenal RAS but not the circulating RAS and thus induces increases in blood pressure in adult offspring; however, ADSCs treatment attenuates the blood pressure increases resulting from LPS exposure and also ameliorates the other phenotypic changes induced by LPS treatment by inhibiting intrarenal RAS activation. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. LPS Catch and Effort Estimation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data collected from the LPS dockside (LPIS) and the LPS telephone (LPTS) surveys are combined to produce estimates of total recreational catch, landings, and fishing...

  17. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    Directory of Open Access Journals (Sweden)

    Uta Waterhouse

    2016-10-01

    Full Text Available Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg at one of three neurodevelopmental time periods [gestation days (GD 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND 60] and included: prepulse inhibition (PPI, latent inhibition (LI and delayed non-matching to sample (DNMTS. Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously were administered, and animals were re-tested in the same tasks (PND 110. Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11 resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI and selective (LI improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI and induced a global enhancement of sensorimotor gating (PPI.

  18. Peripherally Administered Y2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice.

    Science.gov (United States)

    Ailanen, Liisa; Vähätalo, Laura H; Salomäki-Myftari, Henriikka; Mäkelä, Satu; Orpana, Wendy; Ruohonen, Suvi T; Savontaus, Eriika

    2018-01-01

    Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y 2 -receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y 2 -receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y 2 -receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPY DβH ) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y 2 -receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPY DβH and WT mice feeding on chow or Western diet. Treatment with Y 2 -receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y 2 -receptors induced obesity in WT mice, whereas OE-NPY DβH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y 2 -receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y 2 -receptor antagonism has beneficial effects on metabolic status.

  19. The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS

    Science.gov (United States)

    Di Lorenzo, Flaviana; Palmigiano, Angelo; Paciello, Ida; Pallach, Mateusz; Garozzo, Domenico; Bernardini, Maria-Lina; La Cono, Violetta; Yakimov, Michail M.; Molinaro, Antonio; Silipo, Alba

    2017-01-01

    The structural characterization of the lipopolysaccharide (LPS) from extremophiles has important implications in several biomedical and therapeutic applications. The polyextremophile Gram-negative bacterium Halobacteroides lacunaris TB21, isolated from one of the most extreme habitats on our planet, the deep-sea hypersaline anoxic basin Thetis, represents a fascinating microorganism to investigate in terms of its LPS component. Here we report the elucidation of the full structure of the R-type LPS isolated from H. lacunaris TB21 that was attained through a multi-technique approach comprising chemical analyses, NMR spectroscopy, and Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry. Furthermore, cellular immunology studies were executed on the pure R-LPS revealing a very interesting effect on human innate immunity as an inhibitor of the toxic Escherichia coli LPS. PMID:28653982

  20. Mechanisms of fever production and lysis: lessons from experimental LPS fever.

    Science.gov (United States)

    Roth, Joachim; Blatteis, Clark M

    2014-10-01

    Fever is a cardinal symptom of infectious or inflammatory insults, but it can also arise from noninfectious causes. The fever-inducing agent that has been used most frequently in experimental studies designed to characterize the physiological, immunological and neuroendocrine processes and to identify the neuronal circuits that underlie the manifestation of the febrile response is lipopolysaccharide (LPS). Our knowledge of the mechanisms of fever production and lysis is largely based on this model. Fever is usually initiated in the periphery of the challenged host by the immediate activation of the innate immune system by LPS, specifically of the complement (C) cascade and Toll-like receptors. The first results in the immediate generation of the C component C5a and the subsequent rapid production of prostaglandin E2 (PGE2). The second, occurring after some delay, induces the further production of PGE2 by induction of its synthesizing enzymes and transcription and translation of proinflammatory cytokines. The Kupffer cells (Kc) of the liver seem to be essential for these initial processes. The subsequent transfer of the pyrogenic message from the periphery to the brain is achieved by neuronal and humoral mechanisms. These pathways subserve the genesis of early (neuronal signals) and late (humoral signals) phases of the characteristically biphasic febrile response to LPS. During the course of fever, counterinflammatory factors, "endogenous antipyretics," are elaborated peripherally and centrally to limit fever in strength and duration. The multiple interacting pro- and antipyretic signals and their mechanistic effects that underlie endotoxic fever are the subjects of this review.

  1. Lipopolysaccharide (LPS) stimulation of fungal secondary metabolism

    Science.gov (United States)

    Khalil, Zeinab G.; Kalansuriya, Pabasara; Capon, Robert J.

    2014-01-01

    We report on a preliminary investigation of the use the Gram-negative bacterial cell wall constituent lipopolysaccharide (LPS) as a natural chemical cue to stimulate and alter the expression of fungal secondary metabolism. Integrated high-throughput micro-cultivation and micro-analysis methods determined that 6 of 40 (15%) of fungi tested responded to an optimal exposure to LPS (0.6 ng/mL) by activating, enhancing or accelerating secondary metabolite production. To explore the possible mechanisms behind this effect, we employed light and fluorescent microscopy in conjunction with a nitric oxide (NO)-sensitive fluorescent dye and an NO scavenger to provide evidence that LPS stimulation of fungal secondary metabolism coincided with LPS activation of NO. Several case studies demonstrated that LPS stimulation can be scaled from single microplate well (1.5 mL) to preparative (>400 mL) scale cultures. For example, LPS treatment of Penicillium sp. (ACM-4616) enhanced pseurotin A and activated pseurotin A1 and pseurotin A2 biosynthesis, whereas LPS treatment of Aspergillus sp. (CMB-M81F) substantially accelerated and enhanced the biosynthesis of shornephine A and a series of biosynthetically related ardeemins and activated production of neoasterriquinone. As an indication of broader potential, we provide evidence that cultures of Penicillium sp. (CMB-TF0411), Aspergillus niger (ACM-4993F), Rhizopus oryzae (ACM-165F) and Thanatephorus cucumeris (ACM-194F) were responsive to LPS stimulation, the latter two examples being particular noteworthy as neither are known to produce secondary metabolites. Our results encourage the view that LPS stimulation can be used as a valuable tool to expand the molecular discovery potential of fungal strains that either have been exhaustively studied by or are unresponsive to traditional culture methodology. PMID:25379339

  2. Lipopolysaccharide (LPS) stimulates fresh human monocytes to lyse actinomycin D-treated WEHI-164 target cells via increased secretion of a monokine similar to tumor necrosis factor

    International Nuclear Information System (INIS)

    Chen, A.R.; McKinnon, K.P.; Koren, H.S.

    1985-01-01

    The effects of lipopolysaccharide (LPS) on tumoricidal activity of human monocytes freshly isolated from peripheral blood were studied. Actinomycin D-treated WEHI-164 cells were used as targets because they are NK insensitive and are lysed rapidly by monocytes in 6-hr 51 Cr-release assays. Monocytes exhibited significant spontaneous activity without endotoxin. Monocytes either pretreated for 1 hr with LPS or assayed in the presence of LPS exhibited 100- to 1000-fold increased cytolytic activity. Cytolytic activity was heat labile and trypsin sensitive, and was recovered from Sepharose S-200 columns in a single peak with an apparent m.w. between 25,000 and 40,000. Actinomycin D or cycloheximide treatment of monocytes before the addition of LPS inhibited cytolytic monokine production. Cytolytic monokine activity was practically neutralized by specific rabbit antisera to human tumor necrosis factor (TNF). It was concluded that, although fresh human monocytes exhibit spontaneous tumoricidal activity, LPS is a potent activating agent. Its stimulatory effects depend on new transcription and translation and are mediated by enhanced secretion of a cytolytic monokine similar to TNF

  3. Thalidomide protects mice against LPS-induced shock

    Directory of Open Access Journals (Sweden)

    Moreira A.L.

    1997-01-01

    Full Text Available Thalidomide has been shown to selectively inhibit TNF-a production in vitro by lipopolysaccharide (LPS-stimulated monocytes. TNF-a has been shown to play a pivotal role in the pathophysiology of endotoxic shock. Using a mouse model of LPS-induced shock, we investigated the effects of thalidomide on the production of TNF-a and other cytokines and on animal survival. After injection of 100-350 µg LPS into mice, cytokines including TNF-a, IL-6, IL-10, IL-1ß, GM-CSF and IFN-g were measured in the serum. Administration of 200 mg/kg thalidomide to mice before LPS challenge modified the profile of LPS-induced cytokine secretion. Serum TNF-a levels were reduced by 93%, in a dose-dependent manner, and TNF-a mRNA expression in the spleens of mice was reduced by 70%. Serum IL-6 levels were also inhibited by 50%. Thalidomide induced a two-fold increase in serum IL-10 levels. Thalidomide treatment did not interfere with the production of GM-CSF, IL-1ß or IFN-g. The LD50 of LPS in this model was increased by thalidomide pre-treatment from 150 µg to 300 µg in 72 h. Thus, at otherwise lethal doses of LPS, thalidomide treatment was found to protect animals from death

  4. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation.

    Science.gov (United States)

    Tsukamoto, Hiroki; Takeuchi, Shino; Kubota, Kanae; Kobayashi, Yohei; Kozakai, Sao; Ukai, Ippo; Shichiku, Ayumi; Okubo, Misaki; Numasaki, Muneo; Kanemitsu, Yoshitomi; Matsumoto, Yotaro; Nochi, Tomonori; Watanabe, Kouichi; Aso, Hisashi; Tomioka, Yoshihisa

    2018-05-14

    Toll-like receptor 4 (TLR4) is an indispensable immune receptor for lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall. Following LPS stimulation, TLR4 transmits the signal from the cell surface and becomes internalized in an endosome. However, the spatial regulation of TLR4 signaling is not fully understood. Here, we investigated the mechanisms of LPS-induced TLR4 internalization and clarified the roles of the extracellular LPS-binding molecules, LPS-binding protein (LBP), and glycerophosphatidylinositol-anchored protein (CD14). LPS stimulation of CD14-expressing cells induced TLR4 internalization in the presence of serum, and an inhibitory anti-LBP mAb blocked its internalization. Addition of LBP to serum-free cultures restored LPS-induced TLR4 internalization to comparable levels of serum. The secretory form of the CD14 (sCD14) induced internalization but required a much higher concentration than LBP. An inhibitory anti-sCD14 mAb was ineffective for serum-mediated internalization. LBP lacking the domain for LPS transfer to CD14 and a CD14 mutant with reduced LPS binding both attenuated TLR4 internalization. Accordingly, LBP is an essential serum molecule for TLR4 internalization, and its LPS transfer to membrane-anchored CD14 (mCD14) is a prerequisite. LBP induced the LPS-stimulated phosphorylation of TBK1, IKKϵ, and IRF3, leading to IFN-β expression. However, LPS-stimulated late activation of NFκB or necroptosis were not affected. Collectively, our results indicate that LBP controls LPS-induced TLR4 internalization, which induces TLR adaptor molecule 1 (TRIF)-dependent activation of the TBK1-IKKϵ-IRF3-IFN-β pathway. In summary, we showed that LBP-mediated LPS transfer to mCD14 is required for serum-dependent TLR4 internalization and activation of the TRIF pathway. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  5. Inhibition of breast cancer resistance protein (ABCG2 in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-O Jin

    Full Text Available Breast cancer resistance protein (ABCG2, a member of the ATP-binding cassette transporters has been identified as a major determinant of multidrug resistance (MDR in cancer cells, but ABC transporter inhibition has limited therapeutic value in vivo. In this research, we demonstrated that inhibition of efflux transporters ABCG2 induced the generation of tolerogenic DCs from human peripheral blood myeloid DCs (mDCs. ABCG2 expression was present in mDCs and was further increased by LPS stimulation. Treatment of CD1c+ mDCs with an ABCG2 inhibitor, Ko143, during LPS stimulation caused increased production of IL-10 and decreased production of pro-inflammatory cytokines and decreased expression of CD83 and CD86. Moreover, inhibition of ABCG2 in monocyte-derived DCs (MDDCs abrogated the up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in these cells in response to LPS. Furthermore, CD1c+ mDCs stimulated with LPS plus Ko143 inhibited the proliferation of allogeneic and superantigen-specific syngenic CD4+ T cells and promoted expansion of CD25+FOXP3+ regulatory T (Treg cells in an IL-10-dependent fashion. These tolerogenic effects of ABCG2 inhibition could be abolished by ERK inhibition. Thus, we demonstrated that inhibition of ABCG2 in LPS-stimulated mDCs can potently induce tolerogenic potentials in these cells, providing crucial new information that could lead to development of better strategies to combat MDR cancer.

  6. DMPD: Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complexes: a short review. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available eptor for LPS/LBP complexes: a short review. Schumann RR. Res Immunol. 1992 Jan;143(1):11-5. (.png) (.svg) (...ride (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complexes: a short review. Authors Schuma.../LBP complexes: a short review. PubmedID 1373512 Title Function of lipopolysaccha....html) (.csml) Show Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS

  7. LPS: a rule-based, schema-oriented knowledge representation system

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Y; Mitsuya, Y; Nakajima, S; Ura, S

    1981-01-01

    A new knowledge representation system called LPS is presented. The global control structure of LPS is rule-based, but the local representational structure is schema-oriented. The present version of LPS was designed to increase the understandability of representation while keeping time efficiency reasonable. Pattern matching through slot-networks and meta-actions from among the implemented facilities of LPS, are especially described in detail. 7 references.

  8. Equine colostral carbohydrates reduce lipopolysaccharide-induced inflammatory responses in equine peripheral blood mononuclear cells.

    Science.gov (United States)

    Vendrig, J C; Coffeng, L E; Fink-Gremmels, J

    2012-12-01

    Increasing evidence suggests that reactions to lipopolysaccharide (LPS), particularly in the gut, can be partly or completely mitigated by colostrum- and milk-derived oligosaccharides. Confirmation of this hypothesis could lead to the development of new therapeutic concepts. To demonstrate the influence of equine colostral carbohydrates on the inflammatory response in an in vitro model with equine peripheral blood mononuclear cells (PBMCs). Carbohydrates were extracted from mare colostrum, and then evaluated for their influence on LPS-induced inflammatory responses in PBMCs isolated from the same mares, mRNA expression of tumour necrosis factor-alpha, interleukin-6 and interleukin-10 was measured as well as the protein levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10). Equine colostral carbohydrates significantly reduced LPS-induced TNF-alpha protein at both times measured and significantly reduced LPS-induced TNF-alpha, IL-6 and IL-10 mRNA expression by PBMCs. Moreover, cell viability significantly increased in the presence of high concentrations of colostral carbohydrates. Carbohydrates derived from equine colostrum reduce LPS-induced inflammatory responses of equine PBMCs. Colostrum and milk-derived carbohydrates are promising candidates for new concepts in preventive and regenerative medicine.

  9. The Protective Effect of Apamin on LPS/Fat-Induced Atherosclerotic Mice

    Directory of Open Access Journals (Sweden)

    Soo-Jung Kim

    2012-01-01

    Full Text Available Apamin, a peptide component of bee venom (BV, has anti-inflammatory properties. However, the molecular mechanisms by which apamin prevents atherosclerosis are not fully understood. We examined the effect of apamin on atherosclerotic mice. Atherosclerotic mice received intraperitoneal (ip injections of lipopolysaccharide (LPS, 2 mg/kg to induce atherosclerotic change and were fed an atherogenic diet for 12 weeks. Apamin (0.05 mg/kg was administered by ip injection. LPS-induced THP-1-derived macrophage inflammation treated with apamin reduced expression of tumor necrosis factor (TNF-α, vascular cell adhesion molecule (VCAM-1, and intracellular cell adhesion molecule (ICAM-1, as well as the nuclear factor kappa B (NF-κB signaling pathway. Apamin decreased the formation of atherosclerotic lesions as assessed by hematoxylin and elastic staining. Treatment with apamin reduced lipids, Ca2+ levels, and TNF-α in the serum from atherosclerotic mice. Further, apamin significantly attenuated expression of VCAM-1, ICAM-1, TGF-β1, and fibronectin in the descending aorta from atherosclerotic mice. These results indicate that apamin plays an important role in monocyte/macrophage inflammatory processing and may be of potential value for preventing atherosclerosis.

  10. Dietary exposure to benzoxazinoids enhances bacteria-induced monokine responses by peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Damgaard, Dres; Jensen, Bettina Margrethe; Palarasah, Yaseelan

    2015-01-01

    -out, the groups switched diets. Peripheral blood mononuclear cells (PBMCs) were stimulated with Porphyromonas gingivalis, Escherichia coli lipopolysaccharide (LPS), or tetanus toxoid (TT). PBMCs from a healthy donor received the same stimuli in presence of serum from each participant receiving BXs. The production...... of monokines, T-cell cytokines and T-helper cell proliferation were assessed. A 3-wk diet with high BX content enhanced IL-1β responses against LPS and P. gingivalis, as well as TNF-α response against P. gingivalis, after 24 h of stimulation. Moreover, IL-6 was found to be increased after 7 days of stimulation...

  11. Hypocretin/orexin loss changes the hypothalamic immune response.

    Science.gov (United States)

    Tanaka, Susumu; Takizawa, Nae; Honda, Yoshiko; Koike, Taro; Oe, Souichi; Toyoda, Hiromi; Kodama, Tohru; Yamada, Hisao

    2016-10-01

    Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy. Copyright © 2016 Elsevier Inc. All

  12. GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production

    International Nuclear Information System (INIS)

    Wu, Yong-hong; Li, Quan; Li, Ping; Liu, Bei

    2016-01-01

    LPS stimulation in macrophages/monocytes induces TNFα production. We here tested the potential effect of GSK621, a novel AMP-activated protein kinase (AMPK) activator, against the process. In RAW264.7 macrophages, murine bone marrow-derived macrophages (BMDMs), and chronic obstructive pulmonary disease (COPD) patients' monocytes, GSK621 significantly inhibited LPS-induced TNFα protein secretion and mRNA synthesis. Inhibition of AMPK, through AMPKα shRNA knockdown or dominant negative mutation (T172A), almost abolished GSK621's suppression on TNFα in RAW264.7 cells. Reversely, forced-expression of a constitutively-active AMPKα (T172D) mimicked GSK621 actions and reduced LPS-induced TNFα production. Molecularly, GSK621 suppressed LPS-induced reactive oxygen species (ROS) production and nuclear factor kappa B (NFκB) activation. In vivo, GSK621 oral administration inhibited LPS-induced TNFα production and endotoxin shock in mice. In summary, GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production in macrophages/monocytes. - Highlights: • GSK621 inhibits LPS-induced TNFα production/expression in RAW264.7 cells and BMDMs. • GSK621 inhibits LPS-induced TNFα production/expression in COPD patients' PBMCs. • GSK621's inhibition on TNFα production by LPS requires AMPK activation. • GSK621 inhibits LPS-induced ROS production and NFκB activation, dependent on AMPK. • GSK621 oral administration inhibits LPS-induced TNFα production and endotoxin shock in mice.

  13. LPS infusion suppresses serum FGF21 levels in healthy adult volunteers

    DEFF Research Database (Denmark)

    Lauritzen, Esben Stistrup; Rittig, Nikolaj; Bach, Ermina

    2017-01-01

    circulating levels of FGF21 after lipopolysaccharide (LPS) infusion. DESIGN: Two randomized, single blinded, placebo-controlled crossover trials were used. SETTING: The studies were performed at a university hospital clinical research center. PATIENTS AND INTERVENTIONS: Study 1 (LPS bolus): Eight young......, healthy, lean males were investigated two times: 1) after isotonic saline injection, and 2) after LPS injection (bolus of 1 ng/kg). Each study day lasted 4 hours. Study 2 (continuous LPS infusion): Eight, healthy males were investigated two times: 1) during continuously isotonic saline infusion, and 2......) during continuously LPS infusion (0.06 ng/kg/h). Each study day lasted 4 hours. Circulating FGF21 levels were quantified every second hour by an immunoassay. RESULTS: A LPS bolus resulted in a late suppression (t = 240 minutes) of serum FGF21 (P=0.035). Continuous LPS infusion revealed no significant...

  14. Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1.

    Science.gov (United States)

    Sriram, Chandra Shaker; Jangra, Ashok; Gurjar, Satendra Singh; Mohan, Pritam; Bezbaruah, Babul Kumar

    2016-02-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick-sensor enzyme that functions at the center of cellular stress response and affects the immune system at several key points, and thus modulates inflammatory diseases. Our previous study demonstrated that lipopolysaccharide (LPS)-induced depressive-like behavior in mice can be ameliorated by 3-aminobenzamide, which is a PARP-1 inhibitor. In the present study we've examined the effect of a free radical scavenger, edaravone pretreatment against LPS-induced anxiety and depressive-like behavior as well as various hippocampal biochemical parameters including PARP-1. Male Swiss albino mice were treated with edaravone (3 & 10mg/kgi.p.) once daily for 14days. On the 14th day 30min after edaravone treatment mice were challenged with LPS (1mg/kgi.p.). After 3h and 24h of LPS administration we've tested mice for anxiety and depressive-like behaviors respectively. Western blotting analysis of PARP-1 in hippocampus was carried out after 12h of LPS administration. Moreover, after 24h of LPS administration serum corticosterone, hippocampal BDNF, oxido-nitrosative stress and pro-inflammatory cytokines were estimated by ELISA. Results showed that pretreatment of edaravone (10mg/kg) ameliorates LPS-induced anxiety and depressive-like behavior. Western blotting analysis showed that LPS-induced anomalous expression of PARP-1 significantly reverses by the pretreatment of edaravone (10mg/kg). Biochemical analyses revealed that LPS significantly diminishes BDNF, increases pro-inflammatory cytokines and oxido-nitrosative stress in the hippocampus. However, pretreatment with edaravone (10mg/kg) prominently reversed all these biochemical alterations. Our study emphasized that edaravone pretreatment prevents LPS-induced anxiety and depressive-like behavior, mainly by impeding the inflammation, oxido-nitrosative stress and PARP-1 overexpression. Copyright © 2015. Published by Elsevier Inc.

  15. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics - Resveratrol as Ameliorating Factor on LPS Induced Changes.

    Directory of Open Access Journals (Sweden)

    Mark K Nøhr

    Full Text Available Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS, originating from the gut microbiota, through the gut epithelium could drive initiation of inflammation. To get a better understanding of which proteins and intracellular pathways are affected by LPS in adipocytes, we performed SILAC proteomic analysis and identified proteins that were altered in expression. Furthermore, we tested the anti-inflammatory compound resveratrol. A total of 927 proteins were quantified by the SILAC method and of these 57- and 64 were significantly up- and downregulated by LPS, respectively. Bioinformatic analysis (GO analysis revealed that the upregulated proteins were especially involved in the pathways of respiratory electron transport chain and inflammation. The downregulated proteins were especially involved in protein glycosylation. One of the latter proteins, GALNT2, has previously been described to regulate the expression of liver lipases such as ANGPTL3 and apoC-III affecting lipid metabolism. Furthermore, LPS treatment reduced the protein levels of the insulin sensitizing adipokine, adiponectin, and proteins participating in the final steps of triglyceride- and cholesterol synthesis. Generally, resveratrol opposed the effect induced by LPS and, as such, functioning as an ameliorating factor in disease state. Using an unbiased proteomic approach, we present novel insight of how the proteome is altered in adipocytes in response to LPS as seen in obesity. We suggest that LPS partly exerts its detrimental effects by altering glycosylation processes of the cell, which is starting to emerge as important posttranscriptional regulators of protein expression. Furthermore, resveratrol could be a prime candidate in ameliorating dysfunctioning

  16. The LPS trigger system

    International Nuclear Information System (INIS)

    Benotto, F.; Costa, M.; Staiano, A.; Zampieri, A.; Bollito, M.; Isoardi, P.; Pernigotti, E.; Sacchi, R.; Trapani, P.P.; Larsen, H.; Massam, T.; Nemoz, C.

    1996-03-01

    The Leading Proton Spectrometer (LPS) has been equipped with microstrip silicon detectors specially designed to trigger events with high values of x L vertical stroke anti p' p vertical stroke / vertical stroke anti p p vertical stroke ≥0.95 where vertical stroke anti p' p vertical stroke and vertical stroke anti p p vertical stroke are respectively the momenta of outgoing and incoming protons. The LPS First Level Trigger can provide a clear tag for very high momentum protons in a kinematical region never explored before. In the following we discuss the physics motivation in tagging very forward protons and present a detailed description of the detector design, the front end electronics, the readout electronics, the Monte Carlo simulation and some preliminary results from 1995 data taking. (orig.)

  17. Induction of IL-1 during hemodialysis: Transmembrane passage of intact endotoxins (LPS)

    Energy Technology Data Exchange (ETDEWEB)

    Laude-Sharp, M.; Caroff, M.; Simard, L.; Pusineri, C.; Kazatchkine, M.D.; Haeffner-Cavaillon, N. (INSERM U 28, Hopital Broussais, Paris (France))

    1990-12-01

    Circulating monocytes of patients undergoing chronic hemodialysis are triggered to produce interleukin-1 (IL-1) in vivo. Intradialytic induction of IL-1 is associated with complement activation in patients dialyzed with first-use cellulose membranes. Chronic stimulation of IL-1 production occurs because of an yet unidentified mechanism in patients dialyzed with high permeability membranes. The present study demonstrates that intact bacterial lipopolysaccharide (LPS) molecules may cross cuprophan, AN69 and polysulfone membranes under in vitro conditions simulating in vivo hemodialysis. The experiments used purified LPS from Neisseria meningitidis and LPS from Pseudomonas testosteroni, a bacterial strain grown out from a clinically used dialysate. LPS were purified to homogeneity and radiolabeled. Transmembrane passage of 3H-labeled LPS was observed within the first five minutes of dialysis. A total of 0.1 to 1% of 3H-labeled LPS were recovered in the dialysate compartment after one hour of dialysis. High amounts of LPS, representing 40 to 70% of the amount originally present in the dialysate, were absorbed onto high permeability membranes. Low amounts of LPS were absorbed onto cuprophan membranes. The amount of LPS absorbed decreased with the concentration of LPS in the dialysate. LPS recovered from the blood compartment exhibited the same molecular weight as that used to contaminate the dialysate. Biochemically detectable transmembrane passage of LPS was not associated with that of material detectable using the limulus amebocyte lysate (LAL) assay. An IL-1-inducing activity was, however, detected in the blood compartment upon dialysis with high permeability membranes, as previously found by others with cuprophan membranes.

  18. Induction of IL-1 during hemodialysis: Transmembrane passage of intact endotoxins (LPS)

    International Nuclear Information System (INIS)

    Laude-Sharp, M.; Caroff, M.; Simard, L.; Pusineri, C.; Kazatchkine, M.D.; Haeffner-Cavaillon, N.

    1990-01-01

    Circulating monocytes of patients undergoing chronic hemodialysis are triggered to produce interleukin-1 (IL-1) in vivo. Intradialytic induction of IL-1 is associated with complement activation in patients dialyzed with first-use cellulose membranes. Chronic stimulation of IL-1 production occurs because of an yet unidentified mechanism in patients dialyzed with high permeability membranes. The present study demonstrates that intact bacterial lipopolysaccharide (LPS) molecules may cross cuprophan, AN69 and polysulfone membranes under in vitro conditions simulating in vivo hemodialysis. The experiments used purified LPS from Neisseria meningitidis and LPS from Pseudomonas testosteroni, a bacterial strain grown out from a clinically used dialysate. LPS were purified to homogeneity and radiolabeled. Transmembrane passage of 3H-labeled LPS was observed within the first five minutes of dialysis. A total of 0.1 to 1% of 3H-labeled LPS were recovered in the dialysate compartment after one hour of dialysis. High amounts of LPS, representing 40 to 70% of the amount originally present in the dialysate, were absorbed onto high permeability membranes. Low amounts of LPS were absorbed onto cuprophan membranes. The amount of LPS absorbed decreased with the concentration of LPS in the dialysate. LPS recovered from the blood compartment exhibited the same molecular weight as that used to contaminate the dialysate. Biochemically detectable transmembrane passage of LPS was not associated with that of material detectable using the limulus amebocyte lysate (LAL) assay. An IL-1-inducing activity was, however, detected in the blood compartment upon dialysis with high permeability membranes, as previously found by others with cuprophan membranes

  19. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, Nicole S., E-mail: Nicole.olgun02@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Jamaica, NY, 11439 (United States); Women and Children' s Research Laboratory, Winthrop University Hospital, 259 1st Street, Mineola, NY, 11501 (United States); Hanna, Nazeeh, E-mail: Nhanna@winthrop.org [Women and Children' s Research Laboratory, Winthrop University Hospital, 259 1st Street, Mineola, NY, 11501 (United States); Department of Pediatrics, Winthrop University Hospital, 259 1st Street, Mineola, NY, 11501 (United States); Reznik, Sandra E., E-mail: Rezniks@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Jamaica, NY, 11439 (United States); Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Department of Obstetrics and Gynecology and Women' s Health, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET{sub A} receptor. We have previously shown that antagonism of the ET{sub A} receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET{sub A} receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET{sub A} receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET{sub A} blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue.

  20. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    International Nuclear Information System (INIS)

    Olgun, Nicole S.; Hanna, Nazeeh; Reznik, Sandra E.

    2015-01-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET A receptor. We have previously shown that antagonism of the ET A receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET A receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET A receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET A blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue

  1. Endogenous peripheral hydrogen sulfide is propyretic: its permissive role in brown adipose tissue thermogenesis in rats.

    Science.gov (United States)

    Soriano, Renato N; Braga, Sara P; Breder, Jéssica S C; Batalhao, Marcelo E; Oliveira-Pelegrin, Gabriela R; Ferreira, Luiz Fernando R; Rocha, Maria José A; Carnio, Evelin C; Branco, Luiz G S

    2018-03-01

    What is the central question of this study? In fever, the most striking response in the acute phase reaction of systemic inflammation, plasma H 2 S concentration increases. However, the role of endogenous peripheral H 2 S in fever is unknown. What is the main finding and its importance? Endogenous peripheral H 2 S is permissive for increased brown adipose tissue thermogenesis to maintain thermal homeostasis in cold environments as well as to mount fever. This finding expands the physiological role of the gaseous modulator as a key regulator of thermal control in health (thermal homeostasis) and disease (fever in systemic inflammation). In recent years, hydrogen sulfide (H 2 S) has been reported as a gaseous modulator acting in several tissues in health and disease. In animal models of systemic inflammation, the plasma H 2 S concentration increases in response to endotoxin (bacterial lipopolysaccharide, LPS). The most striking response in the acute phase reaction of systemic inflammation is fever, but we found no reports of the peripheral action of H 2 S on this thermoregulatory response. We aimed at investigating whether endogenous systemic H 2 S modulates LPS-induced fever. A temperature datalogger capsule was inserted in the abdominal cavity of male Wistar rats (220-270 g) to record body core temperature. These animals received an i.p. injection of a systemic H 2 S inhibitor (propargylglycine; 50 or 75 mg kg -1 ), immediately followed by an i.p. injection of LPS (50 or 2500 μg kg -1 ), and were exposed to different ambient temperatures (16, 22 or 27°C). At 22°C, but not at 27°C, propargylglycine at 75 mg kg -1 significantly attenuated (P endogenous peripheral H 2 S on brown adipose tissue (BAT) thermogenesis. Evidence on the modulatory role of peripheral H 2 S in BAT thermogenesis was strengthened when we discarded (i) the possible influence of the gas on febrigenic signalling (when measuring plasma cytokines), and (ii) its interaction with the nitric

  2. Soluble β-(1,3)-glucans enhance LPS-induced response in the monocyte activation test, but inhibit LPS-mediated febrile response in rabbits: Implications for pyrogenicity tests.

    Science.gov (United States)

    Pardo-Ruiz, Zenia; Menéndez-Sardiñas, Dalia E; Pacios-Michelena, Anabel; Gabilondo-Ramírez, Tatiana; Montero-Alejo, Vivian; Perdomo-Morales, Rolando

    2016-01-01

    In the present study, we aimed to determine the influence of β-(1,3)-d-glucans on the LPS-induced pro-inflammatory cytokine response in the Monocyte Activation Test (MAT) for pyrogens, and on the LPS-induced febrile response in the Rabbit Pyrogen Test (RPT), thus evaluating the resulting effect in the outcome of each test. It was found that β-(1,3)-d-glucans elicited the production of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, also known as endogenous pyrogens, but not enough to classify them as pyrogenic according to MAT. The same β-(1,3)-d-glucans samples were non-pyrogenic by RPT. However, β-(1,3)-d-glucans significantly enhanced the LPS-induced pro-inflammatory cytokines response in MAT, insomuch that samples containing non-pyrogenic concentrations of LPS become pyrogenic. On the other hand, β-(1,3)-d-glucans had no effect on sub-pyrogenic LPS doses in the RPT, but surprisingly, inhibited the LPS-induced febrile response of pyrogenic LPS concentrations. Thus, while β-(1,3)-d-glucans could mask the LPS pyrogenic activity in the RPT, they exerted an overstimulation of pro-inflammatory cytokines in the MAT. Hence, MAT provides higher safety since it evidences an unwanted biological response, which is not completely controlled and is overlooked by the RPT. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10.

    Science.gov (United States)

    Olgun, Nicole S; Hanna, Nazeeh; Reznik, Sandra E

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11-12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ETA receptor. We have previously shown that antagonism of the ETA receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS+BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12h. We discovered that BQ-123, when administered 10h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ETA receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ETA receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. Copyright © 2014. Published by Elsevier Inc.

  4. Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis

    Directory of Open Access Journals (Sweden)

    Pacífico Lucila G

    2007-01-01

    Full Text Available Abstract Background Recombinant proteins expressed in Escherichia coli vectors are generally contaminated with endotoxin. In this study, we evaluated the ability of Polymyxin B to neutralize the effect of LPS present as contaminant on Schistosoma mansoni recombinant proteins produced in E. coli in inducing TNF-α and IL-10. Peripheral blood mononuclear cells from individuals chronically infected with S. mansoni were stimulated in vitro with recombinant Sm22.6, Sm14 and P24 antigens (10 μg/mL in the presence of Polymyxin B (10 μg/mL. Results The levels of cytokines were measured using ELISA. There was greater than 90 % reduction (p S. mansoni recombinant proteins in the presence of Polymyxin B, a reduction in the levels of TNF-α and IL-10 was also observed. However, the percentage of reduction was lower when compared to the cultures stimulated with LPS, probably because these proteins are able to induce the production of these cytokines by themselves. Conclusion This study showed that Polymyxin B was able to neutralize the effect of endotoxin, as contaminant in S. mansoni recombinant antigens produced in E. coli, in inducing TNF-α and IL-10 production.

  5. Aqueous Extract of Oldenlandia diffusa Suppresses LPS-Induced ...

    African Journals Online (AJOL)

    ... potential transcriptional factor for regulating the expression of iNOS, COX-2 and TNF-α. As expected, AEOD suppressed the LPS-induced degradation and phosphorylation of IκBα and sustained the expression of p65 in the cytosol. Furthermore, AEOD substantially inhibited the LPS-induced DNA binding activity of NF-κB.

  6. Synergistic effect of DDT and its metabolites in lipopolysaccharide-mediated TNF-α production is inhibited by progesterone in peripheral blood mononuclear cells.

    Science.gov (United States)

    Dominguez-Lopez, Pablo; Diaz-Cueto, Laura; Aguilar-Rojas, Arturo; Arechavaleta-Velasco, Fabian

    2017-07-01

    Increased TNF-α levels have been associated with adverse pregnancy outcomes. Lipopolysaccharide (LPS), 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) induce TNF-α release in peripheral blood mononuclear cells (PBMC). Conversely, progesterone (P4) inhibits TNF-α secretion. Pregnant women in malaria endemic areas may be co-exposure to these compounds. Thus, this study was to investigate the synergistic effect of LPS and these pesticides in PBMC and to assess P4 influence on this synergy. Cultured PBMC were exposed to each pesticide in the presence of LPS, P4, or their combination. TNF-α was measured by ELISA. All pesticides enhanced TNF-α synthesis in PBMC. Co-exposure with LPS synergizes TNF-α production, which is blocked by progesterone. These results indicate that these organochlorines act synergistically with LPS to induce TNF-α secretion in PBMC. This effect is blocked by P4. © 2017 Wiley Periodicals, Inc.

  7. Tanshinone IIA Sodium Sulfonate Attenuates LPS-Induced Intestinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Xin-Jing Yang

    2018-01-01

    Full Text Available Background. Tanshinone IIA sodium sulfonate (TSS is known to possess anti-inflammatory effects and has exhibited protective effects in various inflammatory conditions; however, its role in lipopolysaccharide- (LPS- induced intestinal injury is still unknown. Objective. The present study is designed to explore the role and possible mechanism of TSS in LPS-induced intestinal injury. Methods. Male C57BL/6J mice, challenged with intraperitoneal LPS injection, were treated with or without TSS 0.5 h prior to LPS exposure. At 1, 6, and 12 h after LPS injection, mice were sacrificed, and the small intestine was excised. The intestinal tissue injury was analyzed by HE staining. Inflammatory factors (TNF-α, IL-1β, and IL-6 in the intestinal tissue were examined by ELISA and RT-PCR. In addition, expressions of autophagy markers (microtubule-associated light chain 3 (LC3 and Beclin-1 were detected by western blot and RT-PCR. A number of autophagosomes were also observed under electron microscopy. Results. TSS treatment significantly attenuated small intestinal epithelium injury induced by LPS. LPS-induced release of inflammatory mediators, including TNF-α, IL-1β, and IL-6, were markedly inhibited by TSS. Furthermore, TSS treatment could effectively upregulate LPS-induced decrease of autophagy levels, as evidenced by the increased expression of LC3 and Beclin-1, and more autophagosomes. Conclusion. The protective effect of TSS on LPS-induced small intestinal injury may be attributed to the inhibition of inflammatory factors and promotion of autophagy levels. The present study may provide novel insight into the molecular mechanisms of TSS on the treatment of intestinal injury.

  8. Effects and mechanisms of cavidine protecting mice against LPS-induced endotoxic shock

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhang, Hailin; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn; Wang, Xiumei; Wang, Yu; He, Zehong; Yao, Huan

    2016-08-15

    LPS sensitized mice are usually considered as an experimental model of endotoxin shock. The present study aims to evaluate effects of cavidine on LPS-induced endotoxin shock. Mice were intraperitoneally administrated with cavidine (1, 3 and 10 mg/kg) or DEX (5 mg/kg) at 1 and 12 h before injecting LPS (30 mg/kg) intraperitoneally. Blood samples, liver, lung and kidney tissues were harvested after LPS injection. The study demonstrated that pretreatment with cavidine reduced the mortality of mice during 72 h after endotoxin injection. In addition, cavidine administration significantly attenuated histological pathophysiology features of LPS-induced injury in lung, liver and kidney. Furthermore, cavidine administration inhibited endotoxin-induced production of pro-inflammatory cytokines including TNF-α, IL-6 and HMGB1. Moreover, cavidine pretreatment attenuated the phosphorylation of mitogen-activated protein kinase primed by LPS. In summary, cavidine protects mice against LPS-induced endotoxic shock via inhibiting early pro-inflammatory cytokine TNF-α, IL-6 and late-phase cytokine HMGB1, and the modulation of HMGB1 may be related with MAPK signal pathway. - Highlights: • Cavidine significantly reduced mortality in mice during 72 h after LPS injection. • Cavidine attenuated histopathological changes in lung, liver and kidney. • Cavidine decreased the level of early inflammatory cytokine TNF-α, IL-6 in LPS- stimulated mice. • Cavidine inhibited late inflammatory cytokine HMGB1 through MAPK pathway.

  9. DMPD: LPS-binding proteins and receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9665271 LPS-binding proteins and receptors. Fenton MJ, Golenbock DT. J Leukoc Biol.... 1998 Jul;64(1):25-32. (.png) (.svg) (.html) (.csml) Show LPS-binding proteins and receptors. PubmedID 9665271 Title LPS-binding prot...eins and receptors. Authors Fenton MJ, Golenbock DT. Publication J Leukoc Biol. 199

  10. Hematologic interactions of endotoxin, tumor necrosis factor alpha (TNF alpha), interleukin 1, and adrenal hormones and the hematologic effects of TNF alpha in Corynebacterium parvum-primed rats.

    Science.gov (United States)

    Ulich, T R; del Castillo, J; Ni, R X; Bikhazi, N

    1989-06-01

    Endotoxin reduces the release among other cytokines of tumor necrosis factor (TNF) and interleukin 1 (IL-1) and causes peripheral lymphopenia and a dose-response-dependent initial neutropenia followed by a monophasic neutrophilia. TNF alone induces lymphopenia and an initial neutropenia followed by a biphasic neutrophilia. IL-1 alone induces lymphopenia and a monophasic neutrophilia. TNF-plus-IL-1 caused a greater lymphopenia than either monokine alone, suggesting that both monokines contribute to LPS-induced lymphopenia. TNF-plus-IL-1 induced neutropenia similar in magnitude to that induced by TNF alone and induced a neutrophilia significantly greater than that induced by either monokine alone, suggesting that LPS-induced neutropenia is caused by TNF, while LPS-induced neutrophilia is due to the combined effects of TNF and II-1. TNF and IL-1 were administered together with LPS to simulate the in vivo condition of endogenous monokine release during gram-negative bacteremia. TNF combined with LPS increased both the duration and magnitude of LPS-induced lymphopenia, LPS-induced neutropenia, and LPS-induced neutrophilia. TNF-plus-LPS treated rats at 2 hours after injection exhibited a striking 93% decrease in bone marrow neutrophils even though no peripheral neutrophilia was yet apparent, suggesting that the subsequent neutrophilia was due to demargination and recirculation of neutrophils sequestered in the peripheral vasculature immediately after their release from the bone marrow. Epinephrine, which causes neutrophilia by demargination but not by release of marrow neutrophils, reversed the initial neutropenia in TNF-plus-LPS-treated rats and increased the neutrophilia. IL-1 combined with LPS increased LPS-induced neutrophilia, suggesting that endogenous IL-1 also contributed to LPS-induced neutrophilia. Corynebacterium parvum-primed rats with hyperplasia of the monocyte-macrophage system and treated with TNF differed from naive rats treated with TNF in that the

  11. Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS.

    Science.gov (United States)

    Diya Zhang; Lili Chen; Shenglai Li; Zhiyuan Gu; Jie Yan

    2008-04-01

    Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.

  12. LPS-Enhanced Glucose-Stimulated Insulin Secretion Is Normalized by Resveratrol

    DEFF Research Database (Denmark)

    Nøhr, Mark K; Dudele, Anete; Poulsen, Morten M

    2016-01-01

    we test the effect of LPS and the anti-inflammatory compound resveratrol on glucose homeostasis, insulin levels and inflammation. Mice were subcutaneously implanted with osmotic mini pumps infusing either low-dose LPS or saline for 28 days. Half of the mice were treated with resveratrol delivered...... through the diet. LPS caused increased inflammation of the liver and adipose tissue (epididymal and subcutaneous) together with enlarged spleens and increased number of leukocytes in the blood. Resveratrol specifically reduced the inflammatory status in epididymal fat (reduced expression of TNFa and Il1b......, whereas the increased macrophage infiltration was unaltered) without affecting the other tissues investigated. By LC-MS, we were able to quantitate resveratrol metabolites in epididymal but not subcutaneous adipose tissue. LPS induced insulin resistance as the glucose-stimulated insulin secretion during...

  13. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression.

    Science.gov (United States)

    Layé, S; Gheusi, G; Cremona, S; Combe, C; Kelley, K; Dantzer, R; Parnet, P

    2000-07-01

    The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.

  14. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice.

    Science.gov (United States)

    Zhang, Zhengping; Luo, Zhaowen; Bi, Aijing; Yang, Weidong; An, Wenji; Dong, Xiaoliang; Chen, Rong; Yang, Shibao; Tang, Huifang; Han, Xiaodong; Luo, Lan

    2017-09-15

    Acute lung injury (ALI) represents an unmet medical need with an urgency to develop effective pharmacotherapies. Compound edaravone, a combination of edaravone and borneol, has been developed for treatment of ischemia stroke in clinical phase III study. The purpose of the present study is to investigate the anti-inflammatory effect of compound edaravone on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and the therapeutic efficacy on LPS-induced ALI in mice. Edaravone and compound edaravone concentration-dependently decreased LPS-induced interleukin-6 (IL-6) production and cyclooxygenase-2 (COX-2) expression in RAW264.7 cells. The efficiency of compound edaravone was stronger than edaravone alone. In the animal study, compound edaravone was injected intravenously to mice after intratracheal instillation of LPS. It remarkably alleviated LPS-induced lung injury including pulmonary histological abnormalities, polymorphonuclear leukocyte (PMN) infiltration and extravasation. Further study demonstrated that compound edaravone suppressed LPS-induced TNF-α and IL-6 increase in mouse serum and bronchoalveolar lavage (BAL) fluid, and inhibited LPS-induced nuclear factor-κB (NF-κB) activation and COX-2 expression in mice lung tissues. Importantly, our findings demonstrated that the compound edaravone showed a stronger protective effect against mouse ALI than edaravone alone, which suggested the synergies between edaravone and borneol. In conclusion, compound edaravone could be a potential novel therapeutic drug for ALI treatment and borneol might produce a synergism with edaravone. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  16. Sialylation of Porphyromonas gingivalis LPS and its effect on bacterial-host interactions.

    Science.gov (United States)

    Zaric, Svetislav S; Lappin, Mark J; Fulton, Catherine R; Lundy, Fionnuala T; Coulter, Wilson A; Irwin, Christopher R

    2017-04-01

    Porphyromonas gingivalis produces different LPS isoforms with significant structural variations of their lipid A and O-antigen moieties that can affect its pro-inflammatory and bone-resorbing potential. We show here, for the first time, that P. gingivalis LPS isolated from W83 strain is highly sialylated and possesses significantly reduced inflammatory potential compared with less sialylated ATCC 33277 strain LPS. Nevertheless, the reduction in the endotoxin activity is not mediated by the presence of sialic acid LPS moieties as the sialic acid-free LPS produced by the mutant W83 strain exhibits a similar inflammatory potential to the wild type strain. Furthermore, our findings suggest that the interaction between the sialic acid LPS moieties and the inhibitory CD33 receptor is prevented by endogenously expressed sialic acid on the surface of THP-1 cells that cannot be out-competed by sialic acid containing P. gingivalis LPS. The present study also highlights the importance of endogenous sialic acid as a 'self-associated molecular pattern' and CD33 receptors in modulation of innate immune response as human gingival fibroblasts, which do not express CD33 receptors, and desialylated THP-1 cells have both been found to have much higher spontaneous IL-8 production than naïve THP-1 cells.

  17. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice

    Directory of Open Access Journals (Sweden)

    Eszter Pakai

    2018-02-01

    Full Text Available Neurokinin (NK signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS. A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ or absent (Tacr1−/− and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2 expression, and prostaglandin (PG E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1−/− compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1−/− mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1−/− and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1−/− mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1−/− mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the “cytokine-COX-2

  18. Effect of 60Co γ-rays on PWM and LPS induced lymphocytes

    International Nuclear Information System (INIS)

    Su Liaoyuan; Liu Keliang; Liu Fenju

    1987-01-01

    The relationship between lymphocytes induced by PWM (pokeweed mitogen) and LPS (lipopolysaccharide) was investigated by means of 3 H-TdR incorporation. The study showed that, in vitro, PWM-induced cells were able to promote the stimulating effect of LPS to B lymphocytes. The stimulating effect of PWM-induced cells was obviously weakened after PWM cells being irradiated with γ-rays. When PWM-induced cells and LPS-induced cells were incubated together, with one kind of cells exposed to 60 Co γ-ray, incorporation value of 3 H-TdR became much smaller and the synergetic function disappeared, especially, when PWM-induced cells were irradiated. For patients suffering from carcinoma of nasopharynx, while treated with 60 Co γ-rays, the incorporation value in LPS-induced cells approached normal level, meanwhile, the incorporation value in PEM-induced cells reduced significantly and the stimulating effect of PWM-induced cells on LPS-induced cells became much weaker. The facts described above demonstrated that PWM-induced cells have the function of T-helper cells and play more important role in the synergy than LPS-induced cells

  19. Sildenafil (Viagra(®)) prevents and restores LPS-induced inflammation in astrocytes.

    Science.gov (United States)

    de Santana Nunes, Ana Karolina; Rapôso, Catarina; Björklund, Ulrika; da Cruz-Höfling, Maria Alice; Peixoto, Christina Alves; Hansson, Elisabeth

    2016-09-06

    Astrocytes are effectively involved in the pathophysiological processes in the central nervous system (CNS) and may contribute to or protect against development of inflammatory and degenerative diseases. Sildenafil is a potent and selective phosphodiesterase-5 (PDE-5) inhibitor, which induces cyclic GMP accumulation. However, the mechanisms of actions on glial cells are not clear. The aim of the present work is to evaluate the role of sildenafil in lipopolysaccharide (LPS)-stimulated astrocytes. The cytoskeleton integrity and Ca(2+) waves were assessed as indicators of inflammatory state. Two main groups were done: (A) one prevention and (B) one restoration. Each of these groups: A1: control; A2: LPS for 24h; A3: sildenafil 1 or 10μM for 4h and then sildenafil 1 or 10μM+LPS for 24h. B1: control; B2: LPS for 24h; B3: LPS for 24h and then LPS+sildenafil 1 or 10μM for 24h. Cytoskeleton integrity was analyzed through GFAP immunolabeling and actin labeling with an Alexa 488-conjugated phalloidin probe. Calcium responses were assessed through a Ca(2+)-sensitive fluorophore Fura-2/AM. The results show that both preventive and restorative treatments with sildenafil (in both concentrations) reduced the Ca(2+) responses in intensity and induced a more organized actin fiber pattern, compared to LPS treated cells. This work demonstrated for the first time that astrocytes are a key part of the sildenafil protective effects in the CNS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Nitric oxide production by nurse shark (Ginglymostoma cirratum) and clearnose skate (Raja eglanteria) peripheral blood leucocytes.

    Science.gov (United States)

    Walsh, Cathy J; Toranto, Jason D; Gilliland, C Taylor; Noyes, David R; Bodine, Ashby B; Luer, Carl A

    2006-01-01

    Reactive nitrogen intermediates, such as nitric oxide (NO), are important immunomodulators in vertebrate immune systems, but have yet to be identified as mediators of host defence in any member of class Chondrichthyes, the cartilaginous fishes. In the present study, production of NO by nurse shark (Ginglymostoma cirratum) peripheral blood leucocytes (PBL) stimulated with bacterial cell wall lipopolysaccharide (LPS) was investigated. PBL were cultured for 24 to 96 h following stimulation with LPS at concentrations ranging from 0 to 25 microg ml(-1), in both serum-supplemented and serum-free culture conditions. Production of NO was measured indirectly using the Griess reaction, with maximal NO production occurring after 72 h using 10% FBS and 10 microg LPS ml(-1). Application of these culture conditions to PBL from another cartilaginous fish (clearnose skate, Raja eglanteria) resulted in a similar NO response. Addition of a specific inhibitor of inducible nitric oxide synthase (iNOS), L-N(6)-(1-iminoethyl)lysine (L-NIL), resulted in a significant decrease in the production of NO by PBL from both species.

  1. Probiotics and Probiotic Metabolic Product Improved Intestinal Function and Ameliorated LPS-Induced Injury in Rats.

    Science.gov (United States)

    Deng, Bo; Wu, Jie; Li, Xiaohui; Men, Xiaoming; Xu, Ziwei

    2017-11-01

    In the present study, we sought to determine the effects of Bacillus subtilis (BAS) and Bacillus licheniformis (BAL) in rats after lipopolysaccharide (LPS)-induced acute intestinal inflammation. We also determined whether the B. subtilis metabolic product (BASM) is as effective as the live-cell probiotic. 60 male SD rats were randomly assigned to five groups and administered a diet containing 0.05% B. licheniformis (BAL group), 0.05% B. subtilis (BAS group), 0.5% B. subtilis metabolic product (BASM group), or a basic diet (PC group and NC group) for 40 days. On day 40, BAL, BAS, BASM, and NC groups were injected with 4 mg/kg body weight LPS. 4 h later, all rats were anesthetized and sacrificed. The results showed that the administration of B. licheniformis and B. subtilis improved intestinal function as evidenced by histology, increased enzyme activity, and mucosal thickness. They also increased the number of intraepithelial lymphocytes and decreased mucosal myeloperoxidase activity and plasma TNF-α. In addition, the cecal content of B. subtilis-treated rats had significantly increased microbial diversity, decreased numbers of Firmicutes, and increased numbers of Bacteroidetes as compared to rats fed basic diets. Similar to BAS group, the cecal content of B. licheniformis-treated rats decreased the number of Firmicutes. Administration of B. subtilis metabolic product had similar effects on intestinal function, inflammation response, and microbial diversity as B. subtilis but these effects were attenuated. In conclusion, administration of probiotic strains B. licheniformis or B. subtilis improved intestinal function, ameliorated the inflammation response, and modulated microflora after LPS-induced acute inflammation in rats. Non-living cells also exerted probiotic properties but live cells tended to function better.

  2. Anti-Inflammatory Effect of Melittin on Porphyromonas Gingivalis LPS-Stimulated Human Keratinocytes.

    Science.gov (United States)

    Kim, Woon-Hae; An, Hyun-Jin; Kim, Jung-Yeon; Gwon, Mi-Gyeong; Gu, Hyemin; Jeon, Minji; Kim, Min-Kyung; Han, Sang-Mi; Park, Kwan-Kyu

    2018-02-05

    Periodontitis is a chronic inflammatory disease that contributes to the destruction of the gingiva. Porphyromonas gingivalis ( P. gingivalis ) can cause periodontitis via its pathogenic lipopolysaccharides (LPS). Melittin, a major component of bee venom, is known to have anti-inflammatory and antibacterial effects. However, the role of melittin in the inflammatory response has not been elucidated in periodontitis-like human keratinocytes. Therefore, we investigated the anti-inflammatory effects of melittin on a P. gingivalis LPS (PgLPS)-treated HaCaT human keratinocyte cell line. The cytotoxicity of melittin was measured using a human keratinocyte cell line, HaCaT, and a Cell Counting Kit-8. The effect of melittin on PgLPS-induced inflammation was determined with Western blot, real-time quantitative PCT, and immunofluorescence. PgLPS increased the expression of toll-like receptor (TLR) 4 and proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and interferon-γ (IFN-γ). Moreover, PgLPS induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B/Akt. Melittin also inhibited the expression of proinflammatory cytokines by suppressing the activation of the NF-κB signaling pathway, ERK, and Akt. Melittin attenuates the PgLPS-induced inflammatory response and could therefore be applied in the treatment of periodontitis for anti-inflammatory effects.

  3. Hydrogel-embedded endothelial progenitor cells evade LPS and mitigate endotoxemia.

    Science.gov (United States)

    Ghaly, Tammer; Rabadi, May M; Weber, Mia; Rabadi, Seham M; Bank, Michael; Grom, John M; Fallon, John T; Goligorsky, Michael S; Ratliff, Brian B

    2011-10-01

    Sepsis and its complications are associated with poor clinical outcomes. The circulatory system is a well-known target of lipopolysaccharide (LPS). Recently, several clinical studies documented mobilization of endothelial progenitor cells (EPCs) during endotoxemia, with the probability of patients' survival correlating with the rise in circulating EPCs. This fact combined with endotoxemia-induced vascular injury led us to hypothesize that the developing functional EPC incompetence could impede vascular repair and that adoptive transfer of EPCs could improve hemodynamics in endotoxemia. We used LPS injection to model endotoxemia. EPCs isolated from endotoxemic mice exhibited impaired clonogenic potential and LPS exerted Toll-like receptor 4-mediated cytotoxic effects toward EPCs, which was mitigated by embedding them in hyaluronic acid (HA) hydrogels. Therefore, intact EPCs were either delivered intravenously or embedded within pronectin-coated HA hydrogels. Adoptive transfer of EPCs in LPS-injected mice improved control of blood pressure and reduced hepatocellular and renal dysfunction. Specifically, EPC treatment was associated with the restoration of renal microcirculation and improved renal function. EPC therapy was most efficient when cells were delivered embedded in HA hydrogel. These findings establish major therapeutic benefits of adoptive transfer of EPCs, especially when embedded in HA hydrogels, in mice with LPS-induced endotoxemia, and they argue that hemodynamic and renal abnormalities of endotoxemia are in significant part due to developing incompetence of endogenous EPCs.

  4. Changes in coagulation-fibrinolysis function in alveolar lavage fluid of endotoxemic dogs after partial removal of peripheral leukocytes

    Directory of Open Access Journals (Sweden)

    Shun-gang ZHOU

    2011-06-01

    Full Text Available Objective To observe the effect of partial removal of peripheral leucocytes on the coagulation-fibrinolysis function of alveolar lavage fluid(ALF in endotoxemic dogs,and explore the influence and mechanisms of activated leucocytes on lung injury in endotoxemic dogs.Methods Thirty male mongrel dogs were involved in present study and randomly divided into 3 groups(10 each: LPS group(group L,sham leukocytapheresis group(group S and leukocytapheresis group(group T.Endotoxemic model was reproduced in group L by administration of LPS(2mg/kg,but the animals did not receive leukocytapheresis.Animals in group T received leukocytapheresis using a continuous-flow blood cell separator 12-14 hours after administration of LPS.Animals in group S received sham leukocytapheresis(the end products were transfused back into the dogs at 12-14 hours after administration of LPS.At 36h after administration of LPS,the lung tissues were harvested to obtain ALF,and the levels of neutrophil elastase(NE,soluble thrombomodulin(sTM,activated protein C(APC and plasminogen activator inhibitor-1(PAI-1 in ALF were determined,the expression of thrombomodulin in lung tissue was observed by immunohistochemical staining,while the routine pathological examination and wet/dry ratio of lung tissue were performed.Results The APC level in ALF was significantly higher,while the NE,sTM and PAI-1 levels in ALF and wet/dry ratio of lung tissue were significantly lower in group T than in group L and group S(P < 0.05.Immunohistochemical examination revealed that the expression of thrombomodulin in lung tissue was higher in group T than in group L and group S.No significant difference was found between group L and group S in the indexes mentioned above.Pathological observation showed the incidence of acute lung injury was significantly lower in group T(2/10 than in group L(7/10 and group S(8/10,P < 0.05.Conclusion Partial removal of peripheral leukocytes may lower the level of NE in ALF

  5. Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Banks, William A; Wong, W S Fred; Wong, Peter T-H; Lai, Mitchell K P

    2016-02-09

    Andrographolide is the major bioactive compound isolated from Andrographis paniculata, a native South Asian herb used medicinally for its anti-inflammatory properties. In this study, we aimed to assess andrographolide's potential utility as an anti-neuroinflammatory therapeutic. The effects of andrographolide on lipopolysaccharide (LPS)-induced chemokine up-regulation both in mouse cortex and in cultured primary astrocytes were measured, including cytokine profiling, gene expression, and, in cultured astrocytes, activation of putative signaling regulators. Orally administered andrographolide significantly attenuated mouse cortical chemokine levels from the C-C and C-X-C subfamilies. Similarly, andrographolide abrogated a range of LPS-induced chemokines as well as tumor necrosis factor (TNF)-α in astrocytes. In astrocytes, the inhibitory actions of andrographolide on chemokine and TNF-α up-regulation appeared to be mediated by nuclear factor-κB (NF-κB) or c-Jun N-terminal kinase (JNK) activation. These results suggest that andrographolide may be useful as a therapeutic for neuroinflammatory diseases, especially those characterized by chemokine dysregulation.

  6. Deubiquitinase USP12 promotes LPS induced macrophage responses through inhibition of IκBα

    International Nuclear Information System (INIS)

    Nayak, Tapan Kumar Singh; Alamuru-Yellapragada, Neeraja P.; Parsa, Kishore V.L.

    2017-01-01

    Post translational modifications, ubiquitination and its reversal by deubiquitination play an important role in regulating innate immune system. USP12 is a poorly studied deubiquitinase reported to regulate T-cell receptor signalling however the functional role of USP12 in macrophages, the principal architects of inflammation, is unknown. Thus, in this study we probed the involvement of USP12 in macrophage mediated inflammatory responses using bacterial endotoxin, LPS, as the model system. Here, we observed that the expression of USP12 was altered in time dependent manner in LPS stimulated RAW 264.7 macrophages at both mRNA and protein levels as revealed by qPCR and western blot analysis, respectively. Further analysis showed that LPS reduced the levels of Sp1 which enhanced the transcriptional levels of USP12. We observed that siRNA mediated ablation of USP12 expression in mouse macrophages suppressed the induction of LPS-induced iNOS and IL-6 expression but failed to alter IFN-β synthesis, oxidative stress and phagocytic ability of macrophages. Mechanistic analysis suggest that USP12 may be required for the activation of NFκB pathway as knockdown of USP12 reduced the inhibitory phosphorylation of IκBα, a well characterized inhibitor of NFκB nuclear translocation. Further, USP12 was observed to be required for LPS elicited phosphorylation of ERK1/2 and p38. Collectively, our data suggest that USP12 may be a key mediator of LPS stimulated macrophage responses. - Highlights: • USP12 levels are significantly altered in LPS stimulated macrophages. • USP12 is required for LPS induced iNOS and IL6 expression. • USP12 is crucial for LPS induced phosphorylation of IκBα, ERK1/2, p38.

  7. Central and peripheral des-acyl ghrelin regulates body temperature in rats.

    Science.gov (United States)

    Inoue, Yoshiyuki; Nakahara, Keiko; Maruyama, Keisuke; Suzuki, Yoshiharu; Hayashi, Yujiro; Kangawa, Kenji; Murakami, Noboru

    2013-01-04

    In the present study using rats, we demonstrated that central and peripheral administration of des-acyl ghrelin induced a decrease in the surface temperature of the back, and an increase in the surface temperature of the tail, although the effect of peripheral administration was less marked than that of central administration. Furthermore, these effects of centrally administered des-acyl ghrelin could not be prevented by pretreatment with [D-Lys3]-GHRP-6 GH secretagogue receptor 1a (GHS-R1a) antagonists. Moreover, these actions of des-acyl ghrelin on body temperature were inhibited by the parasympathetic nerve blocker methylscopolamine but not by the sympathetic nerve blocker timolol. Using immunohistochemistry, we confirmed that des-acyl ghrelin induced an increase of cFos expression in the median preoptic nucleus (MnPO). Additionally, we found that des-acyl ghrelin dilated the aorta and tail artery in vitro. These results indicate that centrally administered des-acyl ghrelin regulates body temperature via the parasympathetic nervous system by activating neurons in the MnPO through interactions with a specific receptor distinct from the GHS-R1a, and that peripherally administered des-acyl ghrelin acts on the central nervous system by passing through the blood-brain barrier, whereas it exerts a direct action on the peripheral vascular system. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Hemin binding by Porphyromonas gingivalis strains is dependent on the presence of A-LPS.

    Science.gov (United States)

    Rangarajan, M; Aduse-Opoku, J; Paramonov, N A; Hashim, A; Curtis, M A

    2017-10-01

    Porphyromonas gingivalis is a Gram-negative black pigmenting anaerobe that is unable to synthesize heme [Fe(II)-protoporphyrin IX] or hemin [Fe(III)-protoporphyrin IX-Cl], which are important growth/virulence factors, and must therefore derive them from the host. Porphyromonas gingivalis expresses several proteinaceous hemin-binding sites, which are important in the binding/transport of heme/hemin from the host. It also synthesizes several virulence factors, namely cysteine-proteases Arg- and Lys-gingipains and two lipopolysaccharides (LPS), O-LPS and A-LPS. The gingipains are required for the production of the black pigment, μ-oxo-bisheme {[Fe(III)PPIX] 2 O}, which is derived from hemoglobin and deposited on the bacterial cell-surface leading to the characteristic black colonies when grown on blood agar. In this study we investigated the role of LPS in the deposition of μ-oxo-bisheme on the cell-surface. A P. gingivalis mutant defective in the biosynthesis of Arg-gingipains, namely rgpA/rgpB, produces brown colonies on blood agar and mutants defective in Lys-gingipain (kgp) and LPS biosynthesis namely porR, waaL, wzy, and pg0129 (α-1, 3-mannosyltransferase) produce non-pigmented colonies. However, only those mutants lacking A-LPS showed reduced hemin-binding when cells in suspension were incubated with hemin. Using native, de-O-phosphorylated and de-lipidated LPS from P. gingivalis W50 and porR strains, we demonstrated that hemin-binding to O-polysaccharide (PS) and to the lipid A moiety of LPS was reduced compared with hemin-binding to A-PS. We conclude that A-LPS in the outer-membrane of P. gingivalis serves as a scaffold/anchor for the retention of μ-oxo-bisheme on the cell surface and pigmentation is dependent on the presence of A-LPS. © 2017 The Authors. Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  9. Modeling the LPS Neutralization Activity of Anti-Endotoxins

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2009-05-01

    Full Text Available Bacterial lipopolysaccharides (LPS, also known as endotoxins, are major structural components of the outer membrane of Gram-negative bacteria that serve as a barrier and protective shield between them and their surrounding environment. LPS is considered to be a major virulence factor as it strongly stimulates the secretion of pro-inflammatory cytokines which mediate the host immune response and culminating in septic shock. Quantitative structure-activity relationship studies of the LPS neutralization activities of anti-endotoxins were performed using charge and quantum chemical descriptors. Artificial neural network implementing the back-propagation algorithm was selected for the multivariate analysis. The predicted activities from leave-one-out cross-validation were well correlated with the experimental values as observed from the correlation coefficient and root mean square error of 0.930 and 0.162, respectively. Similarly, the external testing set also yielded good predictivity with correlation coefficient and root mean square error of 0.983 and 0.130. The model holds great potential for the rational design of novel and robust compounds with enhanced neutralization activity.

  10. Prevention of LPS-Induced Acute Lung Injury in Mice by Progranulin

    Directory of Open Access Journals (Sweden)

    Zhongliang Guo

    2012-01-01

    Full Text Available The acute respiratory distress syndrome (ARDS, a clinical complication of severe acute lung injury (ALI in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Here we carefully evaluated the effect of progranulin (PGRN in treatment of ARDS using the murine model of lipopolysaccharide (LPS-induced ALI. We reported that administration of PGRN maintained the body weight and survival of ALI mice. We revealed that administration of PGRN significantly reduced LPS-induced pulmonary inflammation, as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in bronchoalveolar lavage (BAL fluid. Furthermore, administration of PGRN resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin, and IgM in BAL fluid. Consistently, we revealed a significant reduction of histopathology changes of lung in mice received PGRN treatment. Finally, we showed that PGRN/TNFR2 interaction was crucial for the protective effect of PGRN on the LPS-induced ALI. Our findings strongly demonstrated that PGRN could effectively ameliorate the LPS-induced ALI in mice, suggesting a potential application for PGRN-based therapy to treat clinical ARDS.

  11. Heparinization of alimentation solutions administered through peripheral veins in premature infants: a controlled study.

    Science.gov (United States)

    Alpan, G; Eyal, F; Springer, C; Glick, B; Goder, K; Armon, J

    1984-09-01

    A randomized controlled study was done to determine whether the addition of heparin (1 U/mL) to peripheral intravenous alimentation solutions would affect the incidence of phlebitis and duration of patency of intravenous catheters in premature infants. Twenty-two-gauge Teflon catheters were uniformly used. One hundred five catheters infused with heparin were placed in 13 infants, and 122 catheters were placed in the control group of 13 infants. The time, nature, and incidence of complications were noted for each infusion site. Infusion of heparin was found to double the duration of patency of intravenous catheters and to reduce significantly the incidence of phlebitis. No complications related to the administration of heparin were noted. Heparinization of intravenous alimentation solutions should therefore be considered in premature infants as a means of reducing the work load and incidence of complications associated with peripheral lines.

  12. Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice.

    Science.gov (United States)

    Wohleb, Eric S; Fenn, Ashley M; Pacenta, Ann M; Powell, Nicole D; Sheridan, John F; Godbout, Jonathan P

    2012-09-01

    Repeated social defeat (RSD) activates neuroendocrine pathways that have a significant influence on immunity and behavior. Previous studies from our lab indicate that RSD enhances the inflammatory capacity of CD11b⁺ cells in the brain and promotes anxiety-like behavior in an interleukin (IL)-1 and β-adrenergic receptor-dependent manner. The purpose of this study was to determine the degree to which mice subjected to RSD were more responsive to a secondary immune challenge. Therefore, RSD or control (HCC) mice were injected with saline or lipopolysaccharide (LPS) and activation of brain CD11b⁺ cells and behavioral responses were determined. Peripheral LPS (0.5 mg/kg) injection caused an extended sickness response with exaggerated weight loss and prolonged social withdrawal in socially defeated mice. LPS injection also amplified mRNA expression of IL-1β, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and CD14 in enriched CD11b⁺ cells isolated from socially defeated mice. In addition, IL-1β mRNA levels in enriched CD11b⁺ cells remained elevated in socially defeated mice 24 h and 72 h after LPS. Moreover, microglia and CNS macrophages isolated from socially defeated mice had the highest CD14 expression after LPS injection. Both social defeat and LPS injection increased the percentage of CD11b⁺/CD45(high) macrophages in the brain and the number of inflammatory macrophages (CD11b⁺/CD45(high)/CCR2⁺) was highest in RSD-LPS mice. Anxiety-like behavior was increased by social defeat, but was not exacerbated by the LPS challenge. Nonetheless, reduced locomotor activity and increased social withdrawal were still present in socially defeated mice 72 h after LPS. Last, LPS-induced microglia activation was most evident in the hippocampus of socially defeated mice. Taken together, these findings demonstrate that repeated social defeat enhanced the neuroinflammatory response and caused prolonged sickness following innate immune challenge

  13. Peripheral Inhibitor of AChE, Neostigmine, Prevents the Inflammatory Dependent Suppression of GnRH/LH Secretion during the Follicular Phase of the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Andrzej P. Herman

    2017-01-01

    Full Text Available The study was designed to test the hypothesis that the inhibition of acetylcholinesterase (AChE activity at the periphery by Neostigmine (0.5 mg/animal will be sufficient to prevent inflammatory dependent suppression of the gonadotropin-releasing hormone (GnRH/luteinising hormone (LH secretion in ewes in the follicular phase of the estrous cycle, and this effect will be comparable with the systemic AChE inhibitor, Donepezil (2.5 mg/animal. An immune/inflammatory challenge was induced by peripheral administration of lipopolysaccharide (LPS; 400 ng/kg. Peripheral treatment with Donepezil and Neostigmine prevented the LPS-induced decrease (P<0.05 in LHβ gene expression in the anterior pituitary gland (AP and in LH release. Moreover, Donepezil completely abolished (P<0.05 the suppressory effect of inflammation on GnRH synthesis in the preoptic area, when pretreatment with Neostigmine reduced (P<0.05 the decrease in GnRH content in this hypothalamic structure. Moreover, administration of both AChE inhibitors diminished (P<0.05 the inhibitory effect of LPS treatment on the expression of GnRH receptor in the AP. Our study shows that inflammatory dependent changes in the GnRH/LH secretion may be eliminated or reduced by AChE inhibitors suppressing inflammatory reaction only at the periphery such as Neostigmine, without the need for interfering in the central nervous system.

  14. Differential Cell Sensitivity between OTA and LPS upon Releasing TNF-α

    Directory of Open Access Journals (Sweden)

    Lauy Al-Anati

    2010-06-01

    Full Text Available The release of tumor necrosis factor α (TNF-α by ochratoxin A (OTA was studied in various macrophage and non-macrophage cell lines and compared with E. coli lipopolysaccharide (LPS as a standard TNF-α release agent. Cells were exposed either to 0, 2.5 or 12.5 µmol/L OTA, or to 0.1 µg/mL LPS, for up to 24 h. OTA at 2.5 µmol/L and LPS at 0.1 µg/mL were not toxic to the tested cells as indicated by viability markers. TNF-a was detected in the incubated cell medium of rat Kupffer cells, peritoneal rat macrophages, and the mouse monocyte macrophage cell line J774A.1: TNF-a concentrations were 1,000 pg/mL, 1,560 pg/mL, and 650 pg/mL, respectively, for 2.5 µmol/L OTA exposure and 3,000 pg/mL, 2,600 pg/mL, and 2,115 pg/mL, respectively, for LPS exposure. Rat liver sinusoidal endothelial cells, rat hepatocytes, human HepG2 cells, and mouse L929 cells lacked any cytokine response to OTA, but showed a significant release of TNF-a after LPS exposure, with the exception of HepG2 cells. In non-responsive cell lines, OTA lacked both any activation of NF-κB or the translocation of activated NF-κB to the cell nucleus, i.e., in mouse L929 cells. In J774A.1 cells, OTA mediated TNF-a release via the pRaf/MEK 1/2–NF-κB and p38-NF-κB pathways, whereas LPS used pRaf/MEK 1/2-NF-κB, but not p38-NF-κB pathways. In contrast, in L929 cells, LPS used other pathways to activate NF-κB. Our data indicate that only macrophages and macrophage derived cells respond to OTA and are considered as sources for TNF-a release upon OTA exposure.

  15. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    International Nuclear Information System (INIS)

    Yu, Lingling; Zhao, Yingmin; Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin; Gu, Jian; Yu, Duonan

    2016-01-01

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  16. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingling [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Zhao, Yingmin [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin [Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Gu, Jian [Department of Hematology, Yangzhou University School of Clinical Medicine, Yangzhou 225001 (China); Yu, Duonan, E-mail: duonan@yahoo.com [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou 225001 (China); Institute of Comparative Medicine, Yangzhou University, Yangzhou 225001 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001 (China)

    2016-06-10

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  17. The effect of 60Co γ-rays on con A and LPS induced lymphocytes

    International Nuclear Information System (INIS)

    Su Liaoyuan; Liu Keliang; Ma Xiangrui

    1987-01-01

    The effect of 60 Co γ-rays on lymphocytes induced by Con A and LPS and the relationship between these two groups of cells were investigated by means of 3 H-TdR incorporation. The study showed that in vitro, Con A cells were able to promote the inducing effect of LPS to B cells. When Con A cells were irradiated by 10 Gy γ-rays, the 3 H-TdR incorporation value reduced significantly and the stimulating effect of Con A cells on LPS cells disappeared. Having been irradiated by γ-rays, LPS cells were not be able to be stimulated by normal Con A cells. When the groups of cells were incubated together after irradiation, the synergistic function disappeared, furthermore the suppressive effect of Con A cells on LPS cells emerged. When these two groups of cells were investigated by means of agar culture, the suppressive effect of 10 Gy γ-rays on lymphocytes colony formation was more obvious. Tests on 7 patients who were suffering from carcinoma of nasoparynx showed that after a course of treatment with 60 Co γ-rays, the incorporation value in Con A cells became much smaller, the stimulating effect of Con A cells on LPS cells disappeared. LPS cells could not be stimulated by normal Con A cells. The study demonstrated that the radiosensitivity of Con A cells is higher than that of LPS cells

  18. Preservation of renal blood flow by the antioxidant EUK-134 in LPS-treated pigs.

    Science.gov (United States)

    Magder, Sheldon; Parthenis, Dimitrios G; Ghouleh, Imad Al

    2015-03-25

    Sepsis is associated with an increase in reactive oxygen species (ROS), however, the precise role of ROS in the septic process remains unknown. We hypothesized that treatment with EUK-134 (manganese-3-methoxy N,N'-bis(salicyclidene)ethylene-diamine chloride), a compound with superoxide dismutase and catalase activity, attenuates the vascular manifestations of sepsis in vivo. Pigs were instrumented to measure cardiac output and blood flow in renal, superior mesenteric and femoral arteries, and portal vein. Animals were treated with saline (control), lipopolysaccharide (LPS; 10 µg·kg-1·h-1), EUK-134, or EUK-134 plus LPS. Results show that an LPS-induced increase in pulmonary artery pressure (PAP) as well as a trend towards lower blood pressure (BP) were both attenuated by EUK-134. Renal blood flow decreased with LPS whereas superior mesenteric, portal and femoral flows did not change. Importantly, EUK-134 decreased the LPS-induced fall in renal blood flow and this was associated with a corresponding decrease in LPS-induced protein nitrotyrosinylation in the kidney. PO2, pH, base excess and systemic vascular resistance fell with LPS and were unaltered by EUK-134. EUK-134 also had no effect on LPS-associated increase in CO. Interestingly, EUK-134 alone resulted in higher CO, BP, PAP, mean circulatory filling pressure, and portal flow than controls. Taken together, these data support a protective role for EUK-134 in the renal circulation in sepsis.

  19. Neurotoxic kynurenine metabolism is increased in the dorsal hippocampus and drives distinct depressive behaviors during inflammation.

    Science.gov (United States)

    Parrott, J M; Redus, L; Santana-Coelho, D; Morales, J; Gao, X; O'Connor, J C

    2016-10-18

    The kynurenine pathway of tryptophan metabolism has an important role in mediating the behavioral effects of inflammation, which has implications in understanding neuropsychiatric comorbidity and for the development of novel therapies. Inhibition of the rate-limiting enzyme, indoleamine 2,3-dioxygenase (IDO), prevents the development of many of these inflammation-induced preclinical behaviors. However, dysregulation in the balance of downstream metabolism, where neuroactive kynurenines are generated, is hypothesized to be a functionally important pathogenic feature of inflammation-induced depression. Here we utilized two novel transgenic mouse strains to directly test the hypothesis that neurotoxic kynurenine metabolism causes depressive-like behavior following peripheral immune activation. Wild-type (WT) or kynurenine 3-monooxygenase (KMO)-deficient (KMO -/- ) mice were administered either lipopolysaccharide (LPS, 0.5 mg kg -1 ) or saline intraperitoneally. Depressive-like behavior was measured across multiple domains 24 h after immune challenge. LPS precipitated a robust depressive-like phenotype, but KMO -/- mice were specifically protected from LPS-induced immobility in the tail suspension test (TST) and reduced spontaneous alternations in the Y-maze. Direct administration of 3-hydroxykynurenine, the metabolic product of KMO, caused a dose-dependent increase in depressive-like behaviors. Mice with targeted deletion of 3-hydroxyanthranilic acid dioxygenase (HAAO), the enzyme that generates quinolinic acid, were similarly challenged with LPS. Similar to KMO -/- mice, LPS failed to increase immobility during the TST. Whereas kynurenine metabolism was generally increased in behaviorally salient brain regions, a distinct shift toward KMO-dependent kynurenine metabolism occurred in the dorsal hippocampus in response to LPS. Together, these results demonstrate that KMO is a pivotal mediator of hippocampal-dependent depressive-like behaviors induced by peripheral

  20. Role of xanthine oxidase and reactive oxygen intermediates in LPS- and TNF-induced pulmonary edema.

    Science.gov (United States)

    Faggioni, R; Gatti, S; Demitri, M T; Delgado, R; Echtenacher, B; Gnocchi, P; Heremans, H; Ghezzi, P

    1994-03-01

    We studied the role of reactive oxygen intermediates (ROI) in lipopolysaccharide (LPS)-induced pulmonary edema. LPS treatment (600 micrograms/mouse, IP) was associated with a marked induction of the superoxide-generating enzyme xanthine oxidase (XO) in serum and lung. Pretreatment with the antioxidant N-acetylcysteine (NAC)--1 gm/kg orally, 45 minutes before LPS--or with the XO inhibitor allopurinol (AP)--50 mg/kg orally at -1 hour and +3 hours--was protective. On the other hand nonsteroidal antiinflammatory drugs (ibuprofen, indomethacin, and nordihydroguaiaretic acid) were ineffective. These data suggested that XO might be involved in the induction of pulmonary damage by LPS. However, treatment with the interferon inducer polyriboinosylic-polyribocytidylic acid, although inducing XO to the same extent as LPS, did not cause any pulmonary edema, indicating that XO is not sufficient for this toxicity of LPS. To define the possible role of cytokines, we studied the effect of direct administration of LPS (600 micrograms/mouse, IP), tumor necrosis factor (TNF, 2.5 or 50 micrograms/mouse, IV), interleukin-1 (IL-1 beta, 2.5 micrograms/mouse, IV), interferon-gamma (IFN-gamma, 2.5 micrograms/mouse, IV), or their combination at 2.5 micrograms each. In addition to LPS, only TNF at the highest dose induced pulmonary edema 24 hours later. LPS-induced pulmonary edema was partially inhibited by anti-IFN-gamma antibodies but not by anti-TNF antibodies, anti-IL-1 beta antibodies, or IL-1 receptor antagonist (IL-1Ra).

  1. Phase 1 testing of detoxified LPS/group B meningococcal outer membrane protein vaccine with and without synthetic CPG 7909 adjuvant for the prevention and treatment of sepsis.

    Science.gov (United States)

    Cross, Alan S; Greenberg, Nancy; Billington, Melissa; Zhang, Lei; DeFilippi, Christopher; May, Ryan C; Bajwa, Kanwaldeep K

    2015-11-27

    Gram-negative bacteria (GNB) are a leading cause of nosocomial infection and sepsis. Increasing multi-antibiotic resistance has left clinicians with fewer therapeutic options. Antibodies to GNB lipopolysaccharide (LPS, or endotoxin) have reduced morbidity and mortality as a result of infection and are not subject to the resistance mechanisms deployed by bacteria against antibiotics. In this phase 1 study, we administered a vaccine that elicits antibodies against a highly conserved portion of LPS with and without a CpG oligodeoxynucleotide (ODN) TLR9 agonist as adjuvant. A vaccine composed of the detoxified LPS (dLPS) from E. coli O111:B4 (J5 mutant) non-covalently complexed to group B meningococcal outer membrane protein (OMP). Twenty healthy adult subjects received three doses at 0, 29 and 59 days of antigen (10 μg dLPS) with or without CPG 7909 (250 or 500 μg). Subjects were evaluated for local and systemic adverse effects and laboratory findings. Anti-J5 LPS IgG and IgM antibody levels were measured by electrochemiluminesence. Due to premature study termination, not all subjects received all three doses. All vaccine formulations were well-tolerated with no local or systemic events of greater than moderate severity. The vaccine alone group achieved a ≥ 4-fold "responder" response in IgG and IgM antibody in only one of 6 subjects. In contrast, the vaccine plus CPG 7909 groups appeared to have earlier and more sustained (to 180 days) responses, greater mean-fold increases, and a higher proportion of "responders" achieving ≥ 4-fold increases over baseline. Although the study was halted before all enrolled subjects received all three doses, the J5dLPS/OMP vaccine, with or without CpG adjuvant, was safe and well-tolerated. The inclusion of CpG increased the number of subjects with a ≥ 4-fold antibody response, evident even after the second of three planned doses. A vaccine comprising J5dLPS/OMP antigen with CpG adjuvant merits further investigation. Clinical

  2. DMPD: LPS induction of gene expression in human monocytes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11257452 LPS induction of gene expression in human monocytes. Guha M, Mackman N. Ce...ll Signal. 2001 Feb;13(2):85-94. (.png) (.svg) (.html) (.csml) Show LPS induction of gene expression in human... monocytes. PubmedID 11257452 Title LPS induction of gene expression in human monocytes. Authors Guha M, Ma

  3. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    Science.gov (United States)

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment. Copyright © 2015. Published by Elsevier B.V.

  4. Modulation of immune response by bacterial lipopolysaccharide (LPS): cellular basis of stimulatory and inhibitory effects of LPS on the in vitro IGM antibody response to a T-dependent antigen

    International Nuclear Information System (INIS)

    Uchiyama, T.; Jacobs, D.M.

    1978-01-01

    The role of thymus-derived lymphocytes (T cells) in LPS modulation of T cell-development antibody responses has been investigated. We have assessed the effect of LPS on the primary anti-TNP response to TNP-SRBC of cultures of whole spleen cells or T cell-depleted spleen cells that were supplemented with various subpopulations of carrier-primed (SRBC) spleen cells. The TNP-PFC response was enhanced in the presence of irradiated SRBC-primed spleen cells by addition of 0.16 to 20 μg/ml LPS, but inhibition was observed when irradiation of primed cells was omitted. Enhancement but no inhibition occurred when added primed cells were first passed through a nylon wool column. LPS-mediated enhancement was dependent on a T cell in the primed population. These results suggest that LPS modulation of antibody synthesis is dependent on two populations of antigen-specific cells that have opposing effects on B cell responses to a T-dependent antigen: a helper cell that is irradiation resistant, nonadherent to nylon wool, and sensitive to anti-T cell serum, and a suppressor cell that is irradiation sensitive and adherent to nylon wool

  5. Comparative conventional- and quantum dot-labelling strategies for LPS binding site detection in Arabidopsis thaliana mesophyll protoplasts

    Directory of Open Access Journals (Sweden)

    Londiwe Siphephise Mgcina

    2015-05-01

    Full Text Available Lipopolysaccharide (LPS from Gram-negative bacteria is recognized as a microbe-associated molecular pattern (MAMP and not only induces an innate immune response in plants, but also stimulates the development of characteristic defense responses. However, identification and characterization of a cell surface LPS-receptor/binding site, as described in mammals, remains elusive in plants. As an amphiphilic, macromolecular lipoglycan, intact LPS potentially contains three MAMP-active regions, represented by the O-polysaccharide chain, the core and the lipid A. Binding site studies with intact labelled LPS were conducted in Arabidopsis thaliana protoplasts and quantified using flow cytometry fluorescence changes. Qdots, which allow non-covalent, hydrophobic labelling were used as a novel strategy in this study and compared to covalent, hydrophilic labelling with Alexa 488. Affinity for LPS-binding sites was clearly demonstrated by concentration-, temperature- and time-dependent increases in protoplast fluorescence following treatment with the labelled LPS. Moreover, this induced fluorescence increase was convincingly reduced following pre-treatment with excess unlabeled LPS, thereby indicating reversibility of LPS binding. Inhibition of the binding process is also reported using endo- and exocytosis inhibitors. Here, we present evidence for the anticipated presence of LPS-specific binding sites in Arabidopsis protoplasts, and furthermore propose Qdots as a more sensitive LPS-labelling strategy in comparison to the conventional Alexa 488 hydrazide label for binding studies.

  6. Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    1999-01-01

    following LPS stimulation, representing an ex vivo model of sepsis. Levels of tumour necrosis factor-alpha (TNF-alpha), IL-1 beta and IL-6 in whole blood supernatants were measured after in vitro LPS stimulation for 24 h in 168 elderly humans aged 81 years from the 1914 cohort in Glostrup, Denmark and in 91...... of proinflammatory cytokines compared with young men, but this difference was blurred by ageing. No relation was found between circulating plasma levels of TNF-alpha and levels after in vitro LPS stimulation. In conclusion, decreased production of TNF-alpha and IL-1 beta after exposure to LPS may reflect impaired...

  7. Catheter indwell time and phlebitis development during peripheral intravenous catheter administration.

    Science.gov (United States)

    Pasalioglu, Kadriye Burcu; Kaya, Hatice

    2014-07-01

    Intravenous catheters have been indispensable tools of modern medicine. Although intravenous applications can be used for a multitude of purposes, these applications may cause complications, some of which have serious effects. Of these complications, the most commonly observed is phlebitis. This study was conducted to determine the effect of catheter indwell time on phlebitis development during peripheral intravenous catheter administration. This study determined the effect of catheter indwell time on phlebitis development during peripheral intravenous catheter administration. The study included a total of 103 individuals who were administered 439 catheters and satisfied the study enrollment criteria at one infectious diseases clinic in Istanbul/Turkey. Data were compiled from Patient Information Forms, Peripheral Intravenous Catheter and Therapy Information Forms, reported grades based on the Visual Infusion Phlebitis Assessment Scale, and Peripheral Intravenous Catheter Nurse Observation Forms. The data were analyzed using SPSS. Results : The mean patient age was 53.75±15.54 (standard deviation) years, and 59.2% of the study participants were men. Phlebitis was detected in 41.2% of peripheral intravenous catheters, and the rate decreased with increased catheter indwell time. Analyses showed that catheter indwell time, antibiotic usage, sex, and catheterization sites were significantly associated with development of phlebitis. The results of this study show that catheters can be used for longer periods of time when administered under optimal conditions and with appropriate surveillance.

  8. Protective Effect of Phillyrin on Lethal LPS-Induced Neutrophil Inflammation in Zebrafish

    Directory of Open Access Journals (Sweden)

    Liling Yang

    2017-10-01

    Full Text Available Background/Aims: Forsythia suspensa Vahl. (Oleaceae fruits are widely used in traditional Chinese medicine to treat pneumonia, typhoid, dysentery, ulcers and oedema. Antibacterial and anti-inflammatory activities have been reported for phillyrin (PHN, the main ingredient in Forsythia suspensa Vahl fruits, in vitro. However, the underlying mechanisms in vivo remain poorly defined. In this study, we discovered that PHN exerted potent anti-inflammatory effects in lethal LPS-induced neutrophil inflammation by suppressing the MyD88-dependent signalling pathway in zebrafish. Methods: LPS-yolk microinjection was used to induce a lethal LPS-infected zebrafish model. The effect of PHN on the survival of zebrafish challenged with lethal LPS was evaluated using survival analysis. The effect of PHN on neutrophil inflammation grading in vivo was assessed by tracking neutrophils with a transgenic line. The effects of PHN on neutrophil production and migration were analysed by SB+ cell counts during consecutive hours after modelling. Additionally, key cytokines and members of the MyD88 signalling pathway that are involved in inflammatory response were detected using quantitative RT-PCR. To assess gene expression changes during consecutive hours after modelling, the IL-1β, IL-6, TNF-α, MyD88, TRIF, ERK1/2, JNK, IκBa and NF-κB expression levels were measured. Results: PHN could protect zebrafish against a lethal LPS challenge in a dose-dependent manner, as indicated by decreased neutrophil infltration, reduced tissue necrosis and increased survival rates. Up-regulated IL-1β, IL-6 and TNF-α expression also showed the same tendencies of depression by PHN. Critically, PHN significantly inhibited the LPS-induced activation of MyD88, IκBa, and NF-κB but did not affect the expression of ERK1/2 MAPKs or JNK MAPKs in LPS-stimulated zebrafish. Additionally, PHN regulated the MyD88/IκBα/NF-κB signalling pathway by controlling IκBα, IL-1β, IL-6, and TNF

  9. IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells.

    Science.gov (United States)

    Onnureddy, K; Ravinder; Onteru, Suneel Kumar; Singh, Dheer

    2015-03-01

    Interaction between immune and endocrine system is a diverse process influencing cellular function and homeostasis in animals. Negative energy balance (NEB) during postpartum period in dairy animals usually suppresses these systems resulting in reproductive tract infection and infertility. These negative effects could be due to competition among endocrine and immune signaling pathways for common signaling molecules. The present work studied the effect of IGF-1 (50 ng/ml) on LPS (1 μg/ml) mediated pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) and aromatase (CYP19A1) genes' expressions as well as proliferation of buffalo granulosa cells. The crosstalk between LPS and IGF-1 was also demonstrated through studying the activities of downstream signaling molecules (ERK1/2, Akt, NF-κB) by western blot and immunostaining. Gene expression analysis showed that IGF-1 significantly reduced the LPS induced expression of IL-1β, TNF-α and IL-6. LPS alone inhibited the CYP19A1 expression. However, co-treatment with IGF-1 reversed the inhibitory effect of LPS on CYP19A1 expression. LPS alone did not affect granulosa cell proliferation, but co-treatment with IGF-1, and IGF-1 alone enhanced the proliferation. Western blot results demonstrated that LPS caused the nuclear translocation of the NF-κB and increased the phosphorylation of ERK1/2 and Akt maximum at 15 min and 60 min, respectively. Nonetheless, co-treatment with IGF-1 delayed LPS induced phosphorylation of ERK1/2 (peak at 120 min), while promoting early Akt phosphorylation (peak at 5 min) with no effect on NF-κB translocation. Overall, IGF-1 delayed and reversed the effects of LPS, suggesting that high IGF-1 levels may combat infection during critical periods like NEB in postpartum dairy animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    Science.gov (United States)

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  11. An LPS based method to stimulate the inflammatory response in growing rabbits

    Directory of Open Access Journals (Sweden)

    C. Knudsen

    2016-03-01

    Full Text Available Reliable indicators are needed to study the relationship between the inflammatory response of the growing rabbit and breeding factors such as feeding practices. A lipopolysaccharide (LPS stimulation of the inflammatory response is a valid model of bacterial infection in laboratory animals, but no data on the growing rabbit has yet been obtained. The aim of our study was to determine an adequate dose of LPS to inject in growing rabbits in order to elicit a measurable inflammatory response in terms of plasmatic TNF-α and rise in rectal temperature. Three trials were carried out in this study: 2 development trials, the first (n=18 testing 3 doses of LPS (2, 10, 50 μg/kg on the plasmatic TNF-α concentration at 90 and 180 min post injection, and the second trial (n=36 testing 4 doses of LPS (50, 75, 100 and 150 μg/kg on the TNF-α concentration 90 min post injection and the rectal temperature. The third trial was designed as an application of the method in a large number of animals (n=32 to study the effect of feed restriction and dietary increase in digestible fibre to starch ratio on the LPS inflammatory challenge response of growing rabbits. In development trials 1 and 2, animals had measurable TNF-α responses for doses higher than 10 μg/kg at 90 min post injection, with an increase in the number of responsive animals along with the dose. High variability was observed in TNF-α concentrations in responsive animals (coefficient of variation from 44 to 94%. Animals demonstrated an increase in rectal temperature for all doses injected in the range of 50-150 μg/kg from 90 min post injection with a peak at 180 min (ΔTr =1.9±0.7°C. Our observations led us to choose a dose of 100 μg/kg of LPS for our following studies, as the responses in terms of temperature and TNF-α were the most satisfactory. The application of our LPS injection protocol to our nutritional study enabled us to validate our protocol (ΔTr =1.1±0.7°C at 180 min and 15

  12. Increase in hypothalamic AMPK phosphorylation induced by prolonged exposure to LPS involves ghrelin and CB1R signaling.

    Science.gov (United States)

    Rivas, Priscila M S; Vechiato, Fernanda M V; Borges, Beatriz C; Rorato, Rodrigo; Antunes-Rodrigues, Jose; Elias, Lucila L K

    2017-07-01

    Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100μg/kg body weight, ip) or repeated injections of LPS over 6days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200ng/μl in 5μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. IL-12 Inhibits Lipopolysaccharide Stimulated Osteoclastogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Masako Yoshimatsu

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is related to osteoclastogenesis in osteolytic diseases. Interleukin- (IL- 12 is an inflammatory cytokine that plays a critical role in host defense. In this study, we investigated the effects of IL-12 on LPS-induced osteoclastogenesis. LPS was administered with or without IL-12 into the supracalvariae of mice, and alterations in the calvarial suture were evaluated histochemically. The number of osteoclasts in the calvarial suture and the mRNA level of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, were lower in mice administered LPS with IL-12 than in mice administered LPS alone. The serum level of tartrate-resistant acid phosphatase 5b (TRACP 5b, a bone resorption marker, was also lower in mice administered LPS with IL-12 than in mice administered LPS alone. These results revealed that IL-12 might inhibit LPS-induced osteoclastogenesis and bone resorption. In TdT-mediated dUTP-biotin nick end-labeling (TUNEL assays, apoptotic changes in cells were recognized in the calvarial suture in mice administered LPS with IL-12. Furthermore, the mRNA levels of both Fas and FasL were increased in mice administered LPS with IL-12. Taken together, the findings demonstrate that LPS-induced osteoclastogenesis is inhibited by IL-12 and that this might arise through apoptotic changes in osteoclastogenesis-related cells induced by Fas/FasL interactions.

  14. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    International Nuclear Information System (INIS)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-01-01

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  15. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela [Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Gutiérrez, Silvina; Torres, Alicia Inés [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); De Paul, Ana Lucía, E-mail: adepaul@cmefcm.uncor.edu [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina)

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  16. The LPS-induced neutrophil recruitment into rat air pouches is mediated by TNFα: likely macrophage origin

    Directory of Open Access Journals (Sweden)

    C-D. Arreto

    1997-01-01

    Full Text Available The role of resident cells during the lipopolysaccharide (LPS-induced neutrophil recruitment into rat air pouches was investigated. In this model, LPS (Escherichia coli, O55: B5 strain; 2–2000 ng induced a dose– and time-dependent neutrophil recruitment accompanied by the generation of a tumour necrosis factor-α (TNFα-like activity. Dexamethasone (0.05–5 mug and cycloheximide (6 ng, injected 2 h before LPS into the pouches, inhibited the neutrophil recruitment and the generation of the TNFα-like activity, while the H1-receptor antagonist mepyramine (1 and 4 mg/kg, i.p., 0.5 h before LPS and the PAF-receptor antagonist WEB 2170 (0.05 and 1 mg/kg, i.p., 0.5 h before LPS had no effect. Purified alveolar macrophages (AM were used to replenish the pouches of cycloheximide-treated recipient rats. AM provided by PBS-treated animals led to the recovery of the LPS-induced neutrophil recruitment and of the TNFα-like formation contrasting with those from cycloheximide-treated animals (1 mg/kg, i.p.. When delivered in situ, liposome-encapsulated clodronate, a macrophage depletor, significantly impaired both the LPSinduced neutrophil recruitment and the TNFα-like activity. An anti-murine TNFα polyclonal antibody (0.5 h before LPS was also effective. These results emphasize the pivotal role of macrophages for LPS-induced neutrophil recruitment via the formation of TNFα.

  17. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Ian James Martins

    2015-12-01

    Full Text Available Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.

  18. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  19. Inhibition of TNF-alpha production contributes to the attenuation of LPS-induced hypophagia by pentoxifylline.

    Science.gov (United States)

    Porter, M H; Hrupka, B J; Altreuther, G; Arnold, M; Langhans, W

    2000-12-01

    Cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) are assumed to mediate anorexia during bacterial infections. To improve our understanding of the role that these two cytokines serve in mediating infection during anorexia, we investigated the ability of pentoxifylline (PTX), a potent inhibitor of TNF-alpha production, to block the anorectic effects of the bacterial products lipopolysaccharide (LPS) and muramyl dipeptide (MDP) in rats. Intraperitoneally injected PTX (100 mg/kg body wt) completely eliminated the anorectic effect of intraperitoneally injected LPS (100 microg/kg body wt) and attenuated the anorectic effect of a higher dose of intraperitoneally injected LPS (250 microg/kg body wt). Concurrently, PTX pretreatment suppressed low-dose LPS-induced TNF-alpha production by more than 95% and IL-1beta production 39%, as measured by ELISA. Similarly, high-dose LPS-induced TNF-alpha production was reduced by approximately 90%. PTX administration also attenuated the tolerance that is normally observed with a second injection of LPS. In addition, PTX pretreatment attenuated the hypophagic effect of intraperitoneally injected MDP (2 mg/kg body wt) but had no effect on the anorectic response to intraperitoneally injected recombinant human TNF-alpha (150 ug/kg body wt). The results suggest that suppression of TNF-alpha production is sufficient to attenuate LPS- and MDP-induced anorexia. This is consistent with the hypothesis that TNF-alpha plays a major role in the anorexia associated with bacterial infection.

  20. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation.

    Science.gov (United States)

    Liang, Wen; Lindeman, Jan H; Menke, Aswin L; Koonen, Debby P; Morrison, Martine; Havekes, Louis M; van den Hoek, Anita M; Kleemann, Robert

    2014-05-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components

  1. Contrast media and pain during peripheral arteriography

    International Nuclear Information System (INIS)

    Hagen, B.; Clauss, W.

    1982-01-01

    Some contrast media (CM) were for inducing pain and heat by an intraindividual comparison in 60 patients with occlusive peripheral arterial disease. A dolorimeter and calorimeter (graduated scales) were employed to register and differentiate the subjective sensations experienced by the patient, while objective reactions (peripheral motoric reactions, circulatory parameters) were recorded by the trialist at the same time. Ioxaglate, an ionic dimer, was distinctly superior to Ioglicinate, an ionic CM. However, the differences were less marked in the comparison with a Ioglicinate-Lidocaine-mixture. Emphasis is given to the fact osmolality is the most important parameter in the development of pain. Potential points at which the intraarterially administered local anaesthetic could attack are discussed. The clinical conclusions include consideration of the cost-effectivity ratios of the tested CM's and a discussion of whether or not modern stanards still justify general anaesthesia for peripheral angiography. (orig.)

  2. EOSINOPHIL INFLUX TO THE NASAL AIRWAY FOLLOWING LOCAL, LOW-LEVEL LPS CHALLENGE IN HUMANS

    Science.gov (United States)

    Background: Recent obervations show that atopic asthmatic subjects have increased sensitivity to respirable endotoxin (or LPS) compared with normal persons. In vitro studies demonstrate that LPS enchances eosinophil survival. These obervations suggest that the effects of inhal...

  3. Suppression of LPS-induced inflammatory responses in macrophages infected with Leishmania

    Directory of Open Access Journals (Sweden)

    Kelly Ben L

    2010-02-01

    Full Text Available Abstract Background Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen Leishmania has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of Leishmania-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease. Methods We explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of Leishmania using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of Leishmania uptake on LPS-induced cytokine expression with uptake of inert latex beads. Results Whilst Leishmania uptake alone did not induce significant levels of any cytokine analysed in this study, Leishmania uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, L. amazonensis was generally more suppressive than L. major. We also found that other LPS-induced proinflammatory cytokines, such as IL-1α, TNF-α and the chemokines MIP-1α and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during Leishmania uptake, in a parasite-specific manner. Conclusions During uptake by macrophages, Leishmania evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, Leishmania suppresses certain proinflammatory cytokine responses in a parasite

  4. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  5. fLPS: Fast discovery of compositional biases for the protein universe.

    Science.gov (United States)

    Harrison, Paul M

    2017-11-13

    Proteins often contain regions that are compositionally biased (CB), i.e., they are made from a small subset of amino-acid residue types. These CB regions can be functionally important, e.g., the prion-forming and prion-like regions that are rich in asparagine and glutamine residues. Here I report a new program fLPS that can rapidly annotate CB regions. It discovers both single-residue and multiple-residue biases. It works through a process of probability minimization. First, contigs are constructed for each amino-acid type out of sequence windows with a low degree of bias; second, these contigs are searched exhaustively for low-probability subsequences (LPSs); third, such LPSs are iteratively assessed for merger into possible multiple-residue biases. At each of these stages, efficiency measures are taken to avoid or delay probability calculations unless/until they are necessary. On a current desktop workstation, the fLPS algorithm can annotate the biased regions of the yeast proteome (>5700 sequences) in 65 million sequences) in as little as ~1 h, which is >2 times faster than the commonly used program SEG, using default parameters. fLPS discovers both shorter CB regions (of the sort that are often termed 'low-complexity sequence'), and milder biases that may only be detectable over long tracts of sequence. fLPS can readily handle very large protein data sets, such as might come from metagenomics projects. It is useful in searching for proteins with similar CB regions, and for making functional inferences about CB regions for a protein of interest. The fLPS package is available from: http://biology.mcgill.ca/faculty/harrison/flps.html , or https://github.com/pmharrison/flps , or is a supplement to this article.

  6. Involvement of mitogen-activated protein kinases and NFκB in LPS-induced CD40 expression on human monocytic cells

    International Nuclear Information System (INIS)

    Wu Weidong; Alexis, Neil E.; Chen Xian; Bromberg, Philip A.; Peden, David B.

    2008-01-01

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFκB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFκB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFκB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFκB activation, and CD40 expression. Moreover, blockage of MAPK and NFκB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFκB

  7. Peripheral Injection of SB203580 Inhibits the Inflammatory-Dependent Synthesis of Proinflammatory Cytokines in the Hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrzej P. Herman

    2014-01-01

    Full Text Available The study was designed to determine the effects of peripheral injection of SB203580 on the synthesis of interleukin- (IL- 1β, IL-6, and tumor necrosis factor (TNF α in the hypothalamus of ewes during prolonged inflammation. Inflammation was induced by the administration of lipopolysaccharide (LPS (400 ng/kg over 7 days. SB203580 is a selective ATP-competitive inhibitor of the p38 mitogen-activated protein kinase (MAPK, which is involved in the regulation of proinflammatory cytokines IL-1β, IL-6 and TNFα synthesis. Intravenous injection of SB203580 successfully inhibited (P<0.01 synthesis of IL-1β and reduced (P<0.01 the production of IL-6 in the hypothalamus. The p38 MAPK inhibitor decreased (P<0.01 gene expression of TNFα but its effect was not observed at the level of TNFα protein synthesis. SB203580 also reduced (P<0.01 LPS-stimulated IL-1 receptor type 1 gene expression. The conclusion that inhibition of p38 MAPK blocks LPS-induced proinflammatory cytokine synthesis seems to initiate new perspectives in the treatment of chronic inflammatory diseases also within the central nervous system. However, potential proinflammatory effects of SB203580 treatment suggest that all therapies using p38 MAPK inhibitors should be introduced very carefully with analysis of all expected and unexpected consequences of treatment.

  8. Efek ekstrak daun singkong (Manihot utilissima terhadap ekspresi COX-2 pada monosit yang dipapar LPS E.coli (The effect of Manihot utilissima extracts on COX-2 expression of monocytes induced by LPS E. coli

    Directory of Open Access Journals (Sweden)

    Zahara Meilawaty

    2013-12-01

    Full Text Available Background: Periodontal disease is a common and widespread disease in the community. Gram negative bacteria have a role inperiodontitis. These bacteria secrete a variety of products such as endotoxin lipopolysaccharide (LPS, which causes the occurrenceof inflammation or infection. The body defense responses are neutrophils and mononuclear cells (monocytes and macrophages. Inresponse to defense mechanism, the body will be expressed enzyme cyclooxygenase (COX which functions convert arachidonic acidto prostaglandins. Cassava leaf cells known to play a role in reducing inflammation, but the mechanism for inhibiting COX-2, is notknown. Purpose: The study was aimed to determine the effect of cassava leaf extract (Manihot utilissima on expression of enzyme COX-2 in monocytes which were exposed by LPS E. coli. Methods: This study was in vitro experimental studies with the design of posttestonly control group design. The sample was the cassava leaves extract (Manihot utilissima at concentration of 12.5 % and 25 %. Theexpression of COX-2 was determined by immunocytochemistry method. Isolated monocytes were incubated in cassava leaf extract, andthen exposed to LPS, after washing imunostaning procedure was performed using a monoclonal antibody (MAb anti-human COX-2.The research data was the number of monocytes that express COX-2. Results: Expression of COX-2 in the group cassava leaf extractwas higher than the group that induced by LPS E. coli only. Conclusion: Cassava leaf extract did not inhibit the expression of COX-2in monocytes which were exposed by LPS E. coli.Latar belakang: Penyakit periodontal merupakan penyakit umum dan tersebar luas di masyarakat. Bakteri yang banyak berperanpada periodontitis adalah Gram negatif. Bakteri ini mengeluarkan berbagai produk antara lain endotoksin lipopolisakarida (LPS yangmenyebabkan inflamasi atau infeksi. Respon pertahanan tubuh pertama adalah netrofil dan sel mononuklear (monosit dan makrofag.Pada respon

  9. LPS Promotes Vascular Smooth Muscle Cells Proliferation Through the TLR4/Rac1/Akt Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Qianran Yin

    2017-12-01

    Full Text Available Background/Aims: Lipopolysaccharide (LPS is a potent activator of vascular smooth muscle cells (VSMCs proliferation, but the underlying mechanism remains unknown. In this study, we knocked down Toll-like receptor 4 (TLR4 and Ras-related C3 botulinum toxin substrate 1 (Rac1 expression using small interfering RNA (siRNA in order to investigate the effects and possible mechanisms of LPS-induced VSMCs proliferation. Methods: VSMCs proliferation was monitored by 5-ethynyl-2’-deoxyuridine staining, and Rac1 activity was measured via Glutathione S-transferase pull-down assay. mRNAs encoding proliferating cell nuclear antigen (PCNA, smooth muscle 22α (SM22α, myosin heavy chain (MYH and transient receptor potential channel 1 (TRPC1 were detected by qRT-PCR. The expression of total Akt, p-Akt (308, p-Akt (473, SM22α, MYH and TRPC1 protein was analysed by Western blot. Results: Treatment with TLR4 siRNA (siTLR4 or Rac1 siRNA (siRac1 significantly decreased LPS-induced VSMCs proliferation. Moreover, LPS-induced activation of Rac1 through TLR4 was observed. Western blot analysis revealed that transfection with siTLR4 or siRac1 inhibited LPS-induced Akt phosphorylation. We discovered that LPS stimulated VSMCs proliferation via phenotypic modulation and that this effect was partially inhibited by pre-treatment with siTLR4 or siRac1. Further, TLR4 and Rac1 are involved in LPS-induced activation of TRPC1. Conclusion: This study suggests that LPS exerts an effect on VSMCs proliferation and that the TLR4/Rac1/Akt signalling pathway mediates this effect.

  10. Supramolecular structure of enterobacterial wild-type lipopolysaccharides (LPS), fractions thereof, and their neutralization by Pep19-2.5.

    Science.gov (United States)

    Brandenburg, Klaus; Heinbockel, Lena; Correa, Wilmar; Fukuoka, Satoshi; Gutsmann, Thomas; Zähringer, Ulrich; Koch, Michel H J

    2016-04-01

    Lipopolysaccharides (LPS) belong to the strongest immune-modulating compounds known in nature, and are often described as pathogen-associated molecular patterns (PAMPs). In particular, at higher concentrations they are responsible for sepsis and the septic shock syndrome associated with high lethality. Since most data are indicative that LPS aggregates are the bioactive units, their supramolecular structures are considered to be of outmost relevance for deciphering the molecular mechanisms of its bioactivity. So far, however, most of the data available addressing this issue, were published only for the lipid part (lipid A) and the core-oligosaccharide containing rough LPS, representing the bioactive unit. By contrast, it is well known that most of the LPS specimen identified in natural habitats contain the smooth-form (S-form) LPS, which carry additionally a high-molecular polysaccharide (O-chain). To fill this lacuna and going into a more natural system, here various wild-type (smooth form) LPS including also some LPS fractions were investigated by small-angle X-ray scattering with synchrotron radiation to analyze their aggregate structure. Furthermore, the influence of a recently designed synthetic anti-LPS peptide (SALP) Pep19-2.5 on the aggregate structure, on the binding thermodynamics, and on the cytokine-inducing activity of LPS were characterized, showing defined aggregate changes, high affinity binding and inhibition of cytokine secretion. The data obtained are suitable to refine our view on the preferences of LPS for non-lamellar structures, representing the highest bioactive forms which can be significantly influenced by the binding with neutralizing peptides such as Pep19-2.5. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Directory of Open Access Journals (Sweden)

    Adeline M Hajjar

    Full Text Available Although lipopolysaccharide (LPS stimulation through the Toll-like receptor (TLR-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  12. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Science.gov (United States)

    Hajjar, Adeline M; Ernst, Robert K; Fortuno, Edgardo S; Brasfield, Alicia S; Yam, Cathy S; Newlon, Lindsay A; Kollmann, Tobias R; Miller, Samuel I; Wilson, Christopher B

    2012-01-01

    Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  13. IL-8 and MCP Gene Expression and Production by LPS-Stimulated Human Corneal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Roni M. Shtein

    2012-01-01

    Full Text Available Purpose. To determine time course of effect of lipopolysaccharide (LPS on production of interleukin-8 (IL-8 and monocyte chemotactic protein (MCP by cultured human corneal stromal cells. Methods. Human corneal stromal cells were harvested from donor corneal specimens, and fourth to sixth passaged cells were used. Cell cultures were stimulated with LPS for 2, 4, 8, and 24 hours. Northern blot analysis of IL-8 and MCP gene expression and ELISA for IL-8 and MCP secretion were performed. ELISA results were analyzed for statistical significance using two-tailed Student's t-test. Results. Northern blot analysis demonstrated significantly increased IL-8 and MCP gene expression after 4 and 8 hours of exposure to LPS. ELISA for secreted IL-8 and MCP demonstrated statistically significant increases (P<0.05 after corneal stromal cell stimulation with LPS. Conclusions. This paper suggests that human corneal stromal cells may participate in corneal inflammation by secreting potent leukocyte chemotactic and activating proteins in a time-dependent manner when exposed to LPS.

  14. Impact of training status on LPS-induced acute inflammation in humans

    DEFF Research Database (Denmark)

    Olesen, Jesper; Biensø, Rasmus Sjørup; Meinertz, S.

    2015-01-01

    The aim of the present study was to examine the impact of training status on the ability to induce a lipopolysaccharide (LPS)-induced inflammatory response systemically as well as in skeletal muscle (SkM) and adipose tissue (AT) in human subjects. Methods: Seventeen young (23.8 ± 2.5 years of age......) healthy male subjects were included in the study with eight subjects assigned to a trained (T) group and nine subjects assigned to an untrained (UT) group. On the experimental day, catheters were inserted in the femoral artery and vein of one leg for blood sampling and a bolus of 0.3 ng LPS•kg-1 body...... weight was injected into an antecubital vein in the forearm. Femoral arterial blood flow was measured before (Pre) the LPS injection and continuously throughout the experiment by Ultrasound Doppler and arterial and venous blood samples were drawn Pre and 30, 60, 90 and 120 min after the LPS injection...

  15. Simvastatin induces caspase-independent apoptosis in LPS-activated RAW264.7 macrophage cells

    International Nuclear Information System (INIS)

    Kim, Yong Chan; Song, Seok Bean; Lee, Mi Hee; Kang, Kwang Il; Lee, Hayyoung; Paik, Sang-Gi; Kim, Kyoon Eon; Kim, Young Sang

    2006-01-01

    Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We examined the effect of simvastatin on the LPS-induced proinflammatory macrophage RAW264.7 cells. Co-treatment of LPS and a non-toxic dose of simvastatin induced cell death in RAW264.7 cells. The cell death was accompanied by disruption of mitochondrial membrane potential (MMP), genomic DNA fragmentation, and caspase-3 activation. Surprisingly, despite caspase-dependent apoptotic cascade being completely blocked by Z-VAD-fmk, a pan-caspase inhibitor, the cell death was only partially repressed. In the presence of Z-VAD-fmk, DNA fragmentation was blocked, but DNA condensation, disruption of MMP, and nuclear translocation of apoptosis inducing factor were obvious. The cell death by simvastatin and LPS was effectively decreased by both the FPP and GGPP treatments as well as mevalonate. Our findings indicate that simvastatin triggers the cell death of LPS-treated RAW264.7 cells through both caspase-dependent and -independent apoptotic pathways, suggesting a novel mechanism of statins for the severe inflammatory disease therapy

  16. Synergistic Effects of Psychosocial Stress and Mild Peripheral Infection on Inducing Microglial Activation in the Hippocampal Dentate Gyrus and Long-Lasting Deficits in Hippocampus-Related Memory.

    Science.gov (United States)

    Tzeng, Wen-Yu; Su, Chien-Chou; Sun, Li-Han; Cherng, Chianfang G.; Yu, Lung

    2018-04-30

    Lipopolysaccharide (LPS) treatment and stress may cause immune activation in the brain, an event which has been thought to play a role in mediating stress-induced cognitive dysfunction. However, the enduring impact of psychosocial stress on brain immune activation or cognitive deficits has not been well investigated. Likewise, it remains unexplored whether there exist synergistic effects of psychosocial stress and a weak systemic LPS treatment on brain immune activation and/or cognitive function. In this work, a 10-day social defeat regimen was used to model psychosocial stress and the number and density of ionized calcium-binding adaptor molecule 1 (Iba1)-stained microglia was used to reveal brain immune activation in male Balb/C mice. The social defeat regimen did not cause observable microglial activation in dentate gyrus (DG) 24 h after the conclusion of the regimen. Microglial activation peaked in DG 24 h following a single 1 mg/kg intra-peritoneal LPS injection. At this time point, DG microglial activation was not evident providing 0.125 mg/kg or lower of LPS was used, this dose of LPS was, thus, regarded as the “sub-threshold” in this study. Twenty-four h after the conclusion of the defeat regimen, mice received a social interaction test to determine their defeat stress susceptibility and a “sub-threshold” LPS injection. DG microglial activation was observed in the defeat-stress susceptible, but not in the resilient, mice. Furthermore, the stress-susceptible mice showed impairment in object location and Y maze tasks 24 and 72 h after the “sub-threshold” LPS injection. These results suggest that psychosocial stress, when combined with a negligible peripheral infection, may induce long-lasting hippocampus-related memory deficits exclusively in subjects susceptible to psychosocial stresses.

  17. Intervention of Dietary Dipeptide Gamma-l-Glutamyl-l-Valine (γ-EV) Ameliorates Inflammatory Response in a Mouse Model of LPS-Induced Sepsis.

    Science.gov (United States)

    Chee, MacKenzie E; Majumder, Kaustav; Mine, Yoshinori

    2017-07-26

    Sepsis, the systemic inflammatory response syndrome (SIRS) with infection is one of the leading causes of death in critically ill patients in the developed world due to the lack of effective antisepsis treatments. This study examined the efficacy of dietary dipeptide gamma-l-glutamyl-l-valine (γ-EV), which was characterized previously as an anti-inflammatory peptide, in an LPS-induced mouse model of sepsis. BALB/c mice were administered γ-EV via oral gavage followed by an intraperitoneal injection of LPS to induce sepsis. The γ-EV exhibited antisepsis activity by reducing the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in plasma and small intestine. γ-EV also reduced the phosphorylation of the signaling proteins JNK and IκBα. We concluded that γ-EV could possess an antisepsis effect against bacterial infection in intestine. This study proposes a signaling mechanism whereby the calcium-sensing receptor (CaSR) allosterically activated by γ-EV stimulates the interaction of β-arrestin2 with the TIR(TLR/IL-1R) signaling proteins TRAF6, TAB1, and IκBα to suppress inflammatory signaling.

  18. Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages.

    Science.gov (United States)

    Korneev, Kirill V; Kondakova, Anna N; Sviriaeva, Ekaterina N; Mitkin, Nikita A; Palmigiano, Angelo; Kruglov, Andrey A; Telegin, Georgy B; Drutskaya, Marina S; Sturiale, Luisa; Garozzo, Domenico; Nedospasov, Sergei A; Knirel, Yuriy A; Kuprash, Dmitry V

    2018-01-01

    Toll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni , the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.

  19. Use of 8.4% Sodium Bicarbonate in Buffering Commonly Administered Vancomycin Hydrochloride Solutions for Use with Midline or Peripheral Line Catheters.

    Science.gov (United States)

    Puertos, Enrique; Spencer, Melissa

    2015-01-01

    The primary objective of this study was to evaluate the use of 8.4% sodium bicarbonate in the buffering of commonly administered vancomycin hydrochloride solutions for use with midline or peripheral line catheters. Nine admixtures of vancomycin hydrochloride were aseptically prepared for this study. Vancomycin hydrochloride solutions were prepared in triplicates in the following strengths, 1 gram, 2 grams, and 3 grams, which were added to 250-mL bags of sodium chloride 0.9% injection (with overfill). To each prepared solution of vancomycin hydrochloride, 0.5 mL of 8.4% sodium bicarbonate was added. The pH was measured to obtain a baseline level. At day 9, the pH of each sample was measured and compared to those at baseline. The osmolality of each sample was also measured. There was no statistical difference in the pH at baseline and at day 9 (α = 0.05, P = 0.347). A solution of vancomycin hydrochloride that is compounded in 250 mL of sodium chloride 0.9% injection (including overfill) and buffered with 0.5 mL of 8.4% sodium bicarbonate maintained a pH in the range of 5 to 9 and an osmolality in the range of 150 mOsm/kg to 500 mOsm/kg.

  20. Differential host response to LPS variants in amniochorion and the TLR4/MD-2 system in Macaca nemestrina

    Science.gov (United States)

    Chang, Justine; Jain, Sumita; Carl, David J.; Paolella, Louis; Darveau, Richard P.; Gravett, Michael G.; Waldorf, Kristina M. Adams

    2010-01-01

    OBJECTIVES Microbial-specific factors are likely critical in determining whether bacteria trigger preterm labor. Structural variations in lipopolysaccharide (LPS), a component of gram-negative bacteria, can determine whether LPS has an inflammatory (agonist) or anti-inflammatory (antagonist) effect through Toll-like receptor 4 (TLR4). Our objective was to determine whether amniochorion can discriminate between LPS variants in a nonhuman primate model. We also cloned Macaca nemestrina TLR4 and MD-2 and compared this complex functionally to the human homologue to establish whether nonhuman primates could be used to study TLR4 signaling in preterm birth. STUDY DESIGN Amniochorion explants from M. nemestrina were stimulated with a panel of LPS variants for 24 hours. Supernatants were analyzed for IL-1β, TNF-α, IL-6, IL-8 and prostaglandins E2 and F2α. Tissue expression of TLR1, 2, 4, 6, MyD88 and NF-kB was studied by RT-PCR. M. nemestrina TLR4 and MD2 genes were cloned and compared with their human counterparts in a recombinant TLR4 signaling system to determine LPS sensitivity. RESULTS LPS variants differentially stimulated cytokines and prostaglandins, which was not related to transcriptional changes of TLR4 or other TLRs. Nearly all elements of LPS binding and TLR4 leucine-rich repeats were conserved between humans and M. nemestrina. TLR4/MD-2 signaling complexes from both species were equally sensitive to LPS variants. CONCLUSIONS LPS variants elicit a hierarchical inflammatory response within amniochorion that may contribute to preterm birth. LPS sensitivity is similar between M. nemestrina and humans, validating M. nemestrina as an appropriate model to study TLR4 signaling in preterm birth. PMID:20619890

  1. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex.

    Science.gov (United States)

    Khan, Muhammad Sohail; Ali, Tahir; Kim, Min Woo; Jo, Myeung Hoon; Jo, Min Gi; Badshah, Haroon; Kim, Myeong Ok

    2016-11-01

    Several studies provide evidence that reactive oxygen species (ROS) are key mediators of various neurological disorders. Anthocyanins are polyphenolic compounds and are well known for their anti-oxidant and neuroprotective effects. In this study, we investigated the neuroprotective effects of anthocyanins (extracted from black soybean) against lipopolysaccharide (LPS)-induced ROS-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Intraperitoneal injection of LPS (250 μg/kg) for 7 days triggers elevated ROS and oxidative stress, which induces neuroinflammation and neurodegeneration in the adult mouse cortex. Treatment with 24 mg/kg/day of anthocyanins for 14 days in LPS-injected mice (7 days before and 7 days co-treated with LPS) attenuated elevated ROS and oxidative stress compared to mice that received LPS-injection alone. The immunoblotting results showed that anthocyanins reduced the level of the oxidative stress kinase phospho-c-Jun N-terminal Kinase 1 (p-JNK). The immunoblotting and morphological results showed that anthocyanins treatment significantly reduced LPS-induced-ROS-mediated neuroinflammation through inhibition of various inflammatory mediators, such as IL-1β, TNF-α and the transcription factor NF- k B. Anthocyanins treatment also reduced activated astrocytes and microglia in the cortex of LPS-injected mice, as indicated by reductions in GFAP and Iba-1, respectively. Anthocyanins also prevent overexpression of various apoptotic markers, i.e., Bax, cytosolic cytochrome C, cleaved caspase-3 and PARP-1. Immunohistochemical fluoro-jade B (FJB) and Nissl staining indicated that anthocyanins prevent LPS-induced neurodegeneration in the mouse cortex. Our results suggest that dietary flavonoids, such as anthocyanins, have antioxidant and neuroprotective activities that could be beneficial to various neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Anti-Neuroinflammatory Effects of Houttuynia cordata Extract on LPS ...

    African Journals Online (AJOL)

    lipopolysaccharide (LPS)-stimulated BV-2 microglial cells, and its anti-oxidant properties. ... Keywords: Houttuynia cordata, DPPH radicals, antioxidant, neuroinflammation, BV-2 cells, iNOS, ..... extracts on anaphylactic reaction and mast cell.

  3. Involvement of JNK and NF-κB pathways in lipopolysaccharide (LPS)-induced BAG3 expression in human monocytic cells.

    Science.gov (United States)

    Wang, Hua-Qin; Meng, Xin; Liu, Bao-Qin; Li, Chao; Gao, Yan-Yan; Niu, Xiao-Fang; Li, Ning; Guan, Yifu; Du, Zhen-Xian

    2012-01-01

    Lipopolysaccharide (LPS) is an outer-membrane glycolipid component of Gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. Bcl-2-associated athanogene 3 (BAG3) is a survival protein that has been shown to be stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, proteasome inhibition, and human immunodeficiency virus 1 (HIV-1) infection. In addition, BAG3 regulates replication of Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) replication, suggesting that BAG3 could participate in the host response to infection. In the current study, we found that LPS increased the expression of BAG3 in a dose- and time-dependent manner. Actinomycin D completely blocked the LPS-induced BAG3 accumulation, as well as LPS activated the proximal promoter of BAG3 gene, supported that the induction by LPS occurred at the level of gene transcription. LPS-induced BAG3 expression was blocked by JNK or NF-κB inhibition, suggesting that JNK and NF-κB pathways participated in BAG3 induction by LPS. In addition, we also found that induction of BAG3 was implicated in monocytic cell adhesion to extracellular matrix induced by LPS. Overall, the data support that BAG3 is induced by LPS via JNK and NF-κB-dependent signals, and involved in monocytic cell-extracellular matrix interaction, suggesting that BAG3 may have a role in the host response to LPS stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Investigating the CYP2E1 Potential Role in the Mechanisms Behind INH/LPS-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hozeifa M. Hassan

    2018-03-01

    Full Text Available Tuberculosis (TB is one of the oldest infectious diseases that affected humankind and remains one of the world’s deadliest communicable diseases that could be considered as global emergency, but the discovery and development of isoniazid (INH in the 1950s paved the way to an effective single and/or combined first-line anti-TB therapy. However, administration of INH induces severe hepatic toxicity in some patients. Previously, we establish a rat model of INH hepatotoxicity utilizing the inflammatory stress theory, in which bacterial lipopolysaccharide (LPS potentially enhanced INH toxicity. These enhancing activities ranged between augmenting the inflammatory stress, oxidative stress, alteration of bile acid homeostasis, and CYP2E1 over-expression. Although pre-treatment with dexamethasone (DEX helped overcome both inflammatory and oxidative stress which ended-up in alleviation of LPS augmenting effects, but still minor toxicities were being detected, alongside with CYP2E1 over expression. This finding positively indicated the corner-stone role played by CYP2E1 in the pathogenesis of INH/LPS-induced liver damage. Therefore, we examined whether INH/LPS co-treatment with CYP2E1 inhibitor diallyl sulfide (DAS and DEX can protect against the INH/LPS-induced hepatotoxicity. Our results showed that pre-administration of both DAS and DEX caused significant reduction in serum TBA, TBil, and gamma-glutamyl transferase levels. Furthermore, the histopathological analysis showed that DAS and DEX could effectively reverse the liver lesions seen following INH/LPS treatment and protect against hepatic steatosis as indicated by absence of lipid accumulation. Pre-treatment with DAS alone could not completely block the CYP2E1 protein expression following INH/LPS treatment, as appeared in the immunoblotting and immunohistochemistry results. This is probably due to the fact that the combined enhancement activities of both INH and LPS on CYP2E1 protein expression

  5. Intermedin attenuates LPS-induced inflammation in the rat testis.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available First reported as a vasoactive peptide in the cardiovascular system, intermedin (IMD, also known as adrenomedullin 2 (ADM2, is a hormone with multiple potent roles, including its antioxidant action on the pulmonary, central nervous, cardiovascular and renal systems. Though IMD may play certain roles in trophoblast cell invasion, early embryonic development and cumulus cell-oocyte interaction, the role of IMD in the male reproductive system has yet to be investigated. This paper reports our findings on the gene expression of IMD, its receptor components and its protein localization in the testes. In a rat model, bacterial lippolysaccharide (LPS induced atypical orchitis, and LPS treatment upregulated the expression of IMD and one of its receptor component proteins, i.e. receptor activity modifying protein 2 (RAMP2. IMD decreased both plasma and testicular levels of reactive oxygen species (ROS production, attenuated the increase in the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNFα, interleukin 6 (IL6 and interleukin 1 beta (IL1β, rescued spermatogenesis, and prevented the decrease in plasma testosterone levels caused by LPS. The restorative effect of IMD on steroidogenesis was also observed in hydrogen peroxide-treated rat primary Leydig cells culture. Our results indicate IMD plays an important protective role in spermatogenesis and steroidogenesis, suggesting therapeutic potential for IMD in pathological conditions such as orchitis.

  6. DMPD: The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10669111 The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. Qur...e The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. Authors Qur

  7. Ilexgenin A, a novel pentacyclic triterpenoid extracted from Aquifoliaceae shows reduction of LPS-induced peritonitis in mice.

    Science.gov (United States)

    Sun, Weidong; Liu, Chang; Zhang, Yaqi; Qiu, Xia; Zhang, Li; Zhao, Hongxia; Rong, Yi; Sun, Yun

    2017-02-15

    Ilexgenin A (IA) is a novel pentacyclic triterpenoid, which extracted from leaves of Ilex hainanensis Merr. In the present study, we aim to explore anti-inflammatory activity of IA on LPS-induced peritonitis and its underlying molecular mechanism. The results determined that IA was capable of suppressing peritonitis in mice induced by intraperitoneal (i.p.) injection of lipopolysaccaride (LPS). Furthermore, the results showed that IA dramatically inhibited levels of inflammatory cells infiltration in peritoneal cavity and serum in LPS-induced mice peritonitis model. Besides, IA could dramatically inhibit levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) in peritoneal cavity in LPS-induced mice peritonitis model. In vitro study, the results showed that IA inhibited production of IL-1β, IL-6 and TNF-α at transcriptional and translational levels in RAW 264.7 cells induced by LPS. Furthermore, IA could suppress the LPS-induced activation of Akt and downstream degradation and phosphorylation of kappa B-α (IκB-α). Moreover, IA could significantly inhibit ERK 1/2 phosphorylation in RAW 264.7 cells induced by LPS. These results were concurrent with molecular docking which revealed ERK1/2 inhibition. These results demonstrated that IA might as an anti-inflammatory agent candidate for inflammatory disease therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The NALP3/Cryopyrin-Inflammasome Complex is Expressed in LPS-Induced Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    José F. González-Benítez

    2008-01-01

    Full Text Available In the inflammosome complex, NALP3 or NALP1 binds to ASC and activates caspase-1 which induces IL-1β. In murine LPS-induced ocular inflammation, the production of IL-1β is increased. We suggest that NALP3- or NALP1-inflammasome complex can be participating in the LPS-induced ocular inflammation. In this work, eye, brain, testis, heart, spleen, and lung were obtained from C3H/HeN mice treated with LPS for 3 to 48 hours, and the expression of NALP1b, NALP3, ASC, caspase-1, IL-1β, and IL-18 was determined. Infiltrated leukocytes producing IL-1β in the anterior chamber were found at 12-hour posttreatment. A high upregulated expression of NALP3, ASC, caspase-1, IL-1β, and IL-18 was found at the same time when infiltrated leukocytes were observed. NALP1b was not detected in the eye of treated mice. NALP3 was also overexpressed in heart and lung. These results suggest that NALP3-, but not NALP1-inflammosome complex, is participating in the murine LPS-induced ocular inflammation.

  9. QMix® irrigant reduces lipopolysacharide (LPS levels in an in vitro model

    Directory of Open Access Journals (Sweden)

    Grasiela Longhi GRÜNDLING

    2015-08-01

    Full Text Available AbstractThe presence of endotoxin inside the root canal has been associated with periapical inflammation, bone resorption and symptomatic conditions.Objectives To determine, in vitro, the effect of QMix® and other three root canal irrigants in reducing the endotoxin content in root canals.Material and Methods Root canals of single-rooted teeth were prepared. Samples were detoxified with Co-60 irradiation and inoculated with E. coli LPS (24 h, at 37°C. After that period, samples were divided into 4 groups, according to the irrigation solution tested: QMix®, 17% EDTA, 2% chlorhexidine solution (CHX, and 3% sodium hypochlorite (NaOCl. LPS quantification was determined by Limulus Amebocyte Lysate (LAL assay. The initial counting of endotoxins for all samples, and the determination of LPS levels in non-contaminated teeth and in contaminated teeth exposed only to non-pyrogenic water, were used as controls.Results QMix® reduced LPS levels, with a median value of 1.11 endotoxins units (EU/mL (p<0.001. NaOCl (25.50 EU/mL, chlorhexidine (44.10 EU/mL and positive control group (26.80 EU/mL samples had similar results. Higher levels were found with EDTA (176.00 EU/mL when compared to positive control (p<0.001. There was no significant difference among EDTA, NaOCl and CHX groups. Negative control group (0.005 EU/mL had statistically significant lower levels of endotoxins when compared to all test groups (p<0.001.Conclusion QMix® decreased LPS levels when compared to the other groups (p<0.001. 3% NaOCl, 2% CHX and 17% EDTA were not able to significantly reduce the root canal endotoxins load.

  10. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury.

    Science.gov (United States)

    Cherpanath, Thomas G V; Smeding, Lonneke; Hirsch, Alexander; Lagrand, Wim K; Schultz, Marcus J; Groeneveld, A B Johan

    2015-10-07

    High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p tidal volume ventilation without LPS (p = 0.223). A significant interaction (p tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well.

  11. Inhibition of LPS toxicity by hepatic argininosuccinate synthase (ASS): novel roles for ASS in innate immune responses to bacterial infection.

    Science.gov (United States)

    Prima, Victor; Wang, Alvin; Molina, Gabriel; Wang, Kevin K W; Svetlov, Stanislav I

    2011-09-01

    Lipopolysaccharide (LPS), a structural component of Gram-negative bacteria, is implicated in the pathogenesis of endotoxemia/sepsis and multi-organ injury, including liver damage. We have shown that argininosuccinate synthase (ASS), a hepatic enzyme of the urea cycle, accumulates in circulation within 1h after treatment with both LPS alone and hepatotoxic combination of LPS and D-Galactosamine. These findings indicate ASS as a sensitive biomarker of liver responses to bacterial endotoxin. Furthermore, we suggest that the ASS release represents a potential counteracting liver reaction to LPS, and demonstrates anti-LPS activity of recombinant ASS (rASS) in vitro and in rodent models of endotoxemia in vivo. rASS physically bound to LPS, as indicated by a gel shift assay, and suppressed Escherichia coli growth in cultures consistent with direct antimicrobial properties of ASS. rASS reduced LPS cytotoxicity, TNF-α production, and increased cell viability in cultured mouse macrophages, even when added one hour following LPS challenge. Intraperitoneal injection of rASS (5 mg/kg) after treatment with a high dose of LPS remarkably increased survival of rodents, with a concomitant decrease of sepsis markers TNF-α, C-reactive protein (CRP), and lactate dehydrogenase (LDH) levels in blood. These results suggest that the endogenous ASS constitutes a novel liver-derived component of the innate immune response to bacterial LPS, and that recombinant ASS could mitigate the lethal effects of bacterial endotoxins during sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages

    Directory of Open Access Journals (Sweden)

    Kirill V. Korneev

    2018-02-01

    Full Text Available Toll-like receptor 4 (TLR4 initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS, the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni, the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.

  13. Effects of female gonadal hormones and LPS on depressive-like behavior in rats

    Directory of Open Access Journals (Sweden)

    Mitić Miloš

    2015-01-01

    Full Text Available Considerable evidence shows an association of depression with the immune system and emphasizes the importance of gender in the etiology of the disease and the response to inflammatory stimuli. We examined the influence of immune-challenged systems on depressive-like behavior in female rats in the context of gonadal hormones. We used a neuroinflammatory model of depression elicited by lipopolysaccharide (LPS administration on naive and ovariectomized (OVX female rats, and examined the effects of estradiol (E2 and/or progesterone (P4 replacement therapy on animal behavior, as assessed by the forced swimming test (FST. We found that LPS and OVX increase immobility in the FST, while LPS also decreased body weight in naive female rats. Further, even though P4 application alone showed beneficial effects on the behavioral profile (it reduced immobility and increased climbing, supplementation of both hormones (E2 and P4 together to OVX rats failed to do so. When OVX rats were exposed to LPS-induced immune challenge, neither hormone individually nor their combination had any effect on immobility, however, their joint supplementation increased climbing behavior. In conclusion, our study confirmed that both LPS and OVX induced depressive-like behavior in female rats. Furthermore, our results potentiate P4 supplementation in relieving the depressive-like symptomatology in OVX rats, most likely through fine-tuning of different neurotransmitter systems. In the context of an activated immune system, the application of E2 and/or P4 does not provide any advantageous effects on depressive-like behavior.

  14. Inhibition of LPS-induced splenocyte proliferation by ortho-substituted polychlorinated biphenyl congeners

    International Nuclear Information System (INIS)

    Smithwick, L. Ashley; Smith, Andrew; Quensen, John F.; Stack, Allison; London, Lucille; Morris, Pamela J.

    2003-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and their ubiquitous nature has prompted studies of their potential health hazards. As a result of their lipophilic nature, PCBs accumulate in breast milk and subsequently affect the health of offspring of exposed individuals. Biological effects of PCBs in animals have mostly been attributed to coplanar congeners, although effects of ortho congeners also have been demonstrated. To investigate the relationship of immunotoxicity and chlorine substitution pattern, the effects of PCB congeners and mixtures of ortho and non-ortho-substituted constituents of Aroclor 1242 on splenocytes from C57B1/6 mice were examined. The immunotoxic endpoints investigated included splenocyte viability, lipopolysaccharide (LPS)-induced splenocyte proliferation, and LPS-induced antibody secretion. Congeners with multiple ortho chlorines preferentially inhibited splenocyte proliferation as compared with non- or mono-ortho-substituted congeners. However, mixtures of non- and mono-ortho-substituted congeners and multi-ortho-substituted congeners inhibited LPS-induced splenocyte proliferation and antibody secretion at similar concentrations. Exposure of splenocytes to these mixtures did not activate the aryl hydrocarbon receptor (AhR) signal transduction pathway. These results suggest individual multi-ortho-substituted congeners preferentially inhibit LPS-induced splenocyte proliferation, while congeners not exhibiting an effect individually may have additive effects in a mixture to produce an immunotoxic response through an AhR-independent pathway

  15. Adrenaline stimulates the proliferation and migration of mesenchymal stem cells towards the LPS-induced lung injury.

    Science.gov (United States)

    Wu, Xiaodan; Wang, Zhiming; Qian, Mengjia; Wang, Lingyan; Bai, Chunxue; Wang, Xiangdong

    2014-08-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) could modulate inflammation in experimental lung injury. On the other hand, adrenergic receptor agonists could increase DNA synthesis of stem cells. Therefore, we investigated the therapeutic role of adrenaline-stimulated BMSCs on lipopolysaccharide (LPS)-induced lung injury. BMSCs were cultured with adrenergic receptor agonists or antagonists. Suspensions of lung cells or sliced lung tissue from animals with or without LPS-induced injury were co-cultured with BMSCs. LPS-stimulated alveolar macrophages were co-cultured with BMSCs (with adrenaline stimulation or not) in Transwell for 6 hrs. A preliminary animal experiment was conducted to validate the findings in ex vivo study. We found that adrenaline at 10 μM enhanced proliferation of BMSCs through both α- and β-adrenergic receptors. Adrenaline promoted the migration of BMSCs towards LPS-injured lung cells or lung tissue. Adrenaline-stimulated BMSCs decreased the inflammation of LPS-stimulated macrophages, probably through the expression and secretion of several paracrine factors. Adrenaline reduced the extent of injury in LPS-injured rats. Our data indicate that adrenaline-stimulated BMSCs might contribute to the prevention from acute lung injury through the activation of adrenergic receptors, promotion of proliferation and migration towards injured lung, and modulation of inflammation. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    International Nuclear Information System (INIS)

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-01-01

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β 2 -adrenergic receptor (β 2 -AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β 2 -AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β 2 -AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β 2 -AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production

  17. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China); Department of Infectious Diseases, Peking University Third Hospital, Beijing (China); Zhang, Yuan [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China); Xu, Ming; Zhang, You-Yi [Department of Institute of Vascular Medicine and Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing (China); He, Bei, E-mail: puh3_hb@bjmu.edu.cn [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China)

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  18. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hong; Roh, Eunmiri [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Hyun Soo [Pharmaceutical R and D Center, Huons Co., Ltd., Anyang (Korea, Republic of); Baek, Seung-Il [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Choi, Nam Song [Pharmaceutical R and D Center, Huons Co., Ltd., Anyang (Korea, Republic of); Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youngsoo, E-mail: youngsoo@chungbuk.ac.kr [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  19. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    International Nuclear Information System (INIS)

    Schnabl, Bernd; Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-01-01

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo

  20. Protective Effect of Argan and Olive Oils against LPS-Induced Oxidative Stress and Inflammation in Mice Livers

    Directory of Open Access Journals (Sweden)

    Soufiane El Kamouni

    2017-10-01

    Full Text Available Sepsis causes severe dysregulation of organ functions, via the development of oxidative stress and inflammation. These pathophysiological mechanisms are mimicked in mice injected with bacterial lipopolysaccharide (LPS. Here, protective properties of argan oil against LPS-induced oxidative stress and inflammation are explored in the murine model. Mice received standard chow, supplemented with argan oil (AO or olive oil (OO for 25 days, before septic shock was provoked with a single intraperitoneal injection of LPS, 16 hours prior to animal sacrifice. In addition to a rise in oxidative stress and inflammatory markers, injected LPS also caused hepatotoxicity, accompanied by hyperglycemia, hypercholesterolemia and hyperuremia. These LPS-associated toxic effects were blunted by AO pretreatment, as corroborated by normal plasma parameters and cell stress markers (glutathione: GSH and antioxidant enzymology (catalase, CAT; superoxide dismutase, SOD and glutathione peroxidase, GPx. Hematoxylin–eosin staining revealed that AO can protect against acute liver injury, maintaining a normal status, which is pointed out by absent or reduced LPS-induced hepatic damage markers (i.e., alanine aminotransferase (ALT and aspartate transaminase (AST. Our work also indicated that AO displayed anti-inflammatory activity, due to down-regulations of genes encoding pro-inflammatory cytokines Interleukin-6 (IL-6 and Tumor Necrosis Factor-α (TNF-α and in up-regulations of the expression of anti-inflammatory genes encoding Interleukin-4 (IL-4 and Interleukin-10 (IL-10. OO provided animals with similar, though less extensive, protective changes. Collectively our work adds compelling evidence to the protective mechanisms of AO against LPS-induced liver injury and hence therapeutic potentialities, in regard to the management of human sepsis. Activations of IL-4/Peroxisome Proliferator-Activated Receptors (IL-4/PPARs signaling and, under LPS, an anti-inflammatory IL-10/Liver

  1. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways

    Science.gov (United States)

    Chunzhi, Gong; Zunfeng, Li; Chengwei, Qin; Xiangmei, Bu; Jingui, Yu

    2016-01-01

    Hyperin is a flavonoid compound derived from Ericaceae, Guttifera, and Celastraceae that has been shown to have various biological effects, such as anti-inflammatory and anti-oxidant effects. However, there is no evidence to show the protective effects of hyperin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Therefore, we investigated the protective effects and mechanism of hyperin on LPS-induced AKI in mice. The levels of TNF-α, IL-6, and IL-1β were tested by ELISA. The effects of hyperin on blood urea nitrogen (BUN) and serum creatinine were also detected. In addition, the expression of TLR4, NF-κB, and NLRP3 were detected by western blot analysis. The results showed that hyperin significantly inhibited LPS-induced TNF-α, IL-6, and IL-1β production. The levels of BUN and creatinine were also suppressed by hyperin. Furthermore, LPS-induced TLR4 expression and NF-κB activation were also inhibited by hyperin. In addition, treatment of hyperin dose-dependently inhibited LPS-induced NLRP3 signaling pathway. In conclusion, the results showed that hyperin inhibited LPS-induced inflammatory response by inhibiting TLR4 and NLRP3 signaling pathways. Hyperin has potential application prospects in the treatment of sepsis-induced AKI. PMID:27813491

  2. The Protective Effect of Melatonin on Neural Stem Cell against LPS-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2015-01-01

    Full Text Available Stem cell therapy for tissue regeneration has several limitations in the fact that transplanted cells could not survive for a long time. For solving these limitations, many studies have focused on the antioxidants to increase survival rate of neural stem cells (NSCs. Melatonin, an antioxidant synthesized in the pineal gland, plays multiple roles in various physiological mechanisms. Melatonin exerts neuroprotective effects in the central nervous system. To determine the effect of melatonin on NSCs which is in LPS-induced inflammatory stress state, we first investigated nitric oxide (NO production and cytotoxicity using Griess reagent assays, LDH assay, and neurosphere counting. Also, we investigated the effect of melatonin on NSCs by measuring the mRNA levels of SOX2, TLX, and FGFR-2. In addition, western blot analyses were performed to examine the activation of PI3K/Akt/Nrf2 signaling in LPS-treated NSCs. In the present study, we suggested that melatonin inhibits NO production and protects NSCs against LPS-induced inflammatory stress. In addition, melatonin promoted the expression of SOX2 and activated the PI3K/Akt/Nrf2 signaling under LPS-induced inflammation condition. Based on our results, we conclude that melatonin may be an important factor for the survival and proliferation of NSCs in neuroinflammatory diseases.

  3. The Glycosyltransferases of LPS Core: A Review of Four Heptosyltransferase Enzymes in Context

    Directory of Open Access Journals (Sweden)

    Joy M. Cote

    2017-10-01

    Full Text Available Bacterial antibiotic resistance is a rapidly expanding problem in the world today. Functionalization of the outer membrane of Gram-negative bacteria provides protection from extracellular antimicrobials, and serves as an innate resistance mechanism. Lipopolysaccharides (LPS are a major cell-surface component of Gram-negative bacteria that contribute to protecting the bacterium from extracellular threats. LPS is biosynthesized by the sequential addition of sugar moieties by a number of glycosyltransferases (GTs. Heptosyltransferases catalyze the addition of multiple heptose sugars to form the core region of LPS; there are at most four heptosyltransferases found in all Gram-negative bacteria. The most studied of the four is HepI. Cells deficient in HepI display a truncated LPS on their cell surface, causing them to be more susceptible to hydrophobic antibiotics. HepI–IV are all structurally similar members of the GT-B structural family, a class of enzymes that have been found to be highly dynamic. Understanding conformational changes of heptosyltransferases are important to efficiently inhibiting them, but also contributing to the understanding of all GT-B enzymes. Finding new and smarter methods to inhibit bacterial growth is crucial, and the Heptosyltransferases may provide an important model for how to inhibit many GT-B enzymes.

  4. A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants.

    Science.gov (United States)

    Jang, Ho Am; Seo, Eun Sil; Seong, Min Young; Lee, Bok Luel

    2017-02-01

    Riptortus pedestris, a common pest in soybean fields, harbors a symbiont Burkholderia in a specialized posterior midgut region of insects. Every generation of second nymphs acquires new Burkholderia cells from the environment. We compared in vitro cultured Burkholderia with newly in vivo colonized Burkholderia in the host midgut using biochemical approaches. The bacterial cell envelope of in vitro cultured and in vivo Burkholderia differed in structure, as in vivo bacteria lacked lipopolysaccharide (LPS) O-antigen. The LPS O-antigen deficient bacteria had a reduced colonization rate in the host midgut compared with that of the wild-type Burkholderia. To determine why LPS O-antigen-deficient bacteria are less able to colonize the host midgut, we examined in vitro survival rates of three LPS O-antigen-deficient Burkholderia mutants and lysates of five different midgut regions. The LPS O-antigen-deficient mutants were highly susceptible when cultured with the lysate of a specific first midgut region (M1), indicating that the M1 lysate contains unidentified substance(s) capable of killing LPS O-antigen-deficient mutants. We identified a 17 kDa protein from the M1 lysate, which was enriched in the active fractions. The N-terminal sequence of the protein was determined to be a soybean Kunitz-type trypsin inhibitor. These data suggest that the 17 kDa protein, which was originated from a main soybean source of the R. pedestris host, has antibacterial activity against the LPS O-antigen deficient (rough-type) Burkholderia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Influence of dosing times on cisplatin-induced peripheral neuropathy in rats

    International Nuclear Information System (INIS)

    Seto, Yoshihiro; Okazaki, Fumiyasu; Horikawa, Keiji; Zhang, Jing; Sasaki, Hitoshi; To, Hideto

    2016-01-01

    Although cis-diamminedichloro-platinum (CDDP) exhibits strong therapeutic effects in cancer chemotherapy, its adverse effects such as peripheral neuropathy, nephropathy, and vomiting are dose-limiting factors. Previous studies reported that chronotherapy decreased CDDP-induced nephropathy and vomiting. In the present study, we investigated the influence of dosing times on CDDP-induced peripheral neuropathy in rats. CDDP (4 mg/kg) was administered intravenously at 5:00 or 17:00 every 7 days for 4 weeks to male Sprague–Dawley rats, and saline was given to the control group. To assess the dosing time dependency of peripheral neuropathy, von-Frey test and hot-plate test were performed. In order to estimate hypoalgesia, the hot-plate test was performed in rats administered CDDP weekly for 4 weeks. On day 28, the withdrawal latency to thermal stimulation was significantly prolonged in the 17:00-treated group than in the control and 5:00-treated groups. When the von-Frey test was performed to assess mechanical allodynia, the withdrawal threshold was significantly lower in the 5:00 and 17:00-treated groups than in the control group on day 6 after the first CDDP dose. The 5:00-treated group maintained allodynia throughout the experiment with the repeated administration of CDDP, whereas the 17:00-treated group deteriorated from allodynia to hypoalgesia. It was revealed that the severe of CDDP-induced peripheral neuropathy was inhibited in the 5:00-treated group, whereas CDDP-treated groups exhibited mechanical allodynia. These results suggested that the selection of an optimal dosing time ameliorated CDDP-induced peripheral neuropathy. The online version of this article (doi:10.1186/s12885-016-2777-0) contains supplementary material, which is available to authorized users

  6. Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses.

    Science.gov (United States)

    Kulkarni, Roshan R; Lee, Wonhwa; Jang, Tae Su; Lee, JungIn; Kwak, Soyoung; Park, Mi Seon; Lee, Hyun-Shik; Bae, Jong-Sup; Na, MinKyun

    2015-11-15

    Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, a new caffeoyl glucoside (1) and two known caffeoylated compounds (2 and 3) were isolated from the fruits of Nandina domestica Thunb. (Berberidaceae). The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses. At 20 μM, 1 and 2 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer in a dose-dependent manner suggesting that 1 and 2 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes.

    Science.gov (United States)

    Rorato, Rodrigo; Borges, Beatriz de Carvalho; Uchoa, Ernane Torres; Antunes-Rodrigues, José; Elias, Carol Fuzeti; Elias, Lucila Leico Kagohara

    2017-07-04

    Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.

  8. Autodisplay of the La/SSB protein on LPS-free E. coli for the diagnosis of Sjögren's syndrome.

    Science.gov (United States)

    Yoo, Gu; Dilkaute, Carina; Bong, Ji-Hong; Song, Hyun-Woo; Lee, Misu; Kang, Min-Jung; Jose, Joachim; Pyun, Jae-Chul

    2017-05-01

    The objective of this study was to present an immunoassay for the diagnosis of Sjögren's syndrome based on the autodisplayed La/SSB protein on the outer membrane of intact E. coli (strain UT-5600) and LPS-free E. coli (ClearColi™). As the first step, an autodisplay vector (pCK002) was transfected into intact E. coli and LPS-free E. coli for comparison of efficiency of autdisplay of La/SSB. The maximal level of La/SSB expression was estimated to be similar for LPS-free E. coli and intact E. coli at different optimal induction periods. Intact E. coli was found to grow twofold faster than LPS-free E. coli, and the maximal level of expression for LPS-free E. coli was obtained with a longer induction period. When the zeta potential was measured, both intact E. coli and LPS-free E. coli showed negative values, and the autodisplay of negatively charged La/SSB protein (pIE. coli and LPS-free E. coli resulted in a slight change in zeta potential values. E. coli with autodisplayed La/SSB protein was used for an immunoassay of anti-La/SSB antibodies for the diagnosis of Sjögren's syndrome. The surface of E. coli with the autodisplayed antigen was modified with rabbit serum and papain to prevent false positive signals because of nonspecific binding of unrelated antibodies from human serum. LPS-free E. coli with autodisplayed La/SSB protein yielded sensitivity and selectivity of 81.6% and 78.6%, respectively. The Bland-Altman test showed that the immunoassays based on LPS-free E. coli and intact E. coli with autodisplayed La/SSB protein were statistically equivalent to a clinical immunoassay for detection of anti-La/SSB antibodies (confidence coefficient 95%). Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes.

    Science.gov (United States)

    Jayashree, B; Bibin, Y S; Prabhu, D; Shanthirani, C S; Gokulakrishnan, K; Lakshmi, B S; Mohan, V; Balasubramanyam, M

    2014-03-01

    Emerging data indicate that gut-derived endotoxin (metabolic endotoxemia) may contribute to low-grade systemic inflammation in insulin-resistant states. Specific gut bacteria seem to serve as lipopolysaccharide (LPS) sources and several reports claim a role for increased intestinal permeability in the genesis of metabolic disorders. Therefore, we investigated the serum levels of LPS and zonulin (ZO-1, a marker of gut permeability) along with systemic levels of tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) in patients with type 2 diabetes mellitus (T2DM) compared to control subjects. Study subjects were recruited from the Chennai Urban Rural Epidemiology Study [CURES], Chennai, India. Study group (n = 45 each) comprised of a) subjects with normal glucose tolerance (NGT) and (b) patients with T2DM. LPS, ZO-1, TNF-α, and IL-6 levels were measured by ELISA. Serum levels of LPS [p < 0.05], LPS activity [p < 0.001], ZO-1 [p < 0.001], TNFα [p < 0.001], and IL-6 [p < 0.001] were significantly increased in patients with T2DM compared to control subjects. Pearson correlation analysis revealed that LPS activity was significantly and positively correlated with ZO-1, fasting plasma glucose, 2 h post glucose, HbA1c, serum triglycerides, TNF-α, IL-6, and negatively correlated with HDL cholesterol. Regression analysis showed that increased LPS levels were significantly associated with type 2 diabetes [odds ratio (OR) 13.43, 95 % CI 1.998-18.9; p = 0.003]. In Asian Indians who are considered highly insulin resistant, the circulatory LPS levels, LPS activity, and ZO-1 were significantly increased in patients with type 2 diabetes and showed positive correlation with inflammatory markers and poor glycemic/lipid control.

  10. PTEN gene and phosphorylation of Akt protein expression in the LPS-induced lung fibroblast

    Directory of Open Access Journals (Sweden)

    Mao-lin HUANG

    2014-09-01

    Full Text Available Objective: To investigate PTEN gene expression and the Akt phosphorylation of protein expression in the LPS-induced lung fibroblast, to initially reveal the relation between PTEN gene and the Akt phosphorylated proteins to LPS-induced lung fibroblast proliferation mechanism. Methods: BrdU experiments was performed to evaluate the LPS-induced lung fibroblast proliferation,  RT-PCR and Western Blot analysis were used to analyze the PTEN gene expression and Western blot was performed to analyze Akt phosphorylated protein expression. Results: PTEN mRNA level of the experimental group were significantly lower than the control group (P<0.05 with LPS simulation for 24h and 72h , and there were no significant difference between the experimental group and control group the experimental group and control group (P>0.05 . PTEN protein expression levels of the experimental group were significantly lower than the control group (P<0.05 , at 72h, and PTEN mRNA levels had no significant differences between these of the experimental and control group at 6h,12h and 24h(p>0.05. Phosphorylation Akt protein level (relative to total Akt protein was significantly higer than the control group (P<0.05 at 24h and 72h, and phosphorylation Akt protein levels had no significant differences between these of the experimental and control group at 6h and 12h (P>0.05 .Conclusion: PTEN gene and phosphorylation Akt protein involve in LPS-induced lung fibroblast proliferation signal transduction pathway.

  11. In vivo and in vitro effects of lysine clonixinate on nitric oxide synthase in LPS-treated and untreated rat lung preparations.

    Science.gov (United States)

    Franchi, A M; Di Girolamo, G; Farina, M; de los Santos, A R; Martí, M L; Gimeno, M A

    2001-04-01

    Recent studies have shown that some nonsteroidal antiinflammatory drugs (NSAIDS) inhibited the inducible NO synthase (iNOS) without direct effect on the catalytic activity of this enzyme. This study was conducted to investigate the in vitro and in vivo effects of lysine clonixinate (LC) and indomethacin (INDO) on NOS activity in rat lung preparation. LC is a drug with antiinflammatory, antipyretic, and analgesic action. In the in vitro experiments, rats were injected with saline or lipopolysaccharide (LPS) and killed 6 h after treatment. Lung preparations were incubated with LC at 2.3 x 10(-5) M or 3.8 x 10(-5) M. The minimum concentration did not modify NOS activity in control or LPS-treated rats but the maximum dose inhibited increased NO production induced by LPS. Furthermore, INDO at 10(-6) M had no effect on enzymatic activity in control or LPS-treated rats. In the in vivo experiments, 40 mg/kg of LC were injected ip. Such a dose did not affect basal production of NO. When LC and LPS were injected simultaneously 6 h before sacrifice, a significant decrease in LPS-induced NOS activity was observed. INDO 10 mg/kg injected in control animals had no effect on NOS activity and did not block LPS induced stimulation of NO production when injected simultaneously. Finally, when LC (40 mg/kg) was injected 3 h after LPS, the enzymatic activity remained unchanged. Expression of iNOS was detected by Western blotting in rats treated with LPS plus 4, 10, 20, and 40 mg/kg of LC. The lowest dose was the only one showing no effect on LPS-induced increase of iNOS. In short, LC is a NSAID with inhibitory action on the expression of LPS-induced NOS, effect that was not seen with INDO in our experimental conditions. Copyright 2001 Academic Press.

  12. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice.

    Science.gov (United States)

    Kourtis, Iraklis C; Hirosue, Sachiko; de Titta, Alexandre; Kontos, Stephan; Stegmann, Toon; Hubbell, Jeffrey A; Swartz, Melody A

    2013-01-01

    Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide) nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d.) compared to intramuscular administration, leading to ∼50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma.

  13. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice.

    Directory of Open Access Journals (Sweden)

    Iraklis C Kourtis

    Full Text Available Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d. compared to intramuscular administration, leading to ∼50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma.

  14. Complement C1q regulates LPS-induced cytokine production in bone marrow-derived dendritic cells.

    Science.gov (United States)

    Yamada, Masahide; Oritani, Kenji; Kaisho, Tsuneyasu; Ishikawa, Jun; Yoshida, Hitoshi; Takahashi, Isao; Kawamoto, Shinichirou; Ishida, Naoko; Ujiie, Hidetoshi; Masaie, Hiroaki; Botto, Marina; Tomiyama, Yoshiaki; Matsuzawa, Yuji

    2004-01-01

    We show here that C1q suppresses IL-12p40 production in LPS-stimulated murine bone marrow-derived dendritic cells (BMDC). Serum IL-12p40 concentration of C1q-deficient mice was higher than that of wild-type mice after intraperitoneal LPS-injection. Because neither globular head of C1q (gC1q) nor collagen-like region of C1q (cC1q) failed to suppress LPS-induced IL-12p40 production, both gC1q and cC1q, and/or some specialized conformation of native C1q may be required for the inhibition. While C1q did not affect mRNA expression of Toll-like receptor 4 (TLR4), MD-2, and myeloid differentiation factor 88 (MyD88), BMDC treated with C1q showed the reduced activity of NF-kappaB and the delayed phosphorylation of p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase after LPS-stimulation. CpG oligodeoxynucleotide-induced IL-12p40 and TNF-alpha production, another MyD88-dependent TLR-mediated signal, was also suppressed by C1q treatment. Therefore, C1q is likely to suppress MyD88-dependent pathway in TLR-mediated signals. In contrast, C1q failed to suppress colony formation of B cells responding to LPS or LPS-induced CD40 and CD86 expression on BMDC in MyD88-deficient mice, indicating that inhibitory effects of C1q on MyD88-independent pathways may be limited. Taken together, C1q may regulate innate and adaptive immune systems via modification of signals mediated by interactions between invading pathogens and TLR.

  15. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling.

    Directory of Open Access Journals (Sweden)

    Miguel Pinilla-Vera

    Full Text Available Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq. LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages.

  16. LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing.

    Directory of Open Access Journals (Sweden)

    Sophie Seehase

    Full Text Available Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS-induced inflammation model was established in marmoset monkeys (Callithrix jacchus to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4 inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α and macrophage inflammatory protein-1 beta (MIP-1β were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50. LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.

  17. Lipopolysaccharide contamination of beta-lactoglobulin affects the immune response against intraperitoneally and orally administered antigen

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Kjær, T.M.R.; Barkholt, Vibeke

    2004-01-01

    Microbial components in the environment are potent activators of the immune system with capacity to shift the active immune response towards priming of Th1 and/or Th2 cells. Lipopolysaccharide (LPS), a cell-wall component of Gram- negative bacteria, is extensively present in food products like co......-LG was contaminated with LPS. Conclusions: LPS contamination of an aqueous protein solution does not affect oral tolerance induction, whereas LPS present in emulsion prevents oral tolerance induction towards the food protein.......Microbial components in the environment are potent activators of the immune system with capacity to shift the active immune response towards priming of Th1 and/or Th2 cells. Lipopolysaccharide (LPS), a cell-wall component of Gram- negative bacteria, is extensively present in food products like cow......'s milk. It is not well established, however, how this presence of LPS affects oral tolerance induction. Methods: We studied the effect of LPS contamination in a commercial preparation of the cow milk protein beta-lactoglobulin (beta-LG) on antigen-specific immune responses. IgG1/IgG2a production upon...

  18. Modulation of LPS induced inflammatory response by Lawsonyl monocyclic terpene from the marine derived Streptomyces sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Ali, A.; Khajuria, A.; Sidiq, T.; AshokKumar; Thakur, N.L.; Naik, D.; Vishwakarma, R.A.

    . The effect of Lawsonone (1) was elucidated on the immune cells (splenocytes and macrophages) collected from BALB/c mice. Study was carried out to find the effect of Lawsonone (1) on Con-A and LPS stimulated splenocyte proliferation, LPS-induced NO, IL-1beta...

  19. Peripherally Administered Nanoparticles Target Monocytic Myeloid Cells, Secondary Lymphoid Organs and Tumors in Mice

    OpenAIRE

    Kourtis, Iraklis C.; Hirosue, Sachiko; de Titta, Alexandre; Kontos, Stephan; Stegmann, Toon; Hubbell, Jeffrey A.; Swartz, Melody A.

    2013-01-01

    Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasma...

  20. Foveal Processing Under Concurrent Peripheral Load in Profoundly Deaf Adults

    Science.gov (United States)

    2016-01-01

    Development of the visual system typically proceeds in concert with the development of audition. One result is that the visual system of profoundly deaf individuals differs from that of those with typical auditory systems. While past research has suggested deaf people have enhanced attention in the visual periphery, it is still unclear whether or not this enhancement entails deficits in central vision. Profoundly deaf and typically hearing adults were administered a variant of the useful field of view task that independently assessed performance on concurrent central and peripheral tasks. Identification of a foveated target was impaired by a concurrent selective peripheral attention task, more so in profoundly deaf adults than in the typically hearing. Previous findings of enhanced performance on the peripheral task were not replicated. These data are discussed in terms of flexible allocation of spatial attention targeted towards perceived task demands, and support a modified “division of labor” hypothesis whereby attentional resources co-opted to process peripheral space result in reduced resources in the central visual field. PMID:26657078

  1. Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2016-01-01

    Full Text Available Sepsis-induced myocardial dysfunction represents a major cause of death in intensive care units. Dysregulated microRNAs (miR-155 has been implicated in multiple cardiovascular diseases and miR-155 can be induced by lipopolysaccharide (LPS. However, the role of miR-155 in LPS-induced cardiac dysfunction is unclear. Septic cardiac dysfunction in mice was induced by intraperitoneal injection of LPS (5 mg/kg and miR-155 was found to be significantly increased in heart challenged with LPS. Pharmacological inhibition of miR-155 using antagomiR improved cardiac function and suppressed cardiac apoptosis induced by LPS in mice as determined by echocardiography, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL assay, and Western blot for Bax and Bcl-2, while overexpression of miR-155 using agomiR had inverse effects. Pea15a was identified as a target gene of miR-155, mediating its effects in controlling apoptosis of cardiomyocytes as evidenced by luciferase reporter assays, quantitative real time-polymerase chain reaction, Western blot, and TUNEL staining. Noteworthy, miR-155 was also found to be upregulated in the plasma of patients with septic cardiac dysfunction compared to sepsis patients without cardiac dysfunction, indicating a potential clinical relevance of miR-155. The receiver-operator characteristic curve indicated that plasma miR-155 might be a biomarker for sepsis patients developing cardiac dysfunction. Therefore, inhibition of miR-155 represents a novel therapy for septic myocardial dysfunction.

  2. Lipopolysaccharide (LPS)-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity

    International Nuclear Information System (INIS)

    Drysdale, B.E.; Shin, H.S.

    1986-01-01

    As the authors reported, calcium ionophore, A23187, activates macrophages (M theta) for tumor cell killing and the activated M theta produce a soluble cytotoxic factor (M theta-CF) that is similar if not identical to tumor necrosis factor. Based on these observations they have investigated whether calcium is involved in the activation mediated by another potent M theta activator, LPS. The authors have shown that A23187 caused uptake of extracellular 45 Ca ++ but LPS did not. They have examined the effect of depleting extracellular calcium by using medium containing no added calcium containing 1.0 mM EGTA. In no case did depletion result in decreased M theta-CF production by the M theta activated with LPS. Measurements using the fluorescent, intracellular calcium indicator, Quin 2 have also been performed. While ionomycin, caused a rapid change in the Quin-2 signal, LPS at a concentration even in excess of that required to activate the M theta caused no change in the signal. When high doses of Quin 2 or another intracellular chelator, 8-(diethylaminol-octyl-3,4,5-trimethoxybenzoate, were used to treat M theta, M theta-CF production decreased and cytotoxic activity was impaired. These data indicate that one or more of the processes involved in M theta-CF production does require calcium, but that activation mediated by LPS occurs without the influx of extracellular calcium or redistribution of intracellular calcium

  3. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  4. A study to evaluate the effect of nootropic drug-piracetam on DNA damage in leukocytes and macrophages.

    Science.gov (United States)

    Singh, Sarika; Goswami, Poonam; Swarnkar, Supriya; Singh, Sheelendra Pratap; Wahajuddin; Nath, Chandishwar; Sharma, Sharad

    2011-11-27

    Piracetam is a nootropic drug that protects neurons in neuropathological and age-related diseases and the activation and modulation of peripheral blood cells in patients with neuropathological conditions is well known. Therefore, in the present study, in vivo, ex vivo, and in vitro tests were conducted to investigate the effect of piracetam on leukocytes and macrophages. Lipopolysaccharide (LPS) causes oxidative DNA damage; thus, in the present study, LPS was used as a tool to induce DNA damage. In vivo experiments were conducted on Sprague Dawley rats, and piracetam (600mg/kg, oral) was provided for five consecutive days. On the fifth day, a single injection of LPS (10mg/kg, i.p.) was administered. Three hours after LPS injection, blood leukocytes and peritoneal macrophages were collected and processed, and a variety of different assays were conducted. Ex vivo treatments were performed on isolated rat blood leukocytes, and in vitro experiments were conducted on rat macrophage cell line J774A.1. Cell viability and the level of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and DNA damage were estimated in untreated (control) and piracetam-, LPS- and LPS+piracetam-treated leukocytes and macrophages. In vivo experiments revealed that rats pretreated with piracetam were significantly protected against LPS-induced increases in ROS levels and DNA damage. Ex vivo isolated leukocytes and J774A.1 cells treated with LPS exhibited augmented ROS levels and DNA damage, which were attenuated with piracetam treatment. Thus, the present study revealed the salutary effect of piracetam against LPS-induced oxidative stress and DNA damage in leukocytes and macrophages. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    International Nuclear Information System (INIS)

    Singh, Alok R.; Peirce, Susan K.; Joshi, Shweta; Durden, Donald L.

    2014-01-01

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTEN fl/fl mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3

  6. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Alok R. [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Peirce, Susan K. [Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (United States); Joshi, Shweta [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Durden, Donald L., E-mail: ddurden@ucsd.edu [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Division of Pediatric Hematology-Oncology, UCSD Rady Children' s Hospital, La Jolla, CA (United States)

    2014-09-10

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTEN{sup fl/fl} mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI

  7. Revisiting the systemic lipopolysaccharide mediated neuroinflammation: Appraising the effect of l-cysteine mediated hydrogen sulphide on it

    Directory of Open Access Journals (Sweden)

    Abdulaziz S. Al-Saeedan

    2018-05-01

    Full Text Available The present research was ventured to examine the effect of l-cysteine on neuro-inflammation persuaded by peripheral lipopolysaccharides (LPS, 125 μg/kg, i.p. administration. No behavioral, biochemical, and inflammatory abnormality was perceived in the brain tissues of experimental animals after LPS administration. l-cysteine precipitated marginal symptoms of toxicity in the brain tissue. Similar pattern of wholesome effect of LPS were perceived when evaluated through the brain tissue fatty acid profile, histopathologically and NF-ĸBP65 protein expression. LPS was unsuccessful to alter the levels of hydrogen sulphide (H2S, cyclooxygenase (COX and lipoxygenase (LOX enzyme in brain tissue. LPS afforded significant peripheral toxicity, when figured out through inflammatory markers (COX, LOX, gaseous signaling molecules nitric oxide (NO, H2S, liver toxicity (SGOT, SGPT, and inflammatory transcription factor (NF-ĸBP65 and l-cysteine also provided a momentous protection against the same as well. The study inculcated two major finding, firstly LPS (i.p. cannot impart inflammatory changes to brain and secondly, l-cysteine can afford peripheral protection against deleterious effect of LPS (i.p. Keywords: Hydrogen sulphide, l-cysteine, Inflammation, Lipopolysaccharide, Neuroinflammation

  8. Effect of lipopolysaccharide (LPS and peptidoglycan (PGN on human mast cell numbers, cytokine production, and protease composition

    Directory of Open Access Journals (Sweden)

    Wu Yalin

    2008-08-01

    Full Text Available Abstract Background Human mast cell (HuMC maturation occurs in tissues interfacing with the external environment, exposing both mast cell progenitors and mature mast cells, to bacteria and their products. It is unknown, however, whether long- or short-term exposure to bacteria-derived toll-like receptor (TLR ligands, such as lipopolysaccharide (LPS or peptidoglycan (PGN, influences HuMC biology. Results Over 6 wks of culture, LPS had minimal effect on HuMC numbers but increased CD117, tryptase and chymase expression. PGN inhibited HuMC development. For mature mast cells, LPS in the presence of rhSCF (10 ng/ml increased CD117, tryptase, chymase and carboxypeptidase expression, primarily in CD117low HuMC. LPS decreased FcεRI expression and β-hexosaminidase release; but had no effect on LTC4 and PGD2 production. PGN reduced HuMC numbers; and CD117 and tryptase expression. IL-1β and IL-6 (in addition to IL-8 and IL-12 were detected in short-term culture supernatants of LPS treated cells, and reproduced the increases in CD117, tryptase, chymase, and carboxypeptidase expression observed in the presence of LPS. Comparative studies with mouse bone marrow-derived mast cells from wild type, but not TLR4 knockout mice, showed increases in mRNA of mouse mast cell chymases MMCP-1, MMCP-2 and MMCP-4. Conclusion PGN inhibits HuMC growth, while LPS exerts its primary effects on mature HuMC by altering cytokine production and protease composition, particularly at low concentrations of SCF. These data demonstrate the ability of bacterial products to alter HuMC mediator production, granular content, and number which may be particularly relevant at mucosal sites where HuMC are exposed to these products.

  9. Inhibitory mechanism of chroman compound on LPS-induced nitric oxide production and nuclear factor-κB activation

    International Nuclear Information System (INIS)

    Kim, Byung Hak; Reddy, Alavala Matta; Lee, Kum-Ho; Chung, Eun Yong; Cho, Sung Min; Lee, Heesoon; Min, Kyung Rak; Kim, Youngsoo

    2004-01-01

    6-Hydroxy-7-methoxychroman-2-carboxylic acid phenylamide (KL-1156) is a novel chemically synthetic compound. In the present study, the chroman KL-1156 compound was found to inhibit lipopolysaccharide (LPS)-induced nitric oxide production in macrophages RAW 264.7. KL-1156 compound attenuated LPS-induced synthesis of both mRNA and protein of inducible nitric oxide synthase (iNOS), in parallel, and inhibited LPS-induced iNOS promoter activity, indicating that the chroman compound down-regulated iNOS expression at transcription level. As a mechanism of the anti-inflammatory action shown by KL-1156 compound, suppression of nuclear factor (NF)-κB has been documented. KL-1156 compound exhibited a dose-dependent inhibitory effect on LPS-induced NF-κB transcriptional activity in macrophages RAW 264.7. Furthermore, the compound inhibited LPS-induced nuclear translocation of NF-κB p65 and DNA binding activity of NF-κB complex, in parallel, but did not affect IκBα degradation. Taken together, this study demonstrated that chroman KL-1156 compound interfered with nuclear translocation step of NF-κB p65, which was attributable to its anti-inflammatory action

  10. Antioxidant and anti-inflammatory effects of cauliflower leaf powder-enriched diet against LPS induced toxicity in rabbits.

    Science.gov (United States)

    Larocca, Marilena; Perna, Anna Maria; Simonetti, Amalia; Gambacorta, Emilio; Iannuzzi, Alessandra; Perucatti, Angela; Rossano, Rocco

    2017-09-20

    Brassica phytochemicals exert a broad spectrum of health-promoting activities. The aim of this study was to investigate the possible beneficial effects of a cauliflower leaf powder (CLP)-enriched diet to prevent inflammation and oxidative stress resulting from injection of lipopolysaccharide (LPS) into rabbits. Animals (24 rabbits) were randomly divided into two groups and fed with a standard diet (SD) or a standard diet supplemented with a 100 g kg -1 diet of CLP. After 60 days, six rabbits of both groups received a LPS injection (100 μg per kg body weight). Serum samples collected after 90 min of LPS injection were assessed for their content of both inflammatory biomarkers such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and matrix-metalloproteinases (MMP-2 and MMP-9) and oxidative stress biomarkers such as thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT). LPS increased the levels of TNF-α, IL-6, and TBARS as well as MMP-2 and MMP-9 activities, whereas it decreased the GSH levels and SOD and CAT activities. In conclusion, preventive supplementation with CLP can protect rabbits from the inflammation and oxidative stress induced by LPS.

  11. Taxane-Induced Peripheral Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Roser Velasco

    2015-04-01

    Full Text Available Taxane-derived agents are chemotherapy drugs widely employed in cancer treatment. Among them, paclitaxel and docetaxel are most commonly administered, but newer formulations are being investigated. Taxane antineoplastic activity is mainly based on the ability of the drugs to promote microtubule assembly, leading to mitotic arrest and apoptosis in cancer cells. Peripheral neurotoxicity is the major non-hematological adverse effect of taxane, often manifested as painful neuropathy experienced during treatment, and it is sometimes irreversible. Unfortunately, taxane-induced neurotoxicity is an uncertainty prior to the initiation of treatment. The present review aims to dissect current knowledge on real incidence, underlying pathophysiology, clinical features and predisposing factors related with the development of taxane-induced neuropathy.

  12. Attenuated effects of chitosan-capped gold nanoparticles on LPS-induced toxicity in laboratory rats

    International Nuclear Information System (INIS)

    Stefan, Marius; Melnig, Viorel; Pricop, Daniela; Neagu, Anca; Mihasan, Marius; Tartau, Liliana; Hritcu, Lucian

    2013-01-01

    The impact of nanoparticles in medicine and biology has increased rapidly in recent years. Gold nanoparticles (AuNP) have advantageous properties such as chemical stability, high electron density and affinity to biomolecules. However, the effects of AuNP on human body after repeated administration are still unclear. Therefore, the purpose of the present study was to evaluate the effects of gold-11.68 nm (AuNP1, 9.8 μg) and gold-22.22 nm (AuNP2, 19.7 μg) nanoparticles capped with chitosan on brain and liver tissue reactivity in male Wistar rats exposed to lipopolysaccharide (LPS from Escherichia coli serotype 0111:B4, 250 μg) upon 8 daily sessions of intraperitoneal administration. Our results suggest that the smaller size of chitosan-capped AuNP shows the protective effects against LPS-induced toxicity, suggesting a very high potential for biomedical applications. - Highlights: ► Smaller size of chitosan-capped gold nanoparticles acts against LPS-induced toxicity. ► Larger size of chitosan-capped gold nanoparticles agglomerated inside neurons and induced toxicity in combination with LPS. ► Chitosan has excellent biocompatible proprieties. ► Smaller size of chitosan-capped gold nanoparticles demonstrates great potential in biomedical applications.

  13. Indirubin-3′-(2,3 dihydroxypropyl)-oximether (E804) is a potent modulator of LPS-stimulated macrophage functions

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, Abigail S. [Department of Biological Sciences, Clemson University, Clemson, SC 29634 (United States); Anderson, Amy L. [Department of Biological Sciences, Clemson University, Clemson, SC 29634 (United States); Graduate Program in Environmental Toxicology, Clemson University, Clemson, SC 29634 (United States); Rice, Charles D., E-mail: cdrice@clemson.edu [Department of Biological Sciences, Clemson University, Clemson, SC 29634 (United States); Graduate Program in Environmental Toxicology, Clemson University, Clemson, SC 29634 (United States)

    2013-01-01

    Indirubin is a deep-red bis-indole isomer of indigo blue, both of which are biologically active ingredients in Danggui Longhui Wan, an ancient Chinese herbal tea mixture used to treat neoplasia and chronic inflammation and to enhance detoxification of xenobiotics. Multiple indirubin derivatives have been synthesized and shown to inhibit cyclin-dependent kinases (CDKs) and glycogen-synthase kinase (GSK-3β) with varying degrees of potency. Several indirubins are also aryl hydrocarbon receptor (AhR) agonists, with AhR-associated activities covering a wide range of potencies, depending on molecular structure. This study examined the effects of indirubin-3′-(2,3 dihydroxypropyl)-oximether (E804), a novel indirubin with potent STAT3 inhibitory properties, on basal and LPS-inducible activities in murine RAW264.7 macrophages. Using a focused commercial qRT-PCR array platform (SuperArray®), the effects of E804 on expression of a suite of genes associated with stress and toxicity were determined. Most genes up-regulated by LPS treatment were suppressed by E804; including LPS-induced expression of pro-inflammatory cytokines and receptors, apoptosis control genes, and oxidative stress response genes. Using qRT-PCR as a follow up to the commercial arrays, E804 treatment suppressed LPS-induced COX-2, iNOS, IL-6 and IL-10 gene expression, though the effects on iNOS and COX-2 protein expression were less dramatic. E804 also inhibited LPS-induced secretion of IL-6 and IL-10. Functional endpoints, including iNOS and lysozyme enzymatic activity, phagocytosis of fluorescent latex beads, and intracellular killing of bacteria, were also examined, and in each experimental condition E804 suppressed activities. Collectively, these results indicate that E804 is a potent modulator of pro-inflammatory profiles in LPS-treated macrophages. -- Highlights: ► RAW 264.7 macrophages were treated with 1 μM Indirubin E804, 1 μg/ml LPS, or both. ► E804 suppresses LPS-induced expression of i

  14. LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver

    Directory of Open Access Journals (Sweden)

    Tatsuya Hayashi

    2010-01-01

    Full Text Available Protein S (PS, mainly synthesized in hepatocytes and endothelial cells, plays a critical role as a cofactor of anticoagulant activated protein C (APC. PS activity is regulated by C4b-binding protein (C4BP, structurally composed of seven α-chains (C4BPα and a β-chain (C4BPβ. In this paper, based primarily on our previous studies, we review the lipopolysaccharide (LPS-induced signaling which affects expression of PS and C4BP in the liver. Our in vivo studies in rats showed that after LPS injection, plasma PS levels are significantly decreased, whereas plasma C4BP levels first are transiently decreased after 2 to 12 hours and then significantly increased after 24 hours. LPS decreases PS antigen and mRNA levels in both hepatocytes and sinusoidal endothelial cells (SECs, and decreases C4BP antigen and both C4BPα and C4BPβ mRNA levels in hepatocytes. Antirat CD14 and antirat Toll-like receptor (TLR-4 antibodies inhibited LPS-induced NFκB activation in both hepatocytes and SECs. Furthermore, inhibitors of NFκB and MEK recovered the LPS-induced decreased expression of PS in both cell types and the LPS-induced decreased expression of C4BP in hepatocytes. These data suggest that the LPS-induced decrease in PS expression in hepatocytes and SECs and LPS-induced decrease in C4BP expression in hepatocytes are mediated by MEK/ERK signaling and NFκB activation and that membrane-bound CD14 and TLR-4 are involved in this mechanism.

  15. Severe acute myocardial infarction and peripheral thrombosis in patient with bladder cancer

    Directory of Open Access Journals (Sweden)

    Ahmet Seyfeddin Gürbüz

    2017-12-01

    Full Text Available Cancer-associated thrombosis worsens the lives of patients substantially. Venous manifestations of cancer-associated thrombosis include deep vein thrombosis and pulmonary embolism. Arterial events include stroke and myocardial infarction. In this patient, myocardial infarction and cardiogenic shock are associated with diffuse coronary thrombosis together with peripheral thrombosis. He had surgery because of bladder carcinoma. Severe hypercoagulable condition probably facilitated by cancer itself and surgery caused multivessel coronary and peripheral intense thrombus burden. Intracoronary 10 mcg/kg tirofiban bolus and 15 mg tissue plasminogen activator (tPA were administered respectively before revascularization and thrombectomy operation was performed. Complete revascularization was achieved.

  16. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice.

    Directory of Open Access Journals (Sweden)

    Stefan Spulber

    Full Text Available Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chronic ad libitum consumption of molecular hydrogen-enriched electrochemically reduced water (H-ERW improves the outcome of lipopolysaccharide (LPS-induced neuroinflammation. Seven days after the initiation of H-ERW treatment, C57Bl/6 mice received a single injection of LPS (0.33 mg/kg i.p. or an equivalent volume of vehicle. The LPS-induced sickness behaviour was assessed 2 h after the injection, and recovery was assessed by monitoring the spontaneous locomotor activity in the homecage for 72 h after the administration of LPS. The mice were killed in the acute or recovery phase, and the expression of pro- and antiinflammatory cytokines in the hippocampus was assessed by real-time PCR. We found that molecular hydrogen reduces the LPS-induced sickness behaviour and promotes recovery. These effects are associated with a shift towards anti-inflammatory gene expression profile at baseline (downregulation of TNF- α and upregulation of IL-10. In addition, molecular hydrogen increases the amplitude, but shortens the duration and promotes the extinction of neuroinflammation. Consistently, molecular hydrogen modulates the activation and gene expression in a similar fashion in immortalized murine microglia (BV-2 cell line, suggesting that the effects observed in vivo may involve the modulation of microglial activation. Taken together, our data point to the regulation of cytokine expression being an additional critical mechanism underlying the beneficial effects of molecular hydrogen.

  17. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.

    Science.gov (United States)

    Maeng, Oky; Kim, Yong Chan; Shin, Han-Jae; Lee, Jie-Oh; Huh, Tae-Lin; Kang, Kwang-il; Kim, Young Sang; Paik, Sang-Gi; Lee, Hayyoung

    2004-04-30

    Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.

  18. Awareness of the Installation the Lightning Protection System (LPS by Using Structural Bonding Method in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Mustaqqim

    2017-01-01

    Full Text Available Structural Bonding Method (SBM is one type of Lightning Protection System (LPS, design to protect human, structures, contents inside structures, electrical equipment, transmission lines and other from the lightning flash. Besides, SBM is a standard LPS that comply with technical standards or codes of practice or called as conventional Lightning Protection System. In order to know the level of the Awareness of the Installation LPS by using SBM in the building among Civil Engineering Consultants, conducting survey need to be done. This paper presents the Research Design and Research Strategy in conducting the survey. It is explaining about the way before conducting the survey which are determine the population of sample (Consultant Company at Northern Region Area, samples of respondents (Civil Engineer at Consultant Office with the number of sample is 40, data collecting process, structure of the questionnaire form and the way in analysis the data. After the analysis the data, the result of the level of awareness in the Installation of LPS by using SBM are consider as moderate level.

  19. Importance of bacterial endotoxin (LPS in endodontics A importância da endotoxina bacteriana (LPS na endodontia atual

    Directory of Open Access Journals (Sweden)

    Mario Roberto Leonardo

    2004-06-01

    Full Text Available New knowledge of the structure and biological activity of endotoxins (LPS has revolutionized concepts concerning their mechanisms of action and forms of inactivation. Since the 1980's, technological advances in microbiological culture and identification have shown that anaerobic microorganisms, especially Gram-negative, predominate in root canals of teeth with pulp necrosis and radiographically visible chronic periapical lesions. Gram-negative bacteria not only have different factors of virulence and generate sub-products that are toxic to apical and periapical tissues, as also contain endotoxin (LPS on their cell wall. This is especially important because endotoxin is released during multiplication or bacterial death, causing a series of biological effects that lead to an inflammatory reaction and resorption of mineralized tissues. Thus, due to the role of endotoxin in the pathogenesis of periapical lesions, we reviewed the literature concerning the biological activity of endotoxin and the relevance of its inactivation during treatment of teeth with pulp necrosis and chronic periapical lesion.O conhecimento mais aprofundado sobre a estrutura e atividade biológica das endotoxinas (LPS revolucionou os conceitos sobre seu mecanismo de ação e formas de inativação. A partir da década de 80, os avanços tecnológicos na cultura e identificação microbiológica demonstraram que, em canais radiculares de dentes portadores de necrose pulpar e lesão periapical crônica, visível radiograficamente, predominam microrganismos anaeróbios, particularmente os gram-negativos. Como se sabe, os microrganismos gram-negativos, além de possuírem diferentes fatores de virulência e gerarem produtos e sub-produtos tóxicos aos tecidos apicais e periapicais, contêm endotoxina em sua parede celular. Esse conhecimento é particularmente importante, uma vez que a endotoxina é liberada durante a multiplicação ou morte bacteriana, exercendo uma série de

  20. Differential responsiveness of Holstein and Angus dermal fibroblasts to LPS challenge occurs without major differences in the methylome.

    Science.gov (United States)

    Benjamin, Aimee L; Green, Benjamin B; Crooker, Brian A; McKay, Stephanie D; Kerr, David E

    2016-03-24

    We have previously found substantial animal-to-animal and age-dependent variation in the response of Holstein fibroblast cultures challenged with LPS. To expand on this finding, fibroblast cultures were established from dairy (Holstein) and beef (Angus) cattle and challenged with LPS to examine breed-dependent differences in the innate immune response. Global gene expression was measured by RNA-Seq, while an epigenetic basis for expression differences was examined by methylated CpG island recovery assay sequencing (MIRA-Seq) analysis. The Holstein breed displayed a more robust response to LPS than the Angus breed based on RNA-Seq analysis of cultures challenged with LPS for 0, 2, and 8 h. Several immune-associated genes were expressed at greater levels (FDR Angus fibroblasts, and two of these regions fell within the promoter region (-2500 to +500 bp of the transcription start site) of the genes NTRK2 and ADAMTS5. Fibroblasts isolated from Holstein cattle display a more robust response to LPS in comparison to cultures from Angus cattle. Different selection strategies and management practices exist between these two breeds that likely give rise to genetic and epigenetic factors contributing to the different immune response phenotypes.

  1. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.

    Science.gov (United States)

    Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro

    2017-07-01

    Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: a biotelemetry study in rats

    Science.gov (United States)

    Hicks, C; Ramos, L; Reekie, T; Misagh, G H; Narlawar, R; Kassiou, M; McGregor, I S

    2014-01-01

    Background and Purpose There is current interest in oxytocin (OT) as a possible therapeutic in psychiatric disorders. However, the usefulness of OT may be constrained by peripheral autonomic effects, which may involve an action at both OT and vasopressin V1A receptors. Here, we characterized the cardiovascular and thermoregulatory effects of OT, vasopressin (AVP) and the non-peptide OT receptor agonist WAY 267,464 in rats, and assessed the relative involvement of the OT and V1A receptors in these effects. Experimental Approach Biotelemetry in freely moving male Wistar rats was used to examine body temperature and heart rate after OT (0.01 – 1 mg kg−1; i.p.), AVP (0.001 – 0.1 mg kg−1; i.p.) or WAY 267,464 (10 and 100 mg kg−1; i.p.). The actions of the OT receptor antagonist Compound 25 (C25, 5 and 10 mg kg−1) and V1A receptor antagonist SR49059 (1 and 10 mg kg−1) were studied, as well as possible V1A receptor antagonist effects of WAY 267,464. Key Results OT and AVP dose-dependently reduced body temperature and heart rate. WAY 267,464 had similar, but more modest, effects. SR49059, but not C25, prevented the hypothermia and bradycardia induced by OT and AVP. WAY 267,464 (100 mg·kg−1) prevented the effects of OT, and to some extent AVP. Conclusions and Implications Peripherally administered OT and AVP have profound cardiovascular and thermoregulatory effects that appear to principally involve the V1A receptor rather than the OT receptor. Additionally, WAY 267,464 is not a simple OT receptor agonist, as it has functionally relevant V1A antagonist actions. PMID:24641248

  3. Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: a biotelemetry study in rats.

    Science.gov (United States)

    Hicks, C; Ramos, L; Reekie, T; Misagh, G H; Narlawar, R; Kassiou, M; McGregor, I S

    2014-06-01

    There is current interest in oxytocin (OT) as a possible therapeutic in psychiatric disorders. However, the usefulness of OT may be constrained by peripheral autonomic effects, which may involve an action at both OT and vasopressin V1A receptors. Here, we characterized the cardiovascular and thermoregulatory effects of OT, vasopressin (AVP) and the non-peptide OT receptor agonist WAY 267,464 in rats, and assessed the relative involvement of the OT and V1A receptors in these effects. Biotelemetry in freely moving male Wistar rats was used to examine body temperature and heart rate after OT (0.01 - 1 mg kg(-1); i.p.), AVP (0.001 - 0.1 mg kg(-1); i.p.) or WAY 267,464 (10 and 100 mg kg(-1); i.p.). The actions of the OT receptor antagonist Compound 25 (C25, 5 and 10 mg kg(-1)) and V1A receptor antagonist SR49059 (1 and 10 mg kg(-1)) were studied, as well as possible V1A receptor antagonist effects of WAY 267,464. OT and AVP dose-dependently reduced body temperature and heart rate. WAY 267,464 had similar, but more modest, effects. SR49059, but not C25, prevented the hypothermia and bradycardia induced by OT and AVP. WAY 267,464 (100 mg·kg(-1)) prevented the effects of OT, and to some extent AVP. Peripherally administered OT and AVP have profound cardiovascular and thermoregulatory effects that appear to principally involve the V1A receptor rather than the OT receptor. Additionally, WAY 267,464 is not a simple OT receptor agonist, as it has functionally relevant V1A antagonist actions. © 2014 The British Pharmacological Society.

  4. Effect of flavonol and its dimethoxy derivatives on paclitaxel-induced peripheral neuropathy in mice.

    Science.gov (United States)

    Sayeli, Vijaykumar; Nadipelly, Jagan; Kadhirvelu, Parimala; Cheriyan, Binoy Varghese; Shanmugasundaram, Jaikumar; Subramanian, Viswanathan

    2018-04-13

    Peripheral neuropathy is the dose limiting side effect of many anticancer drugs. Flavonoids exhibit good antinociceptive effect in animal models. Their efficacy against different types of nociception has been documented. The present study investigated the effect of flavonol (3-hydroxy flavone), 3',4'-dimethoxy flavonol, 6,3'-dimethoxy flavonol, 7,2'-dimethoxy flavonol and 7,3'-dimethoxy flavonol against paclitaxel-induced peripheral neuropathy in mice. A single dose of paclitaxel (10 mg/kg, i.p.) was administered to induce peripheral neuropathy in mice and the manifestations of peripheral neuropathy such as tactile allodynia, cold allodynia and thermal hyperalgesia were assessed 24 h later by employing Von Frey hair aesthesiometer test, acetone bubble test and hot water tail immersion test, respectively. The test compounds were prepared as a suspension in 0.5% carboxymethyl cellulose and were administered s.c. in various doses (25, 50, 100 and 200 mg/kg). The above behavioral responses were assessed prior to and 30 min after drug treatment. In addition, the effect of test compounds on proinflammatory cytokines like tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and free radicals was investigated by using suitable in vitro assays. A dose-dependent attenuation of tactile allodynia, cold allodynia and thermal hyperalgesia was evidenced in mice treated with flavonol derivatives. The test compounds inhibited TNF-α, IL-1β and free radicals in a concentration-dependent manner. These results revealed that flavonol and its dimethoxy derivatives ameliorated the manifestations of paclitaxel-induced peripheral neuropathy in mice. The inhibition of proinflammatory cytokines and free radicals could contribute to this beneficial effect.

  5. Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets.

    Directory of Open Access Journals (Sweden)

    Ping Kang

    Full Text Available The experiment was conducted to study the effect of the glutamate (Glu on muscle protein loss through toll-like receptor 4 (TLR4, nucleotide-binding oligomerization domain proteins (NODs, Akt/Forkhead Box O (Akt/FOXO and mammalian target of rapamycin (mTOR signaling pathways in LPS-challenged piglets. Twenty-four weaned piglets were assigned into four treatments: (1 Control; (2 LPS+0% Glu; (3 LPS + 1.0% Glu; (4 LPS + 2.0% Glu. The experiment was lasted for 28 days. On d 28, the piglets in the LPS challenged groups were injected with LPS on 100 μg/kg body weight (BW, and the piglets in the control group were injected with the same volume of 0.9% NaCl solution. After 4 h LPS or saline injection, the piglets were slaughtered and the muscle samples were collected. Glu supplementation increased the protein/DNA ratio in gastrocnemius muscle, and the protein content in longissimus dorsi (LD muscle after LPS challenge (P<0.05. In addition, Glu supplementation decreased TLR4, IL-1 receptor-associated kinase (IRAK 1, receptor-interacting serine/threonine-protein kinase (RIPK 2, and nuclear factor-κB (NF-κB mRNA expression in gastrocnemius muscle (P<0.05, MyD88 mRNA expression in LD muscle, and FOXO1 mRNA expression in LD muscle (P<0.05. Moreover, Glu supplementation increased p-Akt/t-Akt ratio (P<0.05 in gastrocnemius muscle, and p-4EBP1/t-4EBP1 ratio in both gastrocnemius and LD muscles (P<0.05. Glu supplementation in the piglets' diets might be an effective strategy to alleviate LPS-induced muscle protein loss, which might be due to suppressing the mRNA expression of TLR4 and NODs signaling-related genes, and modulating Akt/FOXO and mTOR signaling pathways.

  6. Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment

    OpenAIRE

    Mo, Michelle; Erdelyi, Ildiko; Szigeti-Buck, Klara; Benbow, Jennifer H.; Ehrlich, Barbara E.

    2012-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect that occurs in many patients undergoing chemotherapy. It is often irreversible and frequently leads to early termination of treatment. In this study, we have identified two compounds, lithium and ibudilast, that when administered as a single prophylactic injection prior to paclitaxel treatment, prevent the development of CIPN in mice at the sensory-motor and cellular level. The prevention of neuropathy was not obs...

  7. Profile of peripheral blood neutrophil cytokines in diabetes type 1 pregnant women and its correlation with selected parameters in the newborns.

    Science.gov (United States)

    Pertyńska-Marczewska, Magdalena; Głowacka, Ewa; Grodzicka, Alicja; Sobczak, Małgorzata; Cypryk, Katarzyna; Wilczyński, Jacek R; Wilczyński, Jan

    2010-02-01

    Interleukin (IL)-12, IL-10, tumor necrosis factor-alpha (TNF-alpha), IL-6 and IL-8 alter as pregnancy progresses, implying continuous immune regulation associated with the maintenance of pregnancy. We aimed to evaluate the peripheral blood neutrophil-derived production of these cytokines in the course of pregnancy complicated by type 1 diabetes. of study These parameters were measured in samples from healthy non-pregnant (C), diabetic non-pregnant (D), healthy pregnant (P) and pregnant diabetic (PD) women. Neutrophil-derived secretion of TNF-alpha and IL-12 increased along with progression of pregnancy in PD and P groups. The concentration of IL-10 from lipopolysaccharide (LPS)-stimulated neutrophils increased during the course of uncomplicated pregnancy but decreased in diabetic pregnancy. Concentration of IL-8 decreased with the advancing gestational age in P and PD groups. LPS-stimulated neutrophil-derived IL-6 concentration increased only in PD patients. Our results show that diabetes creates pro-inflammatory environment thus potentially influencing the outcome of pregnancy. We conclude that neutrophil-derived cytokine production could contribute to the complications seen in pregnant women with type 1 diabetes.

  8. Research on Protective Effect and Mechanism of Idazoxan on lps Attacked Acute Hepatic Injury

    Science.gov (United States)

    Zhu, Junyu; Ying, Shangqi; Kang, Wenyuan; Huang, Wenjuan; Liang, Huaping

    2018-01-01

    Objective: To observe the protection effect of Idazoxan (IDA) on LPS induced acute hepatic injury, and to explore its action mechanism. Methods: 60 adult C57BL/6 mice were divided into a control group (20 mice, intraperitoneal injection of phosphate buffer), a model group (20 mice, intraperitoneal injection of LPS 10 mg/kg) and a agmatine group (20 mice, intraperitoneal injection of LPS 10 mg/kg and agmatine 200 mg/kg) according to random number table method. Blood and liver tissue were collected for preparation of tissue homogenate. Enzyme-linked immunosorbent assay (ELISA) was adopted for detecting tumor necrosis factor-α (TNF-α) and interleukin (IL- 1β and IL - 6) contents in the serum and liver tissue at 24h after molding. Automatic biochemical analyzer is used for determining alanine transaminase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) level at 24h after molding; The liver tissue pathology changes were observed at 24h after molding. Macrophage RAW264.7 cells were stimulated by 10 μg/mL LPS and with or without IDA (100 μmol/L). 2’, 7’-dichlorofluoresce in diacetate (DCFH-DA) was used as a fluorescent probe for detection of intracellular reactive oxygen species (ROS) level; qRT - PCR method was used for detecting antioxidant enzymes HO-1 and NQO-1 mRNA expression level at 2h, 4h and 8 h. Results: mice in the model group suffered from depression, curling and food water forbidding at 6h after molding. Mice in the Idazoxan group have obviously better spirit and activity than that of model group. The serum ALT, AST and LDH level of LPS attacked acute hepatic injury mice can be effectively alleviated after Idazoxan treatment. The expression of proinflammatory factor TNF-α and IL-6 in the liver can be reduced. The liver showed obvious pathological changes at 24 h after injection, such as liver cell swelling, necrosis, congestion, inflammatory cell infiltration, etc.; The liver cell injury was prominently alleviated in IDA

  9. Selenium Pretreatment Alleviated LPS-Induced Immunological Stress Via Upregulation of Several Selenoprotein Encoding Genes in Murine RAW264.7 Cells.

    Science.gov (United States)

    Wang, Longqiong; Jing, Jinzhong; Yan, Hui; Tang, Jiayong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Tian, Gang; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2018-04-18

    This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 μmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.

  10. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development.

    Directory of Open Access Journals (Sweden)

    P Padmini S J Khedoe

    Full Text Available COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD, and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L mice.Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study or in week 14, 16, 18 and 20 (chronic study. Inflammatory parameters were measured in bronchoalveolar lavage (BAL and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study.In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment.These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.

  11. [Gallic acid inhibits inflammatory response of RAW264.7 macrophages by blocking the activation of TLR4/NF-κB induced by LPS].

    Science.gov (United States)

    Huang, Lihua; Hou, Lin; Xue, Hainan; Wang, Chunjie

    2016-12-01

    Objective To observe the influence of gallic acid on Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway in the RAW264.7 macrophages stimulated by lipopolysaccharide (LPS). Methods RAW264.7 macrophages were divided into the following groups: control group, LPS group, LPS combined with gallic acid group, LPS combined with pyrrolidine dithiocarbamate (PDTC) group and LPS combined with dexamethasone (DM) group. RAW264.7 cells were cultured for 24 hours after corresponding treatments. The levels of tumor necrosis factor α (TNF-α), interleukin-1 (IL-1) and IL-6 were detected by ELISA. The levels of TLR4 and NF-κB mRNAs were tested by real-time PCR. The levels of p-IκBα, p65, p-p65 and TLR4 proteins were examined by Western blotting. Results The expression levels of TNF-α, IL-1 and IL-6 were up-regulated in the RAW264.7 macrophages after stimulated by LPS. Gallic acid could reduce the elevated expression levels of TNF-α, IL-1 and IL-6 induced by LPS. The expression of TLR4 significantly increased after stimulated by LPS and NF-κB was activated. Gallic acid could reverse the above changes and prevent the activation of NF-κB. Conclusion Gallic acid could inhibit LPS-induced inflammatory response in RAW264.7 macrophages via TLR4/NF-κB pathway.

  12. Artesunate Reduces Serum Lipopolysaccharide in Cecal Ligation/Puncture Mice via Enhanced LPS Internalization by Macrophages through Increased mRNA Expression of Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-01-01

    Full Text Available Innate immunity is the first line of defense in human beings against pathogen infection; monocytes/macrophages are the primary cells of the innate immune system. Recently, macrophages/monocytes have been discovered to participate in LPS clearance, and the clearance efficiency determines the magnitude of the inflammatory response and subsequent organ injury. Previously, we reported that artesunate (AS protected sepsis mice against heat-killed E. coli challenge. Herein, we further confirmed that AS protected cecal ligation/puncture (CLP sepsis mice. Its protection on sepsis mice was related to not only reduction of pro-inflammatory cytokines and serum LPS levels but also improvement of liver function. Based on the fact that AS did not directly bind and neutralize LPS, we hypothesized that the reduction of serum LPS level might be related to enhancement of LPS internalization and subsequent detoxification. Our results showed that AS increased FITC-LPS internalization by peritoneal macrophage and liver Kupffer cell, but enhancement of LPS internalization by AS was not related to the clathrin-dependent pathway. However, AS induced mRNA expression of important scavenger receptors (SRs; SR-A and MARCO mRNA expression was upregulated, suggesting that AS enhancement of LPS internalization and inhibition of pro-inflammatory cytokines was related to changes in mRNA expression of SRs.

  13. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Tiziana Angrisano

    Full Text Available Bacterial lipopolysaccharide (LPS induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3, methylation (H3K4, H3K9, H3K27 and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene.

  14. Peripheral neuropathy

    Science.gov (United States)

    ... peripheral; Neuritis - peripheral; Nerve disease; Polyneuropathy; Chronic pain - peripheral neuropathy ... Philadelphia, PA: Elsevier; 2016:chap 107. Shy ME. Peripheral neuropathies. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  15. Effect of intranasally administered insulin on cerebral blood flow and perfusion

    DEFF Research Database (Denmark)

    Akintola, Abimbola A.; van Opstal, Anna M.; Westendorp, Rudi G.

    2017-01-01

    Insulin, a vasoactive modulator regulating peripheral and cerebral blood flow, has been consistently linked to aging and longevity. In this proof of principle study, using a randomized, double-blinded, placebo-controlled crossover design, we explored the effects of intranasally administered insulin...... labelling. Total flow through the major cerebropetal arteries was unchanged in both young and old. In the older participants, intranasal insulin compared to placebo increased perfusion through the occipital gray matter (65.2±11.0 mL/100g/min vs 61.2±10.1 mL/100g/min, P=0.001), and in the thalamus (68...

  16. Endogenous PGI2 signaling through IP inhibits neutrophilic lung inflammation in LPS-induced acute lung injury mice model.

    Science.gov (United States)

    Toki, Shinji; Zhou, Weisong; Goleniewska, Kasia; Reiss, Sara; Dulek, Daniel E; Newcomb, Dawn C; Lawson, William E; Peebles, R Stokes

    2018-04-13

    Endogenous prostaglandin I 2 (PGI 2 ) has inhibitory effects on immune responses against pathogens or allergens; however, the immunomodulatory activity of endogenous PGI 2 signaling in endotoxin-induced inflammation is unknown. To test the hypothesis that endogenous PGI 2 down-regulates endotoxin-induced lung inflammation, C57BL/6 wild type (WT) and PGI 2 receptor (IP) KO mice were challenged intranasally with LPS. Urine 6-keto-PGF 1α , a stable metabolite of PGI 2, was significantly increased following the LPS-challenge, suggesting that endogenous PGI 2 signaling modulates the host response to LPS-challenge. IPKO mice had a significant increase in neutrophils in the BAL fluid as well as increased proteins of KC, LIX, and TNF-α in lung homogenates compared with WT mice. In contrast, IL-10 was decreased in LPS-challenged IPKO mice compared with WT mice. The PGI 2 analog cicaprost significantly decreased LPS-induced KC, and TNF-α, but increased IL-10 and AREG in bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMs) compared with vehicle-treatment. These results indicated that endogenous PGI 2 signaling attenuated neutrophilic lung inflammation through the reduced inflammatory cytokine and chemokine and enhanced IL-10. Copyright © 2018. Published by Elsevier Inc.

  17. TNF-α and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells.

    Science.gov (United States)

    Shin, M R; Kang, S K; Kim, Y S; Lee, S Y; Hong, S C; Kim, E-C

    2015-07-01

    To assess whether SIRT1 and VEGF are responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-induced angiogenesis and to examine the molecular mechanism(s) of action in human dental pulp cells (HDPCs). Immortalized HDPCs obtained from Prof. Takashi Takata (Hiroshima University, Japan) were treated with LPS (1 μg mL(-1) ) and TNF-α (10 ng mL(-1) ) for 24 h. mRNA and protein levels were examined by RT-PCR and Western blotting, respectively. Migration and tube formation were examined in human umbilical vein endothelial cells (HUVECs). The data were analysed by one-way anova. Statistical analysis was performed at α = 0.05. LPS and TNF-α upregulated VEGF and SIRT1 mRNA and protein levels. Inhibition of SIRT1 activity by sirtinol and SIRT1 siRNA or inhibition of the VEGF receptor by CBO-P11 significantly attenuated LPS + TNF-α-stimulated MMPs production in HDPCs, as well as migration and tube formation in HUVECs (P disease. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. Role of IFN-gamma and LPS on Neuron/Glial Co-Cultures Infected by Neospora caninum

    Directory of Open Access Journals (Sweden)

    Erica Etelvina Viana De Jesus

    2014-10-01

    Full Text Available Neospora caninum causes cattle abortion and neurological symptoms in dogs. Although infection is usually asymptomatic, classical neurological symptoms of neosporosis may be associated with encephalitis. This parasite can grow in brain endothelial cells without markedly damages, but it can modulate the cellular environment to promote its survival in the brain. In previous studies, we described that IFN-γ decreased the parasite proliferation and down regulated nitric oxide production in astrocyte/microglia cultures. However, it remains unclear how glial cells respond to N. caninum in the presence of neurons. Therefore, we evaluated the effect of 300 IU/mL IFN-γ or 1.0 μg/mL of LPS on infected rat neuron/glial co-cultures. After 72 hours of infection, LPS did not affect the mitochondrial dehydrogenase activity. However, IFN-γ decreased this parameter by 15.5 and 12.0% in uninfected and infected cells, respectively. The number of tachyzoites decreased 54.1 and 44.3% in cells stimulated with IFN-γ and LPS, respectively. Infection or LPS treatment did not change NO production. On the other hand, IFN-γ induced increased nitrite release in 55.7%, but the infection reverted this induction. IL-10 levels increased only in infected cultures (treated or not, meanwhile PGE2 release was improved in IFN-γ/infected or LPS/infected cells. Although IFN-γ significantly reduced the neurite length in uninfected cultures (42.64%; p < 0.001, this inflammatory cytokine reverted the impairment of neurite outgrowth induced by the infection (81.39%. The results suggest a neuroprotective potential response of glia to N. caninum infection under IFN-γ stimulus. This observation contributes to understand the immune mediated mechanisms of neosporosis in CNS

  19. Perforations and how to manage: The coronary interventionalist and peripheral interventionalist working together for a solution.

    Science.gov (United States)

    Heuser, Richard R

    2018-02-01

    Perforations can occur in both peripheral and coronary interventional procedures potentially resulting in severe morbidity A readily available therapeutic option to treat perforations should be present in every cath lab that does coronary and peripheral procedures The use of a coagulated thrombus injection can be an effective treatment option, but if a major vessel is affected that must remain patent, one viable option is to administer the patients' own clotted blood to recanalize the vessel without permanent sequelae. © 2018 Wiley Periodicals, Inc.

  20. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production.

    Science.gov (United States)

    Park, So Young; Hong, Seong Su; Han, Xiang Hua; Hwang, Ji Sang; Lee, Dongho; Ro, Jai Seup; Hwang, Bang Yeon

    2007-01-01

    A new butyrolactone sesquilignan, isolappaol C (1), together with four known lignans, lappaol C (2), lappaol D (3), lappaol F (4), and diarctigenin (5), were isolated from the methanolic extract of the seeds from the Arctium lappa plant. The structure of isolappaol C (1) was determined by spectral analysis including 1D- and 2D-NMR. All the isolates were evaluated for their inhibitory effects on the LPS-induced nitric oxide production using murine macrophage RAW264.7 cells. Lappaol F (4) and diarctigenin (5) strongly inhibited NO production in the LPS-stimulated RAW264.7 cells with IC(50) values of 9.5 and 9.6 microM, respectively.

  1. Effect of curcumin (Curcuma longa extract) on LPS-induced acute lung injury is mediated by the activation of AMPK.

    Science.gov (United States)

    Kim, Joungmin; Jeong, Seong-Wook; Quan, Hui; Jeong, Cheol-Won; Choi, Jeong-Il; Bae, Hong-Beom

    2016-02-01

    Curcumin, a biphenolic compound extracted from turmeric (Curcuma longa), possesses potent anti-inflammatory activity. The present study investigated whether curcumin could increase 5' adenosine monophosphate-activated protein kinase (AMPK) activity in macrophages and modulate the severity of lipopolysaccharide (LPS)-induced acute lung injury. Macrophages were treated with curcumin and then exposed (or not) to LPS. Acute lung injury was induced by intratracheal administration of LPS in BALB/c mice. Curcumin increased phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), a downstream target of AMPK, in a time- and concentration-dependent manner. Curcumin did not increase phosphorylation of liver kinase B1, a primary kinase upstream of AMPK. STO-609, an inhibitor of calcium(2+)/calmodulin-dependent protein kinase kinase, diminished curcumin-induced AMPK phosphorylation, but transforming growth factor-beta-activated kinase 1 inhibitor did not. Curcumin also diminished the LPS-induced increase in phosphorylation of inhibitory κB-alpha and the production of tumor necrosis factor alpha (TNF-α), macrophage inflammatory protein (MIP)-2, and interleukin (IL)-6 by macrophages. Systemic administration of curcumin significantly decreased the production of TNF-α, MIP-2, and IL-6 as well as neutrophil accumulation in bronchoalveolar lavage fluid, and also decreased pulmonary myeloperoxidase levels and the wet/dry weight ratio in mice subjected to LPS treatment. These results suggest that the protective effect of curcumin on LPS-induced acute lung injury is associated with AMPK activation.

  2. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Villar-Lorenzo, Andrea, E-mail: avillar@iib.uam.es [Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid (Spain); Ardiles, Alejandro E., E-mail: ale_csic@gmail.com [Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife (Spain); Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1110939 (Chile); Arroba, Ana I., E-mail: aarroba@iib.uam.es [Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid (Spain); Hernández-Jiménez, Enrique, E-mail: enheji@gmail.com [Tumor Immunology Laboratory (IdiPAZ), 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERres), ISCIII, 28029 Madrid (Spain); and others

    2016-12-15

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.

  3. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages

    International Nuclear Information System (INIS)

    Villar-Lorenzo, Andrea; Ardiles, Alejandro E.; Arroba, Ana I.; Hernández-Jiménez, Enrique

    2016-01-01

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.

  4. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    Science.gov (United States)

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.

  5. C–C Chemokines Released by Lipopolysaccharide (LPS)-stimulated Human Macrophages Suppress HIV-1 Infection in Both Macrophages and T Cells

    Science.gov (United States)

    Verani, Alessia; Scarlatti, Gabriella; Comar, Manola; Tresoldi, Eleonora; Polo, Simona; Giacca, Mauro; Lusso, Paolo; Siccardi, Antonio G.; Vercelli, Donata

    1997-01-01

    Human immunodeficiency virus-1 (HIV-1) expression in monocyte-derived macrophages (MDM) infected in vitro is known to be inhibited by lipopolysaccharide (LPS). However, the mechanisms are incompletely understood. We show here that HIV-1 suppression is mediated by soluble factors released by MDM stimulated with physiologically significant concentrations of LPS. LPS-conditioned supernatants from MDM inhibited HIV-1 replication in both MDM and T cells. Depletion of C–C chemokines (RANTES, MIP-1α, and MIP-1β) neutralized the ability of LPS-conditioned supernatants to inhibit HIV-1 replication in MDM. A combination of recombinant C–C chemokines blocked HIV-1 infection as effectively as LPS. Here, we report an inhibitory effect of C–C chemokines on HIV replication in primary macrophages. Our results raise the possibility that monocytes may play a dual role in HIV infection: while representing a reservoir for the virus, they may contribute to the containment of the infection by releasing factors that suppress HIV replication not only in monocytes but also in T lymphocytes. PMID:9120386

  6. MiR-103 alleviates autophagy and apoptosis by regulating SOX2 in LPS-injured PC12 cells and SCI rats.

    Science.gov (United States)

    Li, Guowei; Chen, Tao; Zhu, Yingxian; Xiao, Xiaoyu; Bu, Juyuan; Huang, Zongwen

    2018-03-01

    Recent studies revealed that microRNAs (miRNAs) may play crucial roles in the responses and pathologic processes of spinal cord injury (SCI). This study aimed to investigate the effect and the molecular basis of miR-103 on LPS-induced injuries in PC12 cells in vitro and SCI rats in vivo . PC12 cells were exposed to LPS to induce cell injuries to mimic the in vitro model of SCI. The expression of miR-103 and SOX2 in PC12 cells were altered by transient transfections. Cell viability and apoptotic cell rate were measured by CCK-8 assay and flow cytometry assay. Furthermore, Western blot analysis was performed to detect the expression levels of apoptosis- and autophagy- related proteins, MAPK/ERK pathway- and JAK/STAT pathway-related proteins. In addition, we also assessed the effect of miR-103 agomir on SCI rats. LPS exposure induced cell injuries in PC12 cells. miR-103 overexpression significantly increased cell viability, reduced cell apoptosis and autophagy, and opposite results were observed in miR-103 inhibition. miR-103 attenuated LPS-induced injuries by indirect upregulation of SOX2. SOX2 overexpression protected PC12 cells against LPS-induced injuries, while SOX2 inhibition expedited LPS-induced cell injuries. Furthermore, miR-103 overexpression inhibited MAPK/ERK pathway and JAK/STAT pathway through upregulation of SOX2. We also found that miR-103 agomir inhibited cell apoptosis and autophagy in SCI rats. This study demonstrates that miR-103 may represent a protective effect against cell apoptosis and autophagy in LPS-injured PC12 cells and SCI rats by upregulation of SOX2 expression.

  7. LPS-induced systemic inflammation is more severe in P2Y12 null mice.

    Science.gov (United States)

    Liverani, Elisabetta; Rico, Mario C; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y; Kilpatrick, Laurie E; Kunapuli, Satya P

    2014-02-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade.

  8. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells.

    Directory of Open Access Journals (Sweden)

    Ana Juknat

    Full Text Available Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS to activate BV-2 microglial cells, we examined how Δ(9-tetrahydrocannabinol (THC, the major psychoactive component of marijuana, and cannabidiol (CBD the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005. Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2, cell cycle related (Cdkn2b, Gadd45a as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1. The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress

  9. Methotrexate in the treatment of peripheral arthritis in ulcerative colitis

    Directory of Open Access Journals (Sweden)

    R. Scarpa

    2011-06-01

    Full Text Available Objective: To evaluate efficacy of methotrexate treatment in peripheral arthritis of ulcerative colitis. Methods: We studied 18 patients (10/8 M/F; mean age: 38.90 yrs; range: 21-65 yrs, with peripheral arthritis (14 with polyarticular, 4 with oligoarticular subset associate ulcerative colitis. Methotrexate 20 mg/week was administered in our patients, who were already receiving mesalazina for inflammatory bowel disease. At baseline, after 3 (T1, 6 (T2 and 12 months (T3 serological parameters (ESR and CRP, functional status (HAQ and disease activity (VAS, GH, Ritchie articular index were evaluated. Results: During the therapy a significant improvement was observed in disease activity, functional status and serological parameters since T1. ESR and CRP did not change at T2 and T3. Instead VAS, GH, Ritchie articular index and HAQ had a significant and gradual improvement from T1 to T3. Conclusion: Methotrexate treatment was efficacious in the treatment of peripheral arthritis associate ulcerative colitis. This drug induced improvement in disease activity, functional status and serological parameters after 3 months of therapy.

  10. Andrographolide Attenuates LPS-Induced Cardiac Malfunctions Through Inhibition of IκB Phosphorylation and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2015-11-01

    Full Text Available Background/Aims: Cardiac malfunction is a common complication in sepsis and significantly increases the mortality of patients in septic shock. However, no studies have examined whether andrographolide (And reduces LPS-induced myocardial malfunction. Methods: Left ventricular systolic and diastolic functions were examined using echocardiography. TNF-a and IL-1ß protein levels were detected by an enzyme-linked immunosorbent assay (ELISA. NO oxidation products were determined using Griess reagent. Protein expression levels of inhibitors of NF-κBa (IκB and phospho-IκB were determined via Western blot. Oxidative injury was determined by measuring myocardial lipid peroxidation and superoxide dismutase activity. Cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL and cardiac caspase 3/7 activity. Results: And blunted LPS-induced myocardial malfunctions in mice. LPS induced TNF-a, IL-1ß, and NO production as well as I-κB phosphorylation. Cardiac apoptosis was attenuated via incubation with And, but the extent of oxidative injury remained unaffected. Conclusion: And prevents LPS-induced cardiac malfunctions in mice by inhibiting TNF-a, IL-1ß, and NO production, IκB phosphorylation, and cardiac apoptosis, indicating that And may be a potential agent for preventing myocardial malfunction during sepsis.

  11. Effect of Dietary Lipids on Endotoxemia Influences Postprandial Inflammatory Response.

    Science.gov (United States)

    López-Moreno, Javier; García-Carpintero, Sonia; Jimenez-Lucena, Rosa; Haro, Carmen; Rangel-Zúñiga, Oriol A; Blanco-Rojo, Ruth; Yubero-Serrano, Elena M; Tinahones, Francisco J; Delgado-Lista, Javier; Pérez-Martínez, Pablo; Roche, Helen M; López-Miranda, José; Camargo, Antonio

    2017-09-06

    Metabolic syndrome (MetS) results in postprandial metabolic alterations that predisposes one to a state of chronic low-grade inflammation and increased oxidative stress. We aimed to assess the effect of the consumption of the quantity and quality of dietary fat on fasting and postprandial plasma lipopolysaccharides (LPS). A subgroup of 75 subjects with metabolic syndrome was randomized to receive 1 of 4 diets: HSFA, rich in saturated fat; HMUFA, rich in monounsaturated fat; LFHCC n-3, low-fat, rich in complex carbohydrate diet supplemented with n-3 polyunsaturated fatty acids; LFHCC low-fat, rich in complex carbohydrate diet supplemented with placebo, for 12 weeks each. We administered a fat challenge reflecting the fatty acid composition of the diets at postintervention. We determined the plasma lipoproteins and glucose and gene expression in peripheral blood mononuclear cells (PBMC) and adipose tissue. LPS and LPS binding protein (LBP) plasma levels were determined by ELISA, at fasting and postprandial (4 h after a fat challenge) states. We observed a postprandial increase in LPS levels after the intake of the HSFA meal, whereas we did not find any postprandial changes after the intake of the other three diets. Moreover, we found a positive relationship between the LPS plasma levels and the gene expression of IkBa and MIF1 in PBMC. No statistically significant differences in the LBP plasma levels at fasting or postprandial states were observed. Our results suggest that the consumption of HSFA diet increases the intestinal absorption of LPS which, in turn, increases postprandial endotoxemia levels and the postprandial inflammatory response.

  12. Minocycline hydrochloride nanoliposomes inhibit the production of TNF-α in LPS-stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Liu D

    2012-08-01

    Full Text Available D Liu, P S YangShandong Provincial Key Laboratory of Oral Biomedicine, College of Stomatology, Shandong University, Shandong Province, People's Republic of ChinaBackground: As an adjunctive treatment of chronic periodontitis, it seems that the application of periocline or the other antimicrobials is effective against periodontopathogens. In this study, nanoliposomes were investigated as carriers of minocycline hydrochloride and the inhibition effects of minocycline hydrochloride nanoliposomes on the proliferation and lipopolysaccharide (LPS-stimulated production of tumor necrosis factor-α (TNF-α of macrophages were elucidated.Methods: After stimulation with 10 µg/mL LPS, murine macrophages (ANA-1 were treated with 10, 20, 40, 50 and 70 µg/mL 2% minocycline hydrochloride nanoliposomes, minocycline hydrochloride solution, and periocline for 6, 12, 24, 48 and 60 hours, respectively. A tetrazolium (MTT assay was used to evaluate macrophages cell proliferation rate and the levels of TNF-α mRNA were measured by SYBR Green Real Time PCR.Results: Ten to 70 µg/mL 2% minocycline hydrochloride nanoliposomes, minocycline hydrochloride solution, and periocline showed dose- and time-dependent inhibition of ANA-1 proliferation. Minocycline hydrochloride nanoliposomes showed dose- and ratio-dependent inhibition of LPS-stimulated TNF-α secretion of ANA-1. The inhibition effect of 10 µg/mL minocycline hydrochloride nanoliposomes was significantly better than that of two positive control groups, and equated to that of 60 or 70 µg/mL periocline. The expression of TNF-α mRNA in experimental group continued to reduce linearly with time.Conclusion: All three preparations of minocycline hydrochloride showed dose- and time-dependent inhibition of proliferation of ANA-1. Minocycline hydrochloride nanoliposomes have stronger and longer inhibition effect on LPS-stimulated TNF-α secretion of macrophages cell than minocycline hydrochloride solution and periocline

  13. Development of a methodology for conducting an integrated HRA/PRA --. Task 1, An assessment of human reliability influences during LP&S conditions PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, W.J.; Barriere, M.T.; Brown, W.S. [Brookhaven National Lab., Upton, NY (United States); Wreathall, J. [Wreathall (John) and Co., Dublin, OH (United States); Cooper, S.E. [Science Applications International Corp., McLean, VA (United States)

    1993-06-01

    During Low Power and Shutdown (LP&S) conditions in a nuclear power plant (i.e., when the reactor is subcritical or at less than 10--15% power), human interactions with the plant`s systems will be more frequent and more direct. Control is typically not mediated by automation, and there are fewer protective systems available. Therefore, an assessment of LP&S related risk should include a greater emphasis on human reliability than such an assessment made for power operation conditions. In order to properly account for the increase in human interaction and thus be able to perform a probabilistic risk assessment (PRA) applicable to operations during LP&S, it is important that a comprehensive human reliability assessment (HRA) methodology be developed and integrated into the LP&S PRA. The tasks comprising the comprehensive HRA methodology development are as follows: (1) identification of the human reliability related influences and associated human actions during LP&S, (2) identification of potentially important LP&S related human actions and appropriate HRA framework and quantification methods, and (3) incorporation and coordination of methodology development with other integrated PRA/HRA efforts. This paper describes the first task, i.e., the assessment of human reliability influences and any associated human actions during LP&S conditions for a pressurized water reactor (PWR).

  14. Effectiveness of gabapentin pharmacotherapy in chemotherapy-induced peripheral neuropathy.

    Science.gov (United States)

    Magnowska, Magdalena; Iżycka, Natalia; Kapoła-Czyż, Joanna; Romała, Anna; Lorek, Jakub; Spaczyński, Marek; Nowak-Markwitz, Ewa

    2018-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common chemotherapy side effect, but its prevention and treatment remains a challenge. Neurotoxicity may lead to dose limitation or even treatment discontinuation, and therefore potentially affect the efficacy of anticancer treatment and long term outcomes. The practice to administer gabapentin for neuropathy may be applicable, but is limited by insufficient studies. The aim of our study was to assess the presence of chemotherapy-induced peripheral neuropathy in ovarian cancer patients treated with first-line paclitaxel and carboplatin chemotherapy and evaluate the effectiveness of gabapentin in treatment of this condition. 61 ovarian cancer patients treated with first line chemotherapy were included in the study. The first phase of the study was to assess neurological condition of each patient by: neuropathy symptoms scale, McGill's scale, neurological deficit and quality of life, during the chemotherapy. In the second phase of the study we evaluated the response to gabapentin treatment in a group of patients who developed neuropathy. 78.7% of the patients developed chemotherapy related neuropathy. During the course of chemotherapy these patients experienced significant exacerbation of neuropathy symptoms (p peripheral neuropathy.

  15. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  16. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood–brain barrier permeability

    Directory of Open Access Journals (Sweden)

    Oláh G

    2013-09-01

    Full Text Available Gáspár Oláh,1 Judit Herédi,1 Ákos Menyhárt,1 Zsolt Czinege,2 Dávid Nagy,1 János Fuzik,1 Kitti Kocsis,1 Levente Knapp,1 Erika Krucsó,1 Levente Gellért,1 Zsolt Kis,1 Tamás Farkas,1 Ferenc Fülöp,3 Árpád Párdutz,4 János Tajti,4 László Vécsei,4 József Toldi1 1Department of Physiology, Anatomy and Neuroscience, 2Department of Software Engineering, 3Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, 4Department of Neurology and MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary Abstract: Cortical spreading depression (CSD involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA and dizocilpine, on CSD and the related blood–brain barrier (BBB permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid. We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease

  17. DMPD: The role of macrophages in the hypothalamic-pituitary-adrenal activation inresponse to endotoxin (LPS). [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available response to endotoxin (LPS). Derijk RH, van Rooijen N, Berkenbosch F. Res Immunol. 1992 Feb;143(2):224-9. (....e hypothalamic-pituitary-adrenal activation inresponse to endotoxin (LPS). Authors Derijk RH, van Rooijen N, Berk

  18. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Directory of Open Access Journals (Sweden)

    Takeshi Tohyama

    Full Text Available Lipopolysaccharide (LPS induces acute inflammation, activates sympathetic nerve activity (SNA and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP, examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis.Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg. We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection.In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.. In contrast, AP increased initially (until 75 min, then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP.LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and

  19. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation.

    Science.gov (United States)

    Tohyama, Takeshi; Saku, Keita; Kawada, Toru; Kishi, Takuya; Yoshida, Keimei; Nishikawa, Takuya; Mannoji, Hiroshi; Kamada, Kazuhiro; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2018-01-01

    Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed

  20. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis.

    Science.gov (United States)

    Elburki, Muna S; Rossa, Carlos; Guimarães-Stabili, Morgana R; Lee, Hsi-Ming; Curylofo-Zotti, Fabiana A; Johnson, Francis; Golub, Lorne M

    2017-08-01

    The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.

  1. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB.

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    Full Text Available Nuclear factor-κB (NF-κB is a central transcriptional factor and a pleiotropic regulator of many genes involved in acute lung injury. Andrographolide is found in the plant of Andrographis paniculata and widely used in Traditional Chinese Medicine, exhibiting potently anti-inflammatory property by inhibiting NF-κB activity. The purpose of our investigation was designed to reveal the effect of andrographolide on various aspects of LPS induced inflammation in vivo and in vitro.In vivo, BALB/C mice were subjected to LPS injection with or without andrographolide treatments to induce ALI model. In vitro, MLE-12 cells were stimulated with LPS in the presence and absence of andrographolide. In vivo, pulmonary inflammation, pulmonary edema, ultrastructure changes of type II alveolar epithelial cells, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in BALF, along with the expression of VCAM-1 and VEGF were dose-dependently attenuated by andrographolide. Meanwhile, in vitro, the expression of VCAM-1 and VEGF was also reduced by andrographolide. Moreover, our data showed that andrographolide significantly inhibited the ratios of phospho-IKKβ/total IKKβ, phospho-IκBα/total IκBα and phospho-NF-κB p65/total NF-κB p65, and NF-κB p65 DNA binding activities, both in vivo and in vitro.These results indicate that andrographolide dose-dependently suppressed the severity of LPS-induced ALI, more likely by virtue of andrographolide-mediated NF-κB inhibition at the level of IKKβ activation. These results suggest andrographolide may be considered as an effective and safe drug for the potential treatment of ALI.

  2. Andrographolide Protects against LPS-Induced Acute Lung Injury by Inactivation of NF-κB

    Science.gov (United States)

    Zhu, Tao; Wang, Dao-xin; Zhang, Wei; Liao, Xiu-qing; Guan, Xian; Bo, Hong; Sun, Jia-yang; Huang, Ni-wen; He, Jing; Zhang, Yun-kun; Tong, Jing; Li, Chang-yi

    2013-01-01

    Background Nuclear factor-κB (NF-κB) is a central transcriptional factor and a pleiotropic regulator of many genes involved in acute lung injury. Andrographolide is found in the plant of Andrographis paniculata and widely used in Traditional Chinese Medicine, exhibiting potently anti-inflammatory property by inhibiting NF-κB activity. The purpose of our investigation was designed to reveal the effect of andrographolide on various aspects of LPS induced inflammation in vivo and in vitro. Methods and Results In vivo, BALB/C mice were subjected to LPS injection with or without andrographolide treatments to induce ALI model. In vitro, MLE-12 cells were stimulated with LPS in the presence and absence of andrographolide. In vivo, pulmonary inflammation, pulmonary edema, ultrastructure changes of type II alveolar epithelial cells, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in BALF, along with the expression of VCAM-1 and VEGF were dose-dependently attenuated by andrographolide. Meanwhile, in vitro, the expression of VCAM-1 and VEGF was also reduced by andrographolide. Moreover, our data showed that andrographolide significantly inhibited the ratios of phospho-IKKβ/total IKKβ, phospho-IκBα/total IκBα and phospho-NF-κB p65/total NF-κB p65, and NF-κB p65 DNA binding activities, both in vivo and in vitro. Conclusions These results indicate that andrographolide dose-dependently suppressed the severity of LPS-induced ALI, more likely by virtue of andrographolide-mediated NF-κB inhibition at the level of IKKβ activation. These results suggest andrographolide may be considered as an effective and safe drug for the potential treatment of ALI. PMID:23437127

  3. Emphysema induced by elastase enhances acute inflammatory pulmonary response to intraperitoneal LPS in rats.

    Science.gov (United States)

    da Fonseca, Lídia Maria Carneiro; Reboredo, Maycon Moura; Lucinda, Leda Marília Fonseca; Fazza, Thaís Fernanda; Rabelo, Maria Aparecida Esteves; Fonseca, Adenilson Souza; de Paoli, Flavia; Pinheiro, Bruno Valle

    2016-12-01

    Abnormalities in lungs caused by emphysema might alter their response to sepsis and the occurrence of acute lung injury (ALI). This study compared the extension of ALI in response to intraperitoneal lipopolysaccharide (LPS) injection in Wistar rats with and without emphysema induced by elastase. Adult male Wistar rats were randomized into four groups: control, emphysema without sepsis, normal lung with sepsis and emphysema with sepsis. Sepsis was induced, and 24 h later the rats were euthanised. The following analysis was performed: blood gas measurements, bronchoalveolar lavage (BAL), lung permeability and histology. Animals that received LPS showed significant increase in a lung injury scoring system, inflammatory cells in bronchoalveolar lavage (BAL) and IL-6, TNF-α and CXCL2 mRNA expression in lung tissue. Animals with emphysema and sepsis showed increased alveolocapillary membrane permeability, demonstrated by higher BAL/serum albumin ratio. In conclusion, the presence of emphysema induced by elastase increases the inflammatory response in the lungs to a systemic stimulus, represented in this model by the intraperitoneal injection of LPS. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  4. Analysis of migration rate and chemotaxis of human adipose-derived mesenchymal stem cells in response to LPS and LTA in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Herzmann, Nicole; Salamon, Achim [Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock (Germany); Fiedler, Tomas [Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock (Germany)

    2016-03-15

    Mesenchymal stem cells (MSC) are able to stimulate the regeneration of injured tissue. Since bacterial infections are common complications in wound healing, bacterial pathogens and their components come into direct contact with MSC. The interaction with bacterial structures influences the proliferation, differentiation and migratory activity of the MSC, which might be of relevance during regeneration. Studies on MSC migration in response to bacterial components have shown different results depending on the cell type. Here, we analyzed the migration rate and chemotaxis of human adipose-derived MSC (adMSC) in response to the basic cell-wall components lipopolysaccharide (LPS) of Gram-negative bacteria and lipoteichoic acid (LTA) of Gram-positive bacteria in vitro. To this end, we used transwell and scratch assays, as well as a specific chemotaxis assay combined with live-cell imaging. We found no significant influence of LPS or LTA on the migration rate of adMSC in transwell or scratch assays. Furthermore, in the µ-slide chemotaxis assay, the stimulation with LPS did not exert any chemotactic effect on adMSC. - Highlights: • LPS increased the release of IL-6 and IL-8 in adMSC significantly. • The migration rate of adMSC was not influenced by LPS or LTA. • LPS or LTA did not exert a chemotactic effect on adMSC.

  5. Analysis of migration rate and chemotaxis of human adipose-derived mesenchymal stem cells in response to LPS and LTA in vitro

    International Nuclear Information System (INIS)

    Herzmann, Nicole; Salamon, Achim; Fiedler, Tomas; Peters, Kirsten

    2016-01-01

    Mesenchymal stem cells (MSC) are able to stimulate the regeneration of injured tissue. Since bacterial infections are common complications in wound healing, bacterial pathogens and their components come into direct contact with MSC. The interaction with bacterial structures influences the proliferation, differentiation and migratory activity of the MSC, which might be of relevance during regeneration. Studies on MSC migration in response to bacterial components have shown different results depending on the cell type. Here, we analyzed the migration rate and chemotaxis of human adipose-derived MSC (adMSC) in response to the basic cell-wall components lipopolysaccharide (LPS) of Gram-negative bacteria and lipoteichoic acid (LTA) of Gram-positive bacteria in vitro. To this end, we used transwell and scratch assays, as well as a specific chemotaxis assay combined with live-cell imaging. We found no significant influence of LPS or LTA on the migration rate of adMSC in transwell or scratch assays. Furthermore, in the µ-slide chemotaxis assay, the stimulation with LPS did not exert any chemotactic effect on adMSC. - Highlights: • LPS increased the release of IL-6 and IL-8 in adMSC significantly. • The migration rate of adMSC was not influenced by LPS or LTA. • LPS or LTA did not exert a chemotactic effect on adMSC.

  6. Ginkgolide A Ameliorates LPS-Induced Inflammatory Responses In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-04-01

    Full Text Available Ginkgolide A (GA is a natural compound isolated from Ginkgo biloba and has been used to treat cardiovascular diseases and diabetic vascular complications. However, only a few studies have been conducted on the anti-inflammatory effects of GA. In particular, no related reports have been published in a common inflammation model of lipopolysaccharide (LPS-stimulated macrophages, and the anti-inflammatory mechanisms of GA have not been fully elucidated. In the present study, we extensively investigated the anti-inflammatory potential of GA in vitro and in vivo. We showed that GA could suppress the expression of pro-inflammatory mediators (cyclooxygenase-2 (COX-2 and nitric oxide (NO and pro-inflammatory cytokines (tumor necrosis factor (TNF-α, interleukin (IL-6 and IL-1β in LPS-treated mouse peritoneal macrophages, mouse macrophage RAW264.7 cells, and differentiated human monocytes (dTHP-1 in vitro. These effects were partially carried out via downregulating Nuclear factor kappa-B (NF-κB, Mitogen-activated protein kinases (MAPKs (p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK, but not c-Jun N-terminal kinase (JNK, and activating the AMP-activated protein kinase (AMPK signaling pathway also seems to be important. Consistently, GA was also shown to inhibit the LPS-stimulated release of TNF-α and IL-6 in mice. Taken together, these findings suggest that GA can serve as an effective inflammatory inhibitor in vitro and in vivo.

  7. GSK-3β Inhibition Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via Down-Regulation of IL-6

    Directory of Open Access Journals (Sweden)

    Bailong Li

    2013-12-01

    Full Text Available Background: Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS, the ligands of Toll-like receptor 4(TLR4, could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. Methods: WT or IL-6-/-mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. Results: SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6-/- mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Conclusions: Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  8. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    International Nuclear Information System (INIS)

    Nagata, Takayuki; Murata, Kazuko; Murata, Ryo; Sun, Shu-lan; Saito, Yutaro; Yamaga, Shuhei; Tanaka, Nobuyuki; Tamai, Keiichi; Moriya, Kunihiko; Kasai, Noriyuki; Sugamura, Kazuo; Ishii, Naoto

    2014-01-01

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs flox/flox ;mb1 cre/+ :Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes

  9. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Takayuki [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Murata, Kazuko, E-mail: murata-k@iwakimu.ac.jp [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Murata, Ryo [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Sun, Shu-lan [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Saito, Yutaro; Yamaga, Shuhei [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Tanaka, Nobuyuki; Tamai, Keiichi [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Moriya, Kunihiko [Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kasai, Noriyuki [Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Sugamura, Kazuo [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Ishii, Naoto [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)

    2014-01-10

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs{sup flox/flox};mb1{sup cre/+}:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes.

  10. Ventilation-induced increases in EGFR ligand mRNA are not altered by intra-amniotic LPS or ureaplasma in preterm lambs.

    Science.gov (United States)

    Hillman, Noah H; Gisslen, Tate; Polglase, Graeme R; Kallapur, Suhas G; Jobe, Alan H

    2014-01-01

    Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD) in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA) LPS or Ureaplasma parvum (UP). Epidermal growth factor receptor (EGFR) ligands participate in lung development, and angiotensin converting enzyme (ACE) 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG), epiregulin (EREG), heparin binding epidermal growth factor (HB-EGF), and betacellulin (BTC) mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.

  11. Eicosapentaenoic acid abolishes inhibition of insulin-induced mTOR phosphorylation by LPS via PTP1B downregulation in skeletal muscle.

    Science.gov (United States)

    Wei, Hong-Kui; Deng, Zhao; Jiang, Shu-Zhong; Song, Tong-Xing; Zhou, Yuan-Fei; Peng, Jian; Tao, Ya-Xiong

    2017-01-05

    Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) increase insulin signaling in skeletal muscle. In the current study, we investigated the effect of eicosapentaenoic acid (EPA) on insulin-induced mammalian target of rapamycin (mTOR) phosphorylation in myotubes. We showed that EPA did not affect basal and insulin-induced mTOR phosphorylation in myotubes. However, EPA abolished lipopolysaccharide (LPS) -induced deficiency in insulin signaling (P  0.05). In myotubes, LPS stimulated PTP1B expression via NF-κB and activation protein-1 (AP1). Pre-incubation of 50 μM EPA prevented the LPS-induced activation of AP1 and NF-κΒ as well as PTP1B expression (P < 0.05). Interestingly, incubation of peroxisome proliferator-activated receptor γ (PPARγ) antagonist (GW9662) prior to EPA treatment, the effect of EPA on insulin-induced mTOR phosphorylation was blocked. Accordingly, EPA did not inhibit the LPS-induced activation of AP1 or NF-κΒ as well as PTP1B expression when incubation of GW9662 prior to EPA treatment. The in vivo study showed that EPA prevented LPS-induced PTPT1B expression and a decrease in insulin-induced mTOR phosphorylation in muscle of mice. In summary, EPA abolished LPS inhibition of insulin-induced mTOR phosphorylation in myotubes, and one of the key mechanisms was to inhibit AP1 and NF-κB activation and PTP1B transcription. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Incidence and severity of phlebitis in patients receiving peripherally infused amiodarone.

    Science.gov (United States)

    Boyce, Brenda A Brady; Yee, Barbara Homer

    2012-08-01

    Nurses noted that the rate of phlebitis was high when intravenous amiodarone was infused via a peripheral site. Hospital policy recommends a central vascular catheter, but this method is often not feasible because the drug is administered in emergent situations for short periods. To determine the rate and severity of phlebitis in patients given peripherally infused amiodarone. The literature, policy, and procedures for administration of amiodarone were reviewed; the pharmacy was consulted; and a data collection tool was developed. The tool was pilot tested and revised, and face validation was established. Data were collected during a 6-month period. A convenience sample was used. The study included a total of 12 patients. Each new infusion of intravenous amiodarone was considered a separate occurrence, for a total of 24 infusions. Various grades of phlebitis developed in 8 patients (67%). Phlebitis developed at 12 of the 24 infusion sites (50%). Patients receiving peripherally infused amiodarone are at high risk for phlebitis. This complication may lead to infection, additional medical intervention, delay in treatment, and prolonged hospitalization.

  13. Stress hormone release is a key component of the metabolic response to lipopolysaccharide (LPS): studies in hypopituitary and healthy subjects

    DEFF Research Database (Denmark)

    Bach, Ermina; Møller, Andreas Buch; Jørgensen, Jens Otto Lunde

    2016-01-01

    OBJECTIVE: Lipopolysaccharide (LPS) generates acute and chronic inflammatory and metabolic responses during acute illness and in the pathogenesis of the metabolic syndrome, type 2 diabetes and cardiovascular disease, but it is unclear whether these responses depend on intact pituitary release...... but not in HP. LPS increased whole body palmitate fluxes (3-fold) and decreased palmitate specific activity 40-50 % in CTR, but not in HP. G(0)/G(1) Switch Gene 2 (G0S2 - an inhibitor of lipolysis) adipose tissue mRNA was decreased in CTR. LPS increased phenylalanine fluxes significantly more in CTR, whereas...

  14. Attenuation of prostaglandin E2 elimination across the mouse blood-brain barrier in lipopolysaccharide-induced inflammation and additive inhibitory effect of cefmetazole

    Directory of Open Access Journals (Sweden)

    Akanuma Shin-ichi

    2011-10-01

    Full Text Available Abstract Background Peripheral administration of lipopolysaccharide (LPS induces inflammation and increases cerebral prostaglandin E2 (PGE2 concentration. PGE2 is eliminated from brain across the blood-brain barrier (BBB in mice, and this process is inhibited by intracerebral or intravenous pre-administration of anti-inflammatory drugs and antibiotics such as cefmetazole and cefazolin that inhibit multidrug resistance-associated protein 4 (Mrp4/Abcc4-mediated PGE2 transport. The purpose of this study was to examine the effect of LPS-induced inflammation on PGE2 elimination from brain, and whether antibiotics further inhibit PGE2 elimination in LPS-treated mice. Methods [3H]PGE2 elimination across the BBB of intraperitoneally LPS-treated mice was assessed by the brain efflux index (BEI method. Transporter protein amounts in brain capillaries were quantified by liquid chromatography-tandem mass spectrometry. Results The apparent elimination rate of [3H]PGE2 from brain was lower by 87%, in LPS-treated mice compared with saline-treated mice. The Mrp4 protein amount was unchanged in brain capillaries of LPS-treated mice compared with saline-treated mice, while the protein amounts of organic anion transporter 3 (Oat3/Slc22a8 and organic anion transporting polypeptide 1a4 (Oatp1a4/Slco1a4 were decreased by 26% and 39%, respectively. Either intracerebral or intravenous pre-administration of cefmetazole further inhibited PGE2 elimination in LPS-treated mice. However, intracerebral or intravenous pre-administration of cefazolin had little effect on PGE2 elimination in LPS-treated mice, or in LPS-untreated mice given Oat3 and Oatp1a4 inhibitors. These results indicate that peripheral administration of cefmetazole inhibits PGE2 elimination across the BBB in LPS-treated mice. Conclusion PGE2 elimination across the BBB is attenuated in an LPS-induced mouse model of inflammation. Peripheral administration of cefmetazole further inhibits PGE2 elimination in LPS

  15. Indoline-3-propionate and 3-aminopropyl carbamates reduce lung injury and pro-inflammatory cytokines induced in mice by LPS.

    Science.gov (United States)

    Finkin-Groner, E; Moradov, D; Shifrin, H; Bejar, C; Nudelman, A; Weinstock, M

    2015-02-01

    In the search for safer and effective anti-inflammatory agents, we investigated the effect of methyl indoline-3-propionate and indoline-3-(3-aminopropyl) carbamates on LPS-induced lung injury and pro-inflammatory cytokines in mice. Their mechanism of action was determined in murine peritoneal macrophages. Lung injury was induced by intratracheal infusion of LPS and assessed by the change in lung weight and structure by light microscopy after staining by haematoxylin and eosin. In LPS-activated macrophages, MAPK proteins and IκBα were measured by Western blotting and the transcription factors, AP-1 and NF-κB by electromobility shift assay. Cytokines in the plasma and spleen of mice injected with LPS were measured by elisa-based assay. AN917 and AN680 (1-10 pM) decreased TNF-α protein in macrophages by inhibiting phosphorylation of p38 MAPK, IκBα degradation and activation of AP-1 and NF-κB without affecting cell viability. In vivo, these compounds (10 μmol · kg(-1)) markedly decreased lung injury induced by LPS and the elevation of TNF-α and IL-6 in lung, plasma and spleen. Activation of α-7nACh receptors contributed to the reduction of TNF-α by AN917, which inhibited AChE in the spleen by 35%. Indoline carbamates are potent inhibitors of pro-inflammatory mediators in murine macrophages and in mice injected with LPS, acting via the p38 MAPK, AP-1 and NF-κB cascades. Indirect α-7nACh receptor activation by AN917, through inhibition of AChE, contributes to its anti-inflammatory effect. Indoline carbamates may have therapeutic potential for lung injury and other diseases associated with chronic inflammation without causing immunosuppression. © 2014 The British Pharmacological Society.

  16. MiR-125b Inhibits LPS-Induced Inflammatory Injury via Targeting MIP-1α in Chondrogenic Cell ATDC5

    Directory of Open Access Journals (Sweden)

    Jinling Jia

    2018-03-01

    Full Text Available Background/Aims: Chondrocyte apoptosis is largely responsible for cartilage degeneration in osteoarthritis (OA. MicroRNAs (miRNAs play an important role in chondrogenesis and cartilage remodeling. This study explored the effect of miR-125b on inflammatory injury in chondrogenic cells. Methods: LPS was used to simulate inflammatory injury in murine chondrogenic ATDC5 cell lines. Targeting effect of miR-125b on MIP-1α 3’UTR was assessed by dual luciferase activity assay. Regulatory effect of miR-125b on MIP-1α expression and the potential regulatory mechanism on inflammatory injury were assessed by Western blot. Results: miR-125b expression was decreased in LPS-induced ATDC5 cells and overexpression of miR-125b inhibited LPS-induced cell viability decline, the rise of apoptosis and inflammatory factors’ productions. MIP-1α expression was negatively related to miR-125b, and miR-125b directly targeted with 3’UTR of MIP-1α. Knockdown of miR-125b promoted LPS-induced inflammatory response via upregulation of MIP-1α. miR-125b expression in LPS-induced ATDC5 cells was negatively related with activations of NF-κB and JNK signaling pathways. Overexpression of miR-125b inhibited LPS-induced inflammation injury via suppressing MIP-1α expression and inhibiting activations of NF-κB and JNK signaling pathways. Conclusion: miR-125b could play an important role in inflammatory injury of chondrogenic cells and miR-125b affected inflammatory injury of ATDC5 cells via regulating expression of MIP-1α and regulating NF-κB and JNK signaling pathways.

  17. Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Jeon, Daun; Kim, Seok Joong; Kim, Hong Seok

    2017-11-29

    Atherosclerosis is a chronic vascular inflammatory disease. Since even low-level endotoxemia constitutes a powerful and independent risk factor for the development of atherosclerosis, it is important to find therapies directed against the vascular effects of endotoxin to prevent atherosclerosis. Taraxacum officinale (TO) is used for medicinal purposes because of its choleretic, diuretic, antioxidative, anti-inflammatory, and anti-carcinogenic properties, but its anti-inflammatory effect on endothelial cells has not been established. We evaluated the anti-inflammatory activity of TO filtered methanol extracts in LPS-stimulated human umbilical vein endothelial cells (HUVECs) by monocyte adhesion and western blot assays. HUVECs were pretreated with 100 μg/ml TO for 1 h and then incubated with 1 μg/ml LPS for 24 h. The mRNA and protein expression levels of the targets (pro-inflammatory cytokines and adhesion molecules) were analyzed by real-time PCR and western blot assays. We also preformed HPLC analysis to identify the components of the TO methanol extract. The TO filtered methanol extracts dramatically inhibited LPS-induced endothelial cell-monocyte interactions by reducing vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pro-inflammatory cytokine expression. TO suppressed the LPS-induced nuclear translocation of NF-κB, whereas it did not affect MAPK activation. Our findings demonstrated that methanol extracts of TO could attenuate LPS-induced endothelial cell activation by inhibiting the NF-κB pathway. These results indicate the potential clinical benefits and applications of TO for the prevention of vascular inflammation and atherosclerosis.

  18. Inhibitory effect of immature dendritic cells (iDCs phagocytizing apoptotic lymphocytes on LPS-mediated activation of iDCs

    Directory of Open Access Journals (Sweden)

    Yu-xiang WEI

    2013-09-01

    Full Text Available Objective To investigate the inhibitory effect of immature dendritic cells(iDCs on LPS-mediated maturation of iDCs phagocytizing allogeneic spleen lymphocytes after being treated bypsoralen plus ultraviolet A(PUVA. Methods Bone marrow-derived DCs were obtained from bone marrow cells of C57BL/6 mice by co-cultivation with recombinant mouse IL-4 and GM-CSF. Spleenlymphocytes(SLP of BALB/c mice were isolated and transformed to PUVA-SLP by treatment with 8-methoxy PUVA irradiation.The bone marrow-derived iDCs of C57BL/6 were co-cultured with PUVA-SLP of BALB/c mice to obtain PUVA¬SLPDCs. After incubation, iDCs and PUVA-SP DCs were induced to maturation by LPS(10ng/ml,24h, and then they were analyzed by flow cytometry.At the same time,the concentrations of the immunoreactive proteins IL-12p70,IL-12p40andIL-10 in cell supernatants were determined by ELISA kits according to the manufacturer's recommendations. Results PUVA-SLP DCs and iDCs were compared in terms of LPS responsiveness.The phenotype of iDCs(CD40,CD80, andCD86 was 50.58%, 66.29%, 71.20%, respectively, showed more rapid changes from immature to mature statein response to LPS stimulation compared with PUVA-SP DCs, the phenotype of which was 21.26%,38.50% and 39.78%, respectively(P0.05.PUVA-SPDCs secreted high levels of IL-10(435.6±13.9, but lowlevels of IL-12(p7018.56±1.3,p4015.22±1.2, as compared with those of iDCs (132.6±2.8, p70192.1±5.9, p40999.8±26.9, P<0.01 after LPS stimulation. Conclusions Although PUVA-SLPDCs do not express as immature phenotype, they can be readily induced to differentiate into mature DCs in the presence of antigen or LPS. It may be suitable to use iDCs clinically in autoimmune diseases and transplantation.

  19. Induction of IgG3 to LPS via Toll-like receptor 4 co-stimulation.

    Directory of Open Access Journals (Sweden)

    Francisco J Quintana

    Full Text Available B-cells integrate antigen-specific signals transduced via the B-cell receptor (BCR and antigen non-specific co-stimulatory signals provided by cytokines and CD40 ligation in order to produce IgG antibodies. Toll-like receptors (TLRs also provide co-stimulation, but the requirement for TLRs to generate T-cell independent and T-cell dependent antigen specific antibody responses is debated. Little is known about the role of B-cell expressed TLRs in inducing antigen-specific antibodies to antigens that also activate TLR signaling. We found that mice lacking functional TLR4 or its adaptor molecule MyD88 harbored significantly less IgG3 natural antibodies to LPS, and required higher amounts of LPS to induce anti-LPS IgG3. In vitro, BCR and TLR4 signaling synergized, lowering the threshold for production of T-cell independent IgG3 and IL-10. Moreover, BCR and TLR4 directly associate through the transmembrane domain of TLR4. Thus, in vivo, BCR/TLR synergism could facilitate the induction of IgG3 antibodies against microbial antigens that engage both innate and adaptive B-cell receptors. Vaccines might exploit BCR/TLR synergism to rapidly induce antigen-specific antibodies before significant T-cell responses arise.

  20. Lactoferricin mediates Anti-Inflammatory and Anti-Catabolic Effects via Inhibition of IL-1 and LPS Activity in the Intervertebral Disc†

    Science.gov (United States)

    Kim, Jae-Sung; Ellman, Michael B.; Yan, Dongyao; An, Howard S.; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Zabo, Gabriella; Hoskin, David W.; Buechter, D.D.; Van Wijnen, Andre J.; Im, Hee-Jeong

    2013-01-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. PMID:23460134

  1. Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc.

    Science.gov (United States)

    Kim, Jae-Sung; Ellman, Michael B; Yan, Dongyao; An, Howard S; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Szabo, Gabriella; Hoskin, David W; Buechter, Doug D; Van Wijnen, Andre J; Im, Hee-Jeong

    2013-09-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production, and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. Copyright © 2013 Wiley Periodicals, Inc.

  2. Ventilation-induced increases in EGFR ligand mRNA are not altered by intra-amniotic LPS or ureaplasma in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Noah H Hillman

    Full Text Available Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA LPS or Ureaplasma parvum (UP. Epidermal growth factor receptor (EGFR ligands participate in lung development, and angiotensin converting enzyme (ACE 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG, epiregulin (EREG, heparin binding epidermal growth factor (HB-EGF, and betacellulin (BTC mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.

  3. ST2 suppresses IL-6 production via the inhibition of IκB degradation induced by the LPS signal in THP-1 cells

    International Nuclear Information System (INIS)

    Takezako, Naoki; Hayakawa, Morisada; Hayakawa, Hiroko; Aoki, Shinsuke; Yanagisawa, Ken; Endo, Hitoshi; Tominaga, Shin-ichi

    2006-01-01

    LPS induces the production of inflammatory cytokines via the stimulation of Toll-like receptors. In this study, we demonstrated that a soluble secreted form of the ST2 gene product (ST2), a member of the interleukin-1 receptor family, suppressed the production of IL-6 in an LPS-stimulated human monocytic leukemia cell line, THP-1. Immunofluorescence confocal microscopy revealed the binding of ST2 to the surface of the THP-1 cells, in which ST2 led to decreased binding of nuclear factor-κB to the IL-6 promoter. Furthermore, the degradation of IκB in the cytoplasm after LPS stimulation was reduced by pretreatment with ST2. These results demonstrated that ST2 negatively regulates LPS-induced IL-6 production via the inhibition of IκB degradation in THP-1 cells

  4. Experimental chronic Pseudomonas aeruginosa lung infection in rats. Non-specific stimulation with LPS reduces lethality as efficiently as specific immunization

    DEFF Research Database (Denmark)

    Lange, K H; Hougen, H P; Høiby, N

    1995-01-01

    In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis, we investigated the possibility of preventing chronic lung inflammation or decreasing the progression of the infection. We compared the lethality, pathology, bacterial clearance, and immunogenicity after...... with either E. coli LPS or P. aeruginosa sonicate. Four and two weeks prior to challenge other rats were vaccinated with either E. coli LPS or P. aeruginosa sonicate. Controls did not receive any stimulation or vaccination. The lethality after challenge was lower in rats stimulated with E. coli LPS (p = 0...... but not to prevent the chronic P. aeruginosa lung infection and inflammation caused by alginate-embedded bacteria....

  5. Thallium-201 peripheral perfusion scans: feasibility of single-dose, single-day, rest and stress study

    International Nuclear Information System (INIS)

    Siegel, M.E.; Stewart, C.A.

    1981-01-01

    The distribution and redistribution kinetics of thallium-201 in the lower extremities were investigated to determine the relationships among the rest, stress, and delayed-stress perfusion studies. The distribution of perfusion when the tracer was administered at rest was compared with that when administered during stress, and the distribution 5 to 6 h after the stress injection. In nine of 10 subjects without peripheral vascular disease, the 5 to 6 h poststress redistribution pattern was unchanged from the stress pattern and was different from the rest pattern. However, in all patients with peripheral vascular disease, the delayed poststress perfusion distribution had greater similarity to the rest pattern and was substantially different from that noted immediately after stress. Using the time frame of this study, the stress and delayed-stress 201 Tl perfusion study of the lower extremities cannot be used to represent true rest perfusion. However, because of the similarity of the delayed-stress to the true rest distribution in abnormals, it may be clinically useful in defining rest and stress alterations

  6. Thallium-201 peripheral perfusion scans: feasibility of single-dose, single-day, rest and stress study

    International Nuclear Information System (INIS)

    Siegel, M.E.; Stewart, C.A.

    1981-01-01

    The distribution and redistribution kinetics of thallium-201 in the lower extremities were investigated to determine the relationships among the rest, stress, and delayed-stress perfusion studies. The distribution of perfusion when the tracer was administered at rest was compared with that when administered during stress, and the distribution 5--6 hr after the stress injection. The distribution was evaluated qualitatively by scanning and quantitatively by point counting. In nine of 10 subjects without peripheral vascular disease, the 5--6 poststress redistribution pattern was unchanged from the stress pattern and was different from the rest pattern. However, in all patients with peripheral vascular disease, the delayed poststress perfusion distribution had greater similarity to the rest pattern and was substantially different from that noted immediately after stress. Using the time frame of this study, the stress and delayed-stress 201 Tl perfusion study of the lower extremities cannot be used to represent true rest perfusion. However, because of the similarity of the delayed-stress to the true rest distribution in abnormals, it may be clinically useful in defining rest and stress alterations

  7. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-κB translocation

    International Nuclear Information System (INIS)

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-01-01

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 μM after 48 h incubation. Pretreatment with 100 μM PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and IκBα, as well as the nuclear translocation of NF-κB primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-κB nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers

  8. Alliin, a Garlic (Allium sativum Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Saray Quintero-Fabián

    2013-01-01

    Full Text Available Garlic (Allium sativum L. has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide, a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS- stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  9. Repulsive guidance molecule a blockade exerts the immunoregulatory function in DCs stimulated with ABP and LPS.

    Science.gov (United States)

    Xu, Xuxu; Gao, Yan; Zhai, Zhiyong; Zhang, Shuo; Shan, Fengping; Feng, Juan

    2016-08-02

    Repulsive guidance molecule a (RGMa) is an axonal guidance molecule that has recently found to exert function in immune system. This study evaluated the function of RGMa in modulation of dendritic cells (DCs) function stimulated with Achyranthes bidentata polysaccharide (ABP) and lipopolysaccharide (LPS) using a RGMa-neutralizing antibody. Compared with the Control-IgG/ABP and Control-IgG/LPS groups, DCs in the Anti-RGMa/ABP and Anti-RGMa/LPS groups 1) showed small, round cells with a few cell processes and organelles, and many pinocytotic vesicles; 2) had decreased MHC II, CD86, CD80, and CD40 expression; 3) displayed the decreased IL-12p70, IL-1β and TNF-α levels and increased IL-10 secretion; 4) had a high percentage of FITC-dextran uptake; and 5) displayed a reduced ability to drive T cell proliferation and reinforced T cell polarization toward a Th2 cytokine pattern. We conclude that DCs treated with RGMa-neutralizing antibodies present with tolerogenic and immunoregulatory characteristics, which provides new insights into further understanding of the function of RGMa.

  10. Clinical toxicity of peripheral nerve to intraoperative radiotherapy in a canine model

    International Nuclear Information System (INIS)

    Johnstone, Peter A. S.; DeLuca, Anne Marie; Bacher, John D.; Hampshire, Victoria A.; Terrill, Richard E.; Anderson, William J.; Kinsella, Timothy J.; Sindelar, William F.

    1995-01-01

    Purpose: The clinical late effects of intraoperative radiotherapy (IORT) on peripheral nerve were investigated in a foxhound model. Methods and Materials: Between 1982 and 1987, 40 animals underwent laparotomy with intraoperative radiotherapy of doses from 0-75 Gy administered to the right lumbosacral plexus. Subsequently, all animals were monitored closely and sacrificed to assess clinical effects to peripheral nerve. This analysis reports final clinical results of all animals, with follow-up to 5 years. Results: All animals treated with ≥ 25 Gy developed ipsilateral neuropathy. An inverse relationship was noted between intraoperative radiotherapy dose and time to neuropathy, with an effective dose for 50% paralysis (ED 50 ) of 17.2 Gy. One of the animals treated with 15 Gy IORT developed paralysis, after a much longer latency than the other animals. Conclusions: Doses of 15 Gy delivered intraoperatively may be accompanied by peripheral neuropathy with long-term follow-up. This threshold is less than that reported with shorter follow-up. The value of ED 50 determined here is in keeping with data from other animal trials, and from clinical trials in humans

  11. M3 receptor is involved in the effect of penehyclidine hydrochloride reduced endothelial injury in LPS-stimulated human pulmonary microvascular endothelial cell.

    Science.gov (United States)

    Yuan, Qinghong; Xiao, Fei; Liu, Qiangsheng; Zheng, Fei; Shen, Shiwen; He, Qianwen; Chen, Kai; Wang, Yanlin; Zhang, Zongze; Zhan, Jia

    2018-02-01

    LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M 3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M 3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M 3 receptor or not. HPMVECs were treated with specific M 3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M 3 shRNA group (C group) and LPS + PHC + M 3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M 3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M 3 mRNA expressions compared with LPS group. When M 3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M 3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M 3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M 3 receptor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde.

    Directory of Open Access Journals (Sweden)

    Kristen N. Segovia

    2013-05-01

    Full Text Available Considerable evidence indicates that the metabolite of ethanol (EtOH, acetaldehyde, is biologically active. Acetaldehyde can be formed from EtOH peripherally mainly by alcohol dehydrogenase, and also centrally by catalase. EtOH and acetaldehyde show differences in their behavioral effects depending upon the route of administration. In terms of their effects on motor activity and motivated behaviors, when administered peripherally acetaldehyde tends to be more potent than EtOH but shows very similar potency administered centrally. Since dopamine (DA rich areas have an important role in regulating both motor activity and motivation, the present studies were undertaken to compare the effects of central (intraventricular, ICV and peripheral (intraperitoneal, IP administration of EtOH and acetaldehyde on a cellular marker of brain activity, c-Fos immunoreactivity, in DA innervated areas. Male Sprague-Dawley rats received an IP injection of vehicle, EtOH (0.5 or 2.5 g/kg or acetaldehyde (0.1 or 0.5 g/kg or an ICV injection of vehicle, EtOH or acetaldehyde (2.8 or 14.0 µmoles. IP administration of EtOH minimally induced c-Fos in some regions of the prefrontal cortex and basal ganglia, mainly at the low dose (0.5 g/kg, while IP acetaldehyde induced c-Fos in virtually all the structures studied at both doses. Acetaldehyde administered centrally increased c-Fos in all areas studied, a pattern that was very similar to EtOH. Thus, IP administered acetaldehyde was more efficacious than EtOH at inducing c-Fos expression. However, the general pattern of c-Fos induction promoted by ICV EtOH and acetaldehyde was similar. These results are consistent with the pattern observed in behavioral studies in which both substances produced the same magnitude of effect when injected centrally, and produced differences in potency after peripheral administration.

  13. Antioxidation, anti-inflammation and anti-apoptosis by paeonol in LPS/d-GalN-induced acute liver failure in mice.

    Science.gov (United States)

    Gong, Xiaobao; Yang, You; Huang, Ligua; Zhang, Qingyan; Wan, Rong-Zhen; Zhang, Peng; Zhang, Baoshun

    2017-05-01

    To evaluate the hepatoprotective effects and potential mechanisms of paeonol (Pae) against acute liver failure (ALF) induced by lipopolysaccharide (LPS)/d-galactosamine (d-GalN) in mice, we examined anti-oxidative, anti-inflammatory and anti-apoptotic activities of Pae. We found that Pae pretreatment markedly reduced the activities of alanine transaminase and aspartate transaminase as well as the histopathological changes induced by LPS/d-GalN. Catalase, glutathione and superoxide dismutase activities increased and reactive oxygen species activity decreased after Pae treatment compared with LPS/d-GalN treatment. Pretreatment with Pae also significantly inhibited the expression levels of iNOS, nitric oxide (NO), COX-2 and prostaglandin E 2 (PGE 2 ). In addition, Pae administration prevented the phosphorylated expression of IκB kinase, inhibitor kappa B in the nuclear factor-kappa B (NF-κB) signaling pathway, and suppressed the phosphorylated expression of extracellular signal-regulated kinase (ERK), c-jun-N-terminal kinase and p38 in the MAPK signaling pathway. Pretreatment with Pae also inhibited hepatocyte apoptosis by reducing the expression of caspases 3, 8, 9, and Bax, and increasing Bcl-2. In total, protective effects of Pae against LPS/d-GalN-induced ALF in mice are attributed to its antioxidative effect, inflammatory suppression in NF-κB and MARK signaling pathways, and inhibition of hepatocyte apoptosis inhibition. Therefore, Pae can be a potential therapeutic agent in attenuating LPS/d-GalN-induced ALF in the future. Copyright © 2017. Published by Elsevier B.V.

  14. p38 mitogen-activated protein kinase up-regulates LPS-induced NF-κB activation in the development of lung injury and RAW 264.7 macrophages

    International Nuclear Information System (INIS)

    Kim, Hee J.; Lee, Hui S.; Chong, Young H.; Kang, Jihee Lee

    2006-01-01

    Clarification of the key regulatory steps that lead to nuclear factor-kappa B (NF-κB) under cellular and pathological conditions is very important. The action of p38 mitogen-activated protein kinase (MAPK) on the upstream of NF-κB activation remains controversial. To examine this issue using an in vivo lung injury model, SB203580, a p38 MAPK inhibitor was given intraorally 1 h prior to lipopolysaccharide (LPS) treatment (intratracheally). The mice were sacrificed 4 h after LPS treatment. SB203580 substantially suppressed LPS-induced rises in p38 MAPK phosphorylation, neutrophil recruitment, total protein content in bronchoalveolar lavage fluid, and apoptosis of bronchoalveolar cells. Furthermore, SB203580 blocked LPS-induced NF-κB activation in lung tissue through down-regulation of serine phosphorylation, degradation of IκB-α, and consequent translocation of the p65 subunit of NF-κB to the nucleus. It is likely that, in cultured RAW 264.7 macrophages, SB203580 also blocked LPS-induced NF-κB activation in a dose-dependent manner. SB203580 inhibited LPS-induced serine phosphorylation, degradation of IκB-α, and tyrosine phosphorylation of p65 NF-κB. These data indicate that p38 MAPK acts upstream of LPS-induced NF-κB activation by modulating the phosphorylation of IκB-α and p65 NF-κB during acute lung injury. Because LPS-stimulated macrophages may contribute to inflammatory lung injury, the inhibition of the p38 MAPK-mediated intracellular signaling pathway leading to NF-κB activation represents a target for the attenuation of lung inflammation and parenchymal damage

  15. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  16. Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion

    Directory of Open Access Journals (Sweden)

    Lorène J. Lebrun

    2017-10-01

    Full Text Available Summary: Glucagon-like peptide 1 (GLP-1 is a hormone released from enteroendocrine L cells. Although first described as a glucoregulatory incretin hormone, GLP-1 also suppresses inflammation and promotes mucosal integrity. Here, we demonstrate that plasma GLP-1 levels are rapidly increased by lipopolysaccharide (LPS administration in mice via a Toll-like receptor 4 (TLR4-dependent mechanism. Experimental manipulation of gut barrier integrity after dextran sodium sulfate treatment, or via ischemia/reperfusion experiments in mice, triggered a rapid rise in circulating GLP-1. This phenomenon was detected prior to measurable changes in inflammatory status and plasma cytokine and LPS levels. In human subjects, LPS administration also induced GLP-1 secretion. Furthermore, GLP-1 levels were rapidly increased following the induction of ischemia in the human intestine. These findings expand traditional concepts of enteroendocrine L cell biology to encompass the sensing of inflammatory stimuli and compromised mucosal integrity, linking glucagon-like peptide secretion to gut inflammation. : Lebrun et al. demonstrate that enteroendocrine L cells sense lipopolysaccharides (pro-inflammatory bacterial compounds after gut injury and respond by secreting glucagon-like peptide 1. These findings expand concepts of L cell function to include roles as both a nutrient and pathogen sensor, linking glucagon-like peptide secretion to gut inflammation. Keywords: glucagon-like peptide 1, lipopolysaccharides, enteroendocrine cells, TLR4, gut injury, intestinal ischemia, inflammation

  17. PERLINDUNGAN HUKUM TERHADAP UANG SIMPANAN NASABAH DI BANK GAGAL OLEH LEMBAGA PENJAMIN SIMPANAN (LPS MENURUT UU NOMOR 10 TAHUN 1998 DAN UU NOMOR 24 TAHUN 2004

    Directory of Open Access Journals (Sweden)

    I Putu Indra Prastika

    2016-09-01

    Full Text Available The economic crisis of 1997-1998 is marked by the liquidation of 16 commercial banks which resulted the collapse of public confidence in the national banking institutions. To handle the crisis, the government issued several policies there are security for payment of all liabilities of the Bank and public deposits (blankit Guarantiee. The Deposit Insurance Agency (LPS emerged as an independent agency that serves the banking guarantee customer’s deposits in Indonesia. In this research, there are two problems to be dissussed (1 what are the steps taken by the Deposit Insurance Agency (LPS when a bank fails and how if LPS has a financial difficulties? (2 what does the authority of the Deposit Insurance Agency (LPS in the completion and management of the Bank Failure? The method for in this research are the approach of legislation (Statutes Approach and the comparative approach whereas the type of the research in this study is a normative legal research which is basically to compare and find the relationship the Deposit Insurance Agency is listed in Law No. 24 of 2004 concerning the Deposit Insurance Agency and the Law No. 10 of 1998 concerning about banking. The problems are discussed based on the government’s principles, that the government has a strong commitment to ensure the sustainability of LPS including maintain public confidence in the LPS. While one of the authority of the Deposit Insurance Agency (LPS in the completion and management for the Bank Failure are with mastering and managing the assets and liabilities of the Bank Failure which is rescued. Krisis ekonomi pada tahun 1997-1998, ditandai dengan dilikuidasinya 16 Bank Umum yang mengakibatkan runtuhnya kepercayaan masyarakat terhadap lembaga perbankan nasional. Untuk mengatasi krisis yang terjadi, pemerintah mengeluarkan beberapa kebijakan diantaranya memberikan jaminan atas seluruh kewajiban pembayaran Bank termasuk simpanan masyarakat (Blankit Guarantiee. Lembaga Penjamin

  18. Macrophage activation marker sCD163 correlates with accelerated lipolysis following LPS exposure: a human-randomised clinical trial

    Directory of Open Access Journals (Sweden)

    Nikolaj Rittig

    2018-01-01

    Full Text Available Background: Macrophage activation determined by levels of soluble sCD163 is associated with obesity, insulin resistance, diabetes mellitus type 2 (DM2 and non-alcoholic fatty liver disease (NAFLD. This suggests that macrophage activation is involved in the pathogenesis of conditions is characterised by adaptions in the lipid metabolism. Since sCD163 is shed to serum by inflammatory signals including lipopolysaccharides (LPS, endotoxin, we investigated sCD163 and correlations with lipid metabolism following LPS exposure. Methods: Eight healthy male subjects were investigated on two separate occasions: (i following an LPS exposure and (ii following saline exposure. Each study day consisted of a four-hour non-insulin-stimulated period followed by a two-hour hyperinsulinemic euglycemic clamp period. A 3H-palmitate tracer was used to calculate the rate of appearance (Rapalmitate. Blood samples were consecutively obtained throughout each study day. Abdominal subcutaneous adipose tissue was obtained for western blotting. Results: We observed a significant two-fold increase in plasma sCD163 levels following LPS exposure (P < 0.001, and sCD163 concentrations correlated positively with the plasma concentration of free fatty acids, Rapalmitate, lipid oxidation rates and phosphorylation of the hormone-sensitive lipase at serine 660 in adipose tissue (P < 0.05, all. Furthermore, sCD163 concentrations correlated positively with plasma concentrations of cortisol, glucagon, tumour necrosis factor (TNF-α, interleukin (IL-6 and IL-10 (P < 0.05, all. Conclusion: We observed a strong correlation between sCD163 and stimulation of lipolysis and fat oxidation following LPS exposure. These findings support preexisting theory that inflammation and macrophage activation play a significant role in lipid metabolic adaptions under conditions such as obesity, DM2 and NAFLD.

  19. Direct effects of locally administered lipopolysaccharide on glucose, lipid, and protein metabolism in the placebo-controlled, bilaterally infused human leg

    DEFF Research Database (Denmark)

    Buhl, Mads; Bosnjak, Ermina; Vendelbo, Mikkel H.

    2013-01-01

    Context: Accumulating evidence suggests that chronic exposure to lipopolysaccharide (LPS, endotoxin) maycreate a constant low-grade inflammation, leading to insulin resistance and diabetes. All previous human studies assessing the metabolic actions of LPS have used systemic administration, making...... palmitate isotopic dilution, although primary ANOVA tests did not reveal significant dilution. Leg blood flows, phenylalanine, lactate kinetics, cytokines, and intramyocellular insulin signaling were not affected by LPS. LPS thus directly inhibits insulin-stimulated glucose uptake and increases palmitate...... and stress hormone release may lead to overt glucose intolerance and diabetes....

  20. Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds.

    Science.gov (United States)

    Chanput, Wasaporn; Mes, Jurriaan J; Savelkoul, Huub F J; Wichers, Harry J

    2013-02-01

    Little is known about the polarizing potential of currently used human macrophage cell lines, while a better understanding phenomena can support the prediction of effects in vivo based on in vitro analysis. To test the polarization capability of PMA differentiated-THP-1 macrophages (M0), cells were stimulated with 20 ng ml(-1) IFNγ + 1 μg ml(-1) LPS and 20 ng ml(-1) IL-4, which are known to influence macrophage polarization in vivo and ex vivo into the M1 and M2 state, respectively. Apart from several well-known M1 and M2 markers, also new possible markers for M1 and M2 polarization were analysed in this study. The expression of M1 marker genes was up-regulated in IFNγ + LPS stimulated-M0 THP-1 macrophages. The IL-4 stimulated-M0 THP-1 macrophages expressed M2 cell membrane receptor genes. However, M2 chemokine and their receptor genes were only slightly up-regulated which might be due to the complexity of the secondary cell-cell interaction of the chemokine system. Lipopolysaccharides from E. coli (LPS) and food compounds [lentinan, vitamin D3 (vD3) and the combination of lentinan + vitamin D3 (Len + vD3)] were investigated for their polarizing ability on M0 THP-1 macrophages towards either the M1 or M2 state. LPS (700 ng ml(-1)) was able to skew M0 THP-1 macrophages towards the M1 direction since all analysed M1 marker genes were strongly expressed. Lentinan, vD3 and Len + vD3 did not induce expression of either M1 or M2 markers, indicating no polarizing ability of these compounds. Based on the expression of M1 and M2 marker genes we concluded that THP-1 macrophages could be successfully polarized into either the M1 or M2 state. Therefore, they can be used as a new macrophage polarizing model to estimate the polarizing/switching ability of test food compounds.

  1. DMPD: LPS, TLR4 and infectious disease diversity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available Nat Rev Microbiol. 2005 Jan;3(1):36-46. (.png) (.svg) (.html) (.csml) Show LPS, TLR4 and infectious disease... (.png) SVG File (.svg) HTML File (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file w

  2. Lipopolysaccharide (LPS Accumulates in Neocortical Neurons of Alzheimer’s Disease (AD Brain and Impairs Transcription in Human Neuronal-Glial Primary Co-cultures

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    2017-12-01

    Full Text Available Several independent laboratories have recently reported the detection of bacterial nucleic acid sequences or bacterial-derived neurotoxins, such as highly inflammatory lipopolysaccharide (LPS, within Alzheimer’s disease (AD affected brain tissues. Whether these bacterial neurotoxins originate from the gastrointestinal (GI tract microbiome, a possible brain microbiome or some dormant pathological microbiome is currently not well understood. Previous studies indicate that the co-localization of pro-inflammatory LPS with AD-affected brain cell nuclei suggests that there may be a contribution of this neurotoxin to genotoxic events that support inflammatory neurodegeneration and failure in homeostatic gene expression. In this report we provide evidence that in sporadic AD, LPS progressively accumulates in neuronal parenchyma and appears to preferentially associate with the periphery of neuronal nuclei. Run-on transcription studies utilizing [α-32P]-uridine triphosphate incorporation into newly synthesized total RNA further indicates that human neuronal-glial (HNG cells in primary co-culture incubated with LPS exhibit significantly reduced output of DNA transcription products. These studies suggest that in AD LPS may impair the efficient readout of neuronal genetic information normally required for the homeostatic operation of brain cell function and may contribute to a progressive disruption in the read-out of genetic information.

  3. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling.

    Science.gov (United States)

    Feng, Guijuan; Zheng, Ke; Cao, Tong; Zhang, Jinlong; Lian, Min; Huang, Dan; Wei, Changbo; Gu, Zhifeng; Feng, Xingmei

    2018-02-26

    Dental pulp stem cells (DPSCs), one type of mesenchymal stem cells, are considered to be a type of tool cells for regenerative medicine and tissue engineering. Our previous studies found that the stimulation with lipopolysaccharide (LPS) might introduce senescence of DPSCs, and this senescence would have a positive correlation with the concentration of LPS. The β-galactosidase (SA-β-gal) staining was used to evaluate the senescence of DPSCs and immunofluorescence to show the morphology of DPSCs. Our findings suggested that the activity of SA-β-gal has increased after repeated stimulation with LPS and the morphology of DPSCs has changed with the stimulation with LPS. We also found that LPS bound to the Toll-like receptor 4 (TLR4)/myeloid differentiation factor (MyD) 88 signaling pathway. Protein and mRNA expression of TLR4, MyD88 were enhanced in DPSCs with LPS stimulation, resulting in the activation of nuclear factor-κB (NF-κB) signaling, which exhibited the expression of p65 improved in the nucleus while the decreasing of IκB-α. Simultaneously, the expression of p53 and p21, the downstream proteins of the NF-κB signaling, has increased. In summary, DPSCs tend to undergo senescence after repeated stimulation in an inflammatory microenvironment. Ultimately, these findings may lead to a new direction for cell-based therapy in oral diseases and other regenerative medicines.

  4. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics

    DEFF Research Database (Denmark)

    Nøhr, Mark K; Kroager, Toke P; Sanggaard, Kristian W

    2016-01-01

    Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade) inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS), originating from...

  5. Rhizoma coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFB-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Andrew Remppis

    2010-01-01

    Full Text Available Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP-1 production in RAW cells. Activation of the transcription factors AP-1 and NFB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine.

  6. LPS-induced genes in intestinal tissue of the sea cucumber Holothuria glaberrima.

    Directory of Open Access Journals (Sweden)

    Francisco Ramírez-Gómez

    2009-07-01

    Full Text Available Metazoan immunity is mainly associated with specialized cells that are directly involved with the immune response. Nevertheless, both in vertebrates and invertebrates other organs might respond to immune activation and participate either directly or indirectly in the ongoing immune process. However, most of what is known about invertebrate immunity has been restricted to immune effector cells and little information is available on the immune responses of other tissues or organs. We now focus on the immune reactions of the intestinal tissue of an echinoderm. Our study employs a non-conventional model, the echinoderm Holothuria glaberrima, to identify intestinal molecules expressed after an immune challenge presented by an intra-coelomic injection of lipopolysaccharides (LPS. The expression profiles of intestinal genes expressed differentially between LPS-injected animals and control sea water-injected animals were determined using a custom-made Agilent microarray with 7209 sea cucumber intestinal ESTs. Fifty (50 unique sequences were found to be differentially expressed in the intestine of LPS-treated sea cucumbers. Seven (7 of these sequences represented homologues of known proteins, while the remaining (43 had no significant similarity with any protein, EST or RNA database. The known sequences corresponded to cytoskeletal proteins (Actin and alpha-actinin, metabolic enzymes (GAPDH, Ahcy and Gnmt, metal ion transport/metabolism (major yolk protein and defense/recognition (fibrinogen-like protein. The expression pattern of 11 genes was validated using semi-quantitative RT-PCR. Nine of these corroborated the microarray results and the remaining two showed a similar trend but without statistical significance. Our results show some of the molecular events by which the holothurian intestine responds to an immune challenge and provide important information to the study of the evolution of the immune response.

  7. γ-Oryzanol suppresses COX-2 expression by inhibiting reactive oxygen species-mediated Erk1/2 and Egr-1 signaling in LPS-stimulated RAW264.7 macrophages.

    Science.gov (United States)

    Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Kim, Jung-Bong; Lim, Yoongho; Lee, Young Han

    2017-09-16

    Cyclooxygenase (COX)-2 produces prostanoids, which contribute to inflammatory responses. Nuclear factor (NF)-κB is a key transcription factor mediating COX-2 expression. γ-Oryzanol is an active component in rice bran oil, which inhibits lipopolysaccharide (LPS)-mediated COX-2 expression by inhibiting NF-κB. However, the inhibition of COX-2 expression by γ-oryzanol independently of NF-κB is poorly understood. We found that LPS upregulated Egr-1 expression at the transcriptional level. Forced expression of Egr-1 trans-activated the Cox-2 promoter independently of NF-κB. In contrast, silencing of Egr-1 abrogated LPS-mediated COX-2 expression. LPS produced reactive oxygen species (ROS), which, in turn, induced Egr-1 expression via the Erk1/2 MAPK pathway. ROS scavenging activity of γ-oryzanol suppressed Egr-1 expression by inhibiting the Erk1/2 MAPK pathway. Our results suggest that γ-oryzanol inhibits LPS-mediated COX-2 expression by suppressing Erk1/2-mediated Egr-1 expression. This study supports that γ-oryzanol may be useful for ameliorating LPS-mediated inflammatory responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    Science.gov (United States)

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  9. LPS-induced release of IL-6 from glia modulates production of IL-1beta in a JAK2-dependent manner

    LENUS (Irish Health Repository)

    Minogue, Aedín M

    2012-06-14

    AbstractBackgroundCompelling evidence has implicated neuroinflammation in the pathogenesis of a number of neurodegenerative conditions. Chronic activation of both astrocytes and microglia leads to excessive secretion of proinflammatory molecules such as TNFα, IL-6 and IL-1β with potentially deleterious consequences for neuronal viability. Many signaling pathways involving the mitogen-activated protein kinases (MAPKs), nuclear factor κB (NFκB) complex and the Janus kinases (JAKs)\\/signal transducers and activators of transcription (STAT)-1 have been implicated in the secretion of proinflammatory cytokines from glia. We sought to identify signaling kinases responsible for cytokine production and to delineate the complex interactions which govern time-related responses to lipopolysaccharide (LPS).MethodsWe examined the time-related changes in certain signaling events and the release of proinflammatory cytokines from LPS-stimulated co-cultures of astrocytes and microglia isolated from neonatal rats.ResultsTNFα was detected in the supernatant approximately 1 to 2 hours after LPS treatment while IL-1β and IL-6 were detected after 2 to 3 and 4 to 6 hours, respectively. Interestingly, activation of NFκB signaling preceded release of all cytokines while phosphorylation of STAT1 was evident only after 2 hours, indicating that activation of JAK\\/STAT may be important in the up-regulation of IL-6 production. Additionally, incubation of glia with TNFα induced both phosphorylation of JAK2 and STAT1 and the interaction of JAK2 with the TNFα receptor (TNFR1). Co-treatment of glia with LPS and recombinant IL-6 protein attenuated the LPS-induced release of both TNFα and IL-1β while potentiating the effect of LPS on suppressor of cytokine signaling (SOCS)3 expression and IL-10 release.ConclusionsThese data indicate that TNFα may regulate IL-6 production through activation of JAK\\/STAT signaling and that the subsequent production of IL-6 may impact on the release of

  10. Serotonin induces peripheral antinociception via the opioidergic system.

    Science.gov (United States)

    Diniz, Danielle Aguiar; Petrocchi, Júlia Alvarenga; Navarro, Larissa Caldeira; Souza, Tâmara Cristina; Castor, Marina Gomes Miranda E; Duarte, Igor Dimitri Gama; Romero, Thiago Roberto Lima

    2018-01-01

    Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined. The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE 2 (2 μg). Serotonin (250 ng), administered locally to the right paw of animals, produces antinociception in this model. The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 μg), naltrindole (60 μg) and nor-binaltorfimina (200 μg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 μg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng). These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Chromium supplementation enhances the metabolic response of steers to lipopolysaccharide (LPS) challenge

    Science.gov (United States)

    The effect of chromium (Cr; KemTRACE®brandChromiumProprionate 0.04%, Kemin Industries) supplementation on the metabolic response to LPS challenge was examined. Steers (n=20; 235±4 kg body weight (BW)) received a premix that added 0 (Con) or 0.2 mg/kg Cr to the total diet (DM (dry matter) basis) for ...

  12. Nicotine and caffeine alter the effects of the LPS- primed mesenchymal stem cells on the co-cultured neutrophils.

    Science.gov (United States)

    Abbasi, Ardeshir; Kukia, Nasim Rahmani; Froushani, Seyyed Meysam Abtahi; Hashemi, Seyed Mahmoud

    2018-04-15

    Mesenchymal stem cells (MSCs) express some of the nicotinic receptor subunits and adenosine receptors. The communication between tissue MSCs with neutrophils has been shown in previous studies. The aim of the present study is to determine the role of nicotine or caffeine on MSCs and its effects on neutrophils. After the isolation, MSCs were pulsed with LPS (10 ng/ml) for 1 h. Then, MSCs were incubated with different concentrations of caffeine (0.1, 0.5 and 1 mM) and or with different concentrations of nicotine (0.1, 0.5, and 1 μM) for 48 h. Afterwards, the medium was aspirated and the cells were used for co-culture experiment with neutrophil. The obtained data showed that LPS primed MSCs could decrease neutrophil vitality, whereas the treatment of MSCs with nicotine and/or especially a treatment with caffeine reverse this effect. Obtained data showed that when the LPS-primed MSCs were treated with nicotine or caffeine, the vitality of co-cultured neutrophils was significantly increased. The rate of the respiratory burst of neutrophils after co-culture by LPS-primed MSCs was decreased compared to the respiratory burst of neutrophil alone. Nicotine and/or caffeine treatment could reverse this reduction. Generally, these findings provide a new insight into understanding the anti-inflammatory and immunomodulatory effects of nicotine and caffeine. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Reduced caveolin-1 promotes hyper-inflammation due to abnormal heme oxygenase-1 localizationin LPS challenged macrophages with dysfunctional CFTR

    Science.gov (United States)

    Zhang, Ping-Xia; Murray, Thomas S.; Villella, Valeria Rachela; Ferrari, Eleonora; Esposito, Speranza; D'Souza, Anthony; Raia, Valeria; Maiuri, Luigi; Krause, Diane S.; Egan, Marie E.; Bruscia, Emanuela M.

    2013-01-01

    We have previously reported that TLR4 signaling is increased in lipopolysaccharide (LPS) -stimulated Cystic Fibrosis (CF) macrophages (MΦs), contributing to the robust production of pro-inflammatory cytokines. The heme oxygenase (HO-1)/carbon monoxide (CO) pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. Here, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules (CORM2)enhancesCAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations reestablished HO-1 and CAV-1 cell surface localization in CF MΦ's. Consistent with restoration of HO-1/CAV-1 negative regulation of TLR4 signaling, genetic or pharmacological (CORM2)-induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counter-regulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ's response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease. PMID:23606537

  14. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    M. Allegra

    2014-01-01

    A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50–100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5–3 h modest inhibition, followed by a progressive (3–12 h concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5–3 h concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.

  15. TNF{alpha} and IL-1{beta} are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wenwen; Zheng, Xuexing [College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province (China); Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Liu, Shue [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Ouyang, Hongsheng [College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province (China); Levitt, Roy C.; Candiotti, Keith A. [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Hao, Shuanglin, E-mail: shao@med.miami.edu [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer LPS induces proinflammatory cytokine release in HAPI cells. Black-Right-Pointing-Pointer JNK pathway is dependent on TLR4 signaling to release cytokines. Black-Right-Pointing-Pointer NF-{kappa}B pathway is dependent on Nod1 signaling to release cytokines. -- Abstract: A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathways using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-{kappa}B (pNF-{kappa}B), TNF{alpha} and IL-1{beta}. Silencing TLR4 with siRNA reduced the expression of pJNK, TNF{alpha} and IL-1{beta}, but not pNF-{kappa}B in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNF{alpha} and IL-1{beta}. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-{kappa}B. Inhibition of NF-{kappa}B also reduced the expression of TNF{alpha} and IL-1{beta}. Nod1 ligand, DAP induced the upregulation of pNF-{kappa}B which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-{kappa}B is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-{kappa}B pathways is involved in the expression of TNF{alpha} and IL-1{beta}.

  16. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Allegra, M; D'Acquisto, F; Tesoriere, L; Attanzio, A; Livrea, M A

    2014-01-01

    Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50-100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5-3 h) modest inhibition, followed by a progressive (3-12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5-3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.

  17. Lipopolysaccharide (LPS) stimulates adipokine and socs3 gene expression in mouse brain and pituitary gland in vivo, and in N-1 hypothalamic neurons in vitro.

    Science.gov (United States)

    Brown, Russell; Imran, Syed A; Wilkinson, Michael

    2009-04-30

    Adipokines that modulate metabolic and inflammatory responses, such as resistin (rstn) and fasting-induced adipose factor (fiaf), are also expressed in mouse brain and pituitary gland. Since lipopolysaccharide (LPS)-induced endotoxinemia provokes an anorectic response via a hypothalamic-dependent mechanism we hypothesized that LPS would also modify hypothalamic adipokine expression. Challenging male CD-1 mice with LPS (5 mg/kg; s.c.) significantly reduced bodyweight (24 h) and realtime RT-PCR revealed time- and tissue-dependent increases in rstn, fiaf and suppressor of cytokine signaling-3 (socs-3) mRNA in hypothalamic, pituitary, cortical and adipose tissues. Gene expression was rapidly increased (3-6 h) in the hypothalamus and pituitary, but returned to normal within 24 h. In contrast, with the exception of rstn in fat, the expression of target genes remained elevated in cortex and visceral fat at 24 h post-injection. In order to more specifically examine the hypothalamic response to LPS we investigated its effects directly on N-1 hypothalamic neurons in vitro. LPS (25 microg/mL; 3 h) had no effect on rstn mRNA, but significantly stimulated fiaf and socs-3 expression. Although various toll-like receptor 4 (TLR4) antagonists (parthenolide, PD098059, and SB202190) did not prevent the LPS-induced increases in fiaf and socs-3, they did partially attenuate its stimulatory effects. We conclude that LPS treatment increases the expression of central, and possibly neuronal, adipokine genes which may influence local tissue repair and function, but could also have downstream consequences on the hypothalamic control of appetite and energy metabolism following an inflammatory insult.

  18. Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice.

    Science.gov (United States)

    Yuan, Xidi; Klein, Dennis; Kerscher, Susanne; West, Brian L; Weis, Joachim; Katona, Istvan; Martini, Rudolf

    2018-05-09

    Aging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations. Specifically, nerve fibers showed demyelination, remyelination and axonal lesion. Moreover, in the aging mice, neuromuscular junctions showed features typical for dying-back neuropathies, as revealed by a decline of presynaptic markers, associated with α-bungarotoxin-positive postsynapses. In line with these observations were reduced muscle strengths. These alterations were accompanied by elevated numbers of endoneurial macrophages, partially comprising the features of phagocytosing macrophages. Comparable profiles of macrophages could be identified in peripheral nerve biopsies of aging persons. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by applying an orally administered CSF-1R specific kinase (c-FMS) inhibitor. The 6-month-lasting treatment started before development of degenerative changes at 18 months and reduced macrophage numbers in mice by ∼70%, without side effects. Strikingly, nerve structure was ameliorated and muscle strength preserved. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may pave the way for treating degeneration in the aging peripheral nervous system by targeting macrophages, leading to reduced weakness, improved mobility, and eventually increased quality of life in the elderly. SIGNIFICANCE STATEMENT Aging is a major risk factor for the structure and function of the nervous system. Here we show that peripheral nerves of 24-month-old aging mice show similar degenerative alterations as nerves from aging

  19. Progesterone is essential for protecting against LPS-induced pregnancy loss. LIF as a potential mediator of the anti-inflammatory effect of progesterone.

    Directory of Open Access Journals (Sweden)

    Julieta Aisemberg

    Full Text Available Lipopolysaccharide (LPS administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF, which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders.

  20. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFκB-Dependent Pathway

    Science.gov (United States)

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFκB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP)-1 production in RAW cells. Activation of the transcription factors AP-1 and NFκB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFκB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine. PMID:20652055

  1. Vasculitic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Mona Amini

    2014-02-01

    Full Text Available Primary systemic vasculitis in pre-capillary arteries is associated with peripheral neuropathy. In some types of systematic vasculitis about 60 % of patients have peripheral nervous system (PNS involvement. In vasculitic peripheral neuropathies (VPN a necrotizing and inflammatory process leads to narrowing of vasa nervorum lumen and eventually the appearance of ischemic lesions in peripheral nerves. Some features might be suggestive of VPN, like: axonal nerve degeneration, wallerian-like degeneration, and diameter irregularity of nerve. Peripheral nervous system (PNS destruction during systemic vasculitides should be considered, due to its frequency and early occurrence in vasculitis progression. The first line treatment of non systematic VPNs is corticosteroid agents, but these drugs might worsen the VPNs or systemic vasculitis.

  2. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    Directory of Open Access Journals (Sweden)

    Kott Laima S

    2010-05-01

    Full Text Available Abstract Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM with wild-type control M. spicata (CM, and c to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA, caffeic acid (CA, coumaric acid (CO] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim and CM (CMsim were determined (HPLC and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine were cultured with LPS (0 or 3 μg/mL and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL, or CMsim (0, 1, 5 or 10 mg/mL, or RA (0.640 μg/mL, or CA (0.384 μg/mL, or CO (0.057 μg/mL or FA (0.038 μg/mL] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2, interleukin 1β (IL-1, glycosaminoglycan (GAG, nitric oxide (NO and cell viability (differential live-dead cell staining. Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces

  3. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phox pathway

    International Nuclear Information System (INIS)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-01-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47 phox /JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47 phox inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation

  4. Metformin and phenformin block the peripheral antinociception induced by diclofenac and indomethacin on the formalin test.

    Science.gov (United States)

    Ortiz, Mario I

    2012-01-02

    Recent evidence has shown that systemic administration of sulfonylureas and biguanides block the diclofenac-induced antinociception, but not the effect produced by indomethacin. However, there are no reports about the peripheral interaction between analgesics and the biguanides metformin and phenformin. Therefore, this work was undertaken to determine whether glibenclamide and glipizide and the biguanides metformin and phenformin have any effect on the peripheral antinociception induced by diclofenac and indomethacin. Diclofenac and indomethacin were administered locally in the formalin-injured rat paw, and the antinociceptive effect was evaluated using the 1% formalin test. To determine whether peripheral antinociception induced by diclofenac or indomethacin was mediated by either the ATP-sensitive K(+) channels or biguanides-induced mechanisms, the effect of pretreatment with the appropriates vehicles or glibenclamide, glipizide, metformin and phenformin on the antinociceptive effect induced by local peripheral diclofenac and indomethacin was assessed. Local peripheral injections of diclofenac (50-200 μg/paw) and indomethacin (200-800 μg/paw) produced a dose-dependent antinociception during the second phase of the test. Local pretreatment with glibenclamide, glipizide, metformin and phenformin blocked the diclofenac-induced antinociception. On the other hand, the pretreatment with glibenclamide and glipizide did not prevent the local antinociception produced by indomethacin. Nonetheless, metformin and phenformin reversed the local antinociception induced by indomethacin. Data suggest that diclofenac could activate the K(+) channels and biguanides-dependent mechanisms to produce its peripheral antinociceptive effects in the formalin test. Likewise, a biguanides-dependent mechanism could be activated by indomethacin consecutively to generate its peripheral antinociceptive effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Effects of lipopolysaccharide (LPS) induced inflammatory response on early embryo survival in ewes

    Science.gov (United States)

    Early pregnant ewes were used to determine the effects of endogenous (through LPS activation) and exogenous TNF-alpha tumor necrosis factor-alpha (TNF-alpha) on embryonic loss. Thirty-eight Dorset x Texel ewes were synchronized for estrus and bred to fertile rams (d0). On d5/6, ewes were assigned t...

  6. Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research.

    Science.gov (United States)

    Hayashi-Takagi, Akiko; Vawter, Marquis P; Iwamoto, Kazuya

    2014-06-15

    Peripheral samples, such as blood and skin, have been used for decades in psychiatric research as surrogates for central nervous system samples. Although the validity of the data obtained from peripheral samples has been questioned and other state-of-the-art techniques, such as human brain imaging, genomics, and induced pluripotent stem cells, seem to reduce the value of peripheral cells, accumulating evidence has suggested that revisiting peripheral samples is worthwhile. Here, we re-evaluate the utility of peripheral samples and argue that establishing an understanding of the common signaling and biological processes in the brain and peripheral samples is required for the validity of such models. First, we present an overview of the available types of peripheral cells and describe their advantages and disadvantages. We then briefly summarize the main achievements of omics studies, including epigenome, transcriptome, proteome, and metabolome analyses, as well as the main findings of functional cellular assays, the results of which imply that alterations in neurotransmission, metabolism, the cell cycle, and the immune system may be partially responsible for the pathophysiology of major psychiatric disorders such as schizophrenia. Finally, we discuss the future utility of peripheral samples for the development of biomarkers and tailor-made therapies, such as multimodal assays that are used as a battery of disease and trait pathways and that might be potent and complimentary tools for use in psychiatric research. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  7. Glucose transport and milk secretion during manipulated plasma insulin and glucose concentrations and during LPS-induced mastitis in dairy cows.

    Science.gov (United States)

    Gross, J J; van Dorland, H A; Wellnitz, O; Bruckmaier, R M

    2015-08-01

    In dairy cows, glucose is essential as energy source and substrate for milk constituents. The objective of this study was to investigate effects of long-term manipulated glucose and insulin concentrations in combination with a LPS-induced mastitis on mRNA abundance of glucose transporters and factors involved in milk composition. Focusing on direct effects of insulin and glucose without influence of periparturient endocrine adaptations, 18 dairy cows (28 ± 6 weeks of lactation) were randomly assigned to one of three infusion treatments for 56 h (six animals each). Treatments included a hyperinsulinemic hypoglycaemic clamp (HypoG), a hyperinsulinemic euglycaemic clamp (EuG) and a control group (NaCl). After 48 h of infusions, an intramammary challenge with LPS from E. coli was performed and infusions continued for additional 8 h. Mammary gland biopsies were taken before, at 48 (before LPS challenge) and at 56 h (after LPS challenge) of infusion, and mRNA abundance of genes involved in mammary gland metabolism was measured by RT-qPCR. During the 48 h of infusions, mRNA abundance of glucose transporters GLUT1, 3, 4, 8, 12, SGLT1, 2) was not affected in HypoG, while they were downregulated in EuG. The mRNA abundance of alpha-lactalbumin, insulin-induced gene 1, κ-casein and acetyl-CoA carboxylase was downregulated in HypoG, but not affected in EuG. Contrary during the intramammary LPS challenge, most of the glucose transporters were downregulated in NaCl and HypoG, but not in EuG. The mRNA abundance of glucose transporters in the mammary gland seems not to be affected by a shortage of glucose, while enzymes and milk constituents directly depending on glucose as a substrate are immediately downregulated. During LPS-induced mastitis in combination with hypoglycaemia, mammary gland metabolism was more aligned to save glucose for the immune system compared to a situation without limited glucose availability during EuG. Journal of Animal Physiology and Animal

  8. Dual Diverse Dynamic Reversible Actions of Ankaferd on EPCR and PAI-1 Inside Vascular Endothelial Cells With and Without LPS

    Directory of Open Access Journals (Sweden)

    Afife Karabıyık

    2012-12-01

    Full Text Available OBJECTIVE: Ankaferd Blood Stopper (ABS comprises a mixture of the plants Thymus vulgaris, Glycyrrhiza glabra, Vitis vinifera, Alpinia officinarum ve Urtica dioica. ABS has been used as a topical haemostatic agent because of its antihaemorrhagic effect. Its haemostatic mechanism of action remains to be investigated. ABS does not affect individual levels of the coagulation factors II, V, VII, VIII, IX, X, XI and XIII. The aim of this study was to investigate the effects of ABS on endothelium and immune response. So, we investigated the possible changes in EPCR and PAI-1 without and with LPS-challenge inside HUVECs. METHODS: 10 μL and 100 μL ABS is given to HUVECs in 5 min., 25 min., and 50 min.,6 hour and 24 hour time periods. 10 μg/ mL LPS has been added for one hour to observe the effects of LPS challenge on HUVECs and then the cells have been treated with ABS for the time period of 5 min., 25 min., 50 min. and 6 hours to observe ABS-effects on HUVECs. Total RNAs were isolated from HUVECs and then EPCR ve PAI-1 mRNA expression levels were investigated. RESULTS: It was microscopically observed that cells arised from the surface and adhered to each other after the ABS application to the HUVECs. Also, after 24 hours cells returned the normal growth and physiology. It suggests that the adhesive cellular functions of ABS may be reversible. 10 µl ABS have negative effect on EPCR and PAI-1 expressions. Moreover the effects increases with 100 µl ABS. EPCR and PAI-1 expression increased by time with LPS and 10 µl ABS. Expressions were very low during the first hour when LPS and 100 µl ABS were given but at the end of 6 hour, EPCR and PAI-1 expression increased similar to LPS and 10 µl ABS experiment. CONCLUSION: In this study, we observed that Ankaferd has dual diverse dynamic reversible actions depend on dose and concentration on EPCR and PAI-1 inside vascular endothelial cells in the model of HUVEC. ABS might have a role on numerous cellular

  9. Regulation of peripheral inflammation by spinal p38 MAP kinase in rats.

    Directory of Open Access Journals (Sweden)

    David L Boyle

    2006-09-01

    Full Text Available Somatic afferent input to the spinal cord from a peripheral inflammatory site can modulate the peripheral response. However, the intracellular signaling mechanisms in the spinal cord that regulate this linkage have not been defined. Previous studies suggest spinal cord p38 mitogen-activated protein (MAP kinase and cytokines participate in nociceptive behavior. We therefore determined whether these pathways also regulate peripheral inflammation in rat adjuvant arthritis, which is a model of rheumatoid arthritis.Selective blockade of spinal cord p38 MAP kinase by administering the p38 inhibitor SB203580 via intrathecal (IT catheters in rats with adjuvant arthritis markedly suppressed paw swelling, inhibited synovial inflammation, and decreased radiographic evidence of joint destruction. The same dose of SB203580 delivered systemically had no effect, indicating that the effect was mediated by local concentrations in the neural compartment. Evaluation of articular gene expression by quantitative real-time PCR showed that spinal p38 inhibition markedly decreased synovial interleukin-1 and -6 and matrix metalloproteinase (MMP3 gene expression. Activation of p38 required tumor necrosis factor alpha (TNFalpha in the nervous system because IT etanercept (a TNF inhibitor given during adjuvant arthritis blocked spinal p38 phosphorylation and reduced clinical signs of adjuvant arthritis.These data suggest that peripheral inflammation is sensed by the central nervous system (CNS, which subsequently activates stress-induced kinases in the spinal cord via a TNFalpha-dependent mechanism. Intracellular p38 MAP kinase signaling processes this information and profoundly modulates somatic inflammatory responses. Characterization of this mechanism could have clinical and basic research implications by supporting development of new treatments for arthritis and clarifying how the CNS regulates peripheral immune responses.

  10. Effect of lithium carbonate on leukocyte number after influence of ionizing radiation. 3. Influence of lithium carbonate on peripheral leukocytes after fractionated caudal half-body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, H.; Saul, G.; Kehrberg, G. (Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite))

    1985-01-01

    Fractionated half-body irradiation of rats resulted in leukopenia of the peripheral blood. The decrease of leukocytes was smaller in animals pretreated with an orally administered dose of lithium carbonate for 14 days.

  11. Exacerbation of CNS inflammation and neurodegeneration by systemic LPS treatment is independent of circulating IL-1 beta and IL-6

    LENUS (Irish Health Repository)

    Murray, Carol L

    2011-05-17

    Abstract Background Chronic neurodegeneration comprises an inflammatory response but its contribution to the progression of disease remains unclear. We have previously shown that microglial cells are primed by chronic neurodegeneration, induced by the ME7 strain of prion disease, to synthesize limited pro-inflammatory cytokines but to produce exaggerated responses to subsequent systemic inflammatory insults. The consequences of this primed response include exaggerated hypothermic and sickness behavioural responses, acute neuronal death and accelerated progression of disease. Here we investigated whether inhibition of systemic cytokine synthesis using the anti-inflammatory steroid dexamethasone-21-phosphate was sufficient to block any or all of these responses. Methods ME7 animals, at 18-19 weeks post-inoculation, were challenged with LPS (500 μg\\/kg) in the presence or absence of dexamethasone-21-phosphate (2 mg\\/kg) and effects on core-body temperature and systemic and CNS cytokine production and apoptosis were examined. Results LPS induced hypothermia and decreased exploratory activity. Dexamethasone-21-phosphate prevented this hypothermia, markedly suppressed systemic IL-1β and IL-6 secretion but did not prevent decreased exploration. Furthermore, robust transcription of cytokine mRNA occurred in the hippocampus of both ME7 and NBH (normal brain homogenate) control animals despite the effective blocking of systemic cytokine synthesis. Microglia primed by neurodegeneration were not blocked from the robust synthesis of IL-1β protein and endothelial COX-2 was also robustly synthesized. We injected biotinylated LPS at 100 μg\\/kg and even at this lower dose this could be detected in blood plasma. Apoptosis was acutely induced by LPS, despite the inhibition of the systemic cytokine response. Conclusions These data suggest that LPS can directly activate the brain endothelium even at relatively low doses, obviating the need for systemic cytokine stimulation to

  12. NF-κB is involved in the LPS-mediated proliferation and apoptosis of MAC-T epithelial cells as part of the subacute ruminal acidosis response in cows.

    Science.gov (United States)

    Fan, Wen-Jie; Li, He-Ping; Zhu, He-Shui; Sui, Shi-Ping; Chen, Pei-Ge; Deng, Yue; Sui, Tong-Ming; Wang, Yue-Ying

    2016-11-01

    To determine the effect of NF-κB on cell proliferation and apoptosis, we investigate the expression of inflammation and apoptosis-related factors in the bovine mammary epithelial cell line, MAC-T. MAC-T cells were cultured in vitro and MTT and LDH assays used to determine the effects of lipopolysaccharide (LPS) on proliferation and cytotoxicity respectively. RT-PCR and western blotting were used to evaluate the effect of LPS and NF-κB inhibition [pyrrolidine dithiocarbamate (PDTC) treatment] on the expression of inflammation and apoptosis-related factors. LPS significantly inhibited MAC-T cell proliferation in a dose- and time-dependent manner. Furthermore, LPS promoted apoptosis while the NF-кB inhibitor PDTC attenuated this effect. After LPS treatment, the NF-кB signaling pathway was activated, and the expression of inflammation and apoptosis-related factors increased. When PDTC blocked NF-кB signaling, the expression of inflammation and apoptosis-related factors were decreased in MAC-T cells. LPS activates the TLR4/NF-κB signaling pathway, inhibits proliferation and promotes apoptosis in MAC-T cells. NF-кB inhibition attenuates MAC-T cell apoptosis and TLR4/NF-κB signaling pathway. NF-кB inhibitor alleviating MAC-T cell apoptosis is presumably modulated by NF-кB.

  13. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports.

    Science.gov (United States)

    Hoppe, Matthias W; Baumgart, Christian; Polglaze, Ted; Freiwald, Jürgen

    2018-01-01

    This study aimed to investigate the validity and reliability of global (GPS) and local (LPS) positioning systems for measuring distances covered and sprint mechanical properties in team sports. Here, we evaluated two recently released 18 Hz GPS and 20 Hz LPS technologies together with one established 10 Hz GPS technology. Six male athletes (age: 27±2 years; VO2max: 48.8±4.7 ml/min/kg) performed outdoors on 10 trials of a team sport-specific circuit that was equipped with double-light timing gates. The circuit included various walking, jogging, and sprinting sections that were performed either in straight-lines or with changes of direction. During the circuit, athletes wore two devices of each positioning system. From the reported and filtered velocity data, the distances covered and sprint mechanical properties (i.e., the theoretical maximal horizontal velocity, force, and power output) were computed. The sprint mechanical properties were modeled via an inverse dynamic approach applied to the center of mass. The validity was determined by comparing the measured and criterion data via the typical error of estimate (TEE), whereas the reliability was examined by comparing the two devices of each technology (i.e., the between-device reliability) via the coefficient of variation (CV). Outliers due to measurement errors were statistically identified and excluded from validity and reliability analyses. The 18 Hz GPS showed better validity and reliability for determining the distances covered (TEE: 1.6-8.0%; CV: 1.1-5.1%) and sprint mechanical properties (TEE: 4.5-14.3%; CV: 3.1-7.5%) than the 10 Hz GPS (TEE: 3.0-12.9%; CV: 2.5-13.0% and TEE: 4.1-23.1%; CV: 3.3-20.0%). However, the 20 Hz LPS demonstrated superior validity and reliability overall (TEE: 1.0-6.0%; CV: 0.7-5.0% and TEE: 2.1-9.2%; CV: 1.6-7.3%). For the 10 Hz GPS, 18 Hz GPS, and 20 Hz LPS, the relative loss of data sets due to measurement errors was 10.0%, 20.0%, and 15.8%, respectively. This study shows that

  14. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Tatiane Oliveira

    2015-01-01

    Full Text Available Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE and quercetin (Qt on osteoclastogenesis under inflammatory conditions (LPS-induced. Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL, and treated with AcE (50–1000 µg/mL or Qt (1.25, 2.5, or 5 µM. Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced via attenuation of RANKL/PgLPS-induced NF-κB activation.

  15. Enhancement of antinociception by coadminstration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis

    Directory of Open Access Journals (Sweden)

    Masocha Willias

    2010-12-01

    Full Text Available Abstract Background Minocycline and a non-steroidal anti-inflammatory drug (NSAID indomethacin, have anti-inflammatory activities and are both used in the management of rheumatoid arthritis. However, there are no reports on whether coadministration of these drugs could potentiate each other's activities in alleviating pain and weight bearing deficits during arthritis. Methods LPS was injected to BALB/c mice intraperitoneally (i.p. to induce thermal hyperalgesia. The hot plate test was used to study thermal nociception in naïve BALB/c and C57BL/6 mice and BALB/c mice with LPS-induced thermal hyperalgesia and to evaluate antinociceptive effects of drugs administered i.p. Monoarthritis was induced by injection of LPS intra-articularly into the right hind (RH limb ankle joint of C57BL/6 mice. Weight bearing changes and the effect of i.p. drug administration were analyzed in freely moving mice using the video-based CatWalk gait analysis system. Results In naïve mice indomethacin (5 to 50 mg/kg had no significant activity, minocycline (25 to 100 mg/kg produced hyperalgesia to thermal nociception, however, coadministration of minocycline 50 mg/kg with indomethacin 5 or 10 mg/kg produced significant antinociceptive effects in the hot plate test. A selective inhibitor of COX-1, FR122047 (10 mg/kg and a selective COX-2 inhibitor, CAY10404 (10 mg/kg had no significant antinociceptive activities to thermal nociception in naïve mice, however, coadministration of minocycline, with CAY10404 but not FR122047 produced significant antinociceptive effects. In mice with LPS-induced hyperalgesia vehicle, indomethacin (10 mg/kg or minocycline (50 mg/kg did not produce significant changes, however, coadministration of minocycline plus indomethacin resulted in antinociceptive activity. LPS-induced RH limb monoarthritis resulted in weight bearing (RH/left hind (LH limb paw pressure ratios and RH/LH print area ratios deficits. Treatment with indomethacin (1 mg/kg or

  16. The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages.

    Science.gov (United States)

    Kim, Yong Chan; Song, Seok Bean; Lee, Sang Kyu; Park, Sang Min; Kim, Young Sang

    2014-04-01

    Macrophage death plays a role in several physiological and inflammatory pathologies such as sepsis and arthritis. In our previous work, we showed that simvastatin triggers cell death in LPS-activated RAW 264.7 mouse macrophage cells through both caspase-dependent and independent apoptotic pathways. Here, we show that the nuclear orphan receptor NR4A1 is involved in a caspase-independent apoptotic process induced by LPS and simvastatin. Simvastatin-induced NR4A1 expression in RAW 264.7 macrophages and ectopic expression of a dominant-negative mutant form of NR4A1 effectively suppressed both DNA fragmentation and the disruption of mitochondrial membrane potential (MMP) during LPS- and simvastatin-induced apoptosis. Furthermore, apoptosis was accompanied by Bcl-2-associated X protein (Bax) translocation to the mitochondria. Our findings suggest that NR4A1 expression and mitochondrial translocation of Bax are related to simvastatin-induced apoptosis in LPS-activated RAW 264.7 macrophages.

  17. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  18. Ca(OH2 action on TNF-alpha and NO release in macrophage culture stimulated by Pseudomonas aeruginosa LPS = Ação do Ca(OH2 sobre a produção de TNF-alfa e NO de cultura de macrófagos estimulada por LPS de Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Queiroz, Celso Emanoel de Souza

    2008-01-01

    Full Text Available Objetivo: A ação do hidróxido de cálcio [Ca(OH2] com o sistema imune e o mecanismo de neutralização das bactérias e seus subprodutos ainda não foi completamente esclarecida. Neste estudo foi avaliada a capacidade do Ca(OH2 em neutralizar o lipopolissacarídeo (LPS de Pseudomonas aeruginosa, utilizando-se duas metodologias: liberação de Óxido Nítrico (NO e Fator de Necrose Tumoral Alfa (TNF-alfa em cultura de macrófagos peritoneais de camundongos. Metodologia: No ensaio do NO, as células peritoneais foram expostas a uma solução de LPS (25mg/mL e 50mg/mL; e à suspensão de LPS/Ca(OH2 em duas concentrações (50mg/ 25mg e 25mg/25mg. Após 8 horas de incubação, foi utilizado reagente de Griess, e a liberação de NO foi quantificada. No ensaio do TNF-alfa, a solução de LPS foi usada na concentração de 25mg/mL e o LPS/Ca(OH2 a 25mg/25mg. Após 24 horas, as células foram fixadas e coradas com cristal violeta, e os valores de absorbância foram obtidos. Os resultados foram expressos em micromols. Todos os testes foram realizados em triplicata. Resultados: A presença de Ca(OH2 nas duas concentrações avaliadas reduziu significativamente a liberação de NO e TNF-alfa. Conclusão: Pode-se concluir que o LPS bacteriano representa um forte estímulo para liberação destas citocinas, mas o hidróxido de cálcio foi capaz de neutralizar este efeito

  19. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    Science.gov (United States)

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration. Copyright © 2016 Elsevier B.V. All rights

  20. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients.

    Directory of Open Access Journals (Sweden)

    Petronela Ancuta

    2008-06-01

    Full Text Available Elevated plasma lipopolysaccharide (LPS, an indicator of microbial translocation from the gut, is a likely cause of systemic immune activation in chronic HIV infection. LPS induces monocyte activation and trafficking into brain, which are key mechanisms in the pathogenesis of HIV-associated dementia (HAD. To determine whether high LPS levels are associated with increased monocyte activation and HAD, we obtained peripheral blood samples from AIDS patients and examined plasma LPS by Limulus amebocyte lysate (LAL assay, peripheral blood monocytes by FACS, and soluble markers of monocyte activation by ELISA. Purified monocytes were isolated by FACS sorting, and HIV DNA and RNA levels were quantified by real time PCR. Circulating monocytes expressed high levels of the activation markers CD69 and HLA-DR, and harbored low levels of HIV compared to CD4(+ T-cells. High plasma LPS levels were associated with increased plasma sCD14 and LPS-binding protein (LBP levels, and low endotoxin core antibody levels. LPS levels were higher in HAD patients compared to control groups, and were associated with HAD independently of plasma viral load and CD4 counts. LPS levels were higher in AIDS patients using intravenous heroin and/or ethanol, or with Hepatitis C virus (HCV co-infection, compared to control groups. These results suggest a role for elevated LPS levels in driving monocyte activation in AIDS, thereby contributing to the pathogenesis of HAD, and provide evidence that cofactors linked to substance abuse and HCV co-infection influence these processes.

  1. Peripheral reactions

    International Nuclear Information System (INIS)

    Greiner, D.

    1978-01-01

    Peripheral collisions, that is, collisions involving a small amount of overlap of nuclear matter, are discussed including inclusive interactions, the magnitude of the peripheral cross section, fragmentation, a compilation of experiments and available data, limiting fragmentation, factorization, some models, fragment momentum distributions, and future research directions

  2. Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour

    International Nuclear Information System (INIS)

    Cardoso, Ana P.; Pinto, Marta L.; Pinto, Ana T.; Pinto, Marta T.; Monteiro, Cátia; Oliveira, Marta I.; Santos, Susana G.; Relvas, João B.; Seruca, Raquel; Mantovani, Alberto; Mareel, Marc; Barbosa, Mário A.; Oliveira, Maria J.

    2015-01-01

    The interactions established between macrophages and cancer cells are largely dependent on instructions from the tumour microenvironment. Macrophages may differentiate into populations with distinct inflammatory profiles, but knowledge on their role on cancer cell activities is still very scarce. In this work, we investigated the influence of pro-inflammatory (LPS-stimulated) and anti-inflammatory (IL-10-stimulated) macrophages on gastric and colorectal cancer cell invasion, motility/migration, angiogenesis and proteolysis, and the associated molecular mechanisms. Following exposure of gastric and colon cancer cell lines to LPS- and IL-10-stimulated human macrophages, either by indirect contact or conditioned media, we analyzed the effect of the different macrophage populations on cancer cell invasion, migration, motility and phosphorylation status of EGFR and several interacting partners. Cancer-cell induced angiogenesis upon the influence of conditioned media from both macrophage populations was assessed using the chick embryo chorioallantoic membrane assay. MMP activities were evaluated by gelatin zymograhy. Our results show that IL-10-stimulated macrophages are more efficient in promoting in vitro cancer cell invasion and migration. In addition, soluble factors produced by these macrophages enhanced in vivo cancer cell-induced angiogenesis, as opposed to their LPS-stimulated counterparts. We further demonstrate that differences in the ability of these macrophage populations to stimulate invasion or angiogenesis cannot be explained by the EGFR-mediated signalling, since both LPS- and IL-10-stimulated macrophages similarly induce the phosphorylation of cancer cell EGFR, c-Src, Akt, ERK1/2, and p38. Interestingly, both populations exert distinct proteolytic activities, being the IL-10-stimulated macrophages the most efficient in inducing matrix metalloprotease (MMP)-2 and MMP-9 activities. Using a broad-spectrum MMP inhibitor, we demonstrated that proteolysis was

  3. Heat production, respiratory quotient, and methane loss subsequent to LPS challenge in beef heifers

    Science.gov (United States)

    Respiration calorimetry was used to measure energy utilization during an acute phase response (APR) to lipopolysaccharide (LPS). Eight Angus heifers (208 +/- 29.2 kg) were randomly assigned to one of two calorimeters in four 2-day periods for measurement of heat production (HP), methane (CH4), and r...

  4. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS)-Stimulated Human THP-1 Macrophages.

    Science.gov (United States)

    Robertson, Ruairi C; Guihéneuf, Freddy; Bahar, Bojlul; Schmid, Matthias; Stengel, Dagmar B; Fitzgerald, Gerald F; Ross, R Paul; Stanton, Catherine

    2015-08-20

    Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA) and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus) and one microalga (Pavlova lutheri) were assessed in lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Extracts contained 34%-42% total fatty acids as n-3 PUFA and 5%-7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL)-6 (p lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases.

  5. Peripherally administered baclofen reduced food intake and body weight in db/db as well as diet-induced obese mice.

    Science.gov (United States)

    Sato, Ikuko; Arima, Hiroshi; Ozaki, Noriyuki; Ozaki, Nobuaki; Watanabe, Minemori; Goto, Motomitsu; Shimizu, Hiroshi; Hayashi, Masayuki; Banno, Ryouichi; Nagasaki, Hiroshi; Oiso, Yutaka

    2007-10-16

    Peripheral administration of baclofen significantly reduced food intake and body weight increase in both diabetic (db/db) and diet-induced obese mice for 5 weeks, whereas it had no significant effects on energy balance in their lean control mice. Despite the decreased body weight, neuropeptide Y expression in the arcuate nucleus was significantly decreased, whereas pro-opiomelanocortin expression was significantly increased by baclofen treatment. These data demonstrate that the inhibitory effects of baclofen on body weight in the obese mice were mediated via the arcuate nucleus at least partially, and suggest that GABA(B) agonists could be a new therapeutic reagent for obesity.

  6. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Mi Eun Kim

    2017-11-01

    Full Text Available The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS-induced nitric oxide (NO production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos, cox-2, il-1β, tnf-α, and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.

  7. Pseudane-VII Isolated from Pseudoalteromonas sp. M2 Ameliorates LPS-Induced Inflammatory Response In Vitro and In Vivo.

    Science.gov (United States)

    Kim, Mi Eun; Jung, Inae; Lee, Jong Suk; Na, Ju Yong; Kim, Woo Jung; Kim, Young-Ok; Park, Yong-Duk; Lee, Jun Sik

    2017-11-01

    The ocean is a rich resource of flora, fauna, food, and biological products. We found a wild-type bacterial strain, Pseudoalteromonas sp. M2, from marine water and isolated various secondary metabolites. Pseudane-VII is a compound isolated from the Pseudoalteromonas sp. M2 metabolite that possesses anti-melanogenic activity. Inflammation is a response of the innate immune system to microbial infections. Macrophages have a critical role in fighting microbial infections and inflammation. Recent studies reported that various compounds derived from natural products can regulate immune responses including inflammation. However, the anti-inflammatory effects and mechanism of pseudane-VII in macrophages are still unknown. In this study, we investigated the anti-inflammatory effects of pseudane-VII. In present study, lipopolysaccharide (LPS)-induced nitric oxide (NO) production was significantly decreased by pseudane-VII treatment at 6 μM. Moreover, pseudane-VII treatment dose-dependently reduced mRNA levels of pro-inflammatory cytokines including inos , cox-2 , il-1β , tnf-α , and il-6 in LPS-stimulated macrophages. Pseudane-VII also diminished iNOS protein levels and IL-1β secretion. In addition, Pseudane-VII elicited anti-inflammatory effects by inhibiting ERK, JNK, p38, and nuclear factor (NF)-κB-p65 phosphorylation. Consistently, pseudane-VII was also shown to inhibit the LPS-stimulated release of IL-1β and expression of iNOS in mice. These results suggest that pseudane-VII exerted anti-inflammatory effects on LPS-stimulated macrophage activation via inhibition of ERK, JNK, p38 MAPK phosphorylation, and pro-inflammatory gene expression. These findings may provide new approaches in the effort to develop anti-inflammatory therapeutics.

  8. Estimation of the in vitro eye irritating and inflammatory potential of lipopolysaccharide (LPS) and dust by using reconstituted human corneal epithelium tissue cultures.

    Science.gov (United States)

    Cao, Yi; Bindslev, Dorthe A; Kjærgaard, Søren K

    2015-01-01

    Eye irritation is a common complaint in indoor environment, but the causes have still not been identified among the multiple exposures in house environments. To identify the potential environmental factors responsible for eye irritation and study the possible mechanisms, an in vitro model for eye irritation is suggested. In this study, reconstituted human corneal epithelium (HCE) tissue cultures were used to study the eye irritating and inflammatory potential of lipopolysaccharide (LPS) and dust. HCE tissue cultures were exposed to a range of concentrations of LPS for 6 h and dust for 24 h, respectively. After exposure, viability and secretion of interleukins (IL) IL-1β, IL-8, and tumor necrosis factor (TNFα) were examined. Histology was used to indicate the morphological changes after dust exposure. Both LPS and dust affected HCE viability. There was an increased level of IL-8 after LPS exposure, while the concentrations of IL-1β and TNFα remained unaffected. Dust exposure resulted in an elevation of both IL-1β and IL-8, but not TNFα. Histology study showed increased vacuolization and reduced thickness after 24 h exposure to 5 mg/mL dust. LPS and dust showed in vitro eye irritating and inflammatory potential, and cytokines/chemokines like IL-1β and IL-8 may be involved in the mechanisms of eye irritation. The HCE tissue culture may be used as an in vitro model to study environmental exposure induced eye irritation and inflammation.

  9. The pharmacological efficacy of the anti-IL17 scFv and sTNFR1 bispecific fusion protein in inflammation mouse stimulated by LPS.

    Science.gov (United States)

    Yang, Yongbi; Zhang, Teng; Cao, Hongxue; Yu, Dan; Zhang, Tong; Zhao, Shaojuan; Jing, Xiaohui; Song, Liying; Liu, Yunye; Che, Ruixiang; Liu, Xin; Li, Deshan; Ren, Guiping

    2017-08-01

    Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Recently, our study found that a bispecific fusion protein treatment can ameliorate the lung injury induced by LPS. However, the molecular mechanisms which bispecific fusion protein ameliorates acute lung injury remain unclear. In this study, we found that the bispecific fusion protein treatment inhibited the nuclear transcription of NF-κB in confocal laser scanning fluorescence microscopy, the bispecific fusion protein exert protective effects in the cell model of ALI induced by lipopolysaccharide (LPS) via inhibiting the nuclear factor κB (NF-κB) signaling pathway and mediate inflammation. Moreover, the treatment of the bispecific fusion protein show its efficacy in animal models stimulated by LPS, the results of real-time PCR and ELISA demonstrate that bispecific fusion protein treatment effectively inhibited the over-expression of inflammatory cytokines(tumor necrosis factor α, interleukin 1β and interleukin 17). In addition, LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology, which was meliorated by bispecific fusion protein treatment. Collectively, these results demonstrate that bispecific fusion protein treatment ameliorates LPS-induced ALI through reducing inflammatory cytokines and lung inflammation, which may be associated with the decreased the nuclear transcription of NF-κB. The bispecific fusion protein may be useful as a novel therapy to treat ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer.

    Science.gov (United States)

    Liu, Li; Li, Yu H; Niu, Yin B; Sun, Yang; Guo, Zhen J; Li, Qian; Li, Chen; Feng, Juan; Cao, Shou S; Mei, Qi B

    2010-10-01

    Evidence strongly supported a link between inflammation and cancer. Patients with colitis have high risk for development of colon cancer. Nuclear factor-kappa B (NF-κB), partially induced by lipopolysaccharide (LPS) binding to Toll-like receptor (TLR) 4, is a vital molecule in supervising the transformation of colitis to colon cancer. It could be a good strategy to prevent colitis carcinogenesis for targeting LPS/TLR4/NF-κB pathway. In the present study, we obtained an oligogalactan composed of five galacturonic acids from apple pectin and evaluated its protective efficacy on intestinal toxicities and carcinogenesis in a mouse model of colitis-associated colon cancer induced by 1,2-dimethylhydrazine and dextran sodium sulfate (DSS). The apple oligogalactan (AOG) was highly effective against intestinal toxicities and carcinogenesis and decreased the elevated levels of TLR4 and tumor necrosis factor-α (TNF-α) induced by inflammation in vivo in this model system. In vitro studies, AOG alone only slightly increased the levels of protein expression and messenger RNA of TLR4, phosphorylation of IκBα and production of TNF-α in HT-29 cells. However, AOG significantly decreased the elevation of all the biomarkers induced by LPS when it was combined with LPS. The effect of AOG may be related to membrane internalization and redistribution of TLR4 from cell membrane to cytoplasm. AOG is active against inflammation and carcinogenesis through targeting LPS/TLR4/NF-κB pathway. Both AOG and LPS are agonists of TLR4 for sharing the same ligand but AOG has a much lower intrinsic activity than that of LPS. AOG may be useful for treatment of colitis and prevention of carcinogenesis in the clinics.

  11. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Essafi-Benkhadir, Khadija [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Refai, Amira [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia); Riahi, Ichrak [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Fattouch, Sami [Laboratory LIP-MB National Institute of Applied Sciences and Technology, Tunis (Tunisia); Karoui, Habib [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Essafi, Makram, E-mail: makram.essafi@pasteur.rns.tn [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  12. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-κB, p38MAPK and Akt inhibition

    International Nuclear Information System (INIS)

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak; Fattouch, Sami; Karoui, Habib; Essafi, Makram

    2012-01-01

    Highlights: ► Quince peel polyphenols inhibit LPS-induced secretion of TNF-α and IL-8. ► Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. ► Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-α is partially mediated by IL-6. ► The anti-inflammatory effects of quince polyphenols pass through NF-κB, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-α and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-α secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-κB), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince-rich regimen may help to prevent and improve the treatment of such diseases.

  13. Isoalantolactone inhibits LPS-induced inflammation via NF-κB inactivation in peritoneal macrophages and improves survival in sepsis.

    Science.gov (United States)

    He, Guodong; Zhang, Xu; Chen, Yanhua; Chen, Jing; Li, Li; Xie, Yubo

    2017-06-01

    Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of mortality worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Isoalantolactone (IAL), a sesquiterpene lactone, is known for its anti-cancer effects. Nevertheless, little is known about the anti-inflammatory effects of IAL, and the role of IAL in sepsis is unclear. In this study, we demonstrated that IAL decreased lipopolysaccharide (LPS)-mediated production of nitric oxide, PEG 2 and cytokines (IL-6, TNF-α) in peritoneal macrophages and RAW 264.7 macrophages. Moreover, molecular mechanism studies indicated that IAL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB pathway in peritoneal macrophages. In vivo, IAL reduced the secretion of IL-6 and TNF-α in serum, and increased the survival rate of mice with LPS-induced sepsis. In addition, IAL attenuated the activation of NF-κB pathway in liver. Taken together, our data suggest that IAL may represent a potentially new drug candidate for the treatment of sepsis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Peripheral Developing Odontoma or Peripheral Ameloblastic Fibroodontoma: A Rare Challenging Case

    Directory of Open Access Journals (Sweden)

    Saede Atarbashi Moghadam

    2016-01-01

    Full Text Available Peripheral odontogenic lesions are considered to be rare within the classification of odontogenic tumors. They share the same microscopic characteristics of their central counterparts. Here, we report an ulcerated mass of the maxillary gingiva that on histopathological examination was diagnosed as peripheral developing odontoma or peripheral ameloblastic fibroodontoma. The diagnosis of this tumor is challenging and may lead to unnecessary treatment.

  15. Chromium supplementation enhances the acute phase response of steers to a lipopolysaccharide (LPS) challenge

    Science.gov (United States)

    The study examined the effect of chromium supplementation on the response of steers to an LPS challenge. Twenty crossbred steers (235±4 kg BW) received 0 ppb (Control; C) or 200 ppb chromium propionate (CHR) for 55 days. Steers were fitted with jugular catheters and rectal temperature (RT) recording...

  16. Peripheral Neuropathy and Agent Orange

    Science.gov (United States)

    ... Enter ZIP code here Enter ZIP code here Peripheral Neuropathy and Agent Orange VA presumes Veterans' early-onset ... 10 percent disabling by VA's rating regulations. About peripheral neuropathy Peripheral neuropathy is a condition of the peripheral ...

  17. Vascular access in neonatology: peripherally inserted central catheter and peripheral venous catheter

    Directory of Open Access Journals (Sweden)

    Marcia Lienemann

    2014-04-01

    The objective of this paper is to present aspects of peripherally inserted central catheter and peripheral venous catheter, highlighting important points in choosing the type of access. For the passage of peripherally inserted central catheter is previously performing specific course necessary, while the primary indication occurs when it is necessary to access the patient's stay for a long period of time. Whereas peripheral venipuncture is the most appropriate in cases of needing an IV line quickly and safely, for the administration of fluids, blood collection, blood transfusion and other.

  18. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    International Nuclear Information System (INIS)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J.

    2014-01-01

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na + -K + -ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na + -K + -ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na + -K + -ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis

  19. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway.

    Science.gov (United States)

    Li, Yu; He, Shengnan; Tang, Jishun; Ding, Nana; Chu, Xiaoyan; Cheng, Lianping; Ding, Xuedong; Liang, Ting; Feng, Shibin; Rahman, Sajid Ur; Wang, Xichun; Wu, Jinjie

    2017-01-01

    Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f.) Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS-) induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The nuclear level of NF- κ B was measured by an electrophoretic mobility shift assay (EMSA). The expression levels of NF- κ B, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF- α , IL-6, and IL-1 β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF- κ B activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF- κ B/MAPK signaling pathway and the induction of proinflammatory cytokines.

  20. CD44-deficiency attenuates the immunologic responses to LPS and delays the onset of endotoxic shock-induced renal inflammation and dysfunction.

    Directory of Open Access Journals (Sweden)

    Elena Rampanelli

    Full Text Available Acute kidney injury (AKI is a common complication during systemic inflammatory response syndrome (SIRS, a potentially deadly clinical condition characterized by whole-body inflammatory state and organ dysfunction. CD44 is a ubiquitously expressed cell-surface transmembrane receptor with multiple functions in inflammatory processes, including sterile renal inflammation. The present study aimed to assess the role of CD44 in endotoxic shock-induced kidney inflammation and dysfunction by using CD44 KO and WT mice exposed intraperitoneally to LPS for 2, 4, and 24 hours . Upon LPS administration, CD44 expression in WT kidneys was augmented at all time-points. At 2 and 4 hours, CD44 KO animals showed a preserved renal function in comparison to WT mice. In absence of CD44, the pro-inflammatory cytokine levels in plasma and kidneys were lower, while renal expression of the anti-inflammatory cytokine IL-10 was higher. The cytokine levels were associated with decreased leukocyte influx and endothelial activation in CD44 KO kidneys. Furthermore, in vitro assays demonstrated a role of CD44 in enhancing macrophage cytokine responses to LPS and leukocyte migration. In conclusion, our study demonstrates that lack of CD44 impairs the early pro-inflammatory cytokine response to LPS, diminishes leukocyte migration/chemotaxis and endothelial activation, hence, delays endotoxic shock-induced AKI.

  1. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yu Li

    2017-01-01

    Full Text Available Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f. Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS- induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA and quantitative real-time polymerase chain reaction (qRT-PCR, respectively. The nuclear level of NF-κB was measured by an electrophoretic mobility shift assay (EMSA. The expression levels of NF-κB, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF-κB activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF-κB/MAPK signaling pathway and the induction of proinflammatory cytokines.

  2. Effect of Eucommia ulmoides Oliv., Gynostemma pentaphyllum (Thunb.) Makino, and Curcuma longa L. on Th1- and Th2-cytokine responses and human leukocyte antigen-DR expression in peripheral blood mononuclear cells of septic patients.

    Science.gov (United States)

    Wu, Huang-Pin; Lin, Yin-Ku

    2018-05-10

    Many traditional Chinese medicines (TCM), such as Eucommia ulmoides Oliv., Gynostemma pentaphyllum (Thunb.) Makino, and Curcuma longa L., have been reported to have various immune-modulatory effects. To determine the effects of extracts from these three TCM on type 1 T help (Th1)- and Th2-cytokine responses and human leukocyte antigen (HLA)-DR expression in peripheral blood mononuclear cells (PBMCs) obtained from septic patients. Lipopolysaccharide (LPS)-stimulated PBMCs of healthy controls and septic patients were cultured for 48 hs with or without 0.05/0.1 mg/ml of TCM extract. HLA-DR expression in monocytes was detected using flow cytofluorimetry. The interferon [IFN]-γ, tumor necrosis factor [TNF]-α, interleukin (IL)- 2, IL-5, IL-10, and IL-13 levels in supernatants were measured with a human enzyme-linked immunosorbent assay. Treatment with either 0.05 or 0.1 mg/ml of C. longa L. extract significantly restored the percentage of HLA-DR-positive monocytes, which was decreased by LPS in control and patient groups. Treatment with 0.05 or 0.1 mg/ml E. ulmoides Oliv. and C.longa L. extract decreased IL-10 production from LPS-stimulated PBMCs of controls and patients. In patients with sepsis, C. longa L. extract decreased IL-10 production to a greater degree than did E. ulmoides Oliv extract. Although IFN-γ, TNF-α, or IL-13 productions from LPS-stimulated PBMCs were influenced by E. ulmoides Oliv., G. pentaphyllum (Thunb.) Makino, or C. longa L. in control or sepsis groups in this study, only the influence of IL-10 was consistent in both control and sepsis groups. By enhancing monocyte HLA-DR expression and decreasing IL-10 production, C. longa L. might help restore inflammatory responses in septic patients to eradicate pathogens. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effect of yeast biomass with high content of carotenoids on erythrocyte deformability, NO production and Na,K-ATPase activity in healthy and LPS treated rats.

    Science.gov (United States)

    Radosinska, J; Mezesova, L; Okruhlicova, L; Frimmel, K; Breierova, E; Bartekova, M; Vrbjar, N

    2016-11-25

    Measurements of red blood cell (RBC) deformability together with estimation of NO-synthase activity and Na,K-ATPase activity were used for characterization of RBC functionality in rats subjected to single dose of Escherichia coli lipopolysaccharides (LPS) at a dose of 1 mg/kg. We hypothesized that LPS might initiate a malfunction of RBC. We also investigated the potential effect of carotenoids (10 mg/kg/day) produced in red yeast biomass of Rhodotorula glutinis on RBC in LPS-challenged rats. LPS significantly reduced the deformability of RBC (by 14%) together with decrease of NO-synthase activity by 20%. Daily supplementation of carotenoids for 10 days attenuated the LPS-induced injury, as observed by 22% increase of RBC deformability and 23% increase of NO-synthase activity. The activity of Na,K-ATPase was also improved probably due to increased number of active enzyme molecules as indicated by 66% enhancement of Vmax value, hence maintaining the activity of erythrocyte Na,K-ATPase to the level even higher as compared with healthy control animals. It may be concluded that administration of yeast biomass with high content of carotenoids resulted in advanced function of erythrocytes as concerns their ability to squeeze through narrow capillaries of the circulation, better intrinsic production of NO and improvement of intracellular homeostasis of sodium.

  4. Cytotoxicity of Betel leaf (Piper betel L. against primary culture of chicken embryo fibroblast and its effects on the production of proinflammatory cytokines by human peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Suprapto Ma’at

    2012-06-01

    Full Text Available Background: Betel leaf (Piper betel L. has been used in modern and traditional medicine as antiseptic, antibacterial, and also prevention of plaque accumulation, but it still can stimulate cancer in lime-piper betel quid. Betel leaf also has anti-inflammatory properties. Purpose: The purpose of this study was examine the cytotoxicity of Betel leaf extract (BLE against primary culture of chicken embryo fibroblast and its effects on the production of proinflammatory cytokines by peripheral blood mononuclear cells (PBMC stimulated with LPS. Methods: MTT assay was used to investigate the survival rate of the culture with the survival rate result of the given culture extract 4%, 2% and 1% about 82%, 83.4% and 85%. There was no significant difference between treatment with various concentrations of the extract and the control (p>0.05. To evaluate the effect of Betel leaf extracts on the production of cytokines, proinflammatory was conducted by incubating the extracts of betel leaf with peripheral blood mononuclear cells stimulated with lipopolysaccharide. Peripheral blood mononuclear cells were obtained from healthy volunteers isolated by density centrifugation method using Ficoll-Hypaque. Once coupled with various concentrations of betel leaf extract and lipopolysaccharide, and then incubated for 24 hours, the culture supernatant was used to determine the level of IFN-γ and TNF-α by ELISA method. Results: It is known that the survival rates of BLE 4%, 2% and 1% were 82%, 83.4% and 85%. There was no significant of difference between several concentrations of BLE and those in the control group (p>0.05. The production of IFN-γ and TNF-α stimulated with LPS was no significant difference between BLE 4%, 2% and 1% and that in the control group (p>0.05. Conclusion: It can be concluded that BLE is not toxic against primary culture of chicken embryo fibroblast, and the production of IFN-γ and TNF-α by PBMC was not affected by BLE.Latar belakang: Daun

  5. Modulatory Mechanism of Polyphenols and Nrf2 Signaling Pathway in LPS Challenged Pregnancy Disorders

    Directory of Open Access Journals (Sweden)

    Tarique Hussain

    2017-01-01

    Full Text Available Early embryonic loss and adverse birth outcomes are the major reproductive disorders that affect both human and animals. The LPS induces inflammation by interacting with robust cellular mechanism which was considered as a plethora of numerous reproductive disorders such as fetal resorption, preterm birth, teratogenicity, intrauterine growth restriction, abortion, neural tube defects, fetal demise, and skeletal development retardation. LPS-triggered overproduction of free radicals leads to oxidative stress which mediates inflammation via stimulation of NF-κB and PPARγ transcription factors. Flavonoids, which exist in copious amounts in nature, possess a wide array of functions; their supplementation during pregnancy activates Nrf2 signaling pathway which encounters pregnancy disorders. It was further presumed that the development of strong antioxidant uterine environment during gestation can alleviate diseases which appear at adult stages. The purpose of this review is to focus on modulatory properties of flavonoids on oxidative stress-mediated pregnancy insult and abnormal outcomes and role of Nrf2 activation in pregnancy disorders. These findings would be helpful for providing new insights in ameliorating oxidative stress-induced pregnancy disorders.

  6. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism.

    Science.gov (United States)

    Ott, V; Benedict, C; Schultes, B; Born, J; Hallschmid, M

    2012-03-01

    In recent years, the central nervous system (CNS) has emerged as a principal site of insulin action. This notion is supported by studies in animals relying on intracerebroventricular insulin infusion and by experiments in humans that make use of the intranasal pathway of insulin administration to the brain. Employing neurobehavioural and metabolic measurements as well as functional imaging techniques, these studies have provided insight into a broad range of central and peripheral effects of brain insulin. The present review focuses on CNS effects of insulin administered via the intranasal route on cognition, in particular memory function, and whole-body energy homeostasis including glucose metabolism. Furthermore, evidence is reviewed that suggests a pathophysiological role of impaired brain insulin signaling in obesity and type 2 diabetes, which are hallmarked by peripheral and possibly central nervous insulin resistance, as well as in conditions such as Alzheimer's disease where CNS insulin resistance might contribute to cognitive dysfunction. © 2011 Blackwell Publishing Ltd.

  7. PKB/SGK-dependent GSK3-phosphorylation in the regulation of LPS-induced Ca2+ increase in mouse dendritic cells.

    Science.gov (United States)

    Russo, Antonella; Schmid, Evi; Nurbaeva, Meerim K; Yang, Wenting; Yan, Jing; Bhandaru, Madhuri; Faggio, Caterina; Shumilina, Ekaterina; Lang, Florian

    2013-08-02

    The function of dendritic cells (DCs) is modified by glycogen synthase kinase GSK3 and GSK3 inhibitors have been shown to protect against inflammatory disease. Regulators of GSK3 include the phosphoinositide 3 kinase (PI3K) pathway leading to activation of protein kinase B (PKB/Akt) and serum and glucocorticoid inducible kinase (SGK) isoforms, which in turn phosphorylate and thus inhibit GSK3. The present study explored, whether PKB/SGK-dependent inhibition of GSK3 contributes to the regulation of cytosolic Ca(2+) concentration following stimulation with bacterial lipopolysaccharides (LPS). To this end DCs from mutant mice, in which PKB/SGK-dependent GSK3α,β regulation was disrupted by replacement of the serine residues in the respective SGK/PKB-phosphorylation consensus sequence by alanine (gsk3(KI)), were compared to DCs from respective wild type mice (gsk3(WT)). According to Western blotting, GSK3 phosphorylation was indeed absent in gsk3(KI) DCs. According to flow cytometry, expression of antigen-presenting molecule major histocompatibility complex II (MHCII) and costimulatory molecule CD86, was similar in unstimulated and LPS (1μg/ml, 24h)-stimulated gsk3(WT) and gsk3(KI) DCs. Moreover, production of cytokines IL-6, IL-10, IL-12 and TNFα was not significantly different in gsk3(KI) and gsk3(WT) DCs. In gsk3(WT) DCs, stimulation with LPS (1μg/ml) within 10min led to transient phosphorylation of GSK3. According to Fura2 fluorescence, LPS (1μg/ml) increased cytosolic Ca(2+) concentration, an effect significantly more pronounced in gsk3(KI) DCs than in gsk3(WT) DCs. Conversely, GSK3 inhibitor SB216763 (3-[2,4-Dichlorophenyl]-4-[1-methyl-1H-indol-3-yl]-1H-pyrrole-2,5-dione, 10μM, 30min) significantly blunted the increase of cytosolic Ca(2+) concentration following LPS exposure. In conclusion, PKB/SGK-dependent GSK3α,β activity participates in the regulation of Ca(2+) signaling in dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Drug-induced peripheral neuropathy

    DEFF Research Database (Denmark)

    Vilholm, Ole Jakob; Christensen, Alex Alban; Zedan, Ahmed

    2014-01-01

    Peripheral neuropathy can be caused by medication, and various descriptions have been applied for this condition. In this MiniReview, the term 'drug-induced peripheral neuropathy' (DIPN) is used with the suggested definition: Damage to nerves of the peripheral nervous system caused by a chemical...... substance used in the treatment, cure, prevention or diagnosis of a disease. Optic neuropathy is included in this definition. A distinction between DIPN and other aetiologies of peripheral neuropathy is often quite difficult and thus, the aim of this MiniReview is to discuss the major agents associated...

  9. Salidroside Reduces Cell Mobility via NF-κB and MAPK Signaling in LPS-Induced BV2 Microglial Cells

    Directory of Open Access Journals (Sweden)

    Haixia Hu

    2014-01-01

    Full Text Available The unregulated activation of microglia following stroke results in the production of toxic factors that propagate secondary neuronal injury. Salidroside has been shown to exhibit protective effects against neuronal death induced by different insults. However, the molecular mechanisms responsible for the anti-inflammatory activity of salidroside have not been elucidated clearly in microglia. In the present study, we investigated the molecular mechanism underlying inhibiting LPS-stimulated BV2 microglial cell mobility of salidroside. The protective effect of salidroside was investigated in microglial BV2 cell, subjected to stretch injury. Moreover, transwell migration assay demonstrated that salidroside significantly reduced cell motility. Our results also indicated that salidroside suppressed LPS-induced chemokines production in a dose-dependent manner, without causing cytotoxicity in BV2 microglial cells. Moreover, salidroside suppressed LPS-induced activation of nuclear factor kappa B (NF-κB by blocking degradation of IκBα and phosphorylation of MAPK (p38, JNK, ERK1/2, which resulted in inhibition of chemokine expression. These results suggest that salidroside possesses a potent suppressive effect on cell migration of BV2 microglia and this compound may offer substantial therapeutic potential for treatment of ischemic strokes that are accompanied by microglial activation.

  10. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    Science.gov (United States)

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  11. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NF?B-Dependent Pathway

    OpenAIRE

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFB was anal...

  12. Licofelone Attenuates LPS-induced Depressive-like Behavior in Mice: A Possible Role for Nitric Oxide.

    Science.gov (United States)

    Mousavi, Seyyedeh Elaheh; Saberi, Pegah; Ghasemkhani, Naeemeh; Fakhraei, Nahid; Mokhtari, Rezvan; Dehpour, Ahmad Reza

    2018-01-01

    Licofelone, a dual cyclooxygenase/5-lipoxygenase inhibitor, possesses antioxidant, antiapoptotic, neuroprotective, and anti-inflammatory properties. The aim of the present study was to investigate the effect of licofelone on lipopolysaccharide (LPS)-induced depression in a mouse model and also a possible role for nitric oxide (NO). To elucidate the role of NO on this effect of licofelone (5 and 20 mg/kg, i.p.), L-NAME, a non-specific NO synthase (NOS) inhibitor; aminoguanidine (AG), a specific inducible NOS (iNOS) inhibitor; 7-nitroindazole (7-NI) a preferential neuronal NOS inhibitor (nNOS) and; L-arginine (L-Arg), as a NO donor, were used. The animal's behaviors were evaluated employing forced swimming test (FST), tail suspension test (TST) and open field test (OFT). LPS (0.83 mg/kg, i.p.) induced depressive-like behavior increasing immobility time in FST and TST. Conversely, licofelone (20 mg/kg i.p.) reversed the depressive effect of LPS and lowered the immobility time in FST and TST. On the other hand, pretreatment with L-Arg also reversed the antidepressant-like effect of licofelone (20 mg/kg) in FST and TST. On the other hand, L-NAME (10 and 30 mg/kg), AG (50 and 100 mg/kg) and 7-NI (60 mg/kg) could potentiate licofelone (5 mg/kg) and lowered the immobility duration. NO down-regulation possibly through iNOS and nNOS inhibition may involve in the antidepressant property of licofelone. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  13. Attenuation of LPS-induced inflammation by ICT, a derivate of icariin, via inhibition of the CD14/TLR4 signaling pathway in human monocytes.

    Science.gov (United States)

    Wu, Jinfeng; Zhou, Junmin; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika A; Wei, Sheng; Dong, Jingcheng

    2012-01-01

    To evaluate the anti-inflammatory potential of ICT in LPS stimulated human innate immune cells. 3, 5, 7-Trihydroxy-4'-methoxy-8-(3-hydroxy-3- methylbutyl)-flavone (ICT) is a novel derivative of icariin, the major active ingredient of Herba Epimedii, an herb used in traditional Chinese medicine. We previously demonstrated its anti-inflammatory potential in a murine macrophage cell line as well as in mouse models. We measured TNF-α production by ELISA, TLR4/CD14 expression by flow cytometry, and NF-κB and MAPK activation by western blot all in LPS-stimulated PBMC, human monocytes, or THP-1 cells after treatment with ICT. ICT inhibited LPS-induced TNF-α production in THP-1 cells, PBMCs and human monocytes in a dose-dependent manner. ICT treatment resulted in down-regulation of the expression of CD14/TLR4 and attenuated NF-κB and MAPK activation induced by LPS. We illustrate the anti-inflammatory property of ICT in human immune cells, especially in monocytes. These effects were mediated, at least partially, via inhibition of the CD14/TLR4 signaling pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Directory of Open Access Journals (Sweden)

    Z.G. Zhao

    2014-02-01

    Full Text Available The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL on lipopolysaccharide (LPS-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1, myeloperoxidase (MPO, and Na+-K+-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na+-K+-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na+-K+-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  15. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J. [Institute of Microcirculation, Hebei North University, Zhangjiakou, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-02-17

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na{sup +}-K{sup +}-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na{sup +}-K{sup +}-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na{sup +}-K{sup +}-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  16. Therapeutic effect of methyl salicylate 2-O-β-d-lactoside on LPS-induced acute lung injury by inhibiting TAK1/NF-kappaB phosphorylation and NLRP3 expression.

    Science.gov (United States)

    Yang, Shengqian; Yu, Ziru; Yuan, Tianyi; Wang, Lin; Wang, Xue; Yang, Haiguang; Sun, Lan; Wang, Yuehua; Du, Guanhua

    2016-11-01

    Acute lung injury (ALI), characterized by pulmonary edema and inflammatory cell infiltration, is a common syndrome of acute hypoxemic respiratory failure. Methyl salicylate 2-O-β-d-lactoside (MSL), a natural derivative of salicylate extracted from Gaultheria yunnanensis (Franch.) Rehder, was reported to have potent anti-inflammatory effects on the progression of collagen or adjuvant-induced arthritis in vivo and in vitro. The aim of this study is to investigate the therapeutic effect of MSL on lipopolysaccharide (LPS)-induced acute lung injury and reveal underlying molecular mechanisms. Our results showed that MSL significantly ameliorated pulmonary edema and histological severities, and inhibited IL-6 and IL-1β production in LPS-induced ALI mice. MSL also reduced MPO activity in lung tissues and the number of inflammatory cells in BALF. Moreover, we found that MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation, as well as the expression of NLRP3 protein in lung tissues. Furthermore, MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation in Raw264.7 cells. In addition, MSL significantly inhibited nuclear translocation of NF-κB p65 in cells treated with LPS in vitro. Taken together, our results suggested that MSL exhibited a therapeutic effect on LPS-induced ALI by inhibiting TAK1/NF-κB phosphorylation and NLRP3 expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Estimation of the in vitro eye irritating and inflammatory potential of lipopolysaccharide (LPS) and dust by using reconstituted human corneal epithelium tissue cultures

    DEFF Research Database (Denmark)

    Cao, Yi; Arenholt-Bindslev, Dorthe; Kjærgaard, Søren K

    2015-01-01

    CONTEXT: Eye irritation is a common complaint in indoor environment, but the causes have still not been identified among the multiple exposures in house environments. To identify the potential environmental factors responsible for eye irritation and study the possible mechanisms, an in vitro model...... AND CONCLUSION: LPS and dust showed in vitro eye irritating and inflammatory potential, and cytokines/chemokines like IL-1β and IL-8 may be involved in the mechanisms of eye irritation. The HCE tissue culture may be used as an in vitro model to study environmental exposure induced eye irritation and inflammation....... for eye irritation is suggested. MATERIALS AND METHODS: In this study, reconstituted human corneal epithelium (HCE) tissue cultures were used to study the eye irritating and inflammatory potential of lipopolysaccharide (LPS) and dust. HCE tissue cultures were exposed to a range of concentrations of LPS...

  18. L-cysteine protects intestinal integrity, attenuates intestinal inflammation and oxidant stress, and modulates NF-κB and Nrf2 pathways in weaned piglets after LPS challenge.

    Science.gov (United States)

    Song, Ze he; Tong, Guo; Xiao, Kan; Jiao, Le fei; Ke, Ya lu; Hu, Cai hong

    2016-04-01

    In this study we investigated whetherL-cysteine (L-cys) could alleviate LPS-induced intestinal disruption and its underlying mechanism. Piglets fed with anL-cys-supplemented diet had higher average daily gain.L-cys alleviated LPS-induced structural and functional disruption of intestine in weanling piglets, as demonstrated by higher villus height, villus height (VH) to crypt depth (CD) ratio, and transepithelial electrical resistance (TER) and lower FITC-dextran 4 (FD4) kDa flux in jejunum and ileum. Supplementation withL-cys up-regulated occludin and claudin-1 expression, reduced caspase-3 activity and enhanced proliferating cell nuclear antigen expression of jejunum and ileum relative to LPS group. Additionally,L-cys suppressed the LPS-induced intestinal inflammation and oxidative stress, as demonstrated by down-regulated TNF-α, IL-6 and IL-8 mRNA levels, increased catalase, superoxide dismutase, glutathione peroxidase activity, glutathione (GSH) contents and the ratio of GSH and oxidized glutathione in jejunum and ileum. Finally, a diet supplemented withL-cys inhibited NF-κB(p65) nuclear translocation and elevated NF erythroid 2-related factor 2 (Nrf2) translocation compared with the LPS group. Collectively, our results indicated the protective function ofL-cys on intestinal mucosa barrier may closely associated with its anti-inflammation, antioxidant and regulating effect on the NF-κB and Nrf2 signaling pathways. © The Author(s) 2016.

  19. Ultrasound-Guided Peripheral Intravenous Access in the Emergency Department: Patient-Centered Survey

    Directory of Open Access Journals (Sweden)

    Keith Boniface

    2011-05-01

    Full Text Available Introduction: To assess characteristics, satisfaction, and disposition of emergency department (ED patients who successfully received ultrasound (US-guided peripheral intravenous (IV access. Methods: This is a prospective observational study among ED patients who successfully received US-guided peripheral IV access by ED technicians. Nineteen ED technicians were taught to use US guidance to obtain IV access. Training sessions consisted of didactic instruction and hands-on practice. The US guidance for IV access was limited to patients with difficult access. After successfully receiving an US-guided peripheral IV, patients were approached by research assistants who administered a 10-question survey. Disposition information was collected after the conclusion of the ED visit by accessing patients’ electronic medical record. Results: In total, 146 surveys were completed in patients successfully receiving US-guided IVs. Patients reported an average satisfaction with the procedure of 9.2 of 10. Forty-two percent of patients had a body mass index (BMI of greater than 30, and 17.8% had a BMI of more than 35. Sixty-two percent reported a history of central venous catheter placement. This patient population averaged 3 ED visits per year in the past year. Fifty-three percent of the patients were admitted. Conclusion: Patients requiring US-guided IVs in our ED are discharged home at the conclusion of their ED visit about half of the time. These patients reported high rates of both difficult IV access and central venous catheter placement in the past. Patient satisfaction with US-guided IVs was very high. These data support the continued use of US-guided peripheral IVs in this patient population. [West J Emerg Med. 2011;12(4:475–477.

  20. Cardiorespiratory control and cytokine profile in response to heat stress, hypoxia, and lipopolysaccharide (LPS) exposure during early neonatal period.

    Science.gov (United States)

    McDonald, Fiona B; Chandrasekharan, Kumaran; Wilson, Richard J A; Hasan, Shabih U

    2016-02-01

    Sudden infant death syndrome (SIDS) is one of the most common causes of postneonatal infant mortality in the developed world. An insufficient cardiorespiratory response to multiple environmental stressors (such as prone sleeping positioning, overwrapping, and infection), during a critical period of development in a vulnerable infant, may result in SIDS. However, the effect of multiple risk factors on cardiorespiratory responses has rarely been tested experimentally. Therefore, this study aimed to quantify the independent and possible interactive effects of infection, hyperthermia, and hypoxia on cardiorespiratory control in rats during the neonatal period. We hypothesized that lipopolysaccharide (LPS) administration will negatively impact cardiorespiratory responses to increased ambient temperature and hypoxia in neonatal rats. Sprague-Dawley neonatal rat pups were studied at postnatal day 6-8. Rats were examined at an ambient temperature of 33°C or 38°C. Within each group, rats were allocated to control, saline, or LPS (200 μg/kg) treatments. Cardiorespiratory and thermal responses were recorded and analyzed before, during, and after a hypoxic exposure (10% O2). Serum samples were taken at the end of each experiment to measure cytokine concentrations. LPS significantly increased cytokine concentrations (such as TNFα, IL-1β, MCP-1, and IL-10) compared to control. Our results do not support a three-way interaction between experimental factors on cardiorespiratory control. However, independently, heat stress decreased minute ventilation during normoxia and increased the hypoxic ventilatory response. Furthermore, LPS decreased hypoxia-induced tachycardia. Herein, we provide an extensive serum cytokine profile under various experimental conditions and new evidence that neonatal cardiorespiratory responses are adversely affected by dual interactions of environmental stress factors. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on

  1. Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPS-treated H9c2 cells by down-regulation of miR-29b.

    Science.gov (United States)

    Zhang, Haifang; Li, Hui; Ge, Ang; Guo, Enyu; Liu, Shuxia; Zhang, Lijuan

    2018-05-01

    Myocarditis is an important cause for cardiovascular morbidity and mortality in children and adults. The lncRNA taurine up-regulated gene 1 (TUG1) plays important roles in cell apoptosis and inflammation in tumor and liver injury. The present study aimed to investigate the role of TUG1 in LPS-injured H9c2 cells and explore the underlying molecular mechanism. H9c2 cells were stimulated with LPS to induce inflammatory injury. The expression of TUG1 was altered by transient transfections. Cell viability and apoptotic cell rates were detected by CCK-8 assay and flow cytometry assay, respectively. Inflammatory response was determined by detecting levels of inflammatory cytokines using qRT-PCR and ELISA. Furthermore, western blot analysis was conducted to assess the expression levels of core factors related with apoptosis and activations of NF-κB and JAK/STAT signaling pathways. LPS exposure reduced cell viability but enhanced cell apoptosis and inflammation in H9c2 cells. Moreover, TUG1 expression was down-regulated in LPS-injured H9c2 cells. TUG1 overexpression attenuated LPS-induced injuries in H9c2 cells, evidenced by augmented cell viability, declined apoptotic cell rates and decreased levels of pro-apoptotic factors and inflammatory cytokines. Inversely, TUG1 inhibition exerted the opposite effects. More importantly, TUG1 negatively modulated the expression of miR-29b and miR-29b mimic blocked the effect of TUG1 overexpression on cell viability, apoptosis, inflammation and inactivation of NF-κB and JAK/STAT signaling pathways in LPS-stimulated H9c2 cells. This study demonstrated that TUG1 played the anti-apoptotic and anti-inflammatory roles in LPS-injured H9c2 cells via down-regulating miR-29b and inhibiting NF-κB and JAK/STAT pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Heroin use is associated with suppressed pro-inflammatory cytokine response after LPS exposure in HIV-infected individuals.

    Directory of Open Access Journals (Sweden)

    Hinta Meijerink

    Full Text Available Opioid use is associated with increased incidence of infectious diseases. Although experimental studies have shown that opioids affect various functions of immune cells, only limited data are available from human studies. Drug use is an important risk factor for HIV transmission; however no data are available whether heroin and/or methadone modulate immune response. Therefore, we examined the effect of heroin and methadone use among HIV-infected individuals on the production of cytokines after ex vivo stimulation with various pathogens.Treatment naïve HIV-infected individuals from Indonesia were recruited. Several cohorts of individuals were recruited: 1 using heroin 2 receiving methadone opioid substitution 3 using heroin over 1 year ago and 4 controls (never used opioids. Whole blood was stimulated with Mycobacterium tuberculosis, Candida albicans and LPS for 24 to 48 hours. Cytokine production (IL-1 β, IL-6, IL-10, IFN-α, IFN-γ and TNF-α was determined using multiplex beads assay.Among 82 individuals, the cytokine levels in unstimulated samples did not differ between groups. Overall, heroin users had significantly lower cytokine response after exposure to LPS (p<0.05. After stimulation with either M. tuberculosis or C. albicans the cytokine production of all groups were comparable.The cytokine production after exposure to LPS is significantly down-regulated in HIV-infected heroin users. Interesting, methadone use did not suppress cytokine response, which could have implications guidelines of opioid substitution.

  3. Propylthiouracil and peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Valentina Van Boekel

    1992-06-01

    Full Text Available Peripheral neuropathy is a rare manifestation in hyperthyroidism. We describe the neurological manifestations of a 38 year old female with Graves' disease who developed peripheral neuropathy in the course of her treatment with propylthiouracil. After the drug was tapered off, the neurological signs disappeared. Therefore, we call attention for a possible toxic effect on peripheral nervous system caused by this drug.

  4. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Key words: Lipopolysaccharide, lymphocytes, TLRs, cytokines. INTRODUCTION. Lipopolysaccharide (LPS), a predominant glycolipid in the outer membranes of Gam-negative bacteria, stimulates monocyte, macrophages, and neutrophils and increase expression of cell adhesion molecules (Trent et al., ...

  5. Peripheral Neuropathy: Symptoms and Signs

    Science.gov (United States)

    ... Utah Research News Make a Difference Symptoms of Peripheral Neuropathy Print This Page Peripheral Neuropathy symptoms usually start ... more slowly over many years. The symptoms of peripheral neuropathy often include: A sensation of wearing an invisible “ ...

  6. Liposomal bupivacaine peripheral nerve block for the management of postoperative pain.

    Science.gov (United States)

    Hamilton, Thomas W; Athanassoglou, Vassilis; Trivella, Marialena; Strickland, Louise H; Mellon, Stephen; Murray, David; Pandit, Hemant G

    2016-08-25

    Postoperative pain remains a significant issue with poor perioperative pain management associated with an increased risk of morbidity and mortality. Liposomal bupivacaine is an analgesic consisting of bupivacaine hydrochloride encapsulated within multiple, non-concentric lipid bi-layers offering a novel method of sustained release. To assess the analgesic efficacy and adverse effects of liposomal bupivacaine infiltration peripheral nerve block for the management of postoperative pain. We identified randomised trials of liposomal bupivacaine peripheral nerve block for the management of postoperative pain. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2016, Issue 1), Ovid MEDLINE (1946 to January Week 1 2016), Ovid MEDLINE In-Process (14 January 2016), EMBASE (1974 to 13 January 2016), ISI Web of Science (1945 to 14 January 2016), and reference lists of retrieved articles. We sought unpublished studies from Internet sources, and searched clinical trials databases for ongoing trials. The date of the most recent search was 15 January 2016. Randomised, double-blind, placebo- or active-controlled clinical trials of a single dose of liposomal bupivacaine administered as a peripheral nerve block in adults aged 18 years or over undergoing elective surgery at any surgical site. We included trials if they had at least two comparison groups for liposomal bupivacaine peripheral nerve block compared with placebo or other types of analgesia. Two review authors independently considered trials for inclusion in the review, assessed risk of bias, and extracted data. We performed analyses using standard statistical techniques as described in the Cochrane Handbook for Systematic Reviews of Interventions, using Review Manager 5. We planned to perform a meta-analysis, however there were insufficient data to ensure a clinically meaningful answer; as such we have produced a 'Summary of findings' table in a narrative format, and where possible we assessed the

  7. Evaluation of neuroprotection by melatonin against adverse effects of prenatal exposure to a nonsteroidal anti-inflammatory drug during peripheral nerve development.

    Science.gov (United States)

    Keskin, Ilknur; Kaplan, Suleyman; Kalkan, Serpil; Sutcu, Mustafa; Ulkay, M Basak; Esener, O Burak

    2015-04-01

    The potential ability of melatonin to protect against impairment of the fetal peripheral nerve system due to maternal consumption of diclofenac sodium (DS) was investigated. Eighty-four pregnant rats were divided into seven groups: control (CONT), saline administered (PS), DS administered (DS), DS with low-dose melatonin administered (DS+MLT10), DS with high-dose melatonin administered (DS+MLT50), low-dose melatonin administered (MLT10), and high-dose melatonin administered (MLT50). After the pregnancy, six male newborn rats from each group were sacrificed at 4 and 20 weeks of age. Their right sciatic nerves were harvested, and nerve fibers were evaluated using stereological techniques. Mean numbers of myelinated axons, axon cross-section areas and the mean thickness of the myelin sheet were estimated. Four-week-old prenatally DS-exposed rats had significantly fewer axons, a smaller myelinated axonal area, and a thinner myelin sheath compared to CONT group (pmelatonin at both doses significantly increased axon numbers, only a high dose of melatonin increased the diameter of those axons (pmelatonin prophylaxis can prevent these effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Preservation of peripheral benzodiazepine receptors: differential effects of freezing on [3H]Ro 5-4864 and [3H]PK 11195 binding

    International Nuclear Information System (INIS)

    Basile, A.S.; Ostrowski, N.L.; Skolnick, P.

    1987-01-01

    A statistically significant decrease in the density of peripheral benzodiazepine receptors was observed in renal membranes of rats beginning 2 weeks after adrenalectomy when compared with sham-operated controls. This decrease in peripheral benzodiazepine receptor density was manifest as a decrease in the Bmax of two ligands [ 3 H]Ro 5-4864 and [ 3 H]PK 11195, without accompanying changes in their apparent affinity (Kd) for this site. Similar changes were not seen in another aldosterone-sensitive organ, the submandibular salivary gland. The decrease in peripheral benzodiazepine receptor density in observed in adrenalectomized rat renal membranes was restored to control levels after 1 week of aldosterone administration using a dose (12.5 micrograms/kg/day) that had no effect on peripheral benzodiazepine receptor density in sham-operated animals. In contrast, dexamethasone administration (50 micrograms/kg/day, 1 week) had no effect on renal peripheral benzodiazepine receptor density when administered to either adrenalectomized or sham-operated rats. Further, adrenal demedullation had no effect on renal peripheral benzodiazepine receptor density or affinity. The decrease in peripheral benzodiazepine receptor density was localized to the renal cortex and the outer stripe of the medulla by gross dissection of renal slices and renal tissue section autoradiography. The specific effect of adrenalectomy on renal peripheral benzodiazepine receptor density, the lack of direct effect of aldosterone on [ 3 H]Ro 5-4864 binding, and the localization of the change in peripheral benzodiazepine receptor density to the renal cortex and outer stripe suggests that these changes may reflect an adaptation of the renal nephron (possibly the distal convoluted tubule, intermediate tubule and/or the collecting duct) to the loss of mineralocorticoid hormones

  9. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration.

    Science.gov (United States)

    Pfalzgraff, Anja; Heinbockel, Lena; Su, Qi; Gutsmann, Thomas; Brandenburg, Klaus; Weindl, Günther

    2016-08-11

    The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections.

  10. Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner.

    Science.gov (United States)

    Cross, Sarah N; Nelson, Rachel A; Potter, Julie A; Norwitz, Errol R; Abrahams, Vikki M

    2018-04-30

    Chorioamnionitis and infection-associated inflammation are major causes of preterm birth. Magnesium sulfate (MgSO 4 ) is widely used in obstetrics as a tocolytic; however, its mechanism of action is unclear. This study sought to investigate how MgSO 4 modulates infection-associated inflammation in fetal membranes (FMs), and whether the response was time dependent. Human FM explants were treated with or without bacterial lipopolysaccharide (LPS); with or without MgSO 4 added either: 1 hour before LPS; at the same time as LPS; 1 hour post-LPS; or 2 hours post-LPS. Explants were also treated with or without viral dsRNA and LPS, alone or in combination; and MgSO 4 added 1 hour post-LPS After 24 hours, supernatants were measured for cytokines/chemokines; and tissue lysates measured for caspase-1 activity. Lipopolysaccharide-induced FM inflammation by upregulating the secretion of a number of inflammatory cytokines/chemokines. Magnesium sulfate administered 1-hour post-LPS inhibited FM secretion of IL-1β, IL-6, G-CSF, RANTES, and TNFα. Magnesium sulfate administered 2 hours post-LPS augmented FM secretion of these factors as well as IL-8, IFNγ, VEGF, GROα and IP-10. Magnesium sulfate delivered 1- hour post-LPS inhibited LPS-induced caspase-1 activity, and inhibited the augmented IL-1β response triggered by combination viral dsRNA and LPS. Magnesium sulfate differentially modulates LPS-induced FM inflammation in a time-dependent manner, in part through its modulation of caspase-1 activity. Thus, the timing of MgSO 4 administration may be critical in optimizing its anti-inflammatory effects in the clinical setting. MgSO 4 might also be useful at preventing FM inflammation triggered by a polymicrobial viral-bacterial infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS.

    Science.gov (United States)

    González-Chávez, Marco Martín; Ramos-Velázquez, Cinthia Saraí; Serrano-Vega, Roberto; Pérez-González, Cuauhtemoc; Sánchez-Mendoza, Ernesto; Pérez-Gutiérrez, Salud

    2017-12-01

    A previous study demonstrated that the chloroform extract of Salvia connivens Epling (Lamiaceae) has anti-inflammatory activity. Identification of the active components in the dicholorometane extract (DESC), and, standardization of the extract based in ursolic acid. DESC was prepared by percolation with dichlromethane and after washed with hot hexane, its composition was determined by CG-MS and NMR, and standardized by HPLC. The anti-inflammatory activity was tested on acute TPA-induced mouse ear oedema at doses of 2.0 mg/ear. The cell viability of macrophages was evaluated by MTT method, and pro- and anti-inflammatory interleukin levels were measured using an ELISA kit. Ursolic acid, oleanolic acid, dihydroursolic acid and eupatorin were identified in DESC, which was standardized based on the ursolic acid concentration (126 mg/g). The anti-inflammatory activities of DESC, the acid mixture, and eupatorin (2 mg/ear) were 60.55, 57.20 and 56.40% inhibition, respectively, on TPA-induced ear oedema. The IC 50 of DESC on macrophages was 149.4 μg/mL. DESC (25 μg/mL) significantly reduced TNF-α (2.0-fold), IL-1β (2.2-fold) and IL-6 (2.0-fold) in macrophages stimulated with LPS and increased the production of IL-10 (1.9-fold). Inflammation is a basic response to injuries, and macrophages are involved in triggering inflammation. Macrophage cells exhibit a response to LPS, inducing inflammatory mediators, and DESC inhibits the biosynthesis of the pro-inflammatory and promote anti-inflammatory cytokines. DESC has an anti-inflammatory effect; reduced the levels of IL-1β, Il-6 and TNF-α; and increases IL-10 in macrophages stimulated with LPS. Ursolic acid is a good phytochemical marker.

  12. 22 CFR 196.4 - Administering office.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Administering office. 196.4 Section 196.4... AFFAIRS/GRADUATE FOREIGN AFFAIRS FELLOWSHIP PROGRAM § 196.4 Administering office. The Department of State's Bureau of Human Resources, Office of Recruitment is responsible for administering the Thomas R...

  13. Enhancement of the acute phase response to lipopolysaccharide (LPS) challenge in steers supplemented with chromium

    Science.gov (United States)

    The study examined the effect of chromium supplementation on the response of steers to an LPS challenge. Twenty steers received a premix that added 0 (control) or 0.2 mg/kg of chromium (KemTRACE®brandChromiumProprionate 0.04%, Kemin Industries) to the total diet on a dry matter basis for 55 d. Steer...

  14. Glutamine and alanine-induced differential expression of intracellular IL-6, IL-8, and TNF-α in LPS-stimulated monocytes in human whole-blood.

    Science.gov (United States)

    Raspé, C; Czeslick, E; Weimann, A; Schinke, C; Leimert, A; Kellner, P; Simm, A; Bucher, M; Sablotzki, A

    2013-04-01

    To investigate the effects of the commonly-used immunomodulators l-glutamine, l-alanine, and the combination of both l-alanyl-l-glutamine (Dipeptamin(®)) on intracellular expression of IL-6, IL-8, and TNF-α during endotoxemia, lipopolysaccharide (LPS)-stimulated human monocytes in a whole blood system were investigated by flow cytometry. Whole blood of twenty-seven healthy volunteers was stimulated with LPS and incubated with three different amino acid solutions (1. l-glutamine, 2. l-alanine, 3. l-alanyl-l-glutamine, each concentration 2 mM, 5 mM, incubation time 3 h). CD14(+) monocytes were phenotyped in whole-blood and intracellular expression of cytokines was assessed by flow cytometry. Our investigations showed for the first time in whole blood probes, imitating best physiologically present cellular interactions, that l-glutamine caused a dose-independent inhibitory effect on IL-6 and TNF-α production in human monocytes stimulated with LPS. However, l-alanine had contrary effects on IL-6 expression, significantly upregulating expression of IL-6 in LPS-treated monocytes. The impact of l-alanine on the expression of TNF-α was comparable with glutamine. Neither amino acid was able to affect IL-8 production in LPS-stimulated monocytes. The combination of both did not influence significantly IL-6 and IL-8 expression in monocytes during endotoxemia, however strongly reduced TNF-α production. For the regulation of TNF-α, l-glutamine, l-alanine and the combination of both show a congruent and exponentiated downregulating effect during endotoxemia, for the modulation of IL-6, l-glutamine and l-alanine featured opposite regulation leading to a canceling impact of each other when recombining both amino acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages

    Directory of Open Access Journals (Sweden)

    Sung Bum Park

    2016-08-01

    Full Text Available 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 converts inactive cortisone to the active cortisol. 11β-HSD1 may be involved in the resolution of inflammation. In the present study, we investigate the anti-inflammatory effects of 2-(3-benzoyl-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344, a selective 11β-HSD1 inhibitor, in lipopolysaccharide (LPS-activated C57BL/6J mice and macrophages. LPS increased 11β-HSD1 activity and expression in macrophages, which was inhibited by KR-66344. In addition, KR-66344 increased survival rate in LPS treated C57BL/6J mice. HO-1 mRNA expression level was increased by KR-66344, and this effect was reversed by the HO competitive inhibitor, ZnPP, in macrophages. Moreover, ZnPP reversed the suppression of ROS formation and cell death induced by KR-66344. ZnPP also suppressed animal survival rate in LPS plus KR-66344 treated C57BL/6J mice. In the spleen of LPS-treated mice, KR-66344 prevented cell death via suppression of inflammation, followed by inhibition of ROS, iNOS and COX-2 expression. Furthermore, LPS increased NFκB-p65 and MAPK phosphorylation, and these effects were abolished by pretreatment with KR-66344. Taken together, KR-66344 protects against LPS-induced animal death and spleen injury by inhibition of inflammation via induction of HO-1 and inhibition of 11β-HSD1 activity. Thus, we concluded that the selective 11β-HSD1 inhibitor may provide a novel strategy in the prevention/treatment of inflammatory disorders in patients.

  16. Donating Peripheral Blood Stem Cells

    Science.gov (United States)

    ... Print this page My Cart Donating peripheral blood stem cells Peripheral blood stem cell (PBSC) donation is a nonsurgical procedure to collect ... Donating bone marrow Donor experiences videos Peripheral blood stem cell (PBSC) donation is one of two methods of ...

  17. Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia.

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Laketa, Danijela; Bjelobaba, Ivana; Milenkovic, Ivan; Pekovic, Sanja; Nedeljkovic, Nadezda; Lavrnja, Irena

    2015-01-01

    Microglial cells are resident immune cells of the central nervous system (CNS), recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine) derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS) and NO; cyclooxygenase-2 (COX-2), heat-shock protein 70 (Hsp70), tumor necrosis factor alpha α (TNF-α), interleukin-6 (IL-6), whereas it increased anti-inflammatory interleukin-10 (IL-10) production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus. Therefore, benfotiamine may

  18. Heath risk among pesticide sellers in Bamenda (Cameroon) and peripheral areas.

    Science.gov (United States)

    Sonchieu, Jean; Akono, Edouard Nantia; Ngwamitang, Cheche Tanwi; Ngassoum, Benoït Martin

    2018-04-01

    In Bamenda and peripheral zones, studies have been focused on the effects of pesticides on farmers (pesticide users) while nothing has been done to assess the exposure of sellers to pesticides. This study aimed at evaluating the exposure of pesticide sellers in the same area. Thirty-two questionnaires were administered to 32 pesticide sellers systematically selected, and chi-square was used for statistical analysis. From each shop, a respondent was chosen among the workers according to its daily time spent in the workplace. The results showed that there is similarity between sellers in Bamenda and peripheral area; one active ingredient (metalaxyl) and one formulation (beauchamp) sold are not registered; throat irritation, headaches, fatigue, skin irritation, eye irritation, and difficulty in breathing with more cases of nose irritation were symptoms observed; pesticides are stored either in the shops or in warehouses; safety measures generally applied are sitting outside the shop, taking medicated charcoal and the use of protective clothing; 56% have less than 5 years experience. Permanent pesticide sellers are then exposed to chronic intoxication in Bamenda and neighboring zones. Employers should make use of protective clothing in their shops when manipulating pesticides in the application of safety measures.

  19. The effect of in vivo exposure to zearalenone on cytokine secretion by Th1 and Th2 lymphocytes in porcine Peyer's patches after in vitro stimulation with LPS.

    Science.gov (United States)

    Obremski, K

    2014-01-01

    Most research studies investigating the estrogenic effects of zearalenone (ZEN) focus on the mycotoxin's effect on the reproductive system. Since estrogen receptors are present on various types of immunocompetent cells, ZEN can also modify diverse immune functions. This study analyzed immunocompetent cells isolated from Peyer's patches in the ileum of pigs administered ZEN in the estimated daily dose of 8 μg kg(-1) BW (equivalent of 100 μg kg(-1) feed per day(-1)). The objective of the study was to determine whether long-term exposure to low ZEN doses below the NOEL threshold leads to changes in the percentages of lymphocyte subpopulations and cytokine secretion by Th1 (IL-2, IFN-γ) and Th2 (IL-4 and IL-10) lymphocytes in Peyer's patches of the ileum after in vitro stimulation with lipopolysaccharides (LPS). Immunocompetent cells isolated from Payer's patches on experimental days 0, 14, 28 and 42 were cultured in vitro and stimulated with LPS. The presence of IL-2, IFN-γ, IL-4 and IL-10 in culture media was determined by the ELISA method. The results of the study indicate that ZEN inhibits IL-2 and IFN-γ secretion and stimulates IL-4 and IL-10 produc- tion by Th1 and Th2 lymphocytes by shifting the Th1/Th2 balance towards the humoral immune response. The above can promote allergic responses, as demonstrated by the increase in the size of B1 cell populations producing more autoantibodies. ZEN can also lower resistance to viruses and tumors by inhibiting the proliferation of NK cells and IFN-γ secretion.

  20. Electronic versus paper-pencil methods for assessing chemotherapy-induced peripheral neuropathy.

    Science.gov (United States)

    Knoerl, Robert; Gray, Evan; Stricker, Carrie; Mitchell, Sandra A; Kippe, Kelsey; Smith, Gloria; Dudley, William N; Lavoie Smith, Ellen M

    2017-11-01

    The aim of this study is to examine and compare with the validated, paper/pencil European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Chemotherapy-Induced Peripheral Neuropathy Scale (QLQ-CIPN20), the psychometric properties of three electronically administered patient reported outcome (PRO) measures of chemotherapy-induced peripheral neuropathy (CIPN): (1) the two neuropathy items from the National Cancer Institute's Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE), (2) the QLQ-CIPN20, and (3) the 0-10 Neuropathy Screening Question (NSQ). We employed a descriptive, cross-sectional design and recruited 25 women with breast cancer who were receiving neurotoxic chemotherapy at an academic hospital. Participants completed the paper/pencil QLQ-CIPN20 and electronic versions of the QLQ-CIPN20, PRO-CTCAE, and NSQ. Internal consistency reliability, intraclass correlation, and concurrent and discriminant validity analyses were conducted. The alpha coefficients for the electronic QLQ-CIPN20 sensory and motor subscales were 0.76 and 0.75. Comparison of the electronic and paper/pencil QLQ-CIPN20 subscales supported mode equivalence (intraclass correlation range >0.91). Participants who reported the presence of numbness/tingling via the single-item NSQ reported higher mean QLQ-CIPN20 sensory subscale scores (p neuropathy severity and interference items correlated well with the QLQ-CIPN20 electronic and paper/pencil sensory (r = 0.76; r = 0.70) and motor (r = 0.55; r = 0.62) subscales, and with the NSQ (r = 0.72; r = 0.44). These data support the validity of the electronically administered PRO-CTCAE neuropathy items, NSQ, and QLQ-CIPN20 for neuropathy screening in clinical practice. The electronic and paper/pencil versions of the QLQ-CIPN can be used interchangeably based on evidence of mode equivalence.

  1. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation--modulation of microRNA 126.

    Science.gov (United States)

    Ojwang, Leonnard O; Banerjee, Nivedita; Noratto, Giuliana D; Angel-Morales, Gabriela; Hachibamba, Twambo; Awika, Joseph M; Mertens-Talcott, Susanne U

    2015-01-01

    Cowpea (Vigna unguiculata) is a drought tolerant crop with several agronomic advantages over other legumes. This study evaluated varieties from four major cowpea phenotypes (black, red, light brown and white) containing different phenolic profiles for their anti-inflammatory property on non-malignant colonic myofibroblasts (CCD18Co) cells challenged with an endotoxin (lipopolysaccharide, LPS). Intracellular reactive oxygen species (ROS) assay on the LPS-stimulated cells revealed antioxidative potential of black and red cowpea varieties. Real-time qRT-PCR analysis in LPS-stimulated cells revealed down-regulation of proinflammatory cytokines (IL-8, TNF-α, VCAM-1), transcription factor NF-κB and modulation of microRNA-126 (specific post-transcriptional regulator of VCAM-1) by cowpea polyphenolics. The ability of cowpea polyphenols to modulate miR-126 signaling and its target gene VCAM-1 were studied in LPS-stimulated endothelial cells transfected with a specific inhibitor of miR-126, and treated with 10 mg GAE/L black cowpea extract where the extract in part reversed the effect of the miR-126 inhibitor. This suggests that cowpea may exert their anti-inflammatory activities at least in part through induction of miR-126 that then down-regulate VCAM-1 mRNA and protein expressions. Overall, Cowpea therefore is promising as an anti-inflammatory dietary component.

  2. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD: Detection of Lipopolysaccharide (LPS in AD Hippocampus

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    2017-07-01

    Full Text Available Although the potential contribution of the human gastrointestinal (GI tract microbiome to human health, aging, and disease is becoming increasingly acknowledged, the molecular mechanics and signaling pathways of just how this is accomplished is not well-understood. Major bacterial species of the GI tract, such as the abundant Gram-negative bacilli Bacteroides fragilis (B. fragilis and Escherichia coli (E. coli, secrete a remarkably complex array of pro-inflammatory neurotoxins which, when released from the confines of the healthy GI tract, are pathogenic and highly detrimental to the homeostatic function of neurons in the central nervous system (CNS. For the first time here we report the presence of bacterial lipopolysaccharide (LPS in brain lysates from the hippocampus and superior temporal lobe neocortex of Alzheimer's disease (AD brains. Mean LPS levels varied from two-fold increases in the neocortex to three-fold increases in the hippocampus, AD over age-matched controls, however some samples from advanced AD hippocampal cases exhibited up to a 26-fold increase in LPS over age-matched controls. This “Perspectives” paper will further highlight some very recent research on GI tract microbiome signaling to the human CNS, and will update current findings that implicate GI tract microbiome-derived LPS as an important internal contributor to inflammatory degeneration in the CNS.

  3. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice.

    Science.gov (United States)

    Otsuka, Tsuyoshi; Kawai, Misato; Togo, Yuki; Goda, Ryosei; Kawase, Takahiro; Matsuo, Haruka; Iwamoto, Ayaka; Nagasawa, Mao; Furuse, Mitsuhiro; Yasuo, Shinobu

    2014-02-01

    Seasonal affective disorder (SAD) is characterized by depression during specific seasons, generally winter. The pathophysiological mechanisms underlying SAD remain elusive due to a limited number of animal models with high availability and validity. Here we show that laboratory C57BL/6J mice display photoperiodic changes in depression-like behavior and brain serotonin content. C57BL/6J mice maintained under short-day conditions, as compared to those under long-day conditions, demonstrated prolonged immobility times in the forced swimming test with lower brain levels of serotonin and its precursor l-tryptophan. Furthermore, photoperiod altered multiple parameters reflective of peripheral metabolism, including the ratio of plasma l-tryptophan to the sum of other large neutral amino acids that compete for transport across the blood-brain barrier, responses of circulating glucose and insulin to glucose load, sucrose intake under restricted feeding condition, and sensitivity of the brain serotonergic system to peripherally administered glucose. These data suggest that the mechanisms underlying SAD involve the brain-peripheral tissue network, and C57BL/6J mice can serve as a powerful tool for investigating the link between seasons and mood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Inhibition of LPS binding to MD-2 co-receptor for suppressing TLR4-mediated expression of inflammatory cytokine by 1-dehydro-10-gingerdione from dietary ginger

    International Nuclear Information System (INIS)

    Park, Sun Hong; Kyeong, Min Sik; Hwang, Yuri; Ryu, Shi Yong; Han, Sang-Bae; Kim, Youngsoo

    2012-01-01

    Highlights: ► 1-Dehydro-10-gingerdione (1D10G) from ginger inhibits LPS binding to MD-2. ► 1D10G suppresses MyD88- or TRIF-dependent signaling in LPS-activated macrophages. ► 1D10G down-regulates the expression of NF-κB-, AP1- or IRF3-target genes. ► MD-2 is a molecular target in the anti-inflammatory action of 1D10G. -- Abstract: Myeloid differentiation protein 2 (MD-2) is a co-receptor of toll-like receptor 4 (TLR4) for innate immunity. Here, we delineated a new mechanism of 1-dehydro-10-gingerdione (1D10G), one of pungent isolates from ginger (Zingiber officinale), in the suppression of lipopolysaccharide (LPS)-induced gene expression of inflammatory cytokines. 1D10G inhibited LPS binding to MD-2 with higher affinity than gingerol and shogaol from dietary ginger. Moreover, 1D10G down-regulated TLR4-mediated expression of nuclear factor-κB (NF-κB) or activating protein 1 (AP1)-target genes such as tumor necrosis factor α (TNF-α) and interleukin-1β, as well as those of interferon (IFN) regulatory factor 3 (IRF3)-target IFN-β gene and IFN-γ inducible protein 10 (IP-10) in LPS-activated macrophages. Taken together, MD-2 is a molecular target in the anti-inflammatory action of 1D10G.

  5. Inhibition of LPS binding to MD-2 co-receptor for suppressing TLR4-mediated expression of inflammatory cytokine by 1-dehydro-10-gingerdione from dietary ginger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hong; Kyeong, Min Sik; Hwang, Yuri [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Ryu, Shi Yong [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of); Han, Sang-Bae [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youngsoo, E-mail: youngsoo@chungbuk.ac.kr [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer 1-Dehydro-10-gingerdione (1D10G) from ginger inhibits LPS binding to MD-2. Black-Right-Pointing-Pointer 1D10G suppresses MyD88- or TRIF-dependent signaling in LPS-activated macrophages. Black-Right-Pointing-Pointer 1D10G down-regulates the expression of NF-{kappa}B-, AP1- or IRF3-target genes. Black-Right-Pointing-Pointer MD-2 is a molecular target in the anti-inflammatory action of 1D10G. -- Abstract: Myeloid differentiation protein 2 (MD-2) is a co-receptor of toll-like receptor 4 (TLR4) for innate immunity. Here, we delineated a new mechanism of 1-dehydro-10-gingerdione (1D10G), one of pungent isolates from ginger (Zingiber officinale), in the suppression of lipopolysaccharide (LPS)-induced gene expression of inflammatory cytokines. 1D10G inhibited LPS binding to MD-2 with higher affinity than gingerol and shogaol from dietary ginger. Moreover, 1D10G down-regulated TLR4-mediated expression of nuclear factor-{kappa}B (NF-{kappa}B) or activating protein 1 (AP1)-target genes such as tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-1{beta}, as well as those of interferon (IFN) regulatory factor 3 (IRF3)-target IFN-{beta} gene and IFN-{gamma} inducible protein 10 (IP-10) in LPS-activated macrophages. Taken together, MD-2 is a molecular target in the anti-inflammatory action of 1D10G.

  6. The influence of age and repeated LPS administration on body temperature and the relation with interleukin-6 and IgM antibodies in broiler chickens

    OpenAIRE

    De Boever , Sandra; Beyaert , Rudi; Vandemaele , Fréderic; Baert , Kris; Duchateau , Luc; Goddeeris , Bruno; De Backer , Patrick; Croubels , Siska

    2008-01-01

    Abstract Our objective was to create a standardized and reproducible inflammation model in chickens in order to study the pharmacodynamics of several anti-pyretic and anti-inflammatory drugs. We studied the influence of age and repeated lipopolysaccharide (LPS) administration on body temperature and the correlation of this with concentrations of interleukin 6 (IL-6) and IgM antibodies against LPS in plasma of chickens. Three and five week old broilers were injected intravenously...

  7. Peripheral Nerve Blocks for the Treatment of Headache in Older Adults: A Retrospective Study.

    Science.gov (United States)

    Hascalovici, Jacob R; Robbins, Matthew S

    2017-01-01

    The objective of this study is to provide demographical and clinical descriptions of patients age 65 years old and older who were treated with peripheral nerve blocks (PNBs) at our institution and evaluate the safety and efficacy of this treatment. Headache disorders are common, disabling chronic neurological diseases that often persist with advancing age. Geriatric headache management poses unique therapeutic challenges because of considerations of comorbidity, drug interactions, and adverse effects. Peripheral nerve blocks are commonly used for acute and short-term prophylactic treatment for headache disorders and may be a safer alternative to standard pharmacotherapy in this demographic. We performed a single center, retrospective chart review of patients at least 65 years of age who received peripheral nerve blocks for headache management over a 6 year period. Sixty-four patients were mostly female (78%) with an average age of 71 years (range 65-94). Representative headache diagnoses were chronic migraine 50%, episodic migraine 12.5%, trigeminal autonomic cephalalgia 9.4%, and occipital neuralgia 7.8%. Average number of headache days/month was 23. Common comorbidities were hypertension 48%, hyperlipidemia 42%, arthritis 27%, depression 47%, and anxiety 33%. Eighty-nine percent were prescribed at least 1 medication fulfilling the Beers criteria. The average number of peripheral nerve blocks per patient was 4. Peripheral nerve blocks were felt to be effective in 73% for all headaches, 81% for chronic migraine, 75% for episodic migraine, 67% for chronic tension type headache, 67% for new daily persistent headache, and 60% for occipital neuralgia. There were no adverse events related to PNBs reported. PNBs might be a safe and effective alternative headache management strategy for older adults. Medical and psychiatric comorbidities, medication overuse, and Beers list medication rates were extraordinarily high, giving credence to the use of peripherally administered

  8. The Safety of EXPAREL ® (Bupivacaine Liposome Injectable Suspension Administered by Peripheral Nerve Block in Rabbits and Dogs

    Directory of Open Access Journals (Sweden)

    Brigitte M. Richard

    2012-01-01

    Full Text Available A sustained-release DepoFoam injection formulation of bupivacaine (EXPAREL, 15 mg/mL is currently being investigated for postsurgical analgesia via peripheral nerve block (PNB. Single-dose toxicology studies of EXPAREL (9, 18, and 30 mg/kg, bupivacaine solution (Bsol, 9 mg/kg, and saline injected around the brachial plexus nerve bundle were performed in rabbits and dogs. The endpoints included clinical pathology, pharmacokinetics, and histopathology evaluation on Day 3 and Day 15 (2/sex/group/period. EXPAREL resulted in a nearly 4-fold lower Cmax versus Bsol at the same dose. EXPAREL was well tolerated at doses up to 30 mg/kg. The only EXPAREL-related effect seen was minimal to mild granulomatous inflammation of adipose tissue around nerve roots (8 of 24 rabbits and 7 of 24 dogs in the brachial plexus sites. The results indicate that EXPAREL was well tolerated in these models and did not produce nerve damage after PNB in rabbits and dogs.

  9. Tumors of peripheral nerves

    International Nuclear Information System (INIS)

    Ho, Michael; Lutz, Amelie M.

    2017-01-01

    Differentiation between malignant and benign tumors of peripheral nerves in the early stages is challenging; however, due to the unfavorable prognosis of malignant tumors early identification is required. To show the possibilities for detection, differential diagnosis and clinical management of peripheral nerve tumors by imaging appearance in magnetic resonance (MR) neurography. Review of current literature available in PubMed and MEDLINE, supplemented by the authors' own observations in clinical practice. Although not pathognomonic, several imaging features have been reported for a differentiation between distinct peripheral nerve tumors. The use of MR neurography enables detection and initial differential diagnosis in tumors of peripheral nerves. Furthermore, it plays an important role in clinical follow-up, targeted biopsy and surgical planning. (orig.) [de

  10. Genome-wide association study of genetic variants in LPS-stimulated IL-6, IL-8, IL-10, IL-1ra and TNF-α cytokine response in a Danish Cohort

    DEFF Research Database (Denmark)

    Larsen, Margit Hørup; Albrechtsen, Anders; Thørner, Lise Wegner

    2013-01-01

    Cytokine response plays a vital role in various human lipopolysaccharide (LPS) infectious and inflammatory diseases. This study aimed to find genetic variants that might affect the levels of LPS-induced interleukin (IL)-6, IL-8, IL-10, IL-1ra and tumor necrosis factor (TNF)-α cytokine production....

  11. Peripheral dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Sushant S Kamat

    2013-01-01

    Full Text Available Dentinogenic ghost cell tumors (DGCT are uncommon lesions mainly with rare peripheral types. This report presents a case of peripheral DGCT on the left side of the mandibular alveolar ridge of a heavy smoker, a 68-year-old man, with main presenting feature as a mild pain. Submandibular lymphadenopathy and radiological "saucerization" were evident. Differential diagnosis included fibroma, neurofibroma, peripheral ameloblastoma, peripheral odontogenic fibroma, and peripheral giant cell granuloma. Histologically, ameloblastoma-like epithelial elements were seen in association with grouped ghost cells. Proliferating polyhedral cells and stellate reticulum-like cells with various densities were spread over a wide range of the field. The lesion was curetted and after 2 years of follow up, it did not recur.

  12. Immunomodulatory Effect of Flavonoids of Blueberry (Vaccinium corymbosum L.) Leaves via the NF-κB Signal Pathway in LPS-Stimulated RAW 264.7 Cells.

    Science.gov (United States)

    Shi, Dazhi; Xu, Mengyi; Ren, Mengyue; Pan, Enshan; Luo, Chaohua; Zhang, Wei; Tang, Qingfa

    2017-01-01

    This study aimed to explore the immunoregulatory effect of flavonoids of blueberry ( Vaccinium corymbosum L.) leaves (FBL). The flavonoids of blueberry leaves were prepared with 70% ethanol and were identified by ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-Tof-MS). The immunoregulatory effect and possible regulatory mechanisms of FBL were investigated in lipopolysaccharide- (LPS-) induced RAW 264.7 cells. According to the results of UPLC/Q-Tof-MS, nine flavonoids of blueberry leaves were identified. FBL showed a significant reduction in the production of TNF- α in LPS-stimulated RAW 264.7 cells. FBL significantly decreased the expression of NF- κ B p65 and P-NF- κ B p65 in LPS-induced RAW 264.7 cells in a dose-dependent manner. Our study showed the immunoregulatory effect of FBL through the suppression of TNF- α via the NF- κ B signal pathway.

  13. Early-life inflammation with LPS delays fear extinction in adult rodents.

    Science.gov (United States)

    Doenni, V M; Song, C M; Hill, M N; Pittman, Q J

    2017-07-01

    A large body of evidence has been brought forward connecting developmental immune activation to abnormal fear and anxiety levels. Anxiety disorders have extremely high lifetime prevalence, yet susceptibility factors that contribute to their emergence are poorly understood. In this research we investigated whether an inflammatory insult early in life can alter the response to fear conditioning in adulthood. Fear learning and extinction are important and adaptive behaviors, mediated largely by the amygdala and its interconnectivity with cortico-limbic circuits. Male and female rat pups were given LPS (100μg/kg i.p.) or saline at postnatal day 14; LPS activated cFos expression in the central amygdala 2.5h after exposure, but not the basal or lateral nuclei. When tested in adulthood, acquisition of an auditory cued or contextual learned fear memory was largely unaffected as was the extinction of fear to a conditioned context. However, we detected a deficit in auditory fear extinction in male and female rats that experienced early-life inflammation, such that there is a significant delay in fear extinction processes resulting in more sustained fear behaviors in response to a conditioned cue. This response was specific to extinction training and did not persist into extinction recall. The effect could not be explained by differences in pain threshold (unaltered) or in baseline anxiety, which was elevated in adolescent females only and unaltered in adolescent males and adult males and females. This research provides further evidence for the involvement of the immune system during development in the shaping of fear and anxiety related behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Beauty and cuteness in peripheral vision

    Science.gov (United States)

    Kuraguchi, Kana; Ashida, Hiroshi

    2015-01-01

    Guo et al. (2011) showed that attractiveness was detectable in peripheral vision. Since there are different types of attractiveness (Rhodes, 2006), we investigated how beauty and cuteness are detected in peripheral vision with a brief presentation. Participants (n = 45) observed two Japanese female faces for 100 ms, then were asked to respond which face was more beautiful (or cuter). The results indicated that both beauty and cuteness were detectable in peripheral vision, but not in the same manner. Discrimination rates for judging beauty were invariant in peripheral and central vision, while discrimination rates for judging cuteness declined in peripheral vision as compared with central vision. This was not explained by lower resolution in peripheral vision. In addition, for male participants, it was more difficult to judge cuteness than beauty in peripheral vision, thus suggesting that gender differences can have a certain effect when judging cuteness. Therefore, central vision might be suitable for judging cuteness while judging beauty might not be affected by either central or peripheral vision. This might be related with the functional difference between beauty and cuteness. PMID:25999883

  15. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    Science.gov (United States)

    Moustafa, Dina A; Scarff, Jennifer M; Garcia, Preston P; Cassidy, Sara K B; DiGiandomenico, Antonio; Waag, David M; Inzana, Thomas J; Goldberg, Joanna B

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  16. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  17. A novel liposome-based nanocarrier loaded with an LPS-dsRNA cocktail for fish innate immune system stimulation.

    Directory of Open Access Journals (Sweden)

    Angels Ruyra

    Full Text Available Development of novel systems of vaccine delivery is a growing demand of the aquaculture industry. Nano- and micro- encapsulation systems are promising tools to achieve efficient vaccines against orphan vaccine fish diseases. In this context, the use of liposomal based-nanocarriers has been poorly explored in fish; although liposomal nanocarriers have successfully been used in other species. Here, we report a new ∼125 nm-in-diameter unilamellar liposome-encapsulated immunostimulant cocktail containing crude lipopolysaccharide (LPS from E. coli and polyinosinic:polycytidylic acid [poly (I:C], a synthetic analog of dsRNA virus, aiming to be used as a non-specific vaccine nanocarrier in different fish species. This liposomal carrier showed high encapsulation efficiencies and low toxicity not only in vitro using three different cellular models but also in vivo using zebrafish embryos and larvae. We showed that such liposomal LPS-dsRNA cocktail is able to enter into contact with zebrafish hepatocytes (ZFL cell line and trout macrophage plasma membranes, being preferentially internalized through caveolae-dependent endocytosis, although clathrin-mediated endocytosis in ZFL cells and macropinocytocis in macrophages also contribute to liposome uptake. Importantly, we also demonstrated that this liposomal LPS-dsRNA cocktail elicits a specific pro-inflammatory and anti-viral response in both zebrafish hepatocytes and trout macrophages. The design of a unique delivery system with the ability to stimulate two potent innate immunity pathways virtually present in all fish species represents a completely new approach in fish health.

  18. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    Science.gov (United States)

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.

  19. Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw.

    Science.gov (United States)

    Medeiros, R; Passos, G F; Vitor, C E; Koepp, J; Mazzuco, T L; Pianowski, L F; Campos, M M; Calixto, J B

    2007-07-01

    alpha-Humulene and trans-caryophyllene are sesquiterpene compounds identified in the essential oil of Cordia verbenacea which display topical and systemic anti-inflammatory effects in different experimental models. However, the molecular mechanisms through which they exert their anti-inflammatory activity still remain unclear. Here, we evaluate the effects of alpha-humulene and trans-caryophyllene on the acute inflammatory responses elicited by LPS. The biological activities of alpha-humulene and trans-caryophyllene were investigated in a model of acute inflammation in rat paw, induced by LPS and characterized by paw oedema, neutrophil recruitment, cytokine production, activation of MAP kinases and NF-kappaB and up-regulated expression of kinin B(1) receptors. Treatment with either alpha-humulene or trans-caryophyllene effectively reduced neutrophil migration and activation of NF-kappaB induced by LPS in the rat paw. However, only alpha-humulene significantly reduced the increase in TNF-alpha and IL-1beta levels, paw oedema and the up-regulation of B(1) receptors following treatment with LPS. Both compounds failed to interfere with the activation of the MAP kinases, ERK, p38 and JNK. Both alpha-humulene and trans-caryophyllene inhibit the LPS-induced NF-kappaB activation and neutrophil migration, although only alpha-humulene had the ability to prevent the production of pro-inflammatory cytokines TNF-alpha and IL-1beta and the in vivo up-regulation of kinin B(1) receptors. These data provide additional molecular and functional insights into the beneficial effects of the sesquiterpenes alpha-humulene and trans-caryophyllene isolated from the essential oil of Cordia verbenacea as agents for the management of inflammatory diseases.

  20. Dynamic movement of cytochrome c from mitochondria into cytosol and peripheral circulation in massive hepatic cell injury.

    Science.gov (United States)

    Kobayashi, Yoshinori; Mori, Masaaki; Naruto, Takuya; Kobayashi, Naoki; Sugai, Toshiyuki; Imagawa, Tomoyuki; Yokota, Shumpei

    2004-12-01

    In the process of apoptosis, it is known that the transition of cytochrome c from mitochondria into the cytosol occurs, and tumor necrosis factor (TNF)-alpha is one of the molecules responsible for this event. But in the state of hypercytokine induced by D-galactosamine (D-GaIN)/Lipopolysaccharide (LPS), the localization of cytochrome c is little known. Rats were administrated with D-GaIN(700 mg/kg)/LPS(200 microg/kg). Blood and tissue samples were collected and examined for levels of pro-inflammatory cytokines, the apoptosis of liver cells, and the localization of cytochrome c. Before administration of D-GaIN/LPS, cytochrome c was definitely localized in the mitochondria. At 2 h after simultaneous administration of D-GaIN/LPS, cytochrome c had accumulated in the cytosol following abrupt increases of plasma TNF-alpha. Massive cell destruction due to apoptosis proved by Terminal deoxynucleo-tidyl transferase-mediated dUTP nick end labeling staining was observed in liver tissue 4 h later and markedly increased levels of cytochrome c were detected in the plasma 12 h after D-GaIN/LPS administration. Liver injury induced by simultaneous administration of D-GaIN/LPS was closely associated with the production of TNF-alpha, and also with the dynamic movement of cytochrome c from the mitochondria into the cytosol, and then into the systemic circulation. The detection of plasma cytochrome c levels may be a useful clinical tool for the detection of apoptosis in vivo.

  1. A comparative study of peripheral to central circulation delivery times between intraosseous and intravenous injection using a radionuclide technique in normovolemic and hypovolemic canines

    International Nuclear Information System (INIS)

    Cameron, J.L.; Fontanarosa, P.B.; Passalaqua, A.M.

    1989-01-01

    Intraosseous infusion is considered a useful technique for administration of medications and fluids in emergency situations when peripheral intravascular access is unobtainable. This study examined the effectiveness of intraosseous infusion for delivery of substances to the central circulation. Central deliveries of a radionuclide tracer administered by the intraosseous and intravenous routes were evaluated during normovolemic and hypovolemic states. Intraosseous infusion achieved peripheral to central circulation transit times comparable to those achieved by the intravenous route. Analysis of variance revealed no statistically significant differences between the peripheral to central delivery times comparing intraosseous and intravenous administration. The results demonstrate that intraosseous infusion is a rapid and effective method of delivery to the central circulation and is an alternative method for intravascular access. This study also suggests that a radionuclide tracer is useful for the evaluation of transit times following intraosseous injection

  2. Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli.

    Science.gov (United States)

    Walderdorff, Louise; Laval-Gilly, Philippe; Bonnefoy, Antoine; Falla-Angel, Jaïro

    2018-05-16

    Insect hemocytes play an important role in insects' defense against environmental stressors as they are entirely dependent on their innate immune system for pathogen defense. In recent years a dramatic decline of pollinators has been reported in many countries. The drivers of this declines appear to be associated with pathogen infections like viruses, bacteria or fungi in combination with pesticide exposure. The aim of this study was thus to investigate the impact of imidacloprid, a neonicotinoid insecticide, on the cellular immune response of two pollinators (Apis mellifera and Bombus terrestris) during simultaneous immune activation with LPS (lipopolysaccharide) of Escherichia coli. For this purpose the phagocytosis capacity as well as the production of H 2 O 2 and NO of larval hemocytes, exposed to five different imidacloprid concentrations in vitro, was measured. All used pesticide concentrations showed a weakening effect on phagocytosis with but also without LPS activation. Imidacloprid decreased H 2 O 2 and increased NO production in honeybees. Immune activation by LPS clearly reinforced the effect of imidacloprid on the immune response of hemocytes in all three immune parameters tested. Bumblebee hemocytes appeared more sensitive to imidacloprid during phagocytosis assays while imidacloprid showed a greater impact on honeybee hemocytes during H 2 O 2 and NO production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Emu Oil Reduces LPS-Induced Production of Nitric Oxide and TNF-α but not Phagocytosis in RAW 264 Macrophages.

    Science.gov (United States)

    Miyashita, Tadayoshi; Minami, Kazuhiro; Ito, Minoru; Koizumi, Ryosuke; Sagane, Yoshimasa; Watanabe, Toshihiro; Niwa, Koichi

    2018-04-01

    Emu is the second-largest extant bird native to Australia. Emu oil, obtained from the emu's fat deposits, is used as an ingredient in cosmetic skincare products. Emu oil has been reported to improve several inflammatory symptoms; however, the mechanisms of these anti-inflammatory effects are largely unknown. This study investigated the effects of emu oil on the inflammatory macrophage response in vitro. A murine macrophage cell line, RAW 264, was incubated in culture media supplemented with or without emu oil and stimulated with lipopolysaccharide (LPS). We determined phagocytic activity by measuring the number of fluorescent microspheres taken up by the cells. The phagocytic activity of RAW 264 cells in the presence of LPS was unaffected by emu oil. We also determined production of nitric oxide (NO) and tumor necrosis factor (TNF)-α in the culture medium using the Griess reaction and an enzyme-linked immunosorbent assay, respectively, and the protein expression of inducible NO synthase (iNOS) using western blotting. The results indicated that emu oil reduced the LPS-induced production of NO, TNF-α, and iNOS expression in a dose-dependent manner. The results suggested that emu oil does not reduce the phagocytic clearance rate of inflammatory matter; however, it does reduce the production of NO and TNF-α in macrophages. These latter products enhance the inflammatory response and emu oil thereby demonstrated anti-inflammatory properties.

  4. The ability of lipopolysaccharide (LPS) of Pasteurella multocida B:2 to induce clinical and pathological lesions in the nervous system of buffalo calves following experimental inoculation.

    Science.gov (United States)

    Marza, Ali Dhiaa; Jesse Abdullah, Faez Firdaus; Ahmed, Ihsan Muneer; Teik Chung, Eric Lim; Ibrahim, Hayder Hamzah; Zamri-Saad, Mohd; Omar, Abdul Rahman; Abu Bakar, Md Zuki; Saharee, Abdul Aziz; Haron, Abdul Wahid; Alwan, Mohammed Jwaid; Mohd Lila, Mohd Azmi

    2017-03-01

    Lipopolysaccharide (LPS) of P. multocida B:2, a causative agent of haemorrhagic septicaemia (HS) in cattle and buffaloes, is considered as the main virulence factor and contribute in the pathogenesis of the disease. Recent studies provided evidences about the involvement of the nervous system in pathogenesis of HS. However, the role of P. multocida B:2 immunogens, especially the LPS is still uncovered. Therefore, this study was designed to investigate the role of P. multocida B:2 LPS to induce pathological changes in the nervous system. Nine eight-month-old, clinically healthy buffalo calves were used and distributed into three groups. Calves of Group 1 and 2 were inoculated orally and intravenously with 10 ml of LPS broth extract represent 1 × 10 12  cfu/ml of P. multocida B:2, respectively, while calves of Group 3 were inoculated orally with 10 ml of phosphate buffer saline as a control. Significant differences were found in the mean scores for clinical signs, post mortem and histopathological changes especially in Group 2, which mainly affect different anatomic regions of the nervous system, mainly the brain. On the other hand, lower scores have been recorded for clinical signs, gross and histopathological changes in Group 1. These results provide for the first time strong evidence about the ability of P. multocida B:2 LPS to cross the blood brain barrier and induce pathological changes in the nervous system of the affected buffalo calves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Protective effects of total alkaloids from Dendrobium crepidatum against LPS-induced acute lung injury in mice and its chemical components.

    Science.gov (United States)

    Hu, Yang; Ren, Jie; Wang, Lei; Zhao, Xin; Zhang, Mian; Shimizu, Kuniyoshi; Zhang, Chaofeng

    2018-05-01

    Dendrobium crepidatum was one of the sources of Herba Dendrobii, a famous and precious traditional Chinese medicine. Indolizine-type alkaloids are the main characteristic ingredients of D. crepidatum, which possesses a variety of changeable skeletons. In the present study, we found that the total alkaloids of D. crepidatum (TAD) can inhibit the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated macrophages and showed protective effects against LPS-induced acute lung injury (ALI) in mice through downregulating the TLR4-mediated MyD88/MAPK signaling pathway. Further phytochemical study showed that six previously undescribed indolizine-type compounds, including a racemic mixture (dendrocrepidine A-E) were isolated from TAD. Meanwhile, dendrocrepidine F was separated into a pair of enantiomers by a chiral chromatography, and their absolute configurations were assigned by single-crystal X-ray diffraction analysis. The isomer (-)-dendrocrepidine F showed higher anti-inflammatory effects by inhibiting NO production in LPS-treated macrophages with an IC 50 value of 13.3 μM. Taken together, indolizine-type alkaloids are the active components of D. crepidatum through downregulating the TLR4-mediated pathway, indicating some kind of therapy of TAD for ALI treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Evidence for CB2 receptor involvement in LPS-induced reduction of cAMP intracellular levels in uterine explants from pregnant mice: pathophysiological implications.

    Science.gov (United States)

    Salazar, Ana Inés; Carozzo, Alejandro; Correa, Fernando; Davio, Carlos; Franchi, Ana María

    2017-07-01

    What is the role of the endocannabinoid system (eCS) on the lipopolysaccharide (LPS) effects on uterine explants from 7-day pregnant mice in a murine model of endotoxin-induced miscarriage? We found evidence for cannabinoid receptor type2 (CB2) involvement in LPS-induced increased prostaglandin-F2α (PGF2α) synthesis and diminished cyclic adenosine monophosphate (cAMP) intracellular content in uterine explants from early pregnant mice. Genital tract infections by Gram-negative bacteria are a common complication of human pregnancy that results in an increased risk of pregnancy loss. LPS, the main component of the Gram-negative bacterial wall, elicits a strong maternal inflammatory response that results in embryotoxicity and embryo resorption in a murine model endotoxin-induced early pregnancy loss. We have previously shown that the eCS mediates the embryotoxic effects of LPS, mainly via CB1 receptor activation. An in vitro study of mice uterine explants was performed to investigate the eCS in mediating the effects of LPS on PGF2α production and cAMP intracellular content. Eight to 12-week-old virgin female BALB/c or CD1 (wild-type [WT] or CB1-knockout [CB1-KO]) mice were paired with 8- to 12-week-old BALB/c or CD1 (WT or CB1-KO) males, respectively. On day 7 of pregnancy, BALB/c, CD1 WT or CD1 CB1-KO mice were euthanized, the uteri were excised, implantation sites were removed and the uterine tissues were separated from decidual and embryo tissues. Uterine explants were cultured and exposed for an appropriate amount of time to different pharmacological treatments. The tissues were then collected for cAMP assay and PGF2α content determination by radioimmunoassay. In vitro treatment of uteri explants from 7-day pregnant BALB/c or CD1 (WT or CB1-KO) mice with LPS induced an increased production of PGF2α (P Investigaciones Científicas y Técnicas (PIP 2012/0061). Dr Carlos Davio was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2013

  7. Lipopolysaccharide contamination in intradermal DNA vaccination : toxic impurity or adjuvant?

    NARCIS (Netherlands)

    Berg, J.H. van den; Quaak, S.G.L.; Beijnen, J.H.; Hennink, W.E.; Storm, G.; Schumacher, T.N.; Haanen, J.B.A.G.; Nuijen, B.

    Purpose: Lipopolysaccharides (LPS) are known both as potential adjuvants for vaccines and as toxic impurity in pharmaceutical preparations. The aim of this study was to assess the role of LPS in intradermal DNA vaccination administered by DNA tattooing. Method: Micewere vaccinated with a model DNA

  8. Mesenchymal Stem Cells Alleviate LPS-Induced Acute Lung Injury in Mice by MiR-142a-5p-Controlled Pulmonary Endothelial Cell Autophagy

    Directory of Open Access Journals (Sweden)

    Zichao Zhou

    2016-01-01

    Full Text Available Background/Aims: Damages of pulmonary endothelial cells (PECs represent a critical pathological process during acute lung injury (ALI, and precede pulmonary epithelial cell injury, and long-term lung dysfunction. Transplantation of mesenchymal stem cells (MSCs has proven therapeutic effects on ALI, whereas the underlying mechanisms remain ill-defined. Method: We transplanted MSCs in mice and then induced ALI using Lipopolysaccharides (LPS. We analyzed the changes in permeability index and lung histology. Mouse PECs were isolated by flow cytometry based on CD31 expression and then analyzed for autophagy-associated factors LC3 and Beclin-1 by Western blot. Beclin-1 mRNA was determined by RT-qPCR. In vitro, we performed bioinformatics analyses to identify the MSCs-regulated miRNAs that target Beclin-1, and confirmed that the binding was functional by 3'-UTR luciferase reporter assay. Results: We found that MSCs transplantation significantly reduced the severity of LPS-induced ALI in mice. MSCs increased autophagy of PECs to promote PEC survival. MSCs increased Beclin-1 protein but not mRNA. MiR-142a-5p was found to target the 3'-UTR of Beclin-1 mRNA to inhibit its protein translation in PECs. MSCs reduced the levels of miR-142a-5p in PECs from LPS-treated mice. Conclusion: MSCs may alleviate LPS-ALI through downregulation of miR-142a-5p, which allows PECs to increase Beclin-1-mediated cell autophagy.

  9. Metabolically induced liver inflammation leads to NASH and differs from LPS-or IL-1β-induced chronic inflammation

    NARCIS (Netherlands)

    Liang, W.; Lindeman, J.H.; Menke, A.L.; Koonen, D.P.; Morrison, M.; Havekes, L.M.; Hoek, A.M. van den; Kleemann, R.

    2014-01-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β

  10. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1 beta-induced chronic inflammation

    NARCIS (Netherlands)

    Liang, Wen; Lindeman, Jan H.; Menke, Aswin L.; Koonen, Debby P.; Morrison, Martine; Havekes, Louis M.; van den Hoek, Anita M.; Kleemann, Robert

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1 beta

  11. GATA-3 EXPRESSION IN PERIPHERAL BLOOD LYMPHOCYTES OF PATIENTS WITH BRONCHIAL ASTHMA

    Directory of Open Access Journals (Sweden)

    V. N. Mineev

    2010-01-01

    Full Text Available The aim of the study is to establish the features of expression of GATA-3 in peripheral lymphocytes from bronchial asthma patients (BA. Material and methods. 10 healthy controls, 15 patients with allergic (atopic and 15 persons with non-allergic BA were examined. A transcription factor GATA-3 expressed in peripheral lymphocytes was analyzed by Western blot after the lymphocytes were lysed. Preparation of cell lysates, and Western blotting were performed by means of a standard procedure (Amersham. An antibody against GATA-3 (Abcam, UK was used. Levels of the protein were analyzed versus β-actin levels using anti-actin antibody (Sigma Aldrich, USA. Results. Expression of GATA-3 was significantly increased in lymphocytes of patients with allergic BA as compared to healthy persons and non-allergic BA patients. The level of GATA-3 negatively correlated with the degree of airflow obstruction and positively correlated with dosage of parenteral steroids administered. Conclusion. GATA-3 may play a key role in the pathophysiology of BA. One may suggest that increased expression of GATA-3 transcription factor in atopic BA underlie high levels of Th2-cytokines production in allergic disease

  12. Hepatic abscess versus peripheral cholangiocarcinoma: Sonographic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Chung, Kyoo Byung; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of); Lee, Chang Hee [Kunkuk University College of Medicine, Chung-Ju Hospital, Chung-Ju (Korea, Republic of)

    2000-12-15

    To find out the sonographic findings that are useful to differentiate hepatic abscess from peripheral cholangiocarcinoma. Twenty-two hepatic abscesses and 22 peripheral cholangiocarcinomas which had been confirmed histologically were included in this study. Objective points were echo characteristics of the lesion, internal septation, presence of peripheral low echoic rim, demarcation from normal liver(well or poorly defined), posterior enhancement, multiplicity, dilatation of bile duct(obstructive or non-obstructive), intrahepatic duct stone, pleural effusion, and intra-abdominal fluid collection. Echo characteristics of the lesion were classified in-to four types. Type I; Predominantly echogenic with hypoechoic portion, type II; Echogenic without hypoechoic portion, type III; Predominantly hypoechoic with echogenic portion, type IV; Hypoechoic without echogenic portion. 1)Nine abscesses and 2 peripheral cholangiocarcinomas were type I(p=0.037), 2)One abscess and 18 peripheral cholangiocarcinomas were type II(p=0.001), 3)Seven abscesses and none of peripheral cholangiocarcinomas were type III(p=0.001), 4)Five abscesses and 2 peripheral cholangiocarcinomas were type IV(p=0.410). Only 7 abscesses showed internal septations(p=0.013). One abscess and 9 peripheral cholangiocarcinomas showed peripheral hypoechoic halos(p=0.012). Only 9 peripheral cholangiocarcinomas showed obstructive bile duct dilatation (p=0.001). There were no statistically significant differences between abscess and peripheral cholangiocarcinoma on other objective points. Predominantly echogenic with hypoechoic portion, predominantly hypoechoic with echogenic portion, and internal septation are the features suggestive of hepatic abscess, and echogenic without hypoechoic portion, peripheral hypoechoic halo, obstructive bile duct dilatation are suggestive of peripheral cholangiocarcinoma. Therefore these sonographic findings are helpful to differentiate hepatic abscess from peripheral

  13. Immunomodulatory Effect of Flavonoids of Blueberry (Vaccinium corymbosum L. Leaves via the NF-κB Signal Pathway in LPS-Stimulated RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Dazhi Shi

    2017-01-01

    Full Text Available Objective. This study aimed to explore the immunoregulatory effect of flavonoids of blueberry (Vaccinium corymbosum L. leaves (FBL. Methods. The flavonoids of blueberry leaves were prepared with 70% ethanol and were identified by ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-Tof-MS. The immunoregulatory effect and possible regulatory mechanisms of FBL were investigated in lipopolysaccharide- (LPS- induced RAW 264.7 cells. Results. According to the results of UPLC/Q-Tof-MS, nine flavonoids of blueberry leaves were identified. FBL showed a significant reduction in the production of TNF-α in LPS-stimulated RAW 264.7 cells. FBL significantly decreased the expression of NF-κB p65 and P-NF-κB p65 in LPS-induced RAW 264.7 cells in a dose-dependent manner. Conclusion. Our study showed the immunoregulatory effect of FBL through the suppression of TNF-α via the NF-κB signal pathway.

  14. Suppression of bovine lymphocyte function by treatment with physiologic concentrations of cortisone

    International Nuclear Information System (INIS)

    Ojo-Amaize, E.A.; Paape, M.J.; Guidry, A.J.; Mayer, H.K.

    1986-01-01

    The blastogenic response of peripheral blood lymphocytes (PBL) (8 cows) to capsular antigen extract of Staphylococcus aureus, PHA and LPS was measured in vitro using 5 H-thymidine pulse labelling. isolated PBL were treated in vitro for 6-8 days with 10, 25 and 45 ng/ml cortisone. These concentrations simulate serum corticosteroid levels during environmental stress, acute clinical mastitis and ACTH therapy, respectively. To determine the minimal concentration of cortisone that would induce suppression, PBL were also incubated with increasing concentrations of cortisone starting at 10 pg/ml. All concentrations of cortisone caused a significant (P<0.01) depression of lymphocyte blastogenic response to S. aureus, PHA and LPS. Macrophage depletion experiments showed no macrophage suppressor effects. Both the blastogenic response of untreated peripheral blood lymphocytes to S. aureus, PHA and LPS and the degree to which that response was suppressed by cortisone differed significantly among cows. Results indicate that cortisone levels found during physiological stress and after therapeutic administration of ACTH can suppress lymphocyte function

  15. A self-administered method of acute pressure block of sciatic nerves for short-term relief of dental pain: a randomized study.

    Science.gov (United States)

    Wang, Xiaolin; Zhao, Wanghong; Wang, Ye; Hu, Jiao; Chen, Qiu; Yu, Juncai; Wu, Bin; Huang, Rong; Gao, Jie; He, Jiman

    2014-08-01

    While stimulation of the peripheral nerves increases the pain threshold, chronic pressure stimulation of the sciatic nerve is associated with sciatica. We recently found that acute pressure block of the sciatic nerve inhibits pain. Therefore, we propose that, the pain pathology-causing pressure is chronic, not acute. Here, we report a novel self-administered method: acute pressure block of the sciatic nerves is applied by the patients themselves for short-term relief of pain from dental diseases. This was a randomized, single-blind study. Hospital patients. Patients aged 16-60 years with acute pulpitis, acute apical periodontitis, or pericoronitis of the third molar of the mandible experiencing pain ≥3 on the 11-point numerical pain rating scale. Three-minute pressure to sciatic nerves was applied by using the hands (hand pressure method) or by having the patients squat to force the thigh and shin as tightly as possible on the sandwiched sciatic nerve bundles (self-administered method). The primary efficacy variable was the mean difference in pain scores from the baseline. One hundred seventy-two dental patients were randomized. The self-administered method produced significant relief from pain associated with dental diseases (P ≤ 0.001). The analgesic effect of the self-administered method was similar to that of the hand pressure method. The self-administered method is easy to learn and can be applied at any time for pain relief. We believe that patients will benefit from this method. © 2014 The Authors. Pain Medicine published by Wiley Periodicals, Inc. on behalf of American Academy of Pain Medicine.

  16. Township Administered Roads

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set contains roadway centerlines for township administered roads found on the USGS 1:24,000 mapping series. In some areas, these roadways are current...

  17. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages

    OpenAIRE

    M. Allegra; F. D’Acquisto; L. Tesoriere; A. Attanzio; M.A. Livrea

    2014-01-01

    Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia ...

  18. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Xixing Zhao

    Full Text Available Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb and IL-12 p40 (Il12b gene expression in macrophages following LPS stimulation have not been directly compared.We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel.These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.

  19. Human Milk Shows Immunological Advantages Over Organic Milk Samples For Infants in the Presence of Lipopolysaccharide (LPS in 3D Energy Maps Using an Organic Nanobiomimetic Memristor/Memcapacitor

    Directory of Open Access Journals (Sweden)

    S-H. DUH

    2016-08-01

    Full Text Available Human milk is well known for its immunological advantages of protection and support for healthy early childhood cognitive development and prevention of chronic diseases over cow milk for infants. However, little is known about how the immunological advantages are linked to reduce Pathological High Frequency Oscillation (pHFO regarding neural synapse net energy outcomes when lipopolysaccharide (LPS attacks at a clinical concentration range compared with that in cow milk in a 3D energy map. We developed a nanostructure biomimetic memristor/memcapacitor device with a dual function of chronoamperometric (CA sensing/voltage sensing for the direct quantitative evaluation of immunological advantages between human milk and organic cow milk for infants in the presence of wide LPS concentration ranges; those ranges were between 5.0 pg/mL to 500 ng/mL and from 50 ng/mL to 1 µg/mL for both a CA and a voltage method, respectively. The Detection of Limit (DOL results are as follows: 3.73×10-18 g LPS vs. 1.2×10-16 g LPS in 40 µL milk samples using the 3.11×10-7cm3 voltage sensor and the 0.031cm2 CA sensor, respectively, under antibody-free and reagent-free conditions. The 3D energy map results show that cow milk is ten-times more prone to E. Coli attack, and the positive link was revealed that Pathological High Frequency Oscillation (pHFO formations occurred over the studied LPS concentration range from 50 ng/mL up to 1000 ng/mL from Rapid Eye Movement (REM sleep frequency, fast gamma frequency to Sharp Wave-Ripple Complexes (SPW- R frequency. There had no pHFO with human milk samples at Slow Wave Sleeping (SWS, REM and SPW- R frequencies. The microbiota in the human milk samples successfully overcame the endotoxin attack from E. coli bacteria, however the pHFO only occurred at fast gamma frequency linked with the LPS level ≥ 500 ng/mL. Organic milk samples show an order of magnitude lower synapse energy density compared with human milk at SWS for with

  20. DMPD: Induction of proliferation and cytokine production in human T lymphocytes bylipopolysaccharide (LPS). [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available bylipopolysaccharide (LPS). Ulmer AJ, Flad H, Rietschel T, Mattern T. Toxicology. 2000 Nov 2;152(1-3):37-45....el T, Mattern T. Publication Toxicology. 2000 Nov 2;152(1-3):37-45. Pathway - PNG File (.png) SVG File (.svg

  1. Bronchoscopic diagnosis of peripheral pulmonary lung cancer employing sedation with fentanyl and midazolam.

    Science.gov (United States)

    Minami, Daisuke; Nakasuka, Takamasa; Ando, Chihiro; Iwamoto Md, Yoshitaka; Sato, Ken; Fujiwara, Keiichi; Shibayama, Takuo; Yonei Md PhD, Toshirou; Sato, Toshio

    2017-09-01

    Sedation with fentanyl and midazolam during bronchoscopic examination is commonly employed by pulmonary physicians in the USA and Europe. We assessed the efficacy of such sedation in the bronchoscopic diagnosis of peripheral lung cancer. We retrospectively evaluated data from 102 patients who underwent transbronchial biopsies (TBB) for diagnosis of peripheral lung cancer. Bronchoscopies with and without fentanyl were performed in 61 (group A) and 41 (group B) patients, respectively. Midazolam was administered to all patients. Medical records were retrieved, and between-group comparisons were made using unpaired Student's t-tests. The mean fentanyl dose was 49.5 μg (range: 10-100 μg), and midazolam doses in groups A and B were 4.29mg (range: 1-14mg) and 5.54mg (range: 1-12mg), respectively. Diagnostic histological specimens were obtained from 75.4% and 65.8% of group A and B patients, respectively (P = 0.30). The diagnostic sensitivities for lung cancer, via at least one of TBB, cytological brushing, or bronchial washing, in groups A and B were 88.5% and 70.4%, respectively (P = 0.035). Moreover, lesion diagnostic sensitivities, via at least one of TBB, cytological brushing, and bronchial washing, in groups A and B were 98.1% and 68.0%, respectively (P = 0.01). Fentanyl and midazolam sedation during bronchoscopy facilitated the diagnosis of peripheral pulmonary lung cancers. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  2. Heparin for prolonging peripheral intravenous catheter use in neonates: a randomized controlled trial.

    Science.gov (United States)

    Upadhyay, A; Verma, K K; Lal, P; Chawla, D; Sreenivas, V

    2015-04-01

    To determine the efficacy of heparinized saline administered as intermittent flush on functional duration of the peripheral intravenous catheter (PIVC) in neonates. Randomized, double-blind and placebo-controlled trial. Neonatal intensive care unit of a teaching hospital. Term and preterm neonates born at >32 weeks of gestation who required PIVC only for intermittent administration of antibiotics. Eligible neonates were randomized to receive 1 ml of either heparinized saline (10 U ml(-1)) (n=60) or normal saline (n=60) every 12 h before and after intravenous antibiotics. Functional duration of first peripheral intravenous catheter. A total of 120 neonates were randomized to two groups of 60 neonates each. The mean (s.d.) of age of babies in case and control group was 5.7 (2.5) days and 4.6 (3.1) days, respectively. The average weight of babies in both the groups was 2.1 kg. Mean functional duration of first catheter was more in heparinized saline group, mean (s.d.) of 71.68 h  (27.3) as compared with 57.7 h (23.6) in normal saline group (P<0.005). The mean (95% confidence interval) difference in functional duration in the two groups was 13.9 h (4.7-23.15). Mean duration of patency for any catheter was also significantly more in heparinized saline group than control group. Heparinized saline flush increases the functional duration of peripheral intravenous catheter.

  3. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR attenuates the expression of LPS- and Aβ peptide-induced inflammatory mediators in astroglia

    Directory of Open Access Journals (Sweden)

    Giri Shailendra

    2005-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD pathology shows characteristic 'plaques' rich in amyloid beta (Aβ peptide deposits. Inflammatory process-related proteins such as pro-inflammatory cytokines have been detected in AD brain suggesting that an inflammatory immune reaction also plays a role in the pathogenesis of AD. Glial cells in culture respond to LPS and Aβ stimuli by upregulating the expression of cytokines TNF-α, IL-1β, and IL-6, and also the expression of proinflammatory genes iNOS and COX-2. We have earlier reported that LPS/Aβ stimulation-induced ceramide and ROS generation leads to iNOS expression and nitric oxide production in glial cells. The present study was undertaken to investigate the neuroprotective function of AICAR (a potent activator of AMP-activated protein kinase in blocking the pro-oxidant/proinflammatory responses induced in primary glial cultures treated with LPS and Aβ peptide. Methods To test the anti-inflammatory/anti-oxidant functions of AICAR, we tested its inhibitory potential in blocking the expression of pro-inflammatory cytokines and iNOS, expression of COX-2, generation of ROS, and associated signaling following treatment of glial cells with LPS and Aβ peptide. We also investigated the neuroprotective effects of AICAR against the effects of cytokines and inflammatory mediators (released by the glia, in blocking neurite outgrowth inhibition, and in nerve growth factor-(NGF induced neurite extension by PC-12 cells. Results AICAR blocked LPS/Aβ-induced inflammatory processes by blocking the expression of proinflammatory cytokine, iNOS, COX-2 and MnSOD genes, and by inhibition of ROS generation and depletion of glutathione in astroglial cells. AICAR also inhibited down-stream signaling leading to the regulation of transcriptional factors such as NFκB and C/EBP which are critical for the expression of iNOS, COX-2, MnSOD and cytokines (TNF-α/IL-1β and IL-6. AICAR promoted NGF-induced neurite growth

  4. Peripheral visual performance enhancement by neurofeedback training.

    Science.gov (United States)

    Nan, Wenya; Wan, Feng; Lou, Chin Ian; Vai, Mang I; Rosa, Agostinho

    2013-12-01

    Peripheral visual performance is an important ability for everyone, and a positive inter-individual correlation is found between the peripheral visual performance and the alpha amplitude during the performance test. This study investigated the effect of alpha neurofeedback training on the peripheral visual performance. A neurofeedback group of 13 subjects finished 20 sessions of alpha enhancement feedback within 20 days. The peripheral visual performance was assessed by a new dynamic peripheral visual test on the first and last training day. The results revealed that the neurofeedback group showed significant enhancement of the peripheral visual performance as well as the relative alpha amplitude during the peripheral visual test. It was not the case in the non-neurofeedback control group, which performed the tests within the same time frame as the neurofeedback group but without any training sessions. These findings suggest that alpha neurofeedback training was effective in improving peripheral visual performance. To the best of our knowledge, this is the first study to show evidence for performance improvement in peripheral vision via alpha neurofeedback training.

  5. Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia.

    Directory of Open Access Journals (Sweden)

    Iva Bozic

    Full Text Available Microglial cells are resident immune cells of the central nervous system (CNS, recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS and NO; cyclooxygenase-2 (COX-2, heat-shock protein 70 (Hsp70, tumor necrosis factor alpha α (TNF-α, interleukin-6 (IL-6, whereas it increased anti-inflammatory interleukin-10 (IL-10 production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2, c-Jun N-terminal kinases (JNK and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB in the nucleus. Therefore

  6. The surgery of peripheral nerves (including tumors)

    DEFF Research Database (Denmark)

    Fugleholm, Kåre

    2013-01-01

    Surgical pathology of the peripheral nervous system includes traumatic injury, entrapment syndromes, and tumors. The recent significant advances in the understanding of the pathophysiology and cellular biology of peripheral nerve degeneration and regeneration has yet to be translated into improved...... surgical techniques and better outcome after peripheral nerve injury. Decision making in peripheral nerve surgery continues to be a complex challenge, where the mechanism of injury, repeated clinical evaluation, neuroradiological and neurophysiological examination, and detailed knowledge of the peripheral...... nervous system response to injury are prerequisite to obtain the best possible outcome. Surgery continues to be the primary treatment modality for peripheral nerve tumors and advances in adjuvant oncological treatment has improved outcome after malignant peripheral nerve tumors. The present chapter...

  7. Benzyl alcohol derivatives from the mushroom Hericium erinaceum attenuate LPS-stimulated inflammatory response through the regulation of NF-κB and AP-1 activity.

    Science.gov (United States)

    Noh, Hyung Jun; Yoon, Ju Young; Kim, Geum Sook; Lee, Seung Eun; Lee, Dae Young; Choi, Je Hun; Kim, Seung Yu; Kang, Ki Sung; Cho, Jae Youl; Kim, Ki Hyun

    2014-10-01

    On the search for anti-inflammatory compounds from natural Korean medicinal sources, a bioassay-guided fractionation and chemical investigation of the MeOH extract from the fruiting bodies of Hericium erinaceum resulted in the isolation and identification of five benzyl alcohol derivatives (1-5). In this study, their anti-inflammatory effects on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators were examined using RAW 264.7 macrophage cells. The structures of isolates were identified by comparing their spectroscopic data with previously reported values. The analysis of their inhibitory activities on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW 264.7 macrophage cells showed that erinacerin B (2) and hericenone E (4) decreased the levels of NO and PGE2 production in a concentration-dependent manner. Next, this study was performed to examine their mechanism of action on the regulation of NO and PGE2 production. Compounds 2 and 4 were found to block the LPS-induced phosphorylation of two major inflammatory transcription factors, NF-κB (p65/p50) and AP-1 (c-Jun and c-Fos). Taken together, these results suggest that down-regulation of LPS-induced NO and PGE2 production by compounds 2 and 4 is mediated through the modulation of NF-κB and AP-1 activation in macrophage cells. These results impact the development of potential health products for preventing and treating inflammatory diseases.

  8. Peripheral Circulatory Features during High-Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    M. B. Kontorovich

    2010-01-01

    Full Text Available The paper gives the results of a study of peripheral circulatory features during high-frequency jet ventilation (HFJV. The main specific features of peripheral circulation and oxygen transport during HFJV are formulated on the basis of a study of cardiac output (impedance cardiography, peripheral vascular resistance, peripheral vascular blood filling (photoplethysmogram analysis, adaptive peripheral blood flow reactions (spectral analysis of peripheral vascular pulsation. HFJV gives rise to the peculiar pattern of peripheral hemodynamics and tissue gas exchange, which is characterized by higher oxygen uptake without a decrease in mixed venous blood saturation, with normal extraction coefficient and preserved low peripheral vascular resistance. During HFJV, unlike traditional ventilation, the main peripheral hemodynamic feature is the increased capillary bed blood volume caused by the blood flow involvement of reserve capillaries under control of volume (parasympathetic regulation of adaptive peripheral hemodynamic reactions. Key words: high-frequency jet ventilation, oxygen transport, peripheral hemodynamics.

  9. Nogo-B Facilitates LPS-Mediated Immune Responses by Up-Regulation of TLR4-Signaling in Macrophage RAW264.7

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2017-01-01

    Full Text Available Background/Aims: Nogo-B, a member of the reticulon family of proteins, is mainly located in the endoplasmic reticulum (ER. Here, we investigate the function and mechanism of Nogo-B in the regulation of TLR4-associated immune responses in the macrophage cell line of RAW264.7. Methods: Nogo-B was up- and down-regulated through the use of appropriate adenoviral vectors or siRNA, and the effects of Nogo-B on macrophages under liposaccharide (LPS stimulation were evaluated via western blotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA, flow cytometric analysis, and transwell assay. Results: Our data indicates that the protein of Nogo-B was down-regulated in a time- and dose-dependent manner following LPS administration in the macrophage. Nogo-B overexpression increased the production of inflammatory cytokines (MCP-1, TNF-α, IL-1β, and TGF-β, enhanced macrophage migration activities, activated major histocompatibility complex II (MHC II, and elevated the expression of macrophage scavenger receptor 1(MSR1, all of which suggest that Nogo-B is necessary for immune responses and plays an important role in regulating macrophage recruitment. Mechanistically, Nogo-B may enhance TLR4 expression in macrophage surfaces, activate mitogen-activated protein kinase (MAPK pathways, and initiate inflammatory responses. Conclusion: These findings illustrate the key regulatory functions of Nogo-B in facilitating LPS-mediated immune responses through promoting the phosphorylation of MAP kinase.

  10. Dose-dependent effects of endotoxin on neurobehavioral functions in humans.

    Directory of Open Access Journals (Sweden)

    Jan-Sebastian Grigoleit

    Full Text Available Clinical and experimental evidence document that inflammation and increased peripheral cytokine levels are associated with depression-like symptoms and neuropsychological disturbances in humans. However, it remains unclear whether and to what extent cognitive functions like memory and attention are affected by and related to the dose of the inflammatory stimulus. Thus, in a cross-over, double-blind, experimental approach, healthy male volunteers were administered with either placebo or bacterial lipopolysaccharide (LPS at doses of 0.4 (n = 18 or 0.8 ng/kg of body weight (n = 16. Pro- and anti-inflammatory cytokines, norephinephrine and cortisol concentrations were analyzed before and 1, 1.75, 3, 4, 6, and 24 h after injection. In addition, changes in mood and anxiety levels were determined together with working memory (n-back task and long term memory performance (recall of emotional and neutral pictures of the International Affective Picture System. Endotoxin administration caused a profound transient physiological response with dose-related elevations in body temperature and heart rate, increases in plasma interleukin (IL-6, IL-10, tumor necrosis factor (TNF-α and IL-1 receptor antagonist (IL-1ra, salivary and plasma cortisol, and plasma norepinephrine. These changes were accompanied by dose-related decreased mood and increased anxiety levels. LPS administration did not affect accuracy in working memory performance but improved reaction time in the high-dose LPS condition compared to the control conditon. In contrast, long-term memory performance was impaired selectively for emotional stimuli after administration of the lower but not of the higher dose of LPS. These data suggest the existence of at least two counter-acting mechanisms, one promoting and one inhibiting cognitive performance during acute systemic inflammation.

  11. Plant Polyphenols and Exendin-4 Prevent Hyperactivity and TNF-α Release in LPS-Treated In vitro Neuron/Astrocyte/Microglial Networks

    Directory of Open Access Journals (Sweden)

    Francesca Gullo

    2017-09-01

    Full Text Available Increasing evidence supports a decisive role for neuroinflammation in the neurodegenerative process of several central nervous system (CNS disorders. Microglia are essential mediators of neuroinflammation and can regulate a broad spectrum of cellular responses by releasing reactive oxygen intermediates, nitric oxide, proteases, excitatory amino acids, and cytokines. We have recently shown that also in ex-vivo cortical networks of neurons, astrocytes and microglia, an increased level of tumor necrosis factor-alpha (TNF-α was detected a few hours after exposure to the bacterial endotoxin lipopolysaccharide (LPS. Simultaneously, an atypical “seizure-like” neuronal network activity was recorded by multi-electrode array (MEA electrophysiology. These effects were prevented by minocycline, an established anti-inflammatory antibiotic. We show here that the same inhibitory effect against LPS-induced neuroinflammation is exerted also by natural plant compounds, polyphenols, such as curcumin (CU, curcuma longa, crocin (CR, saffron, and resveratrol (RE, grape, as well as by the glucagon like peptide-1 receptor (GLP-1R agonist exendin-4 (EX-4. The drugs tested also caused per-se early transient (variable changes of network activity. Since it has been reported that LPS-induced neuroinflammation causes rearrangements of glutamate transporters in astrocytes and microglia, we suggest that neural activity could be putatively increased by an imbalance of glial glutamate transporter activity, leading to prolonged synaptic glutamatergic dysregulation.

  12. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Xibao Zhao; Xibao Zhao; Debing Pu; Debing Pu; Zizhao Zhao; Huihui Zhu; Hongrui Li; Hongrui Li; Yaping Shen; Xingjie Zhang; Ruihan Zhang; Jianzhong Shen; Weilie Xiao; Weilie Xiao; Weilin Chen

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)–induced pro-inflamm...

  13. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    OpenAIRE

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)?induced pro-inflamm...

  14. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21.

    LENUS (Irish Health Repository)

    Sheedy, FJ

    2009-11-29

    The tumor suppressor PDCD4 is a proinflammatory protein that promotes activation of the transcription factor NF-kappaB and suppresses interleukin 10 (IL-10). Here we found that mice deficient in PDCD4 were protected from lipopolysaccharide (LPS)-induced death. The induction of NF-kappaB and IL-6 by LPS required PDCD4, whereas LPS enhanced IL-10 induction in cells lacking PDCD4. Treatment of human peripheral blood mononuclear cells with LPS resulted in lower PDCD4 expression, which was due to induction of the microRNA miR-21 via the adaptor MyD88 and NF-kappaB. Transfection of cells with a miR-21 precursor blocked NF-kappaB activity and promoted IL-10 production in response to LPS, whereas transfection with antisense oligonucleotides to miR-21 or targeted protection of the miR-21 site in Pdcd4 mRNA had the opposite effect. Thus, miR-21 regulates PDCD4 expression after LPS stimulation.

  15. The ocular endothelin system: a novel target for the treatment of endotoxin-induced uveitis with bosentan.

    Science.gov (United States)

    Keles, Sadullah; Halici, Zekai; Atmaca, Hasan Tarik; Yayla, Muhammed; Yildirim, Kenan; Ekinci, Metin; Akpinar, Erol; Altuner, Durdu; Cakici, Ozgur; Bayraktutan, Zafer

    2014-05-15

    We compared the anti-inflammatory effects of bosentan and dexamethasone in endotoxin-induced uveitis (EIU). Endotoxin-induced uveitis was induced by subcutaneous injection of lipopolysaccharide (LPS, 200 μg) in Wistar rats. Rats were divided randomly into 10 groups (n = 6). Bosentan at doses of 50 and 100 mg/kg were administered orally 1 hour before and 12 hours after LPS injection, and dexamethasone was administered by intraperitoneally 30 minutes before and 30 minutes after LPS injection at a dose of 1 mg/kg. Data were collected at two time points for each control and treatment; animals were killed at either 3 or 24 hours after LPS injection. Histopathologic evaluation and aqueous humour measurements of TNF-α level were performed, and endothelin-1 (ET-1), inducible nitric oxide synthase (iNOS), and endothelin receptor A and B (EDNRA and B) expression were analyzed. The group treated with 100 mg/kg bosentan at 24 hours displayed significantly milder uveitis and fewer inflammatory cells compared to LPS-injected animals, and there were similar findings in the dexamethasone-treated group at 24 hours. The TNF-α levels in the dexamethasone treatment group were lower than those in the LPS-induced uveitis control group (P treatment groups at 3 and 24 hours after LPS administration. Bosentan treatment at doses of 50 and 100 mg/kg significantly decreased iNOS expression compared to LPS-injected animals (P treatment groups was statistically significantly lower than that in the LPS-induced uveitis control group at 3 and 24 hours after LPS administration (P < 0.05). Bosentan reduces intraocular inflammation and has similar effects as dexamethasone in a rat model of EIU. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  16. Early cyclosporin A treatment retards axonal degeneration in an experimental peripheral nerve injection injury model

    Directory of Open Access Journals (Sweden)

    Ibrahim Erkutlu

    2015-01-01

    Full Text Available Injury to peripheral nerves during injections of therapeutic agents such as penicillin G potassium is common in developing countries. It has been shown that cyclosporin A, a powerful immunosuppressive agent, can retard Wallerian degeneration after peripheral nerve crush injury. However, few studies are reported on the effects of cyclosporin A on peripheral nerve drug injection injury. This study aimed to assess the time-dependent efficacy of cyclosporine-A as an immunosuppressant therapy in an experimental rat nerve injection injury model established by penicillin G potassium injection. The rats were randomly divided into three groups based on the length of time after nerve injury induced by penicillin G potassium administration (30 minutes, 8 or 24 hours. The compound muscle action potentials were recorded pre-injury, early post-injury (within 1 hour and 4 weeks after injury and compared statistically. Tissue samples were taken from each animal for histological analysis. Compared to the control group, a significant improvement of the compound muscle action potential amplitude value was observed only when cyclosporine-A was administered within 30 minutes of the injection injury (P < 0.05; at 8 or 24 hours after cyclosporine-A administration, compound muscle action potential amplitude was not changed compared with the control group. Thus, early immunosuppressant drug therapy may be a good alternative neuroprotective therapy option in experimental nerve injection injury induced by penicillin G potassium injection.

  17. Saliva oxytocin measures do not reflect peripheral plasma concentrations after intranasal oxytocin administration in men.

    Science.gov (United States)

    Quintana, Daniel S; Westlye, Lars T; Smerud, Knut T; Mahmoud, Ramy A; Andreassen, Ole A; Djupesland, Per G

    2018-05-16

    Oxytocin plays an important role in social behavior. Thus, there has been significant research interest for the role of the oxytocin system in several psychiatric disorders, and the potential of intranasal oxytocin administration to treat social dysfunction. Measurement of oxytocin concentrations in saliva are sometimes used to approximate peripheral levels of oxytocin; however, the validity of this approach is unclear. In this study, saliva and plasma oxytocin was assessed after two doses of Exhalation Delivery System delivered intranasal oxytocin (8 IU and 24 IU), intravenous oxytocin (1 IU) and placebo in a double-dummy, within-subjects design with men. We found that intranasal oxytocin (8 IU and 24 IU) administration increased saliva oxytocin concentrations in comparison to saliva oxytocin concentration levels after intravenous and placebo administration. Additionally, we found that saliva oxytocin concentrations were not significantly associated with plasma oxytocin concentrations after either intranasal or intravenous oxytocin administration. Altogether, we suggest that saliva oxytocin concentrations do not accurately index peripheral oxytocin after intranasal or intravenous oxytocin administration, at least in men. The data indicates that elevated oxytocin saliva levels after nasal delivery primarily reflect exogenous administered oxytocin that is cleared from the nasal cavity to the oropharynx, and is therefore a weak surrogate for peripheral blood measurements. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. 8-Hydroxyquinoline inhibits iNOS expression and nitric oxide production by down-regulating LPS-induced activity of NF-κB and C/EBPβ in Raw 264.7 cells

    International Nuclear Information System (INIS)

    Kim, Young-Ho; Woo, Kyung Jin; Lim, Jun Hee; Kim, Shin; Lee, Tae Jin; Jung, Eun Mi; Lee, Jin-Man; Park, Jong-Wook; Kwon, Taeg Kyu

    2005-01-01

    In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, 8-hydroxyquinoline (8HQ) inhibited the LPS-induced expression of both iNOS protein and mRNA in a parallel dose-dependent manner. 8HQ did not enhance the degradation of iNOS mRNA. To investigate the mechanism by which 8HQ inhibits iNOS gene expression, we examined the activation of MAP kinases in Raw 264.7 cells. We did not observe any significant change in the phosphorylation of MAPKs between LPS alone and LPS plus 8HQ-treated cells. Moreover, 8HQ significantly inhibited the DNA-binding activity of nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ), but not activator protein-1 and cAMP response element-binding protein. Taken together, these results suggest that 8HQ acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of C/EBPβ DNA-binding activity and NF-κB activation

  19. Peripherally applied opioids for postoperative pain

    DEFF Research Database (Denmark)

    Nielsen, B N; Henneberg, S W; Schmiegelow, K

    2015-01-01

    BACKGROUND: Opioids applied peripherally at the site of surgery may produce postoperative analgesia with few side effects. We performed this systematic review to evaluate the analgesic effect of peripherally applied opioids for acute postoperative pain. METHODS: We searched PubMed (1966 to June...... 2013), Embase (1980 to June 2013), and the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 6). Randomized controlled trials investigating the postoperative analgesic effect of peripherally applied opioids vs. systemic opioids or placebo, measured by pain intensity...... difference -5 mm, 95% CI: -7 to -3) for peripherally applied opioids vs. placebo and statistically significant increased time to first analgesic (mean difference 153 min, 95% CI: 41-265). When preoperative inflammation was reported (five studies), peripherally applied opioids significantly improved...

  20. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages.

    Science.gov (United States)

    Rabe, Shahrzad Zamani Taghizadeh; Ghazanfari, Tooba; Siadat, Zahra; Rastin, Maryam; Rabe, Shahin Zamani Taghizadeh; Mahmoudi, Mahmoud

    2015-04-01

    Garlic 14-kDa protein is purified from garlic (Allium sativum L.) which is used in traditional medicine and exerts various immunomodulatory activities. The present study investigated the suppressive effect of garlic 14-kDa protein on LPS-induced expression of pro-inflammatory mediators and underlying mechanism in inflammatory macrophages. J774A.1 macrophages were treated with 14-kDa protein (5-30 μg/ml) with/without LPS (1 μg/ml) and the production of inflammatory mediators such as prostaglandin E2 (PGE2), TNF-α, and IL-1β released were measured using ELISA. Nitric oxide (NO) production was determined using the Griess method. The anti-inflammatory activity of 14-kDa protein was examined by measuring inducible nitric oxide synthase and cyclooxygenase-2 proteins using western blot. The expression of nuclear NF-κB p65 subunit was assessed by western blot. Garlic 14-kDa protein significantly inhibited the excessive production of NO, PGE, TNF-α, and IL-1β in lipopolysaccharide (LPS)-activated J774A.1 macrophages in a concentration-related manner without cytotoxic effect. Western blot analysis demonstrated that garlic 14-kDa protein suppressed corresponding inducible NO synthase expression and activated cyclooxygenase-2 protein expression. The inhibitory effect was mediated partly by a reduction in the activity and expression of transcription factor NF-κB protein. Our results suggested, for the first time, garlic 14-kDa protein exhibits anti-inflammatory properties in macrophages possibly by suppressing the inflammatory mediators via the inhibition of transcription factor NF-κB signaling pathway. The traditional use of garlic as anti-inflammatory remedy could be ascribed partly to 14-kDa protein content. This protein might be a useful candidate for controlling inflammatory diseases and further investigations in vivo.

  1. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    Science.gov (United States)

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Suppressor of cytokine signaling 1 expression during LPS-induced inflammation and bone loss in rats

    Directory of Open Access Journals (Sweden)

    João Antonio Chaves de SOUZA

    2017-10-01

    Full Text Available Abstract This study aimed to characterize the dynamics of suppressor of cytokine signaling (SOCS1 expression in a rat model of lipopolysaccharide-induced periodontitis. Wistar rats in the experimental groups were injected three times/week with LPS from Escherichia coli on the palatal aspect of the first molars, and control animals were injected with vehicle (phosphate-buffered saline. Animals were sacrificed 7, 15, and 30 days after the first injection to analyze inflammation (stereometric analysis, bone loss (macroscopic analysis, gene expression (qRT-PCR, and protein expression/activation (Western blotting. The severity of inflammation and bone loss associated with LPS-induced periodontitis increased from day 7 to day 15, and it was sustained through day 30. Significant (p < 0.05 increases in SOCS1, RANKL, OPG, and IFN-γ gene expression were observed in the experimental group versus the control group at day 15. SOCS1 protein expression and STAT1 and NF-κB activation were increased throughout the 30-day experimental period. Gingival tissues affected by experimental periodontitis express SOCS1, indicating that this protein may potentially downregulate signaling events involved in inflammatory reactions and bone loss and thus may play a relevant role in the development and progression of periodontal disease.

  3. Burn-related peripheral neuropathy: A systematic review.

    Science.gov (United States)

    Tu, Yiji; Lineaweaver, William C; Zheng, Xianyou; Chen, Zenggan; Mullins, Fred; Zhang, Feng

    2017-06-01

    Peripheral neuropathy is the most frequent disabling neuromuscular complication of burns. However, the insidious and progressive onset of burn neuropathy makes it often undiagnosed or overlooked. In our study, we reviewed the current studies on the burn-related peripheral neuropathy to summarize the morbidity, mechanism, detecting method and management of peripheral neuropathy in burn patients. Of the 1533 burn patients included in our study, 98 cases (6.39%) were presented with peripheral neuropathy. Thermal and electrical burns were the most common etiologies. Surgical procedures, especially nerve decompression, showed good effect on functional recovery of both acute and delayed peripheral neuropathy in burn patients. It is noteworthy that, for early detection and prevention of peripheral neuropathy, electrodiagnostic examinations should be performed on burn patients independent of symptoms. Still, the underlying mechanisms of burn-related peripheral neuropathy remain to be clarified. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  4. Pleurotus giganteus (Berk. Karun & Hyde), the giant oyster mushroom inhibits NO production in LPS/H2O2 stimulated RAW 264.7 cells via STAT 3 and COX-2 pathways.

    Science.gov (United States)

    Baskaran, Asweni; Chua, Kek Heng; Sabaratnam, Vikineswary; Ravishankar Ram, Mani; Kuppusamy, Umah Rani

    2017-01-13

    Pleurotus giganteus (Berk. Karunarathna and K.D. Hyde), has been used as a culinary mushroom and is known to have medicinal properties but its potential as an anti-inflammatory agent to mitigate inflammation triggered diseases is untapped. In this study, the molecular mechanism underlying the protective effect of ethanol extract of P. giganteus (EPG) against lipopolysaccharide (LPS) and combination of LPS and hydrogen peroxide (H 2 O 2 )-induced inflammation on RAW 264.7 macrophages was investigated. The effect of EPG on nitric oxide (NO) production as an indicator of inflammation in RAW 264.7 macrophages was estimated based on Griess reaction that measures nitrite level. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), NF-kB activating protein (NKAP), signal transducer and activator of transcription 3 protein (STAT 3) and glutathione peroxidase (GPx) genes were assessed using real time reverse transcription polymerase chain reaction (RT-PCR) approach. EPG (10 μg/ml) showed the highest reduction in the LPS-induced NO production in RAW 264.7 macrophages and significantly suppressed (p < 0.05) the expression iNOS, STAT 3 and COX-2. There was a significant increase (p < 0.05) in combination of LPS and H 2 O 2 - induced iNOS production when compared to the LPS-induced iNOS production in RAW 264.7 macrophages and this concurred with the NO production which was attenuated by EPG at 10 μg/ml. A significant (p < 0.05) down regulation was observed in the combination of LPS and H 2 O 2 -induced iNOS and GPx expression by EPG. Our data suggest that the anti-inflammatory activity of EPG is mediated via the suppression of the STAT 3 and COX-2 pathways and can serve as potential endogenous antioxidant stimulant.

  5. Intradermally administered TLR4 agonist GLA-SE enhances the capacity of human skin DCs to activate T cells and promotes emigration of Langerhans cells

    NARCIS (Netherlands)

    Schneider, Laura P.; Schoonderwoerd, Antoinet J.; Moutaftsi, Magdalini; Howard, Randall F.; Reed, Steven G.; de Jong, Esther C.; Teunissen, Marcel B. M.

    2012-01-01

    The natural TLR4 agonist lipopolysaccharide (LPS) has notable adjuvant activity. However, it is not useful as a vaccine adjuvant due to its toxicity. Glucopyranosyl lipid A (GLA) is a synthetic derivative of the lipid A tail of LPS with limited cytotoxicity, but strong potential to induce immune

  6. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults.

    Directory of Open Access Journals (Sweden)

    Wilfredo R Matias

    2016-06-01

    Full Text Available The bivalent whole-cell (BivWC oral cholera vaccine (Shanchol is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC responses following vaccination.We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14. We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21. Peripheral blood mononuclear cells (PBMCs were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs and Inaba (9.5 cells per million PBMCs OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001, but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety.Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area.

  7. Neuroanatomical characterization of the cellular and axonal architecture of subcortical band heterotopia in the BXD29-Tlr4lps-2J/J mouse cortex.

    Science.gov (United States)

    Ramos, Raddy L; Toia, Alyssa R; Pasternack, Daniel M; Dotzler, Timothy P; Cuoco, Joshua A; Esposito, Anthony W; Le, Megan M; Parker, Alexander K; Goodman, Jeffrey H; Sarkisian, Matthew R

    2016-11-19

    Subcortical band heterotopia (SBH) are malformations of the human cerebral cortex typically associated with epilepsy and cognitive delay/disability. Rodent models of SBH have demonstrated strong face validity as they are accompanied by both cognitive deficits and spontaneous seizures or reduced seizure threshold. BXD29-Tlr4 lps-2J /J recombinant inbred mice display striking bilateral SBH, partial callosal agenesis, morphological changes in subcortical structures of the auditory pathway, and display sensory deficits in behavioral tests (Rosen et al., 2013; Truong et al., 2013, 2015). Surprisingly, these mice show no cognitive deficits and have a higher seizure threshold to chemi-convulsive treatment (Gabel et al., 2013) making them different than other rodent SBH models described previously. In the present report, we perform a detailed characterization of the cellular and axonal constituents of SBH in BXD29-Tlr4 lps-2J /J mice and demonstrate that various types of interneurons and glia as well as cortical and subcortical projections are found in SBH. In addition, the length of neuronal cilia was reduced in SBH compared to neurons in the overlying and adjacent normotopic cortex. Finally, we describe additional and novel malformations of the hippocampus and neocortex present in BXD29-Tlr4 lps-2J /J mice. Together, our findings in BXD29-Tlr4 lps-2J /J mice are discussed in the context of the known neuroanatomy and phenotype of other SBH rodent models. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Comparing the Rates of Dopamine Hemodynamic Effect Onset after Infusion through Peripheral Veins in Three Regions

    Directory of Open Access Journals (Sweden)

    Deokkyu Kim

    2017-02-01

    Full Text Available Background Dopamine is an inotropic agent that is often selected for continuous infusion. For hemodynamic stability, the rate of infusion is controlled in the range of 5-15 μg/kg/min. This study aimed to compare the time intervals from the administration of dopamine to the onset of its hemodynamic effects when dopamine was administered through three different peripheral veins (the cephalic vein [CV], the great saphenous vein [GSV], and the external jugular vein [EJV]. Methods Patients in group 1, group 2, and group 3 received dopamine infusions in the CV, GSV, and EJV, respectively. A noninvasive continuous cardiac output monitor (NICCOMO™, Medis, Ilmenau, Germany was used to assess cardiac output (CO and systemic vascular resistance (SVR. Six minutes after intubation, baseline heart rate (HR, systolic blood pressure (BP, diastolic BP, mean arterial pressure (MAP, CO, and SVR values were recorded and dopamine infusion was initiated at a dose of 10 μg/kg/min. Hemodynamic changes at 0, 4, 8, 12, and 15 minutes postinfusion were recorded. Results No statistically significant differences were observed among the three groups with respect to the rate of hemodynamic change. In all groups, systolic BP, diastolic BP, MAP, and SVR tended to increase after decreasing for the first 4 minutes; in contrast, HR and CO decreased until 8 minutes, after which they tended to reach a plateau. Conclusions For patients under general anesthesia receiving dopamine at 10 μg/kg/min, there were no clinical differences in the effect of dopamine administered through three different peripheral veins.

  9. Extra virgin olive oil polyphenolic extracts downregulate inflammatory responses in LPS-activated murine peritoneal macrophages suppressing NFκB and MAPK signalling pathways.

    Science.gov (United States)

    Cárdeno, A; Sánchez-Hidalgo, M; Aparicio-Soto, M; Sánchez-Fidalgo, S; Alarcón-de-la-Lastra, C

    2014-06-01

    Extra virgin olive oil (EVOO) is obtained from the fruit of the olive tree Olea europaea L. Phenolic compounds present in EVOO have recognized anti-oxidant and anti-inflammatory properties. However, the activity of the total phenolic fraction extracted from EVOO and the action mechanisms involved are not well defined. The present study was designed to evaluate the potential anti-inflammatory mechanisms of the polyphenolic extract (PE) from EVOO on LPS-stimulated peritoneal murine macrophages. Nitric oxide (NO) production was analyzed by the Griess method and intracellular reactive oxygen species (ROS) by fluorescence analysis. Moreover, changes in the protein expression of the pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1), as well as the role of nuclear transcription factor kappa B (NFκB) and mitogen-activated protein kinase (MAPK) signalling pathways, were analyzed by Western blot. PE from EVOO reduced LPS-induced oxidative stress and inflammatory responses through decreasing NO and ROS generation. In addition, PE induced a significant down-regulation of iNOS, COX-2 and mPGES-1 protein expressions, reduced MAPK phosphorylation and prevented the nuclear NFκB translocation. This study establishes that PE from EVOO possesses anti-inflammatory activities on LPS-stimulated murine macrophages.

  10. 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity.

    Science.gov (United States)

    Zhang, Wei; Qin, Liya; Wang, Tongguang; Wei, Sung-Jen; Gao, Hui-ming; Liu, Jie; Wilson, Belinda; Liu, Bin; Zhang, Wanqin; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2005-03-01

    The purpose of this study was to develop a novel therapy for Parkinson's disease (PD). We recently reported that dextromethorphan (DM), an active ingredient in a variety of widely used anticough remedies, protected dopaminergic neurons in rat primary mesencephalic neuron-glia cultures against lipopolysaccharide (LPS)-mediated degeneration and provided potent protection for dopaminergic neurons in a MPTP mouse model. The underlying mechanism for the protective effect of DM was attributed to its anti-inflammatory activity through inhibition of microglia activation. In an effort to develop more potent compounds for the treatment of PD, we have screened a series of analogs of DM, and 3-hydroxymorphinan (3-HM) emerged as a promising candidate for this purpose. Our study using primary mesencephalic neuron-glia cultures showed that 3-HM provided more potent neuroprotection against LPS-induced dopaminergic neurotoxicity than its parent compound. The higher potency of 3-HM was attributed to its neurotrophic effect in addition to the anti-inflammatory effect shared by both DM and 3-HM. First, we showed that 3-HM exerted potent neuroprotective and neurotrophic effects on dopaminergic neurons in rat primary mesencephalic neuron-glia cultures treated with LPS. The neurotrophic effect of 3-HM was glia-dependent since 3-HM failed to show any protective effect in the neuron-enriched cultures. We subsequently demonstrated that it was the astroglia, not the microglia, that contributed to the neurotrophic effect of 3-HM. This conclusion was based on the reconstitution studies, in which we added different percentages of microglia (10-20%) or astroglia (40-50%) back to the neuron-enriched cultures and found that 3-HM was neurotrophic after the addition of astroglia, but not microglia. Furthermore, 3-HM-treated astroglia-derived conditioned media exerted a significant neurotrophic effect on dopaminergic neurons. It appeared likely that 3-HM caused the release of neurotrophic factor

  11. Computer-Administered Interviews and Rating Scales

    Science.gov (United States)

    Garb, Howard N.

    2007-01-01

    To evaluate the value of computer-administered interviews and rating scales, the following topics are reviewed in the present article: (a) strengths and weaknesses of structured and unstructured assessment instruments, (b) advantages and disadvantages of computer administration, and (c) the validity and utility of computer-administered interviews…

  12. Expression of Toll-Like Receptor 2 in Glomerular Endothelial Cells and Promotion of Diabetic Nephropathy by Porphyromonas gingivalis Lipopolysaccharide

    Science.gov (United States)

    Hatakeyama, Yuji; Ishikawa, Hiroyuki; Tsuruga, Eichi

    2014-01-01

    The toll-like receptor (TLR) has been suggested as a candidate cause for diabetic nephropathy. Recently, we have reported the TLR4 expression in diabetic mouse glomerular endothelium. The study here investigates the effects of the periodontal pathogen Porphyromonas gingivalis lipopolysaccharide (LPS) which is a ligand for TLR2 and TLR4 in diabetic nephropathy. In laser-scanning microscopy of glomeruli of streptozotocin- and a high fat diet feed-induced type I and type II diabetic mice, TLR2 localized on the glomerular endothelium and proximal tubule epithelium. The TLR2 mRNA was detected in diabetic mouse glomeruli by in situ hybridization and in real-time PCR of the renal cortex, the TLR2 mRNA amounts were larger in diabetic mice than in non-diabetic mice. All diabetic mice subjected to repeated LPS administrations died within the survival period of all of the diabetic mice not administered LPS and of all of the non-diabetic LPS-administered mice. The LPS administration promoted the production of urinary protein, the accumulation of type I collagen in the glomeruli, and the increases in IL-6, TNF-α, and TGF-β in the renal cortex of the glomeruli of the diabetic mice. It is thought that blood TLR ligands like Porphyromonas gingivalis LPS induce the glomerular endothelium to produce cytokines which aid glomerulosclerosis. Periodontitis may promote diabetic nephropathy. PMID:24835775

  13. Hydroxysafflor Yellow A Inhibits LPS-Induced NLRP3 Inflammasome Activation via Binding to Xanthine Oxidase in Mouse RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Xiaolong Xu

    2016-01-01

    Full Text Available Hydroxysafflor yellow A (HSYA is an effective therapeutic agent for inflammatory diseases and autoimmune disorders; however, its regulatory effect on NLRP3 inflammasome activation in macrophages has not been investigated. In this study, we predicted the potential interaction between HSYA and xanthine oxidase (XO via PharmMapper inverse docking and confirmed the binding inhibition via inhibitory test (IC50 = 40.04 μM. Computation docking illustrated that, in this HSYA-XO complex, HSYA was surrounded by Leu 648, Leu 712, His 875, Leu 873, Ser 876, Glu 879, Phe 649, and Asn 650 with a binding energy of −5.77 kcal/M and formed hydrogen bonds with the hydroxyl groups of HSYA at Glu 879, Asn 650, and His 875. We then found that HSYA significantly decreased the activity of XO in RAW264.7 macrophages and suppressed LPS-induced ROS generation. Moreover, we proved that HSYA markedly inhibited LPS-induced cleaved caspase-1 activation via suppressing the sensitization of NLRP3 inflammasome and prevented the mature IL-1β formation from pro-IL-1β form. These findings suggest that XO may be a potential target of HSYA via direct binding inhibition and the combination of HSYA-XO suppresses LPS-induced ROS generation, contributing to the depression of NLRP3 inflammasome and inhibition of IL-1β secretion in macrophages.

  14. Intraoperative Ultrasound for Peripheral Nerve Applications.

    Science.gov (United States)

    Willsey, Matthew; Wilson, Thomas J; Henning, Phillip Troy; Yang, Lynda J-S

    2017-10-01

    Offering real-time, high-resolution images via intraoperative ultrasound is advantageous for a variety of peripheral nerve applications. To highlight the advantages of ultrasound, its extraoperative uses are reviewed. The current intraoperative uses, including nerve localization, real-time evaluation of peripheral nerve tumors, and implantation of leads for peripheral nerve stimulation, are reviewed. Although intraoperative peripheral nerve localization has been performed previously using guide wires and surgical dyes, the authors' approach using ultrasound-guided instrument clamps helps guide surgical dissection to the target nerve, which could lead to more timely operations and shorter incisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Histochemical, light and electron microscopic study of polonium-210 induced peripheral tumours in hamster lungs -evidence implicating the Clara Cell as the cell of origin

    International Nuclear Information System (INIS)

    Kennedy, A.R.; McGandy, R.B.; Little, J.B.

    1977-01-01

    Peripheral lung tumors induced in Syrian golden hamsters by intratracheally administered polonium-210 ( 210 Po) are similar to the peripheral lung tumours induced in many species by a variety of carcinogens. In addition, they show many of the histopathological features observed in human bronchiolar-alveolar carcinomas. Serial sacrifice studies of hamsters exposed to multiple instillations of 210 Po have been carried our to identify the cell of origin of these tumors. By means of thin, plastic (glycol methacrylate) sections, electron microscopy, and histochemistry, it is concluded that the bronchiolar Clara cell is the probable cell of origin, and that this view is generally compatible with many of the reported cytological characteristics of the human tumor. (author)

  16. Molecular cloning of Japanese eel Anguilla japonica TNF-α and characterization of its expression in response to LPS, poly I:C and Aeromonas hydrophila infection

    Science.gov (United States)

    Feng, Jianjun; Guan, Ruizhang; Guo, Songlin; Lin, Peng; Zadlock, Frank

    2014-09-01

    As a potent pleiotropic cytokine, tumor necrosis factor-alpha (TNF-α) plays an important role in innate immune responses. The cDNA sequence and genomic structure of the TNF-α gene ( Aj TNF-α) in the Japanese eel ( Anguilla japonica) were identified and characterized. The full-length AjTNF-α cDNA was 1 546 bp, including a 5'-untranslated region (UTR) of 13 bp, a 3'-UTR of 879 bp and an open reading frame of 654 bp encoding a protein of 218 amino acids. The full-length genomic sequence of AjTNF-α was 2 392 bp and included four exons and three introns. The putative AjTNF-α protein contained TNF family signature motifs, including a protease cleavage site, a transmembrane domain and two conserved cysteine residues. Quantitative real-time reverse transcription PCR analysis revealed AjTNF-α expression in a wide range of tissues, with predominant expression in blood and liver. Lower levels of expression were seen in spleen, gills, kidney, intestine, heart, and skin, with very low levels in muscle. The modulation of AjTNF-α expression after injection of eels with lipopolysaccharide (LPS), the viral mimic, poly I:C, or Aeromonas hydrophila was assessed in blood, liver, and kidney. In blood, TNF-α mRNA levels increased rapidly and then rapidly decreased after stimulation with LPS, poly I:C or A. hydrophila. However, the response to LPS and A. hydrophila peaked at 6 h while for poly I:C the peak was at 12 h. In liver, after injection with A. hydrophila, an up- and down-regulation of AjTNF-α expression occurred twice, peaking at 6 h and 24 h, respectively. No remarkable increase of AjTNF-α expression appeared in liver until 72 h after LPS or poly I:C treatment. In kidney, AjTNF-α expression increased significantly only at 72 h post-stimulation with LPS or A. hydrophila. Our results suggest that AjTNF-α plays an important role in fish in the defense against viral and bacterial infection.

  17. In whole blood, LPS, TNF-alpha and GM-CSF increase monocyte uptake of {sup 99m}technetium stannous colloid but do not affect neutrophil uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, Stuart C. [Townsville Nuclear Medicine, Mater Hospital, Pimlico, Queensland 4812 (Australia) and School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia)]. E-mail: stuart.ramsay1@jcu.edu.au; Maggs, Jacqueline [Department of Nuclear Medicine, Townsville Hospital, Townsville, Queensland 4814 (Australia); Powell, Kellie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia); Barnes, Jodie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Ketheesan, Natkunam [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland 4811 (Australia)

    2006-07-15

    Introduction: {sup 99m}Technetium stannous colloid (TcSnC) is used in white cell scanning. It labels neutrophils and monocytes via phagocytosis, with uptake mediated by the phagocytic receptor CD11b/CD18 in neutrophils. Uptake of TcSnC is altered by gram-negative infection, possibly due to the endotoxin component lipopolysaccharide (LPS) or to cytokines released during infection (e.g., TNF-alpha and IFN-gamma). Endotoxemia and increased TNF-alpha levels also occur in inflammatory bowel disease. Another potential confounder in cell labeling is that sepsis patients may be treated with GM-CSF and G-CSF, which alter phagocytic cell function. This study aimed to determine how these factors affect TcSnC cellular uptake. Methods: Whole blood from six healthy volunteers was incubated with LPS, TNF-alpha, IFN-gamma, GM-CSF or G-CSF. Samples were then mixed with TcSnC. Blood was separated across density gradients and imaged using a gamma camera. Three radioactive count peaks were observed in each tube: free plasma activity, mononuclear cell uptake and neutrophil uptake. Results: Compared with controls, significant increases in mononuclear cell uptake were induced by LPS, TNF-alpha and GM-CSF stimulation. It was incidentally noted that exogenous estrogens appear to affect TcSnC labeling and may influence the neutrophil response to stimulation. Neutrophil uptake and plasma activity were not significantly affected. IFN-gamma and G-CSF had no significant effect. Conclusions: In whole blood, the effect of LPS on TcSnC monocyte uptake is different to its effect on neutrophils, consistent with previously reported differences in CD11b/CD18 expression. TNF-alpha response parallels LPS response. GM-CSF also increases TcSnC uptake by monocytes. These effects should be considered when using TcSnC for imaging purposes, as they will tend to increase monocyte labeling. Estrogens may also affect TcSnC labeling. Responses to IFN-gamma and G-CSF are consistent with previously reported effects

  18. Equine peripheral dental caries: An epidemiological survey assessing prevalence and possible risk factors in Western Australian horses.

    Science.gov (United States)

    Jackson, K; Kelty, E; Tennant, M

    2018-01-01

    Peripheral dental caries is defined as macroscopic destruction of the calcified dental tissues and can cause considerable dental pathology and pain. It appears to occur at a high prevalence in Western Australian horses. At present, risk factors for the condition are poorly understood, making treatment and prevention difficult. To assess the prevalence of and potential risk factors for peripheral caries in Western Australian horses. Cross-sectional, epidemiological study. A survey of 500 Western Australian horses was administered in two sections. The first section was completed by the owner and referred to the horse's signalment, diet and husbandry conditions. The second section was completed by veterinarians and focused on the horse's oral health. A multivariable logistic regression model was used to assess risk factors associated with peripheral caries. Peripheral caries was present in 58.8% (95% confidence interval [CI] 54.5-63.1%) of surveyed horses. Breed was significantly associated with peripheral caries, with Warmbloods (odds ratio [OR] 0.44, 95% CI 0.24-0.82; P = 0.009) and Western breeds (OR 0.38, 95% CI 0.19-0.78; P = 0.008) being less likely to have peripheral caries than Thoroughbreds. Dietary risk factors included oaten hay (OR 2.90, 95% CI 1.87-4.53; P<0.001). A meadow hay-based diet was protective (OR 0.47, 95% CI 0.27-0.80; P = 0.005). Horses with access to quality pasture all year were less likely to have peripheral caries than horses without access to grazing (OR 0.31, 95% CI 0.15-0.66; P = 0.002), as were horses on groundwater compared with horses on rainwater (OR 3.35, 95% CI 1.65-6.78; P = 0.001), drinking water (OR 2.03, 95% CI 1.14-3.62; P = 0.016) or dam water (OR 3.53, 95% CI 1.08-11.53; P = 0.037). Peripheral caries was positively correlated with periodontal disease (OR 4.53, 95% CI 2.91-7.06; P<0.001) and feed packing (feed present between the teeth without significant periodontal pocketing) (OR 1.94, 95% CI 1.32-2.85; P = 0.001). Not

  19. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy

    OpenAIRE

    Zheng, Huaien; Xiao, Wen Hua; Bennett, Gary J.

    2011-01-01

    Cancer chemotherapeutics like paclitaxel and oxaliplatin produce a dose-limiting chronic sensory peripheral neuropathy that is often accompanied by neuropathic pain. The cause of the neuropathy and pain is unknown. In animal models, paclitaxel-evoked and oxaliplatin-evoked painful peripheral neuropathies are accompanied by an increase in the incidence of swollen and vacuolated mitochondria in peripheral nerve axons. It has been proposed that mitochondrial swelling and vacuolation are indicati...

  20. Mini-review: Far peripheral vision.

    Science.gov (United States)

    Simpson, Michael J

    2017-11-01

    The region of far peripheral vision, beyond 60 degrees of visual angle, is important to the evaluation of peripheral dark shadows (negative dysphotopsia) seen by some intraocular lens (IOL) patients. Theoretical calculations show that the limited diameter of an IOL affects ray paths at large angles, leading to a dimming of the main image for small pupils, and to peripheral illumination by light bypassing the IOL for larger pupils. These effects are rarely bothersome, and cataract surgery is highly successful, but there is a need to improve the characterization of far peripheral vision, for both pseudophakic and phakic eyes. Perimetry is the main quantitative test, but the purpose is to evaluate pathologies rather than characterize vision (and object and image regions are no longer uniquely related in the pseudophakic eye). The maximum visual angle is approximately 105 0 , but there is limited information about variations with age, race, or refractive error (in case there is an unexpected link with the development of myopia), or about how clear cornea, iris location, and the limiting retina are related. Also, the detection of peripheral motion is widely recognized to be important, yet rarely evaluated. Overall, people rarely complain specifically about this visual region, but with "normal" vision including an IOL for >5% of people, and increasing interest in virtual reality and augmented reality, there are new reasons to characterize peripheral vision more completely. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mutual augmentation of the induction of the histamine-forming enzyme, histidine decarboxylase, between alendronate and immuno-stimulants (IL-1, TNF, and LPS), and its prevention by clodronate

    International Nuclear Information System (INIS)

    Deng Xue; Yu Zhiqian; Funayama, Hiromi; Shoji, Noriaki; Sasano, Takashi; Iwakura, Yoichiro; Sugawara, Shunji; Endo, Yasuo

    2006-01-01

    Nitrogen-containing bisphosphonates (N-BPs), powerful anti-bone-resorptive drugs, have inflammatory side effects, while histamine is not only an inflammatory mediator, but also an immuno-modifier. In murine models, a single intraperitoneal injection of an N-BP induces various inflammatory reactions, including the induction of the histamine-forming enzyme histidine decarboxylase (HDC) in tissues important in immune responses (such as liver, lungs, spleen, and bone marrow). Lipopolysaccharide (LPS) and the proinflammatory cytokines IL-1 and TNF are also capable of inducing HDC. We reported previously that in mice (i) the inflammatory actions of N-BPs depend on IL-1 (ii) N-BP pretreatment augments both LPS-stimulated IL-1 production and HDC induction, and (iii) the co-administration of clodronate (a non-N-BP) with an N-BP inhibits the latter's inflammatory actions (including HDC induction). Here, we add the new findings that (a) pretreatment with alendronate (a typical N-BP) augments both IL-1- and TNF-induced HDC elevations, (b) LPS pretreatment augments the alendronate-induced HDC elevation, (c) co-administration of clodronate with alendronate abolishes these augmentations, (d) alendronate does not induce HDC in IL-1-deficient mice even if they are pretreated with LPS, and (e) alendronate increases IL-1β in all tissues tested, but not in the serum. These results suggest that (1) there are mutual augmentations between alendronate and immuno-stimulants (IL-1, TNF, and LPS) in HDC induction, (2) tissue IL-1β is important in alendronate-stimulated HDC induction, and (3) combination use of clodronate may have the potential to reduce the inflammatory effects of alendronate (we previously found that clodronate, conveniently, does not inhibit the anti-bone-resorptive activity of alendronate)

  2. Training pharmacy technicians to administer immunizations.

    Science.gov (United States)

    McKeirnan, Kimberly C; Frazier, Kyle R; Nguyen, Maryann; MacLean, Linda Garrelts

    To evaluate the effectiveness of an immunization training program for pharmacy technicians on technicians' self-reported confidence, knowledge, and number of vaccines administered. A one-group pre- and posttest study was conducted with certified pharmacy technicians from Albertsons and Safeway community pharmacies in Idaho. Thirty pharmacy technicians were recruited to participate in an immunization administration training program comprising a 2-hour home study and a 2-hour live training. Pharmacy technician scores on a 10-question knowledge assessment, responses on a pre- and posttraining survey, and number of immunizations administered in the 6-month period following the training were collected. Twenty-five pharmacy technicians completed the home study and live portions of the immunization training program. All 29 pharmacy technicians who took the home study assessment passed with greater than 70% competency on the first attempt. Technicians self-reported increased confidence with immunization skills between the pretraining survey and the posttraining survey. From December 2016 to May 2017, the technicians administered 953 immunizations with 0 adverse events reported. For the first time, pharmacy technicians have legally administered immunizations in the United States. Trained pharmacy technicians demonstrated knowledge of vaccination procedures and self-reported improved confidence in immunization skills and administered immunizations after participating in a 4-hour training program. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. SOCS3 Expression Correlates with Severity of Inflammation, Expression of Proinflammatory Cytokines, and Activation of STAT3 and p38 MAPK in LPS-Induced Inflammation In Vivo

    Directory of Open Access Journals (Sweden)

    João Antônio Chaves de Souza

    2013-01-01

    Full Text Available SOCS3 is an inducible endogenous negative regulator of JAK/STAT pathway, which is relevant in inflammatory conditions. We used a model of LPS-induced periodontal disease in rats to correlate SOCS3 expression with the inflammatory status. In vitro we used a murine macrophage cell line to assess the physical interaction between SOCS3 and STAT3 by coimmunoprecipitation. 30 ug of LPS from Escherichia coli were injected in the gingival tissues on the palatal aspect of first molars of the animals 3x/week for up to 4 weeks. Control animals were injected with the vehicle (PBS. The rats were sacrificed at 7, 15, and 30 days. Inflammation and gene expression were assessed by stereometric analysis, immunohistochemistry, RT-qPCR, and western blot. LPS injections increased inflammation, paralleled by an upregulation of SOCS3, of the proinflammatory cytokines IL-1β, IL-6, and TNF-α and increased phosphorylation of STAT3 and p38 MAPK. SOCS3 expression accompanied the severity of inflammation and the expression of proinflammatory cytokines, as well as the activation status of STAT3 and p38 MAPK. LPS stimulation in a macrophage cell line in vitro induced transient STAT3 activation, which was inversely correlated with a dynamic physical interaction with SOCS3, suggesting that this may be a mechanism for SOCS3 regulatory function.

  4. Long term clinical outcome of peripheral nerve stimulation in patients with chronic peripheral neuropathic pain

    DEFF Research Database (Denmark)

    Calenbergh, F. Van; Gybels, J.; Laere, K. Van

    2009-01-01

    BACKGROUND: Chronic neuropathic pain after injury to a peripheral nerve is known to be resistant to treatment. Peripheral nerve stimulation is one of the possible treatment options, which is, however, not performed frequently. In recent years we have witnessed a renewed interest for PNS. The aim...... of the present study was to evaluate the long-term clinical efficacy of PNS in a group of patients with peripheral neuropathic pain treated with PNS since the 1980s. METHODS: Of an original series of 11 patients, 5 patients could be invited for clinical examination, detailed assessment of clinical pain and QST...... functioning) also showed positive effects. Quantitative Sensory Testing results did not show significant differences in cold pain and heat pain thresholds between the "ON" and "OFF" conditions. CONCLUSION: In selected patients with peripheral neuropathic pain PNS remains effective even after more than 20...

  5. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs, such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC. Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins.

  6. Suppression of bovine lymphocyte function by treatment with physiologic concentrations of cortisone

    Energy Technology Data Exchange (ETDEWEB)

    Ojo-Amaize, E.A.; Paape, M.J.; Guidry, A.J.; Mayer, H.K.

    1986-03-01

    The blastogenic response of peripheral blood lymphocytes (PBL) (8 cows) to capsular antigen extract of Staphylococcus aureus, PHA and LPS was measured in vitro using /sup 5/H-thymidine pulse labelling. isolated PBL were treated in vitro for 6-8 days with 10, 25 and 45 ng/ml cortisone. These concentrations simulate serum corticosteroid levels during environmental stress, acute clinical mastitis and ACTH therapy, respectively. To determine the minimal concentration of cortisone that would induce suppression, PBL were also incubated with increasing concentrations of cortisone starting at 10 pg/ml. All concentrations of cortisone caused a significant (P<0.01) depression of lymphocyte blastogenic response to S. aureus, PHA and LPS. Macrophage depletion experiments showed no macrophage suppressor effects. Both the blastogenic response of untreated peripheral blood lymphocytes to S. aureus, PHA and LPS and the degree to which that response was suppressed by cortisone differed significantly among cows. Results indicate that cortisone levels found during physiological stress and after therapeutic administration of ACTH can suppress lymphocyte function.

  7. Nurse-administered propofol sedation for endoscopy

    DEFF Research Database (Denmark)

    Jensen, J T; Vilmann, P; Horsted, T

    2011-01-01

    The aim of the present study was to perform a risk analysis during the implementation phase of nurse-administered propofol sedation (NAPS) and to validate our structured training program.......The aim of the present study was to perform a risk analysis during the implementation phase of nurse-administered propofol sedation (NAPS) and to validate our structured training program....

  8. Effects of taurine on gut microbiota and metabolism in mice.

    Science.gov (United States)

    Yu, Haining; Guo, Zhengzhao; Shen, Shengrong; Shan, Weiguang

    2016-07-01

    As being a necessary amino acid, taurine plays an important role in the regulation of neuroendocrine functions and nutrition. In this study, effects of taurine on mice gut microbes and metabolism were investigated. BALB/C mice were randomly divided into three experimental groups: The first group was administered saline (CK), the second was administered 165 mg/kg natural taurine (NE) and the third one administered 165 mg/kg synthetic taurine (CS). Gut microbiota composition in mice feces was analyzed by metagenomics technology, and the content of short-chain fatty acids (SCFA) in mice feces was detected by gas chromatography (GC), while the concentrations of lipopolysaccharide (LPS) and superoxide dismutase (SOD) were detected by a LPS ELISA kit and a SOD assay kit, respectively. The results showed that the effect of taurine on gut microbiota could reduce the abundance of Proteobacteria, especially Helicobacter. Moreover, we found that the SCFA content was increased in feces of the NE group while LPS content was decreased in serum of the NE group; the SOD activity in serum and livers of the NE and CS groups were not changed significantly compare to that of the CK group. In conclusion, taurine could regulate the gut micro-ecology, which might be of benefit to health by inhibiting the growth of harmful bacteria, accelerating the production of SCFA and reducing LPS concentration.

  9. LPS structure and PhoQ activity are important for Salmonella Typhimurium virulence in the Galleria mellonella infection model [corrected].

    Directory of Open Access Journals (Sweden)

    Jennifer K Bender

    Full Text Available The larvae of the wax moth, Galleria mellonella, have been used experimentally to host a range of bacterial and fungal pathogens. In this study we evaluated the suitability of G. mellonella as an alternative animal model of Salmonella infection. Using a range of inoculum doses we established that the LD₅₀ of SalmonellaTyphimurium strain NCTC 12023 was 3.6 × 10³ bacteria per larva. Further, a set of isogenic mutant strains depleted of known virulence factors was tested to identify determinants essential for S. Typhimurium pathogenesis. Mutants depleted of one or both of the type III secretion systems encoded by Salmonella Pathogenicity Islands 1 and 2 showed no virulence defect. In contrast, we observed reduced pathogenic potential of a phoQ mutant indicating an important role for the PhoPQ two-component signal transduction system. Lipopolysaccharide (LPS structure was also shown to influence Salmonella virulence in G. mellonella. A waaL(rfaL mutant, which lacks the entire O-antigen (OAg, was virtually avirulent, while a wzz(ST/wzz(fepE double mutant expressing only a very short OAg was highly attenuated for virulence. Furthermore, shortly after infection both LPS mutant strains showed decreased replication when compared to the wild type in a flow cytometry-based competitive index assay. In this study we successfully established a G. mellonella model of S. Typhimurium infection. By identifying PhoQ and LPS OAg length as key determinants of virulence in the wax moth larvae we proved that there is an overlap between this and other animal model systems, thus confirming that the G. mellonella infection model is suitable for assessing aspects of Salmonella virulence function.

  10. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb.

    Science.gov (United States)

    Kowalska, Berta; Sudoł-Szopińska, Iwona

    2012-06-01

    The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the "elevator technique". All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the "Journal of Ultrasonography".

  11. Anti-neuroinflammatory Activity of Elephantopus scaber L. via Activation of Nrf2/HO-1 Signaling and Inhibition of p38 MAPK Pathway in LPS-Induced Microglia BV-2 Cells

    Directory of Open Access Journals (Sweden)

    Chim-Kei Chan

    2017-06-01

    Full Text Available Elephantopus scaber L. (family: Asteraceae has been traditionally utilized as a folkloric medicine and scientifically shown to exhibit anti-inflammatory activities in various in vivo inflammatory models. Given the lack of study on the effect of E. scaber in neuroinflammation, this study aimed to investigate the anti-neuroinflammatory effect and the underlying mechanisms of ethyl acetate fraction from the leaves of E. scaber (ESEAF on the release of pro-inflammatory mediators in lipopolysaccharide (LPS-induced microglia cells (BV-2. Present findings showed that ESEAF markedly attenuated the translocation of NF-κB to nucleus concomitantly with the significant mitigation on the LPS-induced production of NO, iNOS, COX-2, PGE2, IL-1β, and TNF-α. These inflammatory responses were reduced via the inhibition of p38. Besides, ESEAF was shown to possess antioxidant activities evident by the DPPH and SOD scavenging activities. The intracellular catalase enzyme activity was enhanced by ESEAF in the LPS-stimulated BV-2 cells. Furthermore, the formation of ROS induced by LPS in BV-2 cells was reduced upon the exposure to ESEAF. Intriguingly, the reduction of ROS was found in concerted with the activation of Nrf2 and HO-1. It is conceivable that the activation promotes the scavenging power of antioxidant enzymes as well as to ameliorate the inflammatory response in LPS-stimulated BV-2 cells. Finally, the safety profile analysis through oral administration of ESEAF at 2000 mg/kg did not result in any mortalities, adverse effects nor histopathologic abnormalities of organs in mice. Taken altogether, the cumulative findings suggested that ESEAF holds the potential to develop as nutraceutical for the intervention of neuroinflammatory disorders.

  12. Treatment of painful diabetic peripheral neuropathy.

    Science.gov (United States)

    Rosenberg, Casandra J; Watson, James C

    2015-02-01

    Painful diabetic peripheral neuropathy impairs quality of life and can be difficult to treat. To discuss current treatment recommendations for painful diabetic peripheral neuropathy. Literature review. Systematic review of the literature discussing treatment of painful diabetic peripheral neuropathy. Existing treatment guidelines were studied and compared. Painful diabetic peripheral neuropathy occurs in about one in six people with diabetes. This condition impairs quality of life and increases healthcare costs. Treatment recommendations exist, but individual patient therapy can require a trial-and-error approach. Many treatment options have adjuvant benefits or side effects which should be considered prior to initiating therapy. Often, a combination of treatment modalities with various mechanisms of action is required for adequate pain control. Adequate medication titration and a reasonable trial period should be allowed. The treatment of painful diabetic peripheral neuropathy can be challenging, but effective management can improve patient's quality of life. Painful diabetic peripheral neuropathy impairs quality of life and can be difficult to treat. Many treatment options have adjuvant benefits or side effects which should be considered prior to initiating therapy. Often, a combination of treatment modalities with various mechanisms of action is required for adequate pain control. © The International Society for Prosthetics and Orthotics 2014.

  13. Comparison of the effects of peripherally administered kisspeptins

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Bentsen, Agnete H; Ansel, Laura

    2008-01-01

    examined the acute effect on serum levels of free testosterone in the adult male mouse after systemic administration of kisspeptins with different lengths of both human and mouse origin. Mouse kisspeptin-10 and -52 dose-dependently increased serum testosterone, and both peptides showed similar potency...... and efficacy. Human kisspeptin-10 and kisspeptin-54 evoked robust increase in serum testosterone, with the same potency as for mouse kisspeptins. Other members of the RFRP family of peptides, i.e. RFRP-1 and -3 were inactive. Time-course experiments revealed that the longer forms had a slower onset of action...

  14. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    Science.gov (United States)

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels. © 2015 International Federation for Cell Biology.

  15. Promoting peripheral myelin repair.

    Science.gov (United States)

    Zhou, Ye; Notterpek, Lucia

    2016-09-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Peripheral neuropathy in HIV: prevalence and risk factors

    Science.gov (United States)

    Evans, Scott R.; Ellis, Ronald J.; Chen, Huichao; Yeh, Tzu-min; Lee, Anthony J.; Schifitto, Giovanni; Wu, Kunling; Bosch, Ronald J.; McArthur, Justin C.; Simpson, David M.; Clifford, David B.

    2011-01-01

    Objectives To estimate neuropathic sign/symptom rates with initiation of combination antiretroviral therapy (cART) in HIV-infected ART-naive patients, and to investigate risk factors for: peripheral neuropathy and symptomatic peripheral neuropathy (SPN), recovery from peripheral neuropathy/SPN after neurotoxic ART (nART) discontinuation, and the absence of peripheral neuropathy/SPN while on nART. Design AIDS Clinical Trials Group (ACTG) Longitudinal Linked Randomized Trial participants who initiated cART in randomized trials for ART-naive patients were annually screened for symptoms/signs of peripheral neuropathy. ART use and disease characteristics were collected longitudinally. Methods Peripheral neuropathy was defined as at least mild loss of vibration sensation in both great toes or absent/hypoactive ankle reflexes bilaterally. SPN was defined as peripheral neuropathy and bilateral symptoms. Generalized estimating equation logistic regression was used to estimate associations. Results Two thousand, one hundred and forty-one participants were followed from January 2000 to June 2007. Rates of peripheral neuropathy/SPN at 3 years were 32.1/8.6% despite 87.1% with HIV-1RNA 400 copies/ml or less and 70.3% with CD4 greater than 350 cells/µl. Associations with higher odds of peripheral neuropathy included older patient age and current nART use. Associations with higher odds of SPN included older patient age, nART use, and history of diabetes mellitus. Associations with lower odds of recovery after nART discontinuation included older patient age. Associations with higher odds of peripheral neuropathy while on nART included older patient age and current protease inhibitor use. Associations with higher odds of SPN while on nART included older patient age, history of diabetes, taller height, and protease inhibitor use. Conclusion Signs of peripheral neuropathy remain despite virologic/immunologic control but frequently occurs without symptoms. Aging is a risk factor for

  17. A Systematic Review of Experimental and Clinical Acupuncture in Chemotherapy-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Giovanna Franconi

    2013-01-01

    Full Text Available Chemotherapy-induced peripheral neuropathy (CIPN is a common side effect that can be very disabling and can limit or delay the dose of chemotherapy that can be administered. Acupuncture may be effective for treating peripheral neuropathy. The aim of this study was to review the available literature on the use of acupuncture for CIPN. The systematic literature search was performed using MEDLINE, Google Scholar, Cochrane Database, CINHAL, and ISI Proceedings. Hand searching was conducted, and consensus was reached on all extracted data. Only papers in the English language were included, irrespective of study design. From 3989 retrieved papers, 8 relevant papers were identified. One was an experimental study which showed that electroacupuncture suppressed CIPN pain in rats. In addition, there were 7 very heterogeneous clinical studies, 1 controlled randomised study using auricular acupuncture, 2 randomized controlled studies using somatic acupuncture, and 3 case series/case reports which suggested a positive effect of acupuncture in CIPN. Conclusions. Only one controlled randomised study demonstrated that acupuncture may be beneficial for CIPN. All the clinical studies reviewed had important methodological limitations. Further studies with robust methodology are needed to demonstrate the role of acupuncture for treating CIPN resulting from cancer treatment.

  18. Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Steven Biesmans

    2013-01-01

    Full Text Available Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice and increased immunoreactivity against the microglial marker ionized calcium-binding adapter molecule 1 in the dentate gyrus of wild-type mice. Furthermore, LPS treatment caused a strong but transient increase in cytokine levels in the serum and brain. In addition to studying LPS-induced neuroinflammation, we tested whether sickness could be separated from depressive-like behavior by evaluating LPS-treated mice in a panel of behavioral paradigms. Our behavioral data indicate that systemic LPS administration caused sickness and mild depressive-like behavior. However, due to the overlapping time course and mild effects on depression-related behavior per se, it was not possible to separate sickness from depressive-like behavior in the present rodent model.

  19. Peripheral Vestibular System Disease in Vestibular Schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Hansen, Søren; Caye-Thomasen, Per

    2015-01-01

    density of the peripheral vestibular nerve branches, and atrophy of the neuroepithelium of the vestibular end organs. In cases with small tumors, peripheral disease occurred only in the tissue structures innervated by the specific nerve from which the tumor originated. CONCLUSION: Vestibular schwannomas...... are associated with distinctive disease of the peripheral vestibular tissue structures, suggesting anterograde degeneration and that dizziness in these patients may be caused by deficient peripheral vestibular nerve fibers, neurons, and end organs. In smaller tumors, a highly localized disease occurs, which...

  20. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-01-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti-inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX-2, iNOS, pro-inflammatory cytokines [tumor necrosis factor-α and interleukin (IL)-1β] and anti-inflammatory cytokines (IL-6 and IL-10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX-2 expression and ROS production, as well as

  1. In vitro effects of monophthalates on cytokine expression in the monocytic cell line THP-1 and in peripheral blood mononuclear cells from allergic and non-allergic donors

    DEFF Research Database (Denmark)

    Glue, C; Millner, A; Bødtger, Uffe

    2002-01-01

    It has recently been shown that plasticizers are present in indoor air dust, which may lead to human exposure via the inhalation route. Moreover, studies have indicated that plasticizers may possess adjuvant effects increasing the health damaging potential of allergens. The aim of this study...... was to investigate the in vitro effect of metabolites of phthalate plastisizers, such as whether an adjuvant effect is paralleled by changes of the cytokine expression in the monocytic cell line THP-1 and in peripheral blood mononuclear cells (PBMCs) from allergics and non-allergics. The toxicity monitored by cell...... viability was determined by incubating THP-1 cells with a 10-fold dilution series of monophthalates for 24 h. At different points in time cytokine expression (IL-1beta, IL-6, IL-12alpha (p35)) in THP-1 cells incubated with non-toxic concentrations of monophthalate (2-20 microg/ml)+/-LPS (1 microg/ml) were...

  2. Hypothyroidism: Can It Cause Peripheral Neuropathy?

    Science.gov (United States)

    Hypothyroidism: Can it cause peripheral neuropathy? Can hypothyroidism cause peripheral neuropathy and, if so, how is it treated? Answers from Todd B. Nippoldt, M.D. Hypothyroidism — a condition in which your ...

  3. Peripheral parenteral nutrition: an option for patients with an indication for short-term parenteral nutrition La nutrición parenteral periférica, alternativa para los pacientes con indicación de nutrición parenteral durante poco tiempo

    OpenAIRE

    M. I. T. D. Correia; J. Guimarâes; L. Cirino de Mattos; K. C. Araújo Gurgel; E. B. Cabral

    2004-01-01

    Objective: The aim of this study was to examine and describe our experience with the use of peripheral parenteral nutrition (PPN). Methods: Patients with an indication for parenteral nutrition for less than 15 days received it via a peripheral vein via a short, 20 or 22 gauge French polyurethane catheter. Parenteral nutrition had a final osmolality of 993 mOsm/l and was administered by infusion pump. The nutritional status of patients was assessed by the Subjective Global Assessment (SGA) tec...

  4. Bioactive Components from Qingwen Baidu Decoction against LPS-Induced Acute Lung Injury in Rats

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2017-04-01

    Full Text Available Qingwen Baidu Decoction (QBD is an extraordinarily “cold” formula. It was traditionally used to cure epidemic hemorrhagic fever, intestinal typhoid fever, influenza, sepsis and so on. The purpose of this study was to discover relationships between the change of the constituents in different extracts of QBD and the pharmacological effect in a rat model of acute lung injury (ALI induced by lipopolysaccharide (LPS. The study aimed to discover the changes in constituents of different QBD extracts and the pharmacological effects on acute lung injury (ALI induced by LPS. The results demonstrated that high dose and middle dose of QBD had significantly potent anti-inflammatory effects and reduced pulmonary edema caused by ALI in rats (p < 0.05. To explore the underlying constituents of QBD, we assessed its influence of six different QBD extracts on ALI and analyzed the different constituents in the corresponding HPLC chromatograms by a Principal Component Analysis (PCA method. The results showed that the pharmacological effect of QBD was related to the polarity of its extracts, and the medium polarity extracts E2 and E5 in particular displayed much better protective effects against ALI than other groups. Moreover, HPLC-DAD-ESI-MSn and PCA analysis showed that verbascoside and angoroside C played a key role in reducing pulmonary edema. In addition, the current study revealed that ethyl gallate, pentagalloylglucose, galloyl paeoniflorin, mudanpioside C and harpagoside can treat ALI mainly by reducing the total cells and infiltration of activated polymorphonuclear leukocytes (PMNs.

  5. Peripheral blood eosinophilia associated with gastrointestinal administration of iodinated contrast media.

    Science.gov (United States)

    Plavsic, Branko M; Newman, Alan C; Reuther, Warren L; Terry, James A; Drnovsek, Valerie H

    2003-03-01

    This study was designed to assess whether gastrointestinal administration of iodinated contrast media results in peripheral blood eosinophilia. We studied 110 patients in a retrospective review. Diatrizoate meglumine and diatrizoate sodium for abdominal CT were administered to 98 of these patients; 22 of the 98 had also been given the same contrast medium administered by enema. The remaining 12 patients were given diatrizoate sodium for gastrointestinal fluoroscopy. A control group of 65 patients underwent single-contrast barium upper gastrointestinal or enema examinations. WBC and eosinophil counts were determined approximately 24 hr before the examination and every 24 hr thereafter, through the ninth day. Eosinophilia was detected in 17 (15.5%) of 110 patients after gastrointestinal administration of iodinated contrast media. The prevalence of eosinophilia after administration of iodinated contrast media was statistically significantly different compared with that in the control group, in which none of the 65 patients had eosinophilia (p contrast agents and lasted through the sixth day, with a peak on the fifth day. The prevalence of eosinophilia was independent of route of application, dose, or type of iodinated contrast medium. Eosinophilia in all cases was clinically asymptomatic. Eosinophilia that is caused by gastrointestinal administration of iodinated contrast media is a transient, clinically silent phenomenon. It may lead to unnecessary workup for known conditions associated with eosinophilia.

  6. Peripheral ameloblastic fibro-odontoma or peripheral developing complex odontoma: report of a case

    DEFF Research Database (Denmark)

    Reibel, Jesper; Grønbæk, Anni Birgitte; Poulsen, Sven

    2011-01-01

    BACKGROUND. Peripheral (extraosseous) odontogenic tumors are rare. CASE REPORT. This report describes a case which illustrates the clinical and histopathological features of a lesion in an 8-year-old, healthy Caucasian girl that on purely morphological grounds would seem to be an ameloblastic fibro-odontoma......, but may represent a case of a peripheral developing complex odontoma. CONCLUSION. Conservative surgical enucleation of the lesion was followed by unbcomplicated healing and no recurrence was seen....

  7. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  8. Promoting peripheral myelin repair

    OpenAIRE

    Zhou, Ye; Notterpek, Lucia

    2016-01-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the ...

  9. Expression Analysis of Immune Related Genes Identified from the Coelomocytes of Sea Cucumber (Apostichopus japonicus in Response to LPS Challenge

    Directory of Open Access Journals (Sweden)

    Ying Dong

    2014-10-01

    Full Text Available The sea cucumber (Apostichopus japonicus occupies a basal position during the evolution of deuterostomes and is also an important aquaculture species. In order to identify more immune effectors, transcriptome sequencing of A. japonicus coelomocytes in response to lipopolysaccharide (LPS challenge was performed using the Illumina HiSeq™ 2000 platform. One hundred and seven differentially expressed genes were selected and divided into four functional categories including pathogen recognition (25 genes, reorganization of cytoskeleton (27 genes, inflammation (41 genes and apoptosis (14 genes. They were analyzed to elucidate the mechanisms of host-pathogen interactions and downstream signaling transduction. Quantitative real-time polymerase chain reactions (qRT-PCRs of 10 representative genes validated the accuracy and reliability of RNA sequencing results with the correlation coefficients from 0.88 to 0.98 and p-value <0.05. Expression analysis of immune-related genes after LPS challenge will be useful in understanding the immune response mechanisms of A. japonicus against pathogen invasion and developing strategies for resistant markers selection.

  10. Peripheral cemento-ossifying fibroma of maxilla.

    Science.gov (United States)

    Chatterjee, Anirban; Ajmera, Neha; Singh, Amit

    2010-07-01

    Peripheral cemento-ossifying fibroma is a reactive gingival overgrowth occurring frequently in anterior maxilla. It is a slow-growing benign tumor which may lead to pathologic migration and other periodontal problems, so it should be excised as soon as possible. The recurrence rate of peripheral cemento-ossifying fibroma is reported to be 8% to 20%, so a close postoperative follow-up is required. Herein, we are reporting a similar case of peripheral cemento-ossifying fibroma in the maxillary anterior region.

  11. Coaching Peripheral Vision Training for Soccer Athletes

    Science.gov (United States)

    Marques, Nelson Kautzner, Jr.

    2010-01-01

    Brazilian Soccer began developing its current emphasis on peripheral vision in the late 1950s, by initiative of coach of the Canto do Rio Football Club, in Niteroi, Rio de Janeiro, a pioneer in the development of peripheral vision training in soccer players. Peripheral vision training gained world relevance when a young talent from Canto do Rio,…

  12. [Ultrasound-guided peripheral catheterization].

    Science.gov (United States)

    Salleras-Duran, Laia; Fuentes-Pumarola, Concepció

    2016-01-01

    Peripheral catheterization is a technique that can be difficult in some patients. Some studies have recently described the use of ultrasound to guide the venous catheterization. To describe the success rate, time required, complications of ultrasound-guided peripheral venous catheterization. and patients and professionals satisfaction The search was performed in databases (Medline-PubMed, Cochrane Library, CINAHL and Cuiden Plus) for studies published about ultrasound-guided peripheral venous catheterization performed on patients that provided results on the success of the technique, complications, time used, patient satisfaction and the type of professional who performed the technique. A total of 21 studies were included. Most of them get a higher success rate 80% in the catheterization ecoguide and time it is not higher than the traditional technique. The Technical complications analyzed were arterial puncture rates and lower nerve 10%. In all studies measuring and comparing patient satisfaction in the art ecoguide is greater. Various professional groups perform the technique. The use of ultrasound for peripheral pipes has a high success rate, complications are rare and the time used is similar to that of the traditional technique. The technique of inserting catheters through ultrasound may be learned by any professional group performing venipuncture. Finally, it gets underscores the high patient satisfaction with the use of this technique. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  13. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway.

    Science.gov (United States)

    Cheng, Xiao; Yang, Ying-Lin; Yang, Huan; Wang, Yue-Hua; Du, Guan-Hua

    2018-03-01

    Kaempferol is a natural flavonoid with many biological activities including anti-oxidation and anti-inflammation. Nevertheless, its anti-neuroinflammation role and the relevant mechanism remain unclear. The present study was to investigate effects of kaempferol against LPS-induced neuroinflammation and blood-brain barrier dysfunction as well as the mechanism in mice. BALB/c mice were treated with LPS 5mg/kg to induce inflammation after pre-treatment with kaempferol 25, 50, or 100mg/kg for 7days. The results showed that kaempferol reduced the production of various pro-inflammatory factors and inflammatory proteins including IL-1β, IL-6, TNF-α, MCP-1, COX-2 and iNOS in brain tissues. In addition, kaempferol also protected BBB integrity and increased BBB related proteins including occludin-1, claudin-1 and CX43 in brain of LPS-induced mice. Furthermore, kaempferol significantly reduced HMGB1 level and suppressed TLR4/MyD88 inflammatory pathway in both transcription level and translation level. These results collectively suggested that kaempferol might be a promising neuroprotective agent for alleviating inflammatory responses and BBB dysfunction by inhibiting HMGB1 release and down-regulating TLR4/MyD88 inflammatory pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Xanthohumol ameliorates lipopolysaccharide (LPS-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2017-08-01

    Full Text Available Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2 and/or AMP-activated protein kinase (AMPK activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI. Xanthohumol (Xn, a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2-/- mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway. Keywords: Xanthohumol, Acute lung injury, Oxidative stress

  15. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb

    Directory of Open Access Journals (Sweden)

    Berta Kowalska

    2012-06-01

    Full Text Available The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the “elevator technique”. All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the “Journal of Ultrasonography”.

  16. Organ culture of C57BL/6 mouse arteries with LPS as an in vitro model of vascular inflammation

    DEFF Research Database (Denmark)

    Outzen, Emilie Middelbo; Mehryar, Rahila; Boonen, Harrie C.M.

    Background: Vascular inflammation is believed to be involved in the pathogenesis of various cardiovascular diseases, the study of which often involves use of the mouse strain C57BL/6. In vivo studies can, however, be difficult to control and interpret. Aim of the study: To set up and characterise...... an in vitro model for studying vascular inflammation and function in cultured arteries from C57BL/6 mice. Methods: Segments of abdominal aorta and mesenteric arteries (MA) were incubated for 24 hours at 37̊C and 95% O2/5% CO2 in DMEM ± 100 ng/mL LPS. Aorta segments were frozen for molecular studies...... was achieved at a normalisation factor of 0.9 (0.91 ± 0.06, mean ± SEM, n = 9) as observed (0.85 ± 0.06, mean ± SEM, n = 3) and previously described in rat MA (Mulvany and Halpern, 1977). Furthermore, preliminary findings show that organ culture with 100 ng/mL LPS decreases endothelium-dependent dilation of C...

  17. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Sebastian Molinett

    2015-01-01

    Full Text Available The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day and then subjected to LPS-induced liver injury (5 mg/kg. Transaminases and histological studies revealed a reduction in liver injury in rats fed with strawberry aqueous extract compared with the control group. Additionally, white strawberry supplementation significantly reduced the serum levels and gene expression of TNF-α, IL-6, and IL-1β cytokines compared with nonsupplemented rats. The level of F2-isoprostanes and GSH/GSSG indicated a reduction in liver oxidative stress by the consumption of strawberry aqueous extract. Altogether, the evidence suggests that dietary supplementation of rats with a Chilean white strawberry aqueous extract favours the normalization of oxidative and inflammatory responses after a liver injury induced by LPS.

  18. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats.

    Science.gov (United States)

    Molinett, Sebastian; Nuñez, Francisca; Moya-León, María Alejandra; Zúñiga-Hernández, Jessica

    2015-01-01

    The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day) and then subjected to LPS-induced liver injury (5 mg/kg). Transaminases and histological studies revealed a reduction in liver injury in rats fed with strawberry aqueous extract compared with the control group. Additionally, white strawberry supplementation significantly reduced the serum levels and gene expression of TNF-α, IL-6, and IL-1β cytokines compared with nonsupplemented rats. The level of F2-isoprostanes and GSH/GSSG indicated a reduction in liver oxidative stress by the consumption of strawberry aqueous extract. Altogether, the evidence suggests that dietary supplementation of rats with a Chilean white strawberry aqueous extract favours the normalization of oxidative and inflammatory responses after a liver injury induced by LPS.

  19. Design, synthesis, and structure-activity relationship study of halogen containing 2-benzylidene-1-indanone derivatives for inhibition of LPS-stimulated ROS production in RAW 264.7 macrophages.

    Science.gov (United States)

    Shrestha, Aarajana; Jin Oh, Hye; Kim, Mi Jin; Pun, Nirmala Tilija; Magar, Til Bahadur Thapa; Bist, Ganesh; Choi, Hongseok; Park, Pil-Hoon; Lee, Eung-Seok

    2017-06-16

    As a continuous effort to discover new potential anti-inflammatory agents, we systematically designed and synthesized sixty-one 2-benzylidene-1-indanone derivatives with structural modification of chalcone, and evaluated their inhibitory activity on LPS-stimulated ROS production in RAW 264.7 macrophages. Systematic structure-activity relationship study revealed that hydroxyl group in C-5, C-6, or C-7 position of indanone moiety, and ortho-, meta-, or para-fluorine, trifluoromethyl, trifluoromethoxy, and bromine functionalities in phenyl ring are important for inhibition of ROS production in LPS-stimulated RAW 264.7 macrophages. Among all the tested compounds, 6-hydroxy-2-(2-(trifluoromethoxy) benzylidene)-2,3-dihydro-1H-inden-1-one (compound 44) showed the strongest inhibitory activity of ROS production. Further studies on the mode of action revealed that compound 44 potently suppressed LPS-stimulated ROS production via modulation of NADPH oxidase. The findings of this work could be useful to design 2-benzylidene-indanone based lead compounds as novel anti-inflammatory agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Peripheral Neuropathy – Clinical and Electrophysiological Considerations

    Science.gov (United States)

    Chung, Tae; Prasad, Kalpana; Lloyd, Thomas E.

    2013-01-01

    This article is a primer on the pathophysiology and clinical evaluation of peripheral neuropathy for the radiologist. Magnetic resonance neurography (MRN) has utility in the diagnosis of many focal peripheral nerve lesions. When combined with history, examination, electrophysiology, and laboratory data, future advancements in high-field MRN may play an increasingly important role in the evaluation of patients with peripheral neuropathy. PMID:24210312