WorldWideScience

Sample records for peripheral innervation patterns

  1. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    Science.gov (United States)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  2. The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula

    Science.gov (United States)

    Fernandez, C.; Goldberg, J. M.; Baird, R. A.

    1990-01-01

    1. Nerve fibers supplying the utricular macula of the chinchilla were labeled by extracellular injection of horseradish peroxidase into the vestibular nerve. The peripheral terminations of individual fibers were reconstructed and related to the regions of the end organ they innervated and to the sizes of their parent axons. 2. The macula is divided into medial and lateral parts by the striola, a narrow zone that runs for almost the entire length of the sensory epithelium. The striola can be distinguished from the extrastriolar regions to either side of it by the wider spacing of its hair cells. Calyx endings in the striola have especially thick walls, and, unlike similar endings in the extrastriola, many of them innervate more than one hair cell. The striola occupies 10% of the sensory epithelium; the lateral extrastriola, 50%; and the medial extrastriola, 40%. 3. The utricular nerve penetrates the bony labyrinth anterior to the end organ. Axons reaching the anterior part of the sensory epithelium run directly through the connective tissue stroma. Those supplying more posterior regions first enter a fiber layer located at the bottom of the stroma. Approximately one-third of the axons bifurcate below the epithelium, usually within 5-20 microns of the basement membrane. Bifurcations are more common in fibers destined for the extrastriola than for the striola. 4. Both calyx and bouton endings were labeled. Calyces can be simple or complex. Simple calyces innervate individual hair cells, whereas complex calyces supply 2-4 adjacent hair cells. Complex endings are more heavily concentrated in the striola than in the extrastriola. Simple calyces and boutons are found in all parts of the epithelium. Calyces emerge from the parent axon or one of its thick branches. Boutons, whether en passant or terminal, are located on thin collaterals. 5. Fibers can be classified into calyx, bouton, or dimorphic categories. The first type only has calyx endings; the second, only bouton

  3. Discrete innervation of murine taste buds by peripheral taste neurons.

    Science.gov (United States)

    Zaidi, Faisal N; Whitehead, Mark C

    2006-08-09

    The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells innervating single buds on the tongue were identified. We found that three to five ganglion cells innervate a single bud. Injecting neighboring buds with different color markers showed that the buds are primarily innervated by separate populations of geniculate cells (i.e., multiply labeled ganglion cells are rare). In other words, each taste bud is innervated by a population of neurons that only connects with that bud. Palate bud injections revealed a similar, relatively exclusive receptoneural relationship. Injecting buds in different regions of the tongue did not reveal a topographic representation of buds in the geniculate ganglion, despite a stereotyped patterned arrangement of fungiform buds as rows and columns on the tongue. However, ganglion cells innervating the tongue and palate were differentially concentrated in lateral and rostral regions of the ganglion, respectively. The principal finding that small groups of ganglion cells send sensory fibers that converge selectively on a single bud is a new-found measure of specific matching between the two principal cellular elements of the mouse peripheral taste system. Repetition of the experiments in the hamster showed a more divergent innervation of buds in this species. The results indicate that whatever taste quality is signaled by a murine geniculate ganglion neuron, that signal reflects the activity of cells in a single taste bud.

  4. Cortical Reorganization in Dual Innervation by Single Peripheral Nerve.

    Science.gov (United States)

    Zheng, Mou-Xiong; Shen, Yun-Dong; Hua, Xu-Yun; Hou, Ao-Lin; Zhu, Yi; Xu, Wen-Dong

    2017-09-21

    Functional recovery after peripheral nerve injury and repair is related with cortical reorganization. However, the mechanism of innervating dual targets by 1 donor nerve is largely unknown. To investigate the cortical reorganization when the phrenic nerve simultaneously innervates the diaphragm and biceps. Total brachial plexus (C5-T1) injury rats were repaired by phrenic nerve-musculocutaneous nerve transfer with end-to-side (n = 15) or end-to-end (n = 15) neurorrhaphy. Brachial plexus avulsion (n = 5) and sham surgery (n = 5) rats were included for control. Behavioral observation, electromyography, and histologic studies were used for confirming peripheral nerve reinnervation. Cortical representations of the diaphragm and reinnervated biceps were studied by intracortical microstimulation techniques before and at months 0.5, 3, 5, 7, and 10 after surgery. At month 0.5 after complete brachial plexus injury, the motor representation of the injured forelimb disappeared. The diaphragm representation was preserved in the "end-to-side" group but absent in the "end-to-end" group. Rhythmic contraction of biceps appeared in "end-to-end" and "end-to-side" groups, and the biceps representation reappeared in the original biceps and diaphragm areas at months 3 and 5. At month 10, it was completely located in the original biceps area in the "end-to-end" group. Part of the biceps representation remained in the original diaphragm area in the "end-to-side" group. Destroying the contralateral motor cortex did not eliminate respiration-related contraction of biceps. The brain tends to resume biceps representation from the original diaphragm area to the original biceps area following phrenic nerve transfer. The original diaphragm area partly preserves reinnervated biceps representation after end-to-side transfer. Copyright © 2017 by the Congress of Neurological Surgeons

  5. Cultured embryonic non-innervated mouse muzzle is capable of generating a whisker pattern.

    Science.gov (United States)

    Andrés, F L; Van Der Loos, H

    1983-01-01

    The whisker pattern on the muzzle of the mouse is mapped in the contralateral parietal neocortex, each whisker follicle projecting to its own multineuronal unit ('barrel'). To determine the role, if any, of the peripheral innervation in the establishment of the vibrissal array, we cultured non-innervated prospective whiskerpads from 9- and 10-day-old embryos, mostly on chorioallantoic membrane. The results show that skin, alone, is capable of generating the whisker pattern, thus adducing a strong argument for the hypothesis that the central brain maps have their origin in the periphery. Copyright © 1983. Published by Elsevier Ltd.

  6. Innervation pattern of polycystic ovaries in the women.

    Science.gov (United States)

    Wojtkiewicz, Joanna; Jana, Barbara; Kozłowska, Anna; Crayton, Robert; Majewski, Mariusz; Zalecki, Michał; Baranowski, Włodzimierz; Radziszewski, Piotr

    2014-11-01

    The aim of the present study was to determine the changes in both the distribution pattern and density of nerve fibers containing dopamine β-hydroxylase (DβH), vesicular acetylcholine transporter (VAChT), neuronal nitric oxide synthase (nNOS), substance P (SP), calcitonin gene related peptide (CGRP), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), somatostatin (SOM), galanin (GAL) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the human polycystic ovaries. In the polycystic ovaries, when compared to the immunoreactions pattern observed in the control gonads, following changes were revealed: (1) an increase in the number of DβH-, VAChT-, VIP- or GAL-immunoreactive (IR) nerve fibers within the stroma as well as in the number of DβH-IR fibers near primordial follicles and medullar veins and venules; (2) a reduction in the number of nerve fibers containing nNOS, CGRP, SOM, PACAP within the stroma and in the numbers of CGRP-IR fibers around arteries; (3) an appearance of SP- and GAL-IR fibers around medullar and cortical arteries, arterioles, veins and venules, with except of GAL-IR fibers supplying medullar veins; and (4) the lack of nNOS-IR nerve fibers near primordial follicles and VIP-IR nerves around medullar arteries and arterioles. In conclusion, our results suggest that the changes in the innervation pattern of the polycystic ovaries in human may play an important role in the pathogenesis and/or course of this disorder. Copyright © 2014. Published by Elsevier B.V.

  7. Magnetic resonance imaging patterns of mononeuropathic denervation in muscles with dual innervation

    Energy Technology Data Exchange (ETDEWEB)

    Sneag, Darryl B.; Lee, Susan C.; Melisaratus, Darius P. [Hospital for Special Surgery, Department of Radiology and Imaging, New York, NY (United States); Feinberg, Joseph H. [Physical Medicine and Rehabilitation, Hospital for Special Surgery, New York, NY (United States); Amber, Ian [MedStar Georgetown University Hospital, Department of Radiology, DC, Washington (United States)

    2017-12-15

    Magnetic resonance imaging (MRI) of mononeuropathy in muscles with dual innervation depicts geographic denervation corresponding to the affected nerve. Knowledge of the normal distribution of a muscle's neural supply is clinically relevant as partial muscle denervation represents a potential imaging pitfall that can be confused with other pathology, such as muscle strain. This article reviews the normal innervation pattern of extremity muscles with dual supply, providing illustrative examples of mononeuropathy affecting such muscles. (orig.)

  8. Magnetic resonance imaging patterns of mononeuropathic denervation in muscles with dual innervation

    International Nuclear Information System (INIS)

    Sneag, Darryl B.; Lee, Susan C.; Melisaratus, Darius P.; Feinberg, Joseph H.; Amber, Ian

    2017-01-01

    Magnetic resonance imaging (MRI) of mononeuropathy in muscles with dual innervation depicts geographic denervation corresponding to the affected nerve. Knowledge of the normal distribution of a muscle's neural supply is clinically relevant as partial muscle denervation represents a potential imaging pitfall that can be confused with other pathology, such as muscle strain. This article reviews the normal innervation pattern of extremity muscles with dual supply, providing illustrative examples of mononeuropathy affecting such muscles. (orig.)

  9. Innervation pattern of the suprascapular nerve within supraspinatus: a three-dimensional computer modeling study.

    Science.gov (United States)

    Hermenegildo, J A; Roberts, S L; Kim, S Y

    2014-05-01

    The relationship between the innervation pattern of the suprascapular nerve (SSN) and the muscle architecture of supraspinatus has not been thoroughly investigated. The supraspinatus is composed of two architecturally distinct regions: anterior and posterior. Each of these regions is further subdivided into three parts: superficial, middle and deep. The purpose of this study was to investigate the course of the SSN throughout the volume of supraspinatus and to relate the intramuscular branches to the distinct regions and parts of the supraspinatus. The SSN was dissected in thirty formalin embalmed cadaveric specimens and digitized throughout the muscle volume in six of those specimens. The digitized data were modeled using Autodesk(®) Maya(®) 2011. The three-dimensional (3D) models were used to relate the intramuscular innervation pattern to the muscle and tendon architecture defined by Kim et al. (2007, Clin Anat 20:648-655). The SSN bifurcated into two main trunks: medial and lateral. All parts of the anterior region were predominantly innervated by the medial trunk and its proximal and medial branches, whereas all parts of the posterior region predominantly by the lateral trunk and its posterolateral and/or posteromedial branches. The posterior region also received innervation from the proximal branch of the medial trunk in half of the specimens. These findings provide evidence that the anterior and posterior regions are distinct with respect to their innervation. The 3D map of the innervation pattern will aid in planning future clinical studies investigating muscle activation patterns and provide insight into possible injury of the nerve with supraspinatus pathology and surgical techniques. Copyright © 2013 Wiley Periodicals, Inc.

  10. Anatomic Patterns of Renal Arterial Sympathetic Innervation: New Aspects for Renal Denervation.

    Science.gov (United States)

    Imnadze, Guram; Balzer, Stefan; Meyer, Baerbel; Neumann, Joerg; Krech, Rainer Horst; Thale, Joachim; Franz, Norbert; Warnecke, Henning; Awad, Khaled; Hayek, Salim S; Devireddy, Chandan

    2016-12-01

    Initial studies of catheter-based renal arterial sympathetic denervation to lower blood pressure in resistant hypertensive patients renewed interest in the sympathetic nervous system's role in the pathogenesis of hypertension. However, the SYMPLICITY HTN-3 study failed to meet its prespecified blood pressure lowering efficacy endpoint. To date, only a limited number of studies have described the microanatomy of renal nerves, of which, only two involve humans. Renal arteries were harvested from 15 cadavers from the Klinikum Osnabruck and Schuchtermann Klinik, Bad Rothenfelde. Each artery was divided longitudinally in equal thirds (proximal, middle, and distal), with each section then divided into equal superior, inferior, anterior, and posterior quadrants, which were then stained. Segments containing no renal nerves were given a score value = 0, 1-2 nerves with diameter 4 nerves or nerve diameter ≥600 µm a score = 3. A total of 22 renal arteries (9 right-sided, 13 left-sided) were suitable for examination. Overall, 691 sections of 5 mm thickness were prepared. Right renal arteries had significantly higher mean innervation grade (1.56 ± 0.85) compared to left renal arteries (1.09 ± 0.87) (P renal artery has significantly higher innervation scores than the left. The anterior and superior quadrants of the renal arteries scored higher in innervation than the posterior and inferior quadrants did. The distal third of the renal arteries are more innervated than the more proximal segments. These findings warrant further evaluation of the spatial innervation patterns of the renal artery in order to understand how it may enhance catheter-based renal arterial denervation procedural strategy and outcomes. The SYMPLICITY HTN-3 study dealt a blow to the idea of the catheter-based renal arterial sympathetic denervation. We investigated the location and patterns of periarterial renal nerves in cadaveric human renal arteries. To quantify the density of the

  11. Distribution and innervation of putative peripheral arterial chemoreceptors in the red-eared slider (Trachemys scripta elegans).

    Science.gov (United States)

    Reyes, Catalina; Fong, Angelina Y; Milsom, William K

    2015-06-15

    Peripheral arterial chemoreceptors have been isolated to the common carotid artery, aorta, and pulmonary artery of turtles. However, the putative neurotransmitters associated with these chemoreceptors have not yet been described. The goal of the present study was to determine the neurochemical content, innervations, and distribution of putative oxygen-sensing cells in the central vasculature of turtles and to derive homologies with peripheral arterial chemoreceptors of other vertebrates. We used tract tracing together with immunohistochemical markers for cholinergic cells (vesicular acetylcholine transporter [VAChT]), tyrosine hydroxylase (TH; the rate-limiting enzyme in catecholamine synthesis), and serotonin (5HT) to identify putative oxygen-sensing cells and to determine their anatomical relation to branches of the vagus nerve (Xth cranial nerve). We found potential oxygen-sensing cells in all three chemosensory areas innervated by branches of the Xth cranial nerve. Cells containing either 5HT or VAChT were found in all three sites. The morphology and size of these cells resemble glomus cells found in amphibians, mammals, tortoises, and lizards. Furthermore, we found populations of cholinergic cells located at the base of the aorta and pulmonary artery that are likely involved in efferent regulation of vessel resistance. Catecholamine-containing cells were not found in any of the putative chemosensitive areas. The presence of 5HT- and VAChT-immunoreactive cells in segments of the common carotid artery, aorta, and pulmonary artery appears to reflect a transition between cells containing the major neurotransmitters seen in fish (5HT) and mammals (ACh and adenosine). © 2015 Wiley Periodicals, Inc.

  12. Multiple Identified Neurons and Peripheral Nerves Innervating the Prothoracic Defense Glands in Stick Insects Reveal Evolutionary Conserved and Novel Elements of a Chemical Defense System

    Directory of Open Access Journals (Sweden)

    Johannes Strauß

    2017-11-01

    Full Text Available The defense glands in the dorsal prothorax are an important autapomorphic trait of stick insects (Phasmatodea. Here, we study the functional anatomy and neuronal innervation of the defense glands in Anisomorpha paromalus (Westwood, 1859 (Pseudophasmatinae, a species which sprays its defense secretions when disturbed or attacked. We use a neuroanatomical approach to identify the nerves innervating the gland muscles and the motoneurons with axons in the different nerves. The defense gland is innervated by nerves originating from two segments, the subesophageal ganglion (SOG, and the prothoracic ganglion. Axonal tracing confirms the gland innervation via the anterior subesophageal nerve, and two intersegmental nerves, the posterior subesophageal nerve, and the anterior prothoracic nerve. Axonal tracing of individual nerves reveals eight identified neuron types in the subesophageal or prothoracic ganglion. The strongest innervating nerve of the gland is the anterior subesophageal nerve, which also supplies dorsal longitudinal thorax muscles (neck muscles by separate nerve branches. Tracing of individual nerve branches reveals different sets of motoneurons innervating the defense gland (one ipsilateral and one contralateral subesophageal neuron or the neck muscle (ventral median neurons. The ipsilateral and contralateral subesophageal neurons have no homologs in related taxa like locusts and crickets, and thus evolved within stick insects with the differentiation of the defense glands. The overall innervation pattern suggests that the longitudinal gland muscles derived from dorsal longitudinal neck muscles. In sum, the innervating nerves for dorsal longitudinal muscles are conserved in stick insects, while the neuronal control system was specialized with conserved motoneurons for the persisting neck muscles, and evolutionarily novel subesophageal and prothoracic motoneurons innervating the defense gland.

  13. Influence of psychomotor skills and innervation patterns on results of latissimus dorsi tendon transfer for irreparable rotator cuff tears.

    Science.gov (United States)

    Werner, Clément M L; Ruckstuhl, Thomas; Müller, Roland; Zanetti, Marco; Gerber, Christian

    2008-01-01

    This investigation was performed to analyze the influence of innervation and psychomotor skills on the outcome of latissimus dorsi transfer. Patients with the 10 best and 10 worst results after latissimus dorsi transfer for irreparable rotator cuff tears were selected. All patients meeting the inclusion criteria (n = 12) were subject to a psychomotor test battery (Motorische Leistungsserie) and electromyographic innervation assessment. There was no statistical difference between the 2 groups preoperatively in terms of the commonly tested factors known to influence the results of this procedure adversely. There was a significant difference in both the pattern and selectivity of innervation in the group that had better clinical results. The psychomotor findings were negatively correlated with the range of motion and the strength of the operative shoulder. Function of the operative shoulder could also be predicted by psychomotor function of the uninjured contralateral side. Psychomotor skills testing appears to be a new, potential method by which to predict the outcome of latissimus dorsi transfer.

  14. Structural organization and pattern of innervations of human Meissner’s corpuscle: a light microscopic study

    OpenAIRE

    Gh. Mohd. Bhat; Naseer Ahmad Shah; Mohd. Saleem Itoo; Bashir Ahmad Shah; Shaheen Shahdad; Javeed Ahmad Khan

    2013-01-01

    Background: Human glabrous skin has very rich nerve supply in the form of specialized nerve endings like Meissner’s corpuscles, Pacinian corpuscles, Krause end bulbs etc for carrying sensory information to brain. Aim of study: To study the structure, pattern of innervations and nerve terminations of human Meissner’s corpuscle. Methods: Skin samples from sixty human beings (age range 2 to 72 years) were taken, sections prepared and stained with a cytological (Haematoxylin – Eosi...

  15. Innervation Patterns of Sea Otter (Enhydra lutris Mystacial Follicle-Sinus Complexes

    Directory of Open Access Journals (Sweden)

    Christopher Douglas Marshall

    2014-10-01

    Full Text Available Sea otters (Enhydra lutris are the most recent group of mammals to return to the sea, and may exemplify divergent somatosensory tactile systems among mammals. Therefore, we quantified the mystacial vibrissal array of sea otters and histologically processed follicle-sinus complexes (F-SCs to test the hypotheses that the number of myelinated axons per F-SC is greater than that found for terrestrial mammalian vibrissae and that their organization and microstructure converge with those of pinniped vibrissae. A mean of 120.5 vibrissae were arranged rostrally on a broad, blunt muzzle in 7-8 rows and 9-13 columns. The F-SCs of sea otters are tripartite in their organization and similar in microstructure to pinnipeds rather than terrestrial species. Each F-SC was innervated by a mean 1339±408.3 axons. Innervation to the entire mystacial vibrissal array was estimated at 161,313 axons. Our data support the hypothesis that the disproportionate expansion of the coronal gyrus in somatosensory cortex of sea otters is related to the high innervation investment of the mystacial vibrissal array, and that quantifying innervation investment is a good proxy for tactile sensitivity. We predict that the tactile performance of sea otter mystacial vibrissae is comparable to that of harbor seals, sea lions and walruses¬.

  16. Netrin-1 controls sympathetic arterial innervation.

    Science.gov (United States)

    Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J C; Kennedy, Timothy E; Zhuang, Zhen; Simons, Michael; Levy, Bernard I; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne

    2014-07-01

    Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type-specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs.

  17. Afferent innervation of the utricular macula in pigeons

    Science.gov (United States)

    Si, Xiaohong; Zakir, Mridha Md; Dickman, J. David

    2003-01-01

    Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were

  18. Arterial innervation in development and disease.

    Science.gov (United States)

    Eichmann, Anne; Brunet, Isabelle

    2014-09-03

    Innervation of arteries by sympathetic nerves is well known to control blood supply to organs. Recent studies have elucidated the mechanisms that regulate the development of arterial innervation and show that in addition to vascular tone, sympathetic nerves may also influence arterial maturation and growth. Understanding sympathetic arterial innervation may lead to new approaches to treat peripheral arterial disease and hypertension. Copyright © 2014, American Association for the Advancement of Science.

  19. The thoracic muscular system and its innervation in third instar Calliphora vicina Larvae. II. Projection patterns of the nerves associated with the pro- and mesothorax and the pharyngeal complex.

    Science.gov (United States)

    Schoofs, Andreas; Hanslik, Ulrike; Niederegger, Senta; Heinzel, Hans-Georg; Spiess, Roland

    2010-08-01

    We describe the anatomy of the nerves that project from the central nervous system (CNS) to the pro- and mesothoracic segments and the cephalopharyngeal skeleton (CPS) for third instar Calliphora larvae. Due to the complex branching pattern we introduce a nomenclature that labels side branches of first and second order. Two fine nerves that were not yet described are briefly introduced. One paired nerve projects to the ventral arms (VAs) of the CPS. The second, an unpaired nerve, projects to the ventral surface of the cibarial part of the esophagus (ES). Both nerves were tentatively labeled after the structures they innervate. The antennal nerve (AN) innervates the olfactory dorsal organ (DO). It contains motor pathways that project through the frontal connectives (FC) to the frontal nerve (FN) and innervate the cibarial dilator muscles (CDM) which mediate food ingestion. The maxillary nerve (MN) innervates the sensory terminal organ (TO), ventral organ (VO), and labial organ (LO) and comprises the motor pathways to the mouth hook (MH) elevator, MH depressor, and the labial retractor (LR) which opens the mouth cavity. An anastomosis of unknown function exists between the AN and MN. The prothoracic accessory nerve (PaN) innervates a dorsal protractor muscle of the CPS and sends side branches to the aorta and the bolwig organ (BO) (stemmata). In its further course, this nerve merges with the prothoracic nerve (PN). The architecture of the PN is extremely complex. It innervates a set of accessory pharyngeal muscles attached to the CPS and the body wall musculature of the prothorax. Several anastomoses exist between side branches of this nerve which were shown to contain motor pathways. The mesothoracic nerve (MeN) innervates a MH accessor and the longitudinal and transversal body wall muscles of the second segment. J. Morphol. 271:969-979, 2010. (c) 2010 Wiley-Liss, Inc.

  20. Neurons of self-defence: neuronal innervation of the exocrine defence glands in stick insects.

    Science.gov (United States)

    Stolz, Konrad; von Bredow, Christoph-Rüdiger; von Bredow, Yvette M; Lakes-Harlan, Reinhard; Trenczek, Tina E; Strauß, Johannes

    2015-01-01

    Stick insects (Phasmatodea) use repellent chemical substances (allomones) for defence which are released from so-called defence glands in the prothorax. These glands differ in size between species, and are under neuronal control from the CNS. The detailed neural innervation and possible differences between species are not studied so far. Using axonal tracing, the neuronal innervation is investigated comparing four species. The aim is to document the complexity of defence gland innervation in peripheral nerves and central motoneurons in stick insects. In the species studied here, the defence gland is innervated by the intersegmental nerve complex (ISN) which is formed by three nerves from the prothoracic (T1) and suboesophageal ganglion (SOG), as well as a distinct suboesophageal nerve (Nervus anterior of the suboesophageal ganglion). In Carausius morosus and Sipyloidea sipylus, axonal tracing confirmed an innervation of the defence glands by this N. anterior SOG as well as N. anterior T1 and N. posterior SOG from the intersegmental nerve complex. In Peruphasma schultei, which has rather large defence glands, only the innervation by the N. anterior SOG was documented by axonal tracing. In the central nervous system of all species, 3-4 neuron types are identified by axonal tracing which send axons in the N. anterior SOG likely innervating the defence gland as well as adjacent muscles. These neurons are mainly suboesophageal neurons with one intersegmental neuron located in the prothoracic ganglion. The neuron types are conserved in the species studied, but the combination of neuron types is not identical. In addition, the central nervous system in S. sipylus contains one suboesophageal and one prothoracic neuron type with axons in the intersegmental nerve complex contacting the defence gland. Axonal tracing shows a very complex innervation pattern of the defence glands of Phasmatodea which contains different neurons in different nerves from two adjacent body segments

  1. Architecture of vagal motor units controlling striated muscle of esophagus: peripheral elements patterning peristalsis?

    Science.gov (United States)

    Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J

    2013-12-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.

  2. Innervation of the mammalian esophagus.

    Science.gov (United States)

    Neuhuber, Winfried L; Raab, Marion; Berthoud, Hans-Rudolf; Wörl, Jürgen

    2006-01-01

    Understanding the innervation of the esophagus is a prerequisite for successful treatment of a variety of disorders, e.g., dysphagia, achalasia, gastroesophageal reflux disease (GERD) and non-cardiac chest pain. Although, at first glance, functions of the esophagus are relatively simple, their neuronal control is considerably complex. Vagal motor neurons of the nucleus ambiguus and preganglionic neurons of the dorsal motor nucleus innervate striated and smooth muscle, respectively. Myenteric neurons represent the interface between the dorsal motor nucleus and smooth muscle but they are also involved in striated muscle innervation. Intraganglionic laminar endings (IGLEs) represent mechanosensory vagal afferent terminals. They also establish intricate connections with enteric neurons. Afferent information is implemented by the swallowing central pattern generator in the brainstem, which generates and coordinates deglutitive activity in both striated and smooth esophageal muscle and orchestrates esophageal sphincters as well as gastric adaptive relaxation. Disturbed excitation/inhibition balance in the lower esophageal sphincter results in motility disorders, e.g., achalasia and GERD. Loss of mechanosensory afferents disrupts adaptation of deglutitive motor programs to bolus variables, eventually leading to megaesophagus. Both spinal and vagal afferents appear to contribute to painful sensations, e.g., non-cardiac chest pain. Extrinsic and intrinsic neurons may be involved in intramural reflexes using acetylcholine, nitric oxide, substance P, CGRP and glutamate as main transmitters. In addition, other molecules, e.g., ATP, GABA and probably also inflammatory cytokines, may modulate these neuronal functions.

  3. Patterns of peripheral vascular diseases at Muhimbili National hospital

    African Journals Online (AJOL)

    diseases) and HIV- vasculitis. A total of 97 patients (63%) were surgically treated. Conclusion: Shortage of vascular surgeons and facilities in our. Country needs to be sorted out to save life to these patients with vascular disorders. Key Words: Peripheral Vascular Diseases, and Shortage of Vascular Services in Tanzania.

  4. Spatiotemporal dynamics of re-innervation and hyperinnervation patterns by uninjured CGRP fibers in the rat foot sole epidermis after nerve injury

    NARCIS (Netherlands)

    L.S. Duraku (Liron); S.M. Hossaini (Mehdi); S. Hoendervangers (Sieske); H.E. Falke; S. Kambiz (Shoista); V. Mudera (Vivek); J.C. Holstege (Jan); E.T. Walbeehm (Erik); T.J.H. Ruigrok (Tom)

    2012-01-01

    textabstractThe epidermis is innervated by fine nerve endings that are important in mediating nociceptive stimuli. However, their precise role in neuropathic pain is still controversial. Here, we have studied the role of epidermal peptidergic nociceptive fibers that are located adjacent to injured

  5. Innervation of taste buds revealed with Brainbow-labeling in mouse.

    Science.gov (United States)

    Zaidi, Faisal N; Cicchini, Vanessa; Kaufman, Daniel; Ko, Elizabeth; Ko, Abraham; Van Tassel, Heather; Whitehead, Mark C

    2016-12-01

    Nerve fibers that surround and innervate the taste bud were visualized with inherent fluorescence using Brainbow transgenic mice that were generated by mating the founder line L with nestin-cre mice. Multicolor fluorescence revealed perigemmal fibers as branched within the non-taste epithelium and ending in clusters of multiple rounded swellings surrounding the taste pore. Brainbow-labeling also revealed the morphology and branching pattern of single intragemmal fibers. These taste bud fibers frequently innervated both the peripheral bud, where immature gemmal cells are located, and the central bud, where mature, differentiated cells are located. The fibers typically bore preterminal and terminal swellings, growth cones with filopodia, swellings, and rounded retraction bulbs. These results establish an anatomical substrate for taste nerve fibers to contact and remodel among receptor cells at all stages of their differentiation, an interpretation that was supported by staining with GAP-43, a marker for growing fibers and growth cones. © 2016 Anatomical Society.

  6. Spatiotemporal dynamics of re-innervation and hyperinnervation patterns by uninjured CGRP fibers in the rat foot sole epidermis after nerve injury

    Directory of Open Access Journals (Sweden)

    Duraku Liron S

    2012-08-01

    Full Text Available Abstract The epidermis is innervated by fine nerve endings that are important in mediating nociceptive stimuli. However, their precise role in neuropathic pain is still controversial. Here, we have studied the role of epidermal peptidergic nociceptive fibers that are located adjacent to injured fibers in a rat model of neuropathic pain. Using the Spared Nerve Injury (SNI model, which involves complete transections of the tibial and common peroneal nerve while sparing the sural and saphenous branches, mechanical hypersensitivity was induced of the uninjured lateral (sural and medial (saphenous area of the foot sole. At different time points, a complete foot sole biopsy was taken from the injured paw and processed for Calcitonin Gene-Related Peptide (CGRP immunohistochemistry. Subsequently, a novel 2D-reconstruction model depicting the density of CGRP fibers was made to evaluate the course of denervation and re-innervation by uninjured CGRP fibers. The results show an increased density of uninjured CGRP-IR epidermal fibers on the lateral and medial side after a SNI procedure at 5 and 10 weeks. Furthermore, although in control animals the density of epidermal CGRP-IR fibers in the footpads was lower compared to the surrounding skin of the foot, 10 weeks after the SNI procedure, the initially denervated footpads displayed a hyper-innervation. These data support the idea that uninjured fibers may play a considerable role in development and maintenance of neuropathic pain and that it is important to take larger biopsies to test the relationship between innervation of injured and uninjured nerve areas.

  7. Anatomy of psoas muscle innervation: Cadaveric study.

    Science.gov (United States)

    Mahan, Mark A; Sanders, Luke E; Guan, Jian; Dailey, Andrew T; Taylor, William; Morton, David A

    2017-05-01

    Hip flexion weakness is relatively common after lateral transpsoas surgery. Persistent weakness may result from injury to the innervation of the psoas major muscles (PMMs); however, anatomical texts have conflicting descriptions of this innervation, and the branching pattern of the nerves within the psoas major, particularly relative to vertebral anatomy, has not been described. The authors dissected human cadavers to describe the branching pattern of nerves supplying the PMMs. Sixteen embalmed cadavers were dissected, and the fine branching pattern of the innervation to the PMM was studied in 24 specimens. The number of branches and width and length of each branch of nerves to the PMMs were quantified. Nerve branches innervating the PMMs arose from spinal nerve levels L1-L4, with an average of 6.3 ± 1.1 branches per muscle. The L1 nerve branch was the least consistently present, whereas L2 and L3 branches were the most robust, the most numerous, and always present. The nerve branches to the psoas major commonly crossed the intervertebral (IV) disc obliquely prior to ramification within the muscle; 76%, 80%, and 40% of specimens had a branch to the PMM cross the midportion of the L2-3, L3-4, and L4-5 IV discs, respectively. The PMMs are segmentally innervated from the L2-L4 ventral rami branches, where these branches course obliquely across the L2-3, L3-4, and L4-5 IV discs. Knowledge of the mapping of nerve branches to the PMMs may reduce injury and the incidence of persistent weak hip flexion during lateral transpsoas surgery. Clin. Anat. 30:479-486, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan

    Science.gov (United States)

    Chen, San-Ni; Hwang, Jiunn-Feng; Wu, Wen-Chuan

    2016-01-01

    This is an observational study of fluorescein angiography (FA) in consecutive patients with rhegmatogenous retinal detachment (RRD) in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL), and refraction status (RF) recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8%) in group 1, 3 eyes (4.1%) in group 2, 40 eyes (54.8%) in group 3 and 17 eyes (23.3%) in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion. PMID:26909812

  9. Peripheral Retinal Vascular Patterns in Patients with Rhegmatogenous Retinal Detachment in Taiwan.

    Directory of Open Access Journals (Sweden)

    San-Ni Chen

    Full Text Available This is an observational study of fluorescein angiography (FA in consecutive patients with rhegmatogenous retinal detachment (RRD in Changhua Christian Hospital to investigate the peripheral retinal vascular patterns in those patients. All patients had their age, sex, axial length (AXL, and refraction status (RF recorded. According to the findings in FA of the peripheral retina, the eyes were divided into 4 groups: in group 1, there was a ramified pattern of peripheral retinal vasculature with gradual tapering; in group 2, there was an abrupt ending of peripheral vasculature with peripheral non-perfusion; in group 3, there was a curving route of peripheral vasculature forming vascular arcades or anastomosis; and in group 4, the same as in group 3, but with one or more wedge-shaped avascular notches. Comparisons of age, sex, AXL, and RF, association of breaks with lattice degeneration and retinal non-perfusion, surgical procedures utilized, and mean numbers of operations were made among the four groups. Of the 73 eyes studied, there were 13 eyes (17.8% in group 1, 3 eyes (4.1% in group 2, 40 eyes (54.8% in group 3 and 17 eyes (23.3% in group 4. Significant differences in age, AXL and RF, and association of retinal breaks to non-perfusion were noted among the four groups. Patients in group 1 had older ages, while younger ages were noted in groups 3 and 4. Eyes in group 1 had the shortest average AXL and were least myopic in contrast to the eyes in groups 3 and 4. Association of retinal breaks and retinal non-perfusion was significantly higher in groups 2, 3 and 4 than in group 1. In conclusion, peripheral vascular anomalies are common in cases with RRD. Patients with peripheral non-perfusion tend to be younger, with longer axial length and have the breaks associated with retinal non-perfusion.

  10. [Fuzzing pattern recognition study on Raman spectrum of tumor peripheral tissue].

    Science.gov (United States)

    Luo, Lei; Zhao, Yuan-li; Ge, Xiang-hong; Zhang, Xiao-dong; Hao, Zhi-fang; Lü, Jing

    2006-06-01

    On the basis of some theories about fuzzing pattern recognition, the present article studied the data preprocessing of the Raman spectrum of tumor peripheral tissue, and feature extraction and selection. According to these features the authors improved the leaning towards the bigger membership function of trapezoidal distribution. The authors built the membership function of Raman spectrum of tumor peripheral tissue which belongs to malignant tumor on the basis of 40 specimens, and designed the classifier. The test of other 40 specimens showed that the discrimination of malignant tumor is 82.4%, while that of beginning tumor is 73.9%.

  11. Synaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation

    OpenAIRE

    Jesse L. Ashton; Rebecca A. B. Burton; Gil Bub; Bruce H. Smaill; Bruce H. Smaill; Johanna M. Montgomery

    2018-01-01

    Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The atria receive rich innervation from the autonomic branch of the peripheral nervous system. Sympathetic...

  12. Catecholamine innervation of the caudal spinal cord in the rat

    DEFF Research Database (Denmark)

    Schrøder, H D; Skagerberg, G

    1985-01-01

    matter were found to contain catecholamines. In the dorsal horn the most intense fluorescence was seen in the superficial layers. The motoneuron neuropil exhibited the most prominent catecholamine-fluorescence of the ventral horn layers. In the sixth lumbar segment, which contains the motor nuclei....... In the intermediate gray the intermediolateral nucleus in thoracic and upper lumbar segments was the most heavily innervated area, followed by the medial lumbar sympathetic group, which contains the majority of the sympathetic preganglionic neurons innervating the pelvic organs. The parasympathetic intermediolateral...... nucleus in the upper sacral segments received a catecholamine innervation of moderate density. The catecholamine innervation pattern is discussed in relation to the patterns of other putative transmitters. The distribution of catecholamine fluorescence in relation to nuclei that control the pelvic organs...

  13. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    Science.gov (United States)

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation

    Science.gov (United States)

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-01-01

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  15. Expression patterns and role of PTEN in rat peripheral nerve development and injury.

    Science.gov (United States)

    Chen, Hui; Xiang, Jianping; Wu, Junxia; He, Bo; Lin, Tao; Zhu, Qingtang; Liu, Xiaolin; Zheng, Canbin

    2018-05-29

    Studies have suggested that phosphatase and tensin homolog (PTEN) plays an important role in neuroprotection and neuronal regeneration. To better understand the potential role of PTEN with respect to peripheral nerve development and injury, we investigated the expression pattern of PTEN at different stages of rat peripheral nerve development and injury and subsequently assessed the effect of pharmacological inhibition of PTEN using bpV(pic) on axonal regeneration in a rat sciatic nerve crush injury model. During the early stages of development, PTEN exhibits low expression in neuronal cell bodies and axons. From embryonic day (E) 18.5 and postnatal day (P)5 to adult, PTEN protein becomes more detectable, with high expression in the dorsal root ganglia (DRG) and axons. PTEN expression is inhibited in peripheral nerves, preceding myelination during neuronal development and remyelination after acute nerve injury. Low PTEN expression after nerve injury promotes Akt/mammalian target of rapamycin (mTOR) signaling pathway activity. In vivo pharmacological inhibition of PTEN using bpV(pic) promoted axonal regrowth, increased the number of myelinated nerve fibers, improved locomotive recovery and enhanced the amplitude response and nerve conduction velocity following stimulation in a rat sciatic nerve crush injury model. Thus, we suggest that PTEN may play potential roles in peripheral nerve development and regeneration and that inhibition of PTEN expression is beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Autonomic cardiac innervation

    Science.gov (United States)

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  17. Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Peter R Sinnaeve

    Full Text Available Systemic and local inflammation plays a prominent role in the pathogenesis of atherosclerotic coronary artery disease, but the relationship of whole blood gene expression changes with coronary disease remains unclear. We have investigated whether gene expression patterns in peripheral blood correlate with the severity of coronary disease and whether these patterns correlate with the extent of atherosclerosis in the vascular wall. Patients were selected according to their coronary artery disease index (CADi, a validated angiographical measure of the extent of coronary atherosclerosis that correlates with outcome. RNA was extracted from blood of 120 patients with at least a stenosis greater than 50% (CADi > or = 23 and from 121 controls without evidence of coronary stenosis (CADi = 0. 160 individual genes were found to correlate with CADi (rho > 0.2, P<0.003. Prominent differential expression was observed especially in genes involved in cell growth, apoptosis and inflammation. Using these 160 genes, a partial least squares multivariate regression model resulted in a highly predictive model (r(2 = 0.776, P<0.0001. The expression pattern of these 160 genes in aortic tissue also predicted the severity of atherosclerosis in human aortas, showing that peripheral blood gene expression associated with coronary atherosclerosis mirrors gene expression changes in atherosclerotic arteries. In conclusion, the simultaneous expression pattern of 160 genes in whole blood correlates with the severity of coronary artery disease and mirrors expression changes in the atherosclerotic vascular wall.

  18. Peripheral atherectomy practice patterns in the United States from the Vascular Quality Initiative.

    Science.gov (United States)

    Mohan, Sathish; Flahive, Julie M; Arous, Edward J; Judelson, Dejah R; Aiello, Francesco A; Schanzer, Andres; Simons, Jessica P

    2018-06-21

    Peripheral atherectomy has been shown to have technical success in single-arm studies, but clinical advantages over angioplasty and stenting have not been demonstrated, leaving its role unclear. We sought to describe patterns of atherectomy use in a real-world U.S. cohort to understand how it is currently being applied. The Vascular Quality Initiative was queried to identify all patients who underwent peripheral vascular intervention from January 2010 to September 2016. Descriptive statistics were performed to analyze demographics of the patients, comorbidities, indication, treatment modalities, and lesion characteristics. The intermittent claudication (IC) and critical limb ischemia (CLI) cohorts were analyzed separately. Of 85,605 limbs treated, treatment indication was IC in 51% (n = 43,506) and CLI in 49% (n = 42,099). Atherectomy was used in 15% (n = 13,092) of cases, equivalently for IC (15%; n = 6674) and CLI (15%; n = 6418). There was regional variation in use of atherectomy, ranging from a low of 0% in one region to a high of 32% in another region. During the study period, there was a significant increase in the proportion of cases that used atherectomy (11% in 2010 vs 18% in 2016; P < .0001). Compared with nonatherectomy cases, those with atherectomy use had higher incidence of prior peripheral vascular intervention (IC, 55% vs 43% [P < .0001]; CLI, 47% vs 41% [P < .0001]), greater mean number of arteries treated (IC, 1.8 vs 1.6 [P < .0001]; CLI, 2.1 vs 1.7 [P < .0001]), and lower proportion of prior leg bypass (IC, 10% vs 14% [P < .0001]; CLI, 11% vs 17% [P < .0001]). There was lower incidence of failure to cross the lesion (IC, 1% vs 4% [P < .0001]; CLI, 4% vs 7% [P < .0001]) but higher incidence of distal embolization (IC, 1.9% vs 0.8% [P < .0001]; CLI, 3.0% vs 1.4% [P < .0001]) and, in the CLI cohort, arterial perforation (1.4% vs 1.0%; P = .01). Despite a lack of evidence for atherectomy over angioplasty and stenting, its use has

  19. Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability

    DEFF Research Database (Denmark)

    Jimenez, Samuel; Mordillo-Mateos, Laura; Dileone, Michele

    2018-01-01

    obtained was discarded, since non-patterned 15 Hz stimulation at 110% HT led to pain scores similar to those induced by EcTBS at 110% HT, but was not able to induce any modulation of the H reflex amplitude. Together, the results provide first time evidence that peripheral continuous TBS induces a short......Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS....... In 26 healthy subjects, we examined the effects of electrical TBS given to the tibial nerve in the popliteal fossa on the excitability of lumbar spinal motoneurons as measured by H-reflex amplitude of the soleus muscle evoked by tibial nerve stimulation. Continuous TBS was given at 110% of H...

  20. Malignant peripheral nerve sheath tumor of the tongue with an unusual pattern of recurrence

    Directory of Open Access Journals (Sweden)

    Soumyajit Roy, MD

    2017-06-01

    Full Text Available Malignant peripheral nerve sheath tumor (MPNST of oral cavity is an extremely uncommon malignancy. Less than 15 cases have been reported since 1973 though none of them describes a distant metastasis. We present a rare case of MPNST of the tongue who presented with features of hypoglossal nerve palsy. Incisional biopsy showed a malignant spindle cell tumor in the sub-epithelial connective tissue. The tumor cells were immune-positive for S-100. He underwent surgery followed by adjuvant chemo-radiation. Later the disease recurred in the form of isolated pelvic bone metastasis. Palliative chemotherapy was offered to him. With this case report we intend to refer to such unusual presentation and pattern of recurrence in a MPNST of tongue.

  1. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    Science.gov (United States)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  2. Expression patterns of cell cycle components in sporadic and neurofibromatosis type 1-related malignant peripheral nerve sheath tumors

    NARCIS (Netherlands)

    Agesen, Trude Holmeide; Florenes, Viva Ann; Molenaar, Willemina M.; Lind, Guro E.; Berner, Jeane-Marie; Plaat, Boudewijn E.C.; Komdeur, Rudy; Myklebost, Ola; van den Berg, Eva; Lothe, Ragnhild A.

    The molecular biology underlying the development of highly malignant peripheral nerve sheath tumors (MPNSTs) remains mostly unknown. In the present study, the expression pattern of 10 selected cell cycle components is investigated in a series of 15 MPNSTs from patients with (n = 9) or without (n =

  3. Children with central and peripheral neurologic disorders have distinguishable patterns of dysphagia on videofluoroscopic swallow study.

    Science.gov (United States)

    van den Engel-Hoek, Lenie; Erasmus, Corrie E; van Hulst, Karen C M; Arvedson, Joan C; de Groot, Imelda J M; de Swart, Bert J M

    2014-05-01

    To determine whether findings on videofluoroscopic swallow studies reveal different patterns of dysphagia between children with central and peripheral neurologic disorders, a retrospective study of 118 videofluoroscopic swallow studies was completed. There were 3 groups: cerebral palsy with only spastic features (n = 53), cerebral palsy with dyskinetic features (n = 34), and neuromuscular disorders (myotonic dystrophy I, n = 5; spinal muscular atrophy I-II, n = 8; Duchenne muscular dystrophy, n = 8; other neuromuscular disorder, n = 10). Interpretation of the videofluoroscopic swallow studies was not blinded. The video fluoroscopic swallow study findings were compared dichotomously between the groups. Children with cerebral palsy demonstrated dysphagia in 1 or all phases of swallowing. In neuromuscular disorder, muscle weakness results in pharyngeal residue after swallow. The underlying swallowing problem in neuromuscular disorder is muscle weakness whereas that in cerebral palsy is more complex, having to do with abnormal control of swallowing. This study serves as a first exploration on specific characteristics of swallowing in different neurologic conditions and will help clinicians anticipate what they might expect.

  4. Gene expression patterns in CD4+ peripheral blood cells in healthy subjects and stage IV melanoma patients.

    Science.gov (United States)

    Felts, Sara J; Van Keulen, Virginia P; Scheid, Adam D; Allen, Kathleen S; Bradshaw, Renee K; Jen, Jin; Peikert, Tobias; Middha, Sumit; Zhang, Yuji; Block, Matthew S; Markovic, Svetomir N; Pease, Larry R

    2015-11-01

    Melanoma patients exhibit changes in immune responsiveness in the local tumor environment, draining lymph nodes, and peripheral blood. Immune-targeting therapies are revolutionizing melanoma patient care increasingly, and studies show that patients derive clinical benefit from these newer agents. Nonetheless, predicting which patients will benefit from these costly therapies remains a challenge. In an effort to capture individual differences in immune responsiveness, we are analyzing patterns of gene expression in human peripheral blood cells using RNAseq. Focusing on CD4+ peripheral blood cells, we describe multiple categories of immune regulating genes, which are expressed in highly ordered patterns shared by cohorts of healthy subjects and stage IV melanoma patients. Despite displaying conservation in overall transcriptome structure, CD4+ peripheral blood cells from melanoma patients differ quantitatively from healthy subjects in the expression of more than 2000 genes. Moreover, 1300 differentially expressed genes are found in transcript response patterns following activation of CD4+ cells ex vivo, suggesting that widespread functional discrepancies differentiate the immune systems of healthy subjects and melanoma patients. While our analysis reveals that the transcriptome architecture characteristic of healthy subjects is maintained in cancer patients, the genes expressed differentially among individuals and across cohorts provide opportunities for understanding variable immune states as well as response potentials, thus establishing a foundation for predicting individual responses to stimuli such as immunotherapeutic agents.

  5. Gene-expression patterns in peripheral blood classify familial breast cancer susceptibility.

    Science.gov (United States)

    Piccolo, Stephen R; Andrulis, Irene L; Cohen, Adam L; Conner, Thomas; Moos, Philip J; Spira, Avrum E; Buys, Saundra S; Johnson, W Evan; Bild, Andrea H

    2015-11-04

    Women with a family history of breast cancer face considerable uncertainty about whether to pursue standard screening, intensive screening, or prophylactic surgery. Accurate and individualized risk-estimation approaches may help these women make more informed decisions. Although highly penetrant genetic variants have been associated with familial breast cancer (FBC) risk, many individuals do not carry these variants, and many carriers never develop breast cancer. Common risk variants have a relatively modest effect on risk and show limited potential for predicting FBC development. As an alternative, we hypothesized that additional genomic data types, such as gene-expression levels, which can reflect genetic and epigenetic variation, could contribute to classifying a person's risk status. Specifically, we aimed to identify common patterns in gene-expression levels across individuals who develop FBC. We profiled peripheral blood mononuclear cells from women with a family history of breast cancer (with or without a germline BRCA1/2 variant) and from controls. We used the support vector machines algorithm to differentiate between patients who developed FBC and those who did not. Our study used two independent datasets, a training set of 124 women from Utah (USA) and an external validation (test) set from Ontario (Canada) of 73 women (197 total). We controlled for expression variation associated with clinical, demographic, and treatment variables as well as lymphocyte markers. Our multigene biomarker provided accurate, individual-level estimates of FBC occurrence for the Utah cohort (AUC = 0.76 [0.67-84]) . Even at their lower confidence bounds, these accuracy estimates meet or exceed estimates from alternative approaches. Our Ontario cohort resulted in similarly high levels of accuracy (AUC = 0.73 [0.59-0.86]), thus providing external validation of our findings. Individuals deemed to have "high" risk by our model would have an estimated 2.4 times greater odds of

  6. Bilateral familial vertical Duane Syndrome with synergistic convergence, aberrant trigeminal innervation, and facial hypoplasia

    Directory of Open Access Journals (Sweden)

    Malvika Gupta

    2014-01-01

    Full Text Available A 5-year-old girl presented with bilateral familial vertical  Duane retraction syndrome with alternating esotropia, elevation deficit, Marcus gunn phenomenon, and facial hypoplasia. Abnormal adducting downshoots on attempting abduction suggestive of a synergistic convergence were noted. Hypothesis suggests aberrant innervations or peripheral anatomic connections between inferior and medial recti.

  7. The prevalence, patterns and predictors of diabetic peripheral neuropathy in a developing country

    Directory of Open Access Journals (Sweden)

    Katulanda Prasad

    2012-05-01

    Full Text Available Abstract Prevalence of diabetes mellitus (DM has reached epidemic proportions in Sri Lanka. Presently there are studies on the community prevalence of distal peripheral neuropathy (DPN in Sri Lanka. We describe prevalence, patterns and predictors of DPN in patients with DM in Sri Lanka. Data were collected as part of a national study on DM. In new cases DPN was assessed using the Diabetic-Neuropathy-Symptom (DNS score, while in those with established diabetes both DNS and Toronto-Clinical-Scoring-System (TCSS were used. A binary logistic-regression analysis was performed with ‘presence of DPN’ as the dichomatous dependent variable and other independent co-variants. The study included 528 diabetic patients (191-new cases, with a mean age of 55.0 ± 12.4 years and 37.3% were males, while 18% were from urban areas. Prevalence of DPN according to DNS score among all patients, patients with already established diabetes and newly diagnosed patients were 48.1%, 59.1% and 28.8% respectively. Prevalence of DPN in those with established DM as assessed by TCSS was 24% and the majority had mild DPN (16.6%. The remainder of the abstract is based on subjects with established DM. The prevalence of DPN in males and female was 20.0% and 26.4% respectively. The mean age of those with and without DPN was 62.1 ± 10.8 and 55.1 ± 10.8 years respectively (p 

  8. Methylation patterns in sentinel genes in peripheral blood cells of heavy smokers: Influence of cruciferous vegetables in an intervention study.

    Science.gov (United States)

    Scoccianti, Chiara; Ricceri, Fulvio; Ferrari, Pietro; Cuenin, Cyrille; Sacerdote, Carlotta; Polidoro, Silvia; Jenab, Mazda; Hainaut, Pierre; Vineis, Paolo; Herceg, Zdenko

    2011-09-01

    Changes in DNA methylation patterns are a hallmark of tobacco-induced carcinogenesis. We have conducted a randomized 4-week intervention trial to investigate the effects of three dietary regimens to modify DNA methylation patterns in peripheral white blood cells of heavy smokers. A group of 88 smokers were randomly assigned to and distributed among three diets, including (1) normal isocaloric diet (balanced in fruits and vegetables), according to international guidelines; (2) a diet enriched in flavonoids and isothiocyanates (particularly cruciferous vegetables); (3) a regimen consisting of diet 1 supplemented with flavonoids (green tea and soy products). Methylation patterns were analyzed by pyrosequencing in LINE1 (Long Interspersed DNA Elements), RASSF1A, ARF and CDKN2a (tumor suppressor genes), MLH1 (mismatch DNA repair) and MTHFR (folate metabolism). Three distinct patterns of methylation were observed. In LINE1, methylation showed a small but reproducible increase with all three regimens. MTHFR was constitutively methylated with no significant modulation by diets. The four other loci showed low basal levels of methylation with no substantial change after intervention. These data suggest that the isocaloric diet may stabilize global epigenetic (LINE1 DNA methylation) patterns in peripheral white blood cells but does not provide evidence for methylation changes in specific genes associated with this short-term dietary intervention.

  9. Anatomical study of the articular branches innervated the hip and knee joint with reference to mechanism of referral pain in hip joint disease patients.

    Science.gov (United States)

    Sakamoto, Junya; Manabe, Yoshitaka; Oyamada, Joichi; Kataoka, Hideki; Nakano, Jiro; Saiki, Kazunobu; Okamoto, Keishi; Tsurumoto, Toshiyuki; Okita, Minoru

    2018-03-25

    Referred pain in the anterior knee joint is the most common symptom in hip disease patients. The development of referred pain is considered to be related to dichotomizing peripheral sensory fibers. However, no gross anatomical findings identify any dichotomizing fibers innervating both the hip and knee joints. We dissected the femoral and obturator nerves in human cadavers to investigate the distribution of the articular branches in the hip and knee joints. Fourteen embalmed left lower limbs from 14 Japanese adult cadavers (five from females, nine from males, average age 73.8 ± 14.1 years) were observed macroscopically. The articular branches of the femoral and obturator nerves were dissected at the anterior margin of the groin toward the thigh region. After dissections of the articular nerves of the hip joints, the femoral and obturator nerves were exposed from proximally to distally to identify the articular nerves of the knee joints. The branching pattern of the articular branches in the hip and knee joints was recorded. In six of 14 limbs (42.9%), the femoral nerve supplied articular branches to the anteromedial aspect of both the hip and knee joints. These articular branches were derived from the same bundle of femoral nerve. These gross anatomical findings suggested that dichotomizing peripheral sensory fibers innervate the hip and knee joints and these could relate to the referred pain confirmed in the anterior knee joints of patients with hip disease. Clin. Anat., 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Excessive peptidergic sensory innervation of cutaneous arteriole-venule shunts (AVS) in the palmar glabrous skin of fibromyalgia patients: implications for widespread deep tissue pain and fatigue.

    Science.gov (United States)

    Albrecht, Phillip J; Hou, Quanzhi; Argoff, Charles E; Storey, James R; Wymer, James P; Rice, Frank L

    2013-06-01

    To determine if peripheral neuropathology exists among the innervation of cutaneous arterioles and arteriole-venule shunts (AVS) in fibromyalgia (FM) patients. Cutaneous arterioles and AVS receive a convergence of vasoconstrictive sympathetic innervation, and vasodilatory small-fiber sensory innervation. Given our previous findings of peripheral pathologies in chronic pain conditions, we hypothesized that this vascular location may be a potential site of pathology and/or serotonergic and norepinephrine reuptake inhibitors (SNRI) drug action. Twenty-four female FM patients and nine female healthy control subjects were enrolled for study, with 14 additional female control subjects included from previous studies. AVS were identified in hypothenar skin biopsies from 18/24 FM patient and 14/23 control subjects. Multimolecular immunocytochemistry to assess different types of cutaneous innervation in 3 mm skin biopsies from glabrous hypothenar and trapezius regions. AVS had significantly increased innervation among FM patients. The excessive innervation consisted of a greater proportion of vasodilatory sensory fibers, compared with vasoconstrictive sympathetic fibers. In contrast, sensory and sympathetic innervation to arterioles remained normal. Importantly, the sensory fibers express α2C receptors, indicating that the sympathetic innervation exerts an inhibitory modulation of sensory activity. The excessive sensory innervation to the glabrous skin AVS is a likely source of severe pain and tenderness in the hands of FM patients. Importantly, glabrous AVS regulate blood flow to the skin in humans for thermoregulation and to other tissues such as skeletal muscle during periods of increased metabolic demand. Therefore, blood flow dysregulation as a result of excessive innervation to AVS would likely contribute to the widespread deep pain and fatigue of FM. SNRI compounds may provide partial therapeutic benefit by enhancing the impact of sympathetically mediated inhibitory

  11. Is it time for cardiac innervation imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Knuuti, J. [Turku Univ., Turku (Finland) Turku PET Center; Sipola, P. [Kuopio Univ., Kuopio (Finland)

    2005-03-01

    The autonomic nervous system plays an important role in the regulation of cardiac function and the regional distribution of cardiac nerve terminals can be visualized using scintigraphic techniques. The most commonly used tracer is iodine-123-metaiodobenzylguanidine (MIBG) but C-11-hydroxyephedrine has also been used with PET. When imaging with MIBG, the ratio of heart-to-mediastinal counts is used as an index of tracer uptake, and regional distribution is also assessed from tomographic images. The rate of clearance of the tracer can also be measured and indicates the function of the adrenergic system. Innervation imaging has been applied in patients with susceptibility to arrythmias, coronary artery disease, hypertrophic and dilated cardiomyopathy and anthracycline induced cardiotoxicity. Abnormal adrenergic innervation or function appear to exist in many pathophysiological conditions indicating that sympathetic neurons are very susceptible to damage. Abnormal findings in innervation imaging also appear to have significant prognostic value especially in patients with cardiomyopathy. Recently, it has also been shown that innervation imaging can monitor drug-induced changes in cardiac adrenergic activity. Although innervation imaging holds great promise for clinical use, the method has not received wider clinical acceptance. Larger randomized studies are required to confirm the value of innervation imaging in various specific indications.

  12. Synaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jesse L. Ashton

    2018-03-01

    Full Text Available Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The atria receive rich innervation from the autonomic branch of the peripheral nervous system. Sympathetic neurons are clustered in stellate and cervical ganglia alongside the spinal cord and extend fibers to the heart directly innervating the myocardium. These neurons are major drivers of hyperactive sympathetic activity observed in heart disease, ventricular arrhythmias, and sudden cardiac death. Both pre- and postsynaptic changes have been observed to occur at synapses formed by sympathetic ganglion neurons, suggesting that plasticity at sympathetic neuro-cardiac synapses is a major contributor to arrhythmias. Less is known about the plasticity in parasympathetic neurons located in clusters on the heart surface. These neuronal clusters, termed ganglionated plexi, or “little brains,” can independently modulate neural control of the heart and stimulation that enhances their excitability can induce arrhythmia such as atrial fibrillation. The ability of these neurons to alter parasympathetic activity suggests that plasticity may indeed occur at the synapses formed on and by ganglionated plexi neurons. Such changes may not only fine-tune autonomic innervation of the heart, but could also be a source of maladaptive plasticity during atrial fibrillation.

  13. Distinct subclassification of DRG neurons innervating the distal colon and glans penis/distal urethra based on the electrophysiological current signature.

    Science.gov (United States)

    Rau, Kristofer K; Petruska, Jeffrey C; Cooper, Brian Y; Johnson, Richard D

    2014-09-15

    Spinal sensory neurons innervating visceral and mucocutaneous tissues have unique microanatomic distribution, peripheral modality, and physiological, pharmacological, and biophysical characteristics compared with those neurons that innervate muscle and cutaneous tissues. In previous patch-clamp electrophysiological studies, we have demonstrated that small- and medium-diameter dorsal root ganglion (DRG) neurons can be subclassified on the basis of their patterns of voltage-activated currents (VAC). These VAC-based subclasses were highly consistent in their action potential characteristics, responses to algesic compounds, immunocytochemical expression patterns, and responses to thermal stimuli. For this study, we examined the VAC of neurons retrogradely traced from the distal colon and the glans penis/distal urethra in the adult male rat. The afferent population from the distal colon contained at least two previously characterized cell types observed in somatic tissues (types 5 and 8), as well as four novel cell types (types 15, 16, 17, and 18). In the glans penis/distal urethra, two previously described cell types (types 6 and 8) and three novel cell types (types 7, 14, and 15) were identified. Other characteristics, including action potential profiles, responses to algesic compounds (acetylcholine, capsaicin, ATP, and pH 5.0 solution), and neurochemistry (expression of substance P, CGRP, neurofilament, TRPV1, TRPV2, and isolectin B4 binding) were consistent for each VAC-defined subgroup. With identification of distinct DRG cell types that innervate the distal colon and glans penis/distal urethra, future in vitro studies related to the gastrointestinal and urogenital sensory function in normal as well as abnormal/pathological conditions may be benefitted. Copyright © 2014 the American Physiological Society.

  14. Gene Expression Patterns in Peripheral Blood Leukocytes in Patients with Recurrent Ciguatera Fish Poisoning: Preliminary Studies.

    Science.gov (United States)

    Lopez, Maria-Cecilia; Ungaro, Ricardo F; Baker, Henry V; Moldawer, Lyle L; Robertson, Alison; Abbott, Margaret; Roberts, Sparkle M; Grattan, Lynn M; Morris, J Glenn

    2016-07-01

    Ciguatera fish poisoning (ciguatera) is a common clinical syndrome in areas where there is dependence on tropical reef fish for food. A subset of patients develops recurrent and, in some instances, chronic symptoms, which may result in substantial disability. To identify possible biomarkers for recurrent/chronic disease, and to explore correlations with immune gene expression, peripheral blood leukocyte gene expression in 10 ciguatera patients (7 recurrent, 3 acute) from the U.S. Virgin Islands, and 5 unexposed Florida controls were evaluated. Significant differences in gene expression were noted when comparing ciguatera patients and controls; however, it was not possible to differentiate between patients with acute and recurrent disease, possibly due to the small sample sizes involved.

  15. [Analysis of gene expression pattern in peripheral blood leukocytes during experimental heat wave].

    Science.gov (United States)

    Feoktistova, E S; Skamrov, A V; Goryunova, L E; Khaspekov, G L; Osyaeva, M K; Rodnenkov, O V; Beabealashvilli, R Sh

    2017-03-01

    The conditions of Moscow 2010 summer heat wave were simulated in an accommodation module. Six healthy men aged from 22 to 46 years stayed in the module for 30 days. Measurements of gene expression in peripheral blood leukocytes before, during and 3 day after simulated heat wave were performed using qRT-PCR. We observed a shift in the expression level of certain genes after heat exposure for a long time, and rapid return to the initial level, when volunteers leaved the accommodation module. Eight genes were chosen to form the "heat expression signature". EGR2, EGR3 were upregulated in all six volunteers, EGR1, SIRT1, CYP51A1, MAPK9, BAG5, MNDA were upregulated in 5 volunteers.

  16. Pubertal development in healthy children is mirrored by DNA methylation patterns in peripheral blood

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Johansen, Marie Lindhardt; Busch, Alexander S.

    2016-01-01

    Puberty marks numerous physiological processes which are initiated by central activation of the hypothalamic–pituitary–gonadal axis, followed by development of secondary sexual characteristics. To a large extent, pubertal timing is heritable, but current knowledge of genetic polymorphismsonly...... explains few months in the large inter-individual variation in the timing of puberty. We have analysed longitudinal genome-wide changes in DNA methylation in peripheral blood samples (n = 102) obtained from 51 healthy children before and after pubertal onset. We show that changes in single methylation...... sites are tightly associated with physiological pubertal transition and altered reproductive hormone levels. These methylation sites cluster in and around genes enriched for biological functions related to pubertal development. Importantly, we identified that methylation of the genomic region containing...

  17. Orexin neurons receive glycinergic innervations.

    Directory of Open Access Journals (Sweden)

    Mari Hondo

    Full Text Available Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.

  18. Peripheral neuropathy

    Science.gov (United States)

    ... peripheral; Neuritis - peripheral; Nerve disease; Polyneuropathy; Chronic pain - peripheral neuropathy ... Philadelphia, PA: Elsevier; 2016:chap 107. Shy ME. Peripheral neuropathies. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  19. Adrenergic innervation of the rat hypothalamus

    NARCIS (Netherlands)

    Palkovits, M.; Mezey, E.; Záborszky, L.; Feminger, A.; Versteeg, D.H.G.; Wijnen, H.J.L.M.; Jong, Wybren de; Fekete, M.I.K.; Herman, J.P.; Kanyicska, B.

    The adrenergic innervation of the hypothalamus was studied by measuring hypothalamic adrenaline levels following surgical transection of the lower brain stem or electrolytic lesion of the medullary adrenaline-containing cell groups. The adrenaline levels in some hypothalamic nuclei and in the median

  20. Preganglionic innervation of the pancreas islet cells in the rat

    NARCIS (Netherlands)

    LUITEN, PGM; TERHORST, GJ; KOOPMANS, SJ; RIETBERG, M; STEFFENS, AB

    1984-01-01

    The position and number of preganglionic somata innervating the insulin-secreting β-cells of the endocrine pancreas were investigated in Wistar rats. This question was approached by comparing the innervation of the pancreas of normal rats with the innervation of the pancreas in alloxan-induced

  1. Influence of radiation-dose pattern from inhaled beta--gamma-emitting radionuclides on canine peripheral lymphocytes

    International Nuclear Information System (INIS)

    Jones, R.K.; Boecker, B.B.; Pickrell, J.A.; Hobbs, C.H.; McClellan, R.O.

    1976-01-01

    As part of studies assess the biological hazards associated with inhaled radionuclides, periodic hematologic evaluations were performed on beagle dogs given a single nose-only exposure to aerosols of beta--gamma-emitting isotopes. The physical form and specific radionuclides selected produced radiation-dose patterns representative of those which might be encountered in the event of human accidental exposures. Dogs received graded lung burdens of either 90 Y, 91 Y, 144 Ce, or 90 Sr, each in fused clay. Differences in the effective half-lives of these radionuclides resulted in a spectrum of cumulative radiation doses to lung delivered at a variety of dose rates. Since the form in which the radionuclides were inhaled was relatively insoluble, the lung and intrathoracic tissues represented the primary recipient of the dose. Regardless of the effective half-life of radionuclide retention, a dose-related depression of peripheral lymphocytes was observed at various times after inhalation exposure. The time at which maximum depression and subsequent recovery occurred, however, was most directly related to the effective half-life of the radionuclide. Of special interest was the persistence of lymphopenia through 2 1 / 2 years after exposure to 144 Ce and 90 Sr in fused clay where, other than tracheobronchial lymph nodes, the lymphoid tissue received very little radiation dose. The possible mechanisms responsible for lymphocyte depression from these various radiation-dose patterns are discussed

  2. Peripheral Vestibular System Disease in Vestibular Schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Hansen, Søren; Caye-Thomasen, Per

    2015-01-01

    density of the peripheral vestibular nerve branches, and atrophy of the neuroepithelium of the vestibular end organs. In cases with small tumors, peripheral disease occurred only in the tissue structures innervated by the specific nerve from which the tumor originated. CONCLUSION: Vestibular schwannomas...... are associated with distinctive disease of the peripheral vestibular tissue structures, suggesting anterograde degeneration and that dizziness in these patients may be caused by deficient peripheral vestibular nerve fibers, neurons, and end organs. In smaller tumors, a highly localized disease occurs, which...

  3. The sympathetic innervation of the heart: Important new insights.

    Science.gov (United States)

    Coote, J H; Chauhan, R A

    2016-08-01

    Autonomic control of the heart has a significant influence over development of life threatening arrhythmias that can lead to sudden cardiac death. Sympathetic activity is known to be upregulated during these conditions and hence the sympathetic nerves present a target for treatment. However, a better understanding of the anatomy and physiology of cardiac sympathetic nerves is required for the progression of clinical interventions. This review explores the organization of the cardiac sympathetic nerves, from the preganglionic origin to the postganglionic innervations, and provides an overview of literature surrounding anti-arrhythmic therapies including thoracic sympathectomy and dorsal spinal cord stimulation. Several features of the innervation are clear. The cardiac nerves differentially supply the nodal and myocardial tissue of the heart and are dependent on activity generated in spinal neurones in the upper thoracic cord which project to synapse with ganglion cells in the stellate complex on each side. Networks of spinal interneurones determine the pattern of activity. Groups of spinal neurones selectively target specific regions of the heart but whether they exhibit a functional selectivity has still to be elucidated. Electrical or ischemic signals can lead to remodeling of nerves in the heart or ganglia. Surgical and electrical methods are proving to be clinically beneficial in reducing atrial and ventricular arrhythmias, heart failure and severe cardiac pain. This is a rapidly developing area and we need more basic understanding of how these methods work to ensure safety and reduction of side effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Costigan Michael

    2008-12-01

    Full Text Available Abstract Background The role of the neurotrophin regulated polypeptide, VGF, has been investigated in a rat spared injury model of neuropathic pain. This peptide has been shown to be associated with synaptic strengthening and learning in the hippocampus and while it is known that VGFmRNA is upregulated in dorsal root ganglia following peripheral nerve injury, the role of this VGF peptide in neuropathic pain has yet to be investigated. Results Prolonged upregulation of VGF mRNA and protein was observed in injured dorsal root ganglion neurons, central terminals and their target dorsal horn neurons. Intrathecal application of TLQP-62, the C-terminal active portion of VGF (5–50 nmol to naïve rats caused a long-lasting mechanical and cold behavioral allodynia. Direct actions of 50 nM TLQP-62 upon dorsal horn neuron excitability was demonstrated in whole cell patch recordings in spinal cord slices and in receptive field analysis in intact, anesthetized rats where significant actions of VGF were upon spontaneous activity and cold evoked responses. Conclusion VGF expression is therefore highly modulated in nociceptive pathways following peripheral nerve injury and can cause dorsal horn cell excitation and behavioral hypersensitivity in naïve animals. Together the results point to a novel and powerful role for VGF in neuropathic pain.

  5. L-acetylcarnitine enhances functional muscle re-innervation.

    Science.gov (United States)

    Pettorossi, V E; Brunetti, O; Carobi, C; Della Torre, G; Grassi, S

    1991-01-01

    The efficacy of L-acetylcarnitine and L-carnitine treatment on motor re-innervation was analyzed by evaluating different muscular parameters describing functional muscle recovery after denervation and re-innervation. The results show that L-acetylcarnitine markedly enhances functional muscle re-innervation, which on the contrary is unaffected by L-carnitine. The medial gastrocnemius muscle was denervated by cutting the nerve at the muscle entry point. After 20 days the sectioned nerve was resutured into the medial gastrocnemius muscle, and the extent of re-innervation was monitored 45 days later. L-acetylcarnitine-treated animals show significantly higher twitch and tetanic tensions of re-innervated muscle. Furthermore the results, obtained by analysing the twitch time to peak and tetanic contraction-relaxation times, suggest that L-acetylcarnitine mostly affects the functional re-innervation of slow motor units. The possible mechanisms by which L-acetylcarnitine facilitates such motor and nerve recovery are discussed.

  6. The Multifactorial role of Peripheral Nervous System in Bone Growth

    Science.gov (United States)

    Gkiatas, Ioannis; Papadopoulos, Dimitrios; Pakos, Emilios E.; Kostas-Agnantis, Ioannis; Gelalis, Ioannis; Vekris, Marios; Korompilias, Anastasios

    2017-09-01

    Bone alters its metabolic and anabolic activities in response to the variety of systemic and local factors such as hormones and growth factors. Classical observations describing abundance of the nerve fibers in bone also predict a paradigm that the nervous system influences bone metabolism and anabolism. Since 1916 several investigators tried to analyze the effect of peripheral nervous system in bone growth and most of them advocated for the positive effect of innervation in the bones of growing organisms. Moreover, neuronal tissue controls bone formation and remodeling. The purpose of this mini-review is to present the most recent data concerning the influence of innervation on bone growth, the current understanding of the skeletal innervation and their proposed physiological effects on bone metabolism as well as the implication of denervation in human skeletal biology in the developing organism since the peripheral neural trauma as well as peripheral neuropathies are common and they have impact on the growing skeleton.

  7. Identifying differential miR and gene consensus patterns in peripheral blood of patients with cardiovascular diseases from literature data.

    Science.gov (United States)

    Šatrauskienė, Agnė; Navickas, Rokas; Laucevičius, Aleksandras; Huber, Heinrich J

    2017-06-30

    Numerous recent studies suggest the potential of circulating MicroRNAs (miRs) in peripheral blood samples as diagnostic or prognostic markers for coronary artery disease (CAD), acute coronary syndrome (ACS) and heart failure (HF). However, literature often remains inconclusive regarding as to which markers are most indicative for which of the above diseases. This shortcoming is mainly due to the lack of a systematic analyses and absence of information on the functional pathophysiological role of these miRs and their target genes. We here provide an-easy-to-use scoring approach to investigate the likelihood of regulation of several miRs and their target genes from literature by identifying consensus patterns of regulation. We therefore have screened over 1000 articles that study mRNA markers in cardiovascular and metabolic diseases, and devised a scoring algorithm to identify consensus means for miRs and genes regulation across several studies. We then aimed to identify differential markers between CAD, ACS and HF. We first identified miRs (miR-122, -126, -223, -138 and -370) as commonly regulated within a group of metabolic disease, while investigating cardiac-related pathologies (CAD, ACS, HF) revealed a decisive role of miR-1, -499, -208b, and -133a. Looking at differential markers between cardiovascular disease revealed miR-1, miR-208a and miR-133a to distinguish ACS and CAD to HF. Relating differentially expressed miRs to their putative gene targets using MirTarBase, we further identified HCN2/4 and LASP1 as potential markers of CAD and ACS, but not in HF. Likewise, BLC-2 was found oppositely regulated between CAD and HF. Interestingly, while studying overlap in target genes between CAD, ACS and HF only revealed little similarities, mapping these genes to gene ontology terms revealed a surprising similarity between CAD and ACS compared to HF. We conclude that our analysis using gene and miR scores allows the extraction of meaningful markers and the elucidation

  8. Tissue engineering the mechanosensory circuit of the stretch reflex arc: sensory neuron innervation of intrafusal muscle fibers.

    Science.gov (United States)

    Rumsey, John W; Das, Mainak; Bhalkikar, Abhijeet; Stancescu, Maria; Hickman, James J

    2010-11-01

    The sensory circuit of the stretch reflex arc, composed of specialized intrafusal muscle fibers and type Ia proprioceptive sensory neurons, converts mechanical information regarding muscle length and stretch to electrical action potentials and relays them to the central nervous system. Utilizing a non-biological substrate, surface patterning photolithography and a serum-free medium formulation a co-culture system was developed that facilitated functional interactions between intrafusal muscle fibers and sensory neurons. The presence of annulospiral wrappings (ASWs) and flower-spray endings (FSEs), both physiologically relevant morphologies in sensory neuron-intrafusal fiber interactions, were demonstrated and quantified using immunocytochemistry. Furthermore, two proposed components of the mammalian mechanosensory transduction system, BNaC1 and PICK1, were both identified at the ASWs and FSEs. To verify functionality of the mechanoreceptor elements the system was integrated with a MEMS cantilever device, and Ca(2+) currents were imaged along the length of an axon innervating an intrafusal fiber when stretched by cantilever deflection. This system provides a platform for examining the role of this mechanosensory complex in the pathology of myotonic and muscular dystrophies, peripheral neuropathy, and spasticity inducing diseases like Parkinson's. These studies will also assist in engineering fine motor control for prosthetic devices by improving our understanding of mechanosensitive feedback. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Innervation of the Anterior Sacroiliac Joint.

    Science.gov (United States)

    Cox, Marcus; Ng, Garrett; Mashriqi, Faizullah; Iwanaga, Joe; Alonso, Fernando; Tubbs, Kevin; Loukas, Marios; Oskouian, Rod J; Tubbs, R Shane

    2017-11-01

    Sacroiliac joint pain can be disabling and recalcitrant to medical therapy. The innervation of this joint is poorly understood, especially its anterior aspect. Therefore, the present cadaveric study was performed to better elucidate this anatomy. Twenty-four cadaveric sides underwent dissection of the anterior sacroiliac joint, with special attention given to any branches from regional nerves to this joint. No femoral, obturator, or lumbosacral trunk branches destined to the anterior sacroiliac joint were identified in the 24 sides. In 20 sides, one or two small branches (less than 0.5 mm in diameter) were found to arise from the L4 ventral ramus (10%), the L5 ventral ramus (80%), or simultaneously from both the L4 and L5 ventral rami (10%). The length of the branches ranged from 5 to 31 mm (mean, 14 mm). All these branches arose from the posterior part of the nerves and traveled to the anterior surface of the sacroiliac joint. No statistical significance was found between sides or sexes. An improved knowledge of the innervation of the anterior sacroiliac joint might decrease suffering in patients with chronic sacroiliac joint pain. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cholinergic innervation of human mesenteric lymphatic vessels.

    Science.gov (United States)

    D'Andrea, V; Bianchi, E; Taurone, S; Mignini, F; Cavallotti, C; Artico, M

    2013-11-01

    The cholinergic neurotransmission within the human mesenteric lymphatic vessels has been poorly studied. Therefore, our aim is to analyse the cholinergic nerve fibres of lymphatic vessels using the traditional enzymatic techniques of staining, plus the biochemical modifications of acetylcholinesterase (AChE) activity. Specimens obtained from human mesenteric lymphatic vessels were subjected to the following experimental procedures: 1) drawing, cutting and staining of tissues; 2) staining of total nerve fibres; 3) enzymatic staining of cholinergic nerve fibres; 4) homogenisation of tissues; 5) biochemical amount of proteins; 6) biochemical amount of AChE activity; 6) quantitative analysis of images; 7) statistical analysis of data. The mesenteric lymphatic vessels show many AChE positive nerve fibres around their wall with an almost plexiform distribution. The incubation time was performed at 1 h (partial activity) and 6 h (total activity). Moreover, biochemical dosage of the same enzymatic activity confirms the results obtained with morphological methods. The homogenates of the studied tissues contain strong AChE activity. In our study, the lymphatic vessels appeared to contain few cholinergic nerve fibres. Therefore, it is expected that perivascular nerve stimulation stimulates cholinergic nerves innervating the mesenteric arteries to release the neurotransmitter AChE, which activates muscarinic or nicotinic receptors to modulate adrenergic neurotransmission. These results strongly suggest, that perivascular cholinergic nerves have little or no effect on the adrenergic nerve function in mesenteric arteries. The cholinergic nerves innervating mesenteric arteries do not mediate direct vascular responses.

  11. Peribronchial innervation of the rat lung.

    Science.gov (United States)

    Artico, Marco; Bosco, Sandro; Bronzetti, Elena; Felici, Laura M; Pelusi, Giuseppe; Lo Vasco, Vincenza Rita; Vitale, Marco

    2004-10-01

    Mammalian peribronchial tissue is supplied by several peptide-containing nerve fibers. Although it is well established that different neuropeptides exert significant effects on bronchial and vascular tone in the lungs, the role played by some neuromediators on the general regulation, differentiation and release of locally active substances is still controversial. We studied the innervation of rat peribronchial tissue by immunohistochemical techniques. The immunoperoxidase method with nickel amplification was applied to detect the distribution of nerve fibers using antibodies against the general neuronal marker PGP 9.5 (neuron-specific cytoplasmic protein), while the cholinacetyltransferase immunoreactivity was studied by immunohistochemistry. A slight immunoreactivity for NT receptors is observed in lung bronchial epithelium. There is increasing evidence that NTs may act with a paracrine mechanism regulating functional activity of neuronal and non-neuronal structures. A specific immunoreactivity for NTs and NT receptors was also demonstrated within different layers of large, medium and small sized intrapulmonary arteries and veins, according to a recent study of our group. Moreover our data describe the expression of NTs and NT receptors in lymphoid aggregates of the lung (BALT) in which both lymphocytes and macrophages express TrkA receptor and synthesize NTs. Our results show the presence of an extensive network of innervation in the rat peribronchial tissue, confirming a morphological basis for a possible neural modulation of the respiratory mucosa and the physiological/pathophysiological mechanisms of the lung.

  12. Impact of comorbid depression or anxiety on patterns of treatment and economic outcomes among patients with diabetic peripheral neuropathic pain.

    Science.gov (United States)

    Boulanger, Luke; Zhao, Yang; Foster, Talia S; Fraser, Kimberly; Bledsoe, Stacey L; Russell, Mason W

    2009-07-01

    The objective of this retrospective analysis was to assess the correlation of comorbid depression and/or anxiety to patterns of treatment, healthcare utilization, and associated costs among diabetic peripheral neuropathic pain (DPNP) patients, employing a large US administrative claims database. Patients under age 65 with commercial insurance and patients aged 65 and older with employer-sponsored Medicare supplemental insurance were selected for the study if they had at least one diagnosis of DPNP in 2005. The first observed DPNP claim was considered the 'index date.' All individuals had a 12-month pre-index and 12-month follow-up period. For both populations, two subgroups were constructed for individuals with depression and/or anxiety (DPNP-DA cohort) or without these disorders (DPNP-only cohort). Patients' demographic characteristics, clinical characteristics, and medication use were compared over the pre-index period. Healthcare expenditures and resource utilization were measured for the post-index period. Two-part models were used to examine the impact of comorbid depression and/or anxiety on healthcare utilization and costs, controlling for demographic and clinical characteristics. The study identified 11,854 DPNP-only and 1512 DPNP-DA patients in the Medicare supplemental cohort, and 11,685 and 2728 in the commercially insured cohort. Compared to DPNP-only patients over the follow-up period, a significantly higher percentage of DPNP-DA patients were dispensed pain and DPNP-related medication. All components of healthcare utilization, except home healthcare visits and physician office visits, were more likely to be provided to DPNP-DA patients versus the DPNP-only cohort (all p bias between study cohorts, mis-identification of DPNP and/or depression, and inability to assess indirect costs as well as use and cost of over-the-counter medications. These findings indicate that the healthcare costs were significantly higher for DPNP patients comorbid with

  13. Distribution, Innervation, and Cellular Organization of Taste Buds in the Sea Catfish, Plotosus japonicus.

    Science.gov (United States)

    Nakamura, Tatsufumi; Matsuyama, Naoki; Kirino, Masato; Kasai, Masanori; Kiyohara, Sadao; Ikenaga, Takanori

    2017-01-01

    The gustatory system of the sea catfish Plotosus japonicus, like that of other catfishes, is highly developed. To clarify the details of the morphology of the peripheral gustatory system of Plotosus, we used whole-mount immunohistochemistry to investigate the distribution and innervation of the taste buds within multiple organs including the barbels, oropharyngeal cavity, fins (pectoral, dorsal, and caudal), and trunk. Labeled taste buds could be observed in all the organs examined. The density of the taste buds was higher along the leading edges of the barbels and fins; this likely increases the chance of detecting food. In all the fins, the taste buds were distributed in linear arrays parallel to the fin rays. Labeling of nerve fibers by anti-acetylated tubulin antibody showed that the taste buds within each sensory field are innervated in different ways. In the barbels, large nerve bundles run along the length of the organ, with fascicles branching off to innervate polygonally organized groups of taste buds. In the fins, nerve bundles run along the axis of fin rays to innervate taste buds lying in a line. In each case, small fascicles of fibers branch from large bundles and terminate within the basal portions of the taste buds. Serotonin immunohistochemistry demonstrated that most of the taste buds in all the organs examined contained disk-shaped serotonin-immunopositive cells in their basal region. This indicates a similar organization of the taste buds, in terms of the existence of serotonin-immunopositive basal cells, across the different sensory fields in this species. © 2017 S. Karger AG, Basel.

  14. Innervation of the renal proximal convoluted tubule of the rat

    International Nuclear Information System (INIS)

    Barajas, L.; Powers, K.

    1989-01-01

    Experimental data suggest the proximal tubule as a major site of neurogenic influence on tubular function. The functional and anatomical axial heterogeneity of the proximal tubule prompted this study of the distribution of innervation sites along the early, mid, and late proximal convoluted tubule (PCT) of the rat. Serial section autoradiograms, with tritiated norepinephrine serving as a marker for monoaminergic nerves, were used in this study. Freehand clay models and graphic reconstructions of proximal tubules permitted a rough estimation of the location of the innervation sites along the PCT. In the subcapsular nephrons, the early PCT (first third) was devoid of innervation sites with most of the innervation occurring in the mid (middle third) and in the late (last third) PCT. Innervation sites were found in the early PCT in nephrons located deeper in the cortex. In juxtamedullary nephrons, innervation sites could be observed on the PCT as it left the glomerulus. This gradient of PCT innervation can be explained by the different tubulovascular relationships of nephrons at different levels of the cortex. The absence of innervation sites in the early PCT of subcapsular nephrons suggests that any influence of the renal nerves on the early PCT might be due to an effect of neurotransmitter released from renal nerves reaching the early PCT via the interstitium and/or capillaries

  15. SOLITARY CHEMORECEPTOR CELL SURVIVAL IS INDEPENDENT OF INTACT TRIGEMINAL INNERVATION

    Science.gov (United States)

    Gulbransen, Brian; Silver, Wayne; Finger, Tom

    2008-01-01

    Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al., 2003). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al., 2003) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. PMID:18300260

  16. Dual Innervation of Neonatal Merkel Cells in Mouse Touch Domes

    Science.gov (United States)

    Luo, Wenqin

    2014-01-01

    Merkel cell-neurite complexes are specialized mechanosensory end organs that mediate discriminative touch sensation. It is well established that type I slowly adapting (SAI) mechanoreceptors, which express neural filament heavy chain (NFH), innervate Merkel cells. It was previously shown that neurotrophic factor NT3 and its receptor TrkC play crucial roles in controlling touch dome Merkel cell innervation of NFH+ fibers. In addition, nerve fibers expressing another neurotrophic tyrosine receptor kinase (NTRK), Ret, innervate touch dome Merkel cells as well. However, the relationship between afferents responsive to NT3/TrkC signaling and those expressing Ret is unclear. It is also controversial if these Ret+ fibers belong to the early or late Ret+ DRG neurons, which are defined based on the co-expression and developmental dependence of TrkA. To address these questions, we genetically traced Ret+ and TrkC+ fibers and analyzed their developmental dependence on TrkA. We found that Merkel cells in neonatal mouse touch domes receive innervation of two types of fibers: one group is Ret+, while the other subset expresses TrkC and NFH. In addition, Ret+ fibers depend on TrkA for their survival and normal innervation whereas NFH+ Merkel cell innervating fibers are almost unaltered in TrkA mutant mice, supporting that Ret+ and NFH+/TrkC+ afferents are two distinct groups. Ret signaling, on the other hand, plays a minor role for the innervation of neonatal touch domes. In contrast, Merkel cells in the glabrous skin are mainly contacted by NFH+/TrkC+ afferents. Taken together, our results suggest that neonatal Merkel cells around hair follicles receive dual innervation while Merkel cells in the glabrous skin are mainly innervated by only SAI mechanoreceptors. In addition, our results suggest that neonatal Ret+ Merkel cell innervating fibers most likely belong to the late but not early Ret+ DRG neurons. PMID:24637732

  17. Innervation of the sheep pineal gland by nonsympathetic nerve fibers containing NADPH-diaphorase activity

    DEFF Research Database (Denmark)

    López-Figueroa, Manuel O.; Ravault, Jean-Paul; Cozzi, Bruno

    1997-01-01

    Neuroanatomy, NADPH-diaphorase, nitric oxide, innervation, superior cervical ganglionectomy, neuropeptide Y.......Neuroanatomy, NADPH-diaphorase, nitric oxide, innervation, superior cervical ganglionectomy, neuropeptide Y....

  18. Innervated boomerang flap for finger pulp reconstruction.

    Science.gov (United States)

    Chen, Shao-Liang; Chiou, Tai-Fung

    2007-11-01

    The boomerang flap originates from the dorsolateral aspect of the proximal phalanx of an adjacent digit and is supplied by the retrograde blood flow through the vascular arcades between the dorsal and palmar digital arteries. To provide sensation of the boomerang flap for finger pulp reconstruction, the dorsal sensory branch of the proper digital nerve and the superficial sensory branch of the corresponding radial or ulnar nerve are included within the skin flap. After transfer of the flap to the injured site, epineural neurorrhaphies are done between the digital nerves of the pulp and the sensory branches of the flap. We used this sensory flap in five patients, with more than 1 year follow-up, and all patients achieved measurable two-points discrimination. The boomerang flap not only preserves the proper palmar digital artery but also provides an extended and innervated skin paddle. It seems to be an alternative choice for one-stage reconstruction of major pulp defect.

  19. Innervation of the cow's inner ear derived from micro-computed tomography

    Science.gov (United States)

    Costeur, Loic; Mennecart, Bastien; Khimchenko, Anna; Müller, Bert; Schulz, Georg

    2017-09-01

    The innervation of the inner ear has been thoroughly investigated in humans and in some animal models such as the guinea pig, the rabbit, the cat, the dog, the rat, the pig and some monkeys. Ruminant inner ears are still poorly known and their innervation was never investigated despite its potential interest in phylogenetic reconstructions. Following earlier works on the ontogeny of the cow's ear, we expand our understanding of this structure by reconstructing the fine innervation pattern of the inner ear of the cow in two ontogenetic stages, at 7 months gestation and at an adult age. Since we work on dry skeletal specimens, only the endocast of the innervation inside the petrosal bone was reconstructed up to the internal acoustic meatus. The paths of the facial and vestibulocochlear nerves could be reconstructed together with that of the spiral ganglion canal. The nerves have a very fibrous pattern. The bony cavities of the ampular and utricular branches of the vestibulocochlear nerve could also be reconstructed. Our observations confirm that not all bony structures are present in foetal stages since the branch of cranial nerve VII is not visible on the foetus but very broad on the adult stage. The fibrous pattern within the modiolus connecting the spiral canal to the cochlear nerve is also less dense than in the adult stage. The shape of the branch of cranial nerve VII is very broad in the cow ending in a large hiatus Fallopii; this, together with the above-mentioned particularities, could constitute relevant observations for phylogenetical purposes when more data will be made available.

  20. Origins of the sympathetic innervation to the nasal-associated lymphoid tissue (NALT): an anatomical substrate for a neuroimmune connection.

    Science.gov (United States)

    Marafetti, Lucas E; Romeo, Horacio E

    2014-11-15

    The participation of sympathetic nerve fibers in the innervation of the nasal-associated lymphoid tissues (NALT) was investigated in hamsters. Vesicular monoamine transporter 2 (VMAT2), an established sympathetic marker, is expressed in all neurons of superior cervical ganglia (SCG). In addition, VMAT2 -immunoreactive nerve fibers were localized in the NALT as well as in adjacent anatomical structures of the upper respiratory tract. Unilateral surgical ablation of the SCG abolished VMAT2 innervation patterns ipsilaterally while the contra lateral side is unaffected. These results provide the anatomical substrate for a neuroimmune connection in the NALT. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Sensory innervation of the dorsal longitudinal ligament and the meninges in the lumbar spine of the dog.

    Science.gov (United States)

    Waber-Wenger, Barbara; Forterre, Franck; Kuehni-Boghenbor, Kathrin; Danuser, Renzo; Stein, Jens Volker; Stoffel, Michael Hubert

    2014-10-01

    Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.

  2. Aggressive Angioimmunoblastic T Cell Lymphomas (AITL) with Soft Tissue Extranodal Mass Varied Histopathological Patterns with Peripheral Blood, Bone Marrow, and Splenic Involvement and Review of Literature.

    Science.gov (United States)

    Mukherjee, Tanushri; Dutta, Rajat; Pramanik, S

    2018-03-01

    Angioimmunoblastic T cell lymphoma (AITL) is a peripheral T cell non-Hodgkin lymphoma with an aggressive fatal course and it has varied clinical presentation with an uncommon presentation when they present as soft tissue masses or when there is spill in the peripheral blood or there are composite lymphomas that are rare presentations. Common presentations include lymphadenopathy, fever and systemic symptoms, hemolytic anemias, skin rashes, and rheumatoid arthritis. The classical histopathology is absence of follicles in lymph nodes with presence of high endothelial venules and the tumor cells of small to medium-sized lymphocytes with pale cytoplasm mixed with reactive T cells. On immunohistochemistry, the cells are positive for CD3, CD4, CD10, BCL2, and CXCL13. In this observational study, the clinicopathologic presentation and the immunohistochemical profile of five cases who initially presented with a soft tissue mass which is an extremely rare presentation of this rare type of non-Hodgkin lymphoma that was diagnosed at our center with peripheral blood and bone marrow involvement and the clinicopathologic presentation, immunohistochemical profile, and response to treatment on follow-up are correlated with the literature review. One case had a fulminant and aggressive course and was fatal within 2 months of diagnosis. The rest of the four cases are on regular chemotherapy and follow-up. Our five cases had presented with soft tissue masses, two in the axillary regio,n two in the hand, and one in the scapular region with an extranodal presentation, and there was associated lymphadenopathy which developed subsequently with classic histomorphology and immunohistochemical findings. The age range was 46-54 years and all five cases were males. Three cases were with anemia (hemoglobin range 6.5-8.0 mg/dl) and all five cases were having peripheral blood plasmacytosis. Histopathology was classic with paracortical involvement with polymorphous population of cells with

  3. Innervation of the thick ascending limb of Henle

    International Nuclear Information System (INIS)

    Barajas, L.; Powers, K.V.

    1988-01-01

    The overlap of accumulations of autoradiographic grains (AAGs) on profiles of the thick ascending limb of Henle (TALH) was measured in autoradiograms of sections from rat kidneys with monoaminergic nerves labeled by means of tritiated norepinephrine. The amount of AAG overlap was used as an indirect means of quantifying innervation along the TALHs of superficial, mid-cortical, and juxtamedullary nephrons. The density of innervation along the TALH showed nephron heterogeneity; the juxtamedullary nephrons with a high pre- and postjuxtaglomerular apparatus (JGA) TALH density of innervation and the upper and midcortical nephrons with high TALH innervation densities at the level of the JGA. The pre-JGA TALH of the juxtamedullary nephrons had a significantly higher (P less than 0.001) density of innervation than the midcortical or superficial nephrons. The TALHs of juxtamedullary nephrons were found to have substantially more innervation than the TALHs of the other nephrons. For all three populations of nephrons, the pre-JGA TALH had the greatest amount of innervation. Neural regulation of TALH function would occur mainly along the pre-JGA and level of the JGA TALH. This regulation would increase TALH NaCl reabsorption (decrease luminal NaCl concentration) and therefore influence 1) the urinary concentrating mechanism, and 2) renin secretion via the macula densa mechanism. The innervation of the TALH was predominantly associated with the vasculature of the TALH's own nephron. However, innervation associated with medullary ray capillary beds from deeper nephrons was observed on pre-JGA TALHs from superficial and midcortical nephrons

  4. Innervation of the thick ascending limb of Henle

    Energy Technology Data Exchange (ETDEWEB)

    Barajas, L.; Powers, K.V.

    1988-08-01

    The overlap of accumulations of autoradiographic grains (AAGs) on profiles of the thick ascending limb of Henle (TALH) was measured in autoradiograms of sections from rat kidneys with monoaminergic nerves labeled by means of tritiated norepinephrine. The amount of AAG overlap was used as an indirect means of quantifying innervation along the TALHs of superficial, mid-cortical, and juxtamedullary nephrons. The density of innervation along the TALH showed nephron heterogeneity; the juxtamedullary nephrons with a high pre- and postjuxtaglomerular apparatus (JGA) TALH density of innervation and the upper and midcortical nephrons with high TALH innervation densities at the level of the JGA. The pre-JGA TALH of the juxtamedullary nephrons had a significantly higher (P less than 0.001) density of innervation than the midcortical or superficial nephrons. The TALHs of juxtamedullary nephrons were found to have substantially more innervation than the TALHs of the other nephrons. For all three populations of nephrons, the pre-JGA TALH had the greatest amount of innervation. Neural regulation of TALH function would occur mainly along the pre-JGA and level of the JGA TALH. This regulation would increase TALH NaCl reabsorption (decrease luminal NaCl concentration) and therefore influence 1) the urinary concentrating mechanism, and 2) renin secretion via the macula densa mechanism. The innervation of the TALH was predominantly associated with the vasculature of the TALH's own nephron. However, innervation associated with medullary ray capillary beds from deeper nephrons was observed on pre-JGA TALHs from superficial and midcortical nephrons.

  5. Heterogeneous sensory innervation and extensive intrabulbar connections of olfactory necklace glomeruli.

    Directory of Open Access Journals (Sweden)

    Renee E Cockerham

    Full Text Available The mammalian nose employs several olfactory subsystems to recognize and transduce diverse chemosensory stimuli. These subsystems differ in their anatomical position within the nasal cavity, their targets in the olfactory forebrain, and the transduction mechanisms they employ. Here we report that they can also differ in the strategies they use for stimulus coding. Necklace glomeruli are the sole main olfactory bulb (MOB targets of an olfactory sensory neuron (OSN subpopulation distinguished by its expression of the receptor guanylyl cyclase GC-D and the phosphodiesterase PDE2, and by its chemosensitivity to the natriuretic peptides uroguanylin and guanylin and the gas CO(2. In stark contrast to the homogeneous sensory innervation of canonical MOB glomeruli from OSNs expressing the same odorant receptor (OR, we find that each necklace glomerulus of the mouse receives heterogeneous innervation from at least two distinct sensory neuron populations: one expressing GC-D and PDE2, the other expressing olfactory marker protein. In the main olfactory system it is thought that odor identity is encoded by a combinatorial strategy and represented in the MOB by a pattern of glomerular activation. This combinatorial coding scheme requires functionally homogeneous sensory inputs to individual glomeruli by OSNs expressing the same OR and displaying uniform stimulus selectivity; thus, activity in each glomerulus reflects the stimulation of a single OSN type. The heterogeneous sensory innervation of individual necklace glomeruli by multiple, functionally distinct, OSN subtypes precludes a similar combinatorial coding strategy in this olfactory subsystem.

  6. Early CD3+/CD15+ peripheral blood leukocyte chimerism patterns correlate with long-term engraftment in non-malignant hematopoietic SCT.

    Science.gov (United States)

    Ketterl, T G; Flesher, M; Shanley, R; Miller, W

    2014-04-01

    Following hematopoietic SCT (HSCT) for non-malignant disorders (NMDs) variable donor chimerism among lympho-hematopoietic lines may be observed. We retrospectively evaluated early post-HSCT, lineage-sorted (CD3+ and CD15+) peripheral blood leukocyte chimerism data to characterize patterns and assess for association with long-term CD15+ engraftment. 'Early' was defined as the first value obtained between days +14 and +42, 'late' as the last recorded value after day +90. 'High' donor chimerism was defined as 80% on either fraction at all time-points. Patients were classified into four subgroups with respect to early CD3+/CD15+ chimerism patterns (high/low) then analyzed for long-term CD15+ chimerism status. A total of 135 transplants were evaluable, with all three time-points available in 97. Underlying disease, graft source, patient age and conditioning intensity varied. 'Split' early chimerism (discordant high/low CD3+/CD15+ status) was common. Multivariable analysis revealed strong association between conditioning regimen and primary disease on early CD3+/CD15+ chimerism patterns and a dominant predictive effect of early CD15+ chimerism on long-term CD15+ donor engraftment (observed at median day +365). These data may guide real-time clinician decisions (restraint vs intervention, when available) when faced with unfavorable or unusual early lympho-hematopoietic chimerism patterns following HSCT for NMD.

  7. Reciprocal patterns of allergen-induced GATA-3 expression in peripheral blood mononuclear cells from atopics vs. non-atopics.

    Science.gov (United States)

    Macaubas, C; Lee, P T; Smallacombe, T B; Holt, B J; Wee, C; Sly, P D; Holt, P G

    2002-01-01

    T helper (Th)2 cytokines are considered to play a central role in the induction and expression of allergic disease. However, the relative importance of individual cytokines is unclear, and overall disease pathogenesis appears to involve the coordinate activities of a range of Th2 cytokines acting in sequence or in parallel. The present study examines an alternative approach to the study of cytokine gene function in atopy, focusing instead upon T cell transcription factors (TFs) which play a role in the regulation of multiple cytokine genes. To investigate the allergen-induced expression of the TF GATA-3 and c-Maf in peripheral blood mononuclear cells (PBMCs) and in cytokine-driven Th polarization. PBMC from house dust mite (HDM)-atopic and non-atopics were stimulated in vitro with allergen or anti-CD3/IL-2. TF expression was analysed by semiquantitative RT-PCR and major findings were validated by real-time PCR. Cell separations were performed to analyse the contribution of CD45RO+ cells. CD4+ cord blood cells were Th1 or Th2 polarized in vitro by exogenous cytokines and TF expression analysed by Northern blot and real-time PCR. Results We demonstrate for the first time that during differentiation of CD4+ CD45RA+ naïve human T cells towards Th2 commitment, and during allergen-specific reactivation of peripheral CD4+ CD45RO+ Th2 memory cells in established atopics, expression of the Th2-associated TF GATA-3 is rapidly up-regulated, whereas T cells from non-atopics display equally rapid GATA-3 down-regulation under identical conditions of allergen stimulation. These findings identify Th2-associated TFs as key determinants of the atopic phenotype, suggesting their unique potential as therapeutic targets for disease control.

  8. Cholinergic innervation of the zebrafish olfactory bulb.

    Science.gov (United States)

    Edwards, Jeffrey G; Greig, Ann; Sakata, Yoko; Elkin, Dimitry; Michel, William C

    2007-10-20

    A number of fish species receive forebrain cholinergic input but two recent reports failed to find evidence of cholinergic cell bodies or fibers in the olfactory bulbs (OBs) of zebrafish. In the current study we sought to confirm these findings by examining the OBs of adult zebrafish for choline acetyltransferase (ChAT) immunoreactivity. We observed a diffuse network of varicose ChAT-positive fibers associated with the nervus terminalis ganglion innervating the mitral cell/glomerular layer (MC/GL). The highest density of these fibers occurred in the anterior region of the bulb. The cellular targets of this cholinergic input were identified by exposing isolated OBs to acetylcholine receptor (AChR) agonists in the presence of agmatine (AGB), a cationic probe that permeates some active ion channels. Nicotine (50 microM) significantly increased the activity-dependent labeling of mitral cells and juxtaglomerular cells but not of tyrosine hydroxlase-positive dopaminergic neurons (TH(+) cells) compared to control preparations. The nAChR antagonist mecamylamine, an alpha7-nAChR subunit-specific antagonist, calcium-free artificial cerebrospinal fluid, or a cocktail of ionotropic glutamate receptor (iGluR) antagonists each blocked nicotine-stimulated labeling, suggesting that AGB does not enter the labeled neurons through activated nAChRs but rather through activated iGluRs following ACh-stimulated glutamate release. Deafferentation of OBs did not eliminate nicotine-stimulated labeling, suggesting that cholinergic input is primarily acting on bulbar neurons. These findings confirm the presence of a functioning cholinergic system in the zebrafish OB.

  9. Detection of cytokine expression patterns in the peripheral blood of patients with acute leukemia by antibody microarray analysis.

    Science.gov (United States)

    Li, Qing; Li, Mei; Wu, Yao-hui; Zhu, Xiao-jian; Zeng, Chen; Zou, Ping; Chen, Zhi-chao

    2014-04-01

    The cytokines of acute leukemia (AL) patients have certain expression patterns, forming a complex network involved in diagnosis, progression, and prognosis. We collected the serum of different AL patients before and after complete remission (CR) for detection of cytokines by using an antibody chip. The expression patterns of cytokines were determined by using bioinformatics computational analysis. The results showed that there were significant differences in the cytokine expression patterns between AL patients and normal controls, as well as between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). In confirmatory test, ELISA revealed the expression of uPAR in AL. Moreover, the bioinformatic analysis showed that the differentially expressed cytokines among the AL groups were involved in different biological behaviors and were closely related with the development of the disease. It was concluded that the cytokine expression pattern of AL patients is significantly different from that of healthy volunteers. Also, differences of cytokine expression patterns exist between AML and ALL, and between before and after CR in the same subtype of AL, which holds important clinical significance for revealing disease progression.

  10. Immunomodulation stimulates the innervation of engineered tooth organ.

    Directory of Open Access Journals (Sweden)

    Tunay Kökten

    Full Text Available The sensory innervation of the dental mesenchyme is essential for tooth function and protection. Sensory innervation of the dental pulp is mediated by axons originating from the trigeminal ganglia and is strictly regulated in time. Teeth can develop from cultured re-associations between dissociated dental epithelial and mesenchymal cells from Embryonic Day 14 mouse molars, after implantation under the skin of adult ICR mice. In these conditions however, the innervation of the dental mesenchyme did not occur spontaneously. In order to go further with this question, complementary experimental approaches were designed. Cultured cell re-associations were implanted together with trigeminal ganglia for one or two weeks. Although axonal growth was regularly observed extending from the trigeminal ganglia to all around the forming teeth, the presence of axons in the dental mesenchyme was detected in less than 2.5% of samples after two weeks, demonstrating a specific impairment of their entering the dental mesenchyme. In clinical context, immunosuppressive therapy using cyclosporin A was found to accelerate the innervation of transplanted tissues. Indeed, when cultured cell re-associations and trigeminal ganglia were co-implanted in cyclosporin A-treated ICR mice, nerve fibers were detected in the dental pulp, even reaching odontoblasts after one week. However, cyclosporin A shows multiple effects, including direct ones on nerve growth. To test whether there may be a direct functional relationship between immunomodulation and innervation, cell re-associations and trigeminal ganglia were co-implanted in immunocompromised Nude mice. In these conditions as well, the innervation of the dental mesenchyme was observed already after one week of implantation, but axons reached the odontoblast layer after two weeks only. This study demonstrated that immunodepression per se does stimulate the innervation of the dental mesenchyme.

  11. Successful Implantation of Bioengineered, Intrinsically Innervated, Human Internal Anal Sphincter

    Science.gov (United States)

    Raghavan, Shreya; Gilmont, Robert R.; Miyasaka, Eiichi A.; Somara, Sita; Srinivasan, Shanthi; Teitelbaum, Daniel H; Bitar, Khalil N.

    2011-01-01

    Background & Aims To restore fecal continence, the weakened pressure of the internal anal sphincter (IAS) must be increased. We bioengineered intrinsically innervated human IAS, to emulate sphincteric physiology, in vitro. Methods We co-cultured human IAS circular smooth muscle with immortomouse fetal enteric neurons. We investigated the ability of bioengineered innervated human IAS, implanted in RAG1−/− mice, to undergo neovascularization and preserve the physiology of the constituent myogenic and neuronal components. Results The implanted IAS was neovascularized in vivo; numerous blood vessels were observed with no signs of inflammation or infection. Real-time force acquisition from implanted and pre-implant IAS showed distinct characteristics of IAS physiology. Features included the development of spontaneous myogenic basal tone; relaxation of 100% of basal tone in response to inhibitory neurotransmitter vasoactive intestinal peptide (VIP) and direct electrical field stimulation of the intrinsic innervation; inhibition of nitrergic and VIPergic EFS-induced relaxation (by antagonizing nitric oxide synthesis or receptor interaction); contraction in response to cholinergic stimulation with acetylcholine; and intact electromechanical coupling (evidenced by direct response to potassium chloride). Implanted, intrinsically innervated bioengineered human IAS tissue preserved the integrity and physiology of myogenic and neuronal components. Conclusion Intrinsically innervated human IAS bioengineered tissue can be successfully implanted in mice. This approach might be used to treat patients with fecal incontinence. PMID:21463628

  12. [Changes in prescription patterns for peripheral and cerebral vasoactive drugs before and after establishing prescription standards in France].

    Science.gov (United States)

    Vuittenez, F; Guignard, E; Comte, S

    1999-01-23

    Assess changes in the number of prescriptions for peripheral and cerebral vasoactive drugs for the treatment of lower limb arteritis and cerebrovascular disease since the promulgation in 1995 of prescription standards for the treatment of lower limb arteritis. Assess compliance to prescription standards with a detailed analysis of patient features, prescriptions written for lower limb arteritis, cerebrovascular disease and concomitant diseases and evaluate changes in treatment costs for lower limb arteritis and cerebrovascular disease as well as cost of the full prescription, including treatments for associated diseases. This study was based on data recorded during the Permanent Study of Medical Prescriptions conducted from March 1994 to February 1995 and from March 1995 to February 1996 by the IMS. Prescription costs were established from the National Description Files of the IMS. Treatment costs were expressed as public price (FF) tax included. Prescriptions meeting the following criteria were selected for each period: prescriptions written by general practitioners for drugs with peripheral and cerebral vasoactivity (excepting calcium antagonists with a cerebral target) belonging to the Anatomic Therapeutic Classes C4A1 of the European Pharmaceutical Marketing Research Association, Bromly 1996; prescriptions for diagnoses 447.6 (arteritis) and 437.9 (cerebrovascular disease) according to the 9th WHO classification. A random sample of 500 prescriptions was selected to calculate costs. Since the advent of the prescription standards in 1995, prescriptions have dropped off by 6.3% for lower limb arteritis and by 14.8% for cerebrovascular disease. There was a 3.7 point decline in the percentage of multiple prescriptions of vasoactive drugs for lower limb arteritis (21.7% prior to March 1995 versus 18% after promulgation of the prescription standards, p > 0.1) and a 1.8 increase in the percentage of multiple prescriptions for cerebrovascular disease (14% prior to March

  13. The influence of radiographic phenotype and smoking status on peripheral blood biomarker patterns in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Jessica M Bon

    2009-08-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by both airway remodeling and parenchymal destruction. The identification of unique biomarker patterns associated with airway dominant versus parenchymal dominant patterns would support the existence of unique phenotypes representing independent biologic processes. A cross-sectional study was performed to examine the association of serum biomarkers with radiographic airway and parenchymal phenotypes of COPD.Serum from 234 subjects enrolled in a CT screening cohort was analyzed for 33 cytokines and growth factors using a multiplex protein array. The association of serum markers with forced expiratory volume in one second percent predicted (FEV1% and quantitative CT measurements of airway thickening and emphysema was assessed with and without stratification for current smoking status. Significant associations were found with several serum inflammatory proteins and measurements of FEV1%, airway thickening, and parenchymal emphysema independent of smoking status. The association of select analytes with airway thickening and emphysema was independent of FEV1%. Furthermore, the relationship between other inflammatory markers and measurements of physiologic obstruction or airway thickening was dependent on current smoking status.Airway and parenchymal phenotypes of COPD are associated with unique systemic serum biomarker profiles. Serum biomarker patterns may provide a more precise classification of the COPD syndrome, provide insights into disease pathogenesis and identify targets for novel patient-specific biological therapies.

  14. Noradrenergic and cholinergic innervation of the bone marrow.

    Science.gov (United States)

    Artico, Marco; Bosco, Sandro; Cavallotti, Carlo; Agostinelli, Enzo; Giuliani-Piccari, Gabriella; Sciorio, Salvatore; Cocco, Lucio; Vitale, Marco

    2002-07-01

    Bone marrow is supplied by sensory and autonomic innervation. Although it is well established that hematopoiesis is regulated by cytokines and cell-to-cell contacts, the role played by neuromediators on the proliferation, differentiation and release of hematopoietic cells is still controversial. We studied the innervation of rat femur bone marrow by means of fluorescence histochemistry and immunohistochemistry. Glyoxylic acid-induced fluorescence was used to demonstrate catecholaminergic nerve fibers. The immunoperoxidase method with nickel amplification was applied to detect the distribution of nerve fibers using antibodies against the general neuronal marker PGP 9.5 (neuron-specific cytoplasmic protein), while the cholinacetyltransferase immunoreactivity was studied by immunohistochemistry. Our results show the presence of an extensive network of innervation in the rat bone marrow, providing a morphological basis for the neural modulation of hemopoiesis.

  15. Cortical cholinergic innervation: Distribution and source in monkeys

    International Nuclear Information System (INIS)

    Struble, R.G.; Cork, L.C.; Coyle, J.T.; Lehmann, J.; Mitchell, S.J.; Price, D.L.

    1986-01-01

    In Alzheimer's disease (AD) and its late-life variant, senile dementia of the Alzheimer's type (SDAT), the predominant neurochemical abnormalities are marked decrements in the activities of ChAT and AChE, the high affinity uptake of tritium-choline, and synthesis of acetylcholine. Two studies are undertaken to delineate more clearly the variability of cortical cholinergic innervation and the contribution of the Ch system, particularly the Ch4, to this cholinergic innervation. In the first study, ChAT activity was assessed in multiple samples of neocortex from seven normal cynomolgus monkeys. In the second study, the nbM was lesioned in order to determine the contribution of the Ch system to cortical cholinergic innervation

  16. Gait pattern alteration by functional sensory substitution in healthy subjects and in diabetic subjects with peripheral neuropathy.

    Science.gov (United States)

    Walker, S C; Helm, P A; Lavery, L A

    1997-08-01

    To evaluate the ability of diabetic and nondiabetic individuals to learn to use a lower extremity sensory substitution device to cue gait pattern changes. Case-control study. Gait laboratory. Thirty diabetic persons and 20 age- and education-matched nondiabetic controls responded to advertisements for study participation. Participants walked on a treadmill at three speeds (1, 2, and 2.5mph) with auditory sensory feedback to cue ground contact greater than 80% duration of baseline. The variables measured included gait cycle (steps per minute) and number of times per minute that any step during a trial exceeded 80% duration of ground contacted compared with a measured baseline step length for each speed. Persons in both groups were able to rapidly and significantly alter their gait patterns in response to signals from the sensory substitution device, by changing their gait cycles (nondiabetic group, F(17,124) = 5.27, p gait cycle modification and error reduction among both groups. The nondiabetic group learned to use the device significantly more quickly than the diabetic group during the slow (1mph, t = 3.57, p gait trainer malfunction occurred during the study. Diabetic persons with neuropathy effectively used lower extremity sensory substitution, and the technology is now available to manufacture a durable, effective lower extremity sensory substitution system.

  17. The human thoracic duct is functionally innervated by adrenergic nerves

    DEFF Research Database (Denmark)

    Telinius, Niklas; Baandrup, Ulrik; Rumessen, Jüri Johs.

    2013-01-01

    ) that is predominantly adrenergic. TDs harvested from 51 patients undergoing esophageal and cardia cancer surgery were either fixed for structural investigations or maintained in vitro for the functional assessment of innervation by isometric force measurements and electrical field stimulation (EFS). Electron microscopy......, and methacholine was demonstrated by exogenous application to human TD ring segments. Norepinephrine provided the most consistent responses, whereas responses to the other agonists varied. We conclude that the human TD is functionally innervated with both cholinergic and adrenergic components, with the latter...

  18. Peripheral reactions

    International Nuclear Information System (INIS)

    Greiner, D.

    1978-01-01

    Peripheral collisions, that is, collisions involving a small amount of overlap of nuclear matter, are discussed including inclusive interactions, the magnitude of the peripheral cross section, fragmentation, a compilation of experiments and available data, limiting fragmentation, factorization, some models, fragment momentum distributions, and future research directions

  19. Early intraocular pressure change after peripheral iridotomy with ultralow fluence pattern scanning laser and Nd:YAG laser in primary angle-closure suspect: Kowloon East Pattern Scanning Laser Study Report No. 3.

    Science.gov (United States)

    Chan, Jeffrey Chi Wang; Choy, Bonnie Nga Kwan; Chan, Orlando Chia Chieh; Li, Kenneth Kai Wang

    2018-02-01

    Our purpose was to assess the early intraocular pressure (IOP) changes of ultralow fluence laser iridotomy using pattern scanning laser followed by neodymium:yttrium-aluminum-gamet (Nd:YAG) laser. This is a prospective interventional study. Thirty-three eyes of 33 adult Chinese primary angle-closure suspect subjects were recruited for prophylactic laser peripheral iridotomy. Sequential laser peripheral iridotomy was performed using pattern scanning laser followed by Nd:YAG laser. Visual acuity (VA) and IOP were measured before treatment, at 1 h, 1 day, 1 week, 1 month, 3 months and 6 months after laser. Laser energy used and complications were documented. Corneal endothelial cell count was examined at baseline and 6 months. Patency of the iridotomy was assessed at each follow-up visit. All subjects achieved patent iridotomy in a single session. The mean energy used was 0.335+/-0.088 J for the pattern scanning laser, and 4.767+/-5.780 mJ for the Nd:YAG laser. The total mean energy was 0.339+/-0.089 J. None of the eyes developed a clinically significant IOP spike (≥ 8 mmHg) at 1 h and 1 day after laser use. Only four eyes developed higher IOP at 1 h and all were ≤3 mmHg compared to baseline. The mean IOP was 13.8+/-2.5 mmHg at 1 h and 11.5+/-2.2 mmHg at 1 day, both were significantly lower than baseline (15.8+/-2.1 mmHg) (P laser compared to baseline (0.23 vs 0.26). There was also no statistically significant difference in mean VA at other follow-up visits compared to baseline. Peripheral iridotomy closure was encountered in two (6.1%) eyes, one at 1 month and another at 6 months follow-up. There were no complications including hyphema, peripheral anterior synechia formation nor prolonged inflammation throughout the follow-up period. There was no significant loss in corneal endothelial cell counts at 6 months (2255+/-490) compared to baseline (2303+/-386) (P = 0.347). Sequential LPI using an ultralow fluence pattern scanning laser

  20. Time course of myosin heavy chain transitions in neonatal rats: importance of innervation and thyroid state

    Science.gov (United States)

    Adams, G. R.; McCue, S. A.; Zeng, M.; Baldwin, K. M.

    1999-01-01

    During the postnatal period, rat limb muscles adapt to weight bearing via the replacement of embryonic (Emb) and neonatal (Neo) myosin heavy chains (MHCs) by the adult isoforms. Our aim was to characterize this transition in terms of the six MHC isoforms expressed in skeletal muscle and to determine the importance of innervation and thyroid hormone status on the attainment of the adult MHC phenotype. Neonatal rats were made hypothyroid via propylthiouracil (PTU) injection. In normal and PTU subgroups, leg muscles were unilaterally denervated at 15 days of age. The MHC profiles of plantaris (PLN) and soleus (Sol) muscles were determined at 7, 14, 23, and 30 days postpartum. At day 7, the Sol MHC profile was 55% type I, 30% Emb, and 10% Neo; in the PLN, the pattern was 60% Neo and 25% Emb. By day 30 the Sol and PLN had essentially attained an adult MHC profile in the controls. PTU augmented slow MHC expression in the Sol, whereas in the PLN it markedly repressed IIb MHC by retaining neonatal MHC expression. Denervation blunted the upregulation of IIb in the PLN and of Type I in the Sol and shifted the pattern to greater expression of IIa and IIx MHCs in both muscles. In contrast to previous observations, these findings collectively suggest that both an intact thyroid and innervation state are obligatory for the attainment of the adult MHC phenotype, particularly in fast-twitch muscles.

  1. Development of the intrinsic and extrinsic innervation of the gut.

    Science.gov (United States)

    Uesaka, Toshihiro; Young, Heather M; Pachnis, Vassilis; Enomoto, Hideki

    2016-09-15

    The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Testosterone supplementation restores vasopressin innervation in the senescent rat brain

    NARCIS (Netherlands)

    Goudsmit, E.; Fliers, E.; Swaab, D. F.

    1988-01-01

    The vasopressin (AVP) innervation in the male rat brain is decreased in senescence. This decrease is particularly pronounced in brain regions where AVP fiber density is dependent on plasma levels of sex steroids. Since plasma testosterone levels decrease progressively with age in the rat, the

  3. Autonomic innervation of the heart. Role of molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Slart, Riemer H.J.A; Elsinga, Philip H. [Univ. Medical Center Groningen (Netherlands). Nuclear Medicine and Molecular Imaging; Tio, Rene A. [Univ. Medical Center Groningen (Netherlands). Thorax Center Cardiology; Schwaiger, Markus (ed.) [Technische Univ. Muenchen Klinikum Rechts der Isar (Germany). Nuklearmedizinische Klinik

    2015-03-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  4. Autonomic innervation of the heart. Role of molecular imaging

    International Nuclear Information System (INIS)

    Slart, Riemer H.J.A; Elsinga, Philip H.; Tio, Rene A.; Schwaiger, Markus

    2015-01-01

    Reviews in detail the value of SPECT-CT and PET-CT in the imaging of cardiac innervation. Details the role of imaging in a range of conditions and diseases. Includes important background on pathophysiology, tracers, radiopharmaceutical production, and kinetic modeling software. This book explains in detail the potential value of the hybrid modalities, SPECT-CT and PET-CT, in the imaging of cardiac innervation in a wide range of conditions and diseases, including ischemic heart disease, diabetes mellitus, heart failure, amyloidosis, heart transplantation, and ventricular arrhythmias. Imaging of the brain-heart axis in neurodegenerative disease and stress and of cardiotoxicity is also discussed. The roles of the various available tracers are fully considered, and individual chapters address radiopharmaceutical development under GMP, imaging physics, and kinetic modeling software. Highly relevant background information is included on the autonomic nervous system of the heart and its pathophysiology, and in addition future perspectives are discussed. Awareness of the importance of autonomic innervation of the heart for the optimal management of cardiac patients is growing, and there is an evident need for objective measurement techniques or imaging modalities. In this context, Autonomic Innervation of the Heart will be of wide interest to clinicians, researchers, and industry.

  5. Developmental neurotoxicity targeting hepatic and cardiac sympathetic innervation: effects of organophosphates are distinct from those of glucocorticoids.

    Science.gov (United States)

    Seidler, Frederic J; Slotkin, Theodore A

    2011-05-30

    Early-life exposure to organophosphate pesticides leads to subsequent hyperresponsiveness of β-adrenergic receptor-mediated cell signaling that regulates hepatic gluconeogenesis, culminating in metabolic abnormalities resembling prediabetes. In the current study, we evaluated the effects of chlorpyrifos or parathion on presynaptic sympathetic innervation to determine whether the postsynaptic signaling effects are accompanied by defects in neuronal input. We administered either chlorpyrifos or parathion to newborn rats using exposure paradigms known to elicit the later metabolic changes but found no alterations in either hepatic or cardiac norepinephrine levels in adolescence or adulthood. However, shifting chlorpyrifos exposure to the prenatal period did evoke changes: exposure early in gestation produced subsequent elevations in norepinephrine, whereas later gestational exposure produced significant deficits. We also distinguished the organophosphate effects from those of the glucocorticoid, dexamethasone, a known endocrine disruptor that leads to later-life metabolic and cardiovascular disruption. Postnatal exposure to dexamethasone elicited deficits in peripheral norepinephrine levels but prenatal exposure did not. Our results indicate that early-life exposure to organophosphates leads to subsequent abnormalities of peripheral sympathetic innervation through mechanisms entirely distinct from those of glucocorticoids, ruling out the possibility that the organophosphate effects are secondary to stress or disruption of the HPA axis. Further, the effects on innervation were separable from those on postsynaptic signaling, differing in critical period as well as tissue- and sex-selectivity. Organophosphate targeting of both presynaptic and postsynaptic β-adrenergic sites, each with different critical periods of vulnerability, thus sets the stage for compounding of hepatic and cardiac functional abnormalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Changes in the substance P-containing innervation of the lumbosacral spinal cord in male Wistar rats as a consequence of ageing.

    Science.gov (United States)

    Ranson, Richard N; Priestley, David J; Santer, Robert M; Watson, Alan H D

    2005-03-02

    Quantitative image analysis was used to determine age-related changes in the substance P-containing innervation of autonomic and somatic nuclei in the lumbosacral spinal cord, which are associated with the control of micturition and sexual reflexes. In the upper lumbar segments (L1-L2), significant declines in the distribution density of substance P-containing processes were observed in the dorsal grey commissure, the intermediolateral cell column and the ventral horn. More caudally, at levels corresponding to L5 through S1, significant reductions were seen in the dorsal grey commissure and within the sacral parasympathetic nucleus. In contrast to these observations, the substance P-immunoreactive innervation of the dorsolateral nucleus remained robust in aged animals and was not significantly different from young adults. It is possible that these distinct age-related patterns of change in substance P-containing innervation, are reflected in the urinary/sexual dysfunction's in aged animals.

  7. Sarcomeres pattern proprioceptive sensory dendritic endings through Perlecan/UNC-52 in C. elegans

    Science.gov (United States)

    Liang, Xing; Dong, Xintong; Moerman, Donald G.; Shen, Kang; Wang, Xiangming

    2015-01-01

    Sensory dendrites innervate peripheral tissues through cell-cell interactions that are poorly understood. The proprioceptive neuron PVD in C. elegans extends regular terminal dendritic branches between muscle and hypodermis. We found that the PVD branch pattern was instructed by adhesion molecule SAX-7/L1CAM, which formed regularly spaced stripes on the hypodermal cell. The regularity of the SAX-7 pattern originated from the repeated and regularly spaced dense body of the sarcomeres in the muscle. The extracellular proteoglycan, UNC-52/Perlecan, links the dense body to the hemidesmosome on the hypodermal cells, which in turn instructed the SAX-7 stripes and PVD dendrites. Both UNC-52 and hemidesmosome components exhibited highly regular stripes that interdigitated with the SAX-7 stripe and PVD dendrites, reflecting the striking precision of subcellular patterning between muscle, hypodermis and dendrites. Hence, the muscular contractile apparatus provides the instructive cues to pattern proprioceptive dendrites. PMID:25982673

  8. Major motor atrophic patterns in the face and neck: CT evaluation

    International Nuclear Information System (INIS)

    Harnsberger, H.R.; Dillon, W.P.

    1985-01-01

    Cranial nerve deficits from various pathologic processes of the head and neck may result in characteristic patterns of denervation muscular atrophy. Such atrophic patterns may be clues to the location and extent of the lesion, particularly when cranial nerves are involved early in the course of the disease process. Thirty-six patients with computed tomographic (CT) evidence of muscular atrophy secondary to pathologic conditions involving the motor division of cranial nerves were examined. Five characteristic denervation muscular atrophy patterns seen on CT scans were identified. Recognition of these atrophic patterns can prevent misinterpretation of their CT appearance and direct the CT examination to the course of the compromised cranial nerve from the brainstem to its peripheral innervation

  9. The Ultrasound pattern sum score - UPSS. A new method to differentiate acute and subacute neuropathies using ultrasound of the peripheral nerves.

    Science.gov (United States)

    Grimm, Alexander; Décard, Bernhard F; Axer, Hubertus; Fuhr, Peter

    2015-11-01

    Ultrasound differentiation of neuropathies is a great challenge. We, therefore, suggest a standardized score to operationalize differentiation between several acute and subacute onset neuropathies. We retrospectively analyzed the ultrasound data of 61 patients with acute or subacute neuropathies, e.g. chronic immune-mediated neuropathies, Guillain-Barré syndrome (GBS), and axonal/vasculitic neuropathies. We compared these data to 28 healthy controls. Based on these results an ultrasound pattern sum score (UPSS) with three sub-scores (UPS-A for the sensorimotor nerves, UPS-B for the cervical roots and the vagal nerve and UPS-C for the sural nerve) was developed. Afterwards, the applicability of the score was prospectively validated in 10 patients with chronic neuropathies and in 14 patients with unknown acute and subacute PNP before performing additional tests. UPS-A and UPSS were significantly higher in CIDP than in other neuropathies and controls (p85%. Vasculitic neuropathies showed an intermediate type of UPSS compared to other axonal neuropathies (ppower to the method of the peripheral nerve ultrasound. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis.

    Science.gov (United States)

    Granovsky, Yelena; Matre, Dagfinn; Sokolik, Alexander; Lorenz, Jürgen; Casey, Kenneth L

    2005-06-01

    The human palm has a lower heat detection threshold and a higher heat pain threshold than hairy skin. Neurophysiological studies of monkeys suggest that glabrous skin has fewer low threshold heat nociceptors (AMH type 2) than hairy skin. Accordingly, we used a temperature-controlled contact heat evoked potential (CHEP) stimulator to excite selectively heat receptors with C fibers or Adelta-innervated AMH type 2 receptors in humans. On the dorsal hand, 51 degrees C stimulation produced painful pinprick sensations and 41 degrees C stimuli evoked warmth. On the glabrous thenar, 41 degrees C stimulation produced mild warmth and 51 degrees C evoked strong but painless heat sensations. We used CHEP responses to estimate the conduction velocities (CV) of peripheral fibers mediating these sensations. On hairy skin, 41 degrees C stimuli evoked an ultra-late potential (mean, SD; N wave latency: 455 (118) ms) mediated by C fibers (CV by regression analysis: 1.28 m/s, N=15) whereas 51 degrees C stimuli evoked a late potential (N latency: 267 (33) ms) mediated by Adelta afferents (CV by within-subject analysis: 12.9 m/s, N=6). In contrast, thenar responses to 41 and 51 degrees C were mediated by C fibers (average N wave latencies 485 (100) and 433 (73) ms, respectively; CVs 0.95-1.35 m/s by regression analysis, N=15; average CV=1.7 (0.41) m/s calculated from distal glabrous and proximal hairy skin stimulation, N=6). The exploratory range of the human and monkey palm is enhanced by the abundance of low threshold, C-innervated heat receptors and the paucity of low threshold AMH type 2 heat nociceptors.

  11. Unilateral variant motor innervations of flexure muscles of arm

    Directory of Open Access Journals (Sweden)

    A S Yogesh

    2010-01-01

    Full Text Available The musculocutaneous nerve usually branches out from the lateral cord of brachial plexus. It innervates the corcobrachialis, biceps brachii and brachialis muscles and continues as the lateral cutaneous nerve of forearm without exhibiting any communication with the median nerve or any other nerve. We report unilateral variation in motor innervations of the left arm in a 58-year-old male cadaver. The musculocutaneous nerve was found to be absent. A muscular branch of the median nerve was supplying the coracobrachialis muscle. In the middle of arm, the median nerve was found to be branching out, bifurcating and supplying the long and short head of biceps. The median nerve was found to be giving a separate branch, which supplied the brachialis muscle and continued as the lateral cutaneous nerve of forearm. The right sided structures were found to be normal. Surgeons should keep such variations in mind while performing arm surgeries.

  12. The spatiotemporal development of innervation in spinal ligaments of chickens.

    OpenAIRE

    Jiang, H; Moreau, M; Greidanus, N; Bilo, J; Russell, G; Raso, J; Bagnall, K

    1996-01-01

    The development of the innervation of both central and lateral (intertransverse) spinal ligaments was investigated in chickens between the time of hatching and 13 wk of age. A total of 36 White Leghorn chickens in 4 groups of 9 at ages 0, 2, 7, and 13 wk were used. The spinal ligaments were dissected, serially sectioned and labelled with a monoclonal antibody against neurofilament protein and observed using either conventional fluorescence or confocal microscopy. Only a few nerve elements wer...

  13. Epigenome-wide DNA methylation analysis in siblings and monozygotic twins discordant for sporadic Parkinson's disease revealed different epigenetic patterns in peripheral blood mononuclear cells.

    Science.gov (United States)

    Kaut, Oliver; Schmitt, Ina; Tost, Jörg; Busato, Florence; Liu, Yi; Hofmann, Per; Witt, Stephanie H; Rietschel, Marcella; Fröhlich, Holger; Wüllner, Ullrich

    2017-01-01

    Numerous studies have elucidated the genetics of Parkinson's disease; however, the aetiology of the majority of sporadic cases has not yet been resolved. We hypothesized that epigenetic variations could be associated with PD and evaluated the DNA methylation pattern in PD patients compared to brothers or twins without PD. The methylation of DNA from peripheral blood mononuclear cells of 62 discordant siblings including 24 monozygotic twins was characterized with Illumina DNA Methylation 450K bead arrays and subsequently validated in two independent cohorts: 221 PD vs. 227 healthy individuals (cohort 1) applying Illumina's VeraCode and 472 PD patients vs. 487 controls (cohort 2) using pyrosequencing. We choose a delta beta of >15 % and selected 62 differentially methylated CpGs in 51 genes from the discordant siblings. Among them, three displayed multiple CpGs per gene: microRNA 886 (MIR886, 10 CpGs), phosphodiesterase 4D (PDE4D, 2 CpGs) and tripartite motif-containing 34 (TRIM34, 2 CpGs). PDE4D was confirmed in both cohorts (p value 2.44e-05). In addition, for biomarker construction, we used the penalized logistic regression model, resulting in a signature of eight CpGs with an AUC of 0.77. Our findings suggest that a distinct level of PD susceptibility stems from individual, epigenetic modifications of specific genes. We identified a signature of CpGs in blood cells that could separate control from disease with a reasonable discriminatory power, holding promise for future epigenetically based biomarker development.

  14. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse

    Science.gov (United States)

    Jordan, Paivi M.; Fettis, Margaret; Holt, Joseph C.

    2014-01-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models utilized by our laboratory. Here, we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to utilize these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of Red-Eared Turtles (Trachemys scripta elegans), Zebra Finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide (CGRP). Comparisons of efferent innervation patterns among the three species are discussed. PMID:25560461

  15. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites.

    Directory of Open Access Journals (Sweden)

    Fabrice Ango

    2008-04-01

    Full Text Available The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1 is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.

  16. Repair of the Peripheral Nerve—Remyelination that Works

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Dahlin, Lars

    2013-01-01

    outcome, is emphasized throughout the review. The review concludes by describing the target re-innervation, which today is one of the most serious problems for nerve regeneration. It is clear, compiling this data, that even though regeneration of the peripheral nervous system is possible, more research......Abstract: In this review we summarize the events known to occur after an injury in the peripheral nervous system. We have focused on the Schwann cells, as they are the most important cells for the repair process and facilitate axonal outgrowth. The environment created by this cell type is essential...

  17. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  18. Putaminal serotonergic innervation: monitoring dyskinesia risk in Parkinson disease.

    Science.gov (United States)

    Lee, Jee-Young; Seo, Seongho; Lee, Jae Sung; Kim, Han-Joon; Kim, Yu Kyeong; Jeon, Beom S

    2015-09-08

    To explore serotonergic innervation in the basal ganglia in relation to levodopa-induced dyskinesia in patients with Parkinson disease (PD). A total of 30 patients with PD without dementia or depression were divided into 3 matched groups (dyskinetic, nondyskinetic, and drug-naive) for this study. We acquired 2 PET scans and 3T MRI for each patient using [(11)C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile ((11)C-DASB) and N-(3-[(18)F]fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl) nortropane ((18)F-FP-CIT). Then we analyzed binding potentials of the 2 radiotracers at basal ganglia structures and correlations with clinical variables. We observed no difference in (18)F-FP-CIT binding between dyskinetic and nondyskinetic patients, whereas there were differences in (11)C-DASB binding for the caudate and putamen. Binding potential ratios ((11)C-DASB/(18)F-FP-CIT) at the putamen, which indicate serotoninergic fiber innervation relative to dopaminergic fiber availability, were highest in the dyskinetic group, followed by the nondyskinetic and drug-naive PD groups. (11)C-DASB/(18)F-FP-CIT ratios at the putamen and pallidum correlated positively with Unified Parkinson's Disease Rating Scale (UPDRS) total scores and duration of PD, and pallidal binding ratio also correlated with the UPDRS motor scores. Ratios were not dependent on dopaminergic medication dosages for any of the regions studied. Relative serotonergic innervation of the putamen and pallidum increased with clinical PD progression and was highest in patients with established dyskinesia. The serotonin/dopamine transporter ratio might be a potential marker of disease progression and an indicator of risk for levodopa-induced dyskinesia in PD. A prospective evaluation is warranted in the future. © 2015 American Academy of Neurology.

  19. Clinical significance of determination of changes of serum TNF-α levels, peripheral B lymphocyte count and T lymphocyte subsets distribution pattern in patients with pregnancy induced hypertension syndrome

    International Nuclear Information System (INIS)

    Zhao Wenjuan

    2006-01-01

    Objective: To explore the changes of serum TNF-α levels, peripheral B cell count and T subsets distribution pattern in patients with pregnancy induced hypertension syndrome. Methods: Serum TNF-α levels (with RIA), peripheral B cell count as well as T subsets (with monoclonal technique) were examined in 34 patients with pregnancy induced hypertension syndrome and 35 controls. Results: The serum TNF-α levels and B lymphocytes count were significantly higher than those in controls (P 3 , CD 4 , CD4/CD8 ratio were significantly lower than those in controls (P<0.01). Conclusion: Pregnancy induced hY- pertension syndrome is a kind of autoimmune diseases with abnormal immunoregulation. (authors)

  20. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees.

    Science.gov (United States)

    Stimpson, Cheryl D; Barger, Nicole; Taglialatela, Jared P; Gendron-Fitzpatrick, Annette; Hof, Patrick R; Hopkins, William D; Sherwood, Chet C

    2016-03-01

    Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Limited distal organelles and synaptic function in extensive monoaminergic innervation.

    Science.gov (United States)

    Tao, Juan; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S

    2017-08-01

    Organelles such as neuropeptide-containing dense-core vesicles (DCVs) and mitochondria travel down axons to supply synaptic boutons. DCV distribution among en passant boutons in small axonal arbors is mediated by circulation with bidirectional capture. However, it is not known how organelles are distributed in extensive arbors associated with mammalian dopamine neuron vulnerability, and with volume transmission and neuromodulation by monoamines and neuropeptides. Therefore, we studied presynaptic organelle distribution in Drosophila octopamine neurons that innervate ∼20 muscles with ∼1500 boutons. Unlike in smaller arbors, distal boutons in these arbors contain fewer DCVs and mitochondria, although active zones are present. Absence of vesicle circulation is evident by proximal nascent DCV delivery, limited impact of retrograde transport and older distal DCVs. Traffic studies show that DCV axonal transport and synaptic capture are not scaled for extensive innervation, thus limiting distal delivery. Activity-induced synaptic endocytosis and synaptic neuropeptide release are also reduced distally. We propose that limits in organelle transport and synaptic capture compromise distal synapse maintenance and function in extensive axonal arbors, thereby affecting development, plasticity and vulnerability to neurodegenerative disease. © 2017. Published by The Company of Biologists Ltd.

  2. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.

    Science.gov (United States)

    Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang

    2018-03-01

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    Science.gov (United States)

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  4. Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study

    International Nuclear Information System (INIS)

    Berger, B.; Trottier, S.; Verney, C.; Gaspar, P.; Alvarez, C.

    1988-01-01

    The regional density and laminar distribution of dopamine (DA) and serotonin (5-HT) afferents were investigated in the cerebral cortex of cynomolgus monkeys using a radioautographic technique that is based on the high affinity uptake capacity of these aminergic neurons. Large vibratome sections, 50 micron thick, were incubated with [3H] DA (0.2 microM) and desipramine (5 microM) or with unlabeled norepinephrine (5 microM) and [3H] 5-HT (0.6 microM), which allowed for the specific labeling of the DA and 5-HT innervations, respectively. After fixation, these sections were dried, defatted, and radioautographed by dipping. Semiquantitative data on the DA innervation also were provided by counting [3H] DA-labeled axonal varicosities in radioautographs from 4-micron-thick sections of the slices obtained after epon embedding. The DA innervation was widespread and differed in density and laminar distribution in the agranular and granular cortices. DA afferents were densest in the anterior cingulate (area 24) and the motor areas (areas 4, 6, and supplementary motor area [SMA]). In the latter they displayed a trilaminar pattern of distribution, predominating in layers I, IIIa, and V-VI, with characteristic cluster-like formations in layer IIIa, especially in the medial part of motor areas. In the granular prefrontal (areas 46, 9, 10, 11, 12), parietal (areas 1, 2, 3, 5, 7), temporal (areas 21, 22), and posterior cingulate (area 23) cortices, DA afferents were less dense and showed a bilaminar pattern of distribution, predominating in the depth of layer I and in layers V-VI; density in layers II, III, and IV was only 20% of that in layer I. The lowest density was in the visual cortex, particularly in area 17, where the DA afferents were almost restricted to layer I

  5. Selective plasticity of primary afferent innervation to the dorsal horn and autonomic nuclei following lumbosacral ventral root avulsion and reimplantation in long term studies.

    Science.gov (United States)

    Wu, Lisa; Wu, Jun; Chang, Huiyi H; Havton, Leif A

    2012-02-01

    Previous studies involving injuries to the nerves of the cauda equina and the conus medullaris have shown that lumbosacral ventral root avulsion in rat models results in denervation and dysfunction of the lower urinary tract, retrograde and progressive cell death of the axotomized motor and parasympathetic neurons, as well as the emergence of neuropathic pain. Root reimplantation has also been shown to ameliorate several of these responses, but experiments thus far have been limited to studying the effects of lesion and reimplantation local to the lumbosacral region. Here, we have expanded the region of investigation after lumbosacral ventral root avulsion and reimplantation to include the thoracolumbar sympathetic region of the spinal cord. Using a retrograde tracer injected into the major pelvic ganglion, we were able to define the levels of the spinal cord that contain sympathetic preganglionic neurons innervating the lower urinary tract. We have conducted studies on the effects of the lumbosacral ventral root avulsion and reimplantation models on the afferent innervation of the dorsal horn and autonomic nuclei at both thoracolumbar and lumbosacral levels through immunohistochemistry for the markers calcitonin gene-related peptide (CGRP) and vesicular glutamate transporter 1 (VGLUT1). Surprisingly, our experiments reveal a selective and significant decrease of CGRP-positive innervation in the dorsal horn at thoracolumbar levels that is partially restored with root reimplantation. However, no similar changes were detected at the lumbosacral levels despite the injury and repair targeting efferent neurons, and being performed at the lumbosacral levels. Despite the changes evident in the thoracolumbar dorsal horn, we find no changes in afferent innervation of the autonomic nuclei at either sympathetic or parasympathetic segmental levels by CGRP or VGLUT1. We conclude that even remote, efferent root injuries and repair procedures can have an effect on remote and non

  6. Involuntary movement during mastication in patients with long-term facial paralysis reanimated with a partial gracilis free neuromuscular flap innervated by the masseteric nerve.

    Science.gov (United States)

    Rozen, Shai; Harrison, Bridget

    2013-07-01

    Midface reanimation in patients with chronic facial paralysis is not always possible with an ipsilateral or contralateral facial nerve innervating a free neuromuscular tissue transfer. Alternate use of nonfacial nerves is occasionally indicated but may potentially result in inadvertent motions. The goal of this study was to objectively review videos of patients who underwent one-stage reanimation with a gracilis muscle transfer innervated by the masseteric nerve for (1) inadvertent motion during eating, (2) characterization of masticatory patterns, and (3) social hindrance perceived by the patients during meals. Between the years 2009 and 2012, 18 patients underwent midfacial reanimation with partial gracilis muscle transfer coapted to the masseter nerve for treatment of midfacial paralysis. Sixteen patients were videotaped in detail while eating. Involuntary midface movement on the reconstructed side and mastication patterns were assessed. In addition, 16 patients were surveyed as to whether involuntary motion constituted a problem in their daily lives. All 16 patients videotaped during mastication demonstrated involuntary motion on the reconstructed side while eating. Several unique masticatory patterns were noted as well. Only one of the 16 patients reported involuntary motion as a minor disturbance in daily life during meals. All patients with chronic facial paralysis who plan to undergo midface reanimation with a free tissue transfer innervated by the ipsilateral masseter nerve should be told that they would universally have involuntary animation during mastication. Most patients do not consider this a major drawback in their daily lives. Therapeutic, IV.

  7. c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde.

    Directory of Open Access Journals (Sweden)

    Kristen N. Segovia

    2013-05-01

    Full Text Available Considerable evidence indicates that the metabolite of ethanol (EtOH, acetaldehyde, is biologically active. Acetaldehyde can be formed from EtOH peripherally mainly by alcohol dehydrogenase, and also centrally by catalase. EtOH and acetaldehyde show differences in their behavioral effects depending upon the route of administration. In terms of their effects on motor activity and motivated behaviors, when administered peripherally acetaldehyde tends to be more potent than EtOH but shows very similar potency administered centrally. Since dopamine (DA rich areas have an important role in regulating both motor activity and motivation, the present studies were undertaken to compare the effects of central (intraventricular, ICV and peripheral (intraperitoneal, IP administration of EtOH and acetaldehyde on a cellular marker of brain activity, c-Fos immunoreactivity, in DA innervated areas. Male Sprague-Dawley rats received an IP injection of vehicle, EtOH (0.5 or 2.5 g/kg or acetaldehyde (0.1 or 0.5 g/kg or an ICV injection of vehicle, EtOH or acetaldehyde (2.8 or 14.0 µmoles. IP administration of EtOH minimally induced c-Fos in some regions of the prefrontal cortex and basal ganglia, mainly at the low dose (0.5 g/kg, while IP acetaldehyde induced c-Fos in virtually all the structures studied at both doses. Acetaldehyde administered centrally increased c-Fos in all areas studied, a pattern that was very similar to EtOH. Thus, IP administered acetaldehyde was more efficacious than EtOH at inducing c-Fos expression. However, the general pattern of c-Fos induction promoted by ICV EtOH and acetaldehyde was similar. These results are consistent with the pattern observed in behavioral studies in which both substances produced the same magnitude of effect when injected centrally, and produced differences in potency after peripheral administration.

  8. Sensory innervation of the temporomandibular joint in the mouse.

    Science.gov (United States)

    Dreessen, D; Halata, Z; Strasmann, T

    1990-01-01

    The sensory innervation of the temporomandibular joints (TMJs) of 8 STR/IN mice was investigated by means of light and electron microscopy. Through the cutting of complete semithin sections in series it was possible to investigate the joints thoroughly. Additionally, one joint with its nerve supply was reconstructed three-dimensionally with a computerized three-dimensional programme. The reconstruction was based on one complete semithin section series. The joint's nerve supply originates from the nervus auriculotemporalis and additionally from motor branches of the n. mandibularis: n. massetericus, n. pterygoideus lateralis and the nn. temporales posteriores. The greatest number of nerve fibres and endings is located in the dorsolateral part of the joint capsule. They lie only in the stratum fibrosum and subsynovially. Neither the stratum synoviale nor the discus articularis contain any nerve fibres or endings, whereas the peri-articular loose connective tissue is richly innervated. The only type of nerve ending observed within the joint was the free nerve ending, which is assumed to serve not only as a nociceptor but also as a polymodal mechanoreceptor. Merely within the insertion of the musculus pterygoideus lateralis at the collum mandibulae single stretch receptors of the Ruffini type were observed. Ultrastructurally, they correspond to those described in the cat's knee joint. Neither lamellated nor nerve endings of the Golgi or Pacini type were observed in the joint or in the peri-articular connective tissue. The unexpected paucity of nerve fibres and endings in the TMJ itself of the mouse suggests that the afferent information from the joint is less important for position sense and movement than the afferent information from muscles, tendons and periodontal ligaments.

  9. Peripheral Circulatory Features during High-Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    M. B. Kontorovich

    2010-01-01

    Full Text Available The paper gives the results of a study of peripheral circulatory features during high-frequency jet ventilation (HFJV. The main specific features of peripheral circulation and oxygen transport during HFJV are formulated on the basis of a study of cardiac output (impedance cardiography, peripheral vascular resistance, peripheral vascular blood filling (photoplethysmogram analysis, adaptive peripheral blood flow reactions (spectral analysis of peripheral vascular pulsation. HFJV gives rise to the peculiar pattern of peripheral hemodynamics and tissue gas exchange, which is characterized by higher oxygen uptake without a decrease in mixed venous blood saturation, with normal extraction coefficient and preserved low peripheral vascular resistance. During HFJV, unlike traditional ventilation, the main peripheral hemodynamic feature is the increased capillary bed blood volume caused by the blood flow involvement of reserve capillaries under control of volume (parasympathetic regulation of adaptive peripheral hemodynamic reactions. Key words: high-frequency jet ventilation, oxygen transport, peripheral hemodynamics.

  10. Peripheral blood B lymphocytes derived from patients with idiopathic pulmonary arterial hypertension express a different RNA pattern compared with healthy controls: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Huber Lars C

    2008-02-01

    Full Text Available Abstract Background Idiopathic pulmonary arterial hypertension (IPAH is a progressive and still incurable disease. Research of IPAH-pathogenesis is complicated by the lack of a direct access to the involved tissue, the human pulmonary vasculature. Various auto-antibodies have been described in the blood of patients with IPAH. The purpose of the present work was therefore to comparatively analyze peripheral blood B lymphocyte RNA expression characteristics in IPAH and healthy controls. Methods Patients were diagnosed having IPAH according to WHO (mean pulmonary arterial pressure ≥ 25 mmHg, pulmonary capillary occlusion pressure ≤ 15 mmHg, absence of another explaining disease. Peripheral blood B-lymphocytes of patients and controls were immediately separated by density gradient centrifugation and magnetic beads for CD19. RNA was thereafter extracted and analyzed by the use of a high sensitivity gene chip (Affymetrix HG-U133-Plus2 able to analyze 47000 transcripts and variants of human genes. The array data were analyzed by two different softwares, and up-and down-regulations were defined as at least 1.3 fold with standard deviations smaller than fold-changes. Results Highly purified B-cells of 5 patients with IPAH (mean pulmonary artery pressure 51 ± 13 mmHg and 5 controls were analyzed. Using the two different analyzing methods we found 225 respectively 128 transcripts which were up-regulated (1.3–30.7 fold in IPAH compared with healthy controls. Combining both methods, there were 33 overlapping up-regulated transcripts and no down-regulated B-cell transcripts. Conclusion Patients with IPAH have a distinct RNA expression profile of their peripheral blood B-lymphocytes compared to healthy controls with some clearly up-regulated genes. Our finding suggests that in IPAH patients B cells are activated.

  11. Richly innervated soft tissues covering the superficial aspect of the extensor origin in patients with chronic painful tennis elbow – Implication for treatment?

    Science.gov (United States)

    Spang, C.; Alfredson, H.

    2017-01-01

    Background: Tennis elbow is difficult to treat. The results of surgical treatments are not convincing. Treatment studies on Achilles and patellar tendinopathy targeting the richly innervated and vascularized soft tissues outside the tendon have shown promising outcomes. The innervation patterns in the fibrous/fatty tissues superficially to the elbow extensor origin have not been clarified. Methods: Nine tissue specimens from the fibrous/fatty tissue covering the extensor origin was taken from seven patients (mean age: 45 years) undergoing surgical treatment for chronic painful tennis elbow. The specimens were stained for morphology (haematoxylin & eosin, H&E) and immunohistochemically for general nerve marker protein gene product 9.5 (PGP 9.5) and markers for sympathetic (tyrosine hydroxylase, TH) and sensory nerve fibres (calcitonin gene-related peptide, CGRP). Results: All specimens contained multiple blood vessels and nerve structures indicated by morphology and immunoreactions. There was a frequent occurrence of TH reactions, especially peri-vascularly, but also in nerve fascicles. Immunoreactions for CGRP were seen in nerve fascicles and isolated nerve fibres. Conclusion: The results provide new information on the innervation patterns of the superficial tissues of the extensor origin and their potential as source of tennis elbow pain. Level of Evidence: IV. PMID:28574416

  12. Richly innervated soft tissues covering the superficial aspect of the extensor origin in patients with chronic painful tennis elbow - Implication for treatment?

    Science.gov (United States)

    Spang, C; Alfredson, H

    2017-06-01

    Tennis elbow is difficult to treat. The results of surgical treatments are not convincing. Treatment studies on Achilles and patellar tendinopathy targeting the richly innervated and vascularized soft tissues outside the tendon have shown promising outcomes. The innervation patterns in the fibrous/fatty tissues superficially to the elbow extensor origin have not been clarified. Nine tissue specimens from the fibrous/fatty tissue covering the extensor origin was taken from seven patients (mean age: 45 years) undergoing surgical treatment for chronic painful tennis elbow. The specimens were stained for morphology (haematoxylin and eosin, H and E) and immunohistochemically for general nerve marker protein gene product 9.5 (PGP 9.5) and markers for sympathetic (tyrosine hydroxylase, TH) and sensory nerve fibres (calcitonin gene-related peptide, CGRP). All specimens contained multiple blood vessels and nerve structures indicated by morphology and immunoreactions. There was a frequent occurrence of TH reactions, especially peri-vascularly, but also in nerve fascicles. Immunoreactions for CGRP were seen in nerve fascicles and isolated nerve fibres. The results provide new information on the innervation patterns of the superficial tissues of the extensor origin and their potential as source of tennis elbow pain. IV.

  13. Gene expression patterns specific to the regenerating limb of the Mexican axolotl

    Directory of Open Access Journals (Sweden)

    James R. Monaghan

    2012-07-01

    Salamander limb regeneration is dependent upon tissue interactions that are local to the amputation site. Communication among limb epidermis, peripheral nerves, and mesenchyme coordinate cell migration, cell proliferation, and tissue patterning to generate a blastema, which will form missing limb structures. An outstanding question is how cross-talk between these tissues gives rise to the regeneration blastema. To identify genes associated with epidermis-nerve-mesenchymal interactions during limb regeneration, we examined histological and transcriptional changes during the first week following injury in the wound epidermis and subjacent cells between three injury types; 1 a flank wound on the side of the animal that will not regenerate a limb, 2 a denervated limb that will not regenerate a limb, and 3 an innervated limb that will regenerate a limb. Early, histological and transcriptional changes were similar between the injury types, presumably because a common wound-healing program is employed across anatomical locations. However, some transcripts were enriched in limbs compared to the flank and are associated with vertebrate limb development. Many of these genes were activated before blastema outgrowth and expressed in specific tissue types including the epidermis, peripheral nerve, and mesenchyme. We also identified a relatively small group of transcripts that were more highly expressed in innervated limbs versus denervated limbs. These transcripts encode for proteins involved in myelination of peripheral nerves, epidermal cell function, and proliferation of mesenchymal cells. Overall, our study identifies limb-specific and nerve-dependent genes that are upstream of regenerative growth, and thus promising candidates for the regulation of blastema formation.

  14. Sympathetic Innervation during Development Is Necessary for Pancreatic Islet Architecture and Functional Maturation

    Directory of Open Access Journals (Sweden)

    Philip Borden

    2013-07-01

    Full Text Available Sympathetic neurons depend on target-derived neurotrophic cues to control their survival and growth. However, whether sympathetic innervation contributes reciprocally to the development of target tissues is less clear. Here, we report that sympathetic innervation is necessary for the formation of the pancreatic islets of Langerhans and for their functional maturation. Genetic or pharmacological ablation of sympathetic innervation during development resulted in altered islet architecture, reduced insulin secretion, and impaired glucose tolerance in mice. Similar defects were observed with pharmacological blockade of β-adrenergic signaling. Conversely, the administration of a β-adrenergic agonist restored islet morphology and glucose tolerance in deinnervated animals. Furthermore, in neuron-islet cocultures, sympathetic neurons promoted islet cell migration in a β-adrenergic-dependent manner. This study reveals that islet architecture requires extrinsic inductive cues from neighboring tissues such as sympathetic nerves and suggests that early perturbations in sympathetic innervation might underlie metabolic disorders.

  15. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    International Nuclear Information System (INIS)

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J.

    1990-01-01

    Sites of uptake, storage, and metabolism of [ 18 F]fluorodopamine and excretion of [ 18 F]fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of [ 18 F]-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of [ 18 F]fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function

  16. The vagal innervation of the gut and immune homeostasis.

    Science.gov (United States)

    Matteoli, Gianluca; Boeckxstaens, Guy E

    2013-08-01

    The central nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways. Recently, in animal models of sepsis, the vagus nerve (VN) has been proposed to play a crucial role in the regulation of the immune response, also referred to as the cholinergic anti-inflammatory pathway. The VN, through release of acetylcholine, dampens immune cell activation by interacting with α-7 nicotinic acetylcholine receptors. Recent evidence suggests that the vagal innervation of the gastrointestinal tract also plays a major role controlling intestinal immune activation. Indeed, VN electrical stimulation potently reduces intestinal inflammation restoring intestinal homeostasis, whereas vagotomy has the reverse effect. In this review, we will discuss the current understanding concerning the mechanisms and effects involved in the cholinergic anti-inflammatory pathway in the gastrointestinal tract. Deeper investigation on this counter-regulatory neuroimmune mechanism will provide new insights in the cross-talk between the nervous and immune system leading to the identification of new therapeutic targets to treat intestinal immune disease.

  17. Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands.

    Science.gov (United States)

    Seifert, P; Spitznas, M

    1999-06-01

    This study was conducted to obtain morphological proof of innervating nerve fibres in the glands of the human eyelid (accessory lacrimal glands of Wolfring, meibomian glands, goblet cells, glands of Zeis, glands of Moll, sweat glands, glands of lanugo hair follicles) and identification of the secretomotorically active neuropeptide vasoactive intestinal polypeptide (VIP) as a common transmitter. Epoxy-embedded ultrathin sections of tissue samples from human eyelids were studied using electron microscopy. Paraffin sections fixed in Bouin-Hollande solution were immunostained with rabbit antiserum against VIP. With the electron microscope we were able to identify nerves in the glandular stroma of all the glands examined with the exception of goblet cells. Intraepithelial single axons were only seen in the parenchyma of Wolfring glands. The morphological findings corresponded with the immunological finding of VIP-positive, nerve-like structures in the same locations, with the exception of lanugo hair follicle glands, and goblet cells. Our findings indicate that the glands of the eyelids and main lacrimal gland represent a functional unit with VIP as a possible common stimulating factor. Copyright 1999 Academic Press.

  18. Investigation of Innervation Zone Shift with Continuous Dynamic Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Ken Nishihara

    2013-01-01

    Full Text Available Innervation zone (IZ has been identified as the origin of action potential propagation in isometric contraction. However, IZ shifts with changes in muscle length during muscle activity. The IZ shift has been estimated using raw EMG signals. This study aimed to investigate the movement of IZ location during continuous dynamic muscle contraction, using a computer program. Subjects flexed their elbow joint as repetitive dynamic muscle contractions. EMG signals were recorded from the biceps brachii muscle using an eight-channel surface electrode array. Approximately 100 peaks from EMG signals were detected for each channel and summed to estimate the IZ location. For each subject, the estimated IZ locations were subtracted from the IZ location during isometric contractions with the elbow flexed at 90°. The results showed that the IZ moved significantly with elbow joint movement from 45° to 135°. However, IZ movement was biased with only a 3.9 mm IZ shift on average when the elbow angle was acute but a 16 mm IZ shift on average when it was obtuse. The movement of IZ location during continuous dynamic muscle contraction can be investigated using this signal processing procedure without subjective judgment.

  19. Cardioacceleratory Neurons of the Isopod Crustacean, Ligia exotica : Visualization of Peripheral Projection onto the Heart Muscle

    OpenAIRE

    Akira, Sakurai; Hiroshi, Yamagishi; Institute of Biological Sciences, University of Tsukuba; Institute of Biological Sciences, University of Tsukuba

    1998-01-01

    Innervation of the heart muscle by the cardioacceleratory neurons was morphologically and electrophysiologically examined in the isopod crustacean, Ligia exotica. Intracellular injection of neurobiotin into the first and second cardioacceleratory neurons(CA1 and CA2)revealed their peripheral axonal projections. Inside the heart, the CA1 and CA2 axons ran along the trunk of the cardiac ganglion. Finely arborized branches with many varicosities arose from the axon and projected over the heart m...

  20. Delayed peripheral nerve repair: methods, including surgical ?cross-bridging? to promote nerve regeneration

    OpenAIRE

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H.

    2015-01-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour per...

  1. Collateral Projections Innervate the Mammillary Bodies and Retrosplenial Cortex: A New Category of Hippocampal Cells

    Science.gov (United States)

    O’Mara, Shane M.

    2018-01-01

    To understand the hippocampus, it is necessary to understand the subiculum. Unlike other hippocampal subfields, the subiculum projects to almost all distal hippocampal targets, highlighting its critical importance for external networks. The present studies, in male rats and mice, reveal a new category of dorsal subiculum neurons that innervate both the mammillary bodies (MBs) and the retrosplenial cortex (RSP). These bifurcating neurons comprise almost half of the hippocampal cells that project to RSP. The termination of these numerous collateral projections was visualized within the medial mammillary nucleus and the granular RSP (area 29). These collateral projections included subiculum efferents that cross to the contralateral MBs. Within the granular RSP, the collateral projections form a particularly dense plexus in deep Layer II and Layer III. This retrosplenial termination site colocalized with markers for VGluT2 and neurotensin. While efferents from the hippocampal CA fields standardly collateralize, subiculum projections often have only one target site. Consequently, the many collateral projections involving the RSP and the MBs present a relatively unusual pattern for the subiculum, which presumably relates to how both targets have complementary roles in spatial processing. Furthermore, along with the anterior thalamic nuclei, the MBs and RSP are key members of a memory circuit, which is usually described as both starting and finishing in the hippocampus. The present findings reveal how the hippocampus simultaneously engages different parts of this circuit, so forcing an important revision of this network. PMID:29527569

  2. Humans and great apes share increased neocortical neuropeptide Y innervation compared to other haplorhine primates

    Directory of Open Access Journals (Sweden)

    Mary Ann eRaghanti

    2014-02-01

    Full Text Available Neuropeptide Y (NPY plays a role in a variety of basic physiological functions and has also been implicated in regulating cognition, including learning and memory. A decrease in neocortical NPY has been reported for Alzheimer’s disease, schizophrenia, bipolar disorder, and depression, potentially contributing to associated cognitive deficits. The goal of the present analysis was to examine variation in neocortical NPY-immunoreactive axon and varicosity density among haplorhine primates (monkeys, apes, and humans. Stereologic methods were used to measure the ratios of NPY-expressing axon length density to total neuron density (ALv/Nv and NPY-immunoreactive varicosity density to neuron density (Vv/Nv, as well as the mean varicosity spacing in neocortical areas 10, 24, 44, and 22 (Tpt of humans, African great apes, New World monkeys, and Old World monkeys. Humans and great apes showed increased cortical NPY innervation relative to monkey species for ALv/Nv and Vv/Nv. Furthermore, humans and great apes displayed a conserved pattern of varicosity spacing across cortical areas and layers, with no differences between cortical layers or among cortical areas. These phylogenetic differences may be related to shared life history variables and may reflect specific cognitive abilities.

  3. Study on the changes of serum soluble IL-2 receptor (SIL-2R) levels and distribution pattern of peripheral blood T-cell subsets after treatment in pediatric patients with Bronchopneumonia

    International Nuclear Information System (INIS)

    Chen Chuanbin

    2005-01-01

    Objective:To investigate the significance of changes of serum SIL-2R levels and T-cell subsets distribution type after treatment in pediatric patients with bronchopneumonia. Methods: Serum SIL-2R levels (with ELISA) and peripheral blood T-cell subset distribution pattern (with monoclonal antibody technique) were determined in 33 pediatric patients with broncho-pneumonia and 30 controls. Results: Before treatment, the serum SIL-2R levels in the patients were significantly higher than those in normal controls (P 0.05). Serum SIL-2R levels were positively correlated with CD4/CD8 ratio. Conclusion: Detection of serum SIL-2R levels and CD4/CD8 ratio is clinically useful in the management of pediatric patients with bronchopneumonia. (authors)

  4. The pattern and time course of somatosensory changes in the human UVB sunburn model reveal the presence of peripheral and central sensitization.

    Science.gov (United States)

    Gustorff, Burkhard; Sycha, Thomas; Lieba-Samal, Doris; Rolke, Roman; Treede, Rolf-Detlef; Magerl, Walter

    2013-04-01

    The ultraviolet B (UVB) sunburn model was characterized with a comprehensive battery of quantitative sensory testing (QST). Primary hyperalgesia in UVB-irradiated skin and secondary hyperalgesia in adjacent nonirradiated skin were studied in 22 healthy subjects 24h after irradiation with UVB at 3-fold minimal erythema dose of a skin area 5 cm in diameter at the thigh and compared to mirror-image contralateral control areas. The time course of hyperalgesia over 96 h was studied in a subgroup of 12 subjects. Within the sunburn area, cold hyperesthesia (P=.01), profound generalized hyperalgesia to heat (Psunburn was surrounded by large areas of pinprick hyperalgesia (mean±SEM, 218±32 cm(2)) and a small rim of dynamic mechanical allodynia but no other sensory changes. Although of smaller magnitude, secondary hyperalgesia and dynamic mechanical allodynia adjacent to the UVB-irradiated area were statistically highly significant. Primary and secondary hyperalgesia developed in parallel within hours, peaked after 24-32 h, and lasted for more than 96 h. These data reveal that the UVB sunburn model activates a broad spectrum of peripheral and central sensitization mechanisms and hence is a useful human surrogate model to be used as a screening tool for target engagement in phases 1 and 2a of drug development. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  5. Expression patterns of signaling lymphocytic activation molecule family members in peripheral blood mononuclear cell subsets in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Karampetsou, Maria P; Comte, Denis; Kis-Toth, Katalin; Kyttaris, Vasileios C; Tsokos, George C

    2017-01-01

    Genome-wide linkage analysis studies (GWAS) studies in systemic lupus erythematosus (SLE) identified the 1q23 region on human chromosome 1, containing the Signaling Lymphocytic Activation Molecule Family (SLAMF) cluster of genes, as a lupus susceptibility locus. The SLAMF molecules (SLAMF1-7) are immunoregulatory receptors expressed predominantly on hematopoietic cells. Activation of cells of the adaptive immune system is aberrant in SLE and dysregulated expression of certain SLAMF molecules has been reported. We examined the expression of SLAMF1-7 on peripheral blood T cells, B cells, monocytes, and their respective differentiated subsets, in patients with SLE and healthy controls in a systematic manner. SLAMF1 levels were increased on both T cell and B cells and their differentiated subpopulations in patients with SLE. SLAMF2 was increased on SLE CD4+ and CD8+ T cells. The frequency of SLAMF4+ and SLAMF7+ central memory and effector memory CD8+ T cells was reduced in SLE patients. Naïve CD4+ and CD8+ SLE T cells showed a slight increase in SLAMF3 levels. No differences were seen in the expression of SLAMF5 and SLAMF6 among SLE patients and healthy controls. Overall, the expression of various SLAMF receptors is dysregulated in SLE and may contribute to the immunopathogenesis of the disease.

  6. Development of neuropeptide Y-mediated heart innervation in rats.

    Science.gov (United States)

    Masliukov, Petr M; Moiseev, Konstantin; Emanuilov, Andrey I; Anikina, Tatyana A; Zverev, Alexey A; Nozdrachev, Alexandr D

    2016-02-01

    Neuropeptide Y (NPY) plays a trophic role in the nervous and vascular systems and in cardiac hypertrophy. However, there is no report concerning the expression of NPY and its receptors in the heart during postnatal development. In the current study, immunohistochemistry and Western blot analysis was used to label NPY, and Y1R, Y2R, and Y5R receptors in the heart tissue and intramural cardiac ganglia from rats of different ages (newborn, 10 days old, 20 days old, 30 days old, 60 days old, 1 year old, and 2 years old).The obtained data suggest age-dependent changes of NPY-mediated heart innervation. The density of NPY-immunoreactive (IR) fibers was the least in newborn animals and increased in the first 20 days of life. In the atria of newborn and 10-day-old rats, NPY-IR fibers were more abundant compared with the ventricles. The vast majority of NPY-IR fibers also contained tyrosine hydroxylase, a key enzyme in catecholamine synthesis.The expression of Y1R increased between 10 and 20 days of life. Faint Y2R immunoreactivity was observed in the atria and ventricles of 20-day-old and older rats. In contrast, the highest level of the expression of Y5R was found in newborn pups comparing with more adult rats. All intramural ganglionic neurons were also Y1R-IR and Y5R-IR and Y2R-negative in all studied animals.Thus, the increasing of density of NPY-containing nerve fibers accompanies changes in relation of different subtypes of NPY receptors in the heart during development.

  7. Imbalance between sympathetic and sensory innervation in peritoneal endometriosis.

    Science.gov (United States)

    Arnold, Julia; Barcena de Arellano, Maria L; Rüster, Carola; Vercellino, Giuseppe F; Chiantera, Vito; Schneider, Achim; Mechsner, Sylvia

    2012-01-01

    To investigate possible mechanisms of pain pathophysiology in patients with peritoneal endometriosis, a clinical study on sensory and sympathetic nerve fibre sprouting in endometriosis was performed. Peritoneal lesions (n=40) and healthy peritoneum (n=12) were immunostained and analysed with anti-protein gene product 9.5 (PGP 9.5), anti-substance P (SP) and anti-tyrosine hydroxylase (TH), specific markers for intact nerve fibres, sensory nerve fibres and sympathetic nerve fibres, respectively, to identify the ratio of sympathetic and sensory nerve fibres. In addition, immune cell infiltrates in peritoneal endometriotic lesions were analysed and the nerve growth factor (NGF) and interleukin (IL)-1β expression was correlate with the nerve fibre density. Peritoneal fluids from patients with endometriosis (n=40) and without endometriosis (n=20) were used for the in vitro neuronal growth assay. Cultured chicken dorsal root ganglia (DRG) and sympathetic ganglia were stained with anti-growth associated protein 43 (anti-GAP 43), anti-SP and anti-TH. We could detect an increased sensory and decreased sympathetic nerve fibres density in peritoneal lesions compared to healthy peritoneum. Peritoneal fluids of patients with endometriosis compared to patients without endometriosis induced an increased sprouting of sensory neurites from DRG and decreased neurite outgrowth from sympathetic ganglia. In conclusion, this study demonstrates an imbalance between sympathetic and sensory nerve fibres in peritoneal endometriosis, as well as an altered modulation of peritoneal fluids from patients with endometriosis on sympathetic and sensory innervation which might directly be involved in the maintenance of inflammation and pain. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Catecholaminergic and serotoninergic fibres innervate the ventricular system of the hedgehog CNS.

    Science.gov (United States)

    Michaloudi, H C; Papadopoulos, G C

    1996-01-01

    Immunocytochemistry with antisera against serotonin (5-HT), dopamine (DA) and noradrenaline (NA) was used to detect monoaminergic (MA) fibres in the ventricular system of the hedgehog Erinaceus europaeus. Light microscopic examination of immunocytochemically stained sections revealed that the ventricular system of the hedgehog is unique among mammals in that the choroid plexuses receive CA axons and that the supraependyma and subependyma of the cerebral ventricles and the spinal central canal are innervated both by serotoninergic and catecholaminergic (CA) fibres. Supraependymal 5-HT axons were generally more abundant and created at places a large number of interconnected basket-like structures, whereas CA fibres were usually directed towards the ventricular lumen. In the lateral ventricles, CA fibres were more numerous in the ependyma lining grey matter, whereas a higher 5-HT innervation density was observed in the area between the corpus callosum and the caudate nucleus or the septum. In the 3rd ventricle, the ependyma of its dorsal part exhibited a higher 5-HT and NA innervation density, whereas DA fibres were preferentially distributed in the ventral half of the basal region. The ependyma lining the cerebral aqueduct displayed a higher MA innervation density in its ventral part. The ependymal wall of the 4th ventricle exhibited an extremely dense 5-HT innervation, mainly in the floor of the ventricle, relatively fewer NA fibres and only sparse DA ones. Few NA and relatively more 5-HT fibres were detected in the ependyma of the central canal. Finally, the circumventricular organs were unevenly innervated by the 3 types of MA fibres. The extensive monoaminergic innervation of the hedgehog ventricular system described here probably reflects a transitory evolutionary stage in the phylogeny of the MA systems with presently unknown functional implications. Images Fig. 1 Fig. 2 Figs 3-8 Figs 9-14 Figs 15-20 PMID:8886949

  9. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    Science.gov (United States)

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  10. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    Science.gov (United States)

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  11. Reduced Sympathetic Innervation in Endometriosis is Associated to Semaphorin 3C and 3F Expression.

    Science.gov (United States)

    Scheerer, Claudia; Frangini, Sergio; Chiantera, Vito; Mechsner, Sylvia

    2017-09-01

    Endometriosis is a chronic inflammatory disease and one of the most common causes of pelvic pain. The mechanisms underlying pain emergence or chronic inflammation during endometriosis remain unknown. Several chronic inflammatory diseases including endometriosis show reduced amounts of noradrenergic nerve fibers. The source of the affected innervation is still unclear. Semaphorins represent potential elicitors, due to their known role as axonal guidance cues, and are suggested as nerve repellent factors in different chronic inflammatory diseases. Therefore, semaphorins might influence the progress of neuroinflammatory mechanisms during endometriosis. Here, we analyzed the noradrenergic innervation and the expression of the specific semaphorins and receptors possibly involved in the neuroimmunomodulation in endometriosis. Our studies revealed an affected innervation and a significant increase of semaphorins and their receptors in peritoneal endometriotic tissue. Thereby, the expression of the receptors was identified on the membrane of noradrenergic nerve fibers and vessels. Macrophages and activated fibroblasts were found in higher density levels and additionally express semaphorins in peritoneal endometriotic tissue. Inflammation leads to an increased release of immune cells, which secrete a variety of inflammatory factors capable of affecting innervation. Therefore, our data suggests that the chronic inflammatory condition in endometriosis might contribute to the increase of semaphorins, which could possibly affect the innervation in peritoneal endometriosis.

  12. Propylthiouracil and peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Valentina Van Boekel

    1992-06-01

    Full Text Available Peripheral neuropathy is a rare manifestation in hyperthyroidism. We describe the neurological manifestations of a 38 year old female with Graves' disease who developed peripheral neuropathy in the course of her treatment with propylthiouracil. After the drug was tapered off, the neurological signs disappeared. Therefore, we call attention for a possible toxic effect on peripheral nervous system caused by this drug.

  13. Acid-sensing ion channels in trigeminal ganglion neurons innervating the orofacial region contribute to orofacial inflammatory pain.

    Science.gov (United States)

    Fu, Hui; Fang, Peng; Zhou, Hai-Yun; Zhou, Jun; Yu, Xiao-Wei; Ni, Ming; Zheng, Jie-Yan; Jin, You; Chen, Jian-Guo; Wang, Fang; Hu, Zhuang-Li

    2016-02-01

    Orofacial pain is a common clinical symptom that is accompanied by tooth pain, migraine and gingivitis. Accumulating evidence suggests that acid-sensing ion channels (ASICs), especially ASIC3, can profoundly affect the physiological properties of nociception in peripheral sensory neurons. The aim of this study is to examine the contribution of ASICs in trigeminal ganglion (TG) neurons to orofacial inflammatory pain. A Western blot (WB), immunofluorescence assay of labelled trigeminal ganglion neurons, orofacial formalin test, cell preparation and electrophysiological experiments are performed. This study demonstrated that ASIC1, ASIC2a and ASIC3 are highly expressed in TG neurons innervating the orofacial region of rats. The amplitude of ASIC currents in these neurons increased 119.72% (for ASIC1-like current) and 230.59% (for ASIC3-like current) in the formalin-induced orofacial inflammatory pain model. In addition, WB and immunofluorescence assay demonstrated a significantly augmented expression of ASICs in orofacial TG neurons during orofacial inflammation compared with the control group. The relative protein density of ASIC1, ASIC2a and ASIC3 also increased 58.82 ± 8.92%, 45.30 ± 11.42% and 55.32 ± 14.71%, respectively, compared with the control group. Furthermore, pharmacological blockade of ASICs and genetic deletion of ASIC1 attenuated the inflammation response. These findings indicate that peripheral inflammation can induce the upregulation of ASICs in TG neurons, causing orofacial inflammatory pain. Additionally, the specific inhibitor of ASICs may have a significant analgesic effect on orofacial inflammatory pain. © 2016 John Wiley & Sons Australia, Ltd.

  14. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    Science.gov (United States)

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Anterograde Tracing Method using DiI to Label Vagal Innervation of the Embryonic and Early Postnatal Mouse Gastrointestinal Tract

    Science.gov (United States)

    Murphy, Michelle C.; Fox, Edward A.

    2007-01-01

    The mouse is an extremely valuable model for studying vagal development in relation to strain differences, genetic variation, gene manipulations, or pharmacological manipulations. Therefore, a method using 1, 1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) was developed for labeling vagal innervation of the gastrointestinal (GI) tract in embryonic and postnatal mice. DiI labeling was adapted and optimized for this purpose by varying several facets of the method. For example, insertion and crushing of DiI crystals into the nerve led to faster DiI diffusion along vagal axons and diffusion over longer distances as compared with piercing the nerve with a micropipette tip coated with dried DiI oil. Moreover, inclusion of EDTA in the fixative reduced leakage of DiI out of nerve fibers that occurred with long incubations. Also, mounting labeled tissue in PBS was superior to glycerol with n-propyl gallate, which resulted in reduced clarity of DiI labeling that may have been due to DiI leaking out of fibers. Optical sectioning of flattened wholemounts permitted examination of individual tissue layers of the GI tract wall. This procedure aided identification of nerve ending types because in most instances each type innervates a different tissue layer. Between embryonic day 12.5 and postnatal day 8, growth of axons into the GI tract, formation and patterning of fiber bundles in the myenteric plexus and early formation of putative afferent and efferent nerve terminals were observed. Thus, the DiI tracing method developed here has opened up a window for investigation during an important phase of vagal development. PMID:17418900

  16. Peripheral Neuropathy and Agent Orange

    Science.gov (United States)

    ... Enter ZIP code here Enter ZIP code here Peripheral Neuropathy and Agent Orange VA presumes Veterans' early-onset ... 10 percent disabling by VA's rating regulations. About peripheral neuropathy Peripheral neuropathy is a condition of the peripheral ...

  17. Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio).

    Science.gov (United States)

    Stoyek, Matthew R; Croll, Roger P; Smith, Frank M

    2015-08-01

    In the vertebrate heart the intracardiac nervous system is the final common pathway for autonomic control of cardiac output, but the neuroanatomy of this system is not well understood. In this study we investigated the innervation of the heart in a model vertebrate, the zebrafish. We used antibodies against acetylated tubulin, human neuronal protein C/D, choline acetyltransferase, tyrosine hydroxylase, neuronal nitric oxide synthase, and vasoactive intestinal polypeptide to visualize neural elements and their neurotransmitter content. Most neurons were located at the venous pole in a plexus around the sinoatrial valve; mean total number of cells was 197 ± 23, and 92% were choline acetyltransferase positive, implying a cholinergic role. The plexus contained cholinergic, adrenergic, and nitrergic axons and vasoactive intestinal polypeptide-positive terminals, some innervating somata. Putative pacemaker cells near the plexus showed immunoreactivity for hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and the transcription factor Islet-1 (Isl1). The neurotracer neurobiotin showed that extrinsic axons from the left and right vagosympathetic trunks innervated the sinoatrial plexus proximal to their entry into the heart; some extrinsic axons from each trunk also projected into the medial dorsal plexus region. Extrinsic axons also innervated the atrial and ventricular walls. An extracardiac nerve trunk innervated the bulbus arteriosus and entered the arterial pole of the heart to innervate the proximal ventricle. We have shown that the intracardiac nervous system in the zebrafish is anatomically and neurochemically complex, providing a substrate for autonomic control of cardiac effectors in all chambers. © 2015 Wiley Periodicals, Inc.

  18. Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat

    International Nuclear Information System (INIS)

    Oleskevich, S.; Descarries, L.; Lacaille, J.C.

    1989-01-01

    A recently developed radioautographic technique, based on the uptake labeling of monoamine terminals in vitro, was used to quantify the noradrenaline (NA) innervation in adult rat hippocampus. After incubation of brain slices with 1 microM 3H-NA, the NA varicosities were visualized as small aggregates of silver grains, in light microscope radioautographs prepared at 3 equidistant horizontal levels across the ventral 2/3 of the hippocampus. Using a computer-assisted image analyzer, counts were obtained from the subiculum (SUB), 3 sectors of Ammon's horn (CA1, CA3-a, CA3-b) and 3 sectors of the dentate gyrus (DG-medial blade, crest, and lateral blade), every lamina being sampled in each region. After a double correction for duration of radioautographic exposure and section thickness, and following measurement of varicosity diameter in electron microscope radioautographs, it was possible to express these results in number of terminals per volumetric unit of tissue. It was thus found that the overall density of hippocampal NA innervation averages 2.1 million varicosities/mm3 of tissue, a value almost twice as high as that in cerebral cortex. This innervation is 20% denser ventrally than dorsally and is heterogeneous both in terms of regional and laminar distribution. SUB and DG are more strongly innervated than Ammon's horn, wherein CA1 has the lowest overall density. In SUB and CA1, there is a clear predilection of NA varicosities for the stratum moleculare. In CA3, there is a narrow band of even stronger innervation in the stratum radiatum, near the apical border of the stratum pyramidale, contrasting with a 3 times lower density in this cell layer and the stratum oriens. In DG, the NA innervation is again the weakest in the cell body layer and exhibits an almost 3-fold greater density in the polymorph layer, the highest of all hippocampus

  19. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    Science.gov (United States)

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  20. Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation*

    Science.gov (United States)

    Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142

  1. Morphology and innervation of the diaphragma of Myrmecophaga tridactyla.

    Science.gov (United States)

    Miglino, M A; de Santis-Prada, I L; Di Dio, L J

    1991-01-01

    The diaphragma of 4 "Myrmecophaga tridactyla" was described. The diaphragma follows the general pattern of EDENTATA, but it has special features which make it possible to differentiate it from that of "Bradypus tridactylus.

  2. Associations between xerostomia, histopathological alterations, and autonomic innervation of labial salivary glands in men in late midlife

    DEFF Research Database (Denmark)

    Sørensen, Christiane Elisabeth; Larsen, Jytte Overgaard; Reibel, Jesper

    2014-01-01

    connective tissue. Acinar atrophy and fibrosis were negatively correlated with the parenchymal innervation and positively related to diffuse inflammation. CONCLUSIONS: The results from the present study indicate that aspects of the autonomic innervation of labial salivary glands may play a role...

  3. The challenges and beauty of peripheral nerve regrowth.

    Science.gov (United States)

    Zochodne, Douglas W

    2012-03-01

    This review provides an overview of selected aspects of peripheral nerve regeneration and potential avenues to explore therapeutically. The overall coordinated and orchestrated pattern of recovery from peripheral nerve injury has a beauty of execution and progress that rivals all other forms of neurobiology. It involves changes at the level of the perikaryon, coordination with important peripheral glial partners, the Schwann cells, a controlled inflammatory response, and growth that overcomes surprising intrinsic roadblocks. Both regenerative axon growth and collateral sprouting encompass fascinating aspects of this story. Better understanding of peripheral nerve regeneration may also lead to enhanced central nervous system recovery. © 2012 Peripheral Nerve Society.

  4. Patterns of experimentally induced pain in pericranial muscles

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Peter Thede; Svensson, Peter; Jensen, Troels Staehelin

    2006-01-01

    into the masseter muscle (anova: P pain areas (anova: P cervically innervated muscles had significantly different patterns of spread and referral of pain according to trigeminally vs....... cervically innervated dermatomes (P pain patterns and pain sensitivity in different craniofacial muscles in healthy volunteers, which may be of importance for further research on different craniofacial pain conditions.......Nociceptive mechanisms in the craniofacial muscle tissue are poorly understood. The pain pattern in individual pericranial muscles has not been described before. Experimental muscle pain was induced by standardized infusions of 0.2 ml 1 m hypertonic saline into six craniofacial muscles (masseter...

  5. Monitoring sweep in peripheral waterflood

    International Nuclear Information System (INIS)

    Rouser, B.J.; Al-Askar, Y.A.; Hassoun, T.H.

    1991-01-01

    This paper examines the techniques used and the results obtained in monitoring the water advance in a peripheral waterflood of a carbonate reservoir. The peripheral pattern used in the subject reservoir gives a water advanced similar to that obtained in a water drive reservoir. However, monitoring this particular reservoir is complicated by the use of a low salinity brine for flooding and the areal shape of the reservoir. The use of pulsed neutron capture logging in conjunction with production logging has been effective in differentiating between oil and water in porous zones in existing producers. The use of the two logs has been successful despite the problems normally encountered when logging open hole completions in a reservoir being flooded with a low salinity brine. Results have been confirmed and enhanced by open hole logs of new wells being drilled in the water invaded areas

  6. Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: impact on invasive electrophysiological parameters and ablation procedures

    International Nuclear Information System (INIS)

    Gimelli, Alessia; Menichetti, Francesca; Soldati, Ezio; Liga, Riccardo; Vannozzi, Andrea; Bongiorni, Maria Grazia; Marzullo, Paolo

    2016-01-01

    To assess the relationship between regional myocardial perfusion and sympathetic innervation parameters at myocardial scintigraphy and intra-cavitary electrophysiological data in patients with ventricular arrhythmias (VA) submitted to invasive electrophysiological study and ablation procedure. Sixteen subjects underwent invasive electrophysiological study with electroanatomical mapping (EAM) followed by trans-catheter ablations of VA. Before ablation all patients were studied with a combined evaluation of regional myocardial perfusion and sympathetic innervation by means of tomographic "9"9"mTc-tetrofosmin and "1"2"3I- metaiodobenzylguanidine cadmium-zinc-telluride (CZT) scintigraphies, respectively. Off-line spatial co-registration of CZT perfusion and innervation data with the three-dimensional EAM reconstruction was performed in every patient. CZT revealed the presence of myocardial scar in 55 (20 %) segments. Of the viable myocardial segments, 131 (60 %) presented a preserved adrenergic innervation, while 86 (40 %) showed a significantly depressed innervation (i.e. innervation/perfusion mismatch). On EAM, the invasively measured intra-cavitary voltage was significantly lower in scarred segments than in viable ones (1.7 ± 1.5 mV vs. 4.0 ± 2.2 mV, P < 0.001). Interestingly, among the viable segments, those showing an innervation/perfusion mismatch presented a significantly lower intra-cavitary voltage than those with preserved innervation (1.9 ± 2.5 mV vs. 4.7 ± 2.3 mV, P < 0.001). Intra-cardiac ablation was performed in 63 (23 %) segments. On multivariate analysis, after correction for scar burden, the segments showing an innervation/perfusion mismatch remained the most frequent ablation targets (OR 5.6, 95 % CI 1.5-20.8; P = 0.009). In patients with VA, intra-cavitary electrical abnormalities frequently originate at the level of viable myocardial segments with depressed sympathetic innervation that frequently represents the ultimate ablation target. (orig.)

  7. Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: impact on invasive electrophysiological parameters and ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Menichetti, Francesca; Soldati, Ezio; Liga, Riccardo; Vannozzi, Andrea; Bongiorni, Maria Grazia [University Hospital of Pisa, Cardio-Thoracic and Vascular Department, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2016-12-15

    To assess the relationship between regional myocardial perfusion and sympathetic innervation parameters at myocardial scintigraphy and intra-cavitary electrophysiological data in patients with ventricular arrhythmias (VA) submitted to invasive electrophysiological study and ablation procedure. Sixteen subjects underwent invasive electrophysiological study with electroanatomical mapping (EAM) followed by trans-catheter ablations of VA. Before ablation all patients were studied with a combined evaluation of regional myocardial perfusion and sympathetic innervation by means of tomographic {sup 99m}Tc-tetrofosmin and {sup 123}I- metaiodobenzylguanidine cadmium-zinc-telluride (CZT) scintigraphies, respectively. Off-line spatial co-registration of CZT perfusion and innervation data with the three-dimensional EAM reconstruction was performed in every patient. CZT revealed the presence of myocardial scar in 55 (20 %) segments. Of the viable myocardial segments, 131 (60 %) presented a preserved adrenergic innervation, while 86 (40 %) showed a significantly depressed innervation (i.e. innervation/perfusion mismatch). On EAM, the invasively measured intra-cavitary voltage was significantly lower in scarred segments than in viable ones (1.7 ± 1.5 mV vs. 4.0 ± 2.2 mV, P < 0.001). Interestingly, among the viable segments, those showing an innervation/perfusion mismatch presented a significantly lower intra-cavitary voltage than those with preserved innervation (1.9 ± 2.5 mV vs. 4.7 ± 2.3 mV, P < 0.001). Intra-cardiac ablation was performed in 63 (23 %) segments. On multivariate analysis, after correction for scar burden, the segments showing an innervation/perfusion mismatch remained the most frequent ablation targets (OR 5.6, 95 % CI 1.5-20.8; P = 0.009). In patients with VA, intra-cavitary electrical abnormalities frequently originate at the level of viable myocardial segments with depressed sympathetic innervation that frequently represents the ultimate ablation target

  8. A New Wavelet-Based ECG Delineator for the Evaluation of the Ventricular Innervation

    DEFF Research Database (Denmark)

    Cesari, Matteo; Mehlsen, Jesper; Mehlsen, Anne-Birgitte

    2017-01-01

    T-wave amplitude (TWA) has been proposed as a marker of the innervation of the myocardium. Until now, TWA has been calculated manually or with poor algorithms, thus making its use not efficient in a clinical environment. We introduce a new wavelet-based algorithm for the delineation QRS complexes...

  9. The role of Sema3–Npn-1 signaling during diaphragm innervation and muscle development

    Science.gov (United States)

    Huettl, Rosa-Eva; Hanuschick, Philipp; Amend, Anna-Lena; Alberton, Paolo; Aszodi, Attila; Huber, Andrea B.

    2016-01-01

    ABSTRACT Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A–Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A–Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm. PMID:27466379

  10. The role of the autonomic nervous liver innervation in the control of energy metabolism

    NARCIS (Netherlands)

    Yi, Chun-Xia; la Fleur, Susanne E.; Fliers, Eric; Kalsbeek, Andries

    2010-01-01

    Despite a longstanding research interest ever since the early work by Claude Bernard, the functional significance of autonomic liver innervation, either sympathetic or parasympathetic, is still ill defined. This scarcity of information not only holds for the brain control of hepatic metabolism, but

  11. Functional anatomy of the hypoglossal innervated muscles of the rat tongue: a model for elongation and protrusion of the mammalian tongue.

    Science.gov (United States)

    McClung, J R; Goldberg, S J

    2000-12-01

    This anatomical investigation in the rat was designed to illustrate the detailed organization of the tongue's muscles and their innervation in order to elucidate the actions of the muscles of the higher mammalian tongue and thereby clarify the protrusor subdivision of the hypoglossal-tongue complex. The hypoglossal innervated, extrinsic styloglossus, hyoglossus, and genioglossus and the intrinsic transversus, verticalis and longitudinalis linguae muscles were observed by microdissection and analysis of serial transverse-sections of the tongue. Sihler's staining technique was applied to whole rat tongues to demonstrate the hypoglossal nerve branching patterns. Dissections of the tongue demonstrate the angles at which the extrinsic muscles act on the base of the tongue. The Sihler stained hypoglossal nerves demonstrate branches to the styloglossus and hyoglossus emanating from its lateral division while branches to the genioglossus muscle exit from its medial division. The largest portions of both XIIth nerve divisions can be seen to enter the body of the tongue to innervate the intrinsic muscles. Transverse sections of the tongue demonstrate the organization of the intrinsic muscle fibers of the tongue. Longitudinal muscle fibers run along the entire circumference of the tongue. Alternating sheets of transverse lingual and vertical lingual muscles can be observed to insert into the circumference of the tongue. Most importantly in clarifying tongue protrusion, we demonstrate the transversus muscle fibers enveloping the most superior and inferior portions of the longitudinalis muscles. Longitudinal muscle fascicles are completely encircled and thus are likely to be compressed by transverse muscle fascicles resulting in elongation of the tongue. We discuss our findings in relation to biomechanical studies, that describe the tongue as a muscular hydrostat and thereby define the "elongation-protrusion apparatus" of the mammalian tongue. In so doing, we clarify the

  12. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal.

    Science.gov (United States)

    Kreipke, R E; Birren, S J

    2015-12-01

    Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  13. Early Corneal Innervation and Trigeminal Alterations in Parkinson Disease: A Pilot Study.

    Science.gov (United States)

    Arrigo, Alessandro; Rania, Laura; Calamuneri, Alessandro; Postorino, Elisa Imelde; Mormina, Enricomaria; Gaeta, Michele; Marino, Silvia; Di Lorenzo, Giuseppe; Quartarone, Angelo; Anastasi, Giuseppe; Puzzolo, Domenico; Aragona, Pasquale

    2018-04-01

    To describe corneal innervation and trigeminal alterations in drug-naive patients with Parkinson disease (PD). A case series study was conducted by recruiting 3 early drug-naive patients with PD, 2 men and 1 woman (age: 72, 68, and 66, respectively). Ophthalmologic assessment included Ocular Surface Disease Index questionnaire, visual acuity by the logarithm of the minimum angle of resolution score, pupillary light reflexes, extrinsic ocular movements, corneal sensitivity, and slit-lamp examination. Corneal innervation parameter changes were evaluated in vivo using the Confoscan 4 confocal microscope, and they were compared with a control data set. The Heidelberg Retina Tomograph 3 (HRT3) has been used to assess retinal alterations in our patients, if compared with normal range values provided by the HRT3. Moreover, 3T magnetic resonance imaging (MRI) analysis of water diffusion property changes of trigeminal nerves was performed. All data were analyzed and compared with 2 control data sets made by 14 age-matched controls. Patients with PD showed profound alterations of corneal innervation and of trigeminal diffusion MRI parameters, compared with controls. Strong differences (PD vs. controls) were found for deep nerve tortuosity (Kallinikos mean 19.94 vs. 2.13) and the number of beadings (mean 34.2 vs. 15.5). HRT3 retinal evaluation revealed less structural changes compared with the normal range. Diffusion MRI showed profound changes of white matter diffusion properties (PD vs. controls), with fractional anisotropy decrement (mean 0.3029 vs. 0.3329) and mean diffusivity increment (mean 0.00127 vs. 0.00106). Corneal innervation changes might occur earlier in patients with PD than in retinal ones. Confocal corneal innervation analysis might provide possible early biomarkers for a better PD evaluation and for its earlier diagnosis.

  14. Double muscle innervation using end-to-side neurorrhaphy in rats

    Directory of Open Access Journals (Sweden)

    Elisangela Jeronymo Stipp-Brambilla

    Full Text Available CONTEXT AND OBJECTIVE: One of the techniques used for treating facial paralysis is double muscle innervation using end-to-end neurorrhaphy with sectioning of healthy nerves. The aim of this study was to evaluate whether double muscle innervation by means of end-to-side neurorrhaphy could occur, with maintenance of muscle innervation. DESIGN AND SETTING: Experimental study developed at the Experimental Research Center, Faculdade de Medicina de Botucatu, Unesp. METHODS: One hundred rats were allocated to five groups as follows: G1, control group; G2, the peroneal nerve was sectioned; G3, the tibial nerve was transected and the proximal stump was end-to-side sutured to the intact peroneal nerve; G4, 120 days after the G3 surgery, the peroneal nerve was sectioned proximally to the neurorrhaphy; G5, 120 days after the G3 surgery, the peroneal and tibial nerves were sectioned proximally to the neurorrhaphy. RESULTS: One hundred and fifty days after the surgery, G3 did not show any change in tibial muscle weight or muscle fiber diameter, but the axonal fiber diameter in the peroneal nerve distal to the neurorrhaphy had decreased. Although G4 showed atrophy of the cranial tibial muscle 30 days after sectioning the peroneal nerve, the electrophysiological test results and axonal diameter measurement confirmed that muscle reinnervation had occurred. CONCLUSION: These findings suggest that double muscle innervation did not occur through end-to-side neurorrhaphy; the tibial nerve was not able to maintain muscle innervation after the peroneal nerve had been sectioned, although muscle reinnervation was found to have occurred, 30 days after the peroneal nerve had been sectioned.

  15. Specific paucity of unmyelinated C-fibers in cutaneous peripheral nerves of the African naked-mole rat: comparative analysis using six species of Bathyergidae.

    Science.gov (United States)

    St John Smith, Ewan; Purfürst, Bettina; Grigoryan, Tamara; Park, Thomas J; Bennett, Nigel C; Lewin, Gary R

    2012-08-15

    In mammalian peripheral nerves, unmyelinated C-fibers usually outnumber myelinated A-fibers. By using transmission electron microscopy, we recently showed that the saphenous nerve of the naked mole-rat (Heterocephalus glaber) has a C-fiber deficit manifested as a substantially lower C:A-fiber ratio compared with other mammals. Here we determined the uniqueness of this C-fiber deficit by performing a quantitative anatomical analysis of several peripheral nerves in five further members of the Bathyergidae mole-rat family: silvery (Heliophobius argenteocinereus), giant (Fukomys mechowii), Damaraland (Fukomys damarensis), Mashona (Fukomys darlingi), and Natal (Cryptomys hottentotus natalensis) mole-rats. In the largely cutaneous saphenous and sural nerves, the naked mole-rat had the lowest C:A-fiber ratio (∼1.5:1 compared with ∼3:1), whereas, in nerves innervating both skin and muscle (common peroneal and tibial) or just muscle (lateral/medial gastrocnemius), this pattern was mostly absent. We asked whether lack of hair follicles alone accounts for the C-fiber paucity by using as a model a mouse that loses virtually all its hair as a consequence of conditional deletion of the β-catenin gene in the skin. These β-catenin loss-of function mice (β-cat LOF mice) displayed only a mild decrease in C:A-fiber ratio compared with wild-type mice (4.42 compared with 3.81). We suggest that the selective cutaneous C-fiber deficit in the cutaneous nerves of naked mole-rats is unlikely to be due primarily to lack of skin hair follicles. Possible mechanisms contributing to this unique peripheral nerve anatomy are discussed. Copyright © 2012 Wiley Periodicals, Inc.

  16. Vasculitic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Mona Amini

    2014-02-01

    Full Text Available Primary systemic vasculitis in pre-capillary arteries is associated with peripheral neuropathy. In some types of systematic vasculitis about 60 % of patients have peripheral nervous system (PNS involvement. In vasculitic peripheral neuropathies (VPN a necrotizing and inflammatory process leads to narrowing of vasa nervorum lumen and eventually the appearance of ischemic lesions in peripheral nerves. Some features might be suggestive of VPN, like: axonal nerve degeneration, wallerian-like degeneration, and diameter irregularity of nerve. Peripheral nervous system (PNS destruction during systemic vasculitides should be considered, due to its frequency and early occurrence in vasculitis progression. The first line treatment of non systematic VPNs is corticosteroid agents, but these drugs might worsen the VPNs or systemic vasculitis.

  17. Determination of normal expression patterns of CD86, CD210a, CD261, CD262, CD264, CD358, and CD361 in peripheral blood and bone marrow cells by flow cytometry.

    Science.gov (United States)

    Rudolf-Oliveira, Renata Cristina Messores; Auat, Mariangeles; Cardoso, Chandra Chiappin; Santos-Pirath, Iris Mattos; Lange, Barbara Gil; Pires-Silva, Jéssica; Moraes, Ana Carolina Rabello de; Dametto, Gisele Cristina; Pirolli, Mayara Marin; Colombo, Maria Daniela Holthausen Périco; Santos-Silva, Maria Claudia

    2018-02-01

    In 2010, new monoclonal antibodies were submitted to the 9th International Workshop on Human Leukocyte Differentiation Antigens, and there are few studies demonstrating normal expression patterns of these markers. Thus, the objective of this study was to determine the normal patterns of cell expression of CD86, CD210a, CD261, CD262, CD264, CD358, and CD361 in peripheral blood (PB) and bone marrow (BM) samples by flow cytometry. In the present study, CD86 was expressed only in monocytes and B lymphocytes in PB and in monocytes and plasma cells in BM. Regarding CD210a expression, in PB samples, monocytes and NK cells showed weak expression, while neutrophils, B and T lymphocytes, and basophils showed weak and partial expression. In BM samples, expression of CD210a was observed in eosinophils, monocytes, and B and T/NK lymphocytes. Weak expression of CD210a was also observed in neutrophilic cells and plasma cells. All B cell maturation stages had weak expression of CD210a except for immature B cells, which did not express this marker. In the present study, no cell type in PB samples showed positivity for CD261 and, in BM samples, there was very weak expression in neutrophilic series, monocytes, and B lymphocytes. Conversely, plasma cells showed positivity for CD261 with a homogeneous expression. For CD262, there was weak expression in monocytes, neutrophils, and B lymphocytes in PB samples and weak expression in monocytes, B lymphocytes, and plasma cells in BM samples. The evaluation of CD264 showed very weak expression in B cells in PB samples and no expression in BM cells. Very weak expression of CD358 was observed in neutrophils, monocytes, and B lymphocytes in PB and BM samples. In addition, in BM samples, plasma cells and T lymphocytes showed weak expression of CD358. In relation to the maturation stages of B cells, there was weak expression in pro-B cel, pre-B cell, and mature B cell. In the present study, it was possible to observe expression of CD361 in all

  18. PrP expression, PrPSc accumulation and innervation of splenic compartments in sheep experimentally infected with scrapie.

    Directory of Open Access Journals (Sweden)

    Randi Sørby

    Full Text Available BACKGROUND: In prion disease, the peripheral expression of PrP(C is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrP(Sc accumulation, localisation of nerve fibres and PrP(C expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep. METHODOLOGY/PRINCIPAL FINDINGS: Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrP(C and PrP(Sc in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrP(Sc in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrP(Sc and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrP(Sc and nerves. Some nerve fibres were observed to accompany blood vessels into the PrP(Sc-laden germinal centres. However, the close association between nerves and PrP(Sc was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres. CONCLUSIONS/SIGNIFICANCE: The findings suggest that the degree of PrP(Sc accumulation does not depend on the expression level of PrP(C. Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrP(Sc.

  19. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    Science.gov (United States)

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  20. Donating Peripheral Blood Stem Cells

    Science.gov (United States)

    ... Print this page My Cart Donating peripheral blood stem cells Peripheral blood stem cell (PBSC) donation is a nonsurgical procedure to collect ... Donating bone marrow Donor experiences videos Peripheral blood stem cell (PBSC) donation is one of two methods of ...

  1. Peripheral Neuropathy: Symptoms and Signs

    Science.gov (United States)

    ... Utah Research News Make a Difference Symptoms of Peripheral Neuropathy Print This Page Peripheral Neuropathy symptoms usually start ... more slowly over many years. The symptoms of peripheral neuropathy often include: A sensation of wearing an invisible “ ...

  2. Consequences of peripheral frequency selectivity for nonsimultaneous masking

    NARCIS (Netherlands)

    Duifhuis, H.

    1973-01-01

    The frequency selectivity of the peripheral ear (e.g., at the VIIIth nerve level) is so acute that onset and offset transients in responses to short signals produce a nonnegligible extension of the signal duration. Thus, peripheral excitation patterns produced by signals which were separated in time

  3. Anomalous Innervation of the Median Nerve in the Arm in the Absence of the Musculocutaneous Nerve

    Directory of Open Access Journals (Sweden)

    Khursheed Raza

    2017-03-01

    Full Text Available The brachial plexus innervates the upper extremities. While variations in the formation of the brachial plexus and its terminal branches are quite common, it is uncommon for the median nerve to innervate the muscles of the arm. During the dissection of an elderly male cadaver at the Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India, in 2016, the coracobrachialis muscle was found to be supplied by a direct branch from the lateral root of the median nerve and the musculocutaneous nerve was absent. The branches of the median nerve supplied the biceps brachii and brachialis muscles and the last branch continued as the lateral cutaneous nerve of the forearm. These variations may present atypically in cases of arm flexor paralysis or sensory loss on the lateral forearm. Knowledge of these variations is important in surgeries and during the administration of regional anaesthesia near the shoulder joint and upper arm.

  4. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    International Nuclear Information System (INIS)

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus

  5. The sympathetic and sensory innervation of rat airways: origin and neurochemical characterisation

    OpenAIRE

    Radtke, Anne

    2010-01-01

    Sensory and sympathetic innervation of Brown Norway rat airways were investigated using retrograde neuronal tracing with fluorescent dyes and double labelling immunofluorescence. Sensory neurons projecting to the lung are located in nodose and jugular vagal ganglia. Sympathetic neuronal supply of the lung originates in the stellate ganglia and superior cervical ganglia. Concerning immuno-reactivity for the SP and NOS in sensory and NPY and TH in sympathetic neurons were investigated. IR for S...

  6. Insulin resistance is associated with impaired cardiac sympathetic innervation in patients with heart failure.

    Science.gov (United States)

    Paolillo, S; Rengo, G; Pellegrino, T; Formisano, R; Pagano, G; Gargiulo, P; Savarese, G; Carotenuto, R; Petraglia, L; Rapacciuolo, A; Perrino, C; Piscitelli, S; Attena, E; Del Guercio, L; Leosco, D; Trimarco, B; Cuocolo, A; Perrone-Filardi, P

    2015-10-01

    Insulin resistance (IR) represents, at the same time, cause and consequence of heart failure (HF) and affects prognosis in HF patients, but pathophysiological mechanisms remain unclear. Hyperinsulinemia, which characterizes IR, enhances sympathetic drive, and it can be hypothesized that IR is associated with impaired cardiac sympathetic innervation in HF. Yet, this hypothesis has never been investigated. Aim of the present observational study was to assess the relationship between IR and cardiac sympathetic innervation in non-diabetic HF patients. One hundred and fifteen patients (87% males; 65 ± 11.3 years) with severe-to-moderate HF (ejection fraction 32.5 ± 9.1%) underwent iodine-123 meta-iodobenzylguanidine ((123)I-MIBG) myocardial scintigraphy to assess sympathetic innervation and Homeostasis Model Assessment Insulin Resistance (HOMA-IR) evaluation to determine the presence of IR. From (123)I-MIBG imaging, early and late heart to mediastinum (H/M) ratios and washout rate were calculated. Seventy-two (63%) patients showed IR and 43 (37%) were non-IR. Early [1.68 (IQR 1.53-1.85) vs. 1.79 (IQR 1.66-1.95); P = 0.05] and late H/M ratio [1.50 (IQR 1.35-1.69) vs. 1.65 (IQR 1.40-1.85); P = 0.020] were significantly reduced in IR compared with non-IR patients. Early and late H/M ratio showed significant inverse correlation with fasting insulinemia and HOMA-IR. Cardiac sympathetic innervation is more impaired in patients with IR and HF compared with matched non-IR patients. These findings shed light on the relationship among IR, HF, and cardiac sympathetic nervous system. Additional studies are needed to clarify the pathogenetic relationship between IR and HF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  7. Function and Innervation of the Locus Ceruleus in a Macaque Model of Functional Hypothalamic Amenorrhea

    OpenAIRE

    Bethea, Cynthia L; Kim, Aaron; Cameron, Judy L

    2012-01-01

    A body of knowledge implicates an increase in output from the locus ceruleus (LC) during stress. We questioned the innervation and function of the LC in our macaque model of Functional Hypothalamic Amenorrhea, also known as Stress-Induced Amenorrhea. Cohorts of macaques were initially characterized as highly stress resilient (HSR) or stress-sensitive (SS) based upon the presence or absence of ovulation during a protocol involving 2 menstrual cycles with psychosocial and metabolic stress. Afte...

  8. Peripheral Ulcerative Keratitis

    Science.gov (United States)

    ... oval in shape. Diagnosis A doctor's evaluation Sometimes culture The diagnosis of peripheral ulcerative keratitis is suspected when the doctor sees the affected cornea in a person who also has a severe and/or long- ...

  9. Tumors of peripheral nerves

    International Nuclear Information System (INIS)

    Ho, Michael; Lutz, Amelie M.

    2017-01-01

    Differentiation between malignant and benign tumors of peripheral nerves in the early stages is challenging; however, due to the unfavorable prognosis of malignant tumors early identification is required. To show the possibilities for detection, differential diagnosis and clinical management of peripheral nerve tumors by imaging appearance in magnetic resonance (MR) neurography. Review of current literature available in PubMed and MEDLINE, supplemented by the authors' own observations in clinical practice. Although not pathognomonic, several imaging features have been reported for a differentiation between distinct peripheral nerve tumors. The use of MR neurography enables detection and initial differential diagnosis in tumors of peripheral nerves. Furthermore, it plays an important role in clinical follow-up, targeted biopsy and surgical planning. (orig.) [de

  10. Promoting peripheral myelin repair

    OpenAIRE

    Zhou, Ye; Notterpek, Lucia

    2016-01-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the ...

  11. The influence of electromyographic recording methods and the innervation zone on the mean power frequency-torque relationships.

    Science.gov (United States)

    Herda, Trent J; Zuniga, Jorge M; Ryan, Eric D; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Weir, Joseph P; Cramer, Joel T; Housh, Terry J

    2015-06-01

    This study examined the effects of electromyographic (EMG) recording methods and innervation zone (IZ) on the mean power frequency (MPF)-torque relationships. Nine subjects performed isometric ramp muscle actions of the leg extensors from 5% to 100% of maximal voluntary contraction with an eight channel linear electrode array over the IZ of the vastus lateralis. The slopes were calculated from the log-transformed monopolar and bipolar EMG MPF-torque relationships for each channel and subject and 95% confidence intervals (CI) were constructed around the slopes for each relationship and the composite of the slopes. Twenty-two to 55% of the subjects exhibited 95% CIs that did not include a slope of zero for the monopolar EMG MPF-torque relationships while 25-75% of the subjects exhibited 95% CIs that did not include a slope of zero for the bipolar EMG MPF-torque relationships. The composite of the slopes from the EMG MPF-torque relationships were not significantly different from zero for any method or channel, however, the method and IZ location slightly influenced the number of significant slopes on a subject-by-subject basis. The log-transform model indicated that EMG MPF-torque patterns were nonlinear regardless of recording method or distance from the IZ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Target innervation is necessary for neuronal polyploidization in the terrestrial slug Limax.

    Science.gov (United States)

    Matsuo, Ryota; Yamagishi, Miki; Wakiya, Kyoko; Tanaka, Yoko; Ito, Etsuro

    2013-08-01

    The brain of gastropod mollusks contains many giant neurons with polyploid genomic DNAs. Such DNAs are generated through repeated DNA endoreplication during body growth. However, it is not known what triggers DNA endoreplication in neurons. There are two possibilities: (1) DNAs are replicated in response to some unknown molecules in the hemolymph that reflect the nutritive status of the animal; or (2) DNAs are replicated in response to some unknown factors that are retrogradely transported through axons from the innervated target organs. We first tested whether hemolymph with rich nutrition could induce DNA endoreplication. We tested whether the transplanted brain exhibits enhanced DNA endoreplication like an endogenous brain does when transplanted into the homocoel of the body of a slug whose body growth is promoted by an increased food supply. However, no enhancement was observed in the frequency of DNA endoreplication when we compared the transplanted brains in the growth-promoted and growth-suppressed host slugs, suggesting that the humoral environment is irrelevant to triggering the body growth-dependent DNA endoreplication. Next, we tested the requirement of target innervation by surgically dissecting a unilateral posterior pedal nerve of an endogenous brain. Substantially lower number of neurons exhibited DNA endoreplication in the pedal ganglion ipsilateral to the dissected nerve. These results support the view that enhanced DNA endoreplication is mediated by target innervation and is not brought about through the direct effect of humoral factors in the hemolymph during body growth. Copyright © 2013 Wiley Periodicals, Inc.

  13. Innervation and immunohistochemical characteristics of epididymis in Alpaca camelid (Vicugna pacos

    Directory of Open Access Journals (Sweden)

    Giovanna Liguori

    2013-03-01

    Full Text Available Alpacas (Vicugna pacos are domesticated camelids indigenous to south America and recently also bred in Europe and Italy for their high quality wool. There is little data available regarding the innervation of the male reproductive tract of this species. In the present study, the distribution of protein gene product 9.5 (PGP 9.5, neuropeptide Y (NPY, tyrosine hydroxilase (TH, calcitonin gene related peptide (CGRP and substance P (SP was analyzed in the epididymis by using immunohistochemical methods. Specimens of the caput, corpus and cauda epididymis were fixed in Bouin’s fluid and processed for immunohistochemistry analysis with primary antibodies against PGP 9.5, NPY, TH, CGRP and SP. Immunopositivity to PGP 9.5 and TH and NPY was observed in nerve fibre bundles and in single nerve fibres contained into the peritubular connective tissue. Many TH and NPY immunopositive cells were found to innervate blood vessels. Rare CGRP and SP immunopositive nerves were observed. Several PGP 9,5 and NPY immunopositive epithelial cells were observed in the caput epididymis. The results of the present study suggest a role for the innervations in modulate reproductive functions in the alpaca epididymis.

  14. Sensory Innervation of the Nonspecialized Connective Tissues in the Low Back of the Rat

    Science.gov (United States)

    Corey, Sarah M.; Vizzard, Margaret A.; Badger, Gary J.; Langevin, Helene M.

    2011-01-01

    Chronic musculoskeletal pain, including low back pain, is a worldwide debilitating condition; however, the mechanisms that underlie its development remain poorly understood. Pathological neuroplastic changes in the sensory innervation of connective tissue may contribute to the development of nonspecific chronic low back pain. Progress in understanding such potentially important abnormalities is hampered by limited knowledge of connective tissue's normal sensory innervation. The goal of this study was to evaluate and quantify the sensory nerve fibers terminating within the nonspecialized connective tissues in the low back of the rat. With 3-dimensional reconstructions of thick (30–80 μm) tissue sections we have for the first time conclusively identified sensory nerve fiber terminations within the collagen matrix of connective tissue in the low back. Using dye labeling techniques with Fast Blue, presumptive dorsal root ganglia cells that innervate the low back were identified. Of the Fast Blue-labeled cells, 60–88% also expressed calcitonin gene-related peptide (CGRP) immunoreactivity. Based on the immunolabeling with CGRP and the approximate size of these nerve fibers (≤2 μm) we hypothesize that they are Aδ or C fibers and thus may play a role in the development of chronic pain. PMID:21411968

  15. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Directory of Open Access Journals (Sweden)

    Alexandra E. Proshchina

    2014-04-01

    Full Text Available The ontogeny of the neuro-insular complexes (NIC and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used doublestaining with antibodies specific to pan-neural markers (neuron-specific enolase (NSE and S100 protein and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw 10 onwards. Later the density of S100 and NSE-positive fibers increased. In adults this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onwards. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained neuro-insular complexes and the number of these complexes was reduced in adults. The highest density of neuro-insular complexes is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  16. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Science.gov (United States)

    Proshchina, Alexandra E; Krivova, Yulia S; Barabanov, Valeriy M; Saveliev, Sergey V

    2014-01-01

    The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  17. Sensory and motor innervation of the crural diaphragm by the vagus nerves.

    Science.gov (United States)

    Young, Richard L; Page, Amanda J; Cooper, Nicole J; Frisby, Claudine L; Blackshaw, L Ashley

    2010-03-01

    During gastroesophageal reflux, transient lower esophageal sphincter relaxation and crural diaphragm (CD) inhibition occur concomitantly. Modifying vagus nerve control of transient lower esophageal sphincter relaxation is a major focus of development of therapeutics for gastroesophageal reflux disease, but neural mechanisms that coordinate the CD are poorly understood. Nerve tracing and immunolabeling were used to assess innervation of the diaphragm and lower esophageal sphincter in ferrets. Mechanosensory responses of vagal afferents in the CD and electromyography responses of the CD were recorded in novel in vitro preparations and in vivo. Retrograde tracing revealed a unique population of vagal CD sensory neurons in nodose ganglia and CD motor neurons in brainstem vagal nuclei. Anterograde tracing revealed specialized vagal endings in the CD and phrenoesophageal ligament-sites of vagal afferent mechanosensitivity recorded in vitro. Spontaneous electromyography activity persisted in the CD following bilateral phrenicotomy in vivo, while vagus nerve stimulation evoked electromyography responses in the CD in vitro and in vivo. We conclude that vagal sensory and motor neurons functionally innervate the CD and phrenoesophageal ligament. CD vagal afferents show mechanosensitivity to distortion of the gastroesophageal junction, while vagal motor neurons innervate both CD and distal esophagus and may represent a common substrate for motor control of the reflux barrier. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Estrogen Replacement Regulates Vaginal Innervations in Ovariectomized Adult Virgin Rats: A Histological Study

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-01-01

    Full Text Available Background. Our previous Gräfenberg spot findings confirmed that the distal-third areas of the anterior vaginal wall bore a significantly greater number of nerves and sexual hormone may have certain degree of influence on these significant differences. However, the role of estrogen in vaginal innervations remains controversial. Methods. To investigate whether hormonal-neural interactions occur in the vagina, sixty rats were randomly divided into six groups: Sham-operated, ovariectomy, and 4 treatment groups. After 2 weeks of treatment, vaginal biopsies were prepared with hematoxylin and eosin and PGP9.5 using immunohistochemistry. Results. The density of small nerve fibers was significantly higher in the distal-half areas of intact vaginal walls than the proximal-half areas (P=0.001. In contrast, the overall PGP 9.5-ir fiber innervation density was significantly decreased in the OVX rats subjected to surgical menopause. Sustained estrogen administration for 2 weeks resulted in nerve fiber proliferation, with values reaching normal levels in the low-dose estradiol valerate group. Conclusion. Our findings indicate that systemic hormonal therapy with low-dose estradiol valerate is effective and safe for treating deficient vaginal innervation caused by low level of estrogen activity in menopausal women and may aid studies to identify an optimal estradiol dose to provide relief from vaginal discomfort.

  19. Oropharyngeal and laryngeal sensory innervation in the pathophysiology of swallowing disorders and sensory stimulation treatments.

    Science.gov (United States)

    Alvarez-Berdugo, Daniel; Rofes, Laia; Casamitjana, J Francesc; Padrón, Andreína; Quer, Miquel; Clavé, Pere

    2016-09-01

    Oropharyngeal dysphagia (OD) affects older and neurological patients, causing malnutrition and dehydration and increasing the risk for aspiration pneumonia. There is evidence that sensory deficits in those populations are closely related to swallowing disorders, and several research groups are developing new therapies based on sensory stimulation of this area. More information on the sensory innervation participating in the swallow response is needed to better understand the pathophysiology of OD and to develop new treatments. This review focuses on the sensory innervation of the human oropharynx and larynx in healthy people compared with patients with swallowing disorders in order to unravel the abnormalities that may lead to the loss of sensitivity in patients with OD. We also hypothesize the pathway through which active sensory-enhancement treatments may elicit their therapeutic effect on patients with swallowing dysfunctions. As far as we know, this is the first time a review covers the anatomy, histology, ultrastructure, and molecular biology of the sensory innervation of the swallowing function. © 2016 New York Academy of Sciences.

  20. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    Science.gov (United States)

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  1. Vagal innervation is required for pulmonary function phenotype in Htr4-/- mice.

    Science.gov (United States)

    House, John S; Nichols, Cody E; Li, Huiling; Brandenberger, Christina; Virgincar, Rohan S; DeGraff, Laura M; Driehuys, Bastiaan; Zeldin, Darryl C; London, Stephanie J

    2017-04-01

    Human genome-wide association studies have identified over 50 loci associated with pulmonary function and related phenotypes, yet follow-up studies to determine causal genes or variants are rare. Single nucleotide polymorphisms in serotonin receptor 4 ( HTR4 ) are associated with human pulmonary function in genome-wide association studies and follow-up animal work has demonstrated that Htr4 is causally associated with pulmonary function in mice, although the precise mechanisms were not identified. We sought to elucidate the role of neural innervation and pulmonary architecture in the lung phenotype of Htr4 -/- animals. We report here that the Htr4 -/- phenotype in mouse is dependent on vagal innervation to the lung. Both ex vivo tracheal ring reactivity and in vivo flexiVent pulmonary functional analyses demonstrate that vagotomy abrogates the Htr4 -/- airway hyperresponsiveness phenotype. Hyperpolarized 3 He gas magnetic resonance imaging and stereological assessment of wild-type and Htr4 -/- mice reveal no observable differences in lung volume, inflation characteristics, or pulmonary microarchitecture. Finally, control of breathing experiments reveal substantive differences in baseline breathing characteristics between mice with/without functional HTR4 in breathing frequency, relaxation time, flow rate, minute volume, time of inspiration and expiration and breathing pauses. These results suggest that HTR4's role in pulmonary function likely relates to neural innervation and control of breathing. Copyright © 2017 the American Physiological Society.

  2. [Efferent innervation of the arteries of human leptomeninx in arterial hypertension].

    Science.gov (United States)

    Chertok, V M; Kotsiuba, A E; Babich, E V

    2009-01-01

    Structure of the efferent nerve plexuses (adrenergic, acetylcholinestherase- and cholinacetyltranspherase-positive, NO-dependent), was studied in the arteries of human leptomeninx with different diameters. Material was obtained from the corpses of the healthy people and of the patients with initial stages of arterial hypertension (AH). It was shown that the concentrations of cholinergic and adrenergic nerve fibers and varicosities in axon terminal part, innervating the arteries with the diameters ranging from 450 till 100 microm, were not significantly different. In these arteries, NO-ergic plexuses were also detected. In patients with AH, regardless the arterial diameters, the significant increase (up to 15-20%) of adrenergic nerve fiber and varicosity concentrations was found. The changes in cholinergic nerve fiber concentration were found to depend on the vessel diameter: the significant decrease of these parameter was observed only in arteries with the diameter of 100-200 microm. No significant changes in nerve plexus concentration was noticed in the arteries with greater or smaller diameter. In NO-ergic neural conductors, the enzyme activity decreased only in the large arteries, and remained almost unchanged in the small vascular branches. The changes in the vasomotor innervation described in AH, are interpreted as a vasomotor innervation dysfunction of the leptomeninx arteries that may result in the hemodynamic disturbances.

  3. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.

    Science.gov (United States)

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2017-07-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.

  4. Peripheral epithelial odontogenic tumor

    International Nuclear Information System (INIS)

    Carzoglio, J.; Tancredi, N.; Capurro, S.; Ravecca, T.; Scarrone, P.

    2006-01-01

    A new case of peripheral epithelial odontogenic tumor (Pindborg tumor) is reported. It is localized in the superior right gingival region, a less frequent site, and has the histopathological features previously reported. Immunochemical studies were performed, revealing a differential positive stain to cytokeratins in tumor cells deeply seated in the tumor mass, probably related to tumoral cell heterogeneity.Interestingly, in this particular case S-100 protein positive reactivity was also detected in arborescent cells intermingled with tumoral cells, resembling Langerhans cells. Even though referred in the literature in central Pindborg tumors, no references were found about their presence in peripheral tumors, like the one that is presented here

  5. Adrenal hormones interact with sympathetic innervation to modulate growth of embryonic heart in oculo.

    Science.gov (United States)

    Tucker, D C; Torres, A

    1992-02-01

    To allow experimental manipulation of adrenal hormone and autonomic influences on developing myocardium without alteration of hemodynamic load, embryonic rat heart was cultured in the anterior eye chamber of an adult rat. Sympathetic innervation of embryonic day 12 heart grafts was manipulated by surgical sympathectomy of one eye chamber in each host rat. Adrenal hormone exposure was manipulated by host adrenal medullectomy (MEDX) in experiment 1 and by host adrenalectomy (ADX) in experiment 2. In experiment 1, whole heart grafts were larger in MEDX than in sham-operated hosts by 8 wk in oculo (6.14 +/- 0.71 vs. 5.09 +/- 0.69 mm2 with innervation intact and 7.97 +/- 2.07 vs. 3.09 +/- 0.63 mm2 with sympathetic innervation prevented). In experiment 2, host ADX increased growth of embryonic day 12 ventricles grafted into sympathectomized eye chambers (0.69 +/- 0.10 vs. 0.44 +/- 0.04 mm2) but did not affect growth of grafts in intact eye chambers (0.85 +/- 0.09 vs. 1.05 +/- 0.15 mm2). Corticosterone replacement (4 mg/day) entirely reversed the effect of host ADX on graft growth (superior cervical ganglionectomy, 0.47 +/- 0.03 mm2; intact eye chambers, 0.90 +/- 0.91 mm2). Beating rate of grafts was not affected by adrenal hormone manipulations. These experiments indicate that the compromised growth of embryonic heart grafts placed in sympathectomized eye chambers requires exposure to adult levels of glucocorticoids during the early days after grafting. These results suggest that interactions between neural and hormonal stimulation influence cardiac growth in the in oculo culture system and during normal development.

  6. Peripheral Artery Disease

    Science.gov (United States)

    ... pressure High blood cholesterol Coronary heart disease Stroke Metabolic syndrome Screening and Prevention Taking action to control your risk factors can help prevent or delay peripheral artery disease (P.A.D.) and its complications. Know your family history of health problems related to P.A. ...

  7. Promoting peripheral myelin repair.

    Science.gov (United States)

    Zhou, Ye; Notterpek, Lucia

    2016-09-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    Science.gov (United States)

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous

  9. Management of pain in autosomal dominant polycystic kidney disease and anatomy of renal innervation.

    Science.gov (United States)

    Tellman, Matthew W; Bahler, Clinton D; Shumate, Ashley M; Bacallao, Robert L; Sundaram, Chandru P

    2015-05-01

    Chronic pain is a prominent feature of autosomal dominant polycystic kidney disease that is difficult to treat and manage, often resulting in a decrease in quality of life. Understanding the underlying anatomy of renal innervation and the various etiologies of pain that occur in autosomal dominant polycystic kidney disease can help guide proper treatments to manage pain. Reviewing previously studied treatments for pain in autosomal dominant polycystic kidney disease can help characterize treatment in a stepwise fashion. We performed a literature search of the etiology and management of pain in autosomal dominant polycystic kidney disease and the anatomy of renal innervation using PubMed® and Embase® from January 1985 to April 2014 with limitations to human studies and English language. Pain occurs in the majority of patients with autosomal dominant polycystic kidney disease due to renal, hepatic and mechanical origins. Patients may experience different types of pain which can make it difficult to clinically confirm its etiology. An anatomical and histological evaluation of the complex renal innervation helps in understanding the mechanisms that can lead to renal pain. Understanding the complex nature of renal innervation is essential for surgeons to perform renal denervation. The management of pain in autosomal dominant polycystic kidney disease should be approached in a stepwise fashion. Acute causes of renal pain must first be ruled out due to the high incidence in autosomal dominant polycystic kidney disease. For chronic pain, nonopioid analgesics and conservative interventions can be used first, before opioid analgesics are considered. If pain continues there are surgical interventions such as renal cyst decortication, renal denervation and nephrectomy that can target pain produced by renal or hepatic cysts. Chronic pain in patients with autosomal dominant polycystic kidney disease is often refractory to conservative, medical and other noninvasive treatments

  10. [Microscopic innervation of the spermatic ducts and testis. I. Vas deferens].

    Science.gov (United States)

    Suárez-Garnacho, S; Vega, J A; Alvarez Arenal, A; Pérez Casas, A; Alvarez Menéndez, J C; Hernández, L C

    1989-01-01

    The microscopic innervation of the vas deferens in the rat was studied both in light and electron microscope. The nerve fibres form perivascular, intramuscular and subepithelial plexuses. Inside the connective tissue surrounding the vas deferens both isolated nerve fibres and sensory corpuscles (glomerular and Ruffine-like types) were observed. The varicosities and endings of nerve fibres contain synaptic vesicles of different sizes and electron characteristics. These varicosities were closely related to the smooth muscle cells and some of them lacked of Schwannian sheath. The nervous fibres were not in direct contact with the epithelial cells.

  11. Phalloplasty with an Innervated Island Pedicled Anterolateral Thigh Flap in a Female-to-Male Transsexual

    OpenAIRE

    Hasegawa, Kenjiro; Namba, Yuzaburo; Kimata, Yoshihiro

    2013-01-01

    Since 2001, we have been performing phalloplasty with a radial forearm free flap as the flap of first choice in female-to-male transsexuals (FTMTS). In the present case, a 22-year-old FTMTS with a negative Allen test, we achieved good results by performing phalloplasty with an innervated island pedicled anterolateral thigh flap using the "tube within a tube" technique, in which the penis and urethra are constructed with a single flap. While phalloplasty with an island-pedicled or free anterol...

  12. Innervation of periesophageal region of cat's diaphragm - Implication for studies of control of vomiting

    Science.gov (United States)

    Tan, L. K.; Miller, A. D.

    1986-01-01

    The extent of the region of the diaphragm around the esophagus that displays greatly reduced activity during the expulsive phase of vomiting was determined from electromyographic studies in cats to be about 0.75-1.0 cm from the esophagus. Horseradish peroxidase injected into this region retrogradely labeled motoneurons throughout most of the rostral-caudal extent of the phrenic nucleus, with the exception of caudal C6 and rostral C7. This widespread intermingling of motoneurons that innervate the region of reduced activity with other phrenic motoneurons creates a difficulty for needed follow-up studies of diaphragmatic control during vomiting.

  13. Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology.

    Science.gov (United States)

    Grässel, Susanne; Muschter, Dominique

    2017-04-28

    The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features.

  14. Role of Schwann cells in the regeneration of penile and peripheral nerves

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2015-01-01

    Full Text Available Schwann cells (SCs are the principal glia of the peripheral nervous system. The end point of SC development is the formation of myelinating and nonmyelinating cells which ensheath large and small diameter axons, respectively. They play an important role in axon regeneration after injury, including cavernous nerve injury that leads to erectile dysfunction (ED. Despite improvement in radical prostatectomy surgical techniques, many patients still suffer from ED postoperatively as surgical trauma causes traction injuries and local inflammatory changes in the neuronal microenvironment of the autonomic fibers innervating the penis resulting in pathophysiological alterations in the end organ. The aim of this review is to summarize contemporary evidence regarding: (1 the origin and development of SCs in the peripheral and penile nerve system; (2 Wallerian degeneration and SC plastic change following peripheral and penile nerve injury; (3 how SCs promote peripheral and penile nerve regeneration by secreting neurotrophic factors; (4 and strategies targeting SCs to accelerate peripheral nerve regeneration. We searched PubMed for articles related to these topics in both animal models and human research and found numerous studies suggesting that SCs could be a novel target for treatment of nerve injury-induced ED.

  15. Roles of neural stem cells in the repair of peripheral nerve injury.

    Science.gov (United States)

    Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu

    2017-12-01

    Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  16. Peripheral δ-opioid receptors attenuate the exercise pressor reflex.

    Science.gov (United States)

    Leal, Anna K; Yamauchi, Katsuya; Kim, Joyce; Ruiz-Velasco, Victor; Kaufman, Marc P

    2013-10-15

    In rats with ligated femoral arteries, the exercise pressor reflex is exaggerated, an effect that is attenuated by stimulation of peripheral μ-opioid receptors on group IV metabosensitive afferents. In contrast, δ-opioid receptors are expressed mostly on group III mechanosensitive afferents, a finding that prompted us to determine whether stimulation of these opioid receptors could also attenuate the exaggerated exercise pressor reflex in "ligated" rats. We found femoral arterial injection of [D-Pen2,D-Pen5]enkephalin (DPDPE; 1.0 μg), a δ-opioid agonist, significantly attenuated the pressor and cardioaccelerator components of the exercise pressor reflex evoked by hindlimb muscle contraction in both rats with ligated and patent femoral arteries. DPDPE significantly decreased the pressor responses to muscle mechanoreflex activation, evoked by tendon stretch, in ligated rats only. DPDPE (1.0 μg) had no effect in either group on the pressor and cardioaccelerator responses to capsaicin (0.2 μg), which primarily stimulates group IV afferents. DPDPE (1.0 μg) had no effect on the pressor and cardioaccelerator responses to lactic acid (24 mM), which stimulates group III and IV afferents, in rats with patent femoral arteries but significantly decreased the pressor response in ligated rats. Western blots revealed the amount of protein comprising the δ-opioid receptor was greater in dorsal root ganglia innervating hindlimbs with ligated femoral arteries than in dorsal root ganglia innervating hindlimbs with patent femoral arteries. Our findings support the hypothesis that stimulation of δ-opioid receptors on group III afferents attenuated the exercise pressor reflex.

  17. EVOLUTION OF NEUROENDOCRINE CELL POPULATION AND PEPTIDERGIC INNERVATION, ASSESSED BY DISCRIMINANT ANALYSIS, DURING POSTNATAL DEVELOPMENT OF THE RAT PROSTATE

    Directory of Open Access Journals (Sweden)

    Rosario Rodríguez

    2011-05-01

    Full Text Available Serotonin immunoreactive neuroendocrine cells and peptidergic nerves (NPY and VIP could have a role in prostate growth and function. In the present study, rats grouped by stages of postnatal development (prepubertal, pubertal, young and aged adults were employed in order to ascertain whether age causes changes in the number of serotoninergic neuroendocrine cells and the length of NPY and VIP fibres. Discriminant analysis was performed in order to ascertain the classificatory power of stereologic variables (absolute and relative measurements of cell number and fibre length on age groups. The following conclusions were drawn: a discriminant analysis confirms the androgen-dependence of both neuroendocrine cells and NPYVIP innervation during the postnatal development of the rat prostate; b periglandular innervation has more relevance than interglandular innervation in classifying the rats in age groups; and c peptidergic nerves from ventral, ampullar and periductal regions were more age-dependent than nerves from the dorso-lateral region.

  18. Heart Development, Diseases, and Regeneration - New Approaches From Innervation, Fibroblasts, and Reprogramming.

    Science.gov (United States)

    Ieda, Masaki

    2016-09-23

    It is well known that cardiac function is tightly controlled by neural activity; however, the molecular mechanism of cardiac innervation during development and the relationship with heart disease remain undetermined. My work has revealed the molecular networks that govern cardiac innervation and its critical roles in heart diseases such as silent myocardial ischemia and arrhythmias. Cardiomyocytes proliferate during embryonic development, but lose their proliferative capacity after birth. Cardiac fibroblasts are a major source of cells during fibrosis and induce cardiac hypertrophy after myocardial injury in the adult heart. Despite the importance of fibroblasts in the adult heart, the role of fibroblasts in embryonic heart development was previously not determined. I demonstrated that cardiac fibroblasts play important roles in myocardial growth and cardiomyocyte proliferation during embryonic development, and I identified key paracrine factors and signaling pathways. In contrast to embryonic cardiomyocytes, adult cardiomyocytes have little regenerative capacity, leading to heart failure and high mortality rates after myocardial infarction. Leveraging the knowledge of developmental biology, I identified cardiac reprogramming factors that can directly convert resident cardiac fibroblasts into cardiomyocytes for heart regeneration. These findings greatly improved our understanding of heart development and diseases, and provide a new strategy for heart regenerative therapy. (Circ J 2016; 80: 2081-2088).

  19. Measurement of functional cholinergic innervation in rat heart with a novel vesamicol receptor ligand

    International Nuclear Information System (INIS)

    Coffeen, Paul R.; Efange, S.M.N.; Haidet, George C.; McKnite, Scott; Langason, Rosemary B.; Khare, A.B.; Pennington, Jennifer; Lurie, Keith G.

    1996-01-01

    Regional differences in cholinergic activity in the cardiac conduction system have been difficult to study. We tested the utility of (+)-m-[ 125 I]iodobenzyl)trozamicol(+)-[ 125 I]MIBT), a novel radioligand that binds to the vesamicol receptor located on the synaptic vesicle in presynaptic cholinergic neurons, as a functional marker of cholinergic activity in the conduction system. The (+)-[ 125 I]MIBT was injected intravenously into four rats. Three hours later, the rats were killed and their hearts were frozen. Quantitative autoradiography was performed on 20-micron-thick sections that were subsequently stained for acetylcholinesterase to identify specific conduction-system elements. Marked similarities existed between (+)-[ 125 I]MIBT uptake and acetylcholinesterase-positive regions. Optical densitometric analysis of regional (+)-[ 125 I]MIBT uptake revealed significantly greater (+)-[ 125 I]MIBT binding (nCi/mg) in the atrioventricular node (AVN) and His bundle regions compared with other conduction and contractile elements (AVN: 3.43 ± 0.37; His bundle: 2.16 ± 0.30; right bundle branch: 0.95 ± 0.13; right atrium: 0.68 ± 0.05; right ventricle: 0.57 ± 0.03; and left ventricle: 0.57 ± 0.03; p 125 I]MIBT binds avidly to cholinergic nerve tissue innervating specific conduction-system elements. Thus, (+)-[ 125 I]MIBT may be a useful functional marker in studies on cholinergic innervation in the cardiac conduction system

  20. Associations between xerostomia, histopathological alterations, and autonomic innervation of labial salivary glands in men in late midlife.

    Science.gov (United States)

    Sørensen, Christiane Elisabeth; Larsen, Jytte Overgaard; Reibel, Jesper; Lauritzen, Martin; Mortensen, Erik Lykke; Osler, Merete; Pedersen, Anne Marie Lynge

    2014-09-01

    One aim of the present study was to investigate whether symptoms of oral dryness (xerostomia) during daytime, assessed in a study group of middle-aged male positive and negative outliers in cognition scores, were associated with age-related degenerative changes in human labial salivary glands and with quantitative measures of the glandular autonomic innervation. Another aim was to study the relation between the autonomic innervation and loss of secretory acinar cells in these glands. Labial salivary gland biopsies were taken from the lower lip from 190 men, born in 1953 and members of the Danish Metropolit birth cohort, who were examined for age-related changes in cognitive function and dental health as part of the Copenhagen University Center for Healthy Aging clinical neuroscience project. The glands were routinely processed and semi-quantitatively analyzed for inflammation, acinar atrophy, fibrosis, and adipocyte infiltration. Sections of labial salivary gland tissue were stained with the panneuronal marker PGP 9.5. In a subsample of 51 participants, the autonomic innervation of the glands was analyzed quantitatively by use of stereology. Labial salivary gland tissue samples from 33% of all participants displayed moderate to severe acinar atrophy and fibrosis (31%). Xerostomia was not significantly associated with structural changes of labial salivary glands, but in the subsample it was inversely related to the total nerve length in the glandular connective tissue. Acinar atrophy and fibrosis were negatively correlated with the parenchymal innervation and positively related to diffuse inflammation. The results from the present study indicate that aspects of the autonomic innervation of labial salivary glands may play a role in the occurrence of xerostomia which in the present study group was not significantly associated with degenerative changes in these glands. The findings further indicate that the integrity of labial salivary gland acini is related to the

  1. Peripheral orbit model

    CERN Document Server

    Hara, Yasuo

    1975-01-01

    Peripheral orbit model, in which an incoming hadron is assumed to revolve in a peripheral orbit around a target hadron, is discussed. The non-diffractive parts of two-body reaction amplitudes of hadrons are expressed in terms of the radius, width an absorptivity of the orbit. The radius of the orbit is about 1 fm and the width of the orbit is determined by the range of the interaction between the hadrons. The model reproduces all available experimental data on differential cross-sections and polarizations of $K^{-}p\\to K^{-}p$ and $\\bar K^{\\circ}n$ reactions for all angles successfully. This contribution is not included in the proceedings since it will appear in Progress of Theoretical Physics Vol. 51 (1974) No 2. Any person interested in the subject may apply for reprints to the author.

  2. Dynamic Penile Corpora Cavernosa Reconstruction Using Bilateral Innervated Gracilis Muscles: A Preclinical Investigation.

    Science.gov (United States)

    Yin, Zhuming; Liu, Liqiang; Xue, Bingjian; Fan, Jincai; Chen, Wenlin; Liu, Zheng

    2018-03-07

    Prosthesis-assisted penile reconstruction has been performed extensively to restore a cosmetically acceptable phallus. However, a large number of patients will undergo revision surgery for various prosthesis-related complications. To develop a 1-stage prosthesis-free dynamic cavernosa reconstruction method using bilateral innervated gracilis muscles and to investigate the feasibility and reliability of the surgical design. 10 fresh cadavers were dissected to assess the availability of bilateral gracilis muscles for functional cavernosa rebuilding. 11 mongrel female dogs were involved in the penile reconstruction surgery. The neophallus consisted of bilateral gracilis muscles as the neo-cavernosa, a right gracilis skin flap as the neourethra, and a lower abdominal flap with an anterior rectus sheath as the skin envelope and neo-tunica albuginea. The function and structure of the neo-phalli were assessed 7 months postoperatively. The neurovascular pedicle length of the gracilis muscles and the volume of the gracilis venter musculi were measured in the cadaveric investigation. The average dimensions of the canine neo-phalli at rest and during electrostimulated erection were obtained and the muscular fatigue-resistant curve was drawn. Histologic evaluations also were performed. The neurovascular pedicle length and volume of the gracilis muscles were sufficient to yield a nearly normal appearance of the neo-cavernosa in the cadaveric and animal studies. The muscular fatigue-resistant curve demonstrated adequate length, stiffness, and duration of erection of the neo-phalli to accomplish normal coitus. Histologic evaluations showed an intact neourethra and nearly normal muscle structure in the inner layer of the canine neo-cavernosa, except for significantly increased amount of collagen fibers and type I/III collagen ratio in the outer layer of the neo-cavernosa. The percentage of type II (fatigue-prone) muscle fibers did not change significantly. Our preclinical

  3. Function and innervation of the locus ceruleus in a macaque model of Functional Hypothalamic Amenorrhea.

    Science.gov (United States)

    Bethea, Cynthia L; Kim, Aaron; Cameron, Judy L

    2013-02-01

    A body of knowledge implicates an increase in output from the locus ceruleus (LC) during stress. We questioned the innervation and function of the LC in our macaque model of Functional Hypothalamic Amenorrhea, also known as Stress-Induced Amenorrhea. Cohorts of macaques were initially characterized as highly stress resilient (HSR) or stress-sensitive (SS) based upon the presence or absence of ovulation during a protocol involving 2 menstrual cycles with psychosocial and metabolic stress. Afterwards, the animals were rested until normal menstrual cycles resumed and then euthanized on day 5 of a new menstrual cycle [a] in the absence of further stress; or [b] after 5 days of resumed psychosocial and metabolic stress. In this study, parameters of the LC were examined in HSR and SS animals in the presence and absence of stress (2×2 block design) using ICC and image analysis. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for the synthesis of catecholamines; and the TH level was used to assess by inference, NE output. The pixel area of TH-positive dendrites extending outside the medial border of the LC was significantly increased by stress to a similar degree in both HSR and SS animals (p<0.0001). There is a significant CRF innervation of the LC. The positive pixel area of CRF boutons, lateral to the LC, was higher in SS than HSR animals in the absence of stress. Five days of moderate stress significantly increased the CRF-positive bouton pixel area in the HSR group (p<0.02), but not in the SS group. There is also a significant serotonin innervation of the LC. A marked increase in medial serotonin dendrite swelling and beading was observed in the SS+stress group, which may be a consequence of excitotoxicity. The dendrite beading interfered with analysis of axonal boutons. However, at one anatomical level, the serotonin-positive bouton area was obtained between the LC and the superior cerebellar peduncle. Serotonin-positive bouton pixel area was significantly

  4. Daspsone Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    P A Sarojini

    1988-01-01

    Full Text Available A 24 year old lady being treated with 300 mg of dapsone daily for dermatitits herpetiformis, developed weakness and wasting of muscles of feet with claw hand deformity and t drop, 2 months tater. Neurological examination and nerve conduction studies conformed the presence of a peripheral motor neuropathy. Dapsone was discontinued and the patient was treated with cotrimatoxazole, gluten-free diet and supportive therapy. This satisfactorily controlled the dermatological lesion without adversely affecting the resolution of her neuropthy. Symptomatic improvement reported by the patient was confirmed by EMG and nerve conduction studies.

  5. Peripheral ossifying fibroma

    Directory of Open Access Journals (Sweden)

    Ameet Mani

    2010-01-01

    Full Text Available The peripheral ossifying fibroma (POF is an exophytic gingival mass of fibrous connective tissue covered with a surface epithelium associated with the formation of randomly dispersed foci of a mineralized product consisting of bone, cementum-like tissue, or dystrophic calcifications having a recurrent rate of nearly 20%. It is one of the most common reactive gingival lesions, which have often been called by the generic term "epulis." This case report describes the clinical and histopathological findings of POF, its differential diagnosis, and treatment.

  6. Central Somatosensory Networks Respond to a De Novo Innervated Penis : A Proof of Concept in Three Spina Bifida Patients

    NARCIS (Netherlands)

    Kortekaas, Rudie; Nanetti, Luca; Overgoor, Max L. E.; de Jong, Bauke M.; Georgiadis, Janniko R.

    Introduction. Spina bifida (SB) causes low spinal lesions, and patients often have absent genital sensation and a highly impaired sex life. TOMAX (TO MAX-imize sensation, sexuality and quality of life) is a surgical procedure whereby the penis is newly innervated using a sensory nerve originally

  7. MRI-based 3D pelvic autonomous innervation: a first step towards image-guided pelvic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, M.M. [University Montpellier I, Laboratory of Experimental Anatomy Faculty of Medicine Montpellier-Nimes, Montpellier (France); Macri, F.; Beregi, J.P. [Nimes University Hospital, University Montpellier 1, Radiology Department, Nimes (France); Mazars, R.; Prudhomme, M. [University Montpellier I, Laboratory of Experimental Anatomy Faculty of Medicine Montpellier-Nimes, Montpellier (France); Nimes University Hospital, University Montpellier 1, Digestive Surgery Department, Nimes (France); Droupy, S. [Nimes University Hospital, University Montpellier 1, Urology-Andrology Department, Nimes (France)

    2014-08-15

    To analyse pelvic autonomous innervation with magnetic resonance imaging (MRI) in comparison with anatomical macroscopic dissection on cadavers. Pelvic MRI was performed in eight adult human cadavers (five men and three women) using a total of four sequences each: T1, T1 fat saturation, T2, diffusion weighed. Images were analysed with segmentation software in order to extract nervous tissue. Key height points of the pelvis autonomous innervation were located in every specimen. Standardised pelvis dissections were then performed. Distances between the same key points and the three anatomical references forming a coordinate system were measured on MRIs and dissections. Concordance (Lin's concordance correlation coefficient) between MRI and dissection was calculated. MRI acquisition allowed an adequate visualization of the autonomous innervation. Comparison between 3D MRI images and dissection showed concordant pictures. The statistical analysis showed a mean difference of less than 1 cm between MRI and dissection measures and a correct concordance correlation coefficient on at least two coordinates for each point. Our acquisition and post-processing method demonstrated that MRI is suitable for detection of autonomous pelvic innervations and can offer a preoperative nerve cartography. (orig.)

  8. Central projections of the sensory innervation of the rat middle meningeal artery

    DEFF Research Database (Denmark)

    Liu, Y.; Broman, J.; Edvinsson, L.

    2008-01-01

    Headaches, especially migraine, involve not only pain but also aspects such as vasodilation of cranial vessels and sensitization of nerve endings, processes dependent on and connected to the central nervous system. To understand pathogenic mechanisms of headache, it is important to elucidate...... the central projections of sensory nerves that innervate cranial vessels, of which the middle meningeal artery (MMA) is the largest artery supplying the dura mater. In this study, cholera toxin subunit b (CTb) or wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) was applied on the adventitia....... Labeled nerve terminations were found ipsilaterally in the lateral part of the spinal dorsal horn of segments C1-C3 and in the caudal and interpolar parts of the spinal trigeminal nucleus. WGA-HRP labeled terminations were mainly located in laminae I and II, whereas CTb labeled terminations located...

  9. Reconstructing the population activity of olfactory output neurons that innervate identifiable processing units

    Directory of Open Access Journals (Sweden)

    Shigehiro Namiki

    2008-06-01

    Full Text Available We investigated the functional organization of the moth antennal lobe (AL, the primary olfactory network, using in vivo electrophysiological recordings and anatomical identification. The moth AL contains about 60 processing units called glomeruli that are identifiable from one animal to another. We were able to monitor the output information of the AL by recording the activity of a population of output neurons, each of which innervated a single glomerulus. Using compiled intracellular recordings and staining data from different animals, we mapped the odor-evoked dynamics on a digital atlas of the AL and geometrically reconstructed the population activity. We examined the quantitative relationship between the similarity of olfactory responses and the anatomical distance between glomeruli. Globally, the olfactory response profile was independent of the anatomical distance, although some local features were present.

  10. Innervation zones of fasciculating motor units: observations by a linear electrode array.

    Science.gov (United States)

    Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping

    2015-01-01

    This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.

  11. Changes of the vasculature and innervation in the anterior segment of the RCS rat eye.

    Science.gov (United States)

    May, Christian Albrecht

    2011-12-01

    Investigating the anterior eye segment vasculature and innervation of dystrophic RCS rats, two major unique findings were observed: in the iris, young adult animals with retinal dystrophy showed an increase in substance P nerve fibres and a dilation of arterioles and capillaries. This finding continued during ageing. In the pars plana region, the surface covered by venules decreased continuously with age. In older animals, this decrease was parallelled by a local decrease of sympathetic TH-positive nerve fibres supplying these venules. For both conditions, no comparable data exists so far in the literature. They might point to a unique situation in the anterior eye segment of the dystrophic RCS rat. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Circadian clocks are resounding in peripheral tissues.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2006-03-01

    Full Text Available Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%-10% of transcribed genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of circadian gene expression on a large dataset representing three different peripheral tissues. The data have been produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of circadian mechanisms on any biological pathway related to metabolism and obesity.

  13. Dynamic interaction between the heart and its sympathetic innervation following T5 spinal cord transection.

    Science.gov (United States)

    Lujan, Heidi L; Janbaih, Hussein; DiCarlo, Stephen E

    2012-10-15

    Midthoracic spinal cord injury (SCI) is associated with enhanced sympathetic support of heart rate as well as myocardial damage related to calcium overload. The myocardial damage may elicit an enhanced sympathetic support of contractility to maintain ventricular function. In contrast, the level of inotropic drive may be reduced to match the lower afterload that results from the injury-induced reduction in arterial pressure. Accordingly, the inotropic response to midthoracic SCI may be increased or decreased but has not been investigated and therefore remains unknown. Furthermore, the altered ventricular function may be associated with anatomical changes in cardiac sympathetic innervation. To determine the inotropic drive following midthoracic SCI, a telemetry device was used for repeated measurements of left ventricular (LV) function, with and without beta-adrenergic receptor blockade, in rats before and after midthoracic SCI or sham SCI. In addition, NGF content (ELISA) and dendritic arborization (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac-projecting sympathetic postganglionic neurons in the stellate ganglia were determined. Midthoracic SCI was associated with an enhanced sympathetic support of heart rate, dP/dt(+), and dP/dt(-). Importantly, cardiac function was lower following blockade of the sympathetic nervous system in rats with midthoracic SCI compared with sham-operated rats. Finally, these functional neuroplastic changes were associated with an increased NGF content and structural neuroplasticity within the stellate ganglia. Results document impaired LV function with codirectional changes in chronotropic and inotropic responses following midthoracic SCI. These functional changes were associated with a dynamic interaction between the heart and its sympathetic innervation.

  14. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Science.gov (United States)

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  15. Perianal implantation of bioengineered human internal anal sphincter constructs intrinsically innervated with human neural progenitor cells.

    Science.gov (United States)

    Raghavan, Shreya; Miyasaka, Eiichi A; Gilmont, Robert R; Somara, Sita; Teitelbaum, Daniel H; Bitar, Khalil N

    2014-04-01

    The internal anal sphincter (IAS) is a major contributing factor to pressure within the anal canal and is required for maintenance of rectoanal continence. IAS damage or weakening results in fecal incontinence. We have demonstrated that bioengineered, intrinsically innervated, human IAS tissue replacements possess key aspects of IAS physiology, such as the generation of spontaneous basal tone and contraction/relaxation in response to neurotransmitters. The objective of this study is to demonstrate the feasibility of implantation of bioengineered IAS constructs in the perianal region of athymic rats. Human IAS tissue constructs were bioengineered from isolated human IAS circular smooth muscle cells and human enteric neuronal progenitor cells. After maturation of the bioengineered constructs in culture, they were implanted operatively into the perianal region of athymic rats. Platelet-derived growth factor was delivered to the implanted constructs through a microosmotic pump. Implanted constructs were retrieved from the animals 4 weeks postimplantation. Animals tolerated the implantation well, and there were no early postoperative complications. Normal stooling was observed during the implantation period. At harvest, implanted constructs were adherent to the perirectal rat tissue and appeared healthy and pink. Immunohistochemical analysis revealed neovascularization. Implanted smooth muscle cells maintained contractile phenotype. Bioengineered constructs responded in vitro in a tissue chamber to neuronally evoked relaxation in response to electrical field stimulation and vasoactive intestinal peptide, indicating the preservation of neuronal networks. Our results indicate that bioengineered innervated IAS constructs can be used to augment IAS function in an animal model. This is a regenerative medicine based therapy for fecal incontinence that would directly address the dysfunction of the IAS muscle. Copyright © 2014 Mosby, Inc. All rights reserved.

  16. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Directory of Open Access Journals (Sweden)

    Sebastien eParnaudeau

    2014-02-01

    Full Text Available The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs release. GCs bind the glucocorticoid receptor (GR a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While the GR within dopamine-innervated areas drives cocaine’s behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurones is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

  17. Innervation status in chronic vocal fold paralysis and implications for laryngeal reinnervation.

    Science.gov (United States)

    Lin, R Jun; Smith, Libby J; Munin, Michael C; Sridharan, Shaum; Rosen, Clark A

    2018-01-22

    Treatment options for symptomatic unilateral vocal fold paralysis (VFP) include vocal fold augmentation, laryngeal framework surgery, and laryngeal reinnervation. Laryngeal reinnervation (LR) has been suggested to provide "tone" to the paralyzed VF. This implies a loss of tone as a result of denervation without reinnervation. We performed laryngeal electromyography (LEMG) in patients with chronic VFP to understand the innervation status associated with a chronically paralyzed vocal fold. Retrospective review of LEMG data in adult patients with chronic VFP from January 2009 to December 2014. LEMG was performed at least 6 months after-onset of VFP. Qualitative LEMG, quantitative LEMG, and adductory synkinesis testing were performed, and the parameters were collected. Twenty-seven vocal folds were studied (23 unilateral VFP and 2 bilateral VFP). Average age was 59 ± 17 years. The median duration from recurrent laryngeal nerve injury to LEMG was 8.5 months (range 6-90 months). The majority of patients, 24 of 27 (89%), had motor unit potentials during phonation tasks on LEMG, and only 3 of 27 (11%) patients were electrically silent. Quantitative LEMG showed 287.8 mean turns per second (normal ≥ 400). Motor unit configuration was normal in 12 of 27 (44%), polyphasic in 12 of 27 (44%), and absent in the electrically silent patients. Adductory synkinesis was found in 6 of 20 (30%) patients. Chronic vocal fold paralysis is infrequently associated with absent motor-unit recruitment, indicating some degree of preserved innervation and/or reinnervation in these patients. LEMG should be part of the routine workup for chronic VFP prior to consideration of LR. 4. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium.

    Science.gov (United States)

    Rashwan, Ahmed; Konishi, Hiroyuki; El-Sharaby, Ashraf; Kiyama, Hiroshi

    2016-01-01

    We investigated the relationship between mouse taste bud development and innervation of the soft palate. We employed scanning electron microscopy and immunohistochemistry using antibodies against protein gene product 9.5 and peripherin to detect sensory nerves, and cytokeratin 8 and α-gustducin to stain palatal taste buds. At E14, nerve fibers were observed along the medial border of the palatal shelves that tracked toward the epithelium. At E15.5, primordial stages of taste buds in the basal lamina of the soft palate first appeared. At E16, the taste buds became large spherical masses of columnar cells scattered in the soft palate basal lamina. At E17, the morphology and also the location of taste buds changed. At E18-19, some taste buds acquired a more elongated shape with a short neck, extending a variable distance from the soft palate basal lamina toward the surface epithelium. At E18, mature taste buds with taste pores and perigemmal nerve fibers were observed on the surface epithelium of the soft palate. The expression of α-gustducin was demonstrated at postnatal day 1 and the number of pored taste buds increased with age and they became pear-shaped at 8 weeks. The percent of pored fungiform-like papillae at birth was 58.3% of the whole palate; this increased to 83.8% at postnatal day 8 and reached a maximum of 95.7% at 12 weeks. The innervation of the soft palate was classified into three types of plexuses in relation to taste buds: basal nerve plexus, intragemmal and perigemmal nerve fibers. This study reveals that the nerve fibers preceded the development of taste buds in the palate of mice, and therefore the nerve fibers have roles in the initial induction of taste buds in the soft palate. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Coordinated Respiratory Motor Activity in Nerves Innervating the Upper Airway Muscles in Rats.

    Directory of Open Access Journals (Sweden)

    Satoshi Tachikawa

    Full Text Available Maintaining the patency of the upper airway during breathing is of vital importance. The activity of various muscles is related to the patency of the upper airway. In the present study, we examined the respiratory motor activity in the efferent nerves innervating the upper airway muscles to determine the movements of the upper airway during respiration under normocapnic conditions (pH = 7.4 and in hypercapnic acidosis (pH = 7.2. Experiments were performed on arterially perfused decerebrate rats aged between postnatal days 21-35. We recorded the efferent nerve activity in a branch of the cervical spinal nerve innervating the infrahyoid muscles (CN, the hypoglossal nerve (HGN, the external branch of the superior laryngeal nerve (SLN, and the recurrent laryngeal nerve (RLN with the phrenic nerve (PN. Inspiratory nerve discharges were observed in all these nerves under normocapnic conditions. The onset of inspiratory discharges in the CN and HGN was slightly prior to those in the SLN and RLN. When the CO2 concentration in the perfusate was increased from 5% to 8% to prepare for hypercapnic acidosis, the peak amplitudes of the inspiratory discharges in all the recorded nerves were increased. Moreover, hypercapnic acidosis induced pre-inspiratory discharges in the CN, HGN, SLN, and RLN. The onset of pre-inspiratory discharges in the CN, HGN, and SLN was prior to that of discharges in the RLN. These results suggest that the securing of the airway that occurs a certain time before dilation of the glottis may facilitate ventilation and improve hypercapnic acidosis.

  20. Urbanization and the Resulting Peripheralization in Solo Raya, Indonesia

    Science.gov (United States)

    Pradoto, W.; Mardiansjah, F. H.; Manullang, O. R.; Putra, A. A.

    2018-02-01

    Dynamic urbanization in Solo Raya, a local term for Surakarta Metropolitan, amongst rapid regional based-urbanization in Indonesia, shows the unbalance pattern of growth. A number of Surakarta City’s peripherals become the newly growing area which is characterized by a well-facilitated region, while the former urbanized areas next to the city center present the declining process. Different socioeconomic development triggers a unique mosaic of socio-spatial pattern, on which the phenomena of peripheralization could be investigated. Urban investment that boosted by the political will of both the national and local government has led to a shift in demographic condition. A relatively massive in-migration has been attracted to the peripheral and creates the new landscape of urban-rural society. Complex dynamic of metropolitan growth and the resulting peripheralization reminds that socio-spatial pattern calls the challenges for managing the rapid change of land use and space use. The pattern of urbanization that differs upon the surrounding areas of Surakarta City would be interesting to be explored. This paper will discuss the conceptual framework of peripheral urbanization and the methodological approach. It is actually the part of ongoing research on peripheralisation in Solo Raya.

  1. Drug-induced peripheral neuropathy

    DEFF Research Database (Denmark)

    Vilholm, Ole Jakob; Christensen, Alex Alban; Zedan, Ahmed

    2014-01-01

    Peripheral neuropathy can be caused by medication, and various descriptions have been applied for this condition. In this MiniReview, the term 'drug-induced peripheral neuropathy' (DIPN) is used with the suggested definition: Damage to nerves of the peripheral nervous system caused by a chemical...... substance used in the treatment, cure, prevention or diagnosis of a disease. Optic neuropathy is included in this definition. A distinction between DIPN and other aetiologies of peripheral neuropathy is often quite difficult and thus, the aim of this MiniReview is to discuss the major agents associated...

  2. Flexible adaptation to an artificial recurrent connection from muscle to peripheral nerve in man.

    Science.gov (United States)

    Kato, Kenji; Sasada, Syusaku; Nishimura, Yukio

    2016-02-01

    Controlling a neuroprosthesis requires learning a novel input-output transformation; however, how subjects incorporate this into limb control remains obscure. To elucidate the underling mechanisms, we investigated the motor adaptation process to a novel artificial recurrent connection (ARC) from a muscle to a peripheral nerve in healthy humans. In this paradigm, the ulnar nerve was electrically stimulated in proportion to the activation of the flexor carpi ulnaris (FCU), which is ulnar-innervated and monosynaptically innervated from Ia afferents of the FCU, defined as the "homonymous muscle," or the palmaris longus (PL), which is not innervated by the ulnar nerve and produces similar movement to the FCU, defined as the "synergist muscle." The ARC boosted the activity of the homonymous muscle and wrist joint movement during a visually guided reaching task. Participants could control muscle activity to utilize the ARC for the volitional control of wrist joint movement and then readapt to the absence of the ARC to either input muscle. Participants reduced homonymous muscle recruitment with practice, regardless of the input muscle. However, the adaptation process in the synergist muscle was dependent on the input muscle. The activity of the synergist muscle decreased when the input was the homonymous muscle, whereas it increased when it was the synergist muscle. This reorganization of the neuromotor map, which was maintained as an aftereffect of the ARC, was observed only when the input was the synergist muscle. These findings demonstrate that the ARC induced reorganization of neuromotor map in a targeted and sustainable manner. Copyright © 2016 the American Physiological Society.

  3. Peripheral Neuropathy: A Practical Approach to Diagnosis and Symptom Management.

    Science.gov (United States)

    Watson, James C; Dyck, P James B

    2015-07-01

    Peripheral neuropathy is one of the most prevalent neurologic conditions encountered by physicians of all specialties. Physicians are faced with 3 distinct challenges in caring for patients with peripheral neuropathy: (1) how to efficiently and effectively screen (in less than 2 minutes) an asymptomatic patient for peripheral neuropathy when they have a disorder in which peripheral neuropathy is highly prevalent (eg, diabetes mellitus), (2) how to clinically stratify patients presenting with symptoms of neuropathy to determine who would benefit from specialty consultation and what testing is appropriate for those who do not need consultation, and (3) how to treat the symptoms of painful peripheral neuropathy. In this concise review, we address these 3 common clinical scenarios. Easily defined clinical patterns of involvement are used to identify patients in need of neurologic consultation, the yield of laboratory and other diagnostic testing is reviewed for the evaluation of length-dependent, sensorimotor peripheral neuropathies (the most common form of neuropathy), and an algorithmic approach with dosing recommendations is provided for the treatment of neuropathic pain associated with peripheral neuropathy. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  4. Peripheral degenerative joint diseases

    Directory of Open Access Journals (Sweden)

    Nilzio Antonio da Silva

    2008-03-01

    Full Text Available Osteoarthritis, a degenerative joint disease, is the most commonrheumatic disorder mainly in a geriatric population. Manifestationsare pain, stiffness and functional loss in the affected joint.According to etiology it is classifi ed as primary (or idiopathicand secondary. Some risk factors for disease development aregenetics, race, age, sex, obesity, occupational activities andarticular biomechanics. Pathogenesis is the same for any cause orlocalization, being catabolic alterations, with synthesis, inhibitionand reparing intent of the cartilage matrix. Metalloproteinases andcytokines (IL-1,IL-6,TNF-α actions promote infl ammatory reactionand cartilage degradation. Pain, the most important symptom,does not correlate with radiologic fi ndings. Peripheral osteoarthritisoccurs predominantly in the knee, hip and hand. Diagnosis is basedon clinical features, laboratorial tests and radiological changes.Rheumatological associations’ guidelines for treatment includenon-pharmacologic (education, physiotherapy, assistive devices,and pharmacologic (analgesics, anti-infl ammatory drugs therapyand surgery. Arthroplasty seems to work better than medicines, butshould be used if other treatments have failed.

  5. Odontogenic keratocyst: a peripheral variant.

    Science.gov (United States)

    Vij, H; Vij, R; Gupta, V; Sengupta, S

    2011-01-01

    Odontogenic keratocyst, which is developmental in nature, is an intraosseous lesion though on rare occasions it may occur in an extraosseous location. The extraosseous variant is referred to as peripheral odontogenic keratocyst. Though, clinically, peripheral odontogenic keratocyst resembles the gingival cyst of adults, it has histologic features that are pathognomonic of odontogenic keratocyst. This article presents a case of this uncommon entity.

  6. Peripheral dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Sushant S Kamat

    2013-01-01

    Full Text Available Dentinogenic ghost cell tumors (DGCT are uncommon lesions mainly with rare peripheral types. This report presents a case of peripheral DGCT on the left side of the mandibular alveolar ridge of a heavy smoker, a 68-year-old man, with main presenting feature as a mild pain. Submandibular lymphadenopathy and radiological "saucerization" were evident. Differential diagnosis included fibroma, neurofibroma, peripheral ameloblastoma, peripheral odontogenic fibroma, and peripheral giant cell granuloma. Histologically, ameloblastoma-like epithelial elements were seen in association with grouped ghost cells. Proliferating polyhedral cells and stellate reticulum-like cells with various densities were spread over a wide range of the field. The lesion was curetted and after 2 years of follow up, it did not recur.

  7. Novel drug delivering conduit for peripheral nerve regeneration

    Science.gov (United States)

    Labroo, Pratima; Shea, Jill; Edwards, Kyle; Ho, Scott; Davis, Brett; Sant, Himanshu; Goodwin, Isak; Gale, Bruce; Agarwal, Jay

    2017-12-01

    Objective. This paper describes the design of a novel drug delivery apparatus integrated with a poly lactic-co-glycolic acid (PLGA) based nerve guide conduit for controlled local delivery of nerve growth factor (NGF) and application in peripheral nerve gap injury. Approach. An NGF dosage curve was acquired to determine the minimum in vitro concentration for optimal neurite outgrowth of dorsal root ganglion (DRG) cells; PLGA based drug delivery devices were then designed and tested in vitro and in vivo across 15 mm rat sciatic nerve gap injury model. Main results. The drug delivery nerve guide was able to release NGF for 28 d at concentrations (0.1-10 ng ml-1) that were shown to enhance DRG neurite growth. Furthermore, the released NGF was bioactive and able to enhance DRG neurite growth. Following these tests, optimized NGF-releasing nerve conduits were implanted across 15 mm sciatic nerve gaps in a rat model, where they demonstrated significant myelination and muscle innervation in vivo as compared to empty nerve conduits (p  design process and provides increased versatility for releasing a variety of different growth factors. This innovative device has the potential for broad applicability and allows for easier customization to change the type of drugs and dosage of individual drugs without devising a completely new biomaterial-drug conjugate each time.

  8. Case of Unilateral Peripheral Cone Dysfunction

    Directory of Open Access Journals (Sweden)

    Yujin Mochizuki

    2012-05-01

    Full Text Available Purpose: Peripheral cone dystrophy is a subgroup of cone dystrophy, and only 4 cases have been reported. We present a patient with unilateral peripheral cone dysfunction and report the functional changes determined by electrophysiological tests and ultrastructural changes determined by spectral domain optical coherence tomography (SD-OCT. Case: A 34-year-old woman complained of blurred vision in both eyes. Our examination showed that her visual acuity was 0.05 OD and 0.2 OS. A relative afferent pupillary defect was present in her right eye. The results of slit-lamp examination, ophthalmoscopy, and fluorescein angiography were normal except for pallor of the right optic disc. SD-OCT showed a diffuse thinning of the retina in the posterior pole of the right eye. A severe constriction of the visual fields was found in both eyes but more in the right eye. The photopic full-field electroretinograms (ERGs were reduced in the right eye but normal in the left eye. The multifocal ERGs were severely reduced throughout the visual field except in the central area of the right eye. The multifocal ERGs from the left eye were normal. The pattern visual evoked responses were within the normal range in both eyes. She had a 5-year history of sniffing paint thinner. Results: Although the visual dysfunction was initially suspected to be due to psychological problems from the results of subjective tests, objective tests indicated a peripheral cone dysfunction in the right eye. The pathophysiological mechanism and the relationship with thinner sniffing were not determined. Conclusions: Our findings indicate that peripheral cone dysfunction can occur unilaterally. Electrophysiology and SD-OCT are valuable tests to perform to determine the pathogenesis of unusual ocular findings objectively.

  9. Axo-somatic synapses in the normal and X-irradiated dendate gyrus; factors affecting the density of afferent innervation

    International Nuclear Information System (INIS)

    Lee, K.S.; Gerbrandt, L.; Lynch, G.

    1982-01-01

    The density of synaptic input to the somata of dentate gyrus granule cells was examined utilizing quantitative electron microscopic techniques. In control (non-irradiated) material, greater numbers of axo-somatic synapses were observed in the superficial, earlier-generated cells as compared to the deep, later-generated cells. We further studied the X-irradiated dentate gyrus, in which the majority of granule cells were destroyed during postnatal genesis. The surviving cells displayed a density of innervation on their somata which exceeded that observed in either layer of the control material. These data are discussed in terms of the possible contribution of afferent-target cell interactions to the regulation of the density of synaptic innervation. (Auth.)

  10. Axo-somatic synapses in the normal and X-irradiated dendate gyrus; factors affecting the density of afferent innervation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K S [Max-Planck-Institut fuer Psychiatrie, Muenchen (Germany, F.R.); Gerbrandt, L [Neuroscience Research Program, Boston, MA (USA); Lynch, G [California Univ., Irvine (USA)

    1982-10-07

    The density of synaptic input to the somata of dentate gyrus granule cells was examined utilizing quantitative electron microscopic techniques. In control (non-irradiated) material, greater numbers of axo-somatic synapses were observed in the superficial, earlier-generated cells as compared to the deep, later-generated cells. We further studied the X-irradiated dentate gyrus, in which the majority of granule cells were destroyed during postnatal genesis. The surviving cells displayed a density of innervation on their somata which exceeded that observed in either layer of the control material. These data are discussed in terms of the possible contribution of afferent-target cell interactions to the regulation of the density of synaptic innervation.

  11. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  12. Effect of altered innervation and thyroid hormones on myosin heavy chain expression and fiber type transitions: a mini-review

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš; Smerdu, V.

    2015-01-01

    Roč. 143, č. 2 (2015), s. 123-130 ISSN 0948-6143 R&D Projects: GA MŠk(CZ) LH12058; GA MŠk(CZ) 7AMB14SK123 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional support: RVO:67985823 Keywords : muscle fiber types * muscle regeneration * muscle transplantation * MyHC isoforms * thyroid hormone status * innervation Subject RIV: EA - Cell Biology Impact factor: 2.780, year: 2015

  13. Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension.

    Science.gov (United States)

    Donazzan, Luca; Mahfoud, Felix; Ewen, Sebastian; Ukena, Christian; Cremers, Bodo; Kirsch, Carl-Martin; Hellwig, Dirk; Eweiwi, Tareq; Ezziddin, Samer; Esler, Murray; Böhm, Michael

    2016-04-01

    To investigate, whether renal denervation (RDN) has a direct effect on cardiac sympathetic activity and innervation density. RDN demonstrated its efficacy not only in reducing blood pressure (BP) in certain patients, but also in decreasing cardiac hypertrophy and arrhythmias. These pleiotropic effects occur partly independent from the observed BP reduction. Eleven patients with resistant hypertension (mean office systolic BP 180 ± 18 mmHg, mean antihypertensive medications 6.0 ± 1.5) underwent I-123-mIBG scintigraphy to exclude pheochromocytoma. We measured cardiac sympathetic innervation and activity before and 9 months after RDN. Cardiac sympathetic innervation was assessed by heart to mediastinum ratio (H/M) and sympathetic activity by wash out ratio (WOR). Effects on office BP, 24 h ambulatory BP monitoring, were documented. Office systolic BP and mean ambulatory systolic BP were significantly reduced from 180 to 141 mmHg (p = 0.006) and from 149 to 129 mmHg (p = 0.014), respectively. Cardiac innervation remained unchanged before and after RDN (H/M 2.5 ± 0.5 versus 2.6 ± 0.4, p = 0.285). Cardiac sympathetic activity was significantly reduced by 67 % (WOR decreased from 24.1 ± 12.7 to 7.9 ± 25.3 %, p = 0.047). Both, responders and non-responders experienced a reduction of cardiac sympathetic activity. RDN significantly reduced cardiac sympathetic activity thereby demonstrating a direct effect on the heart. These changes occurred independently from BP effects and provide a pathophysiological basis for studies, investigating the potential effect of RDN on arrhythmias and heart failure.

  14. Automatic localisation of innervation zones: a simulation study of the external anal sphincter.

    Science.gov (United States)

    Mesin, Luca; Gazzoni, Marco; Merletti, Roberto

    2009-12-01

    Traumas of the innervation zone (IZ) of the external anal sphincter (EAS), e.g. during delivery, can promote the development of faecal incontinence. Recently developed probes allow high-resolution detection of EMG signals from the EAS. The analysis of pelvic floor muscles by surface EMG (in particular, the estimation of the location of the IZ) has potential applications in the diagnosis and investigation of the mechanisms of incontinence. An automatic method (based on matched filter approach) for the estimation of the IZ distribution of EAS from surface EMG is discussed and tested using an analytical model of generation of EMG signals from sphincter muscles. Simulations are performed varying length of the fibres, thickness of the mucosa, position of the motor units, and force level. Different distributions of IZs are simulated. The performance of the proposed method in the estimation of the IZ distribution is affected by surface MUAP amplitude (as the estimation made by visual inspection), by mucosa thickness (performance decreases when fibre length is higher) and by different MU distributions. However, in general the method is able to identify the position of two IZ locations and can measure asymmetry of the IZ distribution. This strengthens the potential applications of high density surface EMG in the prevention and investigation of incontinence.

  15. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    Science.gov (United States)

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Innervation zone of the vastus medialis muscle: position and effect on surface EMG variables

    International Nuclear Information System (INIS)

    Gallina, A; Merletti, R; Gazzoni, M

    2013-01-01

    The aim of this study was to investigate the position of the innervation zone (IZ) of the vastus medialis (VM) and its effect on the electromyographic (EMG) amplitude and mean frequency estimates. Eighteen healthy subjects performed maximal isometric knee extensions at three knee angles. Surface EMG signals were collected by using a 16 × 8 electrode grid placed on the VM muscle. The position of the IZ was estimated through visual analysis, and traditional bipolar signals were obtained from channels over and away from it; amplitude and mean frequency values were extracted and compared using an analysis of variance (ANOVA) with repeated measures. The IZ is shaped as a line running from the proximal–lateral to the distal–medial aspect of the VM muscle. The presence of an IZ under the electrodes lowered the EMG amplitude (P < 0.001, F = 58.11) and increased the EMG mean frequency (P < 0.001, F = 26.47); variations of these parameters due to the knee flexion angle were less frequently observed in EMG signals collected over than away from the IZ. Electrodes placed ‘over the belly of the VM muscle’ are likely to collect EMG signals influenced by the presence of the IZ, thus hindering the detection of changes in muscle activity. (paper)

  17. Function and morphology correlates of rectal nerve mechanoreceptors innervating the guinea pig internal anal sphincter.

    Science.gov (United States)

    Lynn, P A; Brookes, S J H

    2011-01-01

    Mechanoreceptors to the internal anal sphincter (IAS) contribute to continence and normal defecation, yet relatively little is known about their function or morphology. We investigated the function and structure of mechanoreceptors to the guinea pig IAS. Extracellular recordings from rectal nerve branches to the IAS in vitro, combined with anterograde labeling of recorded nerve trunks, were used to characterize extrinsic afferent nerve endings activated by circumferential distension. Slowly adapting, stretch-sensitive afferents were recorded in rectal nerves to the IAS. Ten of 11 were silent under basal conditions and responded to circumferential stretch in a saturating linear manner. Rectal nerve afferents responded to compression with von Frey hairs with low thresholds (0.3-0.5 mN) and 3.4 ± 0.5 discrete, elongated mechanosensitive fields of innervation aligned parallel to circular muscle bundles (length = 62 ± 16 mm, n = 10). Anterogradely labeled rectal nerve axons typically passed through sparse irregular myenteric ganglia adjacent to the IAS, before ending in extensive varicose arrays within the circular muscle and, to a lesser extent, the longitudinal muscle overlying the IAS. Few (8%) IAS myenteric ganglia contained intraganglionic laminar endings. In eight preparations, mechanotransduction sites were mapped in combination with successful anterograde fills. Mechanotransduction sites were strongly associated with extensive fine varicose arrays within the circular muscle (P IAS are likely to correspond to extensive fine varicose arrays within the circular muscle. © 2010 Blackwell Publishing Ltd.

  18. Prolonged passive static stretching-induced innervation zone shift in biceps brachii.

    Science.gov (United States)

    Ye, Xin; Beck, Travis W; Wages, Nathan P

    2015-05-01

    The purpose of this study was to examine the influence of a bout of repeated and prolonged passive static stretching on the innervation zone (IZ) location of the human biceps brachii muscle. Eleven men performed 12 sets of 100-s passive stretches on their biceps brachii. Before (Pre) and immediately after (Post) the stretching intervention, isometric strength was tested during the maximal voluntary contractions (MVCs) of the forearm flexors. The subjects also performed several separate isometric forearm flexion muscle actions at 30%, 50%, and 70% of their predetermined MVCs for examining the locations of the IZ at different contraction intensities. The IZ was identified through multi-channel surface electromyographic (EMG) recordings from a linear electrode array. The stretching intervention induced an average of 10% isometric strength loss for the forearm flexors (mean±SD: Pre-MVC vs. Post-MVC=332.12±59.40 N vs. 299.53±70.51 N; p<0.001). In addition, the average IZ shift was nearly 4.5 mm in average in the proximal direction. However, this shift was not specific to the contraction intensity. We believe that the IZ shift was caused by the elongation of the entire muscle-tendon unit in the proximal direction. Therefore, caution should be taken when using surface EMG technique to examine possible changes in the EMG variables after a stretching protocol, as these variables can be contaminated by the shift of the IZ.

  19. Age-related synaptic loss of the medial olivocochlear efferent innervation

    Directory of Open Access Journals (Sweden)

    Schrader Angela

    2010-11-01

    Full Text Available Abstract Age-related functional decline of the nervous system is consistently observed, though cellular and molecular events responsible for this decline remain largely unknown. One of the most prevalent age-related functional declines is age-related hearing loss (presbycusis, a major cause of which is the loss of outer hair cells (OHCs and spiral ganglion neurons. Previous studies have also identified an age-related functional decline in the medial olivocochlear (MOC efferent system prior to age-related loss of OHCs. The present study evaluated the hypothesis that this functional decline of the MOC efferent system is due to age-related synaptic loss of the efferent innervation of the OHCs. To this end, we used a recently-identified transgenic mouse line in which the expression of yellow fluorescent protein (YFP, under the control of neuron-specific elements from the thy1 gene, permits the visualization of the synaptic connections between MOC efferent fibers and OHCs. In this model, there was a dramatic synaptic loss between the MOC efferent fibers and the OHCs in older mice. However, age-related loss of efferent synapses was independent of OHC status. These data demonstrate for the first time that age-related loss of efferent synapses may contribute to the functional decline of the MOC efferent system and that this synaptic loss is not necessary for age-related loss of OHCs.

  20. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Kirby, M.; Stewart, D.

    1984-01-01

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [ 3 H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [ 3 H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [ 3 H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  1. Selective pelvic autonomic nerve stimulation with simultaneous intraoperative monitoring of internal anal sphincter and bladder innervation.

    Science.gov (United States)

    Kneist, W; Kauff, D W; Koch, K P; Schmidtmann, I; Heimann, A; Hoffmann, K P; Lang, H

    2011-01-01

    Pelvic autonomic nerve preservation avoids postoperative functional disturbances. The aim of this feasibility study was to develop a neuromonitoring system with simultaneous intraoperative verification of internal anal sphincter (IAS) activity and intravesical pressure. 14 pigs underwent low anterior rectal resection. During intermittent bipolar electric stimulation of the inferior hypogastric plexus (IHP) and the pelvic splanchnic nerves (PSN), electromyographic signals of the IAS and manometry of the urinary bladder were observed simultaneously. Stimulation of IHP and PSN as well as simultaneous intraoperative monitoring could be realized with an adapted neuromonitoring device. Neurostimulation resulted in either bladder or IAS activation or concerted activation of both. Intravesical pressure increase as well as amplitude increase of the IAS neuromonitoring signal did not differ significantly between stimulation of IHP and PSN [6.0 cm H(2)O (interquartile range [IQR] 3.5-9.0) vs. 6.0 cm H(2)O (IQR 3.0-10.0) and 12.1 μV (IQR 3.0-36.7) vs. 40.1 μV (IQR 9.0-64.3)] (p > 0.05). Pelvic autonomic nerve stimulation with simultaneous intraoperative monitoring of IAS and bladder innervation is feasible. The method may enable neuromonitoring with increasing selectivity for pelvic autonomic nerve preservation. Copyright © 2011 S. Karger AG, Basel.

  2. Electrophysiology and Innervation of the Photosensitive Epistellar Body in the Lesser Octopus Eledone cirrhosa.

    Science.gov (United States)

    Cobb, C S; Williamson, R

    1998-08-01

    The innervation and responses to light of the cephalopod epistellar body were investigated in preparations isolated from the stellate ganglia of the lesser or northern octopus, Eledone cirrhosa. Extracellular generator potentials in response to flashes of light were recorded from these photosensitive vesicles, with the amplitude of the response being found to be dependent upon the intensity of the flash and the level of ambient illumination. Intracellular recordings from photoreceptor cells of the epistellar body showed that they had resting potentials of about -49 +/- 7 mV (mean +/- SD, n = 43) and were depolarized by flashes of white, but not red (>650 nm) light. The evoked depolarization consisted of a transient component, followed by a steady plateau in which the amplitude of the depolarization was well correlated with the log of the stimulus intensity. The evoked depolarizations induced action potentials in the photoreceptor cells, with the frequency of firing being well correlated with the stimulus intensity. The morphologies of individual photoreceptor cells were visualized by intracellular injections of the fluorescent dye Lucifer yellow, and the path of the epistellar nerve across the stellate ganglion, into the pallial nerve, toward the brain was traced using the lipophilic dye Di-I. This pathway was confirmed physiologically by recording light-evoked responses from the cut end of the pallial nerve.

  3. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges.

    Science.gov (United States)

    De Col, Roberto; Messlinger, Karl; Carr, Richard W

    2008-02-15

    Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.

  4. Morphological study of the sensory innervation of the rat labial mucosa.

    Science.gov (United States)

    Yamamoto, T; Tazaki, M; Sakada, S

    1986-02-01

    The sensory innervation of the rat labial mucosa was investigated by means of methylene blue vital staining and osmic acid staining. Sensory receptors in this region were of three kinds (free nerve endings, encapsulated corpuscles and bush-like nerve endings) which constituted separate sensory units respectively. The encapsulated corpuscles were observed in the deep part of lamina propria, and distributed mainly in the margin of labial mucosa. Almost all (78.8%) of encapsulated corpuscles were of a simple type which had a non-branched axon terminal. No clew-like type corpuscles or glomerular-Meissner corpuscles were observed. The bush-like nerve endings were located in the lamina propria close to the epithelium, and localized in the central part of labial mucosa where the formation of papillae was remarkable. The density of the encapsulated corpuscles in the entire mucosa was 3.5-5.3/mm2, and that of the bush-like nerve endings in the densely distributed area was 38.9-60.6/mm2.

  5. Bilateral irradiation of head and neck induces and enhanced expression of substance P in the parasympathetic innervation of the submandibular gland

    Energy Technology Data Exchange (ETDEWEB)

    Forsgren, S; Franzen, L; Funegard, U; Gustafsson, H; Henriksson, R [Umeaa Univ. (Sweden). Dept. of Oncology, Anatomy and Oto-laryngology

    1992-01-01

    Substance P and calcitonin gene-related peptide (CGRP) are present in nerve fibers innervating the submandibular gland. Radiotherapy of tumours in the head and neck region usually embraces the salivary glands in the irradiated field and consequently a dramatic decrease in salivary function is seen. In this study, the submandibular glands and ganglia of rats subjected to fractionated irradiation were examined by use of immunohistochemical techniques for demonstration of substance P and CGRP. Irradiation was given on five consecutive days with unilateral or bilateral irradiation techniques. Specimens of control and experimental animals were processed in parallel. A marked increase in the expression of substance P in the ganglionic cells-presumably parasympathetic-and in the number of fibers showing substance P-like immunoreactivity in association with acini and small ducts was seen in response to bilateral irradiation. No changes in the pattern of CGRP immunoreactivity occurred. In the trigeminal ganglion, which supplies the submandibular gland with the majority of the sensory substance P-and CGRP-containing nerve fibers, no changes in the expression of substance P or CGRP immunoreactivity were seen. The results suggest that bilateral irradiation leads to an increase in the synthesis of substance P-like substance in the parasympathetic ganglionic cells supplying the submandibular gland with secretory nerves, and can thus be an additional factor in explaining the altered secretory capacity of salivary glands. (author).

  6. Aesthetic and Functional Outcomes of the Innervated and Thinned Anterolateral Thigh Flap in Reconstruction of Upper Limb Defects

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Torres-Ortíz Zermeño

    2014-01-01

    Full Text Available Background. The anterolateral thigh (ALT flap has been widely described in reconstruction of the upper extremity. However, some details require refinement to improve both functional and aesthetic results. Methods. After reconstruction of upper extremity defects using thinned and innervated ALT flaps, functional and aesthetic outcomes were evaluated with the QuickDASH scale and a Likert scale for aesthetic assessment of free flaps, respectively. Results. Seven patients with a mean follow-up of 11.57 months and average flap thickness of 5 mm underwent innervation by an end-to-end neurorrhaphy. The average percentage of disability (QuickDASH was 21.88% with tenderness, pain, temperature, and two-point discrimination present in 100% of cases, and the aesthetic result gave an overall result of 15.40 (good with the best scores in color and texture. Conclusions. Simultaneous thinning and innervation of the ALT flap lead to a good cosmetic result and functional outcome with a low percentage of disability, which could result in minor surgical procedures and better recovery of motor and sensory function. Level of Evidence. IV.

  7. Does crossover innervation really affect the clinical outcome? A comparison of outcome between unilateral and bilateral digital nerve repair

    Directory of Open Access Journals (Sweden)

    Melike Oruç

    2016-01-01

    Full Text Available Digital nerve injuries are the mostly detected nerve injury in the upper extremity. However, since the clinical phenomenon of crossover innervation at some degree from uninjured digital nerve to the injured side occurs after digital nerve injuries is sustained, one could argue that this concept might even result in the overestimation of the outcome of the digital nerve repair. With this knowledge in mind, this study aimed to present novel, pure, focused and valuable clinical data by comparing the outcomes of bilateral and unilateral digital nerve repair. A retrospective review of 28 fingers with unilateral or bilateral digital nerve repair using end-to-end technique in 19 patients within 2 years was performed. Weber′s two-point discrimination, sharp/dull discrimination, warm/cold sensation and Visual Analog Scale scoring were measured at final 12-month follow ups in all patients. There was no significant difference in recovery of sensibility after unilateral and bilateral digital nerve repairs. Though there is crossover innervation microscopically, it is not important in the clinical evaluation period. According to clinical findings from this study, crossover innervations appear to be negligible in the estimation of outcomes of digital neurorrhaphy.

  8. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.; Catterall, W.A.

    1982-01-01

    Specific binding of 3 H-saxitoxin (STX) was used to quantitate the density of voltage-sensitive sodium channels in developing rat skeletal muscle. In adult triceps surae, a single class of sites with a KD . 2.9 nM and a density of 21 fmol/mg wet wt was detected. The density of these high-affinity sites increased from 2.0 fmol/mg wet wt to the adult value in linear fashion during days 2-25 after birth. Denervation of the triceps surae at day 11 or 17 reduced final saxitoxin receptor site density to 10.4 or 9.2 fmol/mg wet wt, respectively, without changing KD. Denervation of the triceps surae at day 5 did not alter the subsequent development of saxitoxin receptor sites during days 5-9 and accelerated the increase of saxitoxin receptor sites during days 9-13. After day 13, saxitoxin receptor development abruptly ceased and the density of saxitoxin receptor sites declined to 11 fmol/wg wet wt. These results show that the regulation of high-affinity saxitoxin receptor site density by innervation is biphasic. During the first phase, which is independent of continuing innervation, the saxitoxin receptor density increases to 47-57% of the adult level. After day 11, the second phase of development, which is dependent on continuing innervation, gives rise to the adult density of saxitoxin receptors

  9. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration

    Science.gov (United States)

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-08-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.

  10. Peripheral T-Cell Lymphoma

    Science.gov (United States)

    ... Non-Hodgkin Lymphoma Peripheral T-Cell Lymphoma Primary Central Nervous System Lymphoma T-Cell Lymphoma Transformed Mycosis Fungoides Waldenstrom Macroglobulinemia Young Adult Lymphoma Overview Treatment Options Relapsed/Refractory Long-term ...

  11. Network node for peripheral sharing

    International Nuclear Information System (INIS)

    Bobbitt, J.; Johnson, M.

    1977-01-01

    A module which enables several independent computer systems to share the peripherals (graphics display and line printer) of a PDP-11 computer is described. The module requires no software support in the PDP-11

  12. The localization of primary efferent sympathetic neurons innervating the porcine thymus – a retrograde tracing study

    Directory of Open Access Journals (Sweden)

    Paweł Kulik

    2017-01-01

    Full Text Available The autonomic nervous system is a sophisticated and independent structure composed of two antagonistic (opposing divisions (sympathetic and parasympathetic that control many vital functions including: homeostasis maintenance, heart rate, blood circulation, secretion, etc. Thymus is one of the most important primary lymphoid organs playing a role in the developing of a juvenile’s immune system mainly by maturation, development, and migration of T-cells (T lymphocytes. In the last decades, several studies identifying sources of the thymic autonomic supply have been undertaken in humans and several laboratory rodents but not in higher mammals such as the pig. Therefore, in the present work, retrograde tracing technique of Fast Blue and DiI was used to investigate the sources of sympathetic efferent supply to the porcine thymus. After Fast Blue injection into the right lobe of the thymus, the presence of Fast Blue-positive neurons was found in the unilateral cranial cervical ganglion (82.8 ± 3.0% of total Fast Blue-positive neurons as well as in the middle cervical ganglion (17.2 ± 3.0%. Injection of DiI resulted in the presence of retrograde tracer in neurons of the cranial cervical ganglion (80.4 ± 2.3% of total amount of DiI-labelled neurons, the middle cervical ganglion (18.4 ± 1.9%, and the cervicothoracic ganglion (1.2 ± 0.8%. The present report provides the first data describing in details the localization of primary efferent sympathetic neurons innervating the porcine thymus.

  13. Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Manrique, Alain; Hitzel, Anne; Vera, Pierre; Bernard, Mathieu; Bauer, Fabrice; Menard, Jean-Francois; Sabatier, Remi; Jacobson, Arnold; Agostini, Denis

    2008-01-01

    The purpose of the study is to examine prognostic values of cardiac I-123 metaiodobenzylguanidine (MIBG) uptake and cardiac dyssynchrony in patients with dilated cardiomyopathy (DCM). Ninety-four patients with non-ischemic DCM underwent I-123 MIBG imaging for assessing cardiac sympathetic innervation and equilibrium radionuclide angiography. Mean phase angles and SD of the phase histogram were computed for both right ventricular (RV) and left ventricular (LV). Phase measures of interventricular (RV-LV) and intraventricular (SD-RV and SD-LV) asynchrony were computed. Most patients were receiving beta-blockers (89%) and angiotensin-converting enzyme inhibitors (88%). One patient (1%) was lost to follow-up, six had cardiac death (6.4%), eight had heart transplantation (8.6%), and seven had unplanned hospitalization for heart failure (7.5%; mean follow-up: 37 ± 16 months). Patients with poor clinical outcome were older, had higher The New York Heart Association functional class, impaired right ventricular ejection fraction and left ventricular ejection fraction, and impaired cardiac I-123 MIBG uptake. On multivariate analysis, I-123 MIBG heart-to-mediastinum (H/M) uptake ratio <1.6 was the only predictor of both primary (cardiac death or heart transplantation, RR = 7.02, p < 0.01) and secondary (cardiac death, heart transplantation, or recurrent heart failure, RR = 8.10, p = 0.0008) end points. In patients receiving modern medical therapy involving beta-blockers, I-123 MIBG uptake, but not intra-LV asynchrony, was predictive of clinical outcome. The impact of beta-blockers on the prognostic value of ventricular asynchrony remains to be clarified. (orig.)

  14. Effects of local cardiac denervation on cardiac innervation and ventricular arrhythmia after chronic myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    Full Text Available Modulation of the autonomic nervous system (ANS has already been demonstrated to display antiarrhythmic effects in patients and animals with MI. In this study, we investigated whether local cardiac denervation has any beneficial effects on ventricular electrical stability and cardiac function in the chronic phase of MI.Twenty-one anesthetized dogs were randomly assigned into the sham-operated, MI and MI-ablation groups, respectively. Four weeks after local cardiac denervation, LSG stimulation was used to induce VPCs and VAs. The ventricular fibrillation threshold (VFT and the incidence of inducible VPCs were measured with electrophysiological protocol. Cardiac innervation was determined with immunohistochemical staining of growth associated protein-43 (GAP43 and tyrosine hydroxylase (TH. The global cardiac and regional ventricular function was evaluated with doppler echocardiography in this study.Four weeks after operation, the incidence of inducible VPC and VF in MI-ablation group were significantly reduced compared to the MI dogs (p<0.05. Moreover, local cardiac denervation significantly improved VFT in the infarcted border zone (p<0.05. The densities of GAP43 and TH-positive nerve fibers in the infarcted border zone in the MI-ablation group were lower than those in the MI group (p<0.05. However, the local cardiac denervation did not significantly improve cardiac function in the chronic phase of MI, determined by the left ventricle diameter (LV, left atrial diameter (LA, ejection fraction (EF.Summarily, in the chronic phase of MI, local cardiac denervation reduces the ventricular electrical instability, and attenuates spatial heterogeneity of sympathetic nerve reconstruction. Our study suggests that this methodology might decrease malignant ventricular arrhythmia in chronic MI, and has a great potential for clinical application.

  15. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping

    Directory of Open Access Journals (Sweden)

    Vito Salvador Hernandez

    2016-11-01

    Full Text Available The arginine-vasopressin (AVP-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs are known for their role in hydro-electrolytic balance control via their projections to neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula, and other brain regions, in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA. The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS, consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN and supraoptic (SON nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptors mRNA were not detected, using the same method. Water-deprivation for 24 hrs, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze test, and this effect was mimicked by bilateral microinfusion of VP into the CeA. Anxious behavior induced by either water deprivation or VP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of central amygdala inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.

  16. Cinematic innervation: the intuitive form of perception in the distracted perceptual field

    Directory of Open Access Journals (Sweden)

    Sungyong Ahn

    2013-09-01

    Full Text Available In “The Work of Art in the Age of Its Technological Reproducibility,” Walter Benjamin alluded that the human perceptual field in his time would become more distracted by the intervention of technologies, and so masses’ tactility activated by distraction would be more important in the mechanized perception. Regarding this historical situation, Benjamin anticipated that the new mode of mass perception would be organized through people's collective “innervation” to technologies. This article aims to contextualize this physiological term's cultural, technical, and political implications within various discourses about perception from the late 19th century physiologies to early 20th century film theories. Benjamin considers the tactility of people's potential to reconstruct the optical scheme of perception from the “flatness of screen” in which distances between viewers and perceived objects collapse. In a similar vein, the late 19th century's physiology reconceptualized perception in its relation not so much to the transcendental division of subject/object as to the sensual condition of a retina as “a single immanent plane.” From this perspective, perception is phenomena entailed by a body's contact to a sensual environment, so how sense inputs circulate in a neural network is a determinant for explaining perceptual processes. With regard to this paradigm change, the invention of cinema in the late 19th century was significant because it radically changed the composition of the perceptual field in two directions. Cinema introduced the virtualized perceptual fields on which sense circulations were completely controlled by the operation of camera. At the same time, the mediation of projectors in theaters reorganized viewers’ neural paths for perceptual innervation. As Hugo Münsterberg and Sergei Eisenstein's theories reflect, cinematic media's intervention in the perceptual field made it possible for masses’ collective

  17. Dynamic molecular imaging of cardiac innervation using a dual headpinhole SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-03-29

    Typically 123I-MIBG is used for the study of innervation andfunction of the sympathetic nervous system in heart failure. The protocolinvolves two studies: first a planar or SPECT scan is performed tomeasure initial uptake of the tracer, followed some 3-4 hours later byanother study measuring the wash-out of the tracer from the heart. A fastwash-out is indicative of a compromised heart. In this work, a dual headpinhole SPECT system was used for imaging the distribution and kineticsof 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) andnormotensive Wistar Kyoto (WKY) rats. The system geometry was calibratedbased on a nonlinear point projection fitting method using a three-pointsource phantom. The angle variation effect of the parameters was modeledwith a sinusoidal function. A dynamic acquisition was performed byinjecting 123I-MIBG into rats immediately after starting the dataacquisition. The detectors rotated continuously performing a 360o dataacquisition every 90 seconds. We applied the factor analysis (FA)methodand region of interest (ROI) sampling method to obtain time activitycurves (TACs)in the blood pool and myocardium and then appliedtwo-compartment modeling to estimate the kinetic parameters. Since theinitial injection bolus is too fast for obtaining a consistenttomographic data set in the first few minutes of the study, we appliedthe FA method directly to projections during the first rotation. Then thetime active curves for blood and myocardial tissue were obtained from ROIsampling. The method was applied to determine if there were differencesin the kinetics between SHR and WKY rats and requires less time byreplacing the delayed scan at 3-4 hours after injection with a dynamicacquisition over 90 to 120 minutes. The results of a faster washout and asmaller distribution volume of 123IMIBG near the end of life in the SHRmodel of hypertrophic cardiomyopthy may be indicative of a failing heartin late stages of heart failure.

  18. Mitchell's influence on European studies of peripheral nerve injuries during World War I.

    Science.gov (United States)

    Koehler, Peter J; Lanska, Douglas J

    2004-12-01

    Describe the influence of S. Weir Mitchell's (1829-1914) work, and in particular his ideas on causalgia, on European physicians who treated peripheral nerve injuries during World War I (WWI). During the American Civil War (1861-1865), Mitchell studied peripheral nerve injuries with colleagues George Read Morehouse and William Williams Keen. Three monographs resulted from this work. All were important landmarks in the evolution of knowledge of peripheral nerve injuries. A subsequent occasion to improve knowledge came in WWI. The most important European monographs or series on peripheral nerve injuries from WWI were studied with special interest in references to causalgia and Mitchell's works on peripheral nerve injuries. We included works by Tinel, Athanassio-Benisty, Purves-Stewart & Evans and Carter, Foerster and Oppenheim. Tinel and Athanassio-Benisty provided the most detailed information on peripheral nerve injuries and causalgia and often referred to Mitchell. Both mentioned a possible sympathetic origin. Athanassio-Benisty described tremor and other movement disorders in relation to causalgia. Purves-Stewart and Evans mentioned Mitchell and causalgia in the second edition of their book. They advocated the term "thermalgia." Carter, who had access to data of many cases, concentrated his work on causalgia, referring to Mitchell. Foerster provided data of a great number of peripheral nerve injuries, but did not refer to Mitchell. However, he described the symptoms of causalgia cursorily, applying the term Reflexschmerz (reflexpain). Oppenheim was particularly interested in muscle innervation and referred to Mitchell with respect to hypertrichosis and glossy skin. Oppenheim did not use the term causalgia, although he described the syndrome in some of his patients. It wasn't until around 1920 that German physicians devoted significant attention to causalgia and began using the term. Knowledge of peripheral nerve injuries was greatly advanced during and after WWI

  19. Visual Neurons in the Superior Colliculus Innervated by Islet2+ or Islet2− Retinal Ganglion Cells Display Distinct Tuning Properties

    Directory of Open Access Journals (Sweden)

    Rachel B. Kay

    2017-10-01

    Full Text Available Throughout the visual system, different subtypes of neurons are tuned to distinct aspects of the visual scene, establishing parallel circuits. Defining the mechanisms by which such tuning arises has been a long-standing challenge for neuroscience. To investigate this, we have focused on the retina’s projection to the superior colliculus (SC, where multiple visual neuron subtypes have been described. The SC receives inputs from a variety of retinal ganglion cell (RGC subtypes; however, which RGCs drive the tuning of different SC neurons remains unclear. Here, we pursued a genetic approach that allowed us to determine the tuning properties of neurons innervated by molecularly defined subpopulations of RGCs. In homozygous Islet2-EphA3 knock-in (Isl2EA3/EA3 mice, Isl2+ and Isl2− RGCs project to non-overlapping sub-regions of the SC. Based on molecular and anatomic data, we show that significantly more Isl2− RGCs are direction-selective (DS in comparison with Isl2+ RGCs. Targeted recordings of visual responses from each SC sub-region in Isl2EA3/EA3 mice revealed that Isl2− RGC-innervated neurons were significantly more DS than those innervated by Isl2+ RGCs. Axis-selective (AS neurons were found in both sub-regions, though AS neurons innervated by Isl2+ RGCs were more tightly tuned. Despite this segregation, DS and AS neurons innervated by Isl2+ or Isl2− RGCs did not differ in their spatial summation or spatial frequency (SF tuning. Further, we did not observe alterations in receptive field (RF size or structure of SC neurons innervated by Isl2+ or Isl2− RGCs. Together, these data show that innervation by Isl2+ and Isl2− RGCs results in distinct tuning in the SC and set the stage for future studies investigating the mechanisms by which these circuits are built.

  20. Peripheral refraction in normal infant rhesus monkeys

    Science.gov (United States)

    Hung, Li-Fang; Ramamirtham, Ramkumar; Huang, Juan; Qiao-Grider, Ying; Smith, Earl L.

    2008-01-01

    Purpose To characterize peripheral refractions in infant monkeys. Methods Cross-sectional data for horizontal refractions were obtained from 58 normal rhesus monkeys at 3 weeks of age. Longitudinal data were obtained for both the vertical and horizontal meridians from 17 monkeys. Refractive errors were measured by retinoscopy along the pupillary axis and at eccentricities of 15, 30, and 45 degrees. Axial dimensions and corneal power were measured by ultrasonography and keratometry, respectively. Results In infant monkeys, the degree of radial astigmatism increased symmetrically with eccentricity in all meridians. There were, however, initial nasal-temporal and superior-inferior asymmetries in the spherical-equivalent refractive errors. Specifically, the refractions in the temporal and superior fields were similar to the central ametropia, but the refractions in the nasal and inferior fields were more myopic than the central ametropia and the relative nasal field myopia increased with the degree of central hyperopia. With age, the degree of radial astigmatism decreased in all meridians and the refractions became more symmetrical along both the horizontal and vertical meridians; small degrees of relative myopia were evident in all fields. Conclusions As in adult humans, refractive error varied as a function of eccentricity in infant monkeys and the pattern of peripheral refraction varied with the central refractive error. With age, emmetropization occurred for both central and peripheral refractive errors resulting in similar refractions across the central 45 degrees of the visual field, which may reflect the actions of vision-dependent, growth-control mechanisms operating over a wide area of the posterior globe. PMID:18487366

  1. Severe muscle atrophy due to spinal cord injury can be reversed in complete absence of peripheral nerves

    Directory of Open Access Journals (Sweden)

    Simona Boncompagni

    2012-12-01

    peripheral nerves. Experimental and clinical results have shown that electrical stimulation training by long impulses can restore muscle mass, force production and movements even after long lasting complete denervation. Measurements by CT-scans revealed a substantial increase of tight muscle cross sectional area during the first years of FES and muscle function of the lower extremities was restored in some patients sufficiently to allow for supported standing, standing, and even for a few steps to be taken. We have described the ultrastructural changes accompanying the recovery of skeletal muscle in the total absence of either sensory or motor innervation. The results showed a striking structural recovery of muscle fiber ultrastructure in all FES treated patients: the 90% (or more of the studied fibers recovery from a very profound atrophy under the influence of the electrical stimulation. Restoration of ultrastructure involves all the major apparatuses of muscle fibers, such as the one deputed to muscle activation and Ca2+ handling (ECC apparatus, to contractility (myofibrils, and to metabolic and energy generation tasks (mitochondria. This structural recovery occurs in complete absence of nerve endings, under the influence of muscle activity, and follows pattern that mimics in many aspects normal muscle differentiation as well as recovery after short-term disuse and/or denervation. The present ultra-structural studies are important because they show that, despite the apparent complete loss of specific structure, the long-term denervated fibers maintain their full differentiation program. Reversal of the damages from long-standing denervation in humans may be of significant importance also for the rehabilitation and the general health of SCI patients.

  2. Peripheral nerve conduits: technology update

    Science.gov (United States)

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  3. Central Somatosensory Networks Respond to a De Novo Innervated Penis: A Proof of Concept in Three Spina Bifida Patients.

    Science.gov (United States)

    Kortekaas, Rudie; Nanetti, Luca; Overgoor, Max L E; de Jong, Bauke M; Georgiadis, Janniko R

    2015-09-01

    Spina bifida (SB) causes low spinal lesions, and patients often have absent genital sensation and a highly impaired sex life. TOMAX (TO MAX-imize sensation, sexuality and quality of life) is a surgical procedure whereby the penis is newly innervated using a sensory nerve originally targeting the inguinal area. Most TOMAX-treated SB patients initially experience penile stimulation as inguinal sensation, but eventually, the perception shifts to penis sensation with erotic feelings. The brain mechanisms mediating this perceptual shift, which are completely unknown, could hold relevance for understanding the brain's role in sexual development. The aim of this study was to study how a newly perceived penis would be mapped onto the brain after a lifelong disconnection. Three TOMAX-treated SB patients participated in a functional magnetic resonance imagery experiment while glans penis, inguinal area, and index finger were stimulated with a paint brush. Brush stimulation-induced activation of the primary somatosensory cortex (SI) and functional connectivity between SI and remote cerebral regions. Stimulation of the re-innervated side of the glans penis and the intact contralateral inguinal area activated a very similar location on SI. Yet, connectivity analysis identified distinct SI functional networks. In all three subjects, the middle cingulate cortex (MCC) and the parietal operculum-insular cortex (OIC) were functionally connected to SI activity during glans penis stimulation, but not to SI activity induced by inguinal stimulation. Investigating central somatosensory network activity to a de novo innervated penis in SB patients is feasible and informative. The consistent involvement of MCC and OIC above and beyond the brain network expected on the basis of inguinal stimulation suggests that these areas mediate the novel penis sensation in these patients. The potential role of MCC and OIC in this process is discussed, along with recommendations for further research.

  4. Potential Role of Semaphorin 3A and Its Receptors in Regulating Aberrant Sympathetic Innervation in Peritoneal and Deep Infiltrating Endometriosis.

    Science.gov (United States)

    Liang, Yanchun; Wang, Wei; Huang, Jiaming; Tan, Hao; Liu, Tianyu; Shang, Chunliang; Liu, Duo; Guo, Luyan; Yao, Shuzhong

    2015-01-01

    Previous studies have demonstrated the involvement of nerve repellent factors in regulation of the imbalanced innervation of endometriosis. This prospective study aims to explore the role of Sema 3A in regulating aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis. Ectopic endometriotic lesion were collected from patients with peritoneal endometriosis (n = 24) and deep infiltrating endometriosis of uterosacral ligament (n = 20) undergoing surgery for endometriosis. Eutopic endometrial samples were collected from patients with endometriosis (n = 22) or without endometriosis (n = 26). Healthy peritoneum (n = 13) from the lateral pelvic wall and healthy uterosacral ligament (n = 13) were obtained from patients who had no surgical and histological proof of endometriosis during hysterectomy for uterine fibroids. Firstly, we studied the immunostaining of Sema 3A, Plexin A1 and NRP-1 in all the tissues described above. Then we studied the nerve fiber density (NFD) of endometriosis-associated (sympathetic) nerve and para-endometriotic (sympathetic) nerve by double immunofluorescence staining. Finally we analyzed the relationship between expression of Sema 3A in stromal cells of endometriotic lesion and the aberrant innervation of endometriosis. Semi-quantitative immunostaining demonstrated that (1) Higher immunostaining of Sema 3A were found in the eutopic endometrial glandular epithelial cells from patients with endometriosis (p = 0.041) than those without endometriosis; (2) Sema 3A immunostaining was higher in glandular epithelial cells of peritoneal endometriosis (Pendometriosis, while its expression in ectopic stormal cells in both groups were significantly lower than that from eutopic endometrium of women without endometirosis (Pendometriosis-associated sympathetic nerve of peritoneal endometriosis (pendometriosis of uterosacral ligament (pperitoneal and deep infiltrating endometriosis.

  5. Quantitation of cardiac sympathetic innervation in rabbits using 11C-hydroxyephedrine PET: relation to 123I-MIBG uptake

    International Nuclear Information System (INIS)

    Nomura, Yusuke; Kajinami, Kouji; Matsunari, Ichiro; Takamatsu, Hiroyuki; Murakami, Yoshihiro; Matsuya, Takahiro; Chen, Wei-Ping; Taki, Junichi; Nakajima, Kenichi; Nekolla, Stephan G.

    2006-01-01

    Although 11 C-hydroxyephedrine ( 11 C-HED) PET is used to map cardiac sympathetic innervation, no studies have shown the feasibility of quantitation of 11 C-HED PET in small- to medium-sized animals. Furthermore, its relation to 123 I-MIBG uptake, the most widely used sympathetic nervous tracer, is unknown. The aims of this study were to establish in vivo sympathetic nerve imaging in rabbits using 11 C-HED PET, and to compare the retention of 11 C-HED with that of 123 I-MIBG. Twelve rabbits were assigned to three groups; control (n=4), chemical denervation by 6-hydroxydopamine (6-OHDA) (n=4) and reserpine treated to inhibit vesicular uptake (n=4). After simultaneous injection of 11 C-HED and 123 I-MIBG, all animals underwent dynamic 11 C-HED PET for 40 min with arterial blood sampling. The 11 C-HED retention fraction and normalised 11 C-HED activity measured by tissue sampling were compared with those measured by PET. Both the 11 C-HED retention fraction and the normalised 11 C-HED activity measured by PET correlated closely with those measured by tissue sampling (R=0.96027, p 11 C-HED and 123 I-MIBG. Reserpine pretreatment reduced 11 C-HED retention by 50%, but did not reduce 123 I-MIBG retention at 40 min after injection. Non-invasive quantitation of cardiac sympathetic innervation using 11 C-HED PET is feasible and gives reliable estimates of cardiac sympathetic innervation in rabbits. Additionally, although both 11 C-HED and 123 I-MIBG are specific for sympathetic neurons, 11 C-HED may be more specific for intravesicular uptake than 123 I-MIBG in some situations, such as that seen in reserpine pretreatment. (orig.)

  6. Moderate caloric restriction during gestation in rats alters adipose tissue sympathetic innervation and later adiposity in offspring.

    Directory of Open Access Journals (Sweden)

    Ana Paula García

    Full Text Available Maternal prenatal undernutrition predisposes offspring to higher adiposity in adulthood. Mechanisms involved in these programming effects, apart from those described in central nervous system development, have not been established. Here we aimed to evaluate whether moderate caloric restriction during early pregnancy in rats affects white adipose tissue (WAT sympathetic innervation in the offspring, and its relationship with adiposity development. For this purpose, inguinal and retroperitoneal WAT (iWAT and rpWAT, respectively were analyzed in male and female offspring of control and 20% caloric-restricted (from 1-12 d of pregnancy (CR dams. Body weight (BW, the weight, DNA-content, morphological features and the immunoreactive tyrosine hydroxylase and Neuropeptide Y area (TH+ and NPY+ respectively, performed by immunohistochemistry of both fat depots, were studied at 25 d and 6 m of age, the latter after 2 m exposure to high fat diet. At 6 m of life, CR males but not females, exhibited greater BW, and greater weight and total DNA-content in iWAT, without changes in adipocytes size, suggesting the development of hyperplasia in this depot. However, in rpWAT, CR males but not females, showed larger adipocyte diameter, with no changes in DNA-content, suggesting the development of hypertrophy. These parameters were not different between control and CR animals at the age of 25 d. In iWAT, both at 25 d and 6 m, CR males but not females, showed lower TH(+ and NPY(+, suggesting lower sympathetic innervation in CR males compared to control males. In rpWAT, at 6 m but not at 25 d, CR males but not females, showed lower TH(+ and NPY(+. Thus, the effects of caloric restriction during gestation on later adiposity and on the differences in the adult phenotype between internal and subcutaneous fat depots in the male offspring may be associated in part with specific alterations in sympathetic innervation, which may impact on WAT architecture.

  7. "Fast" and "slow" skeleto-fusimotor innervation in cat tenuissimus spindles; a study with the glycogen-depletion method.

    Science.gov (United States)

    Jami, L; Lan-Couton, D; Malmgren, K; Petit, J

    1978-07-01

    The glycogen-depletion method was used to investigate the motor supply to tenuissimus with respect to the presence of fast beta axons and to assess the total proportion of both fast and slow beta-innervated spindles in this muscle. In a first series of 5 expts., groups of motor axons with conduction velocities higher than 85 m/s were repetitively stimulated so as to produce glycogen depletion in the muscle fibres they innervated. The whole muscle was then quick-frozen, serially cut, stained to demonstrate glycogen and examined for intrafusal glycogen depletion. Zones of glycogen depletion were found in 16 of the 46 examined spindles; they were most frequently located in the longest of the chain intrafusal muscle fibres. Since it is known that there are no purely fusimotor axons to tenuissimus with conduction velocities above 50 m/s, it was concluded that beta axons are present among the fastest axons to this muscle. In a second series of 5 expts. as many motor axons as possible with conduction velocities above 60 m/s were stimulated. Zones of glycogen depletion were found in 19 of the 47 examined spindles. They affected chain fibres in about half of the instances and bag1 fibers in the others. As this latter location is characteristic of slow dynamic beta axons, it was concluded that both slow and fast beta axons occur regularly in the motor supply to tenuissimus. beta-innervation is present in at least 40% of tenuissimus spindles with almost no convergence of fast and slow beta axons onto the same spindle.

  8. Potential Role of Semaphorin 3A and Its Receptors in Regulating Aberrant Sympathetic Innervation in Peritoneal and Deep Infiltrating Endometriosis

    Science.gov (United States)

    Liang, Yanchun; Wang, Wei; Huang, Jiaming; Tan, Hao; Liu, Tianyu; Shang, Chunliang; Liu, Duo; Guo, Luyan; Yao, Shuzhong

    2015-01-01

    Previous studies have demonstrated the involvement of nerve repellent factors in regulation of the imbalanced innervation of endometriosis. This prospective study aims to explore the role of Sema 3A in regulating aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis. Ectopic endometriotic lesion were collected from patients with peritoneal endometriosis (n = 24) and deep infiltrating endometriosis of uterosacral ligament (n = 20) undergoing surgery for endometriosis. Eutopic endometrial samples were collected from patients with endometriosis (n = 22) or without endometriosis (n = 26). Healthy peritoneum (n = 13) from the lateral pelvic wall and healthy uterosacral ligament (n = 13) were obtained from patients who had no surgical and histological proof of endometriosis during hysterectomy for uterine fibroids. Firstly, we studied the immunostaining of Sema 3A, Plexin A1 and NRP-1 in all the tissues described above. Then we studied the nerve fiber density (NFD) of endometriosis-associated (sympathetic) nerve and para-endometriotic (sympathetic) nerve by double immunofluorescence staining. Finally we analyzed the relationship between expression of Sema 3A in stromal cells of endometriotic lesion and the aberrant innervation of endometriosis. Semi-quantitative immunostaining demonstrated that (1) Higher immunostaining of Sema 3A were found in the eutopic endometrial glandular epithelial cells from patients with endometriosis (p = 0.041) than those without endometriosis; (2) Sema 3A immunostaining was higher in glandular epithelial cells of peritoneal endometriosis (Pendometriosis, while its expression in ectopic stormal cells in both groups were significantly lower than that from eutopic endometrium of women without endometirosis (Pendometriosis-associated sympathetic nerve of peritoneal endometriosis (pendometriosis of uterosacral ligament (pendometriosis. PMID:26720585

  9. An unbiased stereological method for efficiently quantifying the innervation of the heart and other organs based on total length estimations

    DEFF Research Database (Denmark)

    Mühlfeld, Christian; Papadakis, Tamara; Krasteva, Gabriela

    2010-01-01

    Quantitative information about the innervation is essential to analyze the structure-function relationships of organs. So far, there has been no unbiased stereological tool for this purpose. This study presents a new unbiased and efficient method to quantify the total length of axons in a given...... reference volume, illustrated on the left ventricle of the mouse heart. The method is based on the following steps: 1) estimation of the reference volume; 2) randomization of location and orientation using appropriate sampling techniques; 3) counting of nerve fiber profiles hit by a defined test area within...

  10. Localization of cholecystokininlike immunoreactivity in the rat spinal cord, with particular reference to the autonomic innervation of the pelvic organs

    DEFF Research Database (Denmark)

    Schrøder, H D

    1983-01-01

    tracing and immunocytochemistry revealed that the two cholecystokinin terminal fields characteristic for L1-L2 and that surrounding the intermediolateral nucleus in L6-S1 were situated corresponding to preganglionic neurons innervating pelvic organs through the hypogastric nerve or the pelvic nerves...... from the more cranial part with respect to type of afferent connections. The origin of the spinal cholecystokinin was investigated and it was found that neither complete transection of the spinal cord nor ipsilateral sectioning of three or four dorsal roots induced visible changes...

  11. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan

    2010-01-01

    FOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar t, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting......, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of c...

  12. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan

    2010-01-01

    FOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting......, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of c...

  13. Peripheral Atherectomy: Applications and Techniques.

    Science.gov (United States)

    Mittleider, Derek; Russell, Erich

    2016-06-01

    Peripheral atherectomy is a class of procedures that is rapidly increasing in volume. Multiple classes of devices exist, and newer variants are added to the market annually. The devices see wide application for de novo lesions, in-stent restenosis, and adjunctive therapy for drug-coated balloons. The body of evidence supporting atherectomy is less robust than for many other peripheral therapies. The frequency and severity of complications from atherectomy can be significant compared with angioplasty and stenting, and familiarity with preventative and bailout techniques is essential for the interventionalist. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [Atherectomy for peripheral arterial disease].

    Science.gov (United States)

    Londero, Louise Skovgaard; Høgh, Annette Langager; Lindholt, Jes Sanddal

    2015-04-13

    Symptomatic peripheral arterial disease is managed according to national and international guidelines and the number of vascular reconstructions performed each year has increased over the past decade mainly due to an increasing frequency of endovascular procedures. Atherectomy as an alternative to the established treatment of symptomatic peripheral arterial disease has recently been analysed in a Cochrane review. In Denmark, atherectomy is not performed and so far the evidence is poor as the method is not an alternative to the established treatment in this country.

  15. Imaging of the peripheral retina

    Directory of Open Access Journals (Sweden)

    Marcus Kernt

    2013-01-01

    Full Text Available The technical progress of the recent years has revolutionized imaging in ophthalmology. Scanning laser ophthalmoscopy (SLO, digital angiography, optical coherence tomography (OCT, and detection of fundus autofluorescence (FAF have fundamentally changed our understanding of numerous retinal and choroidal diseases. Besides the tremendous advances in macular diagnostics, there is more and more evidence that central pathologies are often directly linked to changes in the peripheral retina. This review provides a brief overview on current posterior segment imaging techniques with a special focus on the peripheral retina.

  16. Dynamic molecular imaging of cardiac innervation using a dual head pinhole SPECT system

    International Nuclear Information System (INIS)

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-01-01

    Typically 123I-MIBG is used for the study of innervation and function of the sympathetic nervous system in heart failure. The protocol involves two studies: first a planar or SPECT scan is performed to measure initial uptake of the tracer, followed some 3-4 hours later by another study measuring the wash-out of the tracer from the heart. A fast wash-out is indicative of a compromised heart. In this work, a dual head pinhole SPECT system was used for imaging the distribution and kinetics of 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. The system geometry was calibrated based on a nonlinear point projection fitting method using a three-point source phantom. The angle variation effect of the parameters was modeled with a sinusoidal function. A dynamic acquisition was performed by injecting 123I-MIBG into rats immediately after starting the data acquisition. The detectors rotated continuously performing a 360o data acquisition every 90 seconds. We applied the factor analysis (FA)method and region of interest (ROI) sampling method to obtain time activity curves (TACs)in the blood pool and myocardium and then applied two-compartment modeling to estimate the kinetic parameters. Since the initial injection bolus is too fast for obtaining a consistent tomographic data set in the first few minutes of the study, we applied the FA method directly to projections during the first rotation. Then the time active curves for blood and myocardial tissue were obtained from ROI sampling. The method was applied to determine if there were differences in the kinetics between SHR and WKY rats and requires less time by replacing the delayed scan at 3-4 hours after injection with a dynamic acquisition over 90 to 120 minutes. The results of a faster washout and a smaller distribution volume of 123I-MIBG near the end of life in the SHR model of hypertrophic cardiomyopthy may be indicative of a failing heart in late stages of heart

  17. Peripheral blood signatures of lead exposure.

    Directory of Open Access Journals (Sweden)

    Heather G LaBreche

    Full Text Available BACKGROUND: Current evidence indicates that even low-level lead (Pb exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. METHODOLOGY/PRINCIPAL FINDING: Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. CONCLUSIONS/SIGNIFICANCE: The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway.

  18. Peripheral facial weakness (Bell's palsy).

    Science.gov (United States)

    Basić-Kes, Vanja; Dobrota, Vesna Dermanović; Cesarik, Marijan; Matovina, Lucija Zadro; Madzar, Zrinko; Zavoreo, Iris; Demarin, Vida

    2013-06-01

    Peripheral facial weakness is a facial nerve damage that results in muscle weakness on one side of the face. It may be idiopathic (Bell's palsy) or may have a detectable cause. Almost 80% of peripheral facial weakness cases are primary and the rest of them are secondary. The most frequent causes of secondary peripheral facial weakness are systemic viral infections, trauma, surgery, diabetes, local infections, tumor, immune disorders, drugs, degenerative diseases of the central nervous system, etc. The diagnosis relies upon the presence of typical signs and symptoms, blood chemistry tests, cerebrospinal fluid investigations, nerve conduction studies and neuroimaging methods (cerebral MRI, x-ray of the skull and mastoid). Treatment of secondary peripheral facial weakness is based on therapy for the underlying disorder, unlike the treatment of Bell's palsy that is controversial due to the lack of large, randomized, controlled, prospective studies. There are some indications that steroids or antiviral agents are beneficial but there are also studies that show no beneficial effect. Additional treatments include eye protection, physiotherapy, acupuncture, botulinum toxin, or surgery. Bell's palsy has a benign prognosis with complete recovery in about 80% of patients, 15% experience some mode of permanent nerve damage and severe consequences remain in 5% of patients.

  19. MEGACARYOCYTES IN THE PERIPHERAL CIRCULATION

    Science.gov (United States)

    Minot, George R.

    1922-01-01

    A megacaryocyte is seen commonly as an occasional cell in the peripheral blood of patients with myelogenous leucemia. Less commonly they appear in relatively large numbers. These giant cells also may occur in the blood under other conditions. Their presence is indicative of a bone marrow under intense strain. PMID:19868650

  20. [Ultrasound-guided peripheral catheterization].

    Science.gov (United States)

    Salleras-Duran, Laia; Fuentes-Pumarola, Concepció

    2016-01-01

    Peripheral catheterization is a technique that can be difficult in some patients. Some studies have recently described the use of ultrasound to guide the venous catheterization. To describe the success rate, time required, complications of ultrasound-guided peripheral venous catheterization. and patients and professionals satisfaction The search was performed in databases (Medline-PubMed, Cochrane Library, CINAHL and Cuiden Plus) for studies published about ultrasound-guided peripheral venous catheterization performed on patients that provided results on the success of the technique, complications, time used, patient satisfaction and the type of professional who performed the technique. A total of 21 studies were included. Most of them get a higher success rate 80% in the catheterization ecoguide and time it is not higher than the traditional technique. The Technical complications analyzed were arterial puncture rates and lower nerve 10%. In all studies measuring and comparing patient satisfaction in the art ecoguide is greater. Various professional groups perform the technique. The use of ultrasound for peripheral pipes has a high success rate, complications are rare and the time used is similar to that of the traditional technique. The technique of inserting catheters through ultrasound may be learned by any professional group performing venipuncture. Finally, it gets underscores the high patient satisfaction with the use of this technique. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  1. Bias in Peripheral Depression Biomarkers

    DEFF Research Database (Denmark)

    Carvalho, André F; Köhler, Cristiano A; Brunoni, André R

    2016-01-01

    BACKGROUND: To aid in the differentiation of individuals with major depressive disorder (MDD) from healthy controls, numerous peripheral biomarkers have been proposed. To date, no comprehensive evaluation of the existence of bias favoring the publication of significant results or inflating effect...

  2. What Is Peripheral Artery Disease?

    Science.gov (United States)

    ... or bluish color to the skin A lower temperature in one leg compared to the other leg Poor nail growth on the toes and decreased hair growth on the legs Erectile dysfunction, especially among men who have diabetes Diagnosis Peripheral artery disease (P.A.D.) is diagnosed based ...

  3. A region-specific quantitative profile of autonomic innervation of the canine left atrium and pulmonary veins.

    Science.gov (United States)

    Gao, Chong-han; Wang, Fei; Jiang, Rong; Zhang, Jin; Mou, Huamin; Yin, Yue-hui

    2011-07-05

    The aim of the present study was to determine and quantify the cardiac autonomic innervation of the canine atria and pulmonary vein. Tissue specimens were taken from the canine pulmonary veins (PVs), posterior left atrium (PLA), left atrial roof (LAR), anterior left atrium (ALA), interatrial septum (IAS), and left atrial appendage (LAA) respectively for immunohistochemical analysis and nerve density determination. Both sympathetic and parasympathetic nerve densities decreased in the order: PLA>PV>IAS>LAR>ALA>LAA. For sympathetic nerve, multiple comparisons between any two regions showed a significant difference (PIAS vs. LAR, and LAR vs. ALA; for parasympathetic nerve, all the differences between any pair of regions were statistically significant (PIAS vs. LAR, LAR vs. ALA, and ALA vs. LAA. For both nerve types, there was a decreasing gradient of nerve densities from the external to internal layer (P<0.001, for each comparisons). Nerve density at the ostia for either nerve type was significantly higher than at the distal segments of PVs (P<0.001). In summary, the LA and PVs are innervated by sympathetic and parasympathetic nerves in a regionally heterogeneous way, which may be important for the pathophysiological investigation and ablation therapy of atrial fibrillation (AF). Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Delayed peripheral nerve repair: methods, including surgical 'cross-bridging' to promote nerve regeneration.

    Science.gov (United States)

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H

    2015-10-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges) into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to 'protect' chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  5. Delayed peripheral nerve repair: methods, including surgical ′cross-bridging′ to promote nerve regeneration

    Directory of Open Access Journals (Sweden)

    Tessa Gordon

    2015-01-01

    Full Text Available Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ′protect′ chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  6. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling.

    Science.gov (United States)

    Altmann, Christine; Vasic, Verica; Hardt, Stefanie; Heidler, Juliana; Häussler, Annett; Wittig, Ilka; Schmidt, Mirko H H; Tegeder, Irmgard

    2016-10-22

    Peripheral nerve injury is a frequent cause of lasting motor deficits and chronic pain. Although peripheral nerves are capable of regrowth they often fail to re-innervate target tissues. Using newly generated transgenic mice with inducible neuronal progranulin overexpression we show that progranulin accelerates axonal regrowth, restoration of neuromuscular synapses and recovery of sensory and motor functions after injury of the sciatic nerve. Oppositely, progranulin deficient mice have long-lasting deficits in motor function tests after nerve injury due to enhanced losses of motor neurons and stronger microglia activation in the ventral horn of the spinal cord. Deep proteome and gene ontology (GO) enrichment analysis revealed that the proteins upregulated in progranulin overexpressing mice were involved in 'regulation of transcription' and 'response to insulin' (GO terms). Transcription factor prediction pointed to activation of Notch signaling and indeed, co-immunoprecipitation studies revealed that progranulin bound to the extracellular domain of Notch receptors, and this was functionally associated with higher expression of Notch target genes in the dorsal root ganglia of transgenic mice with neuronal progranulin overexpression. Functionally, these transgenic mice recovered normal gait and running, which was not achieved by controls and was stronger impaired in progranulin deficient mice. We infer that progranulin activates Notch signaling pathways, enhancing thereby the regenerative capacity of partially injured neurons, which leads to improved motor function recovery.

  7. Changes of medium-latency SEP-components following peripheral nerve lesion

    Directory of Open Access Journals (Sweden)

    Straschill Max

    2006-10-01

    Full Text Available Abstract Background Animal studies have demonstrated complex cortical reorganization following peripheral nerve lesion. Central projection fields of intact nerves supplying skin areas which border denervated skin, extended into the deafferentiated cortical representation area. As a consequence of nerve lesions and subsequent reorganization an increase of the somatosensory evoked potentials (SEPs was observed in cats when intact neighbouring nerves were stimulated. An increase of SEP-components of patients with nerve lesions may indicate a similar process of posttraumatic plastic cortical reorganization. Methods To test if a similar process of post-traumatic plastic cortical reorganization does occur in humans, the SEP of intact neighbouring hand nerves were recorded in 29 patients with hand nerve lesions. To hypothetically explain the observed changes of SEP-components, SEP recording following paired stimulation of the median nerve was performed in 12 healthy subjects. Results Surprisingly 16 of the 29 patients (55.2% showed a reduction or elimination of N35, P45 and N60. Patients with lesions of two nerves showed more SEP-changes than patients with a single nerve lesion (85.7%; 6/7 nerves; vs. 34.2%; 13/38 nerves; Fisher's exact test, p Conclusion The results of the present investigation do not provide evidence of collateral innervation of peripherally denervated cortical neurons by neurons of adjacent cortical representation areas. They rather suggest that secondary components of the excitatory response to nerve stimulation are lost in cortical areas, which surround the denervated region.

  8. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    Science.gov (United States)

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  9. Morfofisiologia da inervação do diafragma de ovinos Morphophysiology of diaphragm innervation in sheep

    Directory of Open Access Journals (Sweden)

    Ana E.F. de Almeida

    2008-09-01

    Full Text Available Foram estudados em 30 diafragmas de ovinos da raça Santa Inês, a origem, a divisão e a distribuição dos nervos frênicos direito e esquerdo (Fde e a participação de outros nervos na inervação do diafragma. Mediante fixação e dissecação das peças foi observado que os nervos frênicos (F originam-se a partir dos ramos ventrais do 5º (C5 e 6º (C6 nervos espinhais cervicais (Ec tanto à direita (46,67% como à esquerda (43,33%. Os F finalizam em tronco lombocostal e ramo esternal à direita (40,00% e em ramo lombar, costal e esternal à esquerda (36,68%. Os ramos lombares dos F inervam à esquerda (96,67% o pilar homolateral do diafragma e, à direita (50,00% fornecem filetes à veia caudal. Os ramos costais dos F ramificam à esquerda (90,00% e à direita (76,67% as regiões dorsal e ventral da pars costalis. Os ramos esternais dos F inervam à direita (100,00% e à esquerda (83,33% a pars sternalis e a região ventral da pars costalis do mesmo lado. Os nervos intercostais (VIII ao XII pares, 63,33% contribuem na inervação do diafragma de ovinos da raça Santa Inês.Thirty diaphragms of sheep of Santa Inês breed were studied regarding their origin, division and arrangement of the right and left phrenic nerves (Fde, and the participation of other nerves in the innervation of the diaphragm. By fixing and dissecting pieces, it was found that phrenic nerves (F frequently come from the ventral branches of the 5th (C5 and 6th (C6 cervical spinal nerves (Ec, at right (46.67% and at left (43.33%. The F often form a lumbocostal trunk, sternal branches at right (40.00% and lumbar, costal and esternal branches at left (36.68%. The lumbar branches of F innervate frequently at left (96.67% the homolateral pillar of the diaphragma, and at right (50.00% they give fillets to Vena cava caudalis. The costal branches of the F innervate at left (90.00% and at right (76.66% the dorsal and ventral regions of the pars costalis. The sternal branches of

  10. For Vol.67, No.5 pp325-331 Phalloplasty with an Innervated Island Pedicled Anterolateral Thigh Flap in a Female-to-Male Transsexual

    OpenAIRE

    Hasegawa, Kenjiro; Namba, Yuzaburo; Kimata, Yoshihiro

    2014-01-01

    Since 2001, we have been performing phalloplasty with a radial forearm free flap as the flap of firstchoice in female-to-male transsexuals (FTMTS). In the present case, a 22-year-old FTMTS with anegative Allen test, we achieved good results by performing phalloplasty with an innervated islandpedicled anterolateral thigh flap using the “tube within a tube” technique, in which the penis and urethraare constructed with a single flap. As compared to a forearm flap, use of an innervated islandpedi...

  11. Angioplasty and stent placement - peripheral arteries - discharge

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000234.htm Angioplasty and stent placement - peripheral arteries - discharge To use the sharing ... peripheral artery). You may have also had a stent placed. To perform the procedure: Your doctor inserted ...

  12. Hypothyroidism: Can It Cause Peripheral Neuropathy?

    Science.gov (United States)

    Hypothyroidism: Can it cause peripheral neuropathy? Can hypothyroidism cause peripheral neuropathy and, if so, how is it treated? Answers from Todd B. Nippoldt, M.D. Hypothyroidism — a condition in which your ...

  13. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.

    Science.gov (United States)

    Callister, Robert J; Pierce, Patricia A; McDonagh, Jennifer C; Stuart, Douglas G

    2005-04-01

    fiber type, with the distribution of slow-tonic fibers paralleling that of the SO fibers. In the five test muscles, fiber cross-sectional area was usually ranked Fg > FOG > SO, and slow-twitch always > slow-tonic. In terms of weighted cross-sectional area, which provides a coarse-grain measure of each fiber type's potential contribution to whole muscle force, all five muscles exhibited a higher Fg and lower SO contribution to cross-sectional area than suggested by their corresponding fiber-type prevalence. This was also the case for the slow-twitch vs. slow-tonic fibers. We conclude that slow-tonic fibers are widespread in turtle muscle. The weighted cross-sectional area evidence suggested, however, that their contribution to force generation is minor except in highly oxidative muscles, with a special functional role, like TeC4. There is discussion of: 1) the relationship between the present results and previous work on homologous neck and hindlimb muscles in other nonmammalian species, and 2) the potential motoneuronal innervation of slow-tonic fibers in turtle hindlimb muscles. Copyright 2005 Wiley-Liss, Inc.

  14. Characterisation of a peripheral neuropathic component of the rat monoiodoacetate model of osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Matthew Thakur

    Full Text Available Joint degeneration observed in the rat monoiodoacetate (MIA model of osteoarthritis shares many histological features with the clinical condition. The accompanying pain phenotype has seen the model widely used to investigate the pathophysiology of osteoarthritis pain, and for preclinical screening of analgesic compounds. We have investigated the pathophysiological sequellae of MIA used at low (1 mg or high (2 mg dose. Intra-articular 2 mg MIA induced expression of ATF-3, a sensitive marker for peripheral neuron stress/injury, in small and large diameter DRG cell profiles principally at levels L4 and 5 (levels predominated by neurones innervating the hindpaw rather than L3. At the 7 day timepoint, ATF-3 signal was significantly smaller in 1 mg MIA treated animals than in the 2 mg treated group. 2 mg, but not 1 mg, intra-articular MIA was also associated with a significant reduction in intra-epidermal nerve fibre density in plantar hindpaw skin, and produced spinal cord dorsal and ventral horn microgliosis. The 2 mg treatment evoked mechanical pain-related hypersensitivity of the hindpaw that was significantly greater than the 1 mg treatment. MIA treatment produced weight bearing asymmetry and cold hypersensitivity which was similar at both doses. Additionally, while pregabalin significantly reduced deep dorsal horn evoked neuronal responses in animals treated with 2 mg MIA, this effect was much reduced or absent in the 1 mg or sham treated groups. These data demonstrate that intra-articular 2 mg MIA not only produces joint degeneration, but also evokes significant axonal injury to DRG cells including those innervating targets outside of the knee joint such as hindpaw skin. This significant neuropathic component needs to be taken into account when interpreting studies using this model, particularly at doses greater than 1 mg MIA.

  15. An artificial arm/hand system with a haptic sensory function using electric stimulation of peripheral sensory nerve fibers.

    Science.gov (United States)

    Mabuchi, Kunihiko

    2013-01-01

    We are currently developing an artificial arm/hand system which is capable of sensing stimuli and then transferring these stimuli to users as somatic sensations. Presently, we are evoking the virtual somatic sensations by electrically stimulating a sensory nerve fiber which innervates a single mechanoreceptor unit at the target area; this is done using a tungsten microelectrode that was percutaneously inserted into the use's peripheral nerve (a microstimulation method). The artificial arm/hand system is composed of a robot hand equipped with a pressure sensor system on its fingers. The sensor system detects mechanical stimuli, which are transferred to the user by means of the microstimulation method so that the user experiences the stimuli as the corresponding somatic sensations. In trials, the system worked satisfactorily and there was a good correlation between the pressure applied to the pressure sensors on the robot fingers and the subjective intensities of the evoked pressure sensations.

  16. Coaching Peripheral Vision Training for Soccer Athletes

    Science.gov (United States)

    Marques, Nelson Kautzner, Jr.

    2010-01-01

    Brazilian Soccer began developing its current emphasis on peripheral vision in the late 1950s, by initiative of coach of the Canto do Rio Football Club, in Niteroi, Rio de Janeiro, a pioneer in the development of peripheral vision training in soccer players. Peripheral vision training gained world relevance when a young talent from Canto do Rio,…

  17. Peripheral Neuropathy – Clinical and Electrophysiological Considerations

    Science.gov (United States)

    Chung, Tae; Prasad, Kalpana; Lloyd, Thomas E.

    2013-01-01

    This article is a primer on the pathophysiology and clinical evaluation of peripheral neuropathy for the radiologist. Magnetic resonance neurography (MRN) has utility in the diagnosis of many focal peripheral nerve lesions. When combined with history, examination, electrophysiology, and laboratory data, future advancements in high-field MRN may play an increasingly important role in the evaluation of patients with peripheral neuropathy. PMID:24210312

  18. Peripheral nerve conduits: technology update

    Directory of Open Access Journals (Sweden)

    Arslantunali D

    2014-12-01

    Full Text Available D Arslantunali,1–3,* T Dursun,1,2,* D Yucel,1,4,5 N Hasirci,1,2,6 V Hasirci,1,2,7 1BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU, Ankara, Turkey; 2Department of Biotechnology, METU, Ankara, Turkey; 3Department of Bioengineering, Gumushane University, Gumushane, Turkey; 4Faculty of Engineering, Department of Medical Engineering, Acibadem University, Istanbul, Turkey; 5School of Medicine, Department of Histology and Embryology, Acibadem University, Istanbul, Turkey; 6Department of Chemistry, Faculty of Arts and Sciences, METU, Ankara, Turkey; 7Department of Biological Sciences, Faculty of Arts and Sciences, METU, Ankara, Turkey *These authors have contributed equally to this work Abstract: Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers and designs (tubular, fibrous, and matrix type are being presented. Keywords: peripheral nerve injury, natural biomaterials, synthetic biomaterials

  19. Large Extremity Peripheral Nerve Repair

    Science.gov (United States)

    2016-12-01

    LM, de Crombrugghe B. Some recent advances in the chemistry and biology of trans- forming growth factor-beta. J Cell Biol 1987;105:1039e45. 12. Hao Y...SUPPLEMENTARY NOTES 14. ABSTRACT In current war trauma, 20-30% of all extremity injuries and >80% of penetrating injuries being associated with peripheral nerve...through both axonal advance and in revascularization of the graft following placement. We are confident that this technology may allow us to

  20. Communication, Consumption and Peripheral Politics

    Directory of Open Access Journals (Sweden)

    NÍZIA VILLAÇA

    2009-02-01

    Full Text Available This essay analyses central/peripheral dynamics and its new semantics in the big scenario of globalization. The processes of hybridization between the local and the global spaces are discussed focusing the strategies of inclusion and exclusion through some examples from media and cultural industry. The methodology helps to reflect about the theme using elements of epistemology communication, consumer society and cultural studies.

  1. Peripheral facial palsy in children.

    Science.gov (United States)

    Yılmaz, Unsal; Cubukçu, Duygu; Yılmaz, Tuba Sevim; Akıncı, Gülçin; Ozcan, Muazzez; Güzel, Orkide

    2014-11-01

    The aim of this study is to evaluate the types and clinical characteristics of peripheral facial palsy in children. The hospital charts of children diagnosed with peripheral facial palsy were reviewed retrospectively. A total of 81 children (42 female and 39 male) with a mean age of 9.2 ± 4.3 years were included in the study. Causes of facial palsy were 65 (80.2%) idiopathic (Bell palsy) facial palsy, 9 (11.1%) otitis media/mastoiditis, and tumor, trauma, congenital facial palsy, chickenpox, Melkersson-Rosenthal syndrome, enlarged lymph nodes, and familial Mediterranean fever (each 1; 1.2%). Five (6.1%) patients had recurrent attacks. In patients with Bell palsy, female/male and right/left ratios were 36/29 and 35/30, respectively. Of them, 31 (47.7%) had a history of preceding infection. The overall rate of complete recovery was 98.4%. A wide variety of disorders can present with peripheral facial palsy in children. Therefore, careful investigation and differential diagnosis is essential. © The Author(s) 2013.

  2. Peripheral hyperpolarization-activated cyclic nucleotide-gated channels contribute to inflammation-induced hypersensitivity of the rat temporomandibular joint.

    Science.gov (United States)

    Hatch, R J; Jennings, E A; Ivanusic, J J

    2013-08-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels conduct an inward cation current (Ih ) that contributes to the maintenance of neuronal membrane potential and have been implicated in a number of animal models of neuropathic and inflammatory pain. In the current study, we investigated HCN channel involvement in inflammatory pain of the temporomandibular joint (TMJ). The contribution of HCN channels to inflammation (complete Freund's adjuvant; CFA)-induced mechanical hypersensitivity of the rat TMJ was tested with injections of the HCN channel blocker ZD7288. Retrograde labelling and immunohistochemistry was used to explore HCN channel expression in sensory neurons that innervate the TMJ. Injection of CFA into the TMJ (n = 7) resulted in a significantly increased mechanical sensitivity relative to vehicle injection (n = 7) (p blocked by co-injection of ZD7288 with the CFA (n = 7). Retrograde labelling and immunohistochemistry experiments revealed expression predominantly of HCN1 and HCN2 channel subunits in trigeminal ganglion neurons that innervate the TMJ (n = 3). No change in the proportion or intensity of HCN channel expression was found in inflamed (n = 6) versus control (n = 5) animals at the time point tested. Our findings suggest a role for peripheral HCN channels in inflammation-induced pain of the TMJ. Peripheral application of a HCN channel blocker could provide therapeutic benefit for inflammatory TMJ pain and avoid side effects associated with activation of HCN channels in the central nervous system. © 2012 European Federation of International Association for the Study of Pain Chapters.

  3. Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Andrea Forero

    2017-09-01

    Full Text Available Background: During early prenatal stages of brain development, serotonin (5-HT-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR, innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13 has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system.Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency.Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs, which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5.Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell

  4. Subacute cardiac sympathetic dys-innervation, evaluated by the tomo-scintigraphy with {sup 123}I-Mibg in the Takotsubo syndrome: about one case; Dysinnervation sympathique cardiaque subaigue, evaluee par la tomoscintigraphie a l'123I-MIBG dans le syndrome de Takotsubo: a propos d'un cas

    Energy Technology Data Exchange (ETDEWEB)

    Costo, S.; Agostini, D. [Service de medecine nucleaire, CHU Cote-de-Nacre, Caen, (France); Sabatier, R. [service de cardiologie, CHU Cote-de-Nacre, Caen, (France)

    2009-05-15

    The association of perfusion imaging and myocardium innervation showed a major mismatch of fixation attesting of a sympathetic default of innervation contemporary of a left ventricle dysfunction without perfusion troubles, for a patient with a Takotsubo cardiomyopathy. (N.C.)

  5. Peripheral doses from pediatric IMRT

    International Nuclear Information System (INIS)

    Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David

    2006-01-01

    Peripheral dose (PD) data exist for conventional fields (≥10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10 -10 scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged from

  6. Peripheral formalin injection induces unique spinal cord microglial phenotypic changes

    Science.gov (United States)

    Fu, Kai-Yuan; Tan, Yong-Hui; Sung, Backil; Mao, Jianren

    2014-01-01

    Microglia are resident immune cells of brain and activated by peripheral tissue injury. In the present study, we investigated the possible induction of several microglial surface immunomolecules in the spinal cord, including leukocyte common antigen (LCA/CD45), MHC class I antigen, MHC class II antigen, Fc receptor, and CD11c following formalin injection into the rat’s hind paw. CD45 and MHC class I were upregulated in the activated microglia, which was evident on day 3 with the peak expression on day 7 following peripheral formalin injection. There was a very low basal expression of MHC class II, CD11c, and the Fc receptor, which did not change after the formalin injection. These results, for the first time, indicate that peripheral formalin injection can induce phenotypic changes of microglia with distinct upregulation of CD45 and MHC class I antigen. The data suggest that phenotypic changes of the activated microglia may be a unique pattern of central changes following peripheral tissue injury. PMID:19015000

  7. The surgery of peripheral nerves (including tumors)

    DEFF Research Database (Denmark)

    Fugleholm, Kåre

    2013-01-01

    Surgical pathology of the peripheral nervous system includes traumatic injury, entrapment syndromes, and tumors. The recent significant advances in the understanding of the pathophysiology and cellular biology of peripheral nerve degeneration and regeneration has yet to be translated into improved...... surgical techniques and better outcome after peripheral nerve injury. Decision making in peripheral nerve surgery continues to be a complex challenge, where the mechanism of injury, repeated clinical evaluation, neuroradiological and neurophysiological examination, and detailed knowledge of the peripheral...... nervous system response to injury are prerequisite to obtain the best possible outcome. Surgery continues to be the primary treatment modality for peripheral nerve tumors and advances in adjuvant oncological treatment has improved outcome after malignant peripheral nerve tumors. The present chapter...

  8. Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1.

    Science.gov (United States)

    Light, Alan R; Hughen, Ronald W; Zhang, Jie; Rainier, Jon; Liu, Zhuqing; Lee, Jeewoo

    2008-09-01

    The adequate stimuli and molecular receptors for muscle metaboreceptors and nociceptors are still under investigation. We used calcium imaging of cultured primary sensory dorsal root ganglion (DRG) neurons from C57Bl/6 mice to determine candidates for metabolites that could be the adequate stimuli and receptors that could detect these stimuli. Retrograde DiI labeling determined that some of these neurons innervated skeletal muscle. We found that combinations of protons, ATP, and lactate were much more effective than individually applied compounds for activating rapid calcium increases in muscle-innervating dorsal root ganglion neurons. Antagonists for P2X, ASIC, and TRPV1 receptors suggested that these three receptors act together to detect protons, ATP, and lactate when presented together in physiologically relevant concentrations. Two populations of muscle-innervating DRG neurons were found. One responded to low metabolite levels (likely nonnoxious) and used ASIC3, P2X5, and TRPV1 as molecular receptors to detect these metabolites. The other responded to high levels of metabolites (likely noxious) and used ASIC3, P2X4, and TRPV1 as their molecular receptors. We conclude that a combination of ASIC, P2X5 and/or P2X4, and TRPV1 are the molecular receptors used to detect metabolites by muscle-innervating sensory neurons. We further conclude that the adequate stimuli for muscle metaboreceptors and nociceptors are combinations of protons, ATP, and lactate.

  9. Application of a New Robust ECG T-Wave Delineation Algorithm for the Evaluation of the Autonomic Innervation of the Myocardium

    DEFF Research Database (Denmark)

    Cesari, Matteo; Mehlsen, Jesper; Mehlsen, Anne-Birgitte

    2016-01-01

    T-wave amplitude (TWA) is a well know index of the autonomic innervation of the myocardium. However, until now it has been evaluated only manually or with simple and inefficient algorithms. In this paper, we developed a new robust single-lead electrocardiogram (ECG) T-wave delineation algorithm...

  10. Peripheral vision of youths with low vision: motion perception, crowding, and visual search.

    Science.gov (United States)

    Tadin, Duje; Nyquist, Jeffrey B; Lusk, Kelly E; Corn, Anne L; Lappin, Joseph S

    2012-08-24

    Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10-17) and low vision (n = 24, ages 9-18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function.

  11. Peripheral Vision of Youths with Low Vision: Motion Perception, Crowding, and Visual Search

    Science.gov (United States)

    Tadin, Duje; Nyquist, Jeffrey B.; Lusk, Kelly E.; Corn, Anne L.; Lappin, Joseph S.

    2012-01-01

    Purpose. Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. Methods. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10–17) and low vision (n = 24, ages 9–18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. Results. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Conclusions. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function. PMID:22836766

  12. Effect of dietary oils on peripheral neuropathy-related endpoints in dietary obese rats

    Directory of Open Access Journals (Sweden)

    Coppey L

    2018-04-01

    Full Text Available Lawrence Coppey,1 Eric Davidson,1 Hanna Shevalye,1 Michael E Torres,1 Mark A Yorek1–4 1Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; 2Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, USA; 3Department of Veterans Affairs, Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA; 4Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA Purpose: This study aimed to determine the effect of dietary oils (olive, safflower, evening primrose, flaxseed, or menhaden enriched in different mono unsaturated fatty acids or polyunsaturated fatty acids on peripheral neuropathies in diet-induced obese Sprague-Dawley rats.Materials and methods: Rats at 12 weeks of age were fed a high-fat diet (45% kcal for 16 weeks. Afterward, the rats were fed diets with 50% of the kilocalories of fat derived from lard replaced by the different dietary oils. In addition, a control group fed a standard diet (4% kcal fat and a high fat fed group (45% kcal were maintained. The treatment period was 32 weeks. The endpoints evaluated included motor and sensory nerve conduction velocity, thermal sensitivity, innervation of sensory nerves in the cornea and skin, and vascular relaxation by epineurial arterioles.Results: Menhaden oil provided the greatest benefit for improving peripheral nerve damage caused by dietary obesity. Similar results were obtained when we examined acetylcholine-mediated vascular relaxation of epineurial arterioles of the sciatic nerve. Enriching the diets with fatty acids derived from the other oils provided minimal to partial improvements.Conclusion: These studies suggest that omega-3 polyunsaturated fatty acids derived from fish oil could be an effective treatment for neural and vascular complications associated with obesity. Keywords: peripheral neuropathy, fish oil, omega-3 polyunsaturated fatty acids, omega-6 polyunsaturated fatty

  13. Hepatic abscess versus peripheral cholangiocarcinoma: Sonographic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hwan Hoon; Kim, Yun Hwan; Kang, Chang Ho; Chung, Kyoo Byung; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of); Lee, Chang Hee [Kunkuk University College of Medicine, Chung-Ju Hospital, Chung-Ju (Korea, Republic of)

    2000-12-15

    To find out the sonographic findings that are useful to differentiate hepatic abscess from peripheral cholangiocarcinoma. Twenty-two hepatic abscesses and 22 peripheral cholangiocarcinomas which had been confirmed histologically were included in this study. Objective points were echo characteristics of the lesion, internal septation, presence of peripheral low echoic rim, demarcation from normal liver(well or poorly defined), posterior enhancement, multiplicity, dilatation of bile duct(obstructive or non-obstructive), intrahepatic duct stone, pleural effusion, and intra-abdominal fluid collection. Echo characteristics of the lesion were classified in-to four types. Type I; Predominantly echogenic with hypoechoic portion, type II; Echogenic without hypoechoic portion, type III; Predominantly hypoechoic with echogenic portion, type IV; Hypoechoic without echogenic portion. 1)Nine abscesses and 2 peripheral cholangiocarcinomas were type I(p=0.037), 2)One abscess and 18 peripheral cholangiocarcinomas were type II(p=0.001), 3)Seven abscesses and none of peripheral cholangiocarcinomas were type III(p=0.001), 4)Five abscesses and 2 peripheral cholangiocarcinomas were type IV(p=0.410). Only 7 abscesses showed internal septations(p=0.013). One abscess and 9 peripheral cholangiocarcinomas showed peripheral hypoechoic halos(p=0.012). Only 9 peripheral cholangiocarcinomas showed obstructive bile duct dilatation (p=0.001). There were no statistically significant differences between abscess and peripheral cholangiocarcinoma on other objective points. Predominantly echogenic with hypoechoic portion, predominantly hypoechoic with echogenic portion, and internal septation are the features suggestive of hepatic abscess, and echogenic without hypoechoic portion, peripheral hypoechoic halo, obstructive bile duct dilatation are suggestive of peripheral cholangiocarcinoma. Therefore these sonographic findings are helpful to differentiate hepatic abscess from peripheral

  14. Cutaneous collateral axonal sprouting re-innervates the skin component and restores sensation of denervated Swine osteomyocutaneous alloflaps.

    Directory of Open Access Journals (Sweden)

    Zuhaib Ibrahim

    Full Text Available Reconstructive transplantation such as extremity and face transplantation is a viable treatment option for select patients with devastating tissue loss. Sensorimotor recovery is a critical determinant of overall success of such transplants. Although motor function recovery has been extensively studied, mechanisms of sensory re-innervation are not well established. Recent clinical reports of face transplants confirm progressive sensory improvement even in cases where optimal repair of sensory nerves was not achieved. Two forms of sensory nerve regeneration are known. In regenerative sprouting, axonal outgrowth occurs from the transected nerve stump while in collateral sprouting, reinnervation of denervated tissue occurs through growth of uninjured axons into the denervated tissue. The latter mechanism may be more important in settings where transected sensory nerves cannot be re-apposed. In this study, denervated osteomyocutaneous alloflaps (hind- limb transplants from Major Histocompatibility Complex (MHC-defined MGH miniature swine were performed to specifically evaluate collateral axonal sprouting for cutaneous sensory re-innervation. The skin component of the flap was externalized and serial skin sections extending from native skin to the grafted flap were biopsied. In order to visualize regenerating axonal structures in the dermis and epidermis, 50 um frozen sections were immunostained against axonal and Schwann cell markers. In all alloflaps, collateral axonal sprouts from adjacent recipient skin extended into the denervated skin component along the dermal-epidermal junction from the periphery towards the center. On day 100 post-transplant, regenerating sprouts reached 0.5 cm into the flap centripetally. Eight months following transplant, epidermal fibers were visualized 1.5 cm from the margin (rate of regeneration 0.06 mm per day. All animals had pinprick sensation in the periphery of the transplanted skin within 3 months post

  15. Peptidergic and non-peptidergic innervation and vasomotor responses of human lenticulostriate and posterior cerebral arteries

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Gulbenkian, Sergio; Engel, Ulla

    2004-01-01

    ) between the two vessels. However, the general pattern indicates stronger vasomotor responses (Emax and Imax) in the PCA branches as compared to the lenticulostriate arteries which may lend support for the clinical observation of a difference in stroke expression between the two vascular areas....

  16. Peripheral Mechanisms of Ischemic Myalgia

    Directory of Open Access Journals (Sweden)

    Luis F. Queme

    2017-12-01

    Full Text Available Musculoskeletal pain due to ischemia is present in a variety of clinical conditions including peripheral vascular disease (PVD, sickle cell disease (SCD, complex regional pain syndrome (CRPS, and even fibromyalgia (FM. The clinical features associated with deep tissue ischemia are unique because although the subjective description of pain is common to other forms of myalgia, patients with ischemic muscle pain often respond poorly to conventional analgesic therapies. Moreover, these patients also display increased cardiovascular responses to muscle contraction, which often leads to exercise intolerance or exacerbation of underlying cardiovascular conditions. This suggests that the mechanisms of myalgia development and the role of altered cardiovascular function under conditions of ischemia may be distinct compared to other injuries/diseases of the muscles. It is widely accepted that group III and IV muscle afferents play an important role in the development of pain due to ischemia. These same muscle afferents also form the sensory component of the exercise pressor reflex (EPR, which is the increase in heart rate and blood pressure (BP experienced after muscle contraction. Studies suggest that afferent sensitization after ischemia depends on interactions between purinergic (P2X and P2Y receptors, transient receptor potential (TRP channels, and acid sensing ion channels (ASICs in individual populations of peripheral sensory neurons. Specific alterations in primary afferent function through these receptor mechanisms correlate with increased pain related behaviors and altered EPRs. Recent evidence suggests that factors within the muscles during ischemic conditions including upregulation of growth factors and cytokines, and microvascular changes may be linked to the overexpression of these different receptor molecules in the dorsal root ganglia (DRG that in turn modulate pain and sympathetic reflexes. In this review article, we will discuss the

  17. Isotopic diagnosis of peripheral thrombosis

    International Nuclear Information System (INIS)

    Cornu, Pierre; Scalet, Michel

    1975-01-01

    Radio-isotope diagnosis of peripheral venous thrombosis, using tracer doses of iodine-labelled fibrinogen, provides an important contribution to the solution of the worrying problem of pulmonary embolism due to latent phlebitis. This elegant and precise technique permits early diagnosis of venous thrombosis of the lower limbs at a subclinical stage. It has permitted determination of the frequency, both after surgery and after myocardial infarction, and above all, it provides an objective criterion for assessment of the efficacy of prophylactic measures proposed [fr

  18. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence......A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...... interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear...

  19. Crisis and Geography : Some Observations on Peripheral Europe

    Directory of Open Access Journals (Sweden)

    İbrahim Alper Arısoy

    2015-05-01

    Full Text Available With a focus on the role of geographical factors in economic performance, the main research question of this study is as follows: given that the ongoing crisis in Europe in general and within the Eurozone in particular is felt much strongly in peripheral areas, how and to what extent might geography be relevant to this process? The answer to this question will be searched through historical-comparative approach, focusing on the turning points in the evolution of Europe's economic and political geography, with particular regard to the key concepts such as "core-periphery dichotomy", "centres of gravity" and "isolation". Departing from these concepts, it will be argued that the structural factors, which contribute to the high vulnerability of certain countries towards crisis, are essentially geographical. However, the role of geography and the patterns of peripherality differ from one country to another, as will be demonstrated by means of a particular focus on the case of Greece.

  20. Transdermal optogenetic peripheral nerve stimulation

    Science.gov (United States)

    Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.

    2017-06-01

    Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.

  1. Diagnostic approach to peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Misra Usha

    2008-01-01

    Full Text Available Peripheral neuropathy refers to disorders of the peripheral nervous system. They have numerous causes and diverse presentations; hence, a systematic and logical approach is needed for cost-effective diagnosis, especially of treatable neuropathies. A detailed history of symptoms, family and occupational history should be obtained. General and systemic examinations provide valuable clues. Neurological examinations investigating sensory, motor and autonomic signs help to define the topography and nature of neuropathy. Large fiber neuropathy manifests with the loss of joint position and vibration sense and sensory ataxia, whereas small fiber neuropathy manifests with the impairment of pain, temperature and autonomic functions. Electrodiagnostic (EDx tests include sensory, motor nerve conduction, F response, H reflex and needle electromyography (EMG. EDx helps in documenting the extent of sensory motor deficits, categorizing demyelinating (prolonged terminal latency, slowing of nerve conduction velocity, dispersion and conduction block and axonal (marginal slowing of nerve conduction and small compound muscle or sensory action potential and dennervation on EMG. Uniform demyelinating features are suggestive of hereditary demyelination, whereas difference between nerves and segments of the same nerve favor acquired demyelination. Finally, neuropathy is classified into mononeuropathy commonly due to entrapment or trauma; mononeuropathy multiplex commonly due to leprosy and vasculitis; and polyneuropathy due to systemic, metabolic or toxic etiology. Laboratory investigations are carried out as indicated and specialized tests such as biochemical, immunological, genetic studies, cerebrospinal fluid (CSF examination and nerve biopsy are carried out in selected patients. Approximately 20% patients with neuropathy remain undiagnosed but the prognosis is not bad in them.

  2. Intraoperative Ultrasound for Peripheral Nerve Applications.

    Science.gov (United States)

    Willsey, Matthew; Wilson, Thomas J; Henning, Phillip Troy; Yang, Lynda J-S

    2017-10-01

    Offering real-time, high-resolution images via intraoperative ultrasound is advantageous for a variety of peripheral nerve applications. To highlight the advantages of ultrasound, its extraoperative uses are reviewed. The current intraoperative uses, including nerve localization, real-time evaluation of peripheral nerve tumors, and implantation of leads for peripheral nerve stimulation, are reviewed. Although intraoperative peripheral nerve localization has been performed previously using guide wires and surgical dyes, the authors' approach using ultrasound-guided instrument clamps helps guide surgical dissection to the target nerve, which could lead to more timely operations and shorter incisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Peripheral refractive correction and automated perimetric profiles.

    Science.gov (United States)

    Wild, J M; Wood, J M; Crews, S J

    1988-06-01

    The effect of peripheral refractive error correction on the automated perimetric sensitivity profile was investigated on a sample of 10 clinically normal, experienced observers. Peripheral refractive error was determined at eccentricities of 0 degree, 20 degrees and 40 degrees along the temporal meridian of the right eye using the Canon Autoref R-1, an infra-red automated refractor, under the parametric conditions of the Octopus automated perimeter. Perimetric sensitivity was then undertaken at these eccentricities (stimulus sizes 0 and III) with and without the appropriate peripheral refractive correction using the Octopus 201 automated perimeter. Within the measurement limits of the experimental procedures employed, perimetric sensitivity was not influenced by peripheral refractive correction.

  4. Peripheral visual performance enhancement by neurofeedback training.

    Science.gov (United States)

    Nan, Wenya; Wan, Feng; Lou, Chin Ian; Vai, Mang I; Rosa, Agostinho

    2013-12-01

    Peripheral visual performance is an important ability for everyone, and a positive inter-individual correlation is found between the peripheral visual performance and the alpha amplitude during the performance test. This study investigated the effect of alpha neurofeedback training on the peripheral visual performance. A neurofeedback group of 13 subjects finished 20 sessions of alpha enhancement feedback within 20 days. The peripheral visual performance was assessed by a new dynamic peripheral visual test on the first and last training day. The results revealed that the neurofeedback group showed significant enhancement of the peripheral visual performance as well as the relative alpha amplitude during the peripheral visual test. It was not the case in the non-neurofeedback control group, which performed the tests within the same time frame as the neurofeedback group but without any training sessions. These findings suggest that alpha neurofeedback training was effective in improving peripheral visual performance. To the best of our knowledge, this is the first study to show evidence for performance improvement in peripheral vision via alpha neurofeedback training.

  5. Peripheral iridotomy for pigmentary glaucoma

    Science.gov (United States)

    Michelessi, Manuele; Lindsley, Kristina

    2016-01-01

    Background Glaucoma is a chronic optic neuropathy characterized by retinal ganglion cell death resulting in damage to the optic nerve head and the retinal nerve fiber layer. Pigment dispersion syndrome is characterized by a structural disturbance in the iris pigment epithelium (the densely pigmented posterior surface of the iris) that leads to dispersion of the pigment and its deposition on various structures within the eye. Pigmentary glaucoma is a specific form of open-angle glaucoma found in patients with pigment dispersion syndrome. Topcial medical therapy is usually the first-line treatment; however, peripheral laser iridotomy has been proposed as an alternate treatment. Peripheral laser iridotomy involves creating an opening in the iris tissue to allow drainage of fluid from the posterior chamber to the anterior chamber and vice versa. Equalizing the pressure within the eye may help to alleviate the friction that leads to pigment dispersion and prevent visual field deterioration. However, the effectiveness of peripheral laser iridotomy in reducing the development or progression of pigmentary glaucoma is unknown. Objectives The objective of this review was to assess the effects of peripheral laser iridotomy compared with other interventions, including medication, trabeculoplasty, and trabeculectomy, or no treatment, for pigment dispersion syndrome and pigmentary glaucoma. Search methods We searched a number of electronic databases including CENTRAL, MEDLINE and EMBASE and clinical trials websites such as (mRCT) and ClinicalTrials.gov. We last searched the electronic databases on 2 November 2015. Selection criteria We included randomized controlled trials (RCTs) that had compared peripheral laser iridotomy versus no treatment or other treatments for pigment dispersion syndrome and pigmentary glaucoma. Data collection and analysis We used standard methodological procedures for systematic reviews. Two review authors independently screened articles for eligibility

  6. Enhancement characteristics of benign and malignant focal peripheral nodules in the peripheral zone of the prostate gland studied using contrast-enhanced transrectal ultrasound

    International Nuclear Information System (INIS)

    Tang, J.; Yang, J.-C.; Luo, Y.; Li, J.; Li, Y.; Shi, H.

    2008-01-01

    Aim: To assess the value of contrast-enhanced grey-scale transrectal ultrasound (CETRUS) in predicting the nature of peripheral zone hypoechoic lesions of the prostate. Materials and Methods: Ninety-one patients with peripheral zone hypoechoic lesions on ultrasound were evaluated with CETRUS followed by lesion-specific and sextant transrectal ultrasound-guided biopsies. The enhancement patterns of the lesions were observed and graded subjectively using adjacent peripheral zone tissue as the reference. Time to enhancement (AT), time to peak intensity (TTP) and peak intensity (PI) were quantified within each nodule. Ultrasound findings were correlated with biopsy findings. Results: Transrectal ultrasound-guided biopsy of the hypoechoic lesions revealed prostate cancer in 44 patients and benign prostatic diseases in 47. The intensity of enhancement within the lesions were graded as no enhancement, increased, equal, or decreased compared with adjacent peripheral zone tissue in two, 30, five and seven in the prostate cancer group and 14, 15, four and 14 in the benign group, respectively. The difference was statistically significant (p < 0.05). The peak enhancement intensity was found to be the most optimal discriminatory parameter (area under curve AUC 0.70; 95% CI: 0.58, 0.82). Conclusion: Malignant hypoechoic nodules in the peripheral zone of the prostate are more likely to enhance early and more intensely on CETRUS. A non-enhanced hypoechoic peripheral zone lesion was more likely to be benign

  7. Atherectomy for peripheral arterial disease.

    Science.gov (United States)

    Ambler, Graeme K; Radwan, Rami; Hayes, Paul D; Twine, Christopher P

    2014-03-17

    Symptomatic peripheral arterial disease may be treated by a number of options including exercise therapy, angioplasty, stenting and bypass surgery. Atherectomy is an alternative technique where atheroma is excised by a rotating cutting blade. The objective of this review was to analyse randomised controlled trials comparing atherectomy against any established treatment for peripheral arterial disease in order to evaluate the effectiveness of atherectomy. The Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (last searched November 2013) and CENTRAL (2013, Issue 10). Trials databases were searched for details of ongoing or unpublished studies. Randomised controlled trials (RCTs) comparing atherectomy and other established treatments were selected for inclusion. All participants had symptomatic peripheral arterial disease with either claudication or critical limb ischaemia and evidence of lower limb arterial disease. Two review authors (GA and CT) screened studies for inclusion, extracted data and assessed the quality of the trials. Any disagreements were resolved through discussion. Four trials were included with a total of 220 participants (118 treated with atherectomy, 102 treated with balloon angioplasty) and 259 treated vessels (129 treated with atherectomy, 130 treated with balloon angioplasty). All studies compared atherectomy with angioplasty. No study was properly powered or assessors blinded to the procedures and there was a high risk of selection, attrition, detection and reporting biases.The estimated risk of success was similar between the treatment modalities although the confidence interval (CI) was compatible with small benefits of either treatment for the initial procedural success rate (Mantel-Haenszel risk ratio (RR) 0.92, 95% CI 0.44 to 1.91, P = 0.82), patency at six months (Mantel-Haenszel RR 0.92, 95% CI 0.51 to 1.66, P = 0.79) and patency at 12 months (Mantel-Haenszel RR 1.17, 95% CI 0

  8. Contrast-enhanced peripheral MRA

    DEFF Research Database (Denmark)

    Nielsen, Yousef W; Thomsen, Henrik S

    2012-01-01

    MRI contrast agent is injected intravenously and T1-weighted images are acquired in the subsequent arterial first-pass phase. In order to achieve high quality MR angiograms without interfering venous contamination or artifacts, a number of factors need to be taken into account. This includes magnetic......-state MRA. Gadolinium(Gd)-based contrast agents are used for CE-MRA of the peripheral arteries. Extracellular Gd agents have a pharmacokinetic profile similar to iodinated contrast media. Accordingly, these agents are employed for first-pass MRA. Blood-pool Gd-based agents are characterized by prolonged...... intravascular stay, due to macromolecular structure or protein binding. These agents can be used for first-pass, as well as steady-state MRA. Some Gd-based contrast agents with low thermodynamic stability have been linked to development of nephrogenic systemic fibrosis in patients with severe renal...

  9. Taxane-Induced Peripheral Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Roser Velasco

    2015-04-01

    Full Text Available Taxane-derived agents are chemotherapy drugs widely employed in cancer treatment. Among them, paclitaxel and docetaxel are most commonly administered, but newer formulations are being investigated. Taxane antineoplastic activity is mainly based on the ability of the drugs to promote microtubule assembly, leading to mitotic arrest and apoptosis in cancer cells. Peripheral neurotoxicity is the major non-hematological adverse effect of taxane, often manifested as painful neuropathy experienced during treatment, and it is sometimes irreversible. Unfortunately, taxane-induced neurotoxicity is an uncertainty prior to the initiation of treatment. The present review aims to dissect current knowledge on real incidence, underlying pathophysiology, clinical features and predisposing factors related with the development of taxane-induced neuropathy.

  10. Tactile detection of slip: surface microgeometry and peripheral neural codes.

    Science.gov (United States)

    Srinivasan, M A; Whitehouse, J M; LaMotte, R H

    1990-06-01

    1. The role of the microgeometry of planar surfaces in the detection of sliding of the surfaces on human and monkey fingerpads was investigated. By the use of a servo-controlled tactile stimulator to press and stroke glass plates on passive fingerpads of human subjects, the ability of humans to discriminate the direction of skin stretch caused by friction and to detect the sliding motion (slip) of the plates with or without micrometer-sized surface features was determined. To identify the associated peripheral neural codes, evoked responses to the same stimuli were recorded from single, low-threshold mechanoreceptive afferent fibers innervating the fingerpads of anesthetized macaque monkeys. 2. Humans could not detect the slip of a smooth glass plate on the fingerpad. However, the direction of skin stretch was perceived based on the information conveyed by the slowly adapting afferents that respond differentially to the stretch directions. Whereas the direction of skin stretch signaled the direction of impending slip, the perception of relative motion between the plate and the finger required the existence of detectable surface features. 3. Barely detectable micrometer-sized protrusions on smooth surfaces led to the detection of slip of these surfaces, because of the exclusive activation of rapidly adapting fibers of either the Meissner (RA) or the Pacinian (PC) type to specific geometries of the microfeatures. The motion of a smooth plate with a very small single raised dot (4 microns high, 550 microns diam) caused the sequential activation of neighboring RAs along the dot path, thus providing a reliable spatiotemporal code. The stroking of the plate with a fine homogeneous texture composed of a matrix of dots (1 microns high, 50 microns diam, and spaced at 100 microns center-to-center) induced vibrations in the fingerpad that activated only the PCs and resulted in an intensive code. 4. The results show that surprisingly small features on smooth surfaces are

  11. Peripheral Developing Odontoma or Peripheral Ameloblastic Fibroodontoma: A Rare Challenging Case

    Directory of Open Access Journals (Sweden)

    Saede Atarbashi Moghadam

    2016-01-01

    Full Text Available Peripheral odontogenic lesions are considered to be rare within the classification of odontogenic tumors. They share the same microscopic characteristics of their central counterparts. Here, we report an ulcerated mass of the maxillary gingiva that on histopathological examination was diagnosed as peripheral developing odontoma or peripheral ameloblastic fibroodontoma. The diagnosis of this tumor is challenging and may lead to unnecessary treatment.

  12. Peripheral neuropathies associated with antibodies directed to intracellular neural antigens.

    Science.gov (United States)

    Antoine, J-C

    2014-10-01

    Antibodies directed to intracellular neural antigens have been mainly described in paraneoplastic peripheral neuropathies and mostly includes anti-Hu and anti-CV2/CRMP5 antibodies. These antibodies occur with different patterns of neuropathy. With anti-Hu antibody, the most frequent manifestation is sensory neuronopathy with frequent autonomic involvement. With anti-CV2/CRMP5 the neuropathy is more frequently sensory and motor with an axonal or mixed demyelinating and axonal electrophysiological pattern. The clinical pattern of these neuropathies is in keeping with the cellular distribution of HuD and CRMP5 in the peripheral nervous system. Although present in high titer, these antibodies are probably not directly responsible for the neuropathy. Pathological and experimental studies indicate that cytotoxic T-cells are probably the main effectors of the immune response. These disorders contrast with those in which antibodies recognize a cell surface antigen and are probably responsible for the disease. The neuronal cell death and axonal degeneration which result from T-cell mediated immunity explains why treating these disorders remains challenging. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Peripheral blood smear image analysis: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Emad A Mohammed

    2014-01-01

    Full Text Available Peripheral blood smear image examination is a part of the routine work of every laboratory. The manual examination of these images is tedious, time-consuming and suffers from interobserver variation. This has motivated researchers to develop different algorithms and methods to automate peripheral blood smear image analysis. Image analysis itself consists of a sequence of steps consisting of image segmentation, features extraction and selection and pattern classification. The image segmentation step addresses the problem of extraction of the object or region of interest from the complicated peripheral blood smear image. Support vector machine (SVM and artificial neural networks (ANNs are two common approaches to image segmentation. Features extraction and selection aims to derive descriptive characteristics of the extracted object, which are similar within the same object class and different between different objects. This will facilitate the last step of the image analysis process: pattern classification. The goal of pattern classification is to assign a class to the selected features from a group of known classes. There are two types of classifier learning algorithms: supervised and unsupervised. Supervised learning algorithms predict the class of the object under test using training data of known classes. The training data have a predefined label for every class and the learning algorithm can utilize this data to predict the class of a test object. Unsupervised learning algorithms use unlabeled training data and divide them into groups using similarity measurements. Unsupervised learning algorithms predict the group to which a new test object belong to, based on the training data without giving an explicit class to that object. ANN, SVM, decision tree and K-nearest neighbor are possible approaches to classification algorithms. Increased discrimination may be obtained by combining several classifiers together.

  14. Radionuclide lymphoscintigraphy in the evaluation of peripheral edema

    International Nuclear Information System (INIS)

    Kim, Soon; Zeon, Seok Kil

    2000-01-01

    It has been difficulty to visualize lymphatics in living patients. Conventional or direct lymphography has been the gold standard for delineation of the lymphatic system, but this procedure is invasive, difficulty to perform, and harmful to the lymphatic vascular endothelium. The aim of our study was to determine its severity, and to understand the drainage patterns on patients with peripheral edema by functional lymphatic studies. Tc-99m antimony sulfide colloid 25 MBq with 0.4 ml volume was injected intradermally in the first, second and third web space of the foot or hand in 40 patients with peripheral edema (5 in upper extremity and 35 in lower extremity). Initial flow after injection and whole body images at approximately 30 minutes. 1-4 hours were obtained. In 9/40 cases with peripheral edema normal lymphoscintigram were revealed, primary lymphedema was observed in 5/31 cases. The imaging patterns in primary lymphedema were absent (3 cases) or delayed (2 cases) transport, lymphatic duct dilatation (1), cutoff (1), decrease in size and number of lymph nodes (2). The Common caused of edema in secondry lymphedema (26/31) were carcinoma (13), inflammation (5), post-operation (5), and unknown origin (3). The common imaging findings in carcinoma showed non-visualization of lymph nodes (13), dermal backflow (8), collateral circulation (5), and in inflammation lymphatic obstruction (2), increase in size and number of lymph nodes (2), delayed transport (1), and in post-operation dermal backflow (3), delayed transport (2), decrease in number and size of lymph node (2) Clear images patterns were observed difference between primary lymphedema an secondary lymphedema. Radionuclide lymphoscintigraphy is essentially non-invasive, easy to perform repeatedly, and harmless to the lymphatic vascular endothelium for evaluation of a patient with lymphedema

  15. Imaging of the peripheral vascular system

    International Nuclear Information System (INIS)

    Gould, S.A.; Pond, G.D.; Pinsky, S.; Moss, G.S.; Srikantaswamy, S.; Ryo, U.Y.

    1984-01-01

    This book is limited neither to the peripheral vascular system nor to diagnostic imaging techniques. Its 18 chapters cover nonimaging blood-flow techniques (Doppler ultrasound, plethysmography) as well as noninvasive and invasive imaging techniques (ultrasound, computed tomography, radionuclide digital-subtraction angiography, and contrast angiography). These are applied not only to the peripheral vascular system but also to the aorta and vena cava

  16. Beauty and cuteness in peripheral vision

    Science.gov (United States)

    Kuraguchi, Kana; Ashida, Hiroshi

    2015-01-01

    Guo et al. (2011) showed that attractiveness was detectable in peripheral vision. Since there are different types of attractiveness (Rhodes, 2006), we investigated how beauty and cuteness are detected in peripheral vision with a brief presentation. Participants (n = 45) observed two Japanese female faces for 100 ms, then were asked to respond which face was more beautiful (or cuter). The results indicated that both beauty and cuteness were detectable in peripheral vision, but not in the same manner. Discrimination rates for judging beauty were invariant in peripheral and central vision, while discrimination rates for judging cuteness declined in peripheral vision as compared with central vision. This was not explained by lower resolution in peripheral vision. In addition, for male participants, it was more difficult to judge cuteness than beauty in peripheral vision, thus suggesting that gender differences can have a certain effect when judging cuteness. Therefore, central vision might be suitable for judging cuteness while judging beauty might not be affected by either central or peripheral vision. This might be related with the functional difference between beauty and cuteness. PMID:25999883

  17. Peripherally applied opioids for postoperative pain

    DEFF Research Database (Denmark)

    Nielsen, B N; Henneberg, S W; Schmiegelow, K

    2015-01-01

    BACKGROUND: Opioids applied peripherally at the site of surgery may produce postoperative analgesia with few side effects. We performed this systematic review to evaluate the analgesic effect of peripherally applied opioids for acute postoperative pain. METHODS: We searched PubMed (1966 to June...... 2013), Embase (1980 to June 2013), and the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 6). Randomized controlled trials investigating the postoperative analgesic effect of peripherally applied opioids vs. systemic opioids or placebo, measured by pain intensity...... difference -5 mm, 95% CI: -7 to -3) for peripherally applied opioids vs. placebo and statistically significant increased time to first analgesic (mean difference 153 min, 95% CI: 41-265). When preoperative inflammation was reported (five studies), peripherally applied opioids significantly improved...

  18. Effects of the innervation zone on the time and frequency domain parameters of the surface electromyographic signal.

    Science.gov (United States)

    Smith, Cory M; Housh, Terry J; Herda, Trent J; Zuniga, Jorge M; Ryan, Eric D; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Weir, Joseph P; Cramer, Joel T; Hill, Ethan C; Cochrane, Kristen C; Jenkins, Nathaniel D M; Schmidt, Richard J; Johnson, Glen O

    2015-08-01

    The purposes of the present study were to examine the effects of electrode placements over, proximal, and distal to the innervation zone (IZ) on electromyographic (EMG) amplitude (RMS) and frequency (MPF) responses during: (1) a maximal voluntary isometric contraction (MVIC), and; (2) a sustained, submaximal isometric muscle action. A linear array was used to record EMG signals from the vastus lateralis over the IZ, 30mm proximal, and 30mm distal to the IZ during an MVIC and a sustained isometric muscle action of the leg extensors at 50% MVIC. During the MVIC, lower EMG RMS (p>0.05) and greater EMG MPF (ptime relationships over, proximal, and distal to the IZ occurred. Thus, the results of the present study indicated that during an MVIC, EMG RMS and MPF values recorded over the IZ are not comparable to those away from the IZ. However, the rates of fatigue-induced changes in EMG RMS and MPF during sustained, submaximal isometric muscle actions of the leg extensors were the same regardless of the electrode placement locations relative to the IZ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Quantifying the effects of electrode distance from the innervation zone on the electromyographic amplitude versus torque relationships

    International Nuclear Information System (INIS)

    Herda, Trent J; Weir, Joseph P; Zuniga, Jorge M; Ryan, Eric D; Camic, Clayton L.; Bergstrom, Haley C; Cramer, Joel T; Housh, Terry J; Smith, Doug B

    2013-01-01

    The present study applied a log-transformation model to compare the electromyographic (EMG) amplitude versus torque relationships from monopolar EMG signals up to 35 mm proximal and distal from the innervation zone (IZ). Seven men (age = 23 ± 2 year; mass = 82 ± 10 kg) and two women (age = 21 ± 1 year; mass = 62 ± 8 kg) performed isometric ramp contractions of the right leg extensors with an eight-channel linear electrode array positioned over the vastus lateralis with the IZ located between channels 4 and 5. Linear regression models were fit to the log-transformed monopolar EMG RMS –torque relationships with the b terms (slope) and the a terms (Y-intercept) calculated for each channel and subject. The b terms for channels 4, 5, and 6 were higher (P ≤ 0.05) than the more distal channels 7 and 8 (P < 0.05). In contrast, there were no differences (P > 0.05) among the a terms of the eight channels. Thus, the shapes of the monopolar EMG RMS –torque relationships were altered as a function of distance between the IZ and recording area, which may be helpful for clinicians and researchers who infer changes in motor control strategies based on the shapes of the EMG RMS –torque relationships. (paper)

  20. Scintigraphic assessment of cardiac sympathetic innervation with I-123-metaiodobenzylguanidine in cardiomyopathy. Special reference to cardiac arrhythmia

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Takahisa; Otsuka, Nobuaki; Sone, Teruki; Mimura, Hiroaki; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Fukunaga, Masao [Kawasaki Medical School, Kurashiki, Okayama (Japan); Morita, Koichi

    1999-07-01

    Cardiac sympathetic imagings with I-123-metaiodobenzylguanidine (MIBG) were carried out in 5 cases with dilated cardiomyopathy (DCM), 26 cases with hypertrophic cardiomyopathy (HCM), and 4 cases without cardiac disease as a control to assess cardiac sympathetic innervation qualitatively and quantitatively, and to clarify the relation of MIBG accumulation to arrhythmia. MIBG scintigraphy was performed at 15 min. (early image) and 4 hr. (delayed image) after intravenous injection of MIBG 111 MBq. The MIBG uptake ratio of mediastinum (H/M) and the cardiac washout rate (WR) from early to delayed images were calculated. On both early and delayed SPECTs, MIBG uptake was assessed by defect scores (DSs). Regarding the cases with HCM, the MIBG uptake ratio, WR, and DS were also compared in cases with and without arrhythmia. In DCM, the MIBG uptake on delayed SPECT was markedly low, the H/M ratio was significantly lower, and the DS was significantly higher than in the control (all p<0.05). As for the WR, there was no significant difference between HCM, DCM and the control. In HCM, significantly reduced MIBG uptake was observed in cases with ventricular techycardia (VT) and in cases with atrial fibrillation (Af), as compared with cases without arrhythmia (all p<0.05). There results suggest that MIBG scintigraphy might be a useful tool in the assessment of cardiac sympathetic abnormalities in cardiomyopathy, especially in cases with arrhythmia. (author)

  1. Macroscopic Innervation of the Dura Mater Covering the Middle Cranial Fossa in Humans Correlated to Neurovascular Headache.

    Science.gov (United States)

    Lee, Shin-Hyo; Hwang, Seung-Jun; Koh, Ki-Seok; Song, Wu-Chul; Han, Sang-Don

    2017-01-01

    The trigeminovascular system within the cranial dura mater is a possible cause of headaches. The aim of this study is to investigate macroscopically dural innervation around the middle meningeal artery (MMA) in the middle cranial fossa. Forty-four sides of the cranial dura overlying the skull base obtained from 24 human cadavers were stained using Sihler's method. Overall, the nervus spinosus (NS) from either the maxillary or mandibular trigeminal divisions ran along the lateral wall of the middle meningeal vein rather than that of the MMA. Distinct bundles of the NS running along the course of the frontal branches of the MMA were present in 81.8% of cases ( N = 36). Others did not form dominant nerve bundles, instead giving off free nerve endings along the course of the MMA or dural connective tissue. The distribution of these nerve endings was similar to that of the course of the frontal, parietal and petrosal branches of the MMA (11.4%). The others were not restricted to a perivascular plexus, crossing the dural connective tissues far from the MMA (6.8%). These findings indicate that the NS generally travels alongside the course of the frontal branches of the MMA and terminates in the vicinity of the pterion.

  2. Macroscopic Innervation of the Dura Mater Covering the Middle Cranial Fossa in Humans Correlated to Neurovascular Headache

    Directory of Open Access Journals (Sweden)

    Shin-Hyo Lee

    2017-12-01

    Full Text Available The trigeminovascular system within the cranial dura mater is a possible cause of headaches. The aim of this study is to investigate macroscopically dural innervation around the middle meningeal artery (MMA in the middle cranial fossa. Forty-four sides of the cranial dura overlying the skull base obtained from 24 human cadavers were stained using Sihler’s method. Overall, the nervus spinosus (NS from either the maxillary or mandibular trigeminal divisions ran along the lateral wall of the middle meningeal vein rather than that of the MMA. Distinct bundles of the NS running along the course of the frontal branches of the MMA were present in 81.8% of cases (N = 36. Others did not form dominant nerve bundles, instead giving off free nerve endings along the course of the MMA or dural connective tissue. The distribution of these nerve endings was similar to that of the course of the frontal, parietal and petrosal branches of the MMA (11.4%. The others were not restricted to a perivascular plexus, crossing the dural connective tissues far from the MMA (6.8%. These findings indicate that the NS generally travels alongside the course of the frontal branches of the MMA and terminates in the vicinity of the pterion.

  3. FMRFamide-like immunoreactive neurons of the nervus terminalis of teleosts innervate both retina and pineal organ.

    Science.gov (United States)

    Ekström, P; Honkanen, T; Ebbesson, S O

    1988-09-13

    The tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) was first isolated from molluscan ganglia. Subsequently, it has become clear that vertebrate brains also contain endogenous FMRFamide-like substances. In teleosts, the neurons of the nervus terminalis contain an FMRFamide-like substance, and provide a direct innervation to the retina (Proc. Natl. Acad. Sci. U.S.A., 81 [1984] 940-944). Here we report the presence of FMRFamide-immunoreactive axonal bundles in the pineal organ of Coho salmon and three-spined sticklebacks. The largest numbers of axons were observed proximal to the brain, in the pineal stalk, while the distal part of the pineal organ contained only few axons. No FMRFamide-like-immunoreactive (IR) cell bodies were observed in the pineal organ. In adult fish it was not possible to determine the origin of these axons, due to the large numbers of FMRFamide-like IR axons in the teleost brain. However, by following the development of FMRFamide-like IR neurons in the embryonic and larval stickleback brain, it was possible to conclude that, at least in newly hatched fish, FMRFamide-like IR axons that originate in the nucleus nervus terminalis reach the pineal organ. Thus, it seems there is a direct connection between a specialized part of the chemosensory system and both the retina and the pineal organ in teleost fish.

  4. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    Science.gov (United States)

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  5. Estrogen replacement avoids the decrease of bladder innervations in ovariectomized adult virgin rats: in vivo stereological study.

    Science.gov (United States)

    de Fraga, Rogerio; Palma, Paulo; Dambros, Miriam; Riccetto, Cassio L Z; Mandarim-de-Lacerda, Carlos; Miyaoka, Ricardo

    2009-05-01

    The authors quantified the nerve fibers in the bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old). Group 1: remained intact; Group 2: underwent bilateral ovariectomy, and after 30 days was started on subcutaneous sesame oil replacement (0.2 ml per day) for 90 days; Group 3: sham-operated, and after 30 days was started on subcutaneous sesame oil replacement (0.2 ml per day) for 90 days; Group 4: bilateral ovariectomy, and after 30 days was started on subcutaneous injection of 17β-estradiol (10 μg/kg body weight) for 90 days. S-100 was used to stain nerves myelinized fibers on paraffin rat bladder sections. The G-50 grid system was used to quantitatively analyze the fibers. Long-term estrogen deprivation caused significant changes in bladder innervations, which can be characterized by a decreased number of nerve fibers by 65% (p < 0.001).

  6. Immmunohistochemical study of the blood and lymphatic vasculature and the innervation of mouse gut and gut-associated lymphoid tissue.

    Science.gov (United States)

    Ma, B; von Wasielewski, R; Lindenmaier, W; Dittmar, K E J

    2007-02-01

    The blood and lymphatic vascular system of the gut plays an important role in tissue fluid homeostasis, nutrient absorption and immune surveillance. To obtain a better understanding of the anatomic basis of these functions, the blood and lymphatic vasculature of the lower segment of mouse gut and several constituents of gut-associated lymphoid tissue (GALT) including Peyer's patch, specialized lymphoid nodules in the caecum, small lymphoid aggregates and lymphoid nodules in the colon were studied by using confocal microscopy. Additionally, the innervation and nerve/immune cell interactions in the gut and Peyer's patch were investigated by using cell surface marker PGP9.5 and Glial fibrillary acidic protein (GFAP). In the gut and Peyer's patch, the nerves have contact with B cell, T cell and B220CD3 double-positive cells. Dendritic cells, the most important antigen-presenting cells, were closely apposed to some nerves. Some dendritic cells formed membrane-membrane contact with nerve terminals and neuron cell body. Many fine nerve fibres, which are indirectly detected by GFAP, have contact with dendritic cells and other immune cells in the Peyer's patch. Furthermore, the expression of Muscarinic Acetylcholine receptor (subtype M2) was characterized on dendritic cells and other cell population. These findings are expected to provide a route to understand the anatomic basis of neuron-immune regulation/cross-talk and probably neuroinvasion of prion pathogens in the gut and GALT.

  7. Prenatal cocaine increases striatal serotonin innervation without altering the patch/matrix organization of intrinsic cell types.

    Science.gov (United States)

    Snyder-Keller, A M; Keller, R W

    1993-08-20

    The effect of prenatal cocaine on the anatomical development of the striatum was examined. The distribution and density of dopaminergic innervation of the striatum of animals exposed to cocaine during the second and third week of gestation was not noticeably different from prenatally saline-injected or untreated controls at any age. The patch/matrix organization of the striatum also appeared unaltered: neurons exhibiting dense substance P staining were localized to patches that overlapped dopamine terminal patches early in development, and enkephalin- and calbindin-immunoreactive neurons were found segregated to the matrix. Histochemical staining for acetylcholinesterase and NADPH diaphorase also revealed no differences between prenatally cocaine-treated and control brains. Whereas prenatal cocaine treatment failed to modify the basic compartmental organization of the striatum, it did lead to a hyperinnervation of serotonin-immunoreactive fibers which developed slowly after birth. Thus prenatal exposure to cocaine is capable of altering the ingrowth of serotonergic projections to the striatum while producing no change in the organization of neurons intrinsic to the striatum.

  8. Unilateral sectioning of the superior ovarian nerve of rats with polycystic ovarian syndrome restores ovulation in the innervated ovary

    Directory of Open Access Journals (Sweden)

    Morales-Ledesma Leticia

    2010-08-01

    Full Text Available Abstract The present study tested the hypothesis that if polycystic ovary syndrome (PCOS results from activating the noradrenergic outflow to the ovary, unilaterally sectioning the superior ovarian nerve (SON will result in ovulation by the denervated ovary, and the restoration of progesterone (P4, testosterone (T and estradiol (E2 normal serum level. A single 2 mg dose of estradiol valerate (EV to adult rats results in the development of a syndrome similar to the human PCOS. Ten-day old rats were injected with EV or vehicle solution (Vh and were submitted to sham surgery, unilateral or bilateral sectioning of the SON at 24-days of age. The animals were sacrificed at 90 to 92 days of age, when they presented vaginal estrus preceded by a pro-estrus smear. In EV-treated animals, unilateral sectioning of the SON restored ovulation by the innervated ovary and unilateral or bilateral sectioning of the SON normalized testosterone and estradiol levels. These results suggest that aside from an increase in ovarian noradrenergic tone in the ovaries, in the pathogenesis of the PCOS participate other neural influences arriving to the ovaries via the SON, regulating spontaneous ovulation. Changes in P4, T and E2 serum levels induced by EV treatment seem to be controlled by neural signals arising from the abdominal wall and other signals arriving to the ovaries through the SON, and presents asymmetry.

  9. Neo-phalloplasty with re-innervated latissimus dorsi free flap: a functional study of a novel technique.

    Science.gov (United States)

    Ranno, R; Veselý, J; Hýza, P; Stupka, I; Justan, I; Dvorák, Z; Monni, N; Novák, P; Ranno, S

    2007-01-01

    Twenty two patients with gender dysphoria underwent neo-phalloplasties using a novel technique. Latissimus dorsi musculocutaneus re-innervated free flap was used to allow voluntary rigidity of the neo-penis. From the first 22 patients, 18 have obtained motoric function of reconstructed penis; the "paradox erection" was obtained. 14 patients came for examination after a follow-up period of mean 26.4 months. We evaluated the motility and shape changes of neo-phallus measuring its different size and dimension during relax and muscle contraction. The range of neo-phallus length in relaxed position was between 7 and 17 cm (mean 12.2 cm), its circumference in the same position had a range between 13 and 20 cm (mean 13.7 cm). All patients were able to contract the muscle with an average length reduction of 3.08 cm and an average circumference enlargement of 4 cm. In this study, the dimensions and motility were quantified demonstrating the neo-phallus function and size changes during sexual intercourse.

  10. Scaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Aaron M. Adams; Keith W. VanDusen; Tatiana Y. Kostrominova; Jacob P. Mertens; Lisa M. Larkin

    2017-01-01

    Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E15). EFCs were fabricated utilizing primary fi-broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re-spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot-ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the E15 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair.

  11. Fundamental study on nuclear medicine imaging of cholinergic innervation in the brain; Changes of neurotransmitter and receptor in animal model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Kinuya, Keiko; Sumiya, Hisashi; Hisada, Kinichi [Kanazawa Univ. (Japan). School of Medicine; Tsuji, Shiro; Terada, Hitoshi; Shiba, Kazuhiro; Mori, Hirofumi

    1990-10-01

    A fundamental study was performed on the nuclear medicine imaging of cholinergic innervation in the brain. In a cholinergic denervation model prepared by producing an unilateral basal forebrain lesion in the rat, which is reported to be one of animal models of Alzheimer' disease, quantitative determination of acetylcholine in parietal cortices revealed statistically significant 31% decrease on an average in the ipsilateral side relative to the contralateral side to the lesion. In vitro receptor autoradiography showed no significant differences in total, M{sub 1}, and M{sub 2} muscarinic acetylcholine receptors between the ipsilateral and contralateral cortices to the lesion. Simultaneous mapping of presynaptic cholinergic innervation using {sup 3}H-2-(4-phenylpiperidino) cyclohexanol (AH5183) demonstrated significant 14% decrease of AH5183 binding on an average in the ipsilateral relative to the contralateral fronto-parieto-temporal cortices to the lesion. These results suggest that AH5183 is a promising ligand for mapping cholinergic innervation in nuclear medicine imaging. (author).

  12. Laboratory practical to study the differential innervation pathways of urinary tract smooth muscle.

    Science.gov (United States)

    Rembetski, Benjamin E; Cobine, Caroline A; Drumm, Bernard T

    2018-06-01

    In the mammalian lower urinary tract, there is a reciprocal relationship between the contractile state of the bladder and urethra. As the bladder fills with urine, it remains relaxed to accommodate increases in volume, while the urethra remains contracted to prevent leakage of urine from the bladder to the exterior. Disruptions to the normal contractile state of the bladder and urethra can lead to abnormal micturition patterns and urinary incontinence. While both the bladder and urethra are smooth-muscle organs, they are differentially contracted by input from cholinergic and sympathetic nerves, respectively. The laboratory practical described here provides an experiential approach to understanding the anatomy of the lower urinary tract. Several key factors in urinary tract physiology are outlined, e.g., the bladder is contracted by activation of the parasympathetic pathway via cholinergic stimulation on muscarinic receptors, whereas the urethra is contracted by activation of the sympathetic pathway via adrenergic stimulation on α 1 -adrenoceptors. This is achieved by measuring the force generated by bladder and urethra smooth muscle to demonstrate that acetylcholine contracts the smooth muscle of the bladder, whereas adrenergic agonists contract the urethral smooth muscle. An inhibition of these effects is also demonstrated by application of the muscarinic receptor antagonist atropine and the α 1 -adrenergic receptor blocker phentolamine. A list of suggested techniques and exam questions to evaluate student understanding on this topic is also provided.

  13. Evaluation of small peripheral pulmonary lesions with thin slice computed tomography

    International Nuclear Information System (INIS)

    Yamada, Kouzo

    1992-01-01

    To evaluate the morphology of small peripheral pulmonary lesions, we studied thin-slice CT (TS-CT) images of 47 small peripheral pulmonary lesions (24 lung cancers, 23 benign lesions) in 47 patients. CT images were examined by two different window and level settings (window level; -600, window width; 1900 and window level; 50, window width; 300). In TS-CT images, findings of all lesions were classified into 3 different patterns (infiltrative type, solid with air-bronchogram type, homogeneous solid type) which were useful in diagnosing histology based on the growth pattern of the lesion. There was no lung cancer case in which calcification was diagnosed to be present on TS-CT. On the other hand, 5 of 9 inflammatory granulomas were recognized to contain calcium which was never seen on conventional CT. The results suggest that TS-CT may have a significant clinical role in diagnosing small peripheral pulmonary lesion by demonstrating macroscopic features and calcification. (author)

  14. The human periodontal membrane: focusing on the spatial interrelation between the epithelial layer of Malassez, fibers, and innervation

    DEFF Research Database (Denmark)

    Kjaer, Inger; Nolting, Dorrit

    2009-01-01

    OBJECTIVE: The purpose of the present study was to map the spatial interrelation of fibers, peripheral nerves, and epithelial layer of Malassez in human periodontal membrane in areas close to the root surfaces. MATERIAL AND METHODS: Four healthy permanent teeth extracted from four patients during...

  15. Space-time relationship in continuously moving table method for large FOV peripheral contrast-enhanced magnetic resonance angiography

    International Nuclear Information System (INIS)

    Sabati, M; Lauzon, M L; Frayne, R

    2003-01-01

    Data acquisition using a continuously moving table approach is a method capable of generating large field-of-view (FOV) 3D MR angiograms. However, in order to obtain venous contamination-free contrast-enhanced (CE) MR angiograms in the lower limbs, one of the major challenges is to acquire all necessary k-space data during the restricted arterial phase of the contrast agent. Preliminary investigation on the space-time relationship of continuously acquired peripheral angiography is performed in this work. Deterministic and stochastic undersampled hybrid-space (x, k y , k z ) acquisitions are simulated for large FOV peripheral runoff studies. Initial results show the possibility of acquiring isotropic large FOV images of the entire peripheral vascular system. An optimal trade-off between the spatial and temporal sampling properties was found that produced a high-spatial resolution peripheral CE-MR angiogram. The deterministic sampling pattern was capable of reconstructing the global structure of the peripheral arterial tree and showed slightly better global quantitative results than stochastic patterns. Optimal stochastic sampling patterns, on the other hand, enhanced small vessels and had more favourable local quantitative results. These simulations demonstrate the complex spatial-temporal relationship when sampling large FOV peripheral runoff studies. They also suggest that more investigation is required to maximize image quality as a function of hybrid-space coverage, acquisition repetition time and sampling pattern parameters

  16. Ionic mechanisms in peripheral pain.

    Science.gov (United States)

    Fransén, Erik

    2014-01-01

    Chronic pain constitutes an important and growing problem in society with large unmet needs with respect to treatment and clear implications for quality of life. Computational modeling is used to complement experimental studies to elucidate mechanisms involved in pain states. Models representing the peripheral nerve ending often address questions related to sensitization or reduction in pain detection threshold. In models of the axon or the cell body of the unmyelinated C-fiber, a large body of work concerns the role of particular sodium channels and mutations of these. Furthermore, in central structures: spinal cord or higher structures, sensitization often refers not only to enhanced synaptic efficacy but also to elevated intrinsic neuronal excitability. One of the recent developments in computational neuroscience is the emergence of computational neuropharmacology. In this area, computational modeling is used to study mechanisms of pathology with the objective of finding the means of restoring healthy function. This research has received increased attention from the pharmaceutical industry as ion channels have gained increased interest as drug targets. Computational modeling has several advantages, notably the ability to provide mechanistic links between molecular and cellular levels on the one hand and functions at the systems level on the other hand. These characteristics make computational modeling an additional tool to be used in the process of selecting pharmaceutical targets. Furthermore, large-scale simulations can provide a framework to systematically study the effects of several interacting disease parameters or effects from combinations of drugs. © 2014 Elsevier Inc. All rights reserved.

  17. Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways.

    Science.gov (United States)

    Zheng, Gen; Hong, Shuangsong; Hayes, John M; Wiley, John W

    2015-11-01

    Chronic stress alters the hypothalamic-pituitary-adrenal (HPA) axis and enhances visceral and somatosensory pain perception. It is unresolved whether chronic stress has distinct effects on visceral and somatosensory pain regulatory pathways. Previous studies reported that stress-induced visceral hyperalgesia is associated with reciprocal alterations of endovanilloid and endocannabinoid pain pathways in DRG neurons innervating the pelvic viscera. In this study, we compared somatosensory and visceral hyperalgesia with respect to differential responses of peripheral pain regulatory pathways in a rat model of chronic, intermittent stress. We found that chronic stress induced reciprocal changes in the endocannabinoid 2-AG (increased) and endocannabinoid degradation enzymes COX-2 and FAAH (decreased), associated with down-regulation of CB1 and up-regulation of TRPV1 receptors in L6-S2 DRG but not L4-L5 DRG neurons. In contrast, sodium channels Nav1.7 and Nav1.8 were up-regulated in L4-L5 but not L6-S2 DRGs in stressed rats, which was reproduced in control DRGs treated with corticosterone in vitro. The reciprocal changes of CB1, TRPV1 and sodium channels were cell-specific and observed in the sub-population of nociceptive neurons. Behavioral assessment showed that visceral hyperalgesia persisted, whereas somatosensory hyperalgesia and enhanced expression of Nav1.7 and Nav1.8 sodium channels in L4-L5 DRGs normalized 3 days after completion of the stress phase. These data indicate that chronic stress induces visceral and somatosensory hyperalgesia that involves differential changes in endovanilloid and endocannabinoid pathways, and sodium channels in DRGs innervating the pelvic viscera and lower extremities. These results suggest that chronic stress-induced visceral and lower extremity somatosensory hyperalgesia can be treated selectively at different levels of the spinal cord. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Sustained maximal voluntary contraction produces independent changes in human motor axons and the muscle they innervate.

    Directory of Open Access Journals (Sweden)

    David A Milder

    Full Text Available The repetitive discharges required to produce a sustained muscle contraction results in activity-dependent hyperpolarization of the motor axons and a reduction in the force-generating capacity of the muscle. We investigated the relationship between these changes in the adductor pollicis muscle and the motor axons of its ulnar nerve supply, and the reproducibility of these changes. Ten subjects performed a 1-min maximal voluntary contraction. Activity-dependent changes in axonal excitability were measured using threshold tracking with electrical stimulation at the wrist; changes in the muscle were assessed as evoked and voluntary electromyography (EMG and isometric force. Separate components of axonal excitability and muscle properties were tested at 5 min intervals after the sustained contraction in 5 separate sessions. The current threshold required to produce the target muscle action potential increased immediately after the contraction by 14.8% (p<0.05, reflecting decreased axonal excitability secondary to hyperpolarization. This was not correlated with the decline in amplitude of muscle force or evoked EMG. A late reversal in threshold current after the initial recovery from hyperpolarization peaked at -5.9% at ∼35 min (p<0.05. This pattern was mirrored by other indices of axonal excitability revealing a previously unreported depolarization of motor axons in the late recovery period. Measures of axonal excitability were relatively stable at rest but less so after sustained activity. The coefficient of variation (CoV for threshold current increase was higher after activity (CoV 0.54, p<0.05 whereas changes in voluntary (CoV 0.12 and evoked twitch (CoV 0.15 force were relatively stable. These results demonstrate that activity-dependent changes in motor axon excitability are unlikely to contribute to concomitant changes in the muscle after sustained activity in healthy people. The variability in axonal excitability after sustained activity

  19. Peripheral cemento-ossifying fibroma of maxilla.

    Science.gov (United States)

    Chatterjee, Anirban; Ajmera, Neha; Singh, Amit

    2010-07-01

    Peripheral cemento-ossifying fibroma is a reactive gingival overgrowth occurring frequently in anterior maxilla. It is a slow-growing benign tumor which may lead to pathologic migration and other periodontal problems, so it should be excised as soon as possible. The recurrence rate of peripheral cemento-ossifying fibroma is reported to be 8% to 20%, so a close postoperative follow-up is required. Herein, we are reporting a similar case of peripheral cemento-ossifying fibroma in the maxillary anterior region.

  20. CT characteristics of peripheral organizing pneumonia

    International Nuclear Information System (INIS)

    Yang, Seong Oh; Choi, Chul Soon; Kim, Myung Joon; Lee, Kyung Soo; Choi, Hyung Sik; Jun, Young Hwan; Park, Yong Koo

    1988-01-01

    Diagnostic dilemma of persistent mass-forming parenchymal opacity in the lung periphery occurs occasionally in the realm of diagnostic radiology. Until recently, literature on the role of computed tomography in peripheral organizing pneumonia, which is difficult to differentiate from malignancy, has little been published. We experienced one case of pathologically proven organizing pneumonia diagnosed preoperatively by chest CT. When it comes to solitary peripheral mass density in the lung, we think that CT can be proved useful in the diagnosis of benign organizing pneumonia by showing regular and smoothly corrugate margin, peripheral contrast enhancement with inner low density, and air-trapping by intervening normal lung parenchyma.

  1. Peripheral facial nerve dysfunction: CT evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Disbro, M.A.; Harnsberger, H.R.; Osborn, A.G.

    1985-06-01

    Peripheral facial nerve dysfunction may have a clinically apparent or occult cause. The authors reviewed the clinical and radiographic records of 36 patients with peripheral facial nerve dysfunction to obtain information on the location of the suspected lesion and the number, sequence, and type of radiographic evaluations performed. Inadequate clinical evaluations before computed tomography (CT) was done and unnecessary CT examinations were also noted. They have suggested a practical clinical and radiographic scheme to evaluate progressive peripheral facial dysfunction with no apparent cause. If this scheme is applied, unnecessary radiologic tests and delays in diagnosis and treatment may be avoided.

  2. Polyhedral patterns

    KAUST Repository

    Jiang, Caigui; Tang, Chengcheng; Vaxman, Amir; Wonka, Peter; Pottmann, Helmut

    2015-01-01

    We study the design and optimization of polyhedral patterns, which are patterns of planar polygonal faces on freeform surfaces. Working with polyhedral patterns is desirable in architectural geometry and industrial design. However, the classical

  3. Osteomalacia induced peripheral neuropathy after obesity reduction surgery

    Directory of Open Access Journals (Sweden)

    Samhita Panda

    2013-01-01

    Full Text Available Osteomalacia and rickets are important reversible causes of debilitating muscular weakness and bony pains in India among all socio-economic strata and at all ages. Osteomalacia after bariatric surgery is documented in literature. Most reports on osteomalacic weakness note myopathic pattern on electromyography. We present the case of a young obese girl from a good socio-economic status who developed severe muscular weakness after sleeve gastrectomy surgery. The patient was found to have osteomalacia with normal vitamin B12 and folate levels. Electrodiagnostic studies demonstrated neuropathic pattern while radiological tests confirmed osteopenia and Looser′s zones. Specific vitamin D supplementation was associated with improvement though contribution of other micronutrients in diet cannot be ruled out. Relevance of vitamin D deficiency and urgent need for its correction in the population all over the world and especially in Asia is an emerging health issue. Peripheral motor neuropathy is a rare, seldom reported presentation of osteomalacia.

  4. A Clinical and Electrophysiological Study of Peripheral Neuropathies in Predialysis Chronic Kidney Disease Patients and Relation of Severity of Peripheral Neuropathy with Degree of Renal Failure.

    Science.gov (United States)

    Jasti, Dushyanth Babu; Mallipeddi, Sarat; Apparao, A; Vengamma, B; Sivakumar, V; Kolli, Satyarao

    2017-01-01

    To study the prevalence, clinical features, electrophysiological features, and severity of peripheral neuropathy in predialysis chronic kidney disease (CKD) patients with respect to severity of renal failure and presence of diabetes mellitus. Between May 2015 and December 2016, 200 predialysis CKD patients were assessed prospectively. The prevalence of peripheral neuropathy in predialysis CKD patients in the present study was 45% based on clinical symptoms and 90% electrophysiologically. Mean age of 200 predialysis CKD patients who participated in the study was 53.2 ± 13.2 years. One hundred and thirty-six (68%) patients were male and 64 (32%) patients were female. Mean duration of disease was 2.2 ± 1.6 years. Nearly 45% patients of patients had asymptomatic peripheral neuropathy in the present study, which was more common in mild-to-moderate renal failure group. One hundred twenty-six patients (63%) had definite damage and 54 patients (27%) had early damage. In mild-to-moderate renal failure ( n = 100) and severe renal failure patients ( n = 100), 88% and 92% had significant peripheral neuropathy, respectively. Most common nerves involved were sural nerve, median sensory nerve, and ulnar sensory nerve. Diabetic patients (97%) showed more severe and high prevalence of peripheral neuropathy when compared to nondiabetic patients (83%). Most common patterns were pure axonal sensorimotor neuropathy and mixed sensorimotor neuropathy. Peripheral neuropathy is common in predialysis patients, prevalence and severity of which increases as renal failure worsens. Predialysis patients with diabetes show higher prevalence and severity of peripheral neuropathy when compared with nondiabetics.

  5. A Clinical and Electrophysiological Study of Peripheral Neuropathies in Predialysis Chronic Kidney Disease Patients and Relation of Severity of Peripheral Neuropathy with Degree of Renal Failure

    Science.gov (United States)

    Jasti, Dushyanth Babu; Mallipeddi, Sarat; Apparao, A.; Vengamma, B.; Sivakumar, V.; Kolli, Satyarao

    2017-01-01

    Objective: To study the prevalence, clinical features, electrophysiological features, and severity of peripheral neuropathy in predialysis chronic kidney disease (CKD) patients with respect to severity of renal failure and presence of diabetes mellitus. Materials and Methods: Between May 2015 and December 2016, 200 predialysis CKD patients were assessed prospectively. Results: The prevalence of peripheral neuropathy in predialysis CKD patients in the present study was 45% based on clinical symptoms and 90% electrophysiologically. Mean age of 200 predialysis CKD patients who participated in the study was 53.2 ± 13.2 years. One hundred and thirty-six (68%) patients were male and 64 (32%) patients were female. Mean duration of disease was 2.2 ± 1.6 years. Nearly 45% patients of patients had asymptomatic peripheral neuropathy in the present study, which was more common in mild-to-moderate renal failure group. One hundred twenty-six patients (63%) had definite damage and 54 patients (27%) had early damage. In mild-to-moderate renal failure (n = 100) and severe renal failure patients (n = 100), 88% and 92% had significant peripheral neuropathy, respectively. Most common nerves involved were sural nerve, median sensory nerve, and ulnar sensory nerve. Diabetic patients (97%) showed more severe and high prevalence of peripheral neuropathy when compared to nondiabetic patients (83%). Most common patterns were pure axonal sensorimotor neuropathy and mixed sensorimotor neuropathy. Conclusion: Peripheral neuropathy is common in predialysis patients, prevalence and severity of which increases as renal failure worsens. Predialysis patients with diabetes show higher prevalence and severity of peripheral neuropathy when compared with nondiabetics. PMID:29204008

  6. Reappraisal of VAChT-Cre: Preference in slow motor neurons innervating type I or IIa muscle fibers.

    Science.gov (United States)

    Misawa, Hidemi; Inomata, Daijiro; Kikuchi, Miseri; Maruyama, Sae; Moriwaki, Yasuhiro; Okuda, Takashi; Nukina, Nobuyuki; Yamanaka, Tomoyuki

    2016-11-01

    VAChT-Cre.Fast and VAChT-Cre.Slow mice selectively express Cre recombinase in approximately one half of postnatal somatic motor neurons. The mouse lines have been used in various studies with selective genetic modifications in adult motor neurons. In the present study, we crossed VAChT-Cre lines with a reporter line, CAG-Syp/tdTomato, in which synaptophysin-tdTomato fusion proteins are efficiently sorted to axon terminals, making it possible to label both cell bodies and axon terminals of motor neurons. In the mice, Syp/tdTomato fluorescence preferentially co-localized with osteopontin, a recently discovered motor neuron marker for slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) types. The fluorescence did not preferentially co-localize with matrix metalloproteinase-9, a marker for fast-twitch fatigable (FF) motor neurons. In the neuromuscular junctions, Syp/tdTomato fluorescence was detected mainly in motor nerve terminals that innervate type I or IIa muscle fibers. These results suggest that the VAChT-Cre lines are Cre-drivers that have selectivity in S and FR motor neurons. In order to avoid confusion, we have changed the mouse line names from VAChT-Cre.Fast and VAChT-Cre.Slow to VAChT-Cre.Early and VAChT-Cre.Late, respectively. The mouse lines will be useful tools to study slow-type motor neurons, in relation to physiology and pathology. © 2016 Wiley Periodicals, Inc.

  7. "Pollical palmar interosseous muscle" (musculus adductor pollicis accessorius): attachments, innervation, variations, phylogeny, and implications for human evolution and medicine.

    Science.gov (United States)

    Bello-Hellegouarch, Gaelle; Aziz, M Ashraf; Ferrero, Eva M; Kern, Michael; Francis, Nadia; Diogo, Rui

    2013-03-01

    Most atlases and textbooks dealing with human anatomy do not refer to the "pollical palmar interosseous" (PPI) muscle of Henle. In order to undertake a fresh and detailed study of this muscle and to thus better understand human comparative anatomy and evolution, we: 1) analyze the frequency of the PPI in a large sample of human hands; 2) describe the attachments, innervation and varieties of the PPI in these hands; 3) compare the data obtained with the information available in the literature; and 4) discuss the phylogenetic origin of the PPI and the implications of our observations and comparisons for medicine and for the understanding of human evolutionary history. Within the 72 hands dissected by us, the PPI is present in 67 hands (93%), commonly having a single muscular branch, originating from the medial side of the base of metacarpal I only, inserting onto the medial side of the base of the pollical proximal phalanx and/or surrounding structures (e.g., ulnar sesamoid bone, wing tendon of extensor apparatus), and passing at least partially, and usually mainly, medial to the princeps pollicis artery. A careful study of the human PPI, as well as a detailed comparison with other mammals, strongly suggest that the muscle is evolutionarily derived from the adductor pollicis, and namely from its oblique head. Therefore, we propose that PPI should be designated by the name musculus adductor pollicis accessorius, which indicates that the muscle is most likely a de novo structure derived from the adductor pollicis. Copyright © 2012 Wiley Periodicals, Inc.

  8. Risk of Damage to the Somatic Innervation of the Penis during the AdVanceProcedure: An Anatomical Study.

    Science.gov (United States)

    Hogewoning, Cornelis R C; Elzevier, Henk W; Pelger, Rob C M; Bekker, Milou D; DeRuiter, Marco C

    2015-08-01

    One of the methods to treat post radical prostatectomy stress urinary incontinence is the AdVance (American Medical Systems, Minnetonka, MN, USA) male sling procedure. During this procedure, the somatic innervation of the penis may be at risk for injury. Six AdVance procedures were performed in six donated bodies at the Anatomy and Embryology Department of the Leiden University Medical Centre. The pelves were dissected and the shortest distance between the sling and the dorsal nerve of the penis (DNP) was documented. The aim of this study was to describe the anatomical relation between the AdVance male sling and penile nerves based on the dissection of six adult male pelves. The AdVance male sling procedure was conducted in six donated male bodies. After placement, the pelves were dissected and the shortest distance between sling and the DNP was documented. The main outcome measure was the distance between the AdVance male sling and the DNP. The mean distance of the sling to the DNP was 4.1 mm and was found situated directly next to the nerve (distance 0 mm) in 4 out of 12 (33%) hemipelves. The distance of the sling to the obturator neurovascular bundle was 30 mm or more in all six bodies. Damage to the DNP caused by the AdVance male sling procedure appears to be an extremely rare complication, which has not been described in current literature. The proximity of the AdVance to the DNP could, however, pose a risk that should be taken into consideration by physicians and patients when opting for surgery. © 2015 International Society for Sexual Medicine.

  9. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl

    2011-02-01

    Full Text Available The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1 in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG, we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  10. Thinking soap But Speaking ‘oaps’. The Sound Preparation Period: Backward Calculation From Utterance to Muscle Innervation

    Directory of Open Access Journals (Sweden)

    Nora Wiedenmann

    2010-04-01

    Full Text Available

    In this article’s model—on speech and on speech errors, dyscoordinations, and disorders—, the time-course from the muscle innervation impetuses to the utterance of sounds as intended for canonical speech sound sequences is calculated backward. This time-course is shown as the sum of all the known physiological durations of speech sounds and speech gestures that are necessary to produce an utterance. The model introduces two internal clocks, based on positive or negative factors, representing certain physiologically-based time-courses during the sound preparation period (Lautvorspann. The use of these internal clocks show that speech gestures—like other motor activities—work according to a simple serialization principle: Under non-default conditions,
    alterations of the time-courses may cause speech errors of sound serialization, dyscoordinations of sounds as observed during first language acquisition, or speech disorders as pathological cases. These alterations of the time-course are modelled by varying the two internal-clock factors. The calculation of time-courses uses as default values the sound durations of the context-dependent Munich PHONDAT Database of Spoken German (see Appendix 4. As a new, human approach, this calculation agrees mathematically with the approach of Linear Programming / Operations Research. This work gives strong support to the fairly old suspicion (of 1908 of the famous Austrian speech error scientist Meringer [15], namely that one mostly thinks and articulates in a different serialization than is audible from one’s uttered sound sequences.

  11. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine.

  12. Control of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors.

    Science.gov (United States)

    Ibañez-Sandoval, Osvaldo; Hernández, Adán; Florán, Benjamin; Galarraga, Elvira; Tapia, Dagoberto; Valdiosera, Rene; Erlij, David; Aceves, Jorge; Bargas, José

    2006-03-01

    The effects of activating dopaminergic D1 and D2 class receptors of the subthalamic projections that innervate the pars reticulata of the subtantia nigra (SNr) were explored in slices of the rat brain using the whole cell patch-clamp technique. Excitatory postsynaptic currents (EPSCs) that could be blocked by 6-cyano-7-nitroquinoxalene-2,3-dione and D-(-)-2-amino-5-phosphonopentanoic acid were evoked onto reticulata GABAergic projection neurons by local field stimulation inside the subthalamic nucleus in the presence of bicuculline. Bath application of (RS)-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrochloride (SKF-38393), a dopaminergic D1-class receptor agonist, increased evoked EPSCs by approximately 30% whereas the D2-class receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo(3,4-g)quinoline (quinpirole), reduced EPSCs by approximately 25%. These apparently opposing actions were blocked by the specific D1- and D2-class receptor antagonists: R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepinehydrochloride (SCH 23390) and S-(-)-5-amino-sulfonyl-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride), respectively. Both effects were accompanied by changes in the paired-pulse ratio, indicative of a presynaptic site of action. The presynaptic location of dopamine receptors at the subthalamonigral projections was confirmed by mean-variance analysis. The effects of both SKF-38393 and quinpirole could be observed on terminals contacting the same postsynaptic neuron. Sulpiride and SCH 23390 enhanced and reduced the evoked EPSC, respectively, suggesting a constitutive receptor activation probably arising from endogenous dopamine. These data suggest that dopamine presynaptically modulates the subthalamic projection that targets GABAergic neurons of the SNr. Implications of this modulation for basal ganglia function are discussed.

  13. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    International Nuclear Information System (INIS)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine

  14. EDITORIAL MODERN TECHNOLOGY IN PERIPHERAL HEALTH ...

    African Journals Online (AJOL)

    hi-tech

    2004-06-01

    Jun 1, 2004 ... new technology to peripheral health care systems in developing countries. ... and maintenance of medical equipment in Africa, citing information ... operating laboratory equipment, and for emergency lighting for operating ...

  15. Haemopoietic progenitor cells in human peripheral blood

    International Nuclear Information System (INIS)

    Zwaan, F.E.

    1980-01-01

    The purpose of the investigation reported is to purify haemopoietic progenitor cells from human peripheral blood using density gradient centrifugation in order to isolate a progenitor cell fraction without immunocompetent cells. The purification technique of peripheral blood flow colony forming unit culture (CFU-c) by means of density gradient centrifugation and a combined depletion of various rosettes is described. The results of several 'in vitro' characteristics of purified CFU-c suspensions and of the plasma clot diffusion chamber culture technique are presented. Irradiation studies revealed that for both human bone marrow and peripheral blood the CFU-c were less radioresistant than clusters. Elimination of monocytes (and granulocytes) from the test suspensions induced an alteration in radiosensitivity pararmeters. The results obtained with the different techniques are described by analysing peripheral progenitor cell activity in myeloproliferative disorders. (Auth.)

  16. Allogeneic Peripheral Blood Stem Cell Harvest

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Allogeneic Peripheral Blood Stem Cell Harvest. Mobilization protocol. G-CSF 10 mcg/Kg / day for 5 days. Pheresis. Cobe Spectra; Haemonetics mcs+. Enumeration. CD34 counts; Cfu-GM assays.

  17. Side Effects: Nerve Problems (Peripheral Neuropathy)

    Science.gov (United States)

    Nerve problems, such as peripheral neuropathy, can be caused by cancer treatment. Learn about signs and symptoms of nerve changes. Find out how to prevent or manage nerve problems during cancer treatment.

  18. Angioplasty and stent placement - peripheral arteries

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007393.htm Angioplasty and stent placement - peripheral arteries To use the sharing features ... inside the arteries and block blood flow. A stent is a small, metal mesh tube that keeps ...

  19. Peripheral myelin protein 22 alters membrane architecture

    Science.gov (United States)

    Mittendorf, Kathleen F.; Marinko, Justin T.; Hampton, Cheri M.; Ke, Zunlong; Hadziselimovic, Arina; Schlebach, Jonathan P.; Law, Cheryl L.; Li, Jun; Wright, Elizabeth R.; Sanders, Charles R.; Ohi, Melanie D.

    2017-01-01

    Peripheral myelin protein 22 (PMP22) is highly expressed in myelinating Schwann cells of the peripheral nervous system. PMP22 genetic alterations cause the most common forms of Charcot-Marie-Tooth disease (CMTD), which is characterized by severe dysmyelination in the peripheral nerves. However, the functions of PMP22 in Schwann cell membranes remain unclear. We demonstrate that reconstitution of purified PMP22 into lipid vesicles results in the formation of compressed and cylindrically wrapped protein-lipid vesicles that share common organizational traits with compact myelin of peripheral nerves in vivo. The formation of these myelin-like assemblies depends on the lipid-to-PMP22 ratio, as well as on the PMP22 extracellular loops. Formation of the myelin-like assemblies is disrupted by a CMTD-causing mutation. This study provides both a biochemical assay for PMP22 function and evidence that PMP22 directly contributes to membrane organization in compact myelin. PMID:28695207

  20. Peripheral Arterial Disease Can Be a Killer

    Science.gov (United States)

    ... Bar Home Current Issue Past Issues Special Section Peripheral Arterial Disease Can Be a Killer Past Issues / ... Color changes in skin, paleness, or blueness Lower temperature in one leg compared to the other leg ...

  1. Management of peripheral facial nerve palsy

    OpenAIRE

    Finsterer, Josef

    2008-01-01

    Peripheral facial nerve palsy (FNP) may (secondary FNP) or may not have a detectable cause (Bell?s palsy). Three quarters of peripheral FNP are primary and one quarter secondary. The most prevalent causes of secondary FNP are systemic viral infections, trauma, surgery, diabetes, local infections, tumor, immunological disorders, or drugs. The diagnosis of FNP relies upon the presence of typical symptoms and signs, blood chemical investigations, cerebro-spinal-fluid-investigations, X-ray of the...

  2. Atherectomy in Peripheral Artery Disease: A Review.

    Science.gov (United States)

    Bhat, Tariq M; Afari, Maxwell E; Garcia, Lawrence A

    2017-04-01

    Peripheral arterial disease (PAD) is a clinical manifestation of systemic atherosclerosis and is associated with significant morbidity and mortality. The physiological force and shear stress from angioplasty and stenting have made PAD treatment challenging. Atherectomy devices have continued to emerge as a major therapy in the management of peripheral vascular disease. This article presents a review of the current literature for the atherectomy devices used in PAD.

  3. Passive Scalar Evolution in Peripheral Region

    OpenAIRE

    Lebedev, V. V.; Turitsyn, K. S.

    2003-01-01

    We consider evolution of a passive scalar (concentration of pollutants or temperature) in a chaotic (turbulent) flow. A universal asymptotic behavior of the passive scalar decay (homogenization) related to peripheral regions (near walls) is established. The passive scalar moments and its pair correlation function in the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a pipe.

  4. Distinct BOLD activation profiles following central and peripheral oxytocin administration in awake rats

    Directory of Open Access Journals (Sweden)

    Craig F Ferris

    2015-09-01

    Full Text Available A growing body of literature has suggested that intranasal oxytocin (OT or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain-barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level dependent (BOLD signal intensity in response to peripheral OT injections (0.1, 0.5 or 2.5 mg/kg during functional magnetic resonance (fMRI in awake rats imaged at 7.0 tesla. These data were compared to OT (1ug/5 µl given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.

  5. Mini-review: Far peripheral vision.

    Science.gov (United States)

    Simpson, Michael J

    2017-11-01

    The region of far peripheral vision, beyond 60 degrees of visual angle, is important to the evaluation of peripheral dark shadows (negative dysphotopsia) seen by some intraocular lens (IOL) patients. Theoretical calculations show that the limited diameter of an IOL affects ray paths at large angles, leading to a dimming of the main image for small pupils, and to peripheral illumination by light bypassing the IOL for larger pupils. These effects are rarely bothersome, and cataract surgery is highly successful, but there is a need to improve the characterization of far peripheral vision, for both pseudophakic and phakic eyes. Perimetry is the main quantitative test, but the purpose is to evaluate pathologies rather than characterize vision (and object and image regions are no longer uniquely related in the pseudophakic eye). The maximum visual angle is approximately 105 0 , but there is limited information about variations with age, race, or refractive error (in case there is an unexpected link with the development of myopia), or about how clear cornea, iris location, and the limiting retina are related. Also, the detection of peripheral motion is widely recognized to be important, yet rarely evaluated. Overall, people rarely complain specifically about this visual region, but with "normal" vision including an IOL for >5% of people, and increasing interest in virtual reality and augmented reality, there are new reasons to characterize peripheral vision more completely. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Treatment of painful diabetic peripheral neuropathy.

    Science.gov (United States)

    Rosenberg, Casandra J; Watson, James C

    2015-02-01

    Painful diabetic peripheral neuropathy impairs quality of life and can be difficult to treat. To discuss current treatment recommendations for painful diabetic peripheral neuropathy. Literature review. Systematic review of the literature discussing treatment of painful diabetic peripheral neuropathy. Existing treatment guidelines were studied and compared. Painful diabetic peripheral neuropathy occurs in about one in six people with diabetes. This condition impairs quality of life and increases healthcare costs. Treatment recommendations exist, but individual patient therapy can require a trial-and-error approach. Many treatment options have adjuvant benefits or side effects which should be considered prior to initiating therapy. Often, a combination of treatment modalities with various mechanisms of action is required for adequate pain control. Adequate medication titration and a reasonable trial period should be allowed. The treatment of painful diabetic peripheral neuropathy can be challenging, but effective management can improve patient's quality of life. Painful diabetic peripheral neuropathy impairs quality of life and can be difficult to treat. Many treatment options have adjuvant benefits or side effects which should be considered prior to initiating therapy. Often, a combination of treatment modalities with various mechanisms of action is required for adequate pain control. © The International Society for Prosthetics and Orthotics 2014.

  7. Vascular access in neonatology: peripherally inserted central catheter and peripheral venous catheter

    Directory of Open Access Journals (Sweden)

    Marcia Lienemann

    2014-04-01

    The objective of this paper is to present aspects of peripherally inserted central catheter and peripheral venous catheter, highlighting important points in choosing the type of access. For the passage of peripherally inserted central catheter is previously performing specific course necessary, while the primary indication occurs when it is necessary to access the patient's stay for a long period of time. Whereas peripheral venipuncture is the most appropriate in cases of needing an IV line quickly and safely, for the administration of fluids, blood collection, blood transfusion and other.

  8. Case report of a patient with peripheral facial nerve palsy

    OpenAIRE

    Rysová, Jana

    2013-01-01

    Title of bachelor's thesis: Case report of a patient with peripheral facial nerve palsy Summary: Teoretical part of bachelor's thesis contains theoretical foundation of peripheral facial nerve palsy. Practical part of bachelor's thesis contains physiotherapeutic case report of patient with peripheral facial nerve palsy. Key words: peripheral facial nerve palsy, casuistry, rehabilitation

  9. A Computational Model of Peripheral Photocoagulation for the Prevention of Progressive Diabetic Capillary Occlusion

    Directory of Open Access Journals (Sweden)

    Thomas J. Gast

    2016-01-01

    Full Text Available We developed a computational model of the propagation of retinal ischemia in diabetic retinopathy and analyzed the consequences of various patterns and sizes of burns in peripheral retinal photocoagulation. The model addresses retinal ischemia as a phenomenon of adverse local feedback in which once a capillary is occluded there is an elevated probability of occlusion of adjacent capillaries resulting in enlarging areas of retinal ischemia as is commonly seen clinically. Retinal burns of different sizes and patterns, treated as local oxygen sources, are predicted to have different effects on the propagation of retinal ischemia. The patterns of retinal burns are optimized with regard to minimization of the sum of the photocoagulated retina and computer predicted ischemic retina. Our simulations show that certain patterns of retinal burns are effective at preventing the spatial spread of ischemia by creating oxygenated boundaries across which the ischemia does not propagate. This model makes no statement about current PRP treatment of avascular peripheral retina and notes that the usual spot sizes used in PRP will not prevent ischemic propagation in still vascularized retinal areas. The model seems to show that a properly patterned laser treatment of still vascularized peripheral retina may be able to prevent or at least constrain the propagation of diabetic retinal ischemia in those retinal areas with intact capillaries.

  10. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure.

    Science.gov (United States)

    Liao, Song-Yan; Liu, Yuan; Zuo, Mingliang; Zhang, Yuelin; Yue, Wensheng; Au, Ka-Wing; Lai, Wing-Hon; Wu, Yangsong; Shuto, Chika; Chen, Peter; Siu, Chung-Wah; Schwartz, Peter J; Tse, Hung-Fat

    2015-12-01

    Thoracic spinal cord stimulation (SCS) has been shown to improve left ventricular ejection fraction (LVEF) in heart failure (HF). Nevertheless, the optimal duration (intermittent vs. continuous) of stimulation and the mechanisms of action remain unclear. We performed chronic thoracic SCS at the level of T1-T3 (50 Hz, pulse width 0.2 ms) in 30 adult pigs with HF induced by myocardial infarction and rapid ventricular pacing for 4 weeks. All the animals were treated with daily oral metoprolol succinate (25 mg) plus ramipril (2.5 mg), and randomized to a control group (n = 10), intermittent SCS (4 h ×3, n = 10) or continuous SCS (24 h, n = 10) for 10 weeks. Serial measurements of LVEF and +dP/dt and serum levels of norepinephrine and B-type natriuretic peptide (BNP) were measured. After sacrifice, immunohistological studies of myocardial sympathetic and parasympathetic nerve sprouting and innervation were performed. Echocardiogram revealed a significant increase in LVEF and +dP/dt at 10 weeks in both the intermittent and continuous SCS group compared with controls (P < 0.05). In both SCS groups, there was diffuse sympathetic nerve sprouting over the infarct, peri-infarct, and normal regions compared with only the peri-infarct and infarct regions in the control group. In addition, sympathetic innervation at the peri-infarct and infarct regions was increased following SCS, but decreased in the control group. Myocardium norepinephrine spillover and serum BNP at 10 weeks was significantly decreased only in the continuous SCS group (P < 0.05). In a porcine model of HF, SCS induces significant remodelling of cardiac sympathetic innervation over the peri-infarct and infarct regions and is associated with improved LV function and reduced myocardial norepinephrine spillover. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  11. Polyhedral patterns

    KAUST Repository

    Jiang, Caigui

    2015-10-27

    We study the design and optimization of polyhedral patterns, which are patterns of planar polygonal faces on freeform surfaces. Working with polyhedral patterns is desirable in architectural geometry and industrial design. However, the classical tiling patterns on the plane must take on various shapes in order to faithfully and feasibly approximate curved surfaces. We define and analyze the deformations these tiles must undertake to account for curvature, and discover the symmetries that remain invariant under such deformations. We propose a novel method to regularize polyhedral patterns while maintaining these symmetries into a plethora of aesthetic and feasible patterns.

  12. Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research.

    Science.gov (United States)

    Hayashi-Takagi, Akiko; Vawter, Marquis P; Iwamoto, Kazuya

    2014-06-15

    Peripheral samples, such as blood and skin, have been used for decades in psychiatric research as surrogates for central nervous system samples. Although the validity of the data obtained from peripheral samples has been questioned and other state-of-the-art techniques, such as human brain imaging, genomics, and induced pluripotent stem cells, seem to reduce the value of peripheral cells, accumulating evidence has suggested that revisiting peripheral samples is worthwhile. Here, we re-evaluate the utility of peripheral samples and argue that establishing an understanding of the common signaling and biological processes in the brain and peripheral samples is required for the validity of such models. First, we present an overview of the available types of peripheral cells and describe their advantages and disadvantages. We then briefly summarize the main achievements of omics studies, including epigenome, transcriptome, proteome, and metabolome analyses, as well as the main findings of functional cellular assays, the results of which imply that alterations in neurotransmission, metabolism, the cell cycle, and the immune system may be partially responsible for the pathophysiology of major psychiatric disorders such as schizophrenia. Finally, we discuss the future utility of peripheral samples for the development of biomarkers and tailor-made therapies, such as multimodal assays that are used as a battery of disease and trait pathways and that might be potent and complimentary tools for use in psychiatric research. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  13. Peripheral dose outside applicators in electron beams

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    The peripheral dose outside the applicators in electron beams was studied using a Varian 21 EX linear accelerator. To measure the peripheral dose profiles and point doses for the applicator, a solid water phantom was used with calibrated Kodak TL films. Peak dose spot was observed in the 4 MeV beam outside the applicator. The peripheral dose peak was very small in the 6 MeV beam and was ignorable at higher energies. Using the 10 x 10 cm 2 cutout and applicator, the dose peak for the 4 MeV beam was about 12 cm away from the field central beam axis (CAX) and the peripheral dose profiles did not change with depths measured at 0.2, 0.5 and 1 cm. The peripheral doses and profiles were further measured by varying the angle of obliquity, cutout and applicator size for the 4 MeV beam. The local peak dose was increased with about 3% per degree angle of obliquity, and was about 1% of the prescribed dose (angle of obliquity equals zero) at 1 cm depth in the phantom using the 10 x 10 cm 2 cutout and applicator. The peak dose position was also shifted 7 mm towards the CAX when the angle of obliquity was increased from 0 to 15 deg. (note)

  14. Flexibility in the patterning and control of axial locomotor networks in lamprey.

    Science.gov (United States)

    Buchanan, James T

    2011-12-01

    In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two

  15. Specialization Patterns

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Lawall, Julia Laetitia; Consel, Charles

    2000-01-01

    Design patterns offer many advantages for software development, but can introduce inefficiency into the final program. Program specialization can eliminate such overheads, but is most effective when targeted by the user to specific bottlenecks. Consequently, we propose that these concepts...... are complementary. Program specialization can optimize programs written using design patterns, and design patterns provide information about the program structure that can guide specialization. Concretely, we propose specialization patterns, which describe how to apply program specialization to optimize uses...... of design patterns. In this paper, we analyze the specialization opportunities provided by specific uses of design patterns. Based on the analysis of each design pattern, we define the associated specialization pattern. These specialization opportunities can be declared using the specialization classes...

  16. MRI features of tuberculosis of peripheral joints

    Energy Technology Data Exchange (ETDEWEB)

    Sawlani, V.; Chandra, T.; Mishra, R.N.; Aggarwal, A.; Jain, U.K.; Gujral, R.B. E-mail: gujralrb@sgpgi.ac.in

    2003-10-01

    The aim of this article is to present the magnetic resonance imaging (MRI) features of peripheral tubercular arthritis. The clinical presentation of peripheral tubercular arthritis is variable and simulates other chronic inflammatory arthritic disorders. MRI is a highly sensitive technique which demonstrates fine anatomical details and identifies the early changes of arthritis, which are not visible on radiographs. The MRI features of tubercular arthritis include synovitis, effusion, central and peripheral erosions, active and chronic pannus, abscess, bone chips and hypo-intense synovium. These imaging features in an appropriate clinical setting may help in the diagnosis of tubercular arthritis. Early diagnosis and treatment can effectively eliminate the long-term morbidity of joints affected by tuberculosis.

  17. MRI features of tuberculosis of peripheral joints

    International Nuclear Information System (INIS)

    Sawlani, V.; Chandra, T.; Mishra, R.N.; Aggarwal, A.; Jain, U.K.; Gujral, R.B.

    2003-01-01

    The aim of this article is to present the magnetic resonance imaging (MRI) features of peripheral tubercular arthritis. The clinical presentation of peripheral tubercular arthritis is variable and simulates other chronic inflammatory arthritic disorders. MRI is a highly sensitive technique which demonstrates fine anatomical details and identifies the early changes of arthritis, which are not visible on radiographs. The MRI features of tubercular arthritis include synovitis, effusion, central and peripheral erosions, active and chronic pannus, abscess, bone chips and hypo-intense synovium. These imaging features in an appropriate clinical setting may help in the diagnosis of tubercular arthritis. Early diagnosis and treatment can effectively eliminate the long-term morbidity of joints affected by tuberculosis

  18. Intraoperative digital angiography: Peripheral vascular applications

    International Nuclear Information System (INIS)

    Bell, K.; Reifsteck, J.E.; Binet, E.F.; Fleisher, H.J.

    1986-01-01

    Intraoperative digital angiography is the procedure of choice for the peripheral vascular surgeon who wishes to evaluate his results before terminating anesthesia. Two operating suites at the John L. McClellan Memorial Veterans Hospital are equipped with permanent ceiling-mounted Philips C-arm fluoroscopes and share an ADAC 4100 digital angiographic system. In the last 18 months, 40 peripheral vascular intraoperative digital angiographic procedures have been performed, in all but two cases using direct arterial puncture. In 65% of cases, the intraoperative study showed no significant abnormality. In 12.5%, minor abnormalities not requiring reoperation were seen. In 22.5% of cases, the intraoperative digital angiogram revealed a significant abnormality requiring immediate operative revision. None of the patients who underwent reoperation experienced postoperative sequelae. Intraoperative digital angiography is useful in identifying complications of peripheral vascular operations

  19. Comprehensive management of presbycusis: central and peripheral.

    Science.gov (United States)

    Parham, Kourosh; Lin, Frank R; Coelho, Daniel H; Sataloff, Robert T; Gates, George A

    2013-04-01

    The prevailing otolaryngologic approach to treatment of age-related hearing loss (ARHL), presbycusis, emphasizes compensation of peripheral functional deficits (ie, hearing aids and cochlear implants). This approach does not address adequately the needs of the geriatric population, 1 in 5 of whom is expected to consist of the "old old" in the coming decades. Aging affects both the peripheral and central auditory systems, and disorders of executive function become more prevalent with advancing age. Growing evidence supports an association between age-related hearing loss and cognitive decline. Thus, to facilitate optimal functional capacity in our geriatric patients, a more comprehensive management strategy of ARHL is needed. Diagnostic evaluation should go beyond standard audiometric testing and include measures of central auditory function, including dichotic tasks and speech-in-noise testing. Treatment should include not only appropriate means of peripheral compensation but also auditory rehabilitative training and counseling.

  20. [Peripheral retinal degenerations--treatment recommendations].

    Science.gov (United States)

    Joussen, A M; Kirchhof, B

    2004-10-01

    This report reviews the clinical appearance of degenerative diseases of the peripheral retina in relationship to the risk of developing a rhegmatogenous retinal detachment. We present recommendations for preventive treatment in eyes at increased risk of developing retinal detachment. Retinal degenerations are common lesions involving the peripheral retina but most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and very rarely zonular traction tufts can result in rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic treatment; however, adequate studies have not been performed to date. Most of the peripheral retinal degenerations may not require treatment except in rare, high-risk situations. According to current knowledge there is no higher incidence of secondary pucker or other side effects after laser coagulation. Therefore, generous laser indication is recommended if risk factors apply.

  1. Vitamin B supplementation for diabetic peripheral neuropathy.

    Science.gov (United States)

    Jayabalan, Bhavani; Low, Lian Leng

    2016-02-01

    Vitamin B12 deficiency has been associated with significant neurological pathology, especially peripheral neuropathy. This review aims to examine the existing evidence on the effectiveness of vitamin B12 supplementation for the treatment of diabetic peripheral neuropathy. A search of PubMed and the Cochrane Central Register of Controlled Trials for all relevant randomised controlled trials was conducted in December 2014. Any type of therapy using vitamin B12 or its coenzyme forms was assessed for efficacy and safety in diabetics with peripheral neuropathy. Changes in vibration perception thresholds, neuropathic symptoms and nerve conduction velocities, as well as the adverse effects of vitamin B12 therapy, were assessed. Four studies comprising 363 patients met the inclusion criteria. This review found no evidence that the use of oral vitamin B12 supplements is associated with improvement in the clinical symptoms of diabetic neuropathy. Furthermore, the majority of studies reported no improvement in the electrophysiological markers of nerve conduction. Copyright © Singapore Medical Association.

  2. Contrast media and pain during peripheral arteriography

    International Nuclear Information System (INIS)

    Hagen, B.; Clauss, W.

    1982-01-01

    Some contrast media (CM) were for inducing pain and heat by an intraindividual comparison in 60 patients with occlusive peripheral arterial disease. A dolorimeter and calorimeter (graduated scales) were employed to register and differentiate the subjective sensations experienced by the patient, while objective reactions (peripheral motoric reactions, circulatory parameters) were recorded by the trialist at the same time. Ioxaglate, an ionic dimer, was distinctly superior to Ioglicinate, an ionic CM. However, the differences were less marked in the comparison with a Ioglicinate-Lidocaine-mixture. Emphasis is given to the fact osmolality is the most important parameter in the development of pain. Potential points at which the intraarterially administered local anaesthetic could attack are discussed. The clinical conclusions include consideration of the cost-effectivity ratios of the tested CM's and a discussion of whether or not modern stanards still justify general anaesthesia for peripheral angiography. (orig.)

  3. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    Science.gov (United States)

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Chronic obstructive pulmonary disease and peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Gupta Prem

    2006-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is the fourth leading cause of death world-wide and a further increase in the prevalence as well as mortality of the disease is predicted for coming decades. There is now an increased appreciation for the need to build awareness regarding COPD and to help the thousands of people who suffer from this disease and die prematurely from COPD or its associated complication(s. Peripheral neuropathy in COPD has received scanty attention despite the fact that very often clinicians come across COPD patients having clinical features suggestive of peripheral neuropathy. Electrophysiological tests like nerve conduction studies are required to distinguish between axonal and demyelinating type of disorder that cannot be analyzed by clinical examination alone. However, various studies addressing peripheral neuropathy in COPD carried out so far have included patients with COPD having markedly varying baseline characteristics like severe hypoxemia, elderly patients, those with long duration of illness, etc. that are not uniform across the studies and make it difficult to interpret the results to a consistent conclusion. Almost one-third of COPD patients have clinical evidence of peripheral neuropathy and two-thirds have electrophysiological abnormalities. Some patients with no clinical indication of peripheral neuropathy do have electrophysiological deficit suggestive of peripheral neuropathy. The more frequent presentation consists of a polyneuropathy that is subclinical or with predominantly sensory signs, and the neurophysiological and pathological features of predominantly axonal neuropathy. The presumed etiopathogenic factors are multiple: chronic hypoxia, tobacco smoke, alcoholism, malnutrition and adverse effects of certain drugs.

  5. Facilitation of contrast detection in near-peripheral vision.

    Science.gov (United States)

    Giorgi, Robert G; Soong, Grace P; Woods, Russell L; Peli, Eli

    2004-12-01

    Foveal detection of a Gabor patch (target) is facilitated by collinear, displaced high-contrast flankers. Polat and Sagi reported that the same phenomenon occurred in the periphery, but no data were presented [Proc. Natl. Acad. Sci. 91 (1994) 1206]. Others have found no facilitation in a limited number of conditions tested. To resolve this apparent conflict, we measured lateral facilitation in the near-periphery using a range of stimulus parameters. We found facilitation for a range of target-flanker distances for peripheral eccentricities up to 6 degrees , but the magnitude of the effect was less than found in central vision. Facilitation varied across subjects and with spatial frequency. Flanker contrast had no effect over the range evaluated (10-80%). Equal facilitation was found for two global arrangements of the stimulus pattern. Facilitation was found using a temporal, but not a spatial two-alternative forced-choice paradigm, accounting for the different results among previous studies. This finding supports previous indications of the role of attention in altering such facilitation. The value of facilitation from lateral interactions for persons with central vision impairment, who have to shift their attention to a peripheral locus constantly, needs to be examined.

  6. Classic Peripheral Signs of Subacute Bacterial Endocarditis

    Directory of Open Access Journals (Sweden)

    Yooyoung Chong

    2016-10-01

    Full Text Available A 50-year-old female patient with visual disturbances was referred for further evaluation of a heart murmur. Fundoscopy revealed a Roth spot in both eyes. A physical examination showed peripheral signs of infective endocarditis, including Osler nodes, Janeway lesions, and splinter hemorrhages. Our preoperative diagnosis was subacute bacterial endocarditis with severe aortic regurgitation. The patient underwent aortic valve replacement and was treated with intravenous antibiotics for 6 weeks postoperatively. The patient made a remarkable recovery and was discharged without complications. We report this case of subacute endocarditis with all 4 classic peripheral signs in a patient who presented with visual disturbance.

  7. Classic Peripheral Signs of Subacute Bacterial Endocarditis

    Science.gov (United States)

    Chong, Yooyoung; Han, Sung Joon; Rhee, Youn Ju; Kang, Shin Kwang; Yu, Jae Hyeon; Na, Myung Hoon

    2016-01-01

    A 50-year-old female patient with visual disturbances was referred for further evaluation of a heart murmur. Fundoscopy revealed a Roth spot in both eyes. A physical examination showed peripheral signs of infective endocarditis, including Osler nodes, Janeway lesions, and splinter hemorrhages. Our preoperative diagnosis was subacute bacterial endocarditis with severe aortic regurgitation. The patient underwent aortic valve replacement and was treated with intravenous antibiotics for 6 weeks postoperatively. The patient made a remarkable recovery and was discharged without complications. We report this case of subacute endocarditis with all 4 classic peripheral signs in a patient who presented with visual disturbance. PMID:27734006

  8. Peripheral phlebitis: a point-prevalence study.

    Science.gov (United States)

    Washington, Georgita T; Barrett, Robin

    2012-01-01

    The purpose of this research study was to determine the factors influencing peripheral phlebitis in the adult medical-surgical population. The authors would then be able to use those data to determine whether a change in practice was warranted. Data collection and analysis of 188 intravenous sites revealed that females with higher doses of medications in intravenous sites of longer dwell times and suboptimal nutrition were at greater risk of developing peripheral phlebitis. The point prevalence was greater than the recommended 5%, which led the authors to review their facility's patient care and documentation practices.

  9. Laser peripheral iridoplasty for angle-closure.

    Science.gov (United States)

    Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto

    2012-02-15

    Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations.   To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations

  10. [Degenerative lesions of the peripheral retina].

    Science.gov (United States)

    Conart, J-B; Baron, D; Berrod, J-P

    2014-01-01

    Degenerative lesions of the peripheral retina are present from teenage years onwards and increase with age. These abnormabilities are frequent, some of them being benign while others predispose to retinal tears and detachment. In the latter case, the lesions are rhegmatogenous and may justify prophylactic treatment by laser photocoagulation. We distinguish congenital lesions of the peripheral retina and intraretinal, chorioretinal and vitreoretinal degenerations. The holes and tears observed in 2% of the population consist of round atrophic holes, "horseshoe" tears, oral dialyses and giant tears. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Radiation injury to peripheral and cranial nerves

    International Nuclear Information System (INIS)

    Giese, W.L.; Kinsella, T.J.

    1991-01-01

    In this paper, the results of laboratory and clinical investigations regarding the radiosensitivity of peripheral nerve are presented. Before outlining this research the authors briefly review peripheral neuroanatomy and physiology and then discuss variables associated with injury. It is important to remember that radiation injury is multifactorial in nature, and that the relative importance of individual factors is not well understood. Reports up through the middle of this century were fraught with rudimentary dosimetry, primitive investigative methods, and arbitrary endpoints that resulted in widely conflicting conclusions that continue to date

  12. Correlation between corneal innervation and inflammation evaluated with confocal microscopy and symptomatology in patients with dry eye syndromes: a preliminary study.

    Science.gov (United States)

    Tepelus, Tudor C; Chiu, Gloria B; Huang, Jianyan; Huang, Ping; Sadda, SriniVas R; Irvine, John; Lee, Olivia L

    2017-09-01

    To evaluate corneal innervation and inflammatory cell infiltration using in vivo confocal microscopy (IVCM) and to correlate these findings with subjective symptoms of dry eye, as measured by the Ocular Surface Disease Index (OSDI) in patients with non-Sjögren's (NSDE) and Sjögren's syndrome dry eyes (SSDE). Central corneal images were prospectively captured from 10 age-matched healthy control eyes, 24 eyes with clinically diagnosed NSDE and 44 eyes with clinically diagnosed SSDE, using IVCM (HRT III RCM). Density, tortuosity and reflectivity of corneal nerves, presence of inflammatory dendritic cells (DCs) and OSDI scores were evaluated. Images obtained by IVCM from 78 eyes were analyzed. The density of nerve fibers was 1562 ± 996 μm/frame in the SSDE group, 2150 ± 1015 μm/frame in the NSDE group and 2725 ± 687 μm/frame in the control group (P eyes affected with NSDE and SSDE are characterized by alterations in corneal innervation and infiltration of inflammatory DCs. Corneal nerve density and reflectivity are correlated with severity of subjective dry eye symptoms, as measured by OSDI score.

  13. Nikolaus Rüdinger (1832-1896), His Description of Joint Innervation in 1857, and the History of Surgical Joint Denervation.

    Science.gov (United States)

    Gohritz, Andreas; Kaiser, Erich; Guggenheim, Merlin; Dellon, Arnold Lee

    2018-01-01

     Selective joint denervation has become a reliable palliative treatment, especially for painful joints in the upper and lower extremity.  This article highlights the life and work of Nikolaus Rüdinger (1832-1896) who first described joint innervation which became the basis of later techniques of surgical joint denervation. The historical evolution of this method is outlined.  Rüdinger made a unique career from apprentice barber to military surgeon and anatomy professor in Munich, Germany. His first description of articular innervation of temporomandibular, shoulder, elbow, wrist, finger, sacroiliac, hip, knee, ankle, foot, and toe joints in 1857 stimulated the subsequent history of surgical joint denervation. Comparing his investigations with modern joint denervation methods, developed by pioneers like Albrecht Wilhelm or A. Lee Dellon, shows his great exactitude and anatomical correspondence despite different current terminology. Clinical series of modern surgical joint denervations reveal success rates of up to 80% with reliable long-term results.  The history of joint denervation with Rüdinger as its important protagonist offers inspiring insights into the evolution of surgical techniques and exemplifies the value of descriptive functional anatomy, even if surgical application may not have been realized until a century later. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Perinatal exposure to a high-fat diet is associated with reduced hepatic sympathetic innervation in one-year old male Japanese macaques.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    Full Text Available Our group recently demonstrated that maternal high-fat diet (HFD consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD, when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR, is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction.

  15. Evaluation of Tc-99M dextran as a useful agent for peripheral lymphoscintigraphy

    International Nuclear Information System (INIS)

    Farzana Kousar; Muhammad Numair Younis; Shabana Saeed; Mustanser Jehangir; Saeeda Asghar

    2004-01-01

    Peripheral lymphoscintigraphy is known for its great academic value and more importantly, may contribute to supporting the accuracy of clinical diagnosis and assessment of lymphedema treatment. The main aim of this study was to evaluate the 99m Tc dextran as peripheral lymphoscintigraphic agent and its validation in recognizing different lymphatic patterns in normal and edematous limbs. Methods: Peripheral lymphoscintigraphy was performed in 24 patients (mean age 43.9 ± 11 years) using 99m Tc dextran (molecular weight 150,000 and 250,000) as radiotracer. 37 MBq (1 mCi) 99m Tc dextran (PINSCANTM) was injected intradermally in the first web space of the hand or foot of both limbs. 30 minutes sequential dynamic and static imaging was done. Delayed static images were taken at one hour and then three hours post injection. Results: Only qualitative interpretation was done. Different lymphatic patterns were observed in normal population as well as in control and edematous limbs. Results were further analysed using chi square test, paired and unpaired student t test at the confidence level 0.05. All mean values were given with one standard deviation. Visual and statistical analysis showed good clinical correlation. These results were also compared favourably with 99m Tc HSA lymphoscintigraphic findings available in literature. Conclusion: 99m Tc dextran is a promising agent for peripheral lymphoscintigraphy. (authors)

  16. Neuromuscular partitioning in the extensor carpi radialis longus and brevis based on intramuscular nerve distribution patterns: A three-dimensional modeling study.

    Science.gov (United States)

    Ravichandiran, Mayoorendra; Ravichandiran, Nisanthini; Ravichandiran, Kajeandra; McKee, Nancy H; Richardson, Denyse; Oliver, Michele; Agur, Anne M

    2012-04-01

    Differential activation of specific regions within a skeletal muscle has been linked to the presence of neuromuscular compartments. However, few studies have investigated the extra- or intramuscular innervation throughout the muscle volume of extensor carpi radialis longus (ECRL) and brevis (ECRB). The aim of this study was to determine the presence of neuromuscular partitions in ECRL and ECRB based on the extra- and intramuscular innervation using three-dimensional modeling. The extra- and intramuscular nerve distribution was digitized and reconstructed in 3D in all the muscle volumes using Autodesk Maya in seven formalin embalmed cadaveric specimens (mean age, 75.7 ± 15.2 years). The intramuscular nerve distribution was modeled in all the muscle volumes. ECRL was found to have two neuromuscular compartments, superficial and deep. One branch from the radial nerve proper was found to innervate ECRL. This branch was divided into anterior and posterior branches to the superficial and deep compartments, respectively. Five innervation patterns were identified in ECRB with partitioning of the muscle belly into two, three, or four compartments, in a proximal to distal direction depending on the number of nerve branches entering the muscle belly. The ECRL and ECRB both demonstrated neuromuscular compartmentalization based on intramuscular innervation. According to the partitioning hypothesis, a muscle may be differentially activated depending on the required function of the muscle, thus allowing multifunctional muscles to contribute to a variety of movements. Therefore, the increased number of neuromuscular partitions in ECRB when compared with ECRL could be due to the need for more differential recruitment in the ECRB depending on force requirements. Copyright © 2011 Wiley Periodicals, Inc.

  17. Trigeminal pain and quantitative sensory testing in painful peripheral diabetic neuropathy.

    Science.gov (United States)

    Arap, Astrid; Siqueira, Silvia R D T; Silva, Claudomiro B; Teixeira, Manoel J; Siqueira, José T T

    2010-07-01

    To evaluate patients with Diabetes Mellitus type 2 and painful peripheral neuropathy in order to investigate oral complaints and facial somatosensory findings. Case-control study; 29 patients (12 women, mean age 57.86 yo) with Diabetes Mellitus type 2 and 31 age-gender-matched controls were evaluated with a standardized protocol for general characteristics, orofacial pain, research diagnostic criteria for temporomandibular disorders, visual analogue scale and McGill Pain questionnaire, and a systematic protocol of quantitative sensory testing for bilateral facial sensitivity at the areas innervated by the trigeminal branches, which included the thermal detection by ThermoSensi 2, tactile evaluation with vonFrey filaments, and superficial pain thresholds with a superficial algometer (Micromar). Statistical analysis was performed with Wilcoxon, chi-square, confidence intervals and Spearman (ppain was reported by 55.2% of patients, and the most common descriptor was fatigue (50%); 17.2% had burning mouth. Myofascial temporomandibular disorders were diagnosed in 9 (31%) patients. The study group showed higher sensory thresholds of pain at the right maxillary branch (p=0.017) but sensorial differences were not associated with pain (p=0.608). Glycemia and HbA(1c) were positively correlated with the quantitative sensory testing results of pain (ppain thresholds were correlated with higher glycemia and glycated hemoglobin (p=0.027 and p=0.026). There was a high prevalence of orofacial pain and burning mouth was the most common complaint. The association of loss of pain sensation and higher glycemia and glycated hemoglobin can be of clinical use for the follow-up of DM complications. 2010 Elsevier Ltd. All rights reserved.

  18. Magnetoneurographic evaluation of peripheral nerve regeneration

    NARCIS (Netherlands)

    P.D.L. Kuypers (Paul)

    1998-01-01

    textabstractWhen a peripheral nerve is reconstructed after it has been damaged. it is important to assess, in an early stage, whether the nerve is regenerating across the lesion. However, at present for this purpose an adequate method is not available. In this study short term changes in the

  19. Peripheral Protein Unfolding Drives Membrane Bending.

    Science.gov (United States)

    Siaw, Hew Ming Helen; Raghunath, Gokul; Dyer, R Brian

    2018-06-20

    Dynamic modulation of lipid membrane curvature can be achieved by a number of peripheral protein binding mechanisms such as hy-drophobic insertion of amphipathic helices and membrane scaffolding. Recently, an alternative mechanism was proposed in which crowding of peripherally bound proteins induces membrane curvature through steric pressure generated by lateral collisions. This effect was enhanced using intrinsically disordered proteins that possess high hydrodynamic radii, prompting us to explore whether membrane bending can be triggered by the folding-unfolding transition of surface-bound proteins. We utilized histidine-tagged human serum albumin bound to Ni-NTA-DGS containing liposomes as our model system to test this hypothesis. We found that reduction of the disulfide bonds in the protein resulted in unfolding of HSA, which subsequently led to membrane tubule formation. The frequency of tubule formation was found to be significantly higher when the proteins were unfolded while being localized to a phase-separated domain as opposed to randomly distributed in fluid phase liposomes, indicating that the steric pressure generated from protein unfolding is directly responsible for membrane deformation. Our results are critical for the design of peripheral membrane protein-immobilization strategies and open new avenues for exploring mechanisms of membrane bending driven by conformational changes of peripheral membrane proteins.

  20. Creating social presence through peripheral awareness

    NARCIS (Netherlands)

    Ruyter, de B.E.R.; Huijnen, C.A.G.J.; Markopoulos, P.; IJsselsteijn, W.A.; Stephanidis, C.; Jacko, J.

    2003-01-01

    This paper describes an experimental assessment of affective user benefits that may result from peripheral awareness of a remote friend or group of friends during a shared viewing of a televised event. The experiment suggests that awareness supported through a visual display enhances the level of

  1. Habitual Physical Activity, Peripheral Neuropathy, Foot Deformities ...

    African Journals Online (AJOL)

    Results: Habitual physical activity index (3.2 ± 0.83) was highest in work-related activities; 69 (26.1 %) patients presented with peripheral neuropathy and 52 (19. 7%) had the lowest limb function. Pes planus was the most prevalent foot deformity (20.1%). Significant differences existed in physical activity indices across ...

  2. Non malignant peripheral lymphadenopathy in Nigerians ...

    African Journals Online (AJOL)

    Tuberculosis should be suspected and ruled out in patients who present with PL, particularly in rural areas with no access to histopathology services. Keywords: Peripheral lymphadenopathy, Tuberculosis, Toxoplasmosis, Lymphadenitis. Résumé La lymphadenopathie périphérique persistante (PL) qui n'est pas associée ...

  3. Facilitating Cluster Evolution in Peripheral Regions

    DEFF Research Database (Denmark)

    Christensen, Jesper Lindgaard; Störring, Dagmara

    2010-01-01

    This paper discusses the feasibility and dilemmas in stimulating high-tech clusters in peripheral regions. In recent years innovation and cluster policy to a large extend has been focused upon stimulating collective learning processes and building social capital. This has in turn accentuated a ne...

  4. Peripheral cold acclimatization in Antarctic scuba divers.

    Science.gov (United States)

    Bridgman, S A

    1991-08-01

    Peripheral acclimatization to cold in scuba divers stationed at the British Antarctic Survey's Signy Station was investigated during a year in Antarctica. Five divers and five non-diver controls underwent monthly laboratory tests of index finger immersion in cold water for 30 min. Index finger pulp temperature and time of onset of cold-induced vasodilatation (CIVD) were measured. Pain was recorded with verbal and numerical psychophysical subjective pain ratings. Average finger temperatures and median finger pain from 6-30 min of immersion, maximum finger temperatures during the first CIVD cycle, and finger temperatures at the onset of CIVD were calculated. Comparison of the variables recorded from divers and non-divers were performed with analysis of variance. No significant differences were found among the variables recorded from divers and non-divers. From a review of the literature, divers have responses typical of non-cold-adapted Caucasians. There is, therefore, no evidence that Signy divers peripherally acclimatized to cold. We suggest that these findings occur because either the whole body cooling which divers undergo inhibits peripheral acclimatization or because of insufficiently frequent or severe cold exposure while diving. Further basic studies on the duration, frequency and severity of cold exposure necessary to induce peripheral cold acclimatization are required before this question can be satisfactorily answered.

  5. Peripheral blood flow control in diabetes mellitus

    DEFF Research Database (Denmark)

    Hilsted, Jannik

    1991-01-01

    Long term diabetes has a profound effect on the peripheral circulation. This has been demonstrated to be due to the presence of angiopathy and autonomic neuropathy, affecting autoregulation and distensibility of the vessels as well as local and central reflex regulation of the vascular resistance...

  6. PERIPHERAL BLOOD FILM - A REVIEW FEATURE ARTICLES

    African Journals Online (AJOL)

    be abreast with its clinical utility and proper application of the reports in the management of patients. Keywords: Peripheral blood smear, Preparation, Examination, Interpretation, Reporting, Blood cells morphology. FEATURE ARTICLES. Ann Ibd. Pg. Med 2014. Vol.12, No.2 71-79. Annals of Ibadan Postgraduate Medicine.

  7. The Development of Peripheral Vision in Infants.

    Science.gov (United States)

    Guez, Jean R.

    This study investigated the extent of infant peripheral vision, specifically the extent of infants' constricted field, or tunnel vision. Thirteen infants, 2 to 5 months old, were tested using a psychophysical procedure to obtain contrast sensitivity thresholds at four retinal loci (-40, -15, +15, +40 deg.). Infants were placed in an infant bed in…

  8. Habitual physical activity, peripheral neuropathy, foot deformities ...

    African Journals Online (AJOL)

    joint or leg pain), lack of equipment, and exercise partner(s).20. Yet, many of these ... peripheral neuropathy and lower limb functions among a group of Nigerian .... scale for inpatients of an orthopaedic rehabilitation ward found that interclass ...

  9. Central and peripheral distribution of bone marrow on bone marrow scintigraphy with antigranulocytic antibody in hematologic malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young [Dong-A University College of Medicne, Busan (Korea, Republic of); Lee, Jae Tae; Sohn, Sang Kyun; Lee, Kyu Bo [Kyungpook National University School of Medicine, Taegu (Korea, Republic of)

    2002-10-01

    Bone marrow scintigraphy has been used to evaluate the status of bone marrow in various hematologic disorders. We have analyzed the peripheral distribution pattern and central uptake ratio of bone marrow using anti-NCA-95 monoclonal antibody and the their correlation in patients with various hematologic malignancy. Bone marrow immunoscintigraphy was performed using Tc-99m anti-granulocyte monoclonal mouse antibody BW 250/183. Fifty patients were classified into four groups; 11 with acute myelogenous leukemia, 12 with acute lymphocytic leukemia, 15 with lymphoma and 12 with myelodysplastic syndrome. Th extension of peripheral bone marrow was categorized into four grades: I, II, III and IV. The activity of central bone marrow was expressed as sacroiliac uptake ratio. The patient's number was 4 in grade I, 27 in grade II, 15 in grade III and 4 in grade IV according to extension of peripheral bone marrow. The extension of peripheral bone marrow was marked (58% in grade III and IV) in myelodysplastic syndrome and acute lymphocytic leukemia and mild (93% in grade I and II) in lymphoma. Sacroiliac uptake ratio was highest (8.5{+-}4.0) in myelodysplastic syndrome and lowest (5.9{+-}3.6) in acute myelogenous leukemia, but not significantly different among four grades (p=0.003), but there was not correlated between grade of peripheral bone marrow and sacroiliac uptake ratio (r=0.05). Sacroiliac uptake ratio of whole patients was significantly different among four grades (p=0.003), but there was not correlated between grade of peripheral bone marrow and sacroiliac uptake ratio (r=0.05). The pattern of peripheral bone marrow extension and activity of central hemopoietic marrow were not specific to the disease entities. Response of hemopoietic bone marrow may be evaluated on both peripheral and central bone marrow in patients with hematologic malignancy.

  10. Central and peripheral distribution of bone marrow on bone marrow scintigraphy with antigranulocytic antibody in hematologic malignancy

    International Nuclear Information System (INIS)

    Kang, Do Young; Lee, Jae Tae; Sohn, Sang Kyun; Lee, Kyu Bo

    2002-01-01

    Bone marrow scintigraphy has been used to evaluate the status of bone marrow in various hematologic disorders. We have analyzed the peripheral distribution pattern and central uptake ratio of bone marrow using anti-NCA-95 monoclonal antibody and the their correlation in patients with various hematologic malignancy. Bone marrow immunoscintigraphy was performed using Tc-99m anti-granulocyte monoclonal mouse antibody BW 250/183. Fifty patients were classified into four groups; 11 with acute myelogenous leukemia, 12 with acute lymphocytic leukemia, 15 with lymphoma and 12 with myelodysplastic syndrome. Th extension of peripheral bone marrow was categorized into four grades: I, II, III and IV. The activity of central bone marrow was expressed as sacroiliac uptake ratio. The patient's number was 4 in grade I, 27 in grade II, 15 in grade III and 4 in grade IV according to extension of peripheral bone marrow. The extension of peripheral bone marrow was marked (58% in grade III and IV) in myelodysplastic syndrome and acute lymphocytic leukemia and mild (93% in grade I and II) in lymphoma. Sacroiliac uptake ratio was highest (8.5±4.0) in myelodysplastic syndrome and lowest (5.9±3.6) in acute myelogenous leukemia, but not significantly different among four grades (p=0.003), but there was not correlated between grade of peripheral bone marrow and sacroiliac uptake ratio (r=0.05). Sacroiliac uptake ratio of whole patients was significantly different among four grades (p=0.003), but there was not correlated between grade of peripheral bone marrow and sacroiliac uptake ratio (r=0.05). The pattern of peripheral bone marrow extension and activity of central hemopoietic marrow were not specific to the disease entities. Response of hemopoietic bone marrow may be evaluated on both peripheral and central bone marrow in patients with hematologic malignancy

  11. Specialization Patterns

    OpenAIRE

    Schultz , Ulrik Pagh; Lawall , Julia ,; Consel , Charles

    1999-01-01

    Design patterns offer numerous advantages for software development, but can introduce inefficiency into the finished program. Program specialization can eliminate such overheads, but is most effective when targeted by the user to specific bottlenecks. Consequently, we propose to consider program specialization and design patterns as complementary concepts. On the one hand, program specialization can optimize object-oriented programs written using design patterns. On the other hand, design pat...

  12. The potential of electrical stimulation to promote functional recovery after peripheral nerve injury--comparisons between rats and humans.

    Science.gov (United States)

    Gordon, T; Brushart, T M; Amirjani, N; Chan, K M

    2007-01-01

    The declining capacity for injured peripheral nerves to regenerate their axons with time and distance is accounted for, at least in part, by the chronic axotomy of the neurons and Schwann cell denervation prior to target reinnervation. A largely unrecognized site of delay is the surgical suture site where, in rats, 4 weeks is required for all neurons to regenerate their axons across the site. Low frequency stimulation for just 1 h after surgery accelerates this axon crossing in association with upregulation of neurotrophic factors in the neurons. We translated these findings to human patients by examining the number of reinnervated motor units in the median nerve-innervated thenar muscles before and after carpel tunnel release surgery in a randomized controlled trial. Motor unit number estimates (MUNE) in patients with moderate and severe carpal tunnel syndrome were significantly lower than normal. This number increased significantly by 6-8 months after surgery and reached normal values by 12 months in contrast to a non-significant increase in the control unstimulated group. Tests including the Purdue Pegboard Test verified the more rapid functional recovery after stimulation. The data indicate a feasible strategy to promote axonal regeneration in humans that has the potential to improve functional outcomes, especially in combination with strategies to sustain the regenerative capacity of neurons and the support of Schwann cells over distance and time.

  13. The treatment of peripheral nerve injuries using irradiated allografts and temporary host immunosuppression (in a rat model)

    International Nuclear Information System (INIS)

    Easterling, K.J.; Trumble, T.E.

    1990-01-01

    Irradiation of allografts prior to transplantation and host immunosuppression with cyclosporin-A were studied separately and in combination as means of lessening the rejection of transplanted peripheral nerve tissue. Lewis and Brown Norway rats were used in the animal model, as they differ at both major and minor histocompatibility loci. Sciatic nerve grafts (2.5 cm) were used and the animals were followed for 16 weeks after nerve grafting. The outcome was studied by functional measurements (sensory testing, gait analysis, joint flexion contracture, and muscle weight), as well as by measurements of biochemical and histologic parameters (hydroxyproline concentration and axon counts, respectively). Sensory testing was not reliable because of crossover innervation by the saphenous nerve. Evaluation by standard gait-testing techniques was found to be unsatisfactory. However, the allografted animals receiving cyclosporin-A had significantly smaller flexion contractures, compared to the allografted animals without immunosuppression (17 degrees +/- 12 degrees vs. 44 degrees +/- 13 degrees and 51 degrees +/- 13 degrees, p less than 0.005). Allografted animals receiving short-term cyclosporin-A had contractures that were not significantly different from those seen in isografted control animals (17 degrees +/- 12 degrees vs. 22 degrees +/- 15 degrees, NS). Muscle hydroxyproline concentration analysis revealed a lower hydroxyproline concentration among the allografted groups that received irradiated allografts, compared to groups receiving nonirradiated allogeneic grafts. The studies of muscle hydroxyproline concentration and muscle weight both showed substantial reinnervation, even in allografted animals without pretreatment of the grafts or immunosuppression of the recipient animal

  14. The treatment of peripheral nerve injuries using irradiated allografts and temporary host immunosuppression (in a rat model)

    Energy Technology Data Exchange (ETDEWEB)

    Easterling, K.J.; Trumble, T.E. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1990-10-01

    Irradiation of allografts prior to transplantation and host immunosuppression with cyclosporin-A were studied separately and in combination as means of lessening the rejection of transplanted peripheral nerve tissue. Lewis and Brown Norway rats were used in the animal model, as they differ at both major and minor histocompatibility loci. Sciatic nerve grafts (2.5 cm) were used and the animals were followed for 16 weeks after nerve grafting. The outcome was studied by functional measurements (sensory testing, gait analysis, joint flexion contracture, and muscle weight), as well as by measurements of biochemical and histologic parameters (hydroxyproline concentration and axon counts, respectively). Sensory testing was not reliable because of crossover innervation by the saphenous nerve. Evaluation by standard gait-testing techniques was found to be unsatisfactory. However, the allografted animals receiving cyclosporin-A had significantly smaller flexion contractures, compared to the allografted animals without immunosuppression (17 degrees +/- 12 degrees vs. 44 degrees +/- 13 degrees and 51 degrees +/- 13 degrees, p less than 0.005). Allografted animals receiving short-term cyclosporin-A had contractures that were not significantly different from those seen in isografted control animals (17 degrees +/- 12 degrees vs. 22 degrees +/- 15 degrees, NS). Muscle hydroxyproline concentration analysis revealed a lower hydroxyproline concentration among the allografted groups that received irradiated allografts, compared to groups receiving nonirradiated allogeneic grafts. The studies of muscle hydroxyproline concentration and muscle weight both showed substantial reinnervation, even in allografted animals without pretreatment of the grafts or immunosuppression of the recipient animal.

  15. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats.

    Science.gov (United States)

    Jiao, Jian; Bae, Eun Ju; Bandyopadhyay, Gautam; Oliver, Jason; Marathe, Chaitra; Chen, Michael; Hsu, Jer-Yuan; Chen, Yu; Tian, Hui; Olefsky, Jerrold M; Saberi, Maziyar

    2013-04-01

    Gastrointestinal bypass surgeries that result in rerouting and subsequent exclusion of nutrients from the duodenum appear to rapidly alleviate hyperglycemia and hyperinsulinemia independent of weight loss. While the mechanism(s) responsible for normalization of glucose homeostasis remains to be fully elucidated, this rapid normalization coupled with the well-known effects of vagal inputs into glucose homeostasis suggests a neurohormonally mediated mechanism. Our results show that duodenal bypass surgery on obese, insulin-resistant Zucker fa/fa rats restored insulin sensitivity in both liver and peripheral tissues independent of body weight. Restoration of normoglycemia was attributable to an enhancement in key insulin-signaling molecules, including insulin receptor substrate-2, and substrate metabolism through a multifaceted mechanism involving activation of AMP-activated protein kinase and downregulation of key regulatory genes involved in both lipid and glucose metabolism. Importantly, while central nervous system-derived vagal nerves were not essential for restoration of insulin sensitivity, rapid normalization in hepatic gluconeogenic capacity and basal hepatic glucose production required intact vagal innervation. Lastly, duodenal bypass surgery selectively altered the tissue concentration of intestinally derived glucoregulatory hormone peptides in a segment-specific manner. The present data highlight and support the significance of vagal inputs and intestinal hormone peptides toward normalization of glucose and lipid homeostasis after duodenal bypass surgery.

  16. Pattern recognition

    CERN Document Server

    Theodoridis, Sergios

    2003-01-01

    Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to ""learn"" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10

  17. Long term clinical outcome of peripheral nerve stimulation in patients with chronic peripheral neuropathic pain

    DEFF Research Database (Denmark)

    Calenbergh, F. Van; Gybels, J.; Laere, K. Van

    2009-01-01

    BACKGROUND: Chronic neuropathic pain after injury to a peripheral nerve is known to be resistant to treatment. Peripheral nerve stimulation is one of the possible treatment options, which is, however, not performed frequently. In recent years we have witnessed a renewed interest for PNS. The aim...... of the present study was to evaluate the long-term clinical efficacy of PNS in a group of patients with peripheral neuropathic pain treated with PNS since the 1980s. METHODS: Of an original series of 11 patients, 5 patients could be invited for clinical examination, detailed assessment of clinical pain and QST...... functioning) also showed positive effects. Quantitative Sensory Testing results did not show significant differences in cold pain and heat pain thresholds between the "ON" and "OFF" conditions. CONCLUSION: In selected patients with peripheral neuropathic pain PNS remains effective even after more than 20...

  18. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction

    OpenAIRE

    Flatters, Sarah J.L.; Bennett, Gary J.

    2006-01-01

    Paclitaxel chemotherapy frequently induces neuropathic pain during and often persisting after therapy. The mechanisms responsible for this pain are unknown. Using a rat model of paclitaxel-induced painful peripheral neuropathy, we have performed studies to search for peripheral nerve pathology. Paclitaxel-induced mechano-allodynia and mechano-hyperalgesia were evident after a short delay, peaked at day 27 and finally resolved on day 155. Paclitaxel- and vehicle-treated rats were perfused on d...

  19. Peripheral ameloblastic fibro-odontoma or peripheral developing complex odontoma: report of a case

    DEFF Research Database (Denmark)

    Reibel, Jesper; Grønbæk, Anni Birgitte; Poulsen, Sven

    2011-01-01

    BACKGROUND. Peripheral (extraosseous) odontogenic tumors are rare. CASE REPORT. This report describes a case which illustrates the clinical and histopathological features of a lesion in an 8-year-old, healthy Caucasian girl that on purely morphological grounds would seem to be an ameloblastic fibro-odontoma......, but may represent a case of a peripheral developing complex odontoma. CONCLUSION. Conservative surgical enucleation of the lesion was followed by unbcomplicated healing and no recurrence was seen....

  20. Lowered Diversity and Increased Inbreeding Depression within Peripheral Populations of Wild Rice Oryza rufipogon.

    Science.gov (United States)

    Gao, Li-Zhi; Gao, Cheng-Wen

    2016-01-01

    The distribution of genetic variability from the interior towards the periphery of a species' range is of great interest to evolutionary biologists. Although it has been long presumed that population genetic variation should decrease as a species' range is approached, results of empirical investigations still remain ambiguous. Knowledge regarding patterns of genetic variability as well as affected factors is particularly not conclusive in plants. To determine genetic divergence in peripheral populations of the wild rice Oryza rufipogon Griff. from China, genetic diversity and population structure were studied in five northern & northeastern peripheral and 16 central populations using six microsatellite loci. We found that populations resided at peripheries of the species possessed markedly decreased microsatellite diversity than those located in its center. Population size was observed to be positively correlated with microsatellite diversity. Moreover, there are significantly positive correlations between levels of microsatellite diversity and distances from the northern and northeastern periphery of this species. To investigate genetic structure and heterozygosity variation between generations of O. rufipogon, a total of 2382 progeny seeds from 186 maternal families were further assayed from three peripheral and central populations, respectively. Peripheral populations exhibited significantly lower levels of heterozygosities than central populations for both seed and maternal generations. In comparisons with maternal samples, significantly low observed heterozygosity (HO) and high heterozygote deficit within populations (FIS) values were detected in seed samples from both peripheral and central populations. Significantly lower observed heterozygosity (HO) and higher FIS values were further observed in peripheral populations than those in central populations for seed samples. The results indicate an excess of homozygotes and thus high inbreeding depression in

  1. Power Terminal Communication Access Network Monitoring System Scheme Based on Design Patterns

    Science.gov (United States)

    Yan, Shengchao; Wu, Desheng; Zhu, Jiang

    2018-01-01

    In order to realize patterns design for terminal communication monitoring system, this paper introduces manager-workers, tasks-workers design patterns, based on common design patterns such as factory method, chain of responsibility, facade. Using these patterns, the communication monitoring system which combines module-groups like networking communication, business data processing and the peripheral support has been designed successfully. Using these patterns makes this system have great flexibility and scalability and improves the degree of systematic pattern design structure.

  2. Peripheral refraction with dominant design multifocal contact lenses in young myopes

    Directory of Open Access Journals (Sweden)

    Daniela Lopes-Ferreira

    2013-04-01

    Conclusion: It is possible to induce significant changes in the pattern of relative peripheral refraction in the myopic direction with commercially available dominant design multifocal contact lenses. The higher add (+3.00 D induced an significantly higher effect than the +2.00 D add lens, although an increase of 1 D in add power does not correspond to the same amount of increase in RPRE.

  3. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    Science.gov (United States)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  4. F wave index: A diagnostic tool for peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    G R Sathya

    2017-01-01

    Interpretation & conclusions: Our results showed that F wave index in upper limb was significantly lower in patients with peripheral neuropathy than the healthy controls, and could be used for early detection of peripheral neuropathy.

  5. Computed tomographic findings of intrahepatic peripheral cholangiocarcinoma

    International Nuclear Information System (INIS)

    Woo, Seong Ku; Suh, Soo Jhi; Kim, Ho Joon; Chun, Byung Hee

    1986-01-01

    Cholangiocarcinoma is synonymous with bile duct carcinoma, and can originate in a small intrahepatic bile duct (peripheral type), a major intrahepatic duct including the hepatic hills, an extrahepatic duct, or near the papilla of Vater (central type). In a sense bile duct carcinoma of the peripheral type is cholangiocarcinoma of the liver; it has the same gross configuration as hepatocellular carcinoma, resulting in difficulty to differentiate on the CT. The authors studied CT findings of 14 cases of pathologically proven peripheral type cholangiocarcinoma of the liver during the last 4 years. The results were as follows: 1. Of 14 cases, 8 were female and 6 were male, and the age ranged from 5th to 7th decades. 2. Preoperative clinical diagnosis were as follows: hepatoma 8 cases, abscess 5 cases and metastasis 1 case in order of frequency. 3. Diagnosis were confirmed by hepatic lobectomy in 7 cases, wedge resection in 5 cases and needle biopsy in 2 case. 4. Laboratory findings were not specific, but there were only 2 cases with elevated alpha-fetoprotein level. 5. Associated diseases were gallstones in 1 case, intrahepatic duct stones in 1 case, extrahepatic duct stones in 2 cases, acute or chronic cholecystitis in 5 cases and CS in 3 cases. 6. Angiographic and scintigraphic findings were helpful in differential diagnosis from hepatoma but ultrasonography was non-specific. 7. The number of tumor were solitary in 12 cases and multiple in 2 cases. Among solitary cases, the site of involvement of the liver were right lobe in 8 cases and left lobe in 4 cases. 8. Common CT features of the intrahepatic peripheral cholangiocinoma of the liver were irregular, inhomogeneous, occasionally peripherally enhancing, low density liver mass, frequently accompanied by diffuse or segmental dilatation of the intrahepatic bile duct. If there were normal alpha fetoprotein level, positive skin and/or stool examination for CS and diffuse or segmental dilatation of the intrahepatic duct

  6. Geodesic patterns

    KAUST Repository

    Pottmann, Helmut; Huang, Qixing; Deng, Bailin; Schiftner, Alexander; Kilian, Martin; Guibas, Leonidas J.; Wallner, Johannes

    2010-01-01

    Geodesic curves in surfaces are not only minimizers of distance, but they are also the curves of zero geodesic (sideways) curvature. It turns out that this property makes patterns of geodesics the basic geometric entity when dealing with the cladding of a freeform surface with wooden panels which do not bend sideways. Likewise a geodesic is the favored shape of timber support elements in freeform architecture, for reasons of manufacturing and statics. Both problem areas are fundamental in freeform architecture, but so far only experimental solutions have been available. This paper provides a systematic treatment and shows how to design geodesic patterns in different ways: The evolution of geodesic curves is good for local studies and simple patterns; the level set formulation can deal with the global layout of multiple patterns of geodesics; finally geodesic vector fields allow us to interactively model geodesic patterns and perform surface segmentation into panelizable parts. © 2010 ACM.

  7. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  8. Geodesic patterns

    KAUST Repository

    Pottmann, Helmut

    2010-07-26

    Geodesic curves in surfaces are not only minimizers of distance, but they are also the curves of zero geodesic (sideways) curvature. It turns out that this property makes patterns of geodesics the basic geometric entity when dealing with the cladding of a freeform surface with wooden panels which do not bend sideways. Likewise a geodesic is the favored shape of timber support elements in freeform architecture, for reasons of manufacturing and statics. Both problem areas are fundamental in freeform architecture, but so far only experimental solutions have been available. This paper provides a systematic treatment and shows how to design geodesic patterns in different ways: The evolution of geodesic curves is good for local studies and simple patterns; the level set formulation can deal with the global layout of multiple patterns of geodesics; finally geodesic vector fields allow us to interactively model geodesic patterns and perform surface segmentation into panelizable parts. © 2010 ACM.

  9. Peripheral Primitive Neuroectodermal Tumor of the Stomach: A Case Report

    International Nuclear Information System (INIS)

    Park, Woon Ju; Cho, June Sik; Shin, Kyung Sook; Jeong, Hyung Yong; Noh; Seung Moo; Song, Kyu Sang

    2010-01-01

    Peripheral primitive neuroectodermal tumors (peripheral PNETs) are very rare and highly aggressive soft tissue malignancies originating from the neural crest. To the best of our knowledge, only a few cases of peripheral PNETs of the stomach have been reported in the literature. We report a case of large peripheral primitive neuroectodermal tumor of the stomach with MDCT findings in a 22-year-old man presenting epigastric pain and vomiting

  10. Peripheral-type benzodiazepine receptors in the central nervous system: localization to olfactory nerves.

    Science.gov (United States)

    Anholt, R R; Murphy, K M; Mack, G E; Snyder, S H

    1984-02-01

    Binding levels of [3H]Ro5-4864, a ligand selective for peripheral-type benzodiazepine receptors, are substantially higher in homogenates of the olfactory bulb than in the rest of the brain. Among peripheral tissues evaluated, high levels of [3H]Ro5-4864 binding are found in the nasal epithelium. Drug displacement studies show that these binding sites are pharmacologically of the peripheral type. Their presence in the nasal epithelium and in the olfactory bulb can be demonstrated in several different mammalian species. Autoradiographic studies of murine nose reveal a bipolar staining pattern around the cell bodies of the olfactory receptor cells, suggesting the presence of peripheral-type benzodiazepine receptors on both processes of these bipolar neurons. In the brain a high density of [3H]Ro5-4864 binding sites occurs in the nerve fiber and glomerular layers of the olfactory bulb. Throughout the rest of the brain [3H]Ro5-4864-associated silver grains are diffusely distributed with intense staining over the choroid plexus and along the ependymal linings of the ventricles. Both the distribution and the ontogenic development of the peripheral-type benzodiazepine receptors differ from the central-type receptors. Intranasal irrigation with 5% ZnSO4 results in a 50% reduction of peripheral-type benzodiazepine receptors in the olfactory bulb without affecting the density of central-type benzodiazepine receptors. Thus, [3H]Ro5-4864 binding sites in the olfactory bulb appear in large part to be localized to olfactory nerves which originate in the nasal epithelium.

  11. Tumefactive appearance of peripheral nerve involvement in hematologic malignancies: a new imaging association

    Energy Technology Data Exchange (ETDEWEB)

    Capek, Stepan [Mayo Clinic, Department of Neurosurgery, Rochester, Minnesota (United States); St. Anne' s University Hospital Brno, International Clinical Research Center, Brno (Czech Republic); Hebert-Blouin, Marie-Noelle [McGill University, Department of Neurologic Surgery, Montreal, Quebec (Canada); Puffer, Ross C.; Spinner, Robert J. [Mayo Clinic, Department of Neurosurgery, Rochester, Minnesota (United States); Martinoli, Carlo [Universita degli Studi di Genova, Department of Radiology, Genova (Italy); Frick, Matthew A.; Amrami, Kimberly K. [Mayo Clinic, Department of Radiology, Rochester, MN (United States)

    2015-04-29

    In neurolymphomatosis (NL), the affected nerves are typically described to be enlarged and hyperintense on T2W MR sequences and to avidly enhance on gadolinium-enhanced T1WI. This pattern is highly non-specific. We recently became aware of a ''tumefactive pattern'' of NL, neuroleukemiosis (NLK) and neuroplasmacytoma (NPLC), which we believe is exclusive to hematologic diseases affecting peripheral nerves. We defined a ''tumefactive'' appearance as complex, fusiform, hyperintense on T2WI, circumferential tumor masses encasing the involved peripheral nerves. The nerves appear to be infiltrated by the tumor. Both structures show varying levels of homogenous enhancement. We reviewed our series of 52 cases of NL in search of this pattern; two extra outside cases of NL, three cases of NLK, and one case of NPLC were added to the series. We identified 20 tumefactive lesions in 18 patients (14 NL, three NLK, one NPLC). The brachial plexus (n = 7) was most commonly affected, followed by the sciatic nerve (n = 6) and lumbosacral plexus (n = 3). Four patients had involvement of other nerves. All were proven by biopsy: the diagnosis was high-grade lymphoma (n = 12), low-grade lymphoma (n = 3), acute leukemia (n = 2), and plasmacytoma (n = 1). We present a new imaging pattern of ''tumefactive'' neurolymphomatosis, neuroleukemiosis, or neuroplasmacytoma in a series of 18 cases. We believe this pattern is associated with hematologic diseases directly involving the peripheral nerves. Knowledge of this association can provide a clue to clinicians in establishing the correct diagnosis. Bearing in mind that tumefactive NL, NLK, and NPLC is a newly introduced imaging pattern, we still recommend to biopsy patients with suspicion of a malignancy. (orig.)

  12. Peripheral neuropathy in genetically characterized patients with mitochondrial disorders: A study from south India.

    Science.gov (United States)

    Bindu, Parayil Sankaran; Govindaraju, Chikanna; Sonam, Kothari; Nagappa, Madhu; Chiplunkar, Shwetha; Kumar, Rakesh; Gayathri, Narayanappa; Bharath, M M Srinivas; Arvinda, Hanumanthapura R; Sinha, Sanjib; Khan, Nahid Akthar; Govindaraj, Periyasamy; Nunia, Vandana; Paramasivam, Arumugam; Thangaraj, Kumarasamy; Taly, Arun B

    2016-03-01

    There are relatively few studies, which focus on peripheral neuropathy in large cohorts of genetically characterized patients with mitochondrial disorders. This study sought to analyze the pattern of peripheral neuropathy in a cohort of patients with mitochondrial disorders. The study subjects were derived from a cohort of 52 patients with a genetic diagnosis of mitochondrial disorders seen over a period of 8 years (2006-2013). All patients underwent nerve conduction studies and those patients with abnormalities suggestive of peripheral neuropathy were included in the study. Their phenotypic features, genotype, pattern of peripheral neuropathy and nerve conduction abnormalities were analyzed retrospectively. The study cohort included 18 patients (age range: 18 months-50 years, M:F- 1.2:1).The genotype included mitochondrial DNA point mutations (n=11), SURF1 mutations (n=4) and POLG1(n=3). Axonal neuropathy was noted in 12 patients (sensori-motor:n=4; sensory:n=4; motor:n=4) and demyelinating neuropathy in 6. Phenotype-genotype correlations revealed predominant axonal neuropathy in mtDNA point mutations and demyelinating neuropathy in SURF1. Patients with POLG related disorders had both sensory ataxic neuropathy and axonal neuropathy. A careful analysis of the family history, clinical presentation, biochemical, histochemical and structural analysis may help to bring out the mitochondrial etiology in patients with peripheral neuropathy and may facilitate targeted gene testing. Presence of demyelinating neuropathy in Leigh's syndrome may suggest underlying SURF1 mutations. Sensory ataxic neuropathy with other mitochondrial signatures should raise the possibility of POLG related disorder. Copyright © 2015. Published by Elsevier B.V.

  13. 25-Hydroxyvitamin D and Peripheral Immune Mediators

    DEFF Research Database (Denmark)

    Thorsen, Steffen; Pipper, Christian; Skogstrand, Kristin

    2017-01-01

    Background: We aimed to examine if 25-hydroxyvitamin D (25(OH)D) was related to the peripheral immunological and inflammatory signature both at birth, and in newly diagnosed patients with childhood type 1 diabetes (T1D) and their healthy controls; (2) Methods: The birth cohort consisted of 470...... patients and 500 healthy controls. Dried blood samples were collected from the neonates in the period 1981–1999. The newly diagnosed cohort consisted of 460 patients and 453 siblings. Serum samples were collected in the period 1997–2005. A variety of peripheral immune mediators were measured and compared...... to total 25(OH)D levels (25(OH)D2 + 25(OH)D3). For each immune mediator, the relative change (RC) in the mean level was modeled by robust log-normal regression and correction for multiple testing was performed; (3) Results: Two associations were identified; there was a negative association between 25(OH...

  14. Bridge-builders in the peripheral region

    DEFF Research Database (Denmark)

    Leick, Birgit; Gretzinger, Susanne

    (Sotarauta and Pulkkinen 2011). In a similar vein, Burt (2005) argues that actors can drive networking and innovation through connecting a priori unconnected firms and thereby integrate diverse resources and knowledge for the sake of benefitting and developing a business network. Belso-Martinez et al. (2015...... development and, indirectly, local development in the periphery through enhancing networking and innovativeness. As a stylized fact, peripheral regions face important limitations to innovation-based economic development (Danson and De Souza 2012), which impair the potential for firm growth, notably of small......Maggio [1988] versus the concept of network brokers developed by Burt [2005]) into a comparative conceptual framework on innovation-based business networks in peripheral regions. We argue that agents who work for changing the firms’ behaviour towards a more collaborative stance and greater openness...

  15. Light emitting device having peripheral emissive region

    Science.gov (United States)

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  16. Mast cell degranulation breaks peripheral tolerance.

    Science.gov (United States)

    de Vries, V C; Wasiuk, A; Bennett, K A; Benson, M J; Elgueta, R; Waldschmidt, T J; Noelle, R J

    2009-10-01

    Mast cells (MC) have been shown to mediate regulatory T-cell (T(reg))-dependent, peripheral allograft tolerance in both skin and cardiac transplants. Furthermore, T(reg) have been implicated in mitigating IgE-mediated MC degranulation, establishing a dynamic, reciprocal relationship between MC and T(reg) in controlling inflammation. In an allograft tolerance model, it is now shown that intragraft or systemic MC degranulation results in the transient loss of T(reg) suppressor activities with the acute, T-cell dependent rejection of established, tolerant allografts. Upon degranulation, MC mediators can be found in the skin, T(reg) rapidly leave the graft, MC accumulate in the regional lymph node and the T(reg) are impaired in the expression of suppressor molecules. Such a dramatic reversal of T(reg) function and tissue distribution by MC degranulation underscores how allergy may causes the transient breakdown of peripheral tolerance and episodes of acute T-cell inflammation.

  17. [Peripheral intravenous catheter-related phlebitis].

    Science.gov (United States)

    van der Sar-van der Brugge, Simone; Posthuma, E F M Ward

    2011-01-01

    Phlebitis is a very common complication of the use of intravenous catheters. Two patients with an i.v. catheter complicated by thrombophlebitis are described. Patient A was immunocompromised due to chronic lymphatic leukaemia and developed septic thrombophlebitis with positive blood cultures for S. Aureus. Patient B was being treated with flucloxacillin because of an S. Aureus infection and developed chemical phlebitis. Septic phlebitis is rare, but potentially serious. Chemical or mechanical types of thrombophlebitis are usually less severe, but happen very frequently. Risk factors include: female sex, previous episode of phlebitis, insertion at (ventral) forearm, emergency placement and administration of antibiotics. Until recently, routine replacement of peripheral intravenous catheters after 72-96 h was recommended, but randomised controlled trials have not shown any benefit of this routine. A recent Cochrane Review recommends replacement of peripheral intravenous catheters when clinically indicated only.

  18. Multifragmentation in peripheral nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Trautmann, W.; Adloff, J.C.; Bouissou, P.; Hubele, J.; Imme, G.; Iori, I.; Kreutz, P.; Leray, S.; Lindenstruth, V.; Liu, Z.; Lynen, U.; Meijer, R.J.; Milkau, U.; Moroni, A.; Mueller, W.F.J.; Ngo, C.; Ogilvie, C.A.; Pochodzalla, J.; Raciti, G.; Rudolf, G.; Schuettauf, A.; Stuttge, L.

    1993-10-01

    The complete fragmentation of highly excited nuclear systems into fragments of intermediate mass is observed in heavy-ion reactions at relativistic bombarding energies in the range of several hundreds of MeV per nucleon. Similar features are found for peripheral collisions between heavy nuclei and for more central collisions between a heavy and a light nucleus. The partition space explored in multifragment decays is well described by the statistical multifragmentation models. The expansion before breakup is confirmed by the analysis of the measured fragment energies of ternary events in their own rest frame. Collective radial flow is confined to rather small values in these peripheral-type reactions. Many conceptually different models seem to be capable of reproducing the charge correlations measured for the multifragment decays. (orig.)

  19. Radiothermometry indifferential diagnosis of peripheral lung cancer

    International Nuclear Information System (INIS)

    Ginzburg, L.I.; Kogan, E.A.; Yashunskaya, N.I.

    1991-01-01

    Methods of radiothermometry for differential diagnosis of peripheral lung formations using a radiometer operating within 10 cm-wave band were worked out. Altogether 59 patients (of them 45 men) were investigated. Temperature was measured on the chest surface in the area of a lung pathological formation projected on it. Placing its image on the heart and major vessel shadows was avoided. Mean temperature was calculated from 6-8 measurements. Temperature above a peripheral lung tumor was shown to be by 0.5 deg C higher than that of unchanged pulmonary tissue. Benign spheroidal formations (tuberculoma, hamartoma) were characterized by a decrease of 0.6-0.9 deg C as compared to unchanged pulmonary tissue. Comparison of operation of 2 radiometers (the second one operating in the 8 mm-wave band) has shown diagnostic advantages of the first one

  20. Neurophysiological approach to disorders of peripheral nerve

    DEFF Research Database (Denmark)

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves......, plexus, or root lesions). Furthermore pathological processes may result in either demyelination, axonal degeneration or both. In order to reach an exact diagnosis of any neuropathy electrophysiological studies are crucial to obtain information about these variables. Conventional electrophysiological...

  1. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  2. Diagnostics of peripheric plasma in thermonuclear devices

    International Nuclear Information System (INIS)

    Vojtsenya, V.S.; Tereshin, V.I.

    1986-01-01

    Review of basic methods, applied or developed for peripheral plasma diagnostics is given, including electric probes of various types, collecting probes for studying impurity ion and main plasma component characteristics, spectroscopic and corpuscular-optical methods, laser fluorescence spectroscopy, mass-spectrometry, heavy ion and atom (lithium and hydrogen) beam methods. Ranges of plasma parameters their measurements being provided by the methods indicated are presented

  3. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb.

    Science.gov (United States)

    Kowalska, Berta; Sudoł-Szopińska, Iwona

    2012-06-01

    The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the "elevator technique". All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the "Journal of Ultrasonography".

  4. Search Patterns

    CERN Document Server

    Morville, Peter

    2010-01-01

    What people are saying about Search Patterns "Search Patterns is a delight to read -- very thoughtful and thought provoking. It's the most comprehensive survey of designing effective search experiences I've seen." --Irene Au, Director of User Experience, Google "I love this book! Thanks to Peter and Jeffery, I now know that search (yes, boring old yucky who cares search) is one of the coolest ways around of looking at the world." --Dan Roam, author, The Back of the Napkin (Portfolio Hardcover) "Search Patterns is a playful guide to the practical concerns of search interface design. It cont

  5. Peripheral nerve involvement in Bell's palsy

    Directory of Open Access Journals (Sweden)

    J. A. Bueri

    1984-12-01

    Full Text Available A group of patients with Bell's palsy were studied in order to disclose the presence of subclinical peripheral nerve involvement. 20 patients, 8 male and 12 female, with recent Bell's palsy as their unique disease were examined, in all cases other causes of polyneuropathy were ruled out. Patients were investigated with CSF examination, facial nerve latencies in the affected and in the sound sides, and maximal motor nerve conduction velocities, as well as motor terminal latencies from the right median and peroneal nerves. CSF laboratory examination was normal in all cases. Facial nerve latencies were abnormal in all patients in the affected side, and they differed significantly from those of control group in the clinically sound side. Half of the patients showed abnormal values in the maximal motor nerve conduction velocities and motor terminal latencies of the right median and peroneal nerves. These results agree with previous reports which have pointed out that other cranial nerves may be affected in Bell's palsy. However, we have found a higher frequency of peripheral nerve involvement in this entity. These findings, support the hypothesis that in some patients Bell's palsy is the component of a more widespread disease, affecting other cranial and peripheral nerves.

  6. Central and peripheral control of food intake.

    Science.gov (United States)

    Abdalla, M M I

    2017-01-01

    The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.

  7. Central and peripheral control of food intake

    Directory of Open Access Journals (Sweden)

    Abdalla M. M. I.

    2017-01-01

    Full Text Available The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.

  8. Control of peripheral units by satellite computer

    International Nuclear Information System (INIS)

    Tran, K.T.

    1974-01-01

    A computer system was developed allowing the control of nuclear physics experiments, and use of the results by means of graphical and conversational assemblies. This system which is made of two computers, one IBM-370/135 and one Telemecanique Electrique T1600, controls the conventional IBM peripherals and also the special ones made in the laboratory, such as data acquisition display and graphics units. The visual display is implemented by a scanning-type television, equipped with a light-pen. These units in themselves are universal, but their specifications were established to meet the requirements of nuclear physics experiments. The input-output channels of the two computers have been connected together by an interface, designed and implemented in the Laboratory. This interface allows the exchange of control signals and data (the data are changed from bytes into word and vice-versa). The T1600 controls the peripherals mentionned above according to the commands of the IBM370. Hence the T1600 has here the part of a satellite computer which allows conversation with the main computer and also insures the control of its special peripheral units [fr

  9. Auditory attention activates peripheral visual cortex.

    Directory of Open Access Journals (Sweden)

    Anthony D Cate

    Full Text Available BACKGROUND: Recent neuroimaging studies have revealed that putatively unimodal regions of visual cortex can be activated during auditory tasks in sighted as well as in blind subjects. However, the task determinants and functional significance of auditory occipital activations (AOAs remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We examined AOAs in an intermodal selective attention task to distinguish whether they were stimulus-bound or recruited by higher-level cognitive operations associated with auditory attention. Cortical surface mapping showed that auditory occipital activations were localized to retinotopic visual cortex subserving the far peripheral visual field. AOAs depended strictly on the sustained engagement of auditory attention and were enhanced in more difficult listening conditions. In contrast, unattended sounds produced no AOAs regardless of their intensity, spatial location, or frequency. CONCLUSIONS/SIGNIFICANCE: Auditory attention, but not passive exposure to sounds, routinely activated peripheral regions of visual cortex when subjects attended to sound sources outside the visual field. Functional connections between auditory cortex and visual cortex subserving the peripheral visual field appear to underlie the generation of AOAs, which may reflect the priming of visual regions to process soon-to-appear objects associated with unseen sound sources.

  10. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Hana Starobova

    2017-05-01

    Full Text Available Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle—leading to cell death and tumor degradation—and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.

  11. Computer aided diagnosis of diabetic peripheral neuropathy

    Science.gov (United States)

    Chekh, Viktor; Soliz, Peter; McGrew, Elizabeth; Barriga, Simon; Burge, Mark; Luan, Shuang

    2014-03-01

    Diabetic peripheral neuropathy (DPN) refers to the nerve damage that can occur in diabetes patients. It most often affects the extremities, such as the feet, and can lead to peripheral vascular disease, deformity, infection, ulceration, and even amputation. The key to managing diabetic foot is prevention and early detection. Unfortunately, current existing diagnostic techniques are mostly based on patient sensations and exhibit significant inter- and intra-observer differences. We have developed a computer aided diagnostic (CAD) system for diabetic peripheral neuropathy. The thermal response of the feet of diabetic patients following cold stimulus is captured using an infrared camera. The plantar foot in the images from a thermal video are segmented and registered for tracking points or specific regions. The temperature recovery of each point on the plantar foot is extracted using our bio-thermal model and analyzed. The regions that exhibit abnormal ability to recover are automatically identified to aid the physicians to recognize problematic areas. The key to our CAD system is the segmentation of infrared video. The main challenges for segmenting infrared video compared to normal digital video are (1) as the foot warms up, it also warms up the surrounding, creating an ever changing contrast; and (2) there may be significant motion during imaging. To overcome this, a hybrid segmentation algorithm was developed based on a number of techniques such as continuous max-flow, model based segmentation, shape preservation, convex hull, and temperature normalization. Verifications of the automatic segmentation and registration using manual segmentation and markers show good agreement.

  12. Lesions of the dopaminergic innervation of the nucleus accumbens medial shell delay the generation of preference for sucrose, but not of sexual pheromones.

    Science.gov (United States)

    Martínez-Hernández, José; Lanuza, Enrique; Martínez-García, Fernando

    2012-01-15

    Male sexual pheromones are rewarding stimuli for female mice, able to induce conditioned place preference. To test whether processing these natural reinforcing stimuli depends on the dopaminergic innervation of the nucleus accumbens, as for other natural rewards, we compare the effects of specific lesions of the dopaminergic innervation of the medial shell of the nucleus accumbens on two different appetitive behaviours, 'pheromone seeking' and sucrose preferential intake. Female mice, with no previous experience with either adult male chemical stimuli or with sucrose, received injections of 6-hydroxydopamine (or vehicle) in the medial shell of the accumbens. Then, we analyzed their preference for male soiled-bedding and their preferential intake of a sucrose solution, with particular emphasis on the dynamics of acquisition of both natural rewards. The results indicate that both lesioned and sham animals showed similar preference for male sexual pheromones, which was constant along the test (linear dynamics). In contrast, lesioned animals differed from sham operated mice in the dynamics of sucrose consumption in their first test of sucrose preference. Sham animals showed an initial sucrose preference followed by preference for water, which can be interpreted as sucrose neophobia. Lesioned animals showed no preference at the beginning of the test, and a delayed sucrose preference appeared followed by a delayed neophobia. The next day, during a second sucrose-preference test, both groups displayed comparable and sustained preferential sucrose intake. Therefore, dopamine in the medial shell of the nucleus accumbens has a different role on the reward of sexual pheromones and sucrose. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Experimental study of motor nerve innervation of uvala muscle%悬雍垂肌运动神经支配的实验研究

    Institute of Scientific and Technical Information of China (English)

    仲维剑; 张奎启; 王宏青

    2001-01-01

    目的探讨悬雍垂肌运动神经来源及走行路径。方法以家兔为研究对象,应用辣根过氧化物酶(horseridish peroxidase,HRP)逆行追踪技术,配合使用颅内的脑神经根切断术。结果悬雍垂肌的运动神经元位于同侧疑核中;切断一侧副神经延脑根后,疑核内的标记神经元消失。结论悬雍垂肌是疑核内运动神经元的轴突,经副神经延脑根出颅,再经由迷走神经咽支进行支配。%Objective To investigate the motor nerve innervation of uvala muscle. Methods Horseridish peroxidase (HRP) retrograde tracing technique was used in conjunction with selective intracranial severing of cranial nerve rootlets in 8 rabbies. Results Following HRP injection into uvala muscles, labeled motoneurons were located in the rostral section of nucleus ambiguus. No labeled motoneurons were found in the facial nucleus. Labled motoneurons were ipslaterally abolished after the cranial rootlets of accessory nerve on one side were intracranially severed. Conclusions Uvala muscles are innervated by the motoneurons in the nucleus ambiguus. The axons of those motoneurons come out of the cranium through the cranial rootlet of the accessory nerve, then join the vagus, distributed via the pharyngeal branches of vagus.

  14. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    Science.gov (United States)

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the br