WorldWideScience

Sample records for peripheral functional electrical

  1. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    Science.gov (United States)

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients.

  2. Remote-Activated Electrical Stimulation via Piezoelectric Scaffold System for Functional Peripheral and Central Nerve Regeneration

    OpenAIRE

    Low, Karen Gail

    2017-01-01

    A lack of therapeutic technologies that enable electrically stimulating nervous tissues in a facile and clinically relevant manner has partly hindered the advancement in treating nerve injuries for full functional recovery. Currently, the gold standard for nerve repair is autologous nerve grafting. However, this method has several disadvantages, such as necessity for multiple surgeries, creation of functionally impaired region where graft was taken from, disproportion of graft to nerve tissue...

  3. An artificial arm/hand system with a haptic sensory function using electric stimulation of peripheral sensory nerve fibers.

    Science.gov (United States)

    Mabuchi, Kunihiko

    2013-01-01

    We are currently developing an artificial arm/hand system which is capable of sensing stimuli and then transferring these stimuli to users as somatic sensations. Presently, we are evoking the virtual somatic sensations by electrically stimulating a sensory nerve fiber which innervates a single mechanoreceptor unit at the target area; this is done using a tungsten microelectrode that was percutaneously inserted into the use's peripheral nerve (a microstimulation method). The artificial arm/hand system is composed of a robot hand equipped with a pressure sensor system on its fingers. The sensor system detects mechanical stimuli, which are transferred to the user by means of the microstimulation method so that the user experiences the stimuli as the corresponding somatic sensations. In trials, the system worked satisfactorily and there was a good correlation between the pressure applied to the pressure sensors on the robot fingers and the subjective intensities of the evoked pressure sensations.

  4. The potential of electrical stimulation to promote functional recovery after peripheral nerve injury--comparisons between rats and humans.

    Science.gov (United States)

    Gordon, T; Brushart, T M; Amirjani, N; Chan, K M

    2007-01-01

    The declining capacity for injured peripheral nerves to regenerate their axons with time and distance is accounted for, at least in part, by the chronic axotomy of the neurons and Schwann cell denervation prior to target reinnervation. A largely unrecognized site of delay is the surgical suture site where, in rats, 4 weeks is required for all neurons to regenerate their axons across the site. Low frequency stimulation for just 1 h after surgery accelerates this axon crossing in association with upregulation of neurotrophic factors in the neurons. We translated these findings to human patients by examining the number of reinnervated motor units in the median nerve-innervated thenar muscles before and after carpel tunnel release surgery in a randomized controlled trial. Motor unit number estimates (MUNE) in patients with moderate and severe carpal tunnel syndrome were significantly lower than normal. This number increased significantly by 6-8 months after surgery and reached normal values by 12 months in contrast to a non-significant increase in the control unstimulated group. Tests including the Purdue Pegboard Test verified the more rapid functional recovery after stimulation. The data indicate a feasible strategy to promote axonal regeneration in humans that has the potential to improve functional outcomes, especially in combination with strategies to sustain the regenerative capacity of neurons and the support of Schwann cells over distance and time.

  5. Electricity economics. Production functions with electricity

    International Nuclear Information System (INIS)

    Hu, Zhaoguang; Hu, Zheng

    2013-01-01

    The first book studies on the economics of electricity consumption. Compares the sector production functions with electricity and the commercial production functions with electricity. Introduces the global E-GDP function, the European E-GDP function and 12 national E-GDP functions. Presents the gene characters of EAI production functions and E-GDP functions for USA to see why USA's economy is entering an up-industrialization period. Discusses China's economic growth by production functions with electricity. Electricity Economics: Production Functions with Electricity studies the production output from analyzing patterns of electricity consumption. Since electricity data can be used to measure scenarios of economic performance due to its accuracy and reliability, it could therefore also be used to help scholars explore new research frontiers that directly and indirectly benefits human society. Our research initially explores a similar pattern to substitute the Cobb-Douglas function with the production function with electricity to track and forecast economic activities. The book systematically introduces the theoretical frameworks and mathematical models of economics from the perspective of electricity consumption. The E-GDP functions are presented for case studies of more than 20 developed and developing countries. These functions also demonstrate substantial similarities between human DNA and production functions with electricity in terms of four major characteristics, namely replication, mutation, uniqueness, and evolution. Furthermore, the book includes extensive data and case studies on the U.S., China, Japan, etc. It is intended for scientists, engineers, financial professionals, policy makers, consultants, and anyone else with a desire to study electricity economics as well as related applications.

  6. Electricity economics. Production functions with electricity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhaoguang [State Grid Energy Research Institute, Beijing (China); Hu, Zheng [Delaware Univ., Newark, DE (United States)

    2013-07-01

    The first book studies on the economics of electricity consumption. Compares the sector production functions with electricity and the commercial production functions with electricity. Introduces the global E-GDP function, the European E-GDP function and 12 national E-GDP functions. Presents the gene characters of EAI production functions and E-GDP functions for USA to see why USA's economy is entering an up-industrialization period. Discusses China's economic growth by production functions with electricity. Electricity Economics: Production Functions with Electricity studies the production output from analyzing patterns of electricity consumption. Since electricity data can be used to measure scenarios of economic performance due to its accuracy and reliability, it could therefore also be used to help scholars explore new research frontiers that directly and indirectly benefits human society. Our research initially explores a similar pattern to substitute the Cobb-Douglas function with the production function with electricity to track and forecast economic activities. The book systematically introduces the theoretical frameworks and mathematical models of economics from the perspective of electricity consumption. The E-GDP functions are presented for case studies of more than 20 developed and developing countries. These functions also demonstrate substantial similarities between human DNA and production functions with electricity in terms of four major characteristics, namely replication, mutation, uniqueness, and evolution. Furthermore, the book includes extensive data and case studies on the U.S., China, Japan, etc. It is intended for scientists, engineers, financial professionals, policy makers, consultants, and anyone else with a desire to study electricity economics as well as related applications.

  7. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    Science.gov (United States)

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  8. Peptide regulators of peripheral taste function.

    Science.gov (United States)

    Dotson, Cedrick D; Geraedts, Maartje C P; Munger, Steven D

    2013-03-01

    The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode those stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Experimental strategies to promote functional recovery after peripheral nerve injuries.

    Science.gov (United States)

    Gordon, Tessa; Sulaiman, Olawale; Boyd, J Gordon

    2003-12-01

    The capacity of Schwann cells (SCs) in the peripheral nervous system to support axonal regeneration, in contrast to the oligodendrocytes in the central nervous system, has led to the misconception that peripheral nerve regeneration always restores function. Here, we consider how prolonged periods of time that injured neurons remain without targets during axonal regeneration (chronic axotomy) and that SCs in the distal nerve stumps remain chronically denervated (chronic denervation) progressively reduce the number of motoneurons that regenerate their axons. We demonstrate the effectiveness of low-dose, brain-derived neurotrophic and glial-derived neurotrophic factors to counteract the effects of chronic axotomy in promoting axonal regeneration. High-dose brain-derived neurotrophic factor (BDNF) on the other hand, acting through the p75 receptor, inhibits axonal regeneration and may be a factor in stopping regenerating axons from forming neuromuscular connections in skeletal muscle. The immunophilin, FK506, is also effective in promoting axonal regeneration after chronic axotomy. Chronic denervation of SCs (>1 month) severely deters axonal regeneration, although the few motor axons that do regenerate to reinnervate muscles become myelinated and form enlarged motor units in the reinnervated muscles. We found that in vitro incubation of chronically denervated SCs with transforming growth factor-beta re-established their growth-supportive phenotype in vivo, consistent with the idea that the interaction between invading macrophages and denervated SCs during Wallerian degeneration is essential to sustain axonal regeneration by promoting the growth-supportive SC phenotype. Finally, we consider the effectiveness of a brief period of 20 Hz electrical stimulation in promoting the regeneration of axons across the surgical gap after nerve repair.

  10. [Peripheral, central and functional vertigo syndromes].

    Science.gov (United States)

    Strupp, M; Dieterich, M; Zwergal, A; Brandt, T

    2015-12-01

    Depending on the temporal course, three forms of vertigo syndrome can be differentiated: 1) vertigo attacks, e.g. benign paroxysmal positional vertigo (BPPV), Menière's disease and vestibular migraine, 2) acute spontaneous vertigo lasting for days, e.g. acute unilateral vestibulopathy, brainstem or cerebellar infarction and 3) symptoms lasting for months or years, e.g. bilateral vestibulopathy and functional vertigo. The specific therapy of the various syndromes is based on three principles: 1) physical treatment with liberatory maneuvers for BPPV and balance training for vestibular deficits, 2) pharmacotherapy, e.g. for acute unilateral vestibulopathy (corticosteroids) and Menière's disease (transtympanic administration of gentamicin or steroids and high-dose betahistine therapy); placebo-controlled pharmacotherapy studies are currently being carried out for acute unilateral vestibulopathy, vestibular paroxysmia, prophylaxis of BPPV, vestibular migraine, episodic ataxia type 2 and cerebellar ataxia; 3) psychotherapy for functional dizziness.

  11. Low-frequency electrical stimulation induces the proliferation and differentiation of peripheral blood stem cells into Schwann cells.

    Science.gov (United States)

    Gu, Xudong; Fu, Jianming; Bai, Jing; Zhang, Chengwen; Wang, Jing; Pan, Wenping

    2015-02-01

    Functional recovery after peripheral nerve injury remains a tough problem at present. Specifically, a type of glial cell exists in peripheral nerves that promotes axonal growth and myelin formation and secretes various active substances, such as neurotrophic factors, extracellular matrix and adherence factors. These substances have important significance for the survival, growth and regeneration of nerve fibers. Numerous recent studies have shown that electrical stimulation can increase the number of myelinated nerve fibers. However, whether electrical stimulation acts on neurons or Schwann cells has not been verified in vivo. This study investigates low-frequency electrical stimulation-induced proliferation and differentiation of peripheral blood stem cells into Schwann cells and explores possible mechanisms. Peripheral blood stem cells from Sprague-Dawley rats were primarily cultured. Cells in passage 3 were divided into 4 groups: a low-frequency electrical stimulation group (20 Hz, 100 μs, 3 V), a low-frequency electrical stimulation+PD98059 (blocking the extracellular signal-regulated kinase [ERK] signaling pathway) group, a PD98059 group and a control group (no treatment). After induction, the cells were characterized. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide assay was employed to measure the absorbance values at 570 nm in the 4 groups. A Western blot assay was used to detect the expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) in each group. No significant difference in cell viability was detected before induction. Peripheral blood stem cells from the 4 groups differentiated into Schwann cells. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels were highest in the low-frequency electrical stimulation group and lowest in the ERK blockage group. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels in the low-frequency electrical stimulation+ERK blockage group were lower than those in the low-frequency electrical

  12. Reversible conduction block in peripheral nerve using electrical waveforms.

    Science.gov (United States)

    Bhadra, Niloy; Vrabec, Tina L; Bhadra, Narendra; Kilgore, Kevin L

    2018-01-01

    Electrical nerve block uses electrical waveforms to block action potential propagation. Two key features that distinguish electrical nerve block from other nonelectrical means of nerve block: block occurs instantly, typically within 1 s; and block is fully and rapidly reversible (within seconds). Approaches for achieving electrical nerve block are reviewed, including kilohertz frequency alternating current and charge-balanced polarizing current. We conclude with a discussion of the future directions of electrical nerve block. Electrical nerve block is an emerging technique that has many significant advantages over other methods of nerve block. This field is still in its infancy, but a significant expansion in the clinical application of this technique is expected in the coming years.

  13. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  14. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans.

    Science.gov (United States)

    Gordon, Tessa

    2016-04-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.

  15. Studies of Electrically Stimulated Rat Limb and Peripheral Nerve Regeneration.

    Science.gov (United States)

    1983-08-25

    Simple Neurorraphy 0 Lt. Two main theories have evolved as to the mechanism of the effect of electricity on re- The area under the curve representing...Pt bimetallic electrode is placed distal to the The right leg was imp!i.nted with an electrode neurorraphy site, and a comparable reduction in

  16. Peripheral Nerve Function and Lower Extremity Muscle Power in Older Men

    DEFF Research Database (Denmark)

    Ward, Rachel E; Caserotti, Paolo; Faulkner, Kimberly

    2014-01-01

    To assess whether sensorimotor peripheral nerve function is associated with muscle power in community-dwelling older men.......To assess whether sensorimotor peripheral nerve function is associated with muscle power in community-dwelling older men....

  17. Peripheral facial palsy: Speech, communication and oral motor function.

    Science.gov (United States)

    Movérare, T; Lohmander, A; Hultcrantz, M; Sjögreen, L

    2017-02-01

    The aim of the present study was to examine the effect of acquired unilateral peripheral facial palsy on speech, communication and oral functions and to study the relationship between the degree of facial palsy and articulation, saliva control, eating ability and lip force. In this descriptive study, 27 patients (15 men and 12 women, mean age 48years) with unilateral peripheral facial palsy were included if they were graded under 70 on the Sunnybrook Facial Grading System. The assessment was carried out in connection with customary visits to the ENT Clinic and comprised lip force, articulation and intelligibility, together with perceived ability to communicate and ability to eat and control saliva conducted through self-response questionnaires. The patients with unilateral facial palsy had significantly lower lip force, poorer articulation and ability to eat and control saliva compared with reference data in healthy populations. The degree of facial palsy correlated significantly with lip force but not with articulation, intelligibility, perceived communication ability or reported ability to eat and control saliva. Acquired peripheral facial palsy may affect communication and the ability to eat and control saliva. Physicians should be aware that there is no direct correlation between the degree of facial palsy and the possible effect on communication, eating ability and saliva control. Physicians are therefore recommended to ask specific questions relating to problems with these functions during customary medical visits and offer possible intervention by a speech-language pathologist or a physiotherapist. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Effects of Neuromuscular Electrical Stimulation During Hemodialysis on Peripheral Muscle Strength and Exercise Capacity: A Randomized Clinical Trial.

    Science.gov (United States)

    Brüggemann, Ana Karla; Mello, Carolina Luana; Dal Pont, Tarcila; Hizume Kunzler, Deborah; Martins, Daniel Fernandes; Bobinski, Franciane; Pereira Yamaguti, Wellington; Paulin, Elaine

    2017-05-01

    To evaluate the effects of neuromuscular electrical stimulation of high and low frequency and intensity, performed during hemodialysis, on physical function and inflammation markers in patients with chronic kidney disease (CKD). Randomized clinical trial. Hemodialysis clinic. Patients with CKD (N=51) were randomized into blocks of 4 using opaque sealed envelopes. They were divided into a group of high frequency and intensity neuromuscular electrical stimulation and a group of low frequency and intensity neuromuscular electrical stimulation. The high frequency and intensity neuromuscular electrical stimulation group was submitted to neuromuscular electrical stimulation at a frequency of 50Hz and a medium intensity of 72.90mA, and the low frequency and intensity neuromuscular electrical stimulation group used a frequency of 5Hz and a medium intensity of 13.85mA, 3 times per week for 1 hour, during 12 sessions. Peripheral muscle strength, exercise capacity, levels of muscle trophism marker (insulin growth factor 1) and levels of proinflammatory (tumor necrosis factor α) and anti-inflammatory (interleukin 10) cytokines. The high frequency and intensity neuromuscular electrical stimulation group showed a significant increase in right peripheral muscle strength (155.35±65.32Nm initial vs 161.60±68.73Nm final; P=.01) and left peripheral muscle strength (156.60±66.51Nm initial vs 164.10±69.76Nm final; P=.02) after the training, which did not occur in the low frequency and intensity neuromuscular electrical stimulation group for both right muscle strength (109.40±32.08Nm initial vs 112.65±38.44Nm final; P=.50) and left muscle strength (113.65±37.79Nm initial vs 116.15±43.01Nm final; P=.61). The 6-minute walk test distance (6MWTD) increased in both groups: high frequency and intensity neuromuscular electrical stimulation group (435.55±95.81m initial vs 457.25±90.64m final; P=.02) and low frequency and intensity neuromuscular electrical stimulation group (403.80

  19. Influence of cochlear implantation on peripheral vestibular receptor function.

    Science.gov (United States)

    Krause, Eike; Louza, Julia P R; Wechtenbruch, Juliane; Gürkov, Robert

    2010-06-01

    The objectives of this study were 1) to assess the influence of a cochlear implantation on peripheral vestibular receptor function in the inner ear in the implant and in the nonimplant side, and 2) to analyze a possible correlation with resulting vertigo symptoms. Prospective clinical study. Cochlear implant center at tertiary referral hospital. A total of 32 patients, aged 15 to 83 years, undergoing cochlear implantation were assessed pre- and postoperatively for caloric horizontal semicircular canal response and vestibular-evoked myogenic potentials of the sacculus, and postoperatively for subjective vertigo symptoms. Patients with vertigo were compared with patients without symptoms with regard to the findings of the vestibular function tests. Cochlear implantation represents a significant risk factor for horizontal semicircular canal impairment (P 0.05). Cochlear implantation is a relevant risk factor for damage of peripheral vestibular receptor function. Therefore, preservation not only of residual hearing function but also of vestibular function should be aimed for, by using minimally invasive surgical techniques. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  20. Peripheral electrical stimulation in Alzheimer's disease - A randomized controlled trial on cognition and behavior

    NARCIS (Netherlands)

    van Dijk, Koene R.A.; Scheltens, Philip; Luijpen, Marijn W.; Sergeant, Joseph A.; Scherder, Erik J.A.

    2005-01-01

    In a number of studies, peripheral electrical nerve stimulation has been applied to Alzheimer's disease (AD) patients who lived in a nursing home. Improvements were observed in memory, verbal fluency, affective behavior, activities of daily living and on the rest-activity rhythm and pupillary light

  1. Interferential electrical stimulation improves peripheral vasodilatation in healthy individuals

    Directory of Open Access Journals (Sweden)

    Francisco V. Santos

    2013-06-01

    Full Text Available BACKGROUND: Interferential electrical stimulation (IES, which may be linked to greater penetration of deep tissue, may restore blood flow by sympathetic nervous modulation; however, studies have found no association between the frequency and duration of the application and blood flow. We hypothesized that 30 min of IES applied to the ganglion stellate region might improve blood flow redistribution. OBJECTIVES: The purpose of this study was to determine the effect of IES on metaboreflex activation in healthy individuals. METHOD: Interferential electrical stimulation or a placebo stimulus (same protocol without electrical output was applied to the stellate ganglion region in eleven healthy subjects (age 25±1.3 years prior to exercise. Mean blood pressure (MBP, heart rate (HR, calf blood flow (CBF and calf vascular resistance (CVR were measured throughout exercise protocols (submaximal static handgrip exercise and with recovery periods with or without postexercise circulatory occlusion (PECO+ and PECO -, respectively. Muscle metaboreflex control of calf vascular resistance was estimated by subtracting the area under the curve when circulation was occluded from the area under the curve from the AUC without circulatory occlusion. RESULTS: At peak exercise, increases in mean blood pressure were attenuated by IES (p<0.05, and the effect persisted under both the PECO+ and PECO- treatments. IES promoted higher CBF and lower CVR during exercise and recovery. Likewise, IES induced a reduction in the estimated muscle metaboreflex control (placebo, 21±5 units vs. IES, 6±3, p<0.01. CONCLUSION: Acute application of IES prior to exercise attenuates the increase in blood pressure and vasoconstriction during exercise and metaboreflex activation in healthy subjects.

  2. Sensorimotor peripheral nerve function and physical activity in older men

    DEFF Research Database (Denmark)

    Lange-Maia, B. S.; Cauley, J A; Newman, Anne B

    2016-01-01

    We determined whether sensorimotor peripheral nerve (PN) function was associated with physical activity (PA) in older men. The Osteoporotic Fractures in Men Study Pittsburgh, PA, site (n = 328, age 78.8 ± 4.7 years) conducted PN testing, including: peroneal motor and sural sensory nerve conduction...... (latencies, amplitudes: CMAP and SNAP for motor and sensory amplitude, respectively), 1.4g/10g monoflament (dorsum of the great toe), and neuropathy symptoms. ANOVA and multivariate linear regression modeled PN associations with PA (Physical Activity Scale for the Elderly [PASE] and SenseWear Armband). After...

  3. Melatonin membrane receptors in peripheral tissues: Distribution and functions

    Science.gov (United States)

    Slominski, Radomir M.; Reiter, Russel J.; Schlabritz-Loutsevitch, Natalia; Ostrom, Rennolds S.; Slominski, Andrzej T.

    2012-01-01

    Many of melatonin’s actions are mediated through interaction with the G-protein coupled membrane bound melatonin receptors type 1 and type 2 (MT1 and MT2, respectively) or, indirectly with nuclear orphan receptors from the RORα/RZR family. Melatonin also binds to the quinone reductase II enzyme, previously defined the MT3 receptor. Melatonin receptors are widely distributed in the body; herein we summarize their expression and actions in non-neural tissues. Several controversies still exist regarding, for example, whether melatonin binds the RORα/RZR family. Studies of the peripheral distribution of melatonin receptors are important since they are attractive targets for immunomodulation, regulation of endocrine, reproductive and cardiovascular functions, modulation of skin pigmentation, hair growth, cancerogenesis, and aging. Melatonin receptor agonists and antagonists have an exciting future since they could define multiple mechanisms by which melatonin modulates the complexity of such a wide variety of physiological and pathological processes. PMID:22245784

  4. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans

    OpenAIRE

    Gordon, Tessa

    2016-01-01

    Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regene...

  5. Massage Therapy Restores Peripheral Vascular Function following Exertion

    Science.gov (United States)

    Franklin, Nina C.; Ali, Mohamed M.; Robinson, Austin T.; Norkeviciute, Edita; Phillips, Shane A.

    2014-01-01

    Objective To determine if lower extremity exercise-induced muscle injury (EMI) reduces vascular endothelial function of the upper extremity and if massage therapy (MT) improves peripheral vascular function after EMI. Design Randomized, blinded trial with evaluations at 90 minutes, 24 hours, 48 hours, and 72 hours. Setting Clinical research center at an academic medical center and laboratory Participants Thirty-six sedentary young adults were randomly assigned to one of three groups: 1) EMI + MT (n=15; mean age ± standard error (SE): 26.6±0.3), 2) EMI only (n=10; mean age ± SE: 23.6±0.4), and 3) MT only (n=11; mean age ± SE: 25.5 ± 0.4). Intervention Participants were assigned to either EMI only (a single bout of bilateral, eccentric leg-press exercise), MT only (30-minute lower extremity massage using Swedish technique), or EMI + MT. Main outcome measures Brachial artery flow-mediated dilation (FMD) was determined by ultrasound at each time point. Nitroglycerin-induced dilation was also assessed (NTG; 0.4 mg). Results Brachial FMD increased from baseline in the EMI + MT group and the MT only group (7.38±0.18 to 9.02±0.28%, p<0.05 and 7.77±0.25 to 10.20±0.22%, p < 0.05, respectively) at 90 minutes remaining elevated until 72 hrs. In the EMI only group FMD was reduced from baseline at 24 and 48 hrs (7.78±0.14 to 6.75±0.11%, p<0.05 and 6.53±0.11, p<0.05, respectively) returning to baseline after 72 hrs. Dilations to NTG were similar over time. Conclusions Our results suggest that MT attenuates impairment of upper extremity endothelial function resulting from lower extremity EMI in sedentary young adults. PMID:24583315

  6. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    Wang Weiwei; Liu Hanqiu

    2013-01-01

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  7. Electrical muscle stimulation elevates intramuscular BDNF and GDNF mRNA following peripheral nerve injury and repair in rats.

    Science.gov (United States)

    Willand, Michael P; Rosa, Elyse; Michalski, Bernadeta; Zhang, Jennifer J; Gordon, Tessa; Fahnestock, Margaret; Borschel, Gregory H

    2016-10-15

    Despite advances in surgery, patients with nerve injuries frequently have functional deficits. We previously demonstrated in a rat model that daily electrical muscle stimulation (EMS) following peripheral nerve injury and repair enhances reinnervation, detectable as early as two weeks post-injury. In this study, we explain the enhanced early reinnervation observed with electrical stimulation. In two groups of rats, the tibial nerve was transected and immediately repaired. Gastrocnemius muscles were implanted with intramuscular electrodes for sham or muscle stimulation. Muscles were stimulated daily, eliciting 600 contractions for one hour/day, repeated five days per week. Sixteen days following nerve injury, muscles were assessed for functional reinnervation by motor unit number estimation methods using electromyographic recording. In a separate cohort of rats, surgical and electrical stimulation procedures were identical but muscles and distal nerve stumps were harvested for molecular analysis. We observed that stimulated muscles had significantly higher motor unit number counts. Intramuscular levels of brain-derived and glial cell line-derived neurotrophic factor (BDNF and GDNF) mRNA were significantly upregulated in muscles that underwent daily electrical stimulation compared to those without stimulation. The corresponding levels of trophic factor mRNA within the distal stump were not different from one another, indicating that the intramuscular electrical stimulus does not modulate Schwann cell-derived trophic factor transcription. Stimulation over a three-month period maintained elevated muscle-derived GDNF but not BDNF mRNA. In conclusion, EMS elevates intramuscular trophic factor mRNA levels which may explain how EMS enhances neural regeneration following nerve injury. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study.

    Science.gov (United States)

    Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu

    2018-04-23

    Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. [Functional electric stimulation (FES) in cerebral palsy].

    Science.gov (United States)

    Miyazaki, M H; Lourenção, M I; Ribeiro Sobrinho, J B; Battistella, L R

    1992-01-01

    Our study concerns a patient with cerebral palsy, submitted to conventional occupational therapy and functional electrical stimulation. The results as to manual ability, spasticity, sensibility and synkinesis were satisfactory.

  10. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    Science.gov (United States)

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  11. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy

    International Nuclear Information System (INIS)

    Areti, Aparna; Komirishetty, Prashanth; Kumar, Ashutosh

    2017-01-01

    Oxaliplatin use as chemotherapeutic agent is frequently limited by cumulative neurotoxicity which may compromise quality of life. Reports relate this neurotoxic effect to oxidative stress and mitochondrial dysfunction in peripheral nerves and dorsal root ganglion (DRG). Carvedilol is an antihypertensive drug, has also been appreciated for its antioxidant and mitoprotective properties. Carvedilol co-treatment did not reduce the anti-tumor effects of oxaliplatin in human colon cancer cells (HT-29), but exhibited free radical scavenging activity against oxaliplatin-induced oxidative stress in neuronal cells (Neuro-2a). Hence, the present study was designed to investigate the effect of carvedilol in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in Sprague-Dawley rats. Oxaliplatin reduced the sensory nerve conduction velocity and produced the thermal and mechanical nociception. Carvedilol significantly (P < 0.001) attenuated these functional and sensorimotor deficits. It also counteracted oxidative/nitrosative stress by reducing the levels of nitrotyrosine and improving the mitochondrial superoxide dismutase expression in both sciatic nerve and DRG tissues. It improved the mitochondrial function and prevented the oxaliplatin-induced alteration in mitochondrial membrane potential in sciatic nerve thus prevented loss of intra epidermal nerve fiber density in the foot pads. Together the results prompt the use of carvedilol along with chemotherapy with oxaliplatin to prevent the peripheral neuropathy. - Graphical abstract: Schematic representation neuroprotective mechanisms of carvedilol in oxaliplatin-induced peripheral neuropathy. - Highlights: • Oxaliplatin-induced mitochondrial dysfunction causes neurotoxicity. • Mitochondrial dysfunction leads to bioenergetic and functional deficits. • Carvedilol alleviated oxaliplatin-induced behavioural and functional changes. • Targeting mitochondria with carvedilol attenuated neuropathic pain.

  12. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Areti, Aparna; Komirishetty, Prashanth; Kumar, Ashutosh, E-mail: ashutosh.niperhyd@gov.in

    2017-05-01

    Oxaliplatin use as chemotherapeutic agent is frequently limited by cumulative neurotoxicity which may compromise quality of life. Reports relate this neurotoxic effect to oxidative stress and mitochondrial dysfunction in peripheral nerves and dorsal root ganglion (DRG). Carvedilol is an antihypertensive drug, has also been appreciated for its antioxidant and mitoprotective properties. Carvedilol co-treatment did not reduce the anti-tumor effects of oxaliplatin in human colon cancer cells (HT-29), but exhibited free radical scavenging activity against oxaliplatin-induced oxidative stress in neuronal cells (Neuro-2a). Hence, the present study was designed to investigate the effect of carvedilol in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in Sprague-Dawley rats. Oxaliplatin reduced the sensory nerve conduction velocity and produced the thermal and mechanical nociception. Carvedilol significantly (P < 0.001) attenuated these functional and sensorimotor deficits. It also counteracted oxidative/nitrosative stress by reducing the levels of nitrotyrosine and improving the mitochondrial superoxide dismutase expression in both sciatic nerve and DRG tissues. It improved the mitochondrial function and prevented the oxaliplatin-induced alteration in mitochondrial membrane potential in sciatic nerve thus prevented loss of intra epidermal nerve fiber density in the foot pads. Together the results prompt the use of carvedilol along with chemotherapy with oxaliplatin to prevent the peripheral neuropathy. - Graphical abstract: Schematic representation neuroprotective mechanisms of carvedilol in oxaliplatin-induced peripheral neuropathy. - Highlights: • Oxaliplatin-induced mitochondrial dysfunction causes neurotoxicity. • Mitochondrial dysfunction leads to bioenergetic and functional deficits. • Carvedilol alleviated oxaliplatin-induced behavioural and functional changes. • Targeting mitochondria with carvedilol attenuated neuropathic pain.

  13. Functional evaluation of peripheral nerve regeneration in the rat : walking track analysis

    NARCIS (Netherlands)

    Varejao, ASP; Meek, MF; Patricio, JAB; Cabrita, AMS

    2001-01-01

    The experimental model of choice for many peripheral nerve investigators is the rat. Walking track analysis is a useful tool in the evaluation of functional peripheral nerve recovery in the rat. This quantitative method of analyzing hind limbs performance by examining footprints, known as the

  14. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system.

    Science.gov (United States)

    Gordon, Tessa; Udina, Esther; Verge, Valerie M K; de Chaves, Elena I Posse

    2009-10-01

    Injured peripheral but not central nerves regenerate their axons but functional recovery is often poor. We demonstrate that prolonged periods of axon separation from targets and Schwann cell denervation eliminate regenerative capacity in the peripheral nervous system (PNS). A substantial delay of 4 weeks for all regenerating axons to cross a site of repair of sectioned nerve contributes to the long period of separation. Findings that 1h 20Hz bipolar electrical stimulation accelerates axon outgrowth across the repair site and the downstream reinnervation of denervated muscles in rats and human patients, provides a new and exciting method to improve functional recovery after nerve injuries. Drugs that elevate neuronal cAMP and activate PKA promote axon outgrowth in vivo and in vitro, mimicking the electrical stimulation effect. Rapid expression of neurotrophic factors and their receptors and then of growth associated proteins thereafter via cAMP, is the likely mechanism by which electrical stimulation accelerates axon outgrowth from the site of injury in both peripheral and central nervous systems.

  15. Electricity price forecasting through transfer function models

    International Nuclear Information System (INIS)

    Nogales, F.J.; Conejo, A.J.

    2006-01-01

    Forecasting electricity prices in present day competitive electricity markets is a must for both producers and consumers because both need price estimates to develop their respective market bidding strategies. This paper proposes a transfer function model to predict electricity prices based on both past electricity prices and demands, and discuss the rationale to build it. The importance of electricity demand information is assessed. Appropriate metrics to appraise prediction quality are identified and used. Realistic and extensive simulations based on data from the PJM Interconnection for year 2003 are conducted. The proposed model is compared with naive and other techniques. Journal of the Operational Research Society (2006) 57, 350-356.doi:10.1057/palgrave.jors.2601995; published online 18 May 2005. (author)

  16. Role of metallothioneins in peripheral nerve function and regeneration

    DEFF Research Database (Denmark)

    Ceballos, D; Lago, N; Verdú, E

    2003-01-01

    The physiological role of the metallothionein (MT) family of proteins during peripheral nerve injury and regeneration was examined in Mt1+ 2 and Mt3 knockout (KO) mice. To this end, the right sciatic nerve was crushed, and the regeneration distance was evaluated by the pinch test 2-7 days....... The improved regeneration observed with the Mt3 KO mice was confirmed by compound nerve action potentials that were recorded from digital nerves at 14 dpl only in this group. We conclude that Mt3 normally inhibits peripheral nerve regeneration........ Moreover, the number of regenerating axons in the distal tibial nerve was significantly higher in Mt3KO mice than in the other two strains at 14 dpl. Immunoreactive profiles to protein gene product 9.5 were present in the epidermis and the sweat glands of the plantar skin of the hindpaw of the Mt3 KO group...

  17. Green functions in an external electric field

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Shvartsman, Sh.M.

    1979-01-01

    In the framework of scalar quantum electrodynamics, when vacuum is unstable as to the birth of electron-positron couples, calculated have been Green functions for the case of stable homogeneous electric field. By summing corresponding solutions of the Klein-Gordon equation of the Green function are obtained in the form of contour integrals according to the proper time. Operation representations of all the calculated Green functions in the mentioned field are presented

  18. Mobility-Related Consequences of Reduced Lower-Extremity Peripheral Nerve Function with Age

    DEFF Research Database (Denmark)

    Ward, Rachel E; Caserotti, P.; Cauley, Jane A

    2016-01-01

    -dwelling and institutionalized residents, 1 from a range of residential locations, and 1 of patients with peripheral arterial disease. Mean ages ranged from 71-82 years. Nerve function was assessed by vibration threshold (n=2); sensory measures and clinical signs and symptoms of neuropathy (n=2); motor nerve conduction (n=1......The objective of this study is to systematically review the relationship between lower-extremity peripheral nerve function and mobility in older adults. The National Library of Medicine (PubMed) was searched on March 23, 2015 with no limits on publication dates. One reviewer selected original...... research studies of older adults (>= 65 years) that assessed the relationship between lower-extremity peripheral nerve function and mobility-related outcomes. Participants, study design and methods of assessing peripheral nerve impairment were evaluated and results were reported and synthesized. Eight...

  19. Electrical tensor Green functions for cylindrical waveguides

    International Nuclear Information System (INIS)

    Prijmenko, S.D.; Papkovich, V.G.; Khizhnyak, N.A.

    1988-01-01

    Formation of electrical tensor Green functions for cylindrical waveguides is considered. Behaviour of these functions in the source region is studied. Cases of electrical tensor Green functions for vector potential G E (r-vector, r'-vector) and electric field G e (r-vector, r'-vector) are analysed. When forming G E (r-vector, r'-vector), its dependence on lateral coordinates is taken into account by means of two-dimensional fundamental vector Hansen functions, several methods are used to take into account the dependence on transverse coordinate. When forming G e (r-vector, r'-vector) we use the fact that G E (r-vector, r'-vector) and G e (r-vector, r'-vector) are the generalized functions. It is shown that G e (r-vector, r'-vector) behaviour in the source region is defined by a singular term, which properties are described by the delta-function. Two variants of solving the problem of defining singular and regular sides of tensor function G E (r-vector, r'-vector) are presented. 23 refs

  20. Usefulness of peripheral vascular function to predict functional health status in patients with Fontan circulation.

    Science.gov (United States)

    Goldstein, Bryan H; Golbus, Jessica R; Sandelin, Angela M; Warnke, Nicole; Gooding, Lindsay; King, Karen K; Donohue, Janet E; Gurney, James G; Goldberg, Caren S; Rocchini, Albert P; Charpie, John R

    2011-08-01

    After the Fontan operation, patients are at a substantial risk of the development of impaired functional health status. Few early markers of suboptimal outcomes have been identified. We sought to assess the association between peripheral vascular function and functional health status in Fontan-palliated patients. Asymptomatic Fontan patients (n = 51) and age- and gender-matched healthy controls (n = 22) underwent endothelial pulse amplitude testing using a noninvasive fingertip peripheral arterial tonometry (PAT) device. Raw data were transformed into the PAT ratio, an established marker of vascular function. Cardiopulmonary exercise testing was performed using the Bruce protocol. In the Fontan cohort, 94% of patients were New York Heart Association functional class I and 88% had a B-type natriuretic peptide level of interquartile range 1.96 to 4.13 vs median 1.86, interquartile range 1.14 to 2.79, p = 0.03). The PAT ratio, a measure of reactive hyperemia, was lower in Fontan patients (median 0.17, interquartile range -0.04 to 0.44, vs median 0.50, interquartile range 0.27 to 0.74, p = 0.002). The key parameters of exercise performance, including peak oxygen consumption (median 28.8 ml/kg/min, interquartile range 25.6 to 33.2 vs median 45.5 ml/kg/min, interquartile range 41.7 to 49.9, p interquartile range 150 to 246 vs median 330, interquartile range 209 to 402 W, p <0.0001), were lower in Fontan patients than in the controls. The PAT ratio correlated with the peak oxygen consumption (r = 0.28, p = 0.02) and peak work (r = 0.26, p = 0.03). In conclusion, in an asymptomatic Fontan population, there is evidence of reduced basal peripheral arterial tone and vasodilator response, suggesting dysfunction of the endothelium-derived nitric oxide pathway. Vasodilator function appears to correlate with exercise performance. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Long-term effects of bariatric surgery on peripheral endothelial function and coronary microvascular function.

    Science.gov (United States)

    Tarzia, Pierpaolo; Lanza, Gaetano A; Sestito, Alfonso; Villano, Angelo; Russo, Giulio; Figliozzi, Stefano; Lamendola, Priscilla; De Vita, Antonio; Crea, Filippo

    We previously demonstrated that bariatric surgery (BS) leads to a short-term significant improvement of endothelial function and coronary microvascular function. In this study we assessed whether BS maintains its beneficial effect at long-term follow up. We studied 19 morbidly obese patients (age 43±9years, 12 women) without any evidence of cardiovascular disease who underwent BS. Patients were studied before BS, at 3 months and at 4.0±1.5years follow up. Peripheral vascular function was assessed by flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD), i.e., brachial artery diameter changes in response to post-ischemic forearm hyperhaemia and to nitroglycerin administration, respectively. Coronary microvascular function was assessed by measuring coronary blood flow (CBF) response to intravenous adenosine and to cold pressor test (CPT) in the left anterior descending coronary artery. Together with improvement of anthropometric and metabolic profile, at long-term follow-up patients showed a significant improvement of FMD (6.43±2.88 vs. 8.21±1.73%, p=0.018), and CBF response to both adenosine (1.73±0.48 vs. 2.58±0.54; pfunction and on coronary microvascular dilator function. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  2. Inhibitory Mechanisms in Primary Somatosensory Cortex Mediate the Effects of Peripheral Electrical Stimulation on Tactile Spatial Discrimination.

    Science.gov (United States)

    Saito, Kei; Otsuru, Naofumi; Inukai, Yasuto; Kojima, Sho; Miyaguchi, Shota; Tsuiki, Shota; Sasaki, Ryoki; Onishi, Hideaki

    2018-06-01

    Selective afferent activation can be used to improve somatosensory function, possibly by altering cortical inhibitory circuit activity. Peripheral electrical stimulation (PES) is widely used to induce selective afferent activation, and its effect may depend on PES intensity. Therefore, we investigated the effects of high- and low-intensity PES applied to the right index finger on tactile discrimination performance and cortical sensory-evoked potential paired-pulse depression (SEP-PPD) in 25 neurologically healthy subjects. In Experiment 1, a grating orientation task (GOT) was performed before and immediately after local high- and low-intensity PES (both delivered as 1-s, 20-Hz trains of 0.2-ms electrical pulses at 5-s intervals). In Experiment 2, PPD of SEP components N20/P25_SEP-PPD and N20_SEP-PPD, respectively, were assessed before and immediately after high- and low-intensity PES. Improved GOT discrimination performance after high-intensity PES (reduced discrimination threshold) was associated with lower baseline performance (higher baseline discrimination threshold). Subjects were classified into low and high (baseline) GOT performance groups. Improved GOT discrimination performance in the low GOT performance group was significantly associated with a greater N20_SEP-PPD decrease (weaker PPD). Subjects were also classified into GOT improvement and GOT decrement groups. High-intensity PES decreased N20_SEP-PPD in the GOT improvement group but increased N20_SEP-PPD in the GOT decrement group. Furthermore, a greater decrease in GOT discrimination threshold was significantly associated with a greater N20_SEP-PPD decrease in the GOT improvement group. These results suggest that high-intensity PES can improve sensory perception in subjects with low baseline function by modulating cortical inhibitory circuits in primary somatosensory cortex. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Transcutaneous electrical neurostimulation in functional pain.

    Science.gov (United States)

    Richardson, R R; Arbit, J; Siqueira, E B; Zagar, R

    1981-01-01

    Transcutaneous electrical neurostimulation (TENS) has recently emerged as a distinct therapeutic modality in the alleviation of acute and chronic pain. We applied this modality to 15 nonsurgical low-back pain patients having diagnoses of functional pain, with 40% initially having significant pain relief (50% of greater). However, this pain-alleviating effect of TENS did not last longer than two months. After initiation of neurostimulation, increased pain and/or bizarre and inappropriate sensations and behavior frequently developed. We also applied this modality in the diagnostic evaluation and treatment of 24 patients having diagnoses of postsurgical chronic intractable low-back pain of psychosomatic origin and achieved similar results. In both groups, we utilized a simplified poststimulation "normal-saline-sterile-water intramuscular injection test" to confirm the findings from transcutaneous electrical neurostimulation and to verify the functional basis of the present low-back pain.

  4. A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2017-01-01

    . A single ANF is modeled as a network of two exponential integrateand-fire point-neuron models, referred to as peripheral and central axons of the ANF. The peripheral axon is excited by the cathodic charge, inhibited by the anodic charge, and exhibits longer spike latencies than the central axon......A computational model of cat auditory nerve fiber (ANF) responses to electrical stimulation is presented. The model assumes that (1) there exist at least two sites of spike generation along the ANF and (2) both an anodic (positive) and a cathodic (negative) charge in isolation can evoke a spike......; the central axon is excited by the anodic charge, inhibited by the cathodic charge, and exhibits shorter spike latencies than the peripheral axon. The model also includes subthreshold and suprathreshold adaptive feedback loops which continuously modify the membrane potential and can account for effects...

  5. Regulation of macrophage development and function in peripheral tissues

    Science.gov (United States)

    Lavin, Yonit; Mortha, Arthur; Rahman, Adeeb; Merad, Miriam

    2015-01-01

    Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity. PMID:26603899

  6. Sensory and Motor Peripheral Nerve Function and Longitudinal Changes in Quadriceps Strength

    DEFF Research Database (Denmark)

    Ward, R. E.; Boudreau, R. M.; Caserotti, P.

    2015-01-01

    Background. Poor peripheral nerve function is common in older adults and may be a risk factor for strength decline, although this has not been assessed longitudinally. Methods. We assessed whether sensorimotor peripheral nerve function predicts strength longitudinally in 1,830 participants (age...... was assessed with 10-g and 1.4-g monofilaments and average vibration detection threshold at the toe. Lower-extremity neuropathy symptoms were self-reported. Results. Worse vibration detection threshold predicted 2.4% lower strength in men and worse motor amplitude and two symptoms predicted 2.5% and 8.1% lower...

  7. Sensory and Motor Peripheral Nerve Function and Incident Mobility Disability

    DEFF Research Database (Denmark)

    Ward, R. E.; Boudreau, R. M.; Caserotti, P.

    2014-01-01

    ObjectivesTo assess the relationship between sensorimotor nerve function and incident mobility disability over 10years. DesignProspective cohort study with longitudinal analysis. SettingTwo U.S. clinical sites. ParticipantsPopulation-based sample of community-dwelling older adults with no mobility...

  8. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy

    OpenAIRE

    Zheng, Huaien; Xiao, Wen Hua; Bennett, Gary J.

    2011-01-01

    Cancer chemotherapeutics like paclitaxel and oxaliplatin produce a dose-limiting chronic sensory peripheral neuropathy that is often accompanied by neuropathic pain. The cause of the neuropathy and pain is unknown. In animal models, paclitaxel-evoked and oxaliplatin-evoked painful peripheral neuropathies are accompanied by an increase in the incidence of swollen and vacuolated mitochondria in peripheral nerve axons. It has been proposed that mitochondrial swelling and vacuolation are indicati...

  9. Phenotypic, functional, and quantitative characterization of canine peripheral blood monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    R Bueno

    2005-08-01

    Full Text Available The yield as well as phenotypic and functional parameters of canine peripheral blood monocyte-derived macrophages were analyzed. The cells that remained adherent to Teflon after 10 days of culture had high phagocytic activity when inoculated with Leishmania chagasi. Flow cytometric analysis demonstrated that more than 80% of cultured cells were positive for the monocyte/macrophage marker CD14.

  10. Influence of Peripheral and Motivational Cues on Rigid-Flexible Functioning: Perceptual, Behavioral, and Cognitive Aspects

    Science.gov (United States)

    Cretenet, Joel; Dru, Vincent

    2009-01-01

    Recent research has shown that performing approach versus avoidance behaviors (arm flexion vs. extension) effectively influences cognitive functioning. In another area, lateralized peripheral activations (left vs. right side) of the motivational systems of approach versus avoidance were linked to various performances in cognitive tasks. By…

  11. Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury.

    Science.gov (United States)

    Gordon, Tessa; Chan, K Ming; Sulaiman, Olawale A R; Udina, Esther; Amirjani, Nasim; Brushart, Thomas M

    2009-10-01

    Injured peripheral nerves regenerate at very slow rates. Therefore, proximal injury sites such as the brachial plexus still present major challenges, and the outcomes of conventional treatments remain poor. This is in part attributable to a progressive decline in the Schwann cells' ability to provide a supportive milieu for the growth cone to extend and to find the appropriate target. These challenges are compounded by the often considerable delay of regeneration across the site of nerve laceration. Recently, low-frequency electrical stimulation (as brief as an hour) has shown promise, as it significantly accelerated regeneration in animal models through speeding of axon growth across the injury site. To test whether this might be a useful clinical tool, we carried out a randomized controlled trial in patients who had experienced substantial axonal loss in the median nerve owing to severe compression in the carpal tunnel. To further elucidate the potential mechanisms, we applied rolipram, a cyclic adenosine monophosphate agonist, to rats after axotomy of the femoral nerve. We demonstrated that effects similar to those observed in animal studies could also be attained in humans. The mechanisms of action of electrical stimulation likely operate through up-regulation of neurotrophic factors and cyclic adenosine monophosphate. Indeed, the application of rolipram significantly accelerated nerve regeneration. With new mechanistic insights into the influencing factors of peripheral nerve regeneration, the novel treatments described above could form part of an armament of synergistic therapies that could make a meaningful difference to patients with peripheral nerve injuries.

  12. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    Science.gov (United States)

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  13. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    Science.gov (United States)

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A wireless wearable surface functional electrical stimulator

    Science.gov (United States)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  15. The difference between electrical microstimulation and direct electrical stimulation - towards new opportunities for innovative functional brain mapping?

    Science.gov (United States)

    Vincent, Marion; Rossel, Olivier; Hayashibe, Mitsuhiro; Herbet, Guillaume; Duffau, Hugues; Guiraud, David; Bonnetblanc, François

    2016-04-01

    Both electrical microstimulation (EMS) and direct electrical stimulation (DES) of the brain are used to perform functional brain mapping. EMS is applied to animal fundamental neuroscience experiments, whereas DES is performed in the operating theatre on neurosurgery patients. The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES. There is much controversy as to whether the use of DES during wide-awake surgery is the 'gold standard' for studying the brain function. As part of this debate, it is sometimes wrongly assumed that EMS and DES induce similar effects in the nervous tissues and have comparable behavioural consequences. In fact, the respective stimulation parameters in EMS and DES are clearly different. More surprisingly, there is no solid biophysical rationale for setting the stimulation parameters in EMS and DES; this may be due to historical, methodological and technical constraints that have limited the experimental protocols and prompted the use of empirical methods. In contrast, the gap between EMS and DES highlights the potential for new experimental paradigms in electrical stimulation for functional brain mapping. In view of this gap and recent technical developments in stimulator design, it may now be time to move towards alternative, innovative protocols based on the functional stimulation of peripheral nerves (for which a more solid theoretical grounding exists).

  16. Wireless distributed functional electrical stimulation system

    Directory of Open Access Journals (Sweden)

    Jovičić Nenad S

    2012-08-01

    Full Text Available Abstract Background The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. Methods The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype’s software. Results The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers. One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. Conclusions The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  17. Wireless distributed functional electrical stimulation system.

    Science.gov (United States)

    Jovičić, Nenad S; Saranovac, Lazar V; Popović, Dejan B

    2012-08-09

    The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype's software. The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers). One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  18. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism.

    Science.gov (United States)

    Ott, V; Benedict, C; Schultes, B; Born, J; Hallschmid, M

    2012-03-01

    In recent years, the central nervous system (CNS) has emerged as a principal site of insulin action. This notion is supported by studies in animals relying on intracerebroventricular insulin infusion and by experiments in humans that make use of the intranasal pathway of insulin administration to the brain. Employing neurobehavioural and metabolic measurements as well as functional imaging techniques, these studies have provided insight into a broad range of central and peripheral effects of brain insulin. The present review focuses on CNS effects of insulin administered via the intranasal route on cognition, in particular memory function, and whole-body energy homeostasis including glucose metabolism. Furthermore, evidence is reviewed that suggests a pathophysiological role of impaired brain insulin signaling in obesity and type 2 diabetes, which are hallmarked by peripheral and possibly central nervous insulin resistance, as well as in conditions such as Alzheimer's disease where CNS insulin resistance might contribute to cognitive dysfunction. © 2011 Blackwell Publishing Ltd.

  19. Peripheral vascular insufficiency impairs functional capacity in patients with heart failure

    Directory of Open Access Journals (Sweden)

    Renato Murayama

    2014-04-01

    Full Text Available INTRODUCTION: Heart failure (HF is a complex syndrome in which effort limitation is associated with deterioration of peripheral musculature. Improving survival rates among these patients have led to the appearance of cases in which other pathologies are associated with HF, such as peripheral vascular insufficiency (PVI. The combination of these two pathologies is common, with significant repercussions for affected patients. OBJECTIVE: To compare functional limitations and quality of life between patients with HF in isolation or HF + PVI. METHOD: Twelve patients with HF+PVI were paired to 12 patients with HF in isolation. All had ejection fraction 0.05. CONCLUSIONS: The study participants who had mixed disease exhibited a greater degree of functional impairment than the group with HF, without reporting worsened quality of life.

  20. Peripheral tactile sensory perception of older adults improved using subsensory electrical noise stimulation.

    Science.gov (United States)

    Breen, Paul P; Serrador, Jorge M; O'Tuathail, Claire; Quinlan, Leo R; McIntosh, Caroline; ÓLaighin, Gearóid

    2016-08-01

    Loss of tactile sensory function is common with aging and can lead to numbness and difficulty with balance and gait. In previous work we found that subsensory electrical noise stimulation (SENS) applied to the tibial nerve improved tactile perception in the soles of the feet of healthy adults. In this work we aimed to determine if SENS remained effective in an older adult population with significant levels of sensory loss. Older adult subjects (N=8, female = 4, aged 65-80) had SENS applied via surface electrodes placed proximally to the medial and lateral malleoli. Vibration perception thresholds (VPTs) were assessed in six conditions, two control conditions (no SENS) and four SENS conditions (zero mean ±15µA, 30µA, 45µA and 60µA SD). VPT was assessed at three sites on the plantar aspect of the foot. Vibration perception was significantly improved in the presence of ±30µA SENS and by 16.2±2.4% (mean ± s.e.m.) when optimised for each subject. The improvement in perception was similar across all VPT test sites. Copyright © 2016 IPEM. All rights reserved.

  1. Functional electrical stimulation on paraplegic patients

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2014-07-01

    Full Text Available We report on clinical and physiological effects of 8 months Functional Electrical Stimulation (FES of quadriceps femoris muscle on 16 paraplegic patients. Each patient had muscle biopsies, CT-muscle diameter measurements, knee extension strength testing carried out before and after 8 months FES training. Skin perfusion was documented through infrared telethermography and xenon clearance, muscle perfusion was recorded through thallium scintigraphy. After 8 months FES training baseline skin perfusion showed 86 % increase, muscle perfusion was augmented by 87 %. Muscle fiber diameters showed an average increase of 59 % after 8 months FES training. Muscles in patients with spastic paresis as well as in patients with denervation showed an increase in aerob and anaerob muscle enzymes up to the normal range. Even without axonal neurotropic substances FES was able to demonstrate fiberhypertrophy, enzyme adaptation and intracellular structural benefits in denervated muscles. The increment in muscle area as visible on CT-scans of quadriceps femoris was 30 % in spastic paraplegia and 10 % in denervated patients respectively. FES induced changes were less in areas not directly underneath the surface electrodes. We strongly recommend the use of Kern`s current for FES in denervated muscles to induce tetanic muscle contractions as we formed a very critical opinion of conventional exponential current. In patients with conus-cauda-lesions FES must be integrated into modern rehabilitation to prevent extreme muscle degeneration and decubital ulcers. Using FES we are able to improve metabolism and induce positive trophic changes in our patients lower extremities. In spastic paraplegics the functions „rising and walking“ achieved through FES are much better training than FES ergometers. Larger muscle masses are activated and an increased heart rate is measured, therefore the impact on cardiovascular fitness and metabolism is much greater. This effectively

  2. Synthesis and electrochemical properties of peripheral carbazole functional Ter(9,9-spirobifluorene)s.

    Science.gov (United States)

    Tang, Shi; Liu, Meirong; Gu, Cheng; Zhao, Yang; Lu, Ping; Lu, Dan; Liu, Linlin; Shen, Fangzhong; Yang, Bing; Ma, Yuguang

    2008-06-06

    A facile approach for synthesis of spirobifluorene trimers with peripheral carbazole functional groups by utilizing Suzuki coupling as the key reaction has been developed. These novel compounds exhibit blue emission with high quantum yields in solution and thin films, and excellent spectral stability upon photoirradiation and annealing in air. By the introduction of carbazole groups, the oxidation potentials of spirobifluorene trimers S TCPC-6 and STCPC-4 were significantly lower than that of model compound STHPH without peripheral carbazole groups, which reflect that the title compounds process higher HOMO energy level and better hole-injection ability. Highly luminescent films were obtained by electrochemical coupling between carbazole units. Pure blue-emission single-layer LEDs based on electrochemical deposition films as light emitting layers were achieved.

  3. A new paradigm of electrical stimulation to enhance sensory neural function.

    Science.gov (United States)

    Breen, Paul P; ÓLaighin, Gearóid; McIntosh, Caroline; Dinneen, Sean F; Quinlan, Leo R; Serrador, Jorge M

    2014-08-01

    The ability to improve peripheral neural transmission would have significant therapeutic potential in medicine. A technology of this kind could be used to restore and/or enhance sensory function in individuals with depressed sensory function, such as older adults or patients with peripheral neuropathies. The goal of this study was to investigate if a new paradigm of subsensory electrical noise stimulation enhances somatosensory function. Vibration (50Hz) was applied with a Neurothesiometer to the plantar aspect of the foot in the presence or absence of subsensory electrical noise (1/f type). The noise was applied at a proximal site, on a defined region of the tibial nerve path above the ankle. Vibration perception thresholds (VPT) of younger adults were measured in control and experimental conditions, in the absence or presence of noise respectively. An improvement of ∼16% in VPT was found in the presence of noise. These are the first data to demonstrate that modulation of axonal transmission with externally applied electrical noise improves perception of tactile stimuli in humans. Copyright © 2014 IPEM. All rights reserved.

  4. Determinants of peripheral airway function in adults with and without asthma.

    Science.gov (United States)

    Robinson, Paul D; King, Gregory G; Sears, Malcolm R; Hong, Chuen Y; Hancox, Robert J

    2017-08-01

    Peripheral airway involvement in asthma remains poorly understood. We investigated impulse oscillometry (IOS) measures of peripheral airway function in a population-based birth cohort. Pre- and post-bronchodilator spirometry and IOS measures of respiratory resistance and reactance were measured in 915 participants at age 38 years. Current asthma was associated with impairments in both spirometry and IOS parameters. These impairments were greater in men and in those with childhood persistent asthma. Spirometry and IOS values for those whose asthma was in remission were not different to non-asthmatic participants. There were significant changes in IOS in both asthmatic and non-asthmatic participants after bronchodilator, but between-group differences persisted. Higher BMIs were associated with impairments in IOS but not spirometry. Cumulative tobacco use was associated with spirometric airflow obstruction in both sexes, whereas cannabis use was associated with impairments in IOS in women. Despite higher lifetime exposure, there were few associations between cannabis and IOS in men. Asthma is associated with abnormalities in IOS measures of peripheral airway dysfunction. This association is stronger in men and in those with asthma persisting since childhood. Tobacco and cannabis use are associated with different patterns of spirometry and IOS abnormalities and may affect the bronchial tree at different airway generations with differences in susceptibility between sexes. © 2017 Asian Pacific Society of Respirology.

  5. Plasmonic functionalities based on detuned electrical dipoles

    DEFF Research Database (Denmark)

    Pors, Anders Lambertus; Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2013-01-01

    We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells...

  6. Recovery of function, peripheral sensitization and sensory neurone activation by novel pathways following axonal injury in Aplysia californica.

    Science.gov (United States)

    Dulin, M F; Steffensen, I; Morris, C E; Walters, E T

    1995-10-01

    Recovery of behavioural and sensory function was examined following unilateral pedal nerve crush in Aplysia californica. Nerve crush that transected all axons connecting the tail to the central nervous system (CNS) eliminated the ipsilateral tail-evoked siphon reflex, whose sensory input travels in the crushed tail nerve (p9). The first reliable signs of recovery of this reflex were observed within 1 week, and most animals displayed tail-evoked siphon responses within 2 weeks. Wide-dynamic-range mechanosensory neurons with somata in the ventrocaudal (VC) cluster of the ipsilateral pleural ganglion exhibited a few receptive fields (RFs) on the tail 3 weeks after unilateral pedal nerve crush, indicating that the RFs had either regenerated or been reconnected to the central somata. These RFs were smaller and sensitized compared with corresponding RFs on the contralateral, uncrushed side. Centrally conducted axon responses of VC sensory neurones to electrical stimulation distal to the nerve crush site did not reappear until at least 10 days after the crush. Because the crush site was much closer to the CNS than to the tail, the failure of axon responses to be restored earlier than the behavioural responses indicates that early stages of reflex recovery are not due to regeneration of VC sensory neurone axons into the tail. Following nerve crush, VC sensory neurones often could be activated by stimulating central connectives or peripheral nerves that do not normally contain the sensory neurone's axons. These results suggest that recovery of behavioral function after nerve injury involves complex mechanisms, including regenerative growth of axotomized VC sensory neurones, sensitization of regenerating RFs and sprouting of VC sensory neurone fibres within the CNS. Furthermore, the rapidity of behavioural recovery indicates that its initial phases are mediated by additional mechanisms, perhaps centripetal regeneration of unidentified sensory neurones having peripheral

  7. Ultrasonographic assessment of maternal cardiac function and peripheral circulation during normal gestation in dogs.

    Science.gov (United States)

    Blanco, Paula G; Tórtora, Mariana; Rodríguez, Raúl; Arias, Daniel O; Gobello, Cristina

    2011-10-01

    The aim of this study was to describe changes in cardiac morphology, systolic function and some peripheral hemodynamic parameters during normal pregnancy in dogs. Twenty healthy bitches, 10 pregnant (PG) and 10 non-pregnant controls (CG), were evaluated every 10 days using echocardiography from day 0 of the estrus cycle to parturition or to day 65 for the PG and CG groups, respectively. Systolic blood pressure (SBP) and uterine artery resistance index (RI) were also assessed. Throughout the study, the shortening fraction and cardiac output increased up to 30% vs. 5% (Pdogs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Study on the peripheral dendritic cell function in patients with chronic hepatitis B

    International Nuclear Information System (INIS)

    Chen Ruihai; Chen Miaotian; Li Rui; Zheng Jiashui

    2007-01-01

    Objective: To study the effect of peripheral dendritic cell function on the clinical course and anti-viral treatment in patients with chronic hepatitis B. Methods: Dendritic cells (DCs) were cultured from peripheral blood mononuclear cells (PBMC) and surface markers (phenotype) examined with flow-cytometry in 71 patients with chronic hepatitis B, 17 chronic HBV carriers and 42 controls. Those patients with positive HBV-DNA (57/71) were treated with lamivudine or interferon-α and DCs reexamined after completion of treatment. Results: The expression of DCs phenotypes CD1a and CD86 in chronic hepatitis B patients and chronic carriers were significantly lower than those in controls (P<0.05 or P<0.01). Among the 71 patients, CD1a, CD40, CD80 and CD86 expressions in the 57 HBV - DNA positive patients were all lower than those in the 14 HBV-DNA negative patients, but the difference was significant only in the case of CD86 (P<0.05). After a course of lamivudine treatment (six months, 38 patients), only CD40 expression was significantly increased, but both CD40 and CD86 expressions were significantly higher than those before treatment in the 19 patients treated with interferon-α. Conclusion: DCs function impairment could be demonstrated in patients with chronic hepatitis B, especially in those with positive HBV-DNA. Lamivudine or interferon-α treatment could improve the DCs function. (authors)

  9. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration.

    Science.gov (United States)

    Ghibaudi, M; Boido, M; Vercelli, A

    2017-11-01

    New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R

    2015-01-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some...

  11. Phenotypic, ultra-structural, and functional characterization of bovine peripheral blood dendritic cell subsets.

    Directory of Open Access Journals (Sweden)

    Janet J Sei

    Full Text Available Dendritic cells (DC are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c-. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC, and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.

  12. Central pain processing in chronic chemotherapy-induced peripheral neuropathy: a functional magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Elaine G Boland

    Full Text Available Life expectancy in multiple myeloma has significantly increased. However, a high incidence of chemotherapy induced peripheral neuropathy (CIPN can negatively influence quality of life during this period. This study applied functional magnetic resonance imaging (fMRI to compare areas associated with central pain processing in patients with multiple myeloma who had chemotherapy induced peripheral neuropathy (MM-CIPN with those from healthy volunteers (HV. Twenty-four participants (n = 12 MM-CIPN, n = 12 HV underwent Blood Oxygen Level-Dependent (BOLD fMRI at 3T whilst noxious heat-pain stimuli were applied to the foot and then thigh. Patients with MM-CIPN demonstrated greater activation during painful stimulation in the precuneus compared to HV (p = 0.014, FWE-corrected. Patients with MM-CIPN exhibited hypo-activation of the right superior frontal gyrus compared to HV (p = 0.031, FWE-corrected. Significant positive correlation existed between the total neuropathy score (reduced version and activation in the frontal operculum (close to insular cortex during foot stimulation in patients with MM-CIPN (p = 0.03, FWE-corrected; adjusted R2 = 0.87. Painful stimuli delivered to MM-CIPN patients evoke differential activation of distinct cortical regions, reflecting a unique pattern of central pain processing compared with healthy volunteers. This characteristic activation pattern associated with pain furthers the understanding of the pathophysiology of painful chemotherapy induced peripheral neuropathy. Functional MRI provides a tool for monitoring cerebral changes during anti-cancer and analgesic treatment.

  13. Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats.

    Science.gov (United States)

    Stracke, H; Hammes, H P; Werkmann, D; Mavrakis, K; Bitsch, I; Netzel, M; Geyer, J; Köpcke, W; Sauerland, C; Bretzel, R G; Federlin, K F

    2001-01-01

    In rats with streptozotocin (STZ) induced diabetes the effect of (watersoluble) thiamine nitrate and of (lipidsoluble) benfotiamine on peripheral nerve function (motor nerve conduction velocity) as well as on the formation of advanced glycation end-products in peripheral nerve tissue was studied. In one group of animals drug administration was started immediately after diabetes induction (prevention study) and in another group two months after diabetes induction (treatment study). Motor nerve conduction velocity (NCV) dropped by 10.5% in diabetic animals, carboxymethyl-lysine (CML) rose to a 3.5fold concentration, deoxyglucosone (3DG)-type AGE formation was increased 5.1fold compared with controls. After three months preventive administration of both vitamin B(1) preparations NCV had increased substantially compared with results in diabetic controls. It was nearly normal after six months with benfotiamine, while the administration of thiamine nitrate resulted in no further amelioration. NCV was nearly normalized after six months of benfotiamine application but not with thiamine. Furthermore, benfotiamine induced a major inhibition of neural imidazole-type AGE formation and completely prevented diabetes induced glycoxidation products (CML). Treatment with thiamine did not significantly affect AGE or cmL levels. Unlike treatment with water-soluble thiamine nitrate timely administration of liposoluble prodrug benfotiamine was effective in the prevention of functional damage and of AGE and cmL formation in nerves of diabetic rats.

  14. Changes in Brain Resting-state Functional Connectivity Associated with Peripheral Nerve Block: A Pilot Study.

    Science.gov (United States)

    Melton, M Stephen; Browndyke, Jeffrey N; Harshbarger, Todd B; Madden, David J; Nielsen, Karen C; Klein, Stephen M

    2016-08-01

    Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally

  15. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview.

    Science.gov (United States)

    Navarro, Xavier

    2016-02-01

    Peripheral nerve injuries usually lead to severe loss of motor, sensory and autonomic functions in the patients. Due to the complex requirements for adequate axonal regeneration, functional recovery is often poorly achieved. Experimental models are useful to investigate the mechanisms related to axonal regeneration and tissue reinnervation, and to test new therapeutic strategies to improve functional recovery. Therefore, objective and reliable evaluation methods should be applied for the assessment of regeneration and function restitution after nerve injury in animal models. This review gives an overview of the most useful methods to assess nerve regeneration, target reinnervation and recovery of complex sensory and motor functions, their values and limitations. The selection of methods has to be adequate to the main objective of the research study, either enhancement of axonal regeneration, improving regeneration and reinnervation of target organs by different types of nerve fibres, or increasing recovery of complex sensory and motor functions. It is generally recommended to use more than one functional method for each purpose, and also to perform morphological studies of the injured nerve and the reinnervated targets. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Rescue of cortical neurovascular functions during the hyperacute phase of ischemia by peripheral sensory stimulation.

    Science.gov (United States)

    Liao, Lun-De; Liu, Yu-Hang; Lai, Hsin-Yi; Bandla, Aishwarya; Shih, Yen-Yu Ian; Chen, You-Yin; Thakor, Nitish V

    2015-03-01

    To investigate the potential therapeutic effects of peripheral sensory stimulation during the hyperacute phase of stroke, the present study utilized electrophysiology and photoacoustic imaging techniques to evaluate neural and vascular responses of the rat cortex following ischemic insult. We employed a rat model of photothrombotic ischemia (PTI), which targeted the forelimb region of the primary somatosensory cortex (S1FL), due to its high reproducibility in creating localized ischemic injury. We also established a hybrid, dual-modality system, including six-channel electrocorticography (ECoG) and functional photoacoustic microscopy (fPAM), termed ECoG-fPAM, to image brain functional responses to peripheral sensory stimulation during the hyperacute phase of PTI. Our results showed that the evoked cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO2) recovered to 84±7.4% and 79±6.2% of the baseline, respectively, when stimulation was delivered within 2.5 h following PTI induction. Moreover, neural activity significantly recovered, with 77±8.6%, 76±5.3% and 89±8.2% recovery for the resting-state inter-hemispheric coherence, alpha-to-delta ratio (ADR) and somatosensory evoked potential (SSEP), respectively. Additionally, we integrated the CBV or SO2 with ADR values as a recovery indicator (RI) to assess functional recovery after PTI. The RI indicated that 80±4.2% of neurovascular function was preserved when stimulation was delivered within 2.5h. Additionally, stimulation treatment within this optimal time window resulted in a minimal infarct volume in the ischemic hemisphere (4.6±2.1%). In contrast, the infarct volume comprised 13.7±1.7% of the ischemic hemisphere when no stimulation treatment was applied. Copyright © 2014. Published by Elsevier Inc.

  17. Impact Analysis of Electrical Current Characteristics in Relay Function for Electrical and Electronic Protection

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Harzawadi Hasim

    2013-01-01

    This paper is to study effect of electrical current on relay reaction, which has coil and switch inside the relay. An analysis on the electrical current will be conducted to determine current limitation for relay activation purpose. The result of analysis showing that current characteristic of relay and applied load will present their affect to the relay function performance. Finding from this result will bring the idea to develop a suitable design circuit for electrical and electronic protection. (author)

  18. Promoting peripheral myelin repair.

    Science.gov (United States)

    Zhou, Ye; Notterpek, Lucia

    2016-09-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Peripheral, functional and postural asymmetries related to the preferred chewing side in adults with natural dentition.

    Science.gov (United States)

    Rovira-Lastra, B; Flores-Orozco, E I; Ayuso-Montero, R; Peraire, M; Martinez-Gomis, J

    2016-04-01

    The aim of this cross-sectional study was to determine the preferred chewing side and whether chewing side preference is related to peripheral, functional or postural lateral preferences. One hundred and forty-six adults with natural dentition performed three masticatory assays, each consisting of five trials of chewing three pieces of silicon placed into a latex bag for 20 cycles, either freestyle or unilaterally on the right- or left-hand side. Occlusal contact area in the intercuspal position, maximum bite force, masticatory performance and cycle duration were measured and the lateral asymmetry of these variables was calculated. Laterality tests were performed to determine handedness, footedness, earedness and eyedness as functional preferences, and hand-clasping, arm-folding and leg-crossing as postural lateral preferences. The preferred chewing side was determined using three different methods: assessment of the first chewing cycle for each trial, calculation of the asymmetry index from all cycles and application of a visual analogue scale. Bivariate relationship and multiple linear regression analyses were performed. Among unilateral chewers, 77% of them preferred the right side for chewing. The factors most closely related to the preferred chewing side were asymmetry of bite force, asymmetry of masticatory performance and earedness, which explained up to 16% of the variance. Although several functional or postural lateral preferences seem to be related to the preferred chewing side, peripheral factors such as asymmetry of bite force and of masticatory performance are the most closely related to the preferred chewing side in adults with natural dentition. © 2015 John Wiley & Sons Ltd.

  20. Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins.

    Directory of Open Access Journals (Sweden)

    Annie Frelet-Barrand

    Full Text Available BACKGROUND: Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system. CONCLUSIONS/SIGNIFICANCE: Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.

  1. Peripheral neuropathy

    Science.gov (United States)

    ... peripheral; Neuritis - peripheral; Nerve disease; Polyneuropathy; Chronic pain - peripheral neuropathy ... Philadelphia, PA: Elsevier; 2016:chap 107. Shy ME. Peripheral neuropathies. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  2. Peripheral nerve function during hyperglycemic clamping in insulin-dependent diabetic patients

    DEFF Research Database (Denmark)

    Sindrup, S H; Ejlertsen, B; Gjessing, H

    1989-01-01

    The influence of hyperglycemia on peripheral nerve function was studied in 9 patients with long-term insulin-dependent diabetes. Blood glucose concentration was raised 13.5 +/- 0.5 mmol/l (mean +/- SEM) within 15 min and kept approximately 15 mmol/l over basal level for 120 min by intravenous...... glucose infusion. Hyperglycemia was accompanied by increased plasma osmolality. Sensory and motor nerve conduction and distal motor latency in the ulnar nerve were determined before, immediately after induction of hyperglycemia, and again after 120 min hyperglycemia. Distal (5th finger - wrist......) and proximal (wrist - elbow) sensory nerve conduction showed an insignificant increase as hyperglycemia was induced. During hyperglycemia mean distal sensory conduction decreased from 53.1 m/s to 50.4 m/s (P less than 0.05) and mean proximal sensory conduction decreased from 56.0 m/s to 54.2 m/s (P less than 0...

  3. Rescue of peripheral vestibular function in Usher syndrome mice using a splice-switching antisense oligonucleotide.

    Science.gov (United States)

    Vijayakumar, Sarath; Depreux, Frederic F; Jodelka, Francine M; Lentz, Jennifer J; Rigo, Frank; Jones, Timothy A; Hastings, Michelle L

    2017-09-15

    Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Functional Imaging of Working Memory and Peripheral Endothelial Function in Middle-Aged Adults

    Science.gov (United States)

    Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi; Sugawara, Jun; Swann-Sternberg, Tali; Goudarzi, Katayoon; Haley, Andreana P.

    2010-01-01

    The current study examined the relationship between a prognostic indicator of vascular health, flow-mediated dilation (FMD), and working memory-related brain activation in healthy middle-aged adults. Forty-two participants underwent functional magnetic resonance imaging while completing a 2-Back working memory task. Brachial artery…

  5. Flow cytometric probing of mitochondrial function in equine peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Coignoul Freddy

    2007-09-01

    Full Text Available Abstract Background The morphopathological picture of a subset of equine myopathies is compatible with a primary mitochondrial disease, but functional confirmation in vivo is still pending. The cationic dye JC-1 exhibits potential-dependent accumulation in mitochondria that is detectable by a fluorescence shift from green to orange. As a consequence, mitochondrial membrane potential can be optically measured by the orange/green fluorescence intensity ratio. A flow cytometric standardized analytic procedure of the mitochondrial function of equine peripheral blood mononuclear cells is proposed along with a critical appraisal of the crucial questions of technical aspects, reproducibility, effect of time elapsed between blood sampling and laboratory processing and reference values. Results The JC-1-associated fluorescence orange and green values and their ratio were proved to be stable over time, independent of age and sex and hypersensitive to intoxication with a mitochondrial potential dissipator. Unless time elapsed between blood sampling and laboratory processing does not exceed 5 hours, the values retrieved remain stable. Reference values for clinically normal horses are given. Conclusion Whenever a quantitative measurement of mitochondrial function in a horse is desired, blood samples should be taken in sodium citrate tubes and kept at room temperature for a maximum of 5 hours before the laboratory procedure detailed here is started. The hope is that this new test may help in confirming, studying and preventing equine myopathies that are currently imputed to mitochondrial dysfunction.

  6. Postural control and functional balance in individuals with diabetic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Ana Claudia de Souza Fortaleza

    2013-04-01

    Full Text Available Diabetic Peripheral Neuropathy (DPN brings on reduced somatosensation, which can lead to changes in postural control. The objective of this study was to evaluate postural control in a standing position and in different conditions, as well as functional balance in individuals with DPN, make the correlation between the results obtained from the postural control assessment with the values from the functional balance test and compare the results obtained in the neuropathy group with those of the control group, checking for possible differences between the evaluation conditions of both groups. The study included 13 women with DPN (NG and 17 non-diabetic women (CG. Postural control assessment was performed by kinemetry in the following conditions: eyes opened (EO, eyes closed (EC, and semi-tandem (ST. The data was processed in MATLAB and the following variables were generated: mean amplitude of oscillation (MAO in the anterior-posterior (AP and medial-lateral (ML direction; and average speed of oscillation (ASO in AP and ML direction. Functional balance was assessed by the Timed Up and Go Test. There was significant difference between the groups (p≤0.005 in MAO-AP EO and EC, MAO-ML EC and ST, and ASO-ML ST. There were differences between the conditions EO and ST (p≤0.005 and EC and ST (p≤0.005 for the variables MAO-ML and ASO-ML with greater damage to the NG, which also had a lower functional balance (p=0.001. ML instability was positively correlated with functional imbalance. The results show a change in the postural control system in the DPN, which could lead these individuals to a higher risk for falls and functional impairment.

  7. Postural control and functional balance in individuals with diabetic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Ana Claudia de Souza Fortaleza

    2013-03-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2013v15n3p305 Diabetic Peripheral Neuropathy (DPN brings on reduced somatosensation, which can lead to changes in postural control. The objective of this study was to evaluate postural control in a standing position and in different conditions, as well as functional balance in individuals with DPN, make the correlation between the results obtained from the postural control assessment with the values from the functional balance test and compare the results obtained in the neuropathy group with those of the control group, checking for possible differences between the evaluation conditions of both groups. The study included 13 women with DPN (NG and 17 non-diabetic women (CG. Postural control assessment was performed by kinemetry in the following conditions: eyes opened (EO, eyes closed (EC, and semi-tandem (ST. The data was processed in MATLAB and the following variables were generated: mean amplitude of oscillation (MAO in the anterior-posterior (AP and medial-lateral (ML direction; and average speed of oscillation (ASO in AP and ML direction. Functional balance was assessed by the Timed Up and Go Test. There was significant difference between the groups (p≤0.005 in MAO-AP EO and EC, MAO-ML EC and ST, and ASO-ML ST. There were differences between the conditions EO and ST (p≤0.005 and EC and ST (p≤0.005 for the variables MAO-ML and ASO-ML with greater damage to the NG, which also had a lower functional balance (p=0.001. ML instability was positively correlated with functional imbalance. The results show a change in the postural control system in the DPN, which could lead these individuals to a higher risk for falls and functional impairment.

  8. Improvement of standards on functional reliability of electric power systems

    International Nuclear Information System (INIS)

    Barinov, V.A.; Volkov, G.A.; Kalita, V.V.; Kogan, F.L.; Makarov, S.F.; Manevich, A.S.; Mogirev, V.V.; Sin'chugov, F.I.; Skopintsev, V.A.; Khvoshchinskaya, Z.G.

    1993-01-01

    Analysis of the most principal aspects of the existing standards and requirements on assuring safety and stability of electric power systems (EPS) and effective (reliable and economical) power supply of consumers is given. The reliability is determined as ability to accomplish the assigned functions. Basic recommendations on improving the standards regulating the safety and reliability of the NPP functioning are formulated

  9. Steady state peripheral blood provides cells with functional and metabolic characteristics of real hematopoietic stem cells.

    Science.gov (United States)

    Bourdieu, Antonin; Avalon, Maryse; Lapostolle, Véronique; Ismail, Sadek; Mombled, Margaux; Debeissat, Christelle; Guérinet, Marianne; Duchez, Pascale; Chevaleyre, Jean; Vlaski-Lafarge, Marija; Villacreces, Arnaud; Praloran, Vincent; Ivanovic, Zoran; Brunet de la Grange, Philippe

    2018-01-01

    Hematopoietic stem cells (HSCs), which are located in the bone marrow, also circulate in cord and peripheral blood. Despite high availability, HSCs from steady state peripheral blood (SSPB) are little known and not used for research or cell therapy. We thus aimed to characterize and select HSCs from SSPB by a direct approach with a view to delineating their main functional and metabolic properties and the mechanisms responsible for their maintenance. We chose to work on Side Population (SP) cells which are highly enriched in HSCs in mouse, human bone marrow, and cord blood. However, no SP cells from SSBP have as yet been characterized. Here we showed that SP cells from SSPB exhibited a higher proliferative capacity and generated more clonogenic progenitors than non-SP cells in vitro. Furthermore, xenotransplantation studies on immunodeficient mice demonstrated that SP cells are up to 45 times more enriched in cells with engraftment capacity than non-SP cells. From a cell regulation point of view, we showed that SP activity depended on O 2 concentrations close to those found in HSC niches, an effect which is dependent on both hypoxia-induced factors HIF-1α and HIF-2α. Moreover SP cells displayed a reduced mitochondrial mass and, in particular, a lower mitochondrial activity compared to non-SP cells, while they exhibited a similar level of glucose incorporation. These results provided evidence that SP cells from SSPB displayed properties of very primitive cells and HSC, thus rendering them an interesting model for research and cell therapy. © 2017 Wiley Periodicals, Inc.

  10. Local electronic and electrical properties of functionalized graphene nano flakes

    International Nuclear Information System (INIS)

    Chutia, Arunabhiram; Sahnoun, Riadh; Deka, Ramesh C.; Zhu, Zhigang; Tsuboi, Hideyuki; Takaba, Hiromitsu; Miyamoto, Akira

    2011-01-01

    Based on experimental findings models of amorphous graphene related carbon materials were generated using graphene nano flakes. On the optimized structures detailed local electronic properties were investigated using density functional theory. The electrical conductivities of all these models were also estimated using an in-house program based on tight-binding method. The calculated electrical conductivity values of all the models agreed well with the trend of calculated energy gap and graphitic character.

  11. Electrical Distribution System Functional Inspection (EDSFI) data base program

    International Nuclear Information System (INIS)

    Gautam, A.

    1993-01-01

    This document describes the organization, installation procedures, and operating instructions for the database computer program containing inspection findings from the US Nuclear Regulatory Commission's (NRC's) Electrical Distribution System Functional Inspections (EDSFIs). The program enables the user to search and sort findings, ascertain trends, and obtain printed reports of the findings. The findings include observations, unresolved issues, or possible deficiencies in the design and implementation of electrical distribution systems in nuclear plants. This database will assist those preparing for electrical inspections, searching for deficiencies in a plant, and determining the corrective actions previously taken for similar deficiencies. This database will be updated as new EDSFIs are completed

  12. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity.

    Science.gov (United States)

    Malykhina, Anna P; Lei, Qi; Erickson, Chris S; Epstein, Miles L; Saban, Marcia R; Davis, Carole A; Saban, Ricardo

    2012-12-19

    This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na(+) channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and

  13. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    Directory of Open Access Journals (Sweden)

    Malykhina Anna P

    2012-12-01

    Full Text Available Abstract Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1 and cholinergic nerves (ChAT was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a

  14. The discrepancy between human peripheral nerve chronaxie times as measured using magnetic and electric field stimuli: the relevance to MRI gradient coil safety

    International Nuclear Information System (INIS)

    Recoskie, Bryan J; Chronik, Blaine A; Scholl, Timothy J

    2009-01-01

    Peripheral nerve stimulation (PNS) resulting from electric fields induced from the rapidly changing magnetic fields of gradient coils is a concern in MRI. Nerves exposed to either electric fields or changing magnetic fields would be expected to display consistent threshold characteristics, motivating the direct application of electric field exposure criteria from the literature to guide the development of gradient magnetic field exposure criteria for MRI. The consistency of electric and magnetic field exposures was tested by comparing chronaxie times for electric and magnetic PNS curves for 22 healthy human subjects. Electric and magnetic stimulation thresholds were measured for exposure of the forearm using both surface electrodes and a figure-eight magnetic coil, respectively. The average chronaxie times for the electric and magnetic field conditions were 109 ± 11 μs and 651 ± 53 μs (±SE), respectively. We do not propose that these results call into question the basic mechanism, namely that rapidly switched gradient magnetic fields induce electric fields in human tissues, resulting in PNS. However, this result does motivate us to suggest that special care must be taken when using electric field exposure data from the literature to set gradient coil PNS safety standards in MRI.

  15. Production function application attempt in electricity generation forecasting

    International Nuclear Information System (INIS)

    Kamrat, W.; Augusiak, A.

    1996-01-01

    A modified Cobb-Douglas production function is applied to evaluate level of electricity generation for medium and long term prognosis (up to 2010) in an easy and simple way. The test calculations have been done for hard coal fired power plants, based on generation data supplied in Main Statistical Office of Poland publications.The model of electricity generation is defined using data on capital of a typical productivity power plant and its employment for time series 1980-90. The test calculation results based on the parameters of Rosenbroock's optimization procedure of electricity generation model are presented. The method described is distinguished for its high accuracy as compared to classical methods despite the relatively short time series. It is suitable for studies in electricity generation policy . 1 tab

  16. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability

    Science.gov (United States)

    Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

    2017-01-01

    Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 (n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 (n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability. PMID:28392766

  17. Relationship between sensorimotor peripheral nerve function and indicators of cardiovascular autonomic function in older adults from the Health, Aging and Body Composition Study.

    Science.gov (United States)

    Lange-Maia, Brittney S; Newman, Anne B; Jakicic, John M; Cauley, Jane A; Boudreau, Robert M; Schwartz, Ann V; Simonsick, Eleanor M; Satterfield, Suzanne; Vinik, Aaron I; Zivkovic, Sasa; Harris, Tamara B; Strotmeyer, Elsa S

    2017-10-01

    Age-related peripheral nervous system (PNS) impairments are highly prevalent in older adults. Although sensorimotor and cardiovascular autonomic function have been shown to be related in persons with diabetes, the nature of the relationship in general community-dwelling older adult populations is unknown. Health, Aging and Body Composition participants (n=2399, age=76.5±2.9years, 52% women, 38% black) underwent peripheral nerve testing at the 2000/01 clinic visit. Nerve conduction amplitude and velocity were measured at the peroneal motor nerve. Sensory nerve function was assessed with vibration detection threshold and monofilament (1.4-g/10-g) testing at the big toe. Symptoms of lower-extremity peripheral neuropathy were collected by self-report. Cardiovascular autonomic function indicators included postural hypotension, resting heart rate (HR), as well as HR response to and recovery from submaximal exercise testing (400m walk). Multivariable modeling adjusted for demographic/lifestyle factors, medication use and comorbid conditions. In fully adjusted models, poor motor nerve conduction velocity (function or symptoms of peripheral neuropathy and indicators of cardiovascular autonomic function. Motor nerve function and indicators of cardiovascular autonomic function remained significantly related even after considering many potentially shared risk factors. Future studies should investigate common underlying processes for developing multiple PNS impairments in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Racial differences in functional decline in peripheral artery disease and associations with socioeconomic status and education.

    Science.gov (United States)

    McDermott, Mary M; Polonsky, Tamar S; Kibbe, Melina R; Tian, Lu; Zhao, Lihui; Pearce, William H; Gao, Ying; Guralnik, Jack M

    2017-09-01

    The objective of this study was to determine whether blacks with lower extremity peripheral artery disease (PAD) have faster functional decline than whites with PAD. Participants with ankle-brachial index sex, ankle-brachial index, comorbidities, and other confounders (hazard ratio, 1.45; 95% confidence interval, 1.05-1.99; P = .022). This association was attenuated after adjustment for income and education (P = .229). Among 844 participants without baseline mobility impairment, black participants had a higher rate of mobility loss (64/209 [30.6%] vs 164/635 [25.8%]; log-rank, P = .009). Black race was associated with increased mobility loss, adjusting for potential confounders (hazard ratio, 1.42; 95% confidence interval, 1.04-1.94; P = .028). This association was attenuated after additional adjustment for income and education (P = .392) and physical activity (P = .113). There were no racial differences in average annual declines in 6-minute walk, usual-paced 4-meter walking velocity, or fast-paced 4-meter walking velocity. Black PAD patients have higher rates of mobility loss and becoming unable to walk for 6 minutes continuously. These differences appear related to racial differences in socioeconomic status and physical activity. Copyright © 2017 Society for Vascular Surgery. All rights reserved.

  19. Loss of Peripheral Sensory Function Explains Much of the Increase in Postural Sway in Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Eric Anson

    2017-06-01

    Full Text Available Postural sway increases with age and peripheral sensory disease. Whether, peripheral sensory function is related to postural sway independent of age in healthy adults is unclear. Here, we investigated the relationship between tests of visual function (VISFIELD, vestibular function (CANAL or OTOLITH, proprioceptive function (PROP, and age, with center of mass sway area (COM measured with eyes open then closed on firm and then a foam surface. A cross-sectional sample of 366 community dwelling healthy adults from the Baltimore Longitudinal Study of Aging was tested. Multiple linear regressions examined the association between COM and VISFIELD, PROP, CANAL, and OTOLITH separately and in multi-sensory models controlling for age and gender. PROP dominated sensory prediction of sway across most balance conditions (β's = 0.09–0.19, p's < 0.001, except on foam eyes closed where CANAL function loss was the only significant sensory predictor of sway (β = 2.12, p < 0.016. Age was not a consistent predictor of sway. This suggests loss of peripheral sensory function explains much of the age-associated increase in sway.

  20. Neurocontrol of the inverse dynamics in functional electrical stimulation

    NARCIS (Netherlands)

    Spaanenburg, L; Nijhuis, JAG; Ypma, A; Silva, FL; Principe, JC; Almeida, LB

    1997-01-01

    The rehabilitation of paraplegia can be pursued by functional electrical stimulation (FES) combined with biofeedback This requires control by surface electromyographical (EMG) signals to predict the muscle stimulation patterns while compensating the inherent phase lag. This can be realized by a

  1. Pulmonary function after segmentectomy for small peripheral carcinoma of the lung.

    Science.gov (United States)

    Takizawa, T; Haga, M; Yagi, N; Terashima, M; Uehara, H; Yokoyama, A; Kurita, Y

    1999-09-01

    The aim of this study is to compare the pulmonary function after a segmentectomy with that after a lobectomy for small peripheral carcinoma of the lung. Between 1993 and 1996, segmentectomy and lobectomy were performed on 48 and 133 good-risk patients, respectively. Lymph node metastases were detected after the operation in 6 and 24 patients of the segmentectomy and lobectomy groups, respectively. For bias reduction in comparison with a nonrandomized control group, we paired 40 segmentectomy patients with 40 lobectomy patients using nearest available matching method on the estimated propensity score. Twelve months after the operation, the segmentectomy and lobectomy groups had forced vital capacities of 2.67 +/- 0.73 L (mean +/- standard deviation) and 2.57 +/- 0.59 L, which were calculated to be 94.9% +/- 10.6% and 91.0% +/- 13.2% of the preoperative values (P =.14), respectively. The segmentectomy and lobectomy groups had postoperative 1-second forced expiratory volumes of 1.99 +/- 0.63 L and 1.95 +/- 0.49 L, which were calculated to be 93.3% +/- 10.3% and 87.3% +/- 14.0% of the preoperative values, respectively (P =.03). The multiple linear regression analysis showed that the alternative of segmentectomy or lobectomy was not a determinant for postoperative forced vital capacity but did affect postoperative 1-second forced expiratory volume. Pulmonary function after a segmentectomy for a good-risk patient is slightly better than that after a lobectomy. However, segmentectomy should be still the surgical procedure for only poor-risk patients because of the difficulty in excluding patients with metastatic lymph nodes from the candidates for the procedure.

  2. Performance-based Physical Functioning and Peripheral Neuropathy in a Population-based Cohort of Women at Midlife

    Science.gov (United States)

    Ylitalo, Kelly R.; Herman, William H.; Harlow, Siobán D.

    2013-01-01

    Peripheral neuropathy is underappreciated as a potential cause of functional limitations. In the present article, we assessed the cross-sectional association between peripheral neuropathy and physical functioning and how the longitudinal association between age and functioning differed by neuropathy status. Physical functioning was measured in 1996–2008 using timed performances on stair-climb, walking, sit-to-stand, and balance tests at the Michigan site of the Study of Women's Health Across the Nation, a population-based cohort study of women at midlife (n = 396). Peripheral neuropathy was measured in 2008 and defined as having an abnormal monofilament test result or 4 or more symptoms. We used linear mixed models to determine whether trajectories of physical functioning differed by prevalent neuropathy status. Overall, 27.8% of the women had neuropathy. Stair-climb time differed by neuropathy status (P = 0.04), and for every 1-year increase in age, women with neuropathy had a 1.82% (95% confidence interval: 1.42, 2.21) increase compared with a 0.95% (95% confidence interval: 0.71, 1.20) increase for women without neuropathy. Sit-to-stand time differed by neuropathy status (P = 0.01), but the rate of change did not differ. No differences between neuropathy groups were observed for the walk test. For some performance-based tasks, poor functioning was maintained or exacerbated for women who had prevalent neuropathy. Peripheral neuropathy may play a role in physical functioning limitations and future disability. PMID:23524038

  3. Comparative effects of inhaled relatively insoluble forms of 90Y, 144Ce, and 90Sr on canine peripheral lymphocyte function

    International Nuclear Information System (INIS)

    Benjamin, S.A.; Jones, R.K.; Snipes, M.B.; Lustgarten, C.S.

    1976-01-01

    Dogs that have inhaled relatively insoluble forms of either alpha- or beta-emitting radionuclides manifest a peripheral lymphopenia, the development and course of which depends on both total dose and dose rate. The remaining peripheral lymphocytes in dogs exposed to longer lived beta-emitting radionuclides showed a depressed function as measured by the ability to respond to plant mitogens in vitro. This experiment was designed to evaluate the effect of dose rate on peripheral lymphocyte function by exposing dogs to aerosols of radionuclides with varied effective half-lives in the lung: 90 Y (2.6 days), 144 Ce (170 days), and 90 Sr (650 days). Three groups of four adult beagle dogs each were exposed by inhalation to 90 Y, 144 Ce, or 90 Sr in fused-clay particles. Two controls were matched with each group. Initial lung burdens and initial dose rates to the lung were 520 to 610 μCi/kg of body weight and 2200 to 2600 rads/day in the 90 Y group, 33 to 60 μCi/kg and 200 to 350 rads/day in the 144 Ce group, and 25 to 32 μCi/kg and 130 to 170 rads/day in the 90 Sr group. Hematologic parameters and lymphocyte function as measured by the ability of lymphocytes to respond to plant mitogen stimulation were evaluated on a weekly or biweekly basis for 8 weeks after exposure and on a monthly basis thereafter. The 90 Y-exposed dogs showed a marked lymphopenia within 1 week with a return to control levels by 20 weeks after exposure. The remaining peripheral lymphocytes, however, showed no functional changes in these dogs. Animals exposed to 144 Ce or 90 Sr developed a progressive and persisent lymphopenia and showed functional depression of the remaining lymphocytes as well. The relationships among dose pattern, lymphopenia, and lymphocyte-function depression are discussed

  4. Changes in the functions of undertakings in electricity supply

    International Nuclear Information System (INIS)

    Oberlack, H.W.

    1976-01-01

    For the electricity supply industry also it is necessary, by means of more intensive publicity work, to achieve the general realisation that neither new laws nor intervention of the state are required for dealing in the interests of the consumer with the problems arising, from great changes in all fields of business enterprise. It is more important for the electricity supply undertakings (EVU), by means of executive power and the administration of justice, to be put a position to carry out in the most efficient manner the functions entrusted to them by the Federal Government under the Power Supply Law and the energy programme. (orig.) [de

  5. Burn-related peripheral neuropathy: A systematic review.

    Science.gov (United States)

    Tu, Yiji; Lineaweaver, William C; Zheng, Xianyou; Chen, Zenggan; Mullins, Fred; Zhang, Feng

    2017-06-01

    Peripheral neuropathy is the most frequent disabling neuromuscular complication of burns. However, the insidious and progressive onset of burn neuropathy makes it often undiagnosed or overlooked. In our study, we reviewed the current studies on the burn-related peripheral neuropathy to summarize the morbidity, mechanism, detecting method and management of peripheral neuropathy in burn patients. Of the 1533 burn patients included in our study, 98 cases (6.39%) were presented with peripheral neuropathy. Thermal and electrical burns were the most common etiologies. Surgical procedures, especially nerve decompression, showed good effect on functional recovery of both acute and delayed peripheral neuropathy in burn patients. It is noteworthy that, for early detection and prevention of peripheral neuropathy, electrodiagnostic examinations should be performed on burn patients independent of symptoms. Still, the underlying mechanisms of burn-related peripheral neuropathy remain to be clarified. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  6. EFFECTS OF FUNCTIONAL ELECTRICAL STIMULATION IN REHABILITATION WITH HEMIPARESIS PATIENTS

    Science.gov (United States)

    Tanović, Edina

    2009-01-01

    Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES) in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemi- paresis), a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (p<0,001). In conclusion, we can state that the patients in rehabilitation after a cerebrovascular accident require rehabilitation longer than 4 weeks. Walking rehabilitation after stroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities. PMID:19284395

  7. Power amplifier circuits for functional electrical stimulation systems

    Directory of Open Access Journals (Sweden)

    Delmar Carvalho de Souza

    Full Text Available Abstract Introduction: Functional electrical stimulation (FES is a technique that has been successfully employed in rehabilitation treatment to mitigate problems after spinal cord injury (SCI. One of the most relevant modules in a typical FES system is the power or output amplifier stage, which is responsible for the application of voltage or current pulses of proper intensity to the biological tissue, applied noninvasively via electrodes, placed on the skin surface or inside the muscular tissue, closer to the nervous fibers. The goals of this paper are to describe and discuss about the main power output designs usually employed in transcutaneous functional electrical stimulators as well as safety precautions taken to protect patients. Methods A systematic review investigated the circuits of papers published in IEEE Xplore and ScienceDirect databases from 2000 to 2016. The query terms were “((FES or Functional electric stimulator and (circuit or design” with 274 papers retrieved from IEEE Xplore and 29 from ScienceDirect. After the application of exclusion criteria the amount of papers decreased to 9 and 2 from IEEE Xplore and ScienceDirect, respectively. One paper was inserted in the results as a technological contribution to the field. Therefore, 12 papers presented power stage circuits suitable to stimulate great muscles. Discussion The retrieved results presented relevant circuits with different electronic strategies and circuit components. Some of them considered patient safety strategies or aimed to preserve muscle homeostasis such as biphasic current application, which prevents charge accumulation in stimulated tissues as well as circuits that dealt with electrical impedance variation to keep the electrode-tissue interface within an electrochemical safe regime. The investigation revealed a predominance of design strategies using operational amplifiers in power circuits, current outputs, and safety methods to reduce risks of electrical

  8. [Characteristic and function of peripheral blood mononuclear cells-induced macrophages in patients with myelodysplastic syndrome].

    Science.gov (United States)

    Han, Y; Wang, H Q; Fu, R; Qu, W; Ruan, E B; Wang, X M; Wang, G J; Wu, Y H; Liu, H; Song, J; Guan, J; Xing, L M; Li, L J; Jiang, H J; Liu, H; Wang, Y H; Liu, C Y; Zhang, W; Shao, Z H

    2017-08-14

    Objective: To explore characteristic and function of peripheral blood mononuclear cells (PBMNC) -induced macrophages in patients with myelodysplastic syndrome (MDS) to couple with its progression. Methods: A total of 24 MDS patients (11 low-risk patients and 13 high-risk group patients) referred to Department of Hematology of Tianjin Medical University General Hospital and normal controls were enrolled from September 2014 to December 2015. PBMNC was stimulated with GM-CSF to transform to macrophages. The morphology of macrophages was observed by microscope. The quantity of macrophages, CD206 and SIRPα on surface of macrophages were detected by flow cytometry. The phagocytic function of macrophages was analyzed by fluorescence microscopy and flow cytometry. Results: The morphology of macrophages from MDS patients was abnormal. The percentage of transformed macrophages was (5.17±3.47) % in patients with MDS, which was lower than that in controls significantly[ (66.18±13.43) %, t =3.529, P =0.001]. The expression of CD206 on macrophages from MDS patients was significantly lower than that of controls[ (9.73±2.59) % vs (51.15±10.82) %, t =4.551, P patients was significantly lower than that of controls [ (0.51±0.09) % vs (0.77±0.06) %, t =2.102, P =0.043]. The phagocytic index and the percentage of phagocytic of macrophages from MDS patients were significantly lower than those of macrophages from normal controls[0.45±0.08 vs 0.92±0.07, t =-6.253, P =0.008; (23.69±3.22) % vs (42.75±2.13) %, t =-6.982, P =0.006 respectively]by flow cytometry. The phagocytic index of MDS patients was significantly lower than that of controls (0.24±0.04 vs 0.48±0.96, t =3.464, P =0.001) by fluorescence microscopy. Conclusion: The quantity, recognization receptors and phagocytosis of PBMNC-induced macrophages decreased in MDS patients.

  9. Deep-brain electrical microstimulation is an effective tool to explore functional characteristics of somatosensory neurons in the rat brain.

    Directory of Open Access Journals (Sweden)

    Han-Jia Jiang

    Full Text Available In neurophysiology researches, peripheral stimulation is used along with recordings of neural activities to study the processing of somatosensory signals in the brain. However, limited precision of peripheral stimulation makes it difficult to activate the neuron with millisecond resolution and study its functional properties in this scale. Also, tissue/receptor damage that could occur in some experiments often limits the amount of responses that can be recorded and hence reduces data reproducibility. To overcome these limitations, electrical microstimulation (ES of the brain could be used to directly and more precisely evoke neural responses. For this purpose, a deep-brain ES protocol for rat somatosensory relay neurons was developed in this study. Three male Wistar rats were used in the experiment. The ES was applied to the thalamic region responsive to hindpaw tactile stimulation (TS via a theta glass microelectrode. The resulting ES-evoked cortical responses showed action potentials and thalamocortical relay latencies very similar to those evoked by TS. This result shows that the developed deep-brain ES protocol is an effective tool to bypass peripheral tissue for in vivo functional analysis of specific types of somatosensory neurons. This protocol could be readily applied in researches of nociception and other somatosensory systems to allow more extensive exploration of the neural functional networks.

  10. Combustible and non-combustible tobacco product preparations differentially regulate human peripheral blood mononuclear cell functions.

    Science.gov (United States)

    Arimilli, Subhashini; Damratoski, Brad E; Prasad, G L

    2013-09-01

    Natural killer (NK) cells and T cells play essential roles in innate and adaptive immune responses in protecting against microbial infections and in tumor surveillance. Although evidence suggests that smoking causes immunosuppression, there is limited information whether the use of smokeless tobacco (ST) products affects immune responses. In this study, we assessed the effects of two preparations of cigarette smoke, ST extract and nicotine on T cell and NK cell responses using Toll-like receptor-ligand stimulated human peripheral blood mononuclear cells (PBMCs). The tobacco product preparations (TPPs) tested included whole smoke conditioned media (WS-CM), total particulate matter (TPM) and a ST product preparation in complete artificial saliva (ST/CAS). The PBMCs were stimulated with polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS). A marked reduction of the expression of intracellular IFN-γ and TNF-α was evident in NK cells and T cells treated with WS-CM and TPM. Consistently, attenuation of ligand-induced secretion of cytokines (IL-1β, IL-10, IL-12 and TNF-α) from PBMCs treated with WS-CM and TPM were observed. While the treatment with TPPs did not alter the expression of the maturation marker CD69, WS-CM and TPM inhibited the cytolytic activity of human PBMCs. Suppression of perforin by WS-CM was also detected. Although interference from the vehicle confounded the interpretation of effects of ST/CAS, some effects were evident only at high concentrations. Nicotine treatment minimally impacted expression of cytokines and cytolytic activity. Data presented herein suggests that the function of NK cells and T cells is influenced by exposure to TPPs (based on equi-nicotine units) in the following order: WS-CM>TPM>ST/CAS. These findings are consistent with the hypothesis put forward by others that chronic smoking leads to immunosuppression, an effect that may contribute to increased microbial infections and cancer incidence among smokers

  11. C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance

    Directory of Open Access Journals (Sweden)

    Rachel V. Jimenez

    2018-03-01

    Full Text Available C-reactive protein (CRP is the prototypical acute phase reactant, increasing in blood concentration rapidly and several-fold in response to inflammation. Recent evidence indicates that CRP has an important physiological role even at low, baseline levels, or in the absence of overt inflammation. For example, we have shown that human CRP inhibits the progression of experimental autoimmune encephalomyelitis (EAE in CRP transgenic mice by shifting CD4+ T cells away from the TH1 and toward the TH2 subset. Notably, this action required the inhibitory Fcγ receptor IIB (FcγRIIB, but did not require high levels of human CRP. Herein, we sought to determine if CRP’s influence in EAE might be explained by CRP acting on dendritic cells (DC; antigen presenting cells known to express FcγRIIB. We found that CRP (50 µg/ml reduced the yield of CD11c+ bone marrow-derived DCs (BMDCs and CRP (≥5 μg/ml prevented their full expression of major histocompatibility complex class II and the co-stimulatory molecules CD86 and CD40. CRP also decreased the ability of BMDCs to stimulate antigen-driven proliferation of T cells in vitro. Importantly, if the BMDCs were genetically deficient in mouse FcγRIIB then (i the ability of CRP to alter BMDC surface phenotype and impair T cell proliferation was ablated and (ii CD11c-driven expression of a human FCGR2B transgene rescued the CRP effect. Lastly, the protective influence of CRP in EAE was fully restored in mice with CD11c-driven human FcγRIIB expression. These findings add to the growing evidence that CRP has important biological effects even in the absence of an acute phase response, i.e., CRP acts as a tonic suppressor of the adaptive immune system. The ability of CRP to suppress development, maturation, and function of DCs implicates CRP in the maintenance of peripheral T cell tolerance.

  12. Sensory nerve cross-anastomosis and electrical muscle stimulation synergistically enhance functional recovery of chronically denervated muscle.

    Science.gov (United States)

    Willand, Michael P; Holmes, Michael; Bain, James R; de Bruin, Hubert; Fahnestock, Margaret

    2014-11-01

    Long-term muscle denervation leads to severe and irreversible atrophy coupled with loss of force and motor function. These factors contribute to poor functional recovery following delayed reinnervation. The authors' previous work demonstrated that temporarily suturing a sensory nerve to the distal motor stump (called sensory protection) significantly reduces muscle atrophy and improves function following reinnervation. The authors have also shown that 1 month of electrical stimulation of denervated muscle significantly improves function and reduces atrophy. In this study, the authors tested whether a combination of sensory protection and electrical stimulation would enhance functional recovery more than either treatment alone. Rat gastrocnemius muscles were denervated by cutting the tibial nerve. The peroneal nerve was then sutured to the distal tibial stump following 3 months of treatment (i.e., electrical stimulation, sensory protection, or both). Three months after peroneal repair, functional and histologic measurements were taken. All treatment groups had significantly higher muscle weight (pstimulation or sensory protection alone. The combined treatment also produced motor unit counts significantly greater than sensory protection alone (p<0.05). The combination treatment synergistically reduces atrophy and improves reinnervation and functional measures following delayed nerve repair, suggesting that these approaches work through different mechanisms. The authors' research supports the clinical use of both modalities together following peripheral nerve injury.

  13. Effects of Xueshuantong combined with antioxidant drugs on nerve conduction function and oxidative stress in patients with diabetic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Yuan-Zhen Chu

    2017-07-01

    Full Text Available Objective: To study the effect of Xueshuantong combined with antioxidant drugs on nerve conduction function and oxidative stress in patients with diabetic peripheral neuropathy. Methods: 138 cases of patients with diabetic peripheral neuropathy who were treated in endocrinology department of our hospital between June 2014 and October 2016 were enrolled and randomly divided into two groups. The combination group received Xueshuantong combined with antioxidant drug therapy, and the control group received antioxidant drug therapy. Before and after treatment, the nerve conduction velocity as well as serum content of oxidative stress indexes and nerve cytokines was measured. Results: 4 weeks and 8 weeks after treatment, common peroneal nerve and median nerve MNCV and SNCV as well as serum SOD, GSH-Px, HO-1, CAT, CNTF, BDNF and SDF-1α levels of both groups were significantly higher than those before treatment while serum MDA, AOPP and 8-OHdG levels were significantly lower than those before treatment, and common peroneal nerve and median nerve MNCV and SNCV as well as serum SOD, GSH-Px, HO-1, CAT, CNTF, BDNF and SDF-1α levels of combination group were significantly higher than those of control group while serum MDA, AOPP and 8-OHdG levels were significantly lower than those of control group. Conclusion: Xueshuantong combined with antioxidant drugs can improve the nerve conduction function, inhibit oxidative stress response and improve neurotrophy status in patients with diabetic peripheral neuropathy.

  14. Overall and peripheral lung function assessment by spirometry and forced oscillation technique in relation to asthma diagnosis and control.

    Science.gov (United States)

    Heijkenskjöld Rentzhog, C; Janson, C; Berglund, L; Borres, M P; Nordvall, L; Alving, K; Malinovschi, A

    2017-12-01

    Classic spirometry is effort dependent and of limited value in assessing small airways. Peripheral airway involvement, and relation to poor control, in asthma, has been highlighted recently. Forced oscillation technique (FOT) offers an effort-independent assessment of overall and peripheral lung mechanics. We studied the association between lung function variables, obtained either by spirometry or multifrequency (5, 11 and 19 Hz) FOT, and asthma diagnosis and control. Spirometry measures, resistance at 5 (R5) and 19 Hz (R19), reactance at 5 Hz (X5), resonant frequency (f res ), resistance difference between 5-19 Hz (R5-R19) and Asthma Control Test scores were determined in 234 asthmatic and 60 healthy subjects (aged 13-39 years). We used standardized lung function variables in logistic regression analyses, unadjusted and adjusted for age, height, gender and weight. Lower FEV 1 /FVC (OR [95% CI] 0.47 [0.32, 0.69]) and FEF 50 (0.62 [0.46, 0.85]) per standard deviation increase, and higher R5 (3.31 [1.95, 5.62]) and R19 (2.54 [1.65, 3.91]) were associated with asthma diagnosis. Independent predictive effects of FEV 1 /FVC and R5 or R19, respectively, were found for asthma diagnosis. Lower FEV 1 /FVC and altered peripheral FOT measures (X5, f res and R5-R19) were associated with uncontrolled asthma (P-values < .05). Resistance FOT measures were equally informative as spirometry, related to asthma diagnosis, and, furthermore, offered additive information to FEV 1 /FVC, supporting a complementary role for FOT. Asthma control was related to FOT measures of peripheral airways, suggesting a potential use in identifying such involvement. Further studies are needed to determine a clinical value and relevant reference values in children, for the multifrequency FOT measurements. © 2017 John Wiley & Sons Ltd.

  15. A Case Study Of Dietary Deficiency On Peripheral Nerve Functions In Chronic Alcoholic Patient

    Directory of Open Access Journals (Sweden)

    Arbind Kumar Choudhary

    2015-08-01

    Full Text Available Abstract Alcoholic neuropathy is most likely result of dietary deficiency rather than direct neurotoxic effect of alcohol. A male alcoholic patient aged 34- years old with clear clinical sign of peripheral neuropathy was examined after his habit of six years chronic alcoholic drinking. Conduction velocities latencies and nerve action potential amplitudes was measured from median radial common peroneal and sural nerves on respective upper and lower limb and the results showed that there was decrease in conduction velocity of common peroneal and posterior tibial in lower limbs. However sensory nerve conduction SNCV of sural nerve right and left was normal in lower limb. Based on the results observed in our study we conclude that the combination of vitamin B12 uridine and cytidine can be safe and effective in the treatment of patients presenting alcoholic polyneuropathy. So the prognosis of alcoholic peripheral neuropathy is good and independent of age provided that intake of alcohol is withdrawn completely.

  16. A new dynamic visual acuity test to assess peripheral vestibular function.

    Science.gov (United States)

    Vital, Domenic; Hegemann, Stefan C A; Straumann, Dominik; Bergamin, Oliver; Bockisch, Christopher J; Angehrn, Dominik; Schmitt, Kai-Uwe; Probst, Rudolf

    2010-07-01

    To evaluate a novel test for dynamic visual acuity (DVA) that uses an adaptive algorithm for changing the size of Landolt rings presented during active or passive head impulses, and to compare the results with search-coil head impulse testing. Prospective study in healthy individuals and patients with peripheral vestibular deficits. Tertiary academic center. One hundred neuro-otologically healthy individuals (age range, 19-80 years) and 15 patients with bilateral (n = 5) or unilateral (n = 10) peripheral vestibular loss (age range, 27-72 years). Testing of static visual acuity (SVA), DVA during active and passive horizontal head rotations (optotype presentation at head velocities >100 degrees/s and >150 degrees/s), and quantitative horizontal head impulse testing with scleral search coils. Difference between SVA and DVA, that is, visual acuity loss (VA loss), gain of the high-acceleration vestibulo-ocular reflex. Passive head impulses and higher velocities were more effective than active impulses and lower velocities. Using passive head impulses and velocities higher than 150 degrees/s, the DVA test discriminated significantly (P test sensitivity was 100%, specificity was 94%, and accuracy was 95%, with search-coil head impulse testing used as a reference. In healthy individuals, VA loss increased significantly with age (P testing with Landolt rings that are adaptively changed in size enables detection of peripheral vestibular dysfunction in a fast and simple way.

  17. Electricity Demand Forecasting Using a Functional State Space Model

    OpenAIRE

    Nagbe , Komi; Cugliari , Jairo; Jacques , Julien

    2018-01-01

    In the last past years the liberalization of the electricity supply, the increase variability of electric appliances and their use, and the need to respond to the electricity demand in the real time had made electricity demand forecasting a challenge. To this challenge, many solutions are being proposed. The electricity demand involves many sources such as economic activities, household need and weather sources. All this sources make hard electricity demand forecasting. To forecast the electr...

  18. Repetitive peripheral magnetic stimulation for activities of daily living and functional ability in people after stroke.

    Science.gov (United States)

    Momosaki, Ryo; Yamada, Naoki; Ota, Erika; Abo, Masahiro

    2017-06-23

    Repetitive peripheral magnetic stimulation (rPMS) is a form of therapy that creates painless stimulation of deep muscle structures to improve motor function in people with physical impairment from brain or nerve disorders. Use of rPMS for people after stroke has been identified as a feasible approach to improve activities of daily living and functional ability. However, no systematic reviews have assessed the findings of available trials. The effect and safety of this intervention for people after stroke currently remain uncertain. To assess the effect of rPMS for improving activities of daily living and functional ability in people after stroke. We searched the Cochrane Stroke Group Trials Register (August 2016), the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 8) in the Cochrane Library (August 2016), MEDLINE Ovid (November 2016), Embase Ovid (August 2016), the Cumulative Index to Nursing and Allied Health Literature (CINAHL) in Ebsco (August 2016), PsycINFO Ovid (August 2016), the Allied and Complementary Medicine Database (AMED) Ovid (August 2016), Occupational Therapy Systematic Evaluation of Evidence (OTseeker) (August 2016), the Physiotherapy Evidence Database (PEDro) (October 2016), and ICHUSHI Web (October 2016). We also searched five ongoing trial registries, screened reference lists, and contacted experts in the field. We placed no restrictions on the language or date of publication when searching the electronic databases. We included randomised controlled trials (RCTs) conducted to assess the therapeutic effect of rPMS for people after stroke. Comparisons eligible for inclusion were (1) active rPMS only compared with 'sham' rPMS (a very weak form of stimulation or a sound only); (2) active rPMS only compared with no intervention; (3) active rPMS plus rehabilitation compared with sham rPMS plus rehabilitation; and (4) active rPMS plus rehabilitation compared with rehabilitation only. Two review authors independently assessed

  19. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    International Nuclear Information System (INIS)

    Nagata, Takayuki; Murata, Kazuko; Murata, Ryo; Sun, Shu-lan; Saito, Yutaro; Yamaga, Shuhei; Tanaka, Nobuyuki; Tamai, Keiichi; Moriya, Kunihiko; Kasai, Noriyuki; Sugamura, Kazuo; Ishii, Naoto

    2014-01-01

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs flox/flox ;mb1 cre/+ :Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes

  20. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    Energy Technology Data Exchange (ETDEWEB)

    Ruskamo, Salla [University of Oulu, Oulu (Finland); University of Oulu, Oulu (Finland); Yadav, Ravi P. [Banaras Hindu University, Varanasi (India); Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg (Germany); Sharma, Satyan; Lehtimäki, Mari [University of Oulu, Oulu (Finland); University of Oulu, Oulu (Finland); Laulumaa, Saara [University of Oulu, Oulu (Finland); University of Oulu, Oulu (Finland); Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg (Germany); Aggarwal, Shweta; Simons, Mikael [Max Planck Institute for Experimental Medicine, Göttingen (Germany); Bürck, Jochen; Ulrich, Anne S. [Karlsruhe Institute for Technology (KIT), Karlsruhe (Germany); Juffer, André H. [University of Oulu, Oulu (Finland); University of Oulu, Oulu (Finland); Kursula, Inari [University of Oulu, Oulu (Finland); Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg (Germany); Kursula, Petri, E-mail: petri.kursula@oulu.fi [University of Oulu, Oulu (Finland); University of Oulu, Oulu (Finland); Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg (Germany); University of Hamburg, Hamburg (Germany)

    2014-01-01

    The structure of the human myelin peripheral membrane protein P2 has been refined at 0.93 Å resolution. In combination with functional experiments in vitro, in vivo and in silico, the fine details of the structure–function relationships in P2 are emerging. P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.

  1. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Takayuki [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Murata, Kazuko, E-mail: murata-k@iwakimu.ac.jp [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Murata, Ryo [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Sun, Shu-lan [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Saito, Yutaro; Yamaga, Shuhei [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Tanaka, Nobuyuki; Tamai, Keiichi [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Moriya, Kunihiko [Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kasai, Noriyuki [Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Sugamura, Kazuo [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Ishii, Naoto [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)

    2014-01-10

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs{sup flox/flox};mb1{sup cre/+}:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes.

  2. Relative preservation of peripheral lung function in smoking-related pulmonary emphysema: assessment with 99mTc-MAA perfusion and dynamic 133Xe SPET

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Kume, Norihiko; Matsunaga, Naofumi; Ogasawara, Nobuhiko; Motoyama, Kazumi; Hara, Akiko; Matsumoto, Tsuneo

    2000-01-01

    In this study the cross-sectional functional differences between the central and peripheral lung in smokers with pulmonary emphysema were evaluated by lung perfusion and dynamic xenon-133 single-photon emission tomography (SPET). The subjects were 81 patients with a long-term smoking history and relatively advanced emphysema, 17 non-smoker patients with non-obstructive lung diseases and six healthy non-smokers. Regional lung functional difference between the peripheral and central lung was assessed in the upper, middle and lower lung zones by technetium-99m macroaggregated albumin SPET and dynamic 133 Xe SPET. The distribution of emphysematous changes was assessed by density-mask computed tomography (CT) images which depicted abnormally low attenuation areas (LAAs) of less than -960 Hounsfield units. Two hundred and eighty-eight (59.2%) lung zones of 63 (77.7%) patients with pulmonary emphysema showed relative preservation of lung function in the peripheral lung, with a curvilinear band of normal perfusion (a stripe sign) and a significantly faster 133 Xe half-clearance time (T 1/2 ) than in central lung (P 1/2 in the peripheral lung area (P 1/2 values and LAA distributions between the central and peripheral lung. Relative preservation of peripheral lung function seems to be a characteristic feature in smoking-related pulmonary emphysema, and may indicate a lower susceptibility of peripheral parenchyma to the development of this disease. (orig.)

  3. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors.

    Directory of Open Access Journals (Sweden)

    Jae-Sung Park

    Full Text Available Benefits of exercise on nerve regeneration and functional recovery have been reported in both central and peripheral nervous system disease models. However, underlying molecular mechanisms of enhanced regeneration and improved functional outcomes are less understood. We used a peripheral nerve regeneration model that has a good correlation between functional outcomes and number of motor axons that regenerate to evaluate the impact of treadmill exercise. In this model, the median nerve was transected and repaired while the ulnar nerve was transected and prevented from regeneration. Daily treadmill exercise resulted in faster recovery of the forelimb grip function as evaluated by grip power and inverted holding test. Daily exercise also resulted in better regeneration as evaluated by recovery of compound motor action potentials, higher number of axons in the median nerve and larger myofiber size in target muscles. Furthermore, these observations correlated with higher levels of neurotrophic factors, glial derived neurotrophic factor (GDNF, brain derived neurotrophic factor (BDNF and insulin-like growth factor-1 (IGF-1, in serum, nerve and muscle suggesting that increase in muscle derived neurotrophic factors may be responsible for improved regeneration.

  4. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    Science.gov (United States)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and

  5. Behavioural conditioning of immune functions: how the central nervous system controls peripheral immune responses by evoking associative learning processes.

    Science.gov (United States)

    Riether, Carsten; Doenlen, Raphaël; Pacheco-López, Gustavo; Niemi, Maj-Britt; Engler, Andrea; Engler, Harald; Schedlowski, Manfred

    2008-01-01

    During the last 30 years of psychoneuroimmunology research the intense bi-directional communication between the central nervous system (CNS) and the immune system has been demonstrated in studies on the interaction between the nervous-endocrine-immune systems. One of the most intriguing examples of such interaction is the capability of the CNS to associate an immune status with specific environmental stimuli. In this review, we systematically summarize experimental evidence demonstrating the behavioural conditioning of peripheral immune functions. In particular, we focus on the mechanisms underlying the behavioural conditioning process and provide a theoretical framework that indicates the potential feasibility of behaviourally conditioned immune changes in clinical situations.

  6. A distributed transducer system for functional electrical stimulation

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Nielsen, Jannik Hammel; Bruun, Erik

    2001-01-01

    to be affected by the inductive link. Neural stimulators are affected to a lesser degree, but still benefit from the partitioning. As a test case, we have designed a transceiver and a sensor chip which implement this partitioning policy. The transceiver is designed to operate in the 6.78 MHz ISM band......Implanted transducers for functional electrical stimulation (FES) powered by inductive links are subject to conflicting requirements arising from low link efficiency, a low power budget and the need for protection of the weak signals against strong RF electromagnetic fields. We propose a solution...... to these problems by partitioning the RF transceiver and sensor/actuator functions onto separate integrated circuits. By amplifying measured neural signals directly at the measurements site and converting them into the digital domain before passing them to the transceiver the signal integrity is less likely...

  7. Passive reach and grasp with functional electrical stimulation and robotic arm support

    NARCIS (Netherlands)

    Westerveld, Ard J.; Schouten, Alfred C.; Veltink, Peter H.; van der Kooij, Herman

    2014-01-01

    Rehabilitation of arm and hand function is crucial to increase functional independence of stroke subjects. Here, we investigate the technical feasibility of an integrated training system combining robotics and functional electrical stimulation (FES) to support reach and grasp during functional

  8. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Science.gov (United States)

    Ignatius, Myron S; Unal Eroglu, Arife; Malireddy, Smitha; Gallagher, Glen; Nambiar, Roopa M; Henion, Paul D

    2013-01-01

    The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382) mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382) mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382) mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382) defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  9. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  10. Amiodarone: Effects on thyroid function and the peripheral metabolism of the thyroid hormones

    International Nuclear Information System (INIS)

    Braverman, L.E.; Safran, M.; Bambini, G.; Pinchera, A.; Martino, E.

    1985-01-01

    In addition to the effects of Amiodarone on the peripheral metabolism of the thyroid hormones and on pituitary TSH secretion, a major complication of therapy is the relatively high frequency of iodide-induced thyroid dysfunction. The mean T 4 and T 3 concentration following Amiodarone application was measured in euthyroid, hypothyroid and hyperthyroid patients and in control patients with and without cardiac disorders. Furthermore, the serum TSH was determined in euthyroid Amiodarone-treated euthyroid patients. 131 I uptake was studied in patients with Amiodarone-associated thyrotoxicosis. The difficulties of the therapy of Amiodarone-induced hyper-thyroidism are outlined. Preliminary studied of the effect of Amiodarone and its analogues on the metabolism of thyroid hormones in the rat indicate that Amiodarone may act as a thyroid hormone agonist in the pituitary. (MG)

  11. Electromyographic control of functional electrical stimulation in selected patients.

    Science.gov (United States)

    Graupe, D; Kohn, K H; Basseas, S; Naccarato, E

    1984-07-01

    The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.

  12. Enhancing vestibular function in the elderly with imperceptible electrical stimulation.

    Science.gov (United States)

    Serrador, Jorge M; Deegan, Brian M; Geraghty, Maria C; Wood, Scott J

    2018-01-10

    Age-related loss of vestibular function can result in decrements in gaze stabilization and increased fall risk in the elderly. This study was designed to see if low levels of electrical stochastic noise applied transcutaneously to the vestibular system can improve a gaze stabilization reflex in young and elderly subject groups. Ocular counter-rolling (OCR) using a video-based technique was obtained in 16 subjects during low frequency passive roll tilts. Consistent with previous studies, there was a significant reduction in OCR gains in the elderly compared to the young group. Imperceptible stochastic noise significantly increased OCR in the elderly (Mean 23%, CI: 17-35%). Increases in OCR gain were greatest for those with lowest baseline gain and were negligible in those with normal gain. Since stimulation was effective at low levels undetectable to subjects, stochastic noise may provide a new treatment alternative to enhance vestibular function, specifically otolith-ocular reflexes, in the elderly or patient populations with reduced otolith-ocular function.

  13. Dose postural control improve following application of transcutaneous electrical nerve stimulation in diabetic peripheral neuropathic patients? A randomized placebo control trial.

    Science.gov (United States)

    Saadat, Z; Rojhani-Shirazi, Z; Abbasi, L

    2017-12-01

    peripheral neuropathy is the most common problem of diabetes. Neuropathy leads to lower extremity somatosensory deficits and postural instability in these patients. However, there are not sufficient evidences for improving postural control in these patients. To investigate the effects of transcutaneous electrical nerve stimulation (TENS) on postural control in patients with diabetic neuropathy. Twenty eighth patients with diabetic neuropathy (40-55 Y/O) participated in this RCT study. Fourteen patients in case group received TENS and sham TENS was used for control group. Force plate platform was used to extract sway velocity and COP displacement parameters for postural control evaluation. The mean sway velocity and center of pressure displacement along the mediolateral and anteroposterior axes were not significantly different between two groups after TENS application (p>0.05). Application of 5min high frequency TENS on the knee joint could not improve postural control in patients with diabetic neuropathy. Copyright © 2017. Published by Elsevier Ltd.

  14. Density functional theory of the electrical double layer: the RFD functional

    International Nuclear Information System (INIS)

    Gillespie, Dirk; Valisko, Monika; Boda, Dezso

    2005-01-01

    Density functional theory (DFT) of electrolytes is applied to the electrical double layer under a wide range of conditions. The ions are charged, hard spheres of different size and valence, and the wall creating the double layer is uncharged, weakly charged, and strongly charged. Under all conditions, the density and electrostatic potential profiles calculated using the recently proposed RFD electrostatic functional (Gillespie et al 2002 J. Phys.: Condens. Matter 14 12129; 2003 Phys. Rev. E 68 031503) compare well to Monte Carlo simulations. When the wall is strongly charged, the RFD functional results agree with the results of a simpler perturbative electrostatic DFT, but the two functionals' results qualitatively disagree when the wall is uncharged or weakly charged. The RFD functional reproduces these phenomena of weakly charged double layers. It also reproduces bulk thermodynamic quantities calculated from pair correlation functions

  15. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.

    Science.gov (United States)

    Tamaki, Tetsuro; Hirata, Maki; Nakajima, Nobuyuki; Saito, Kosuke; Hashimoto, Hiroyuki; Soeda, Shuichi; Uchiyama, Yoshiyasu; Watanabe, Masahiko

    2016-01-01

    Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs) to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN/29+) cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm) bridging an acellular conduit. After 8-12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells) were also observed. A significant tetanic tension recovery (over 90%) of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap) was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon) and functional (80% vs. 60% in tetanus) recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks) of recovery was observed in both groups with the expression of key factors (mRNA and protein levels), suggesting the paracrine effects to angiogenesis. These results suggested that the human Sk

  16. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs: An Achievement of Significant Morphological, Numerical and Functional Recovery.

    Directory of Open Access Journals (Sweden)

    Tetsuro Tamaki

    Full Text Available Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34 and CD34-/45-/29+ (Sk-DN/29+ cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm bridging an acellular conduit. After 8-12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells were also observed. A significant tetanic tension recovery (over 90% of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon and functional (80% vs. 60% in tetanus recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks of recovery was observed in both groups with the expression of key factors (mRNA and protein levels, suggesting the paracrine effects to angiogenesis. These results suggested that the

  17. Bone marrow function. I. Peripheral T cells are responsible for the increased auto-antiidiotype response of older mice

    International Nuclear Information System (INIS)

    Kim, Y.T.; Goidl, E.A.; Samarut, C.; Weksler, M.E.; Thorbecke, G.J.; Siskind, G.W.

    1985-01-01

    After immunization with trinitrophenyl (TNP)-Ficoll, mice produced both anti-TNP antibodies and auto-anti-idiotype (auto-anti-Id) antibodies specific for the anti-TNP antibody. Older animals produced more auto-anti-Id than did young animals. When mice were exposed to a normally lethal dose of irradiation while their bone marrow (BM) was partially shielded, they survived and slowly (6 wk) regained immune function, as indicated by the number of nucleated cells in their spleen and the in vitro primary plaque-forming cell (PFC) response of their spleen cells to TNP-treated aminoethylated polyacrylamide beads. Recovery is presumably the result of repopulation of the peripheral lymphoid system by cells originating in the BM. By enzyme-linked immunosorbent assay (ELISA), and by hapten-augmentable PFC assay, the authors show that, after recovery from irradiation with their BM shielded, old animals produce low auto-anti-Id responses, like those of young animals. The transfer of splenic T cells into mice irradiated with their BM shielded provided evidence that the magnitude of the auto-anti-Id response is controlled by the peripheral T cells. Thus, mice that received splenic T cells from aged donors produced high levels of auto-anti-Id while those that received splenic T cells from young donors produce low levels of auto-anti-Id

  18. Scaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Aaron M. Adams; Keith W. VanDusen; Tatiana Y. Kostrominova; Jacob P. Mertens; Lisa M. Larkin

    2017-01-01

    Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E15). EFCs were fabricated utilizing primary fi-broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re-spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot-ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the E15 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair.

  19. Peripheral markers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder.

    Science.gov (United States)

    Croonenberghs, J; Delmeire, L; Verkerk, R; Lin, A H; Meskal, A; Neels, H; Van der Planken, M; Scharpe, S; Deboutte, D; Pison, G; Maes, M

    2000-03-01

    Some studies have suggested that disorders in the peripheral and central metabolism of serotonin (5-HT) and noradrenaline may play a role in the pathophysiology of autistic disorder. This study examines serotonergic and noradrenergic markers in a study group of 13 male, post-pubertal, caucasian autistic patients (age 12-18 y; I.Q. > 55) and 13 matched volunteers. [3H]-paroxetine binding Kd values were significantly higher in patients with autism than in healthy volunteers. Plasma concentrations of tryptophan, the precursor of 5-HT, were significantly lower in autistic patients than in healthy volunteers. There were no significant differences between autistic and normal children in the serum concentrations of 5-HT, or the 24-hr urinary excretion of 5-hydroxy-indoleacetic acid (5-HIAA), adrenaline, noradrenaline, and dopamine. There were no significant differences in [3H]-rauwolscine binding Bmax or Kd values, or in the serum concentrations of tyrosine, the precursor of noradrenaline, between both study groups. There were highly significant positive correlations between age and 24-hr urinary excretion of 5-HIAA and serum tryptophan. The results suggest that: 1) serotonergic disturbances, such as defects in the 5-HT transporter system and lowered plasma tryptophan, may play a role in the pathophysiology of autism; 2) autism is not associated with alterations in the noradrenergic system; and 3) the metabolism of serotonin in humans undergoes significant changes between the ages of 12 and 18 years.

  20. In vitro X-ray irradiation of human peripheral blood T lymphocytes enhances suppressor function

    International Nuclear Information System (INIS)

    Ogawa, H.; Tsunematsu, T.

    1983-01-01

    The effect of in vitro X-ray irradiation on human peripheral blood T lymphocytes was studied with regard to their suppressor activity related to the concanavalin A (Con A)-induced suppressor system. To generate suppressor T lymphocytes, purified human T lymphocytes were incubated for 3 days in the first culture, with or without Con A. These lymphocytes were irradiated with various doses of X-ray before, mid or after the culture. After doing a second culture for 6 days, the suppressive influence of these cells on T lymphocyte proliferation rates stimulated with allogeneic mononuclear cells, and B lymphocyte proliferation rates stimulated with pokeweed mitogen was measured. Irradiation of cultures to which Con A had not been added induced much the same level of suppressor activity as seen in the cultures with Con A. The suppressor activity gradually increased with time from the irradiation to the suppressor cell assay. Suppressor T lymphocytes were resistant to X-ray irradiation and independent of DNA synthesis. However, irradiation-induced enhancement was minimal in cultures incubated with con A, regardless of the irradiation time. (author)

  1. Flow-mediated dilation and peripheral arterial tonometry are disturbed in preeclampsia and reflect different aspects of endothelial function.

    Science.gov (United States)

    Mannaerts, Dominique; Faes, Ellen; Goovaerts, Inge; Stoop, Tibor; Cornette, Jerome; Gyselaers, Wilfried; Spaanderman, Marc; Van Craenenbroeck, Emeline M; Jacquemyn, Yves

    2017-11-01

    Endothelial function and arterial stiffness are known to be altered in preeclamptic pregnancies. Previous studies have shown conflicting results regarding the best technique for assessing vascular function in pregnancy. In this study, we made a comprehensive evaluation of in vivo vascular function [including flow-mediated dilatation (FMD), peripheral arterial tonometry (PAT), and arterial stiffness] in preeclamptic patients and compared them with normal pregnancies. In addition, we assessed the relation between vascular function and systemic inflammation. Fourteen patients with preeclampsia (PE) and 14 healthy pregnant controls were included. Endothelial function was determined by FMD and PAT and arterial stiffness by carotid-femoral pulse-wave velocity and augmentation index. Systemic inflammation was assessed using mean platelet volume (MPV) and neutrophil-lymphocyte ratio (NLR). The reactive hyperemia index, assessed using PAT, is decreased at the third trimester compared with the first trimester in a normal, uncomplicated pregnancy ( P = 0.001). Arterial stiffness is significantly higher in PE versus normal pregnancy ( P function, obtained by FMD, is deteriorated in PE versus normal pregnancy ( P = 0.015), whereas endothelial function assessment by PAT is improved in PE versus normal pregnancy ( P = 0.001). Systemic inflammation (MPV and NLR) increases during normal pregnancy. FMD and PAT are disturbed in PE. Endothelial function, assessed by FMD and PAT, shows distinct results. This may indicate that measurements with FMD and PAT reflect different aspects of endothelial function and that PAT should not be used as a substitute for FMD as a measure of endothelial function in pregnancy. Copyright © 2017 the American Physiological Society.

  2. Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach

    OpenAIRE

    L. L. Ivy-Yap; H. A. Bekhet

    2014-01-01

    As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 period. Unlike previous studies on Malaysia, the current study focuses on the residential secto...

  3. Diazonium functionalized graphene: microstructure, electric, and magnetic properties.

    Science.gov (United States)

    Huang, Ping; Jing, Long; Zhu, Huarui; Gao, Xueyun

    2013-01-15

    The unique honeycomb lattice structure of graphene gives rise to its outstanding electronic properties such as ultrahigh carrier mobility, ballistic transport, and more. However, a crucial obstacle to its use in the electronics industry is its lack of an energy bandgap. A covalent chemistry strategy could overcome this problem, and would have the benefits of being highly controllable and stable in the ambient environment. One possible approach is aryl diazonium functionalization. In this Account, we investigate the micromolecular/lattice structure, electronic structure, and electron-transport properties of nitrophenyl-diazonium-functionalized graphene. We find that nitrophenyl groups mainly adopt random and inhomogeneous configurations on the graphene basal plane, and that their bonding with graphene carbon atoms leads to slight elongation of the graphene lattice spacing. By contrast, hydrogenated graphene has a compressed lattice. Low levels of functionalization suppressed the electric conductivity of the resulting functionalized graphene, while highly functionalized graphene showed the opposite effect. This difference arises from the competition between the charge transfer effect and the scattering enhancement effect introduced by nitrophenyl groups bonding with graphene carbon atoms. Detailed electron transport measurements revealed that the nitrophenyl diazonium functionalization locally breaks the symmetry of graphene lattice, which leads to an increase in the density of state near the Fermi level, thus increasing the carrier density. On the other hand, the bonded nitrophenyl groups act as scattering centers, lowering the mean free path of the charge carriers and suppressing the carrier mobility. In rare cases, we observed ordered configurations of nitrophenyl groups in local domains on graphene flakes due to fluctuations in the reaction processes. We describe one example of such a superlattice, with a lattice constant nearly twice of that of pristine graphene

  4. Influence of orlistat therapy on serum insulin level and morphological and functional parameters of peripheral arterial circulation in obese patients

    Directory of Open Access Journals (Sweden)

    Hajduković Zoran

    2005-01-01

    Full Text Available Background/Aim. Insulin resistance is related to accelerated atherosclerosis, whereas weight loss is associated with the increasing insulin sensitivity, the improvement of functional and the morphological parameters of arterial circulation, and the reduction of cardiovascular morbidity and mortality. The aim of our study was to evaluate the influence of orlistat treatment on serum insulin level and functional and morphologic parameters of peripheral arterial circulation. Methods. We conducted a prospective, randomized, double − blind, placebo − controlled study. Thirty patients with body mass index over 30 kg/m2 normotensive, nonsmokers, without clinically manifested cardiovascular disease or diabetes were randomly assigned either orlistat (120 mg, 3 times daily; n = 20 or placebo (n = 10 in a double − blind manner. All of the patients were on individually calculated hypocaloric diet. The follow-up period was 24 weeks. Arterial pressure, fasting serum glucose and insulin level, triglycerides, total cholesterol and low density lipoprotein-cholesterol were determined at the beginning, following 3 and 6 months. Also, the intima − media thickness of right superficial femoral artery and the mean blood flow velocity were determined with ultrasonography. Results. Inside the period of 3 and 6 months, there were the greater reductions of body mass index, arterial pressure, fasting glucose and insulin level, total cholesterol, low density lipoproteins, as well as the greater reductions of mean velocity blood flow and peripheral pulse pressure in the orlistat group vs the placebo group (p < 0.01. Greater reductions in the waist circumference and intima − media thickness were registered following 6 months in the orlistat vs the placebo group (p < 0.01. Conclusion. In the group of obese patients orlistat therapy reduced risk factors, serum insulin level and improved early arterial functional changes as assessed with the reductions of the mean

  5. Multi-functional Electric Module for a Vehicle

    Science.gov (United States)

    Bluethmann, William J. (Inventor); Waligora, Thomas M. (Inventor); Fraser-Chanpong, Nathan (Inventor); Reed, Ryan (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Markee, Mason M. (Inventor)

    2015-01-01

    A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.

  6. Improvement in the Function of rat Peripheral Blood Monocytes Following Oral Administration of Curcumin

    Directory of Open Access Journals (Sweden)

    H Zirak Marangalu

    2017-06-01

    Conclusions: Collectively, it seems that curcumin is a natural source to intervene the monocytes functions especially in autoimmune diseases so that monocytes hyperactivity causes immunopathological conditions.

  7. Development of Functional Electrical Stimulation Rowing: The Rowstim Series.

    Science.gov (United States)

    Andrews, Brian; Gibbons, Robin; Wheeler, Garry

    2017-11-01

    Potentially, functional electrical stimulation (FES)-assisted exercise may have an important therapeutic role in reducing comorbidities associated with spinal cord injury (SCI). Here, we present an overview of these secondary life-threatening conditions, discuss the rationale behind the development of a hybrid exercise called FES rowing, and describe our experience in developing FES rowing technology. FES rowing and sculling are unique forms of adaptive rowing for those with SCI. The paralyzed leg musculature is activated by multiple channels of electrical pulses delivered via self-adhesive electrodes attached to the skin. The stimulated muscle contractions are synchronized with voluntary rowing movements of the upper limbs. A range of steady-state FES rowing exercise intensities have been demonstrated from 15.2 ± 1.8 mL/kg/min in tetraplegia to 22.9 ±7.1 mL/kg/min in paraplegia. We expect that such high levels may help some to achieve significant reductions in the risks to their health, particularly where a dose-response relationship exists as is the case for cardiovascular disease and Type II diabetes. Furthermore, preliminary results suggest that cyclical forces more than 1.5 times body weight are imposed on the leg long bones which may help to reduce the risk of fragility fractures. We have demonstrated the feasibility of FES rowing on land and water using adapted rowing technology that includes; a fixed stretcher indoor ergometer (adapted Concept 2, Model E), a floating stretcher indoor ergometer (adapted Concept 2 Dynamic), a turbine powered water rowing tank, a custom hydraulic sculling simulator and a single scull (adapted Alden 16). This has involved volunteers with paraplegia and tetraplegia with SCI ranging from C4 to T12 AIS A using at least 4-channels of surface electrical stimulation. FES rowers, with SCI, have competed alongside non-SCI rowers over the Olympic distance of 2000 m at the British Indoor Rowing Championships in 2004, 2005, and 2006

  8. Functional characterization of neotropical snakes peripheral blood leukocytes subsets: Linking flow cytometry cell features, microscopy images and serum corticosterone levels.

    Science.gov (United States)

    de Carvalho, Marcelo Pires Nogueira; Queiroz-Hazarbassanov, Nicolle Gilda Teixeira; de Oliveira Massoco, Cristina; Sant'Anna, Sávio Stefanini; Lourenço, Mariana Mathias; Levin, Gabriel; Sogayar, Mari Cleide; Grego, Kathleen Fernandes; Catão-Dias, José Luiz

    2017-09-01

    Reptiles are the unique ectothermic amniotes, providing the key link between ectothermic anamniotes fish and amphibians, and endothermic birds and mammals; becoming an important group to study with the aim of providing significant knowledge into the evolutionary history of vertebrate immunity. Classification systems for reptiles' leukocytes have been described by their appearance rather than function, being still inconsistent. With the advent of modern techniques and the establishment of analytical protocols for snakes' blood by flow cytometry, we bring a qualitative and quantitative assessment of innate activities presented by snakes' peripheral blood leukocytes, thereby linking flow cytometric features with fluorescent and light microscopy images. Moreover, since corticosterone is an important immunomodulator in reptiles, hormone levels of all blood samples were measured. We provide novel and additional information which should contribute to better understanding of the development of the immune system of reptiles and vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Using Plantar Electrical Stimulation to Improve Postural Balance and Plantar Sensation Among Patients With Diabetic Peripheral Neuropathy: A Randomized Double Blinded Study.

    Science.gov (United States)

    Najafi, Bijan; Talal, Talal K; Grewal, Gurtej Singh; Menzies, Robert; Armstrong, David G; Lavery, Lawrence A

    2017-07-01

    People with diabetic peripheral neuropathy (DPN) often exhibit deteriorations in motor-performance mainly due to lack of plantar-sensation. The study explored effectiveness of plantar electrical-stimulation therapy to enhance motor-performance among people with DPN. Using a double-blinded model, 28 volunteers with DPN (age: 57.8 ± 10.2 years) were recruited and randomized to either intervention (IG: n = 17) or control (CG: n = 11) group. Both groups received identical plantar-stimulation devices for six weeks of daily use at home; however, only the IG devices were set to deliver stimulation. Balance (ankle, hip, and center of mass [COM] sway) and gait (stride velocity [SV], stride time [ST], stride length [SL], and cadence) were measured using validated wearable sensors. Outcomes were assessed at baseline and at six-week. Clinical assessment including vascular as measured by ankle-brachial-index (ABI) and plantar-sensation as quantified by vibratory plantar threshold (VPT) were also measured at baseline and six weeks. No difference were observed between groups for baseline characteristics ( P > .050). Posttherapy, ankle and COM sway with eyes open were significantly improved ( P 1.20 ( P = .041, d = 0.99) Conclusion: This study suggests that daily home use of plantar electrical-stimulation may be a practical means to enhance motor-performance and plantar-sensation in people with DPN.

  10. Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking.

    Directory of Open Access Journals (Sweden)

    Anita Posevitz-Fejfár

    Full Text Available Human biospecimen collection, processing and preservation are rapidly emerging subjects providing essential support to clinical as well as basic researchers. Unlike collection of other biospecimens (e.g. DNA and serum, biobanking of viable immune cells, such as peripheral blood mononuclear cells (PBMC and/or isolated immune cell subsets is still in its infancy. While certain aspects of processing and freezing conditions have been studied in the past years, little is known about the effect of blood transportation on immune cell survival, phenotype and specific functions. However, especially for multicentric and cooperative projects it is vital to precisely know those effects. In this study we investigated the effect of blood shipping and pre-processing delay on immune cell phenotype and function both on cellular and subcellular levels. Peripheral blood was collected from healthy volunteers (n = 9: at a distal location (shipped overnight and in the central laboratory (processed immediately. PBMC were processed in the central laboratory and analyzed post-cryopreservation. We analyzed yield, major immune subset distribution, proliferative capacity of T cells, cytokine pattern and T-cell receptor signal transduction. Results show that overnight transportation of blood samples does not globally compromise T- cell subsets as they largely retain their phenotype and proliferative capacity. However, NK and B cell frequencies, the production of certain PBMC-derived cytokines and IL-6 mediated cytokine signaling pathway are altered due to transportation. Various control experiments have been carried out to compare issues related to shipping versus pre-processing delay on site. Our results suggest the implementation of appropriate controls when using multicenter logistics for blood transportation aiming at subsequent isolation of viable immune cells, e.g. in multicenter clinical trials or studies analyzing immune cells/subsets. One important conclusion might

  11. Differences in pulmonary function before vs. 1 year after hypofractionated stereotactic radiotherapy for small peripheral lung tumors

    International Nuclear Information System (INIS)

    Ohashi, Toshio; Takeda, Atsuya; Shigematsu, Naoyuki; Kunieda, Etsuo; Ishizaka, Akitoshi; Fukada, Junichi; Deloar, Hossain M.; Kawaguchi, Osamu; Takeda, Toshiaki; Takemasa, Kazuhiko; Isobe, Kouichi; Kubo, Atsushi

    2005-01-01

    Purpose: To evaluate long-term pulmonary toxicity of stereotactic radiotherapy (SRT) by pulmonary function tests (PFTs) performed before and after SRT for small peripheral lung tumors. Methods and Materials: A total of 17 lesions in 15 patients with small peripheral lung tumors, who underwent SRT between February 2000 and April 2003, were included in this study. Twelve patients had primary lung cancer, and 3 patients had metastatic lung cancer. Primary lung cancer was T1-2N0M0 in all cases. Smoking history was assessed by the Brinkman index (number of cigarettes smoked per day multiplied by number of years of smoking). Prescribed radiation doses at the 80% isodose line were 40-60 Gy in 5-8 fractions. PFTs were performed immediately before SRT and 1 year after SRT. Test parameters included total lung capacity (TLC), vital capacity (VC), forced expiratory volume in 1 s (FEV1.0), and diffusing capacity of lung for carbon monoxide (DLCO). PFT changes were evaluated in relation to patient- and treatment-related factors, including age, the Brinkman index, internal target volume, the percentages of lung volume irradiated with >15, 20, 25, and 30 Gy (V15, V20, V25, and V30, respectively), and mean lung dose. Results: There were no significant changes in TLC, VC, or FEV1.0 before vs. after SRT. The mean percent change from baseline in DLCO was significantly increased by 128.2%. Univariate and multivariate analyses revealed a correlation between DLCO and the Brinkman index. Conclusions: One year after SRT as compared with before SRT, there were no declines in TLC, VC, and FEV1.0. DLCO improved in patients who had been heavy smokers before SRT, suggesting a correlation between DLCO and smoking cessation. SRT seems to be tolerable in view of long-term lung function

  12. The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease.

    Science.gov (United States)

    Mancini, Simona; Minniti, Stefania; Gregori, Maria; Sancini, Giulio; Cagnotto, Alfredo; Couraud, Pierre-Olivier; Ordóñez-Gutiérrez, Lara; Wandosell, Francisco; Salmona, Mario; Re, Francesca

    2016-01-01

    We previously showed the ability of liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide (mApoE-PA-LIP) to reduce brain Aβ in transgenic Alzheimer mice. Herein we investigated the efficacy of mApoE-PA-LIP to withdraw Aβ peptide in different aggregation forms from the brain, using a transwell cellular model of the blood-brain barrier and APP/PS1 mice. The spontaneous efflux of Aβ oligomers (Aβo), but not of Aβ fibrils, from the 'brain' side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the 'blood' compartment. This effect is due to a withdrawal of Aβo exerted by peripheral mApoE-PA-LIP by sink effect, because, when present in the brain side, they did not act as Aβo carrier and limit the oligomer efflux. In vivo peripheral administration of mApoE-PA-LIP significantly increased the plasma Aβ level, suggesting that Aβ-binding particles exploiting the sink effect can be used as a therapeutic strategy for Alzheimer disease. From the Clinical Editor: Alzheimer disease (AD) at present is an incurable disease, which is thought to be caused by an accumulation of amyloid-β (Aβ) peptides in the brain. Many strategies in combating this disease have been focused on either the prevention or dissolving these peptides. In this article, the authors showed the ability of liposomes bi-functionalized with phosphatidic acid and with an ApoE- derived peptide to withdraw amyloid peptides from the brain. The data would help the future design of more novel treatment for Alzheimer disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Functional and Pharmacological Analysis of Cardiomyocytes Differentiated from Human Peripheral Blood Mononuclear-Derived Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Michael Riedel

    2014-07-01

    Full Text Available Advances in induced pluripotent stem cell (iPSC technology have set the stage for routine derivation of patient- and disease-specific human iPSC-cardiomyocyte (CM models for preclinical drug screening and personalized medicine approaches. Peripheral blood mononuclear cells (PBMCs are an advantageous source of somatic cells because they are easily obtained and readily amenable to transduction. Here, we report that the electrophysiological properties and pharmacological responses of PBMC-derived iPSC CM are generally similar to those of iPSC CM derived from other somatic cells, using patch-clamp, calcium transient, and multielectrode array (MEA analyses. Distinct iPSC lines derived from a single patient display similar electrophysiological features and pharmacological responses. Finally, we demonstrate that human iPSC CMs undergo acute changes in calcium-handling properties and gene expression in response to rapid electrical stimulation, laying the foundation for an in-vitro-tachypacing model system for the study of human tachyarrhythmias.

  14. The Effects of Long-Term Oral Benfotiamine Supplementation on Peripheral Nerve Function and Inflammatory Markers in Patients With Type 1 Diabetes

    Science.gov (United States)

    Fraser, David A.; Diep, Lien M.; Hovden, Inger Anette; Nilsen, Kristian B.; Sveen, Kari Anne; Seljeflot, Ingebjørg; Hanssen, Kristian F.

    2012-01-01

    OBJECTIVE To study the effects of long-term oral benfotiamine supplementation on peripheral nerve function and soluble inflammatory markers in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS The study randomly assigned 67 patients with type 1 diabetes to receive 24-month benfotiamine (300 mg/day) or placebo supplementation. Peripheral nerve function and levels of soluble inflammatory variables were assessed at baseline and at 24 months. RESULTS Fifty-nine patients completed the study. Marked increases in whole-blood concentrations of thiamine and thiamine diphosphate were found in the benfotiamine group (both P benfotiamine (300 mg/day) supplementation over 24 months has no significant effects upon peripheral nerve function or soluble markers of inflammation in patients with type 1 diabetes. PMID:22446172

  15. Dark chocolate and vascular function in patients with peripheral artery disease: a randomized, controlled cross-over trial.

    Science.gov (United States)

    Hammer, Alexandra; Koppensteiner, Renate; Steiner, Sabine; Niessner, Alexander; Goliasch, Georg; Gschwandtner, Michael; Hoke, Matthias

    2015-01-01

    Flavonoid-rich dark chocolate has positive effects on vascular function in healthy subjects and in patients at risk of atherosclerosis. The impact of dark chocolate on endothelial and microvascular function in patients with symptomatic peripheral artery disease (PAD) has not been investigated so far. In an investigator blinded, randomized, controlled, cross-over trial we assessed the effect of flavonoid-rich dark chocolate and cocoa-free control chocolate on flow-mediated dilatation (FMD) of the brachial artery and on microvascular function (assessed by Laser Doppler fluxmetry) in 21 patients with symptomatic (Fontaine stage II) PAD. Measurements were done in each patient on 2 single days, with an interval of 7 days, at baseline and at 2 hours after ingestion of 50 g dark chocolate or 50 g white chocolate, respectively. FMD remained unchanged after intake of dark chocolate (baseline and 2 hours after ingestion, %: 5.1 [IQR 4.4 to 7.3] and 5.5 [IQR 3.9 to 10.4]; p = 0.57, and after intake of white chocolate (baseline and 2 hours after ingestion, %: 6.4 [IQR 4.5 to 11.4] and 4.4 [IQR 2.6 to 8.7]; p = 0.14. Similarly, microcirculatory parameters were not significantly altered after intake of any chocolate compared with the respective baseline values. In conclusion, a single consumption of 50 g dark chocolate has no effect on endothelial and microvascular function in patients with symptomatic PAD.

  16. Fuel feeds function: Energy balance and bovine peripheral blood mononuclear cell activation.

    Science.gov (United States)

    Schwarm, A; Viergutz, T; Kuhla, B; Hammon, H M; Schweigel-Röntgen, M

    2013-01-01

    A general phenomenon in peripartum mammals is the breakdown of (acquired) immunity. The incidence of parasite load, disease and inflammation often rise during the specific energetically demanding time of pregnancy and lactation. In this period, blood leukocytes display decreased DNA synthesis in response to mitogens in vitro. Leukocyte activation, the phase of the cell cycle preceding the DNA synthetic phase has hardly been investigated, but the few studies suggest that leukocyte activation may also be impaired by the limited energy/nutrient availability. Leukocyte activation is characterized by manifold processes, thus, we used the cellular oxygen consumption rate (OCR) as a measure of ATP turnover to support all these processes. We hypothesized that the activation of peripheral blood mononuclear cells (PBMC) - in terms of oxygen consumed over basal levels after in vitro stimulation - is altered by energy balance around parturition. We studied peripartum high-yielding dairy cows because they undergo substantial fluctuations in energy intake, energy output and body fat mass. We established a fluorescence-based test strategy allowing for long-term (≥24h) quantification of O(2)-consumption and studied the peripartum period from 5 weeks ante partum to 5 weeks postpartum. In addition, we determined cellular lactate production, DNA/RNA synthesis and cell size and zoo-technical parameters such as animal energy intake and milk yield were assessed, as well as selected plasma parameters, e.g. glucose concentration. The basal OCR of PBMC from pregnant, non-lactating cows (n=6, -5 weeks ante partum) was 1.19±0.15 nmol min(-1) (10(7)cells)(-1) and increased to maximum levels of 2.54±0.49 nmol min(-1) (10(7)cells)(-1) in phytohemagglutinin (PHA)-stimulated PBMC. The basal OCR did not change over the peripartum period. Whereas the activation indices, herein defined as the PHA-induced 24h-increase of OCR above baseline, amounted to 1.1±0.3, 4.2±0.3, 4.1±1.1, 2.1±0.3, and

  17. Managing the GPS/GIS function in an electric utility

    International Nuclear Information System (INIS)

    Michelsen, M.W. Jr.

    1999-01-01

    A new period of higher significance has arrived for the GPS/GIS function at electric utilities such that to a degree never seen before, utility managers are looking to their GIS programs, filled with increasingly accurate data collected by GPS technology, before making many decisions. With this capability comes an expectation for GPS/GIS professionals to provide higher levels of planning and management of their data collection process. At Duke Power in Charlotte, North Carolina, managers rely on GPS mapping to fill their data collection equipment needs. When the city of Charlotte requested a more detailed billing system, Duke Power co-sponsored the street lighting inventory project, a comprehensive program implemented to fully account for street lighting facilities within the billing area. One of the key projects to be kept in mind was the creation of a common data base viewable by GIS from which a bill could be created and as well reveal data. A billing calculation routine can be run against the data base to generate a bill or use MapInfo to see a graphical picture. Prior to the creation of this data base capability, the difference between the data base as a display tool and billing system was a potential source of discrepancy, which is eliminated now. Creating the data base allows more than just creating a bill for the city, it allows Duke Power to work better with the city by improving its billing accountability and provides better service as well

  18. Functional composition of Chaetodon butterflyfishes at a peripheral and extreme coral reef location, the Persian Gulf

    KAUST Repository

    Pratchett, Morgan S.

    2013-07-01

    The functional composition of reef fish assemblages is highly conserved across large biogeographic areas, but it is unknown whether assembly rules hold at biogeographical and environmental extremes for coral reefs. This study examined the functional composition of butterflyfishes in the Persian Gulf, Musandam Peninsula, and Gulf of Oman. Only five species of butterflyfishes were recorded during this study, and mostly just in the Gulf of Oman. Unlike most locations in the Indo-Pacific where butterflyfish assemblages are dominated by obligate corallivores, the only obligate corallivore recorded, Chaetodon melapterus, was rare or absent at all locations. The most common and widespread species was Chaetodon nigropunctatus, which is shown to be a facultative corallivore. The diversity of butterflyfishes in the Persian Gulf is likely to have been constrained by its\\' biogeographical history and isolation, but functional composition appears to be further affected by limited abundance of prey corals and harsh environmental conditions. © 2012.

  19. COMBINED REDUCED FORCED EXPIRATORY VOLUME IN 1-SECOND (FEV1) AND PERIPHERAL ARTERY DISEASE IN SEDENTARY ELDERS WITH FUNCTIONAL LIMITATIONS

    Science.gov (United States)

    Vaz Fragoso, Carlos A.; Hsu, Fang-Chi; Brinkley, Tina; Church, Timothy; Liu, Christine K.; Manini, Todd; Newman, Anne B.; Stafford, Randall S.; McDermott, Mary M.; Gill, Thomas M.

    2014-01-01

    Objectives Because they are potentially modifiable and may coexist, we evaluated the combined occurrence of a reduced forced expiratory volume in 1-second (FEV1) and peripheral artery disease (PAD), including its association with exertional symptoms, physical inactivity, and impaired mobility, in sedentary elders with functional limitations. Design Cross-sectional. Setting Lifestyle Interventions and Independence in Elder (LIFE) Study. Participants 1307 sedentary community-dwelling persons, mean age 78.9, with functional limitations (Short Physical Performance Battery [SPPB] the San Diego Claudication Questionnaire. Physical inactivity was evaluated by percent of accelerometry wear-time with activity the 400MWT (gait-speed The two combined conditions were associated with exertional dyspnea (adjusted odds ratio [adjOR] 2.59 [1.20, 5.60]) and slow gait-speed (adjOR 3.15 [1.72, 5.75]) but not with exertional leg symptoms, high sedentary-time, and moderate-to-severe mobility impairment. Conclusions In sedentary community-dwelling elders with functional limitations, a reduced FEV1 and PAD frequently coexisted and, in combination, were strongly associated with exertional dyspnea and slow gait-speed (a frailty indicator that increases the risk of deleterious outcomes). PMID:24973990

  20. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve.

    Science.gov (United States)

    McLean, Nikki A; Verge, Valerie M K

    2016-09-01

    Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561. © 2016 Wiley Periodicals, Inc.

  1. SEARCHING FOR ELECTRICAL PROPERTIES, PHENOMENA AND MECHANISMS IN THE CONSTRUCTION AND FUNCTION OF CHROMOSOMES

    Directory of Open Access Journals (Sweden)

    Ivan Kanev

    2013-03-01

    Full Text Available Our studies reveal previously unidentified electrical properties of chromosomes: (1 chromosomes are amazingly similar in construction and function to electrical transformers; (2 chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3 chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c mechanisms demonstrating heterochromatin to be electrically active and genetically important.

  2. Assessment of right ventricular function and anatomy using peripheral vein infusion of krypton 81m

    Energy Technology Data Exchange (ETDEWEB)

    Sugrue, D.D.; Kamal, S.; Deanfield, J.E.; McKenna, W.J.; Myers, M.J.; Watson, I.A.; Oakley, C.M.; Lavender, J.P. (Royal Postgraduate Medical School, London (UK))

    1983-09-01

    A method for imaging the right side of the heart (atrium, ventricle and main pulmonary artery) and for assessment of RV systolic function (ejection fraction and ejection rate) is described. An ultra-short-lived isotope (/sup 81/Krsup(m)) is continuously eluted in 5% dextrose and infused into an ante-cubital arm vein; standard multigated images are acquired using a gamma camera and commercially available software. Preliminary evaluation of the method in 55 subjects (20 with repaired tetralogy of Fallot, 14 with dilated cardiomyopathy and 21 normal volunteers) showed that the technical success rate was 100%; that RV boundaries free from LV overlap can be clearly visualised due to efficient exhalation of /sup 81/Krsup(m) through the lungs and that /sup 81/Krsup(m) measurements of RVEF are reproducible. The technique offers considerable potential for serial non-invasive assessment of RV function.

  3. Assessment of right ventricular function and anatomy using peripheral vein infusion of krypton 81m

    International Nuclear Information System (INIS)

    Sugrue, D.D.; Kamal, S.; Deanfield, J.E.; McKenna, W.J.; Myers, M.J.; Watson, I.A.; Oakley, C.M.; Lavender, J.P.

    1983-01-01

    A method for imaging the right side of the heart (atrium, ventricle and main pulmonary artery) and for assessment of RV systolic function (ejection fraction and ejection rate) is described. An ultra-short-lived isotope ( 81 Krsup(m)) is continuously eluted in 5% dextrose and infused into an ante-cubital arm vein; standard multigated images are acquired using a gamma camera and commercially available software. Preliminary evaluation of the method in 55 subjects (20 with repaired tetralogy of Fallot, 14 with dilated cardiomyopathy and 21 normal volunteers) showed that the technical success rate was 100%; that RV boundaries free from LV overlap can be clearly visualised due to efficient exhalation of 81 Krsup(m) through the lungs and that 81 Krsup(m) measurements of RVEF are reproducible. The technique offers considerable potential for serial non-invasive assessment of RV function. (author)

  4. Temperature-induced changes in neuromuscular function: central and peripheral mechanisms.

    Science.gov (United States)

    Goodman, D; Hancock, P A; Runnings, D W; Brown, S L

    1984-10-01

    Three series of experimental tests were conducted on subjects under both elevated and depressed thermal conditions. Tripartite series consisted of whole-body immersion excepting the head, whole-body immersion excepting the head and response limb, and immersion of the discrete-response limb. Measures of physiological and behavioural responses were made at sequential .4 degrees C changes during whole-body immersions and approximately 5 degrees C changes of water temperature during the immersion of a limb only. Results suggested that velocity of nerve conduction decreased with thermal depression. Premotor, motor, simple, and choice reaction times varied differentially as a function of the hot and cold conditions. Implications of these differential effects on neuromuscular function are examined with respect to person-machine performance in artificially induced or naturally occurring extremes of ambient temperature.

  5. The SGLT2 Inhibitor Dapagliflozin Significantly Improves the Peripheral Microvascular Endothelial Function in Patients with Uncontrolled Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Sugiyama, Seigo; Jinnouchi, Hideaki; Kurinami, Noboru; Hieshima, Kunio; Yoshida, Akira; Jinnouchi, Katsunori; Nishimura, Hiroyuki; Suzuki, Tomoko; Miyamoto, Fumio; Kajiwara, Keizo; Jinnouchi, Tomio

    2018-03-30

    Objective Sodium-glucose cotransporter-2 (SGLT2) inhibitors reduce cardiovascular events and decrease the body fat mass in patients with type 2 diabetes mellitus (T2DM). We examined whether or not the SGLT2-inhibitor dapagliflozin can improve the endothelial function associated with a reduction in abdominal fat mass. Methods We prospectively recruited patients with uncontrolled (hemoglobin A1c [HbA1c] >7.0%) T2DM who were not being treated by SGLT2 inhibitors. Patients were treated with add-on dapagliflozin (5 mg/day) or non-SGLT2 inhibitor medicines for 6 months to improve their HbA1c. We measured the peripheral microvascular endothelial function as assessed by reactive hyperemia peripheral arterial tonometry (RH-PAT) and calculated the natural logarithmic transformed value of the RH-PAT index (LnRHI). We then investigated changes in the LnRHI and abdominal fat area using computed tomography (CT). Results The subjects were 54 patients with uncontrolled T2DM (72.2% men) with a mean HbA1c of 8.1%. The HbA1c was significantly decreased in both groups, with no significant difference between the groups. Dapagliflozin treatment, but not non-SGLT2 inhibitor treatment, significantly increased the LnRHI. The changes in the LnRHI were significantly greater in the dapagliflozin group than in the non-SGLT2 inhibitor group. Dapagliflozin treatment, but not non-SGLT2 inhibitor treatment, significantly decreased the abdominal visceral fat area, subcutaneous fat area (SFA), and total fat area (TFA) as assessed by CT and significantly increased the plasma adiponectin levels. The percentage changes in the LnRHI were significantly correlated with changes in the SFA, TFA, systolic blood pressure, and adiponectin. Conclusion Add-on treatment with dapagliflozin significantly improves the glycemic control and endothelial function associated with a reduction in the abdominal fat mass in patients with uncontrolled T2DM.

  6. Optical measurements of microvascular circulatory function in the foot for detection of peripheral neuropathy

    Science.gov (United States)

    Zamora, G.; Chekh, V.; Burge, M.; Barriga, E. S.; Luan, S.; Heintz, P.; Edwards, A.; McGrew, E.; Soliz, P.

    2012-03-01

    The purpose of this research is to quantify functional signals in the microvascular circulation of the plantar. Our device is based on thermal and spectral technologies that can be easily adopted in clinical and tele-screening settings. Eightytwo thousand amputations are performed annually on diabetics in the US. The cost of foot disorder diagnosis and management are estimated at $10.9 billion dollars annually. Our experiments on normal controls and diabetics assess the temperature recovery time characteristics due to cold provocation to the bottom of the foot (plantar). A difference in the nature of the recovery time between normal controls and diabetics was observed.

  7. Rhoh deficiency reduces peripheral T-cell function and attenuates allogenic transplant rejection

    DEFF Research Database (Denmark)

    Porubsky, Stefan; Wang, Shijun; Kiss, Eva

    2011-01-01

    better graft function. This effect was independent of the lower T-cell numbers in Rhoh-deficient recipients, because injection of equal numbers of Rhoh-deficient or control T cells into kidney transplanted mice with SCID led again to a significant 60% reduction of rejection. Mixed lymphocyte reaction...... deficiency in a clinically relevant situation, in which T-cell inhibition is desirable. In murine allogenic kidney transplantation, Rhoh deficiency caused a significant 75% reduction of acute and chronic transplant rejection accompanied by 75% lower alloantigen-specific antibody levels and significantly...

  8. Is there an Association between Peripheral Immune Markers and Structural/Functional Neuroimaging Findings?

    LENUS (Irish Health Repository)

    Frodl, Thomas

    2013-01-10

    OBJECTIVES: There is mounting evidence that inflammatory processes play a key role in emotional as well as cognitive dysfunctions. In this context, research employing magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MR spectroscopy) suggests a possible link between structural\\/functional anomalies in the brain and an increase of circulating inflammation markers. The present paper reviews this research, with particular focus on major depressive disorder (MDD), cognitive impairment in older adults, Alzheimer\\'s disease (AD) and schizophrenia. RESULTS: In MDD, cognitive impairment and AD, inflammatory processes have been found to be associated with both structural and functional anomalies, perhaps under the influence of environmental stress. Not enough research can suggest similar considerations in schizophrenia, although studies in mice and non-human primates support the belief that inflammatory responses generated during pregnancy can affect brain development and contribute to the etiology of schizophrenia. CONCLUSIONS: The present review suggests a link between inflammatory processes and MRI detected anomalies in the brain of individuals with MDD, older adults with cognitive impairment as well as of individuals with AD and schizophrenia.

  9. A peripheral blood transcriptome biomarker test to diagnose functional recovery potential in advanced heart failure.

    Science.gov (United States)

    Deng, Mario C

    2018-05-08

    Heart failure (HF) is a complex clinical syndrome that causes systemic hypoperfusion and failure to meet the body's metabolic demands. In an attempt to compensate, chronic upregulation of the sympathetic nervous system and renin-angiotensin-aldosterone leads to further myocardial injury, HF progression and reduced O 2 delivery. This triggers progressive organ dysfunction, immune system activation and profound metabolic derangements, creating a milieu similar to other chronic systemic diseases and presenting as advanced HF with severely limited prognosis. We hypothesize that 1-year survival in advanced HF is linked to functional recovery potential (FRP), a novel clinical composite parameter that includes HF severity, secondary organ dysfunction, co-morbidities, frailty, disabilities as well as chronological age and that can be diagnosed by a molecular biomarker.

  10. Inhibition of human peripheral blood lymphocyte function by protoporphyrin and longwave ultraviolet light

    International Nuclear Information System (INIS)

    Barrett, K.E.; Yen, A.; Montisano, D.; Gigli, I.; Bigby, T.D.

    1994-01-01

    Modulation of immunologic effector cells by exogenous photoactive substances has been advanced as an underlying mechanism for the efficacy of various photochemotherapeutic regimens. It is also possible that endogenous photosensitizers, such as protoporphyrin, could similarly modify the function of immune cell types. The authors examined the effects of protoporphyrin plus longwave UV light on the ability of human PBL to proliferate in response to mitogens. Noncytotoxic dosages of protoporphyrin plus UV light suppressed PHA-stimulated proliferation of both PBMC and enriched T cells. CD8 + cells were more sensitive to this inhibitory effect than CD4 + cells. The inhibitory effect was also observed when proliferation was induced by the combination of a phorbol ester and ionomycin. Inhibition of PBMC proliferation was associated with inhibition of IL-2 secretion but proliferation was not restored with exogenous IL-2. Instead, the effect of protoporphyrin plus UV light may be on IL-2R. Cells treated with protoporphyrin and UV light did not display the increase in CD25 and β-chain of the IL-2R induced by PHA in control cells. In contrast to the effects of protoporphyrin and UV light on IL-2 and IL-2R α-chain protein expression, the accumulation of mRNA for these proteins induced by PHA was unaffected. None of the effects of protoporphyrin plus UV light on lymphocytes were observed in control experiments where cells were treated with either protoporphyrin or UV light alone. They conclude that biologically relevant dosages of protoporphyrin and UV light modify the function of circulating lymphocytes. 26 refs., 8 figs., 1 tab

  11. The effect of γ-linolenic acid-α-lipoic acid on functional deficits in the peripheral and central nervous system of streptozotocin- diabetic rats

    NARCIS (Netherlands)

    Gispen, W.H.; Biessels, G.J.; Smale, S.; Duis, S.E.; Kamal, A.

    2001-01-01

    Diabetes mellitus can lead to functional and structural deficits in both the peripheral and central nervous system. The pathogenesis of these deficits is multifactorial, probably involving, among others, microvascular dysfunction and oxidative stress. The present study examined the effects of 12

  12. The effect of propylthiouracil on function of phagocytic peripheral blood cells in persons with thyroid hyperfunction

    Directory of Open Access Journals (Sweden)

    Đukić Aleksandar

    2006-01-01

    Full Text Available Introduction. It is known that hyperthyroidism as well as thyrosuppressive therapy can influence the cells of immunological system. Objective. To examine the function of phagocyte cells in persons with hyperthyroidism and to examine if propylthiouracil (PTU influences this function. Method. The study included 15 patients with hyperthyroidism and 10 healthy persons. The parameters of phagocytic activity of mononuclear and polymorphonuclear leucocytes were tested by method of ingestion of particles of inactivated yeast labeled with neutral-red. Results. It was demonstrated that patients with hyperthyroidism, before the onset of therapy as well as 14 days after introduction of PTU, had decreased number of leucocytes (before PTU: 6.7±3.2Ч109/l, after PTU: 6.1±2.0Ч109/l and control: 8.0±1.6Ч109/l; p=0.039, PMN leucocytes (before PTU: 3.9±2,4 Ч109/l, after PTU: 3.5±1.6Ч109/l and control: 4.8±0.9Ч109/l; p=0.037 and number of phagocyte PMN cells (before PTU: 0.9±0.9Ч109/l, after PTU: 0.9±0.7Ч109/l and control: 1.3±0.6 Ч109/l; p<0,05, but they had increased index of phagocytosis (before PTU: 2.0±0.2, after PTU: 1.9±0.2 and control: 1.7±0.2; p=0.029, while capacity of phagocytosis remained unchanged (before PTU: 1.9±1.7Ч109/l, after PTU: 1.6±1.9Ч109/l and control: 2.4±1.4Ч109/l; p>0.05. The number of mononuclear leucocytes and parameters of phagocytic activity of mononuclear phagocytes in persons with hyperthyroidism did not change significantly in comparison with the control group. Conclusion. Patients with hyperthyroidism had decreased number of leucocytes, PMN leucocytes and number of phagocyte PMN cells, and increased index of phagocytosis, while capacity of phagocytosis remained unchanged. The number and parameters of phagocytic activity of mononuclear leucocytes did not change. PTU therapy had no effect on the examined parameters.

  13. Exercise and postprandial lipaemia: effects on peripheral vascular function, oxidative stress and gastrointestinal transit

    Directory of Open Access Journals (Sweden)

    McLaughlin Jim

    2007-10-01

    Full Text Available Abstract Postprandial lipaemia may lead to an increase in oxidative stress, inducing endothelial dysfunction. Exercise can slow gastric emptying rates, moderating postprandial lipaemia. The purpose of this study was to determine if moderate exercise, prior to fat ingestion, influences gastrointestinal transit, lipaemia, oxidative stress and arterial wall function. Eight apparently healthy males (age 23.6 ± 2.8 yrs; height 181.4 ± 8.1 cm; weight 83.4 ± 16.2 kg; all data mean ± SD participated in the randomised, crossover design, where (i subjects ingested a high-fat meal alone (control, and (ii ingested a high-fat meal, preceded by 1 h of moderate exercise. Pulse Wave Velocity (PWV was examined at baseline, post-exercise, and in the postprandial period. Gastric emptying was measured using the 13C-octanoic acid breath test. Measures of venous blood were obtained prior to and following exercise and at 2, 4 and 6 hours post-ingestion. PWV increased (6.5 ± 1.9 m/sec at 2 (8.9 ± 1.7 m/sec and 4 hrs (9.0 ± 1.6 m/sec post-ingestion in the control group (time × group interaction, P

  14. Effect of Peripheral Arterial Disease on Functional and Clinical Outcomes in Patients with Heart Failure From HF-ACTION

    Science.gov (United States)

    Jones, W. Schuyler; Clare, Robert; Ellis, Stephen J.; Mills, James S.; Fischman, David L.; Kraus, William E.; Whellan, David J.; O'Connor, Christopher M.; Patel, Manesh R.

    2011-01-01

    Patients with peripheral arterial disease (PAD) have lower functional capacity and worse clinical outcomes than age and gender matched patients. Few data exist on the relationship of PAD with functional and clinical outcomes in heart failure (HF) patients. We sought to compare HF patients with and without PAD for baseline functional capacity, response to exercise training, and clinical outcomes. HF-ACTION was a randomized controlled trial comparing usual care to structured exercise training plus usual care in HF patients with an ejection fraction ≤ 35% and NYHA class II – IV heart failure symptoms. Cardiopulmonary exercise (CPX) testing occurred at enrollment, 3 months, and 1 year. Clinical follow-up occurred up to 4 years. Of the 2331 HF-ACTION patients, 157 (6.8%) had PAD. At baseline, HF patients with PAD had a lower exercise duration (8.0 vs. 9.8 minutes, p<0.001), lower peak oxygen consumption (VO2) (12.5 vs. 14.6 mL/kg/min, p<0.001), and shorter six minute walking distance (306 vs. 371 meters, p<0.001) compared to HF patients without PAD. At three months, HF patients with PAD had less improvement on CPX testing [exercise duration (0.5 vs. 1.1 minutes; p=0.002) and peak VO2 (mean change; 0.1 vs. 0.6 mL/kg/min; p=0.04)] compared to HF patients without PAD. PAD was an independent predictor of all-cause death or hospitalization [hazard ratio (95% CI); 1.31 (1.06 – 1.62), p=0.011]. PAD patients with HF have depressed baseline exercise capacity and decreased response to exercise training. In conclusion, PAD is an independent predictor of all-cause death or hospitalization in HF patients. PMID:21565325

  15. Peripheral reactions

    International Nuclear Information System (INIS)

    Greiner, D.

    1978-01-01

    Peripheral collisions, that is, collisions involving a small amount of overlap of nuclear matter, are discussed including inclusive interactions, the magnitude of the peripheral cross section, fragmentation, a compilation of experiments and available data, limiting fragmentation, factorization, some models, fragment momentum distributions, and future research directions

  16. Changes in coagulation-fibrinolysis function in alveolar lavage fluid of endotoxemic dogs after partial removal of peripheral leukocytes

    Directory of Open Access Journals (Sweden)

    Shun-gang ZHOU

    2011-06-01

    Full Text Available Objective To observe the effect of partial removal of peripheral leucocytes on the coagulation-fibrinolysis function of alveolar lavage fluid(ALF in endotoxemic dogs,and explore the influence and mechanisms of activated leucocytes on lung injury in endotoxemic dogs.Methods Thirty male mongrel dogs were involved in present study and randomly divided into 3 groups(10 each: LPS group(group L,sham leukocytapheresis group(group S and leukocytapheresis group(group T.Endotoxemic model was reproduced in group L by administration of LPS(2mg/kg,but the animals did not receive leukocytapheresis.Animals in group T received leukocytapheresis using a continuous-flow blood cell separator 12-14 hours after administration of LPS.Animals in group S received sham leukocytapheresis(the end products were transfused back into the dogs at 12-14 hours after administration of LPS.At 36h after administration of LPS,the lung tissues were harvested to obtain ALF,and the levels of neutrophil elastase(NE,soluble thrombomodulin(sTM,activated protein C(APC and plasminogen activator inhibitor-1(PAI-1 in ALF were determined,the expression of thrombomodulin in lung tissue was observed by immunohistochemical staining,while the routine pathological examination and wet/dry ratio of lung tissue were performed.Results The APC level in ALF was significantly higher,while the NE,sTM and PAI-1 levels in ALF and wet/dry ratio of lung tissue were significantly lower in group T than in group L and group S(P < 0.05.Immunohistochemical examination revealed that the expression of thrombomodulin in lung tissue was higher in group T than in group L and group S.No significant difference was found between group L and group S in the indexes mentioned above.Pathological observation showed the incidence of acute lung injury was significantly lower in group T(2/10 than in group L(7/10 and group S(8/10,P < 0.05.Conclusion Partial removal of peripheral leukocytes may lower the level of NE in ALF

  17. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.

    Science.gov (United States)

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew

    2015-11-15

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.

  18. Subcellular Electrical Measurements as a Function of Wood Moisture Content

    Science.gov (United States)

    Samuel L. Zelinka; José L. Colon Quintana; Samuel V. Glass; Joseph E. Jakes; Alex C. Wiedenhoeft

    2015-01-01

    The percolation model developed by Zelinka et al. was based upon macroscale measurements of the electrical conductivity and implicitly treats the wood material as homogenous. The transport mechanism proposed by Jakes et al. depends upon a moisture induced glass transition occurring in the hemicelluloses. This theory suggests that there are likely differences in the...

  19. FUNCTIONAL ELECTRICAL STIMULATION FOR CONTROL OF EPILEPTIC SEIZURES

    DEFF Research Database (Denmark)

    Jiao, Jianhang

    Nearly 50 million people worldwide have epilepsy and one-third of them do not respond well to any antiepileptic drugs. Given the large population of patients experiencing drug resistant epilepsy, increased attention has been paid over the last two decades to the development of electrical stimulat...

  20. Mild functional differences of dynamin 2 mutations associated to centronuclear myopathy and Charcot-Marie Tooth peripheral neuropathy.

    Directory of Open Access Journals (Sweden)

    Olga S Koutsopoulos

    Full Text Available The large GTPase dynamin 2 is a key player in membrane and cytoskeletal dynamics mutated in centronuclear myopathy (CNM and Charcot-Marie Tooth (CMT neuropathy, two discrete dominant neuromuscular disorders affecting skeletal muscle and peripheral nerves respectively. The molecular basis for the tissue-specific phenotypes observed and the physiopathological mechanisms linked to dynamin 2 mutations are not well established. In this study, we have analyzed the impact of CNM and CMT implicated dynamin 2 mutants using ectopic expression of four CNM and two CMT mutations, and patient fibroblasts harboring two dynamin 2 CNM mutations in established cellular processes of dynamin 2 action. Wild type and CMT mutants were seen in association with microtubules whereas CNM mutants lacked microtubules association and did not disrupt interphase microtubules dynamics. Most dynamin 2 mutants partially decreased clathrin-mediated endocytosis when ectopically expressed in cultured cells; however, experiments in patient fibroblasts suggested that endocytosis is overall not defective. Furthermore, CNM mutants were seen in association with enlarged clathrin stained structures whereas the CMT mutant constructs were associated with clathrin structures that appeared clustered, similar to the structures observed in Dnm1 and Dnm2 double knock-out cells. Other roles of dynamin 2 including its interaction with BIN1 (amphiphysin 2, and its function in Golgi maintenance and centrosome cohesion were not significantly altered. Taken together, these mild functional defects are suggestive of differences between CMT and CNM disease-causing dynamin 2 mutants and suggest that a slight impairment in clathrin-mediated pathways may accumulate over time to foster the respective human diseases.

  1. Relative preservation of peripheral lung function in smoking-related pulmonary emphysema: assessment with {sup 99m}Tc-MAA perfusion and dynamic {sup 133}Xe SPET

    Energy Technology Data Exchange (ETDEWEB)

    Suga, Kazuyoshi; Kume, Norihiko; Matsunaga, Naofumi; Ogasawara, Nobuhiko; Motoyama, Kazumi; Hara, Akiko; Matsumoto, Tsuneo [Department of Radiology, Yamaguchi University School of Medicine, Ube, Yamaguchi (Japan)

    2000-07-01

    In this study the cross-sectional functional differences between the central and peripheral lung in smokers with pulmonary emphysema were evaluated by lung perfusion and dynamic xenon-133 single-photon emission tomography (SPET). The subjects were 81 patients with a long-term smoking history and relatively advanced emphysema, 17 non-smoker patients with non-obstructive lung diseases and six healthy non-smokers. Regional lung functional difference between the peripheral and central lung was assessed in the upper, middle and lower lung zones by technetium-99m macroaggregated albumin SPET and dynamic {sup 133}Xe SPET. The distribution of emphysematous changes was assessed by density-mask computed tomography (CT) images which depicted abnormally low attenuation areas (LAAs) of less than -960 Hounsfield units. Two hundred and eighty-eight (59.2%) lung zones of 63 (77.7%) patients with pulmonary emphysema showed relative preservation of lung function in the peripheral lung, with a curvilinear band of normal perfusion (a stripe sign) and a significantly faster {sup 133}Xe half-clearance time (T{sub 1/2}) than in central lung (P<0.0001). Of these lung zones, 256 (88.8%) showed central-dominant LAA distributions on density-mask CT images, but the remaining 32 zones did not show any regional preference in LAA distribution. Conversely, 117 (24.0%) lung zones of 19 (23.4%) patients showed periphery-dominant perfusion defects and LAA distributions, with significantly prolonged T{sub 1/2} in the peripheral lung area (P<0.0001). The remaining 81 lung zones of the patients with pulmonary emphysema and all the lung zones of the healthy subjects and patients with non-obstructive lung diseases did not show a stripe sign, and no differences were observed in T{sub 1/2} values and LAA distributions between the central and peripheral lung. Relative preservation of peripheral lung function seems to be a characteristic feature in smoking-related pulmonary emphysema, and may indicate a

  2. Determinants of electricity consumption function in Pakistan: Old wine in a new bottle

    International Nuclear Information System (INIS)

    Zaman, Khalid; Khan, Muhammad M.; Ahmad, Mehboob; Rustam, Rabiah

    2012-01-01

    The objective of the study is to re-investigate the multivariate electricity consumption function for Pakistan, particularly, economic growth, foreign direct investment and population growth over a 36-year time period, i.e., between 1975 and 2010. The study employed the bounds-testing procedure for cointegration which examines the short-run and long-run estimates. Dynamic short-run causality test is applied to determine the causality direction between electricity consumption and its determinants, by using Wald-F statistics. The results reveal that determinants of electricity consumption function are cointegrated and influx of foreign direct investment, income and population growth is positively related to electricity consumption in Pakistan. However, the intensity of these determinants is different on electricity consumption. If there is 1% increase in income, foreign direct investment and population growth; electricity consumption increases by 0.973%; 0.056% and 1.605%, respectively. This infers that income, foreign direct investment and population growth induce an increase in electricity consumption in Pakistan. Dynamic short-run causality test indicates that there has been unidirectional causality which is running from population growth to electricity consumption in Pakistan. - Highlights: ► To re-investigate the multivariate electricity consumption function for Pakistan. ► FDI, income and population growth are positively related to electricity consumption. ► The intensity of determinants is different on electricity consumption. ► Population growth exerts the major contributor to increase electricity consumption. ► Unidirectional causality running from population growth to electricity.

  3. A content analysis of peripheral arterial disease patient-reported outcome measures using the International Classification of Functioning, Disability and Health.

    Science.gov (United States)

    Osborne, Candice Lee; Kauvar, David Seth

    2017-10-17

    The purpose of this study was to link, classify and describe the content of peripheral arterial disease (PAD)-specific patient-reported outcome measures using the International Classification of Functioning. The results were then analyzed to determine if these assessments provide clinicians and researchers with a comprehensive understanding of the lived experience of patients with PAD. Each meaningful concept in identified PAD assessments was linked to the International Classification of Functioning, Disability and Health to determine included and excluded content areas. An overall perspective was assigned to each assessment item. Inter-rater reliability was established using a kappa statistic. The body functions component is most frequently addressed overall followed by the activities and participation component. International Classification of Functioning chapter and category distribution vary greatly between assessments and no assessment comprehensively examines community participation and relationships. The majority of the assessment items are of the health status-disability and quality of life perspectives. The results of this study suggest the need for the development of a comprehensive PAD assessment that includes a more even distribution of International Classification of Functioning topics and subtopics. A more comprehensive assessment would better capture the lived experience of this patient population. Implications for Rehabilitation A better understanding of the data collected using the current peripheral arterial disease-specific patient-reported outcome measures may contribute to the development of more comprehensive assessment tools that will ultimately lead to improved patient care. This study contributes to the preliminary foundation for the development of a peripheral arterial disease International Classification of Functioning, Disability and Health Core Set. Clinicians and researchers interested in using peripheral arterial disease

  4. Local electric dipole moments for periodic systems via density functional theory embedding.

    Science.gov (United States)

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  5. Local electric dipole moments for periodic systems via density functional theory embedding

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sandra, E-mail: sandra.luber@chem.uzh.ch [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  6. Peripheral blood lymphocyte apoptosis and its relationship with thyroid function tests in adolescents with hyperthyroidism due to Graves' disease

    Science.gov (United States)

    Grywalska, Ewelina; Surdacka, Agata; Tarach, Jerzy; Klatka, Janusz; Roliński, Jacek

    2012-01-01

    Introduction Failures in apoptotic pathways can contribute to various autoimmune diseases, including autoimmune hyperthyroidism due to Graves’ disease (GD). The aim of the present research was to assess changes in the degree of peripheral blood (PB) lymphocyte apoptosis during methimazole (MMI) treatment in the group of teenage children, and to describe its relationship with thyroid function tests. Material and methods The percentage of PB apoptotic lymphocytes, assessed by the decrease in mitochondrial transmembrane potential (CMXRos staining), was measured in 30 adolescents at the time of diagnosis and after obtaining normalization of the thyroid hormone levels. Results The percentage of apoptotic lymphocytes in previously untreated patients with GD (5.16 ±2.81%) was significantly lower (p = 0.000001) than the percentage of apoptotic cells in the same group of patients after obtaining methimazole-induced euthyroidism (10.72 ±4.66%). There was a correlation between the increase of the mean percentages of apoptotic lymphocytes and the reduction of FT4 levels (R = 0.63, p < 0.0001), as well as the reduction of TT3 levels (R = 0.95, p < 0.0001). The more signs and symptoms accompanying the diagnosis of GD, the higher was the increment of the degree of lymphocyte apoptosis observed during the MMI-treatment (R = 0.74, p < 0.0000001). The methimazole dosage correlated (R = 0.85, p < 0.0001) with the percentage of apoptotic cells. Conclusions The use of methimazole in treatment of hyperthyroidism due to GD leads to an increment of apoptotic cells in PB. Higher doses of methimazole cause a higher increase of apoptotic lymphocytes. Apoptosis induction of human PB lymphocytes seems to be one of the indicators of proper hyperthyroidism treatment. PMID:23185197

  7. Evaluation of the effects of chronic biomass fuel smoke exposure on peripheral endothelial functions: an observational study.

    Science.gov (United States)

    Buturak, Ali; Genç, Ahmet; Ulus, Ozden Sıla; Duygu, Egemen; Okmen, Arda Sanlı; Uyarel, Hüseyin

    2011-09-01

    To evaluate the effect of chronic biomass fuel (BMF) smoke exposure on peripheral endothelial functions. Forty-seven healthy subjects who have been exposed to BMF smoke since birth (mean age 31.6±6.8 years, 21 male) were enrolled in the present cross-sectional observational study. The control group consisted of 32 healthy subjects (mean age 27.9±4.4 years, 11 male). The carotid intima media thickness (CIMT), flow associated dilatation (FAD %) and endothelium independent vasodilatation (GTN %) were assessed in all subjects. The carotid CIMT was defined as the distance between the leading edge of the lumen-intima and the media-adventitia interfaces. FAD % was defined as the percentage change in the internal diameter of the brachial artery during reactive hyperemia related to the baseline. GTN % was defined as the change in diameter in response to the application of 400 µg of glyceril trinitrate relative to the baseline scan at the end of the fourth minute. Statistical analysis was performed using Student's t-test, Chi-square test and Spearman rank order correlation analysis. The average exposure time of the subjects to biomass fuel smoke was 31.7±6.6 years. They have been exposed to dung inhalation products meanly 8.3±1.8 months in a year seasonally. The average daily exposure time was 15.7±3.3 hours. CIMT values of the two groups were not statistically different from each other (0.47±0.09 vs. 0.49±0.06 mm, p=0.138). However, a markedly reduced FAD % was determined in the study group (5.06±4.95 vs. 10.7±4.64, pinhalation products. Therefore, chronic BMF smoke exposure may be a risk factor for the development of endothelial dysfunction.

  8. Relation of Mitochondrial Oxygen Consumption in Peripheral Blood Mononuclear Cells to Vascular Function in Type 2 Diabetes Mellitus

    Science.gov (United States)

    Hartman, Mor-Li; Shirihai, Orian S.; Holbrook, Monika; Xu, Guoquan; Kocherla, Marsha; Shah, Akash; Fetterman, Jessica L.; Kluge, Matthew A.; Frame, Alissa A.; Hamburg, Naomi M.; Vita, Joseph A.

    2014-01-01

    Recent studies have shown mitochondrial dysfunction and increased production of reactive oxygen species in peripheral blood mononuclear cells (PBMC’s) and endothelial cells from patients with diabetes mellitus. Mitochondria oxygen consumption is coupled to ATP production and also occurs in an uncoupled fashion during formation of reactive oxygen species by components of the electron transport chain and other enzymatic sites. We therefore hypothesized that diabetes would be associated with higher total and uncoupled oxygen consumption in PBMC’s that would correlate with endothelial dysfunction. We developed a method to measure oxygen consumption in freshly isolated PBMC’s and applied it to 26 patients with type 2 diabetes mellitus and 28 non-diabetic controls. Basal (192±47 vs. 161±44 pMoles/min, P=0.01), uncoupled (64±16 vs. 53±16 pMoles/min, P=0.007), and maximal (795±87 vs. 715±128 pMoles/min, P=0.01) oxygen consumption rates were higher in diabetic patients compared to controls. There were no significant correlations between oxygen consumption rates and endothelium-dependent flow-mediated dilation measured by vascular ultrasound. Non-endothelium-dependent nitroglycerin-mediated dilation was lower in diabetics (10.1±6.6 vs. 15.8±4.8%, P=0.03) and correlated with maximal oxygen consumption (R= −0.64, P=0.001). In summary, we found that diabetes mellitus is associated with a pattern of mitochondrial oxygen consumption consistent with higher production of reactive oxygen species. The correlation between oxygen consumption and nitroglycerin-mediated dilation may suggest a link between mitochondrial dysfunction and vascular smooth muscle cell dysfunction that merits further study. Finally, the described method may have utility for assessment of mitochondrial function in larger scale observational and interventional studies in humans. PMID:24558030

  9. Incorporation of in-plane interconnects to reflow bonding for electrical functionality

    International Nuclear Information System (INIS)

    Moğulkoç, B; Jansen, H V; Ter Brake, H J M; Elwenspoek, M C

    2011-01-01

    Incorporation of in-plane electrical interconnects to reflow bonding is studied to provide electrical functionality to lab-on-a-chip or microfluidic devices. Reflow bonding is the packaging technology, in which glass tubes are joined to silicon substrates at elevated temperatures. The tubes are used to interface the silicon-based fluidic devices and are directly compatible with standard Swagelok® connectors. After the bonding, the electrically conductive lines will allow probing into the volume confined by the tube, where the fluidic device operates. Therefore methods for fabricating electrical interconnects that survive the bonding procedure at elevated temperature and do not alter the properties of the bond interface are investigated

  10. The effects of balneotherapy on acute, process-related, and cumulative peripheral cardiac responses and pulmonary functions in patients with musculoskeletal disorders.

    Science.gov (United States)

    Şaş, Senem; Toprak Çelenay, Şeyda; Özer Kaya, Derya

    2016-12-20

    This study aimed to evaluate the effects of balneotherapy on acute, process-related, and cumulative peripheral cardiac responses and pulmonary functions in patients with musculoskeletal disorders. Ninety-eight patients with musculoskeletal disorders referred to physiotherapy with balneotherapy were recruited. The patients received balneotherapy for 20 min 5 times per week for 2 weeks. Blood pressure and pulse were measured at the 0th, 5th, 10th, 20th, and 30th minutes during the 1st and 10th sessions. All patients were subjected to pulmonary function testing before balneotherapy and after the 10th session. It was found that systolic blood pressure decreased between the 10th and 20th minutes of the 1st session and between the 10th and 20th minutes and the 20th and 30th minutes of the 10th session (P balneotherapy (P balneotherapy (P Balneotherapy may be effective for improving peripheral cardiopulmonary responses in patients with musculoskeletal disorders.

  11. The influence of recovery and training phases on body composition, peripheral vascular function and immune system of professional soccer players.

    Directory of Open Access Journals (Sweden)

    Simon Reinke

    Full Text Available Professional soccer players have a lengthy playing season, throughout which high levels of physical stress are maintained. The following recuperation period, before starting the next pre-season training phase, is generally considered short but sufficient to allow a decrease in these stress levels and therefore a reduction in the propensity for injury or musculoskeletal tissue damage. We hypothesised that these physical extremes influence the body composition, blood flow, and endothelial/immune function, but that the recuperation may be insufficient to allow a reduction of tissue stress damage. Ten professional football players were examined at the end of the playing season, at the end of the season intermission, and after the next pre-season endurance training. Peripheral blood flow and body composition were assessed using venous occlusion plethysmography and DEXA scanning respectively. In addition, selected inflammatory and immune parameters were analysed from blood samples. Following the recuperation period a significant decrease of lean body mass from 74.4+/-4.2 kg to 72.2+/-3.9 kg was observed, but an increase of fat mass from 10.3+/-5.6 kg to 11.1+/-5.4 kg, almost completely reversed the changes seen in the pre-season training phase. Remarkably, both resting and post-ischemic blood flow (7.3+/-3.4 and 26.0+/-6.3 ml/100 ml/min respectively, were strongly reduced during the playing and training stress phases, but both parameters increased to normal levels (9.0+/-2.7 and 33.9+/-7.6 ml/100 ml/min during the season intermission. Recovery was also characterized by rising levels of serum creatinine, granulocytes count, total IL-8, serum nitrate, ferritin, and bilirubin. These data suggest a compensated hypo-perfusion of muscle during the playing season, followed by an intramuscular ischemia/reperfusion syndrome during the recovery phase that is associated with muscle protein turnover and inflammatory endothelial reaction, as demonstrated by i

  12. Inpatient rehabilitation improves functional capacity, peripheral muscle strength and quality of life in patients with community-acquired pneumonia: a randomised trial

    Directory of Open Access Journals (Sweden)

    Anderson José

    2016-04-01

    Full Text Available Question: Among people who are hospitalised for community-acquired pneumonia, does an inpatient exercise-based rehabilitation program improve functional outcomes, symptoms, quality of life and length of hospital stay more than a respiratory physiotherapy regimen? Design: Randomised trial with concealed allocation, intention-to-treat analysis and blinding of some outcomes. Participants: Forty-nine adults hospitalised for community-acquired pneumonia. Intervention: The experimental group (n = 32 underwent a physical training program that included warm-up, stretching, peripheral muscle strength training and walking at a controlled speed for 15 minutes. The control group (n = 17 underwent a respiratory physiotherapy regimen that included percussion, vibrocompression, respiratory exercises and free walking. The intervention regimens lasted 8 days. Outcome measures: The primary outcome was the Glittre Activities of Daily Living test, which assesses the time taken to complete a series of functional tasks (eg, rising from a chair, walking, stairs, lifting and bending. Secondary outcomes were distance walked in the incremental shuttle walk test, peripheral muscle strength, quality of life, dyspnoea, lung function, C-reactive protein and length of hospital stay. Measures were taken 1 day before and 1 day after the intervention period. Results: There was greater improvement in the experimental group than in the control group on the Glittre Activities of Daily Living test (mean between-group difference 39 seconds, 95% CI 20 to 59 and the incremental shuttle walk test (mean between-group difference 130 m, 95% CI 77 to 182. There were also significantly greater improvements in quality of life, dyspnoea and peripheral muscle strength in the experimental group than in the control group. There were no between-group differences in lung function, C-reactive protein or length of hospital stay. Conclusion: The improvement in functional outcomes after an

  13. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    Science.gov (United States)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-09-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated.

  14. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    International Nuclear Information System (INIS)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-01-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated. (paper)

  15. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  16. Chemotherapy-Induced Peripheral Neuropathy in Long-term Survivors of Childhood Cancer: Clinical, Neurophysiological, Functional, and Patient-Reported Outcomes.

    Science.gov (United States)

    Kandula, Tejaswi; Farrar, Michelle Anne; Cohn, Richard J; Mizrahi, David; Carey, Kate; Johnston, Karen; Kiernan, Matthew C; Krishnan, Arun V; Park, Susanna B

    2018-05-14

    In light of the excellent long-term survival of childhood cancer patients, it is imperative to screen for factors affecting health, function, and quality of life in long-term survivors. To comprehensively assess chemotherapy-induced peripheral neuropathy in childhood cancer survivors to define disease burden and functional effect and to inform screening recommendations. In this cross-sectional observational study, cancer survivors who were treated with chemotherapy for extracranial malignancy before age 17 years were recruited consecutively between April 2015 and December 2016 from a single tertiary hospital-based comprehensive cancer survivorship clinic and compared with healthy age-matched controls. Investigators were blinded to the type of chemotherapy. A total of 169 patients met inclusion criteria, of whom 48 (28.4%) were unable to be contacted or declined participation. Chemotherapy agents known to be toxic to peripheral nerves. The clinical peripheral neurological assessment using the Total Neuropathy Score was compared between recipients of different neurotoxic chemotherapy agents and control participants and was correlated with neurophysiological, functional, and patient-reported outcome measures. Of the 121 childhood cancer survivors included in this study, 65 (53.7%) were male, and the cohort underwent neurotoxicity assessments at a median (range) age of 16 (7-47) years, a median (range) 8.5 (1.5-29) years after treatment completion. Vinca alkaloids and platinum compounds were the main neurotoxic agents. Clinical abnormalities consistent with peripheral neuropathy were common, seen in 54 of 107 participants (50.5%) treated with neurotoxic chemotherapy (mean Total Neuropathy Score increase, 2.1; 95% CI, 1.4-2.9; P neuropathy (mean amplitude reduction, 5.8 μV; 95% CI, 2.8-8.8; P Neuropathy Score. Cisplatin produced long-term neurotoxicity more frequently than vinca alkaloids. Clinical abnormalities attributable to peripheral neuropathy were common in

  17. The electricity exchange. On the organisation and latent functions of electricity exchange trading as seen from the viewpoint of market sociology

    International Nuclear Information System (INIS)

    Giacovelli, Sebastian

    2014-01-01

    Electricity exchange trading in Germany has existed since the year 2000. Since this time, the Leipzig electricity exchange, a reference market for off-exchange electricity trading, has operated in an environment marked by both criticism and acceptance. Taking this field of controversy as a point of departure the present empirical study in market sociology undertakes to investigate the organisation and latent functions of electricity exchange trading. The ensuing analysis provides answers to questions as to how prices are formed on the electricity exchange and what officially incommunicable functions are served by price formation on exchanges.

  18. Location and function of serotonin in the central and peripheral nervous system of the Colorado potato beetle

    NARCIS (Netherlands)

    Haeften, van T.

    1993-01-01

    In this thesis we have localized serotoninergic neurons in the central and peripheral nervous system of the Colorado potato beetle, Leptinotarsa decemlineata by means of immunohistochemistry with a specific antiserurn to serotonin and assessed the possible role of these

  19. Processing and Memory of Central versus Peripheral Information as a Function of Reading Goals: Evidence from Eye-Movements

    Science.gov (United States)

    Yeari, Menahem; van den Broek, Paul; Oudega, Marja

    2015-01-01

    The present study examined the effect of reading goals on the processing and memory of central and peripheral textual information. Using eye-tracking methodology, we compared the effect of four common reading goals--entertainment, presentation, studying for a close-ended (multiple-choice) questions test, and studying for an open-ended questions…

  20. Effectiveness of water-based Liuzijue exercise on respiratory muscle strength and peripheral skeletal muscle function in patients with COPD

    Directory of Open Access Journals (Sweden)

    Wu W

    2018-05-01

    beneficial effects on COPD patients’ respiratory muscle strength and peripheral skeletal muscle function, and additional benefits may exist in endurance of upper limbs and strength and endurance of lower limbs when compared with land-based Liuzijue exercise. Keywords: COPD, Liuzijue exercise, water-based exercise, respiratory muscle strength, isokinetic muscle strength, quantitative assessment

  1. The efficacy of transcutaneous electrical nerve stimulation on the improvement of walking distance in patients with peripheral arterial disease with intermittent claudication: study protocol for a randomised controlled trial: the TENS-PAD study.

    Science.gov (United States)

    Besnier, Florent; Sénard, Jean-Michel; Grémeaux, Vincent; Riédel, Mélanie; Garrigues, Damien; Guiraud, Thibaut; Labrunée, Marc

    2017-08-10

    In patients with peripheral arterial disease (PAD), walking improvements are often limited by early pain onset due to vascular claudication. It would thus appear interesting to develop noninvasive therapeutic strategies, such as transcutaneous electrical nerve stimulation (TENS), to improve the participation of PAD patients in rehabilitation programmes, and thus improve their quality of life. Our team recently tested the efficacy of a single 45-min session of 10-Hz TENS prior to walking. TENS significantly delayed pain onset and increased the pain-free walking distance in patients with class-II PAD. We now seek to assess the efficacy of a chronic intervention that includes the daily use of TENS for 3 weeks (5 days a week) on walking distance in Leriche-Fontaine stage-II PAD patients. This is a prospective, double-blind, multicentre, randomised, placebo-controlled trial. One hundred subjects with unilateral PAD (Leriche-Fontaine stage II) will be randomised into two groups (1:1). For the experimental group (TENS group): the treatment will consist of stimulation of the affected leg (at a biphasic frequency of 10 Hz, with a pulse width of 200 μs, maximal intensity below the motor threshold) for 45 min per day, in the morning before the exercise rehabilitation programme, for 3 weeks, 5 days per week. For the control group (SHAM group): the placebo stimulation will be delivered according to the same modalities as for the TENS group but with a voltage level automatically falling to zero after 10 s of stimulation. First outcome: walking distance without pain. transcutaneous oxygen pressure (TcPO 2 ) measured during a Strandness exercise test, peak oxygen uptake (VO 2 peak), endothelial function (EndoPAT®), Ankle-brachial Pressure Index, Body Mass Index, lipid profile (LDL-C, HDL-C, triglycerides), fasting glycaemia, HbA1c level, and the WELCH questionnaire. TENS-PAD is the first randomised controlled trial that uses transcutaneous electrical therapy as an

  2. [Efficacy observation of dysphagia after acute stroke treated with acupuncture and functional electric stimulation].

    Science.gov (United States)

    Chang, Ling; He, Peng-Lan; Zhou, Zhen-Zhong; Li, Yan-Hua

    2014-08-01

    To observe the impacts on the recovery of swallowing function in patients of dysphagia after acute stroke treated with acupuncture and functional electric stimulation. Seventy-four patients were randomized into an acupuncture plus electric stimulation group (38 cases) and an electric stimulation group (36 cases). The functional electric stimulator was used in the two groups. The electric pads were placed on the hyoid bone, the upper part of thyroid cartilage, the masseter muscle and the mandibular joint. The treatment lasted for 30 mm each time. In the acupuncture plus electric stimulation group, acupuncture was supplemented at motor area of Jiao's scalp acupuncture, lower 2/5 of sensory area, Baihui (CV 20), Lianquan (CV 23), Jinjin (EX-HN 12) and Yuye (EX-HN 13), 30 mm each time. The treatment was given once a day, 6 treatments for one session and there was 1 day at interval between the sessions, 4 sessions were required totally in the two groups. The dysphagia scale was adopted for efficacy evaluation before treatment and after 4 sessions of treatment in the two groups. The removal rate of nasal feeding tube was observed after treatment. The dysphagia score was increased apparently after treatment compared with that before treatment in the two groups (both P vs 6.73 +/- 1.36, P stroke and promotes the early removal of nasal feeding tube. The efficacy is better than that of the simple electric stimulation therapy.

  3. Phenotypic and Functional Characterization of Peripheral Blood Lymphocytes from Various Age- and Sex-Specific Groups of Owl Monkeys (Aotus nancymaae).

    Science.gov (United States)

    Nehete, Pramod N; Nehete, Bharti P; Chitta, Sriram; Williams, Lawrence E; Abee, Christian R

    2017-02-01

    Owl monkeys (Aotus nancymaae) are New World NHP that serve an important role in vaccine development and as a model for human disease conditions such as malaria. Despite the past contributions of this animal model, limited information is available about the phenotype and functional properties of peripheral blood lymphocytes in reference to sex and age. Using a panel of human antibodies and a set of standardized human immune assays, we identified and characterized various peripheral blood lymphocyte subsets, evaluated the immune functions of T cells, and analyzed cytokines relative to sex and age in healthy owl monkeys. We noted age- and sex-dependent changes in CD28+ (an essential T cell costimulatory molecule) and CD95+ (an apoptotic surface marker) T cells and various levels of cytokines in the plasma. In immune assays of freshly isolated peripheral blood mononuclear cells, IFNγ and perforin responses were significantly higher in female than in male monkeys and in young adults than in juvenile and geriatric groups, despite similar lymphocyte (particularly T cell) populations in these groups. Our current findings may be useful in exploring Aotus monkeys as a model system for the study of aging, susceptibility to infectious diseases, and age-associated differences in vaccine efficacy, and other challenges particular to pediatric and geriatric patients.

  4. Salvianolic Acid A Protects the Peripheral Nerve Function in Diabetic Rats through Regulation of the AMPK-PGC1α-Sirt3 Axis

    Directory of Open Access Journals (Sweden)

    Guanhua Du

    2012-09-01

    Full Text Available Salvianolic acid A (SalA is one of the main efficacious, water-soluble constituents of Salvia miltiorrhiza Bunge. This study investigated the protective effects of SalA on peripheral nerve in diabetic rats. Administration of SalA (0.3, 1 and 3 mg/kg, ig was started from the 5th week after strepotozotocin (STZ60 mg/kg intraperitoneal injection and continued for 8 weeks. Paw withdrawal mechanical threshold (PWMT and motor nerve conduction velocity (MNCV were used to assess peripheral nerve function. The western blot methods were employed to test the expression levels of serine-threonine liver kinase B1 (LKB1, AMP-activated protein kinase (AMPK, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α, silent information regulator protein3 (sirtuin 3/Sirt3 and neuronal nitric oxide synthase (nNOS in sciatic nerve. Results showed that SalA administration could increase PWMT and MNCV in diabetic rats; reduce the deterioration of sciatic nerve pathology; increase AMPK phosphorylation level, up-regulate PGC-1α, Sirt3 and nNOS expression, but had no influence on LKB1. These results suggest that SalA has protective effects against diabetic neuropathy. The beneficial effects of SalA on peripheral nerve function in diabetic rats might be attributed to improvements in glucose metabolism through regulation of the AMPK-PGC1α-Sirt3 axis.

  5. Soluble CD163 levels are elevated in cerebrospinal fluid and serum in people with Type 2 diabetes mellitus and are associated with impaired peripheral nerve function

    DEFF Research Database (Denmark)

    Kallestrup, M; Møller, Holger Jon; Tankisi, H

    2015-01-01

    and serum in participants with neuropathy than in those without neuropathy [cerebrospinal fluid: median (range) 131 (86-173) vs 101 (70-190) μg/l, P = 0.08 and serum: 3725 (920-7060) vs 2220 (1130-4780), P = 0.06). CONCLUSIONS: Cerebrospinal fluid soluble CD163 level is associated with impaired peripheral......AIMS: To measure soluble CD163 levels in the cerebrospinal fluid and serum of people with Type 2 diabetes, with and without polyneuropathy, and to relate the findings to peripheral nerve function. METHODS: A total of 22 people with Type 2 diabetes and 12 control subjects without diabetes were...... included in this case-control study. Participants with diabetes were divided into those with neuropathy (n = 8) and those without neuropathy (n = 14) based on clinical examination, vibratory perception thresholds and nerve conduction studies. Serum and cerebrospinal fluid soluble CD163 levels were analysed...

  6. Effectiveness of functional electrical stimulation (fes) versus conventional electrical stimulation in gait rehabilitation of patients with stroke

    International Nuclear Information System (INIS)

    Sharif, F.; Ghulam, S.; Malik, A.N.

    2017-01-01

    To compare the effectiveness of functional electrical stimulation (FES) versus conventional electrical stimulation in gait rehabilitation of patients with stroke for finding the most appropriate problem-oriented treatment for foot drop patients in a shorter time period. Study Design: Randomized controlled trial. Place and Duration of Study:Armed Forces Institute of Rehabilitation Medicine, Rawalpindi, from July to December 2016. Methodology: Subjects with foot drop due to stroke were allotted randomly into 1 of 2 groups receiving standard rehabilitation with Functional Electrical Stimulation (FES) or Electrical Muscle Stimulation (EMS). FES was applied on tibialis anterior 30 minutes/day, five days/week for six weeks. EMS was also applied on the tibialis anterior five days/week for six weeks. Outcome measures included Fugl-Meyer Assessment Scale, Modified Ashworth Scale, Berg Balance Scale (BBS), Time Up and Go Test (TUG) and Gait Dynamic Index (GDI). They were recorded at baseline, after 3 and 6 weeks. Pre- and post-treatment scores were analyzed between two groups on SPSS-20. Results: After six weeks of intervention, significant improvement was recorded in Fugl-Meyer Assessment score (p<0.001), modified Ashworth Scale score (p=0.027), Berg Balance Scale score (p<0.001), Time Up and Go Test (p<0.001) and Gait Dynamic Index (p=0.012) of the group subjected to FES. Conclusion: Gait training with FES is more effective than EMS in improving mobility, balance, gait performance and reducing spasticity in stroke patients. The research will help clinicians to select appropriate treatment of foot drop in stroke patients. (author)

  7. Towards an ankle neuroprosthesis for hybrid robotics: Concepts and current sources for functional electrical stimulation.

    Science.gov (United States)

    Casco, S; Fuster, I; Galeano, R; Moreno, J C; Pons, J L; Brunetti, F

    2017-07-01

    Hybrid rehabilitation robotics combine neuro-prosthetic devices (close-loop functional electrical stimulation systems) and traditional robotic structures and actuators to explore better therapies and promote a more efficient motor function recovery or compensation. Although hybrid robotics and ankle neuroprostheses (NPs) have been widely developed over the last years, there are just few studies on the use of NPs to electrically control both ankle flexion and extension to promote ankle recovery and improved gait patterns in paretic limbs. The aim of this work is to develop an ankle NP specifically designed to work in the field of hybrid robotics. This article presents early steps towards this goal and makes a brief review about motor NPs and Functional Electrical Stimulation (FES) principles and most common devices used to aid the ankle functioning during the gait cycle. It also shows a current sources analysis done in this framework, in order to choose the best one for this intended application.

  8. The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lau, Cher Hon; Cervini, Raoul; Clarke, Stephen R.; Markovic, Milena Ginic; Matisons, Janis G.; Hawkins, Stephen C.; Huynh, Chi P.; Simon, George P.

    2008-01-01

    Carbon nanotubes (CNTs) are of interest in many areas of nanotechnology and used in a number of novel applications. However effective dispersion remains a problem and one solution is to functionalize the nanotubes. Any functionalization that is undertaken must preferably not influence other key properties such as strength and electrical conductivity. In this work, multi-walled CNTs are functionalized for comparison, using a range of oxidative techniques, including thermal treatment, acid reflux, and dry UV-ozonolysis. The effects of these treatments on the multi-walled carbon nanotubes (MWCNTs) and their electrical properties were characterized using a range of surface and compositional techniques. The electrical conductivity of MWCNTs was found to increase with functionalization in all cases, and dry UV-ozonolysis was shown to be the treatment technique which best increased conductivity, whilst at the same time maintaining the structural integrity of the nanotubes, even though the level of modification was less than by the other treatment methods.

  9. 50-60 Hz electric and magnetic field effects on cognitive function in humans: A review

    International Nuclear Information System (INIS)

    Crasson, M.

    2003-01-01

    This paper reviews the effect of 50-60 Hz weak electric, magnetic and combined electric and magnetic field exposure on cognitive functions such as memory, attention, information processing and time perception, as determined by electroencephalographic methods and performance measures. Overall, laboratory studies, which have investigated the acute effects of power frequency fields on cognitive functioning in humans are heterogeneous, in terms of both electric and magnetic field (EMF) exposure and the experimental design and measures used. Results are inconsistent and difficult to interpret with regard to functional relevance for possible health risks. Statistically significant differences between field and control exposure, when they are found, are small, subtle, transitory, without any clear dose-response relationship and difficult to reproduce. The human performance or event related potentials (ERPs) measures that might specifically be affected by EMF exposure, as well as a possible cerebral structure or function that could be more sensitive to EMF, cannot be better determined. (author)

  10. Molecular monolayers for electrical passivation and functionalization of silicon-based solar energy devices

    NARCIS (Netherlands)

    Veerbeek, Janneke; Firet, Nienke J.; Vijselaar, Wouter; Elbersen, R.; Gardeniers, Han; Huskens, Jurriaan

    2017-01-01

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based

  11. Application of Trapezoidal-Shaped Characteristic Basis Functions to Arrays of Electrically Interconnected Antenna Elements

    NARCIS (Netherlands)

    Maaskant, R.; Mittra, R.; Tijhuis, A.G.; Graglia, R.D.

    2007-01-01

    This paper describes a novel technique for generating the characteristic basis functions (CBFs) used to represent the surface currents on finite arrays of electrically interconnected antenna elements. The CBFs are high-level basis functions, defined on subdomains in which the original problem is

  12. Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries

    DEFF Research Database (Denmark)

    Ladouceur, M.; Barbeau, H.

    2000-01-01

    This study investigated the changes in maximal overground walking speed (MOWS) that occurred during; walking training with a functional electrical stimulation (FES) orthosis by chronic spinal cord injured persons with incomplete motor function loss. The average walking: speed over a distance of 10...

  13. Clinical efficacy of electrical stimulation exercise training : Effects on health, fitness, and function

    NARCIS (Netherlands)

    Janssen, T. W J; Glaser, R. M.; Shuster, D. B.

    1998-01-01

    The purpose of this article is to summarize research findings pertaining to the effects of functional electrical stimulation (FES) lower limb exercise training on health, fitness, and function in individuals with spinal cord injury. This lays the foundation for defining the potential clinical

  14. Rational function systems and electrical networks with multiparameters

    CERN Document Server

    Lu, KaiSheng

    2012-01-01

    To overcome the problems of system theory and network theory over real field, this book uses matrices over the field F(z) of rational functions in multiparameters describing coefficient matrices of systems and networks and makes systems and network description over F(z) and researches their structural properties: reducible condition of a class of matrices over F(z) and their characteristic polynomial; type1 matrix and two basic properties; variable replacement conditions for independent parameters; structural controllability and observability of linear systems over F(z); separability, reducibi

  15. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    Science.gov (United States)

    2017-07-01

    with autologous mesenchymal stem cells . Exp Neurol. 2007 Apr; 204(2):658-66. 19. Dezawa M., et al., Sciatic nerve regeneration in rats induced by...36 23. Mimura T., et al., Peripheral nerve regeneration by transplantation of bone marrow stromal cell -derived Schwann cells in adult rats. J...AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve

  16. The supply function equilibrium and its policy implications for wholesale electricity auctions

    International Nuclear Information System (INIS)

    Holmberg, Paer; Newbery, David

    2010-01-01

    The supply function equilibrium provides a game-theoretic model of strategic bidding in oligopolistic wholesale electricity auctions. This paper presents an intuitive account of current understanding and shows how welfare losses depend on the number of firms in the market and their asymmetry. Previous results and general recommendations for divisible-good/multi-unit auctions provides guidance on the design of the auction format, setting the reservation price, the rationing rule, and restrictions on the offer curves in wholesale electricity auctions. (author)

  17. EEG-Triggered Functional Electrical Stimulation Therapy for Restoring Upper Limb Function in Chronic Stroke with Severe Hemiplegia

    Directory of Open Access Journals (Sweden)

    Cesar Marquez-Chin

    2016-01-01

    Full Text Available We report the therapeutic effects of integrating brain-computer interfacing technology and functional electrical stimulation therapy to restore upper limb reaching movements in a 64-year-old man with severe left hemiplegia following a hemorrhagic stroke he sustained six years prior to this study. He completed 40 90-minute sessions of functional electrical stimulation therapy using a custom-made neuroprosthesis that facilitated 5 different reaching movements. During each session, the participant attempted to reach with his paralyzed arm repeatedly. Stimulation for each of the movement phases (e.g., extending and retrieving the arm was triggered when the power in the 18 Hz–28 Hz range (beta frequency range of the participant’s EEG activity, recorded with a single electrode, decreased below a predefined threshold. The function of the participant’s arm showed a clinically significant improvement in the Fugl-Meyer Assessment Upper Extremity (FMA-UE subscore (6 points as well as moderate improvement in Functional Independence Measure Self-Care subscore (7 points. The changes in arm’s function suggest that the combination of BCI technology and functional electrical stimulation therapy may restore voluntary motor function in individuals with chronic hemiplegia which results in severe upper limb deficit (FMA-UE ≤ 15, a population that does not benefit from current best-practice rehabilitation interventions.

  18. Inpatient rehabilitation improves functional capacity, peripheral muscle strength and quality of life in patients with community-acquired pneumonia: a randomised trial.

    Science.gov (United States)

    José, Anderson; Dal Corso, Simone

    2016-04-01

    Among people who are hospitalised for community-acquired pneumonia, does an inpatient exercise-based rehabilitation program improve functional outcomes, symptoms, quality of life and length of hospital stay more than a respiratory physiotherapy regimen? Randomised trial with concealed allocation, intention-to-treat analysis and blinding of some outcomes. Forty-nine adults hospitalised for community-acquired pneumonia. The experimental group (n=32) underwent a physical training program that included warm-up, stretching, peripheral muscle strength training and walking at a controlled speed for 15 minutes. The control group (n=17) underwent a respiratory physiotherapy regimen that included percussion, vibrocompression, respiratory exercises and free walking. The intervention regimens lasted 8 days. The primary outcome was the Glittre Activities of Daily Living test, which assesses the time taken to complete a series of functional tasks (eg, rising from a chair, walking, stairs, lifting and bending). Secondary outcomes were distance walked in the incremental shuttle walk test, peripheral muscle strength, quality of life, dyspnoea, lung function, C-reactive protein and length of hospital stay. Measures were taken 1 day before and 1 day after the intervention period. There was greater improvement in the experimental group than in the control group on the Glittre Activities of Daily Living test (mean between-group difference 39 seconds, 95% CI 20 to 59) and the incremental shuttle walk test (mean between-group difference 130 m, 95% CI 77 to 182). There were also significantly greater improvements in quality of life, dyspnoea and peripheral muscle strength in the experimental group than in the control group. There were no between-group differences in lung function, C-reactive protein or length of hospital stay. The improvement in functional outcomes after an inpatient rehabilitation program was greater than the improvement after standard respiratory physiotherapy. The

  19. Understanding the response of pulsed electric field on osteoblast functions in three-dimensional mesh structures.

    Science.gov (United States)

    Kumar, A; Nune, K C; Misra, Rdk

    2016-10-01

    The endogenous electric field plays a determining role in impacting biological functions including communication with the physiological system, brain, and bone regeneration by influencing cellular functions. From this perspective, the objective of the study described here is to elucidate the effect of external electric field under dynamic conditions, in providing a guiding cue to osteoblasts in terms of cell-cell interactions and synthesis of prominent adhesion and cytoskeleton proteins. This was accomplished using pulsed direct current electric field of strength 0.1-1 V/cm. The electric field provided guided cue to the cells to migrate toward cathode. Membrane blebbing or necrosis was nearly absent in the vicinity of cathode at 0.1 and 0.5 V/cm electric field strength. Moreover, a higher cell proliferation as well as higher expression of vinculin and densely packed actin stress fibers was observed. At anode, the cells though healthy but expression of actin and vinculin was less. We underscore for the first time that the biological functionality can be favorably modulated on 3D printed scaffolds in the presence of electric field and under dynamic conditions with consequent positive effect on cell proliferation, growth, and expression level of prominent proteins. © The Author(s) 2016.

  20. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.

    Science.gov (United States)

    Hart, D J; Taylor, P N; Chappell, P H; Wood, D E

    2006-06-01

    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.

  1. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  2. Identification and Functional Characterization of Human Cd4+Cd25+ T Cells with Regulatory Properties Isolated from Peripheral Blood

    OpenAIRE

    Jonuleit, Helmut; Schmitt, Edgar; Stassen, Michael; Tuettenberg, Andrea; Knop, Jurgen; Enk, Alexander H.

    2001-01-01

    A subpopulation of peripheral human CD4+CD25+ T cells that expresses CD45RO, histocompatibility leukocyte antigen DR, and intracellular cytotoxic T lymphocyte–associated antigen (CTLA) 4 does not expand after stimulation and markedly suppresses the expansion of conventional T cells in a contact-dependent manner. After activation, CD4+CD25+ T cells express CTLA-4 on the surface detectable for several weeks. These cells show a G1/G0 cell cycle arrest and no production of interleukin (IL)-2, IL-...

  3. Structural and electrical properties of functionalized multiwalled carbon nanotube/epoxy composite

    International Nuclear Information System (INIS)

    Gantayat, S.; Rout, D.; Swain, S. K.

    2016-01-01

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increased with increasing concentration of f-MWCNTs.

  4. Electrical transport of SiNWs array after covalent attachment of new organic functionalities

    Directory of Open Access Journals (Sweden)

    Marianna Ambrico

    2012-05-01

    Full Text Available Modification of the electrical transport of a random network of silicon nanowires assembled on n‐ silicon support, after silicon nanowires functionalization by chlorination/alkylation procedure , is here described and discussed. We show that the organic functionalities induce charge transfer at single SiNW and produce doping‐like effect that is kept in the random network too. The\tSiNWs\tnetwork\talso\tpresents\ta\tsurface recombination velocity lower than that of bulk silicon. Interestingly, the functionalized silicon nanowires/n‐Si junctions display photo‐yield and open circuit voltages higher than those including oxidized silicon nanowire networks. Electrical properties stability in time of junctions embedding propenyl terminated silicon nanowires network and transport modification after secondary functionalization is also shown. These results suggest a possible route for the integration of functionalized\tSi\tnanowires,\talthough\trandomly distributed, in stable large area photovoltaic or molecule sensitive based devices.

  5. Electric Field Encephalography as a tool for functional brain research: a modeling study.

    Directory of Open Access Journals (Sweden)

    Yury Petrov

    Full Text Available We introduce the notion of Electric Field Encephalography (EFEG based on measuring electric fields of the brain and demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp, EFEG sensors provided 2-3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback applications. It also may lead to major improvements in source localization precision. Source localization simulations for the spherical and Boundary Element Method (BEM head models demonstrated that the localization errors are reduced two-fold when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental approaches to utilize this new tool for functional brain research.

  6. Effects of charging and electric field on graphene functionalized with titanium

    International Nuclear Information System (INIS)

    Gürel, H Hakan; Ciraci, S

    2013-01-01

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal–insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties. (paper)

  7. The Analytical Potential Energy Function of NH Radical Molecule in External Electric Field

    International Nuclear Information System (INIS)

    Wu Dong-Lan; Tan Bin; Wan Hui-Jun; Xie An-Dong; Ding Da-Jun

    2015-01-01

    The geometric structures of an NH radical in different external electric fields are optimized by using the density functional B3P86/cc-PV5Z method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect. (paper)

  8. Bortezomib-induced painful peripheral neuropathy: an electrophysiological, behavioral, morphological and mechanistic study in the mouse.

    Directory of Open Access Journals (Sweden)

    Valentina A Carozzi

    was found as well as a change in the electrical activity of wide dynamic range neurons of dorsal horn of spinal cord. Finally, the immune response is not a key factor in the development of morphological and functional damage induced by bortezomib in the peripheral nervous system.

  9. Application of electrical stimulation for functional tissue engineering in vitro and in vivo

    Science.gov (United States)

    Park, Hyoungshin (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor); Langer, Robert (Inventor); Radisic, Milica (Inventor)

    2013-01-01

    The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.

  10. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces.

    Science.gov (United States)

    Martin, Lewis J; Akhavan, Behnam; Bilek, Marcela M M

    2018-01-24

    Surface functionalization of an implantable device with bioactive molecules can overcome adverse biological responses by promoting specific local tissue integration. Bioactive peptides have advantages over larger protein molecules due to their robustness and sterilizability. Their relatively small size presents opportunities to control the peptide orientation on approach to a surface to achieve favourable presentation of bioactive motifs. Here we demonstrate control of the orientation of surface-bound peptides by tuning electric fields at the surface during immobilization. Guided by computational simulations, a peptide with a linear conformation in solution is designed. Electric fields are used to control the peptide approach towards a radical-functionalized surface. Spontaneous, irreversible immobilization is achieved when the peptide makes contact with the surface. Our findings show that control of both peptide orientation and surface concentration is achieved simply by varying the solution pH or by applying an electric field as delivered by a small battery.

  11. Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method

    Directory of Open Access Journals (Sweden)

    Hai-peng Wang

    2017-01-01

    Full Text Available Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training.

  12. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    Science.gov (United States)

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  13. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  14. Capillary pressure as a unique function of electric permittivity and water saturation

    NARCIS (Netherlands)

    Plug, W.J.; Slob, E.; Van Turnhout, J.; Bruining, J.

    2007-01-01

    The relation between capillary pressure (Pc) and interfacial area has been investigated by measuring Pc and the electric permittivity at 100 kHz simultaneously as function of the water saturation, (Sw). Drainage and imbibition experiments have been conducted for sand-distilled water-gas (CO2/N2)

  15. Concepts and methods in neuromodulation and functional electrical stimulation: an introduction.

    Science.gov (United States)

    Holsheimer, J

    1998-04-01

    This article introduces two clinical fields in which stimulation is applied to the nervous system: neuromodulation and functional electrical stimulation. The concepts underlying these fields and their main clinical applications, as well as the methods and techniques used in each field, are described. Concepts and techniques common in one field that might be beneficial to the other are discussed. 1998 Blackwell Science, Inc.

  16. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.

    Science.gov (United States)

    Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht

    2013-09-21

    The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.

  17. Peripheral Neuropathy

    Science.gov (United States)

    ... wasting. Various dietary strategies can improve gastrointestinal symptoms. Timely treatment of injuries can help prevent permanent damage. ... diabetic neuropathy is more limited. Transcutaneous electrical nerve stimulation (TENS) is a non-invasive intervention used for ...

  18. Application of DCE-MRI in evaluating lower extremity capillary endothelial function in patients with diabetes mellitus complicated by peripheral vascular disease after PTA

    International Nuclear Information System (INIS)

    Tian Hao; Zhao Jinli; Chen Xiaohua; Wu Xianhua; Li Yuehua

    2014-01-01

    Objective: To quantify endothelial function of lower extremity capillary in patients with peripheral vascular disease associated with diabetes mellitus by using DCE-MRI, and to explore the feasibility of DCE-MRI in predicting vascular restenosis in lower extremity after PTA. Methods: During the period form May 2009 to Jan. 2012, a total of 51 patients (study group) with diabetic lower extremity vascular diseases (77 diseased legs in total) were admitted to the hospital and were treated with PTA. Another 20 volunteers were used as control group. K-trans values were measured in soleus muscle using DCE-MRI. Based on the results after 6 months follow-up, the patients were classified into restenosis group and non-restenosis group. The K -trans values and others clinical data were compared between the two groups. Results: Although clinical symptoms and signs were improved in both groups after the treatment, K-trans value of restenosis group showed no obvious changes after PTA, while K-trans value of non-restenosis group was improved significantly. Before PTA, the difference in K -trans value between the two groups was not statistically significant, while K-trans values of the two groups were significantly lower than that of the control group (P<0.05). Conclusion: K-trans value can reflect the endothelial function in diabetes mellitus patients with peripheral vascular disease, and it can also predict the occurrence of restenosis, providing a useful evidence for clinical. therapy. (authors)

  19. A near infrared spectroscopy-based test of calf muscle function in patients with peripheral arterial disease

    DEFF Research Database (Denmark)

    Pedersen, Brian Lindegaard; Bækgaard, Niels; Quistorff, Bjørn

    2015-01-01

    test runs. Intraclass correlation constant (ICC) was used to describe reproducibility. The ICC was calculated using the area under the NIRS oxygenated hemoglobin (Hbox) curve, the initial velocity of the Hbox recovery curve, force measurements, and walking time. Results The ICC of the GAS was between 0...... and two age-matched patients without claudication. Each patient was tested with an isometric ergometer pedal test and a treadmill test applying NIRS measurements of the anterior tibial and the gastrocnemius muscles (GAS). Tests were repeated three times with randomly selected intervals between individual.......92-0.95 (foot-pedal) and 0.70-0.98 (tread mill) and of the anterior tibial muscle was between 0.87-0.96 (foot-pedal) and 0.67-0.79 (tread mill). Conclusion In this study, we contribute a new apparatus and test protocol for peripheral arterial disease (PAD) applying NIRS technique and controlled physical...

  20. Effects of the reconnection electric field on crescent electron distribution functions in asymmetric guide field reconnection

    Science.gov (United States)

    Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.

    2017-12-01

    In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the

  1. Anisotropy model for modern grain oriented electrical steel based on orientation distribution function

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2018-05-01

    Full Text Available Accurately modeling the anisotropic behavior of electrical steel is mandatory in order to perform good end simulations. Several approaches can be found in the literature for that purpose but the more often those methods are not able to deal with grain oriented electrical steel. In this paper, a method based on orientation distribution function is applied to modern grain oriented laminations. In particular, two solutions are proposed in order to increase the results accuracy. The first one consists in increasing the decomposition number of the cosine series on which the method is based. The second one consists in modifying the determination method of the terms belonging to this cosine series.

  2. A supply function model for representing the strategic bidding of the producers in constrained electricity markets

    International Nuclear Information System (INIS)

    Bompard, Ettore; Napoli, Roberto; Lu, Wene; Jiang, Xiuchen

    2010-01-01

    The modeling of the bidding behaviour of the producer is a key-point in the modeling and simulation of the competitive electricity markets. In our paper, the linear supply function model is applied so as to find the Supply Function Equilibrium analytically. It also proposed a new and efficient approach to find SFEs for the network constrained electricity markets by finding the best slope of the supply function with the help of changing the intercept, and the method can be applied on the large systems. The approach proposed is applied to study IEEE-118 bus test systems and the comparison between bidding slope and bidding intercept is presented, as well, with reference to the test system. (author)

  3. [Real-time Gait Training System with Embedded Functional Electrical Stimulation].

    Science.gov (United States)

    Gu, Linyan; Ruan, Zhaomin; Jia, Guifeng; Xla, Jing; Qiu, Lijian; Wu, Changwang; Jin, Xiaoqing; Ning, Gangmin

    2015-07-01

    To solve the problem that mostly gait analysis is independent from the treatment, this work proposes a system that integrates the functions of gait training and assessment for foot drop treatment. The system uses a set of sensors to collect gait parameters and designes multi-mode functional electrical stimulators as actuator. Body area network technology is introduced to coordinate the data communication and execution of the sensors and stimulators, synchronize the gait analysis and foot drop treatment. Bluetooth 4.0 is applied to low the power consumption of the system. The system realizes the synchronization of treatment and gait analysis. It is able to acquire and analyze the dynamic parameters of ankle, knee and hip in real-time, and treat patients by guiding functional electrical stimulation delivery to the specific body locations of patients.

  4. Silicon photonic integrated circuits with electrically programmable non-volatile memory functions.

    Science.gov (United States)

    Song, J-F; Lim, A E-J; Luo, X-S; Fang, Q; Li, C; Jia, L X; Tu, X-G; Huang, Y; Zhou, H-F; Liow, T-Y; Lo, G-Q

    2016-09-19

    Conventional silicon photonic integrated circuits do not normally possess memory functions, which require on-chip power in order to maintain circuit states in tuned or field-configured switching routes. In this context, we present an electrically programmable add/drop microring resonator with a wavelength shift of 426 pm between the ON/OFF states. Electrical pulses are used to control the choice of the state. Our experimental results show a wavelength shift of 2.8 pm/ms and a light intensity variation of ~0.12 dB/ms for a fixed wavelength in the OFF state. Theoretically, our device can accommodate up to 65 states of multi-level memory functions. Such memory functions can be integrated into wavelength division mutiplexing (WDM) filters and applied to optical routers and computing architectures fulfilling large data downloading demands.

  5. Training and orthotic effects related to functional electrical stimulation of the peroneal nerve in stroke.

    Science.gov (United States)

    Street, Tamsyn; Swain, Ian; Taylor, Paul

    2017-01-31

    To examine the evidence for a training effect on the lower limb of functional electrical stimulation. Cohort study. A total of 133 patients >6 months post-stroke. Training and orthotic effects were determined from walking speed over 10 m, associated minimal and substantial clinically important differences (i.e. >0.05 and >0.10 m/s), and Functional Ambulation Category (FAC), ranging from household walking to independent walking in the community. An overall significant (p training effect was found that was not a clinically important difference (0.02 m/s); however, "community" FAC (≥ 0.8 m/s) and "most limited community walkers" FAC (0.4-0.58 m/s), but not "household walkers" (effect (0.10 m/s) was found. In terms of overall improvement of one or more FACs, 23% achieved this due to a training effect, compared with 43% due to an orthotic effect. The findings suggest that functional electrical stimulation provides a training effect in those who are less impaired. Further work, which optimizes the use of the device for restoration of function, rather than as an orthotic device, will provide greater clarity on the effectiveness of functional electrical stimulation for eliciting a training effect.

  6. Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach

    International Nuclear Information System (INIS)

    Río, Pablo del; Bleda, Mercedes

    2012-01-01

    The aim of this paper is to provide a comparative assessment of the innovation effects of instruments which support the diffusion of renewable electricity technologies with a functions-oriented technological innovation system perspective. The paper provides a link between two major streams of the literature: the functions of innovation systems and the literature on renewable electricity support schemes. We show that, when a functional perspective is adopted, feed-in tariffs are likely to be superior to other policy instruments (quotas with tradable green certificates and tendering), although they still need to be complemented with other instruments, most importantly, direct R and D support. Furthermore, those innovation effects are affected by the specific design elements of the instruments chosen. - Highlights: ► A comparison of the innovation effects of instruments for the diffusion of renewable technologies. ► A functions-oriented technological innovation system perspective. ► A link between the functions of innovation systems and the literature on renewable electricity support schemes. ► Feed-in tariffs are likely to be superior to other instruments. ► Innovation effects are affected by the specific design elements of instruments.

  7. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective

    Science.gov (United States)

    Llinás, Rodolfo R.

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified toward one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function. PMID:25408634

  8. INTRINSIC ELECTRICAL PROPERTIES OF MAMMALIAN NEURONS AND CNS FUNCTION: A HISTORICAL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Rodolfo R Llinas

    2014-11-01

    Full Text Available This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified towards one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function.

  9. Effects on functional groups and zeta potential of SAP1pulsed electric field technology.

    Science.gov (United States)

    Liang, Rong; Li, Xuenan; Lin, Songyi; Wang, Jia

    2017-01-01

    SAP 1 pulsed electric field (PEF) technology. The effects of electric field intensity and pulse frequency on SAP 1 electric field intensity 15 kV cm -1 , pulse frequency 1600 Hz and flow velocity 2.93 mL min -1 ). Furthermore, the PEF-treated SAP 1 < MW < 3kDa under optimal conditions lacked the characteristic absorbance of N-H, C = C and the amide band and the zeta potential was reduced to -18.0 mV. Overall, the results of the present study suggest that the improvement of antioxidant activity of SAP 1 < MW < 3kDa is a result of the contribution of the functional groups and the change in zeta potential when treated with PEF. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. A functional model and simulation of spinal motor pools and intrafascicular recordings of motoneuron activity in peripheral nerve

    Directory of Open Access Journals (Sweden)

    Mohamed N. Abdelghani

    2014-11-01

    Full Text Available Decoding motor intent from recorded neural signals is essential for the development of effective neural-controlled prostheses. To facilitate the development of online decoding algorithms we have developed a software platform to simulate neural motor signals recorded with peripheral nerve electrodes, such as longitudinal intrafascicular electrodes (LIFEs. The simulator uses stored motor intent signals to drive a pool of simulated motoneurons with various spike shapes, recruitment characteristics, and firing frequencies. Each electrode records a weighted sum of a subset of simulated motoneuron activity patterns. As designed, the simulator facilitates development of a suite of test scenarios that would not be possible with actual data sets because, unlike with actual recordings, in the simulator the individual contributions to the simulated composite recordings are known and can be methodically varied across a set of simulation runs. In this manner, the simulation tool is suitable for iterative development of real-time decoding algorithms prior to definitive evaluation in amputee subjects with implanted electrodes. The simulation tool was used to produce data sets that demonstrate its ability to capture some features of neural recordings that pose challenges for decoding algorithms.

  11. Locus coeruleus lesions and PCOS: role of the central and peripheral sympathetic nervous system in the ovarian function of rat

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2012-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction”. “Autonomic and central nervous systems play important roles in the regulation of ovarian physiology”. The noradrenergic nucleus locus coeruleus (LC plays a central role in the regulation of the sympathetic nervous system and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway and its activation is essential to trigger spontaneous or induced LH surges. This study evaluates sympathetic outflow in central and peripheral pathways in PCO rats. Objective: Our objectives in this study were (1 to estimate LC activity in rats with estradiol valerate (EV-induced PCO; (2 to antagonized alpha2a adrenoceptor in systemic conditions with yohimbine. Materials and Methods: Forty two rats were divided into two groups: 1 LC and yohimbine and 2 control. Every group subdivided in two groups: eighteen rats were treated with estradiol valerate for induction of follicular cysts and the remainders were sesame oil groups. Results: Estradiol concentration was significantly augmented by the LC lesion in PCO rats (p<0.001, while LC lesion could not alter serum concentrations of LH and FSH, like yohimbine. The morphological observations of ovaries of LC lesion rats showed follicles with hyperthecosis, but yohimbine reduced the number of cysts, increased corpus lutea and developed follicles. Conclusion: Rats with EV-induced PCO increased sympathetic activity. LC lesion and yohimbine decreased the number of cysts and yohimbine increased corpus lutea and developed follicles in PCO rats.

  12. Plantar fascia enthesopathy is highly prevalent in diabetic patients without peripheral neuropathy and correlates with retinopathy and impaired kidney function.

    Science.gov (United States)

    Ursini, Francesco; Arturi, Franco; Nicolosi, Kassandra; Ammendolia, Antonio; D'Angelo, Salvatore; Russo, Emilio; Naty, Saverio; Bruno, Caterina; De Sarro, Giovambattista; Olivieri, Ignazio; Grembiale, Rosa Daniela

    2017-01-01

    Aim of this study was to evaluate the prevalence of plantar fascia (PF) enthesopathy in Type 2 diabetes mellitus (T2DM) patients without distal peripheral neuropathy (DPN). We recruited 50 T2DM patients without DPN and 50 healthy controls. DPN was excluded using the Michigan Neuropathy Screening Instrument (MNSI). All patients underwent a bilateral sonographicevaluation of the enthesealportion of the PF. PF thickness was significantly higher in T2DM patients (p<0.0001). T2DM patients presented a higher prevalence of entheseal thickening (p = 0.002), enthesophyte (p = 0.02) and cortical irregularity (p = 0.02). The overall sum of abnormalities was higher in T2DM patients (p<0.0001), as was the percentage of bilateral involvement (p = 0.005). In a logistic regression analysis, retinopathy predicted entheseal thickening (OR 3.5, p = 0.05) and enthesophytes (OR 5.13, p = 0.001); reduced eGFR predicted enthesophytes (OR 2.93, p = 0.04); body mass index (BMI) predicted cortical irregularity (OR 0.87, p = 0.05); mean glucose predicted enthesophyte (OR 1.01, p = 0.03); LDL cholesterol predicted cortical irregularity (OR 0.98, p = 0.02). Our data suggest that T2DM is associated with PF enthesopathyindependently of DPN.

  13. Plantar fascia enthesopathy is highly prevalent in diabetic patients without peripheral neuropathy and correlates with retinopathy and impaired kidney function.

    Directory of Open Access Journals (Sweden)

    Francesco Ursini

    Full Text Available Aim of this study was to evaluate the prevalence of plantar fascia (PF enthesopathy in Type 2 diabetes mellitus (T2DM patients without distal peripheral neuropathy (DPN.We recruited 50 T2DM patients without DPN and 50 healthy controls. DPN was excluded using the Michigan Neuropathy Screening Instrument (MNSI. All patients underwent a bilateral sonographicevaluation of the enthesealportion of the PF.PF thickness was significantly higher in T2DM patients (p<0.0001. T2DM patients presented a higher prevalence of entheseal thickening (p = 0.002, enthesophyte (p = 0.02 and cortical irregularity (p = 0.02. The overall sum of abnormalities was higher in T2DM patients (p<0.0001, as was the percentage of bilateral involvement (p = 0.005. In a logistic regression analysis, retinopathy predicted entheseal thickening (OR 3.5, p = 0.05 and enthesophytes (OR 5.13, p = 0.001; reduced eGFR predicted enthesophytes (OR 2.93, p = 0.04; body mass index (BMI predicted cortical irregularity (OR 0.87, p = 0.05; mean glucose predicted enthesophyte (OR 1.01, p = 0.03; LDL cholesterol predicted cortical irregularity (OR 0.98, p = 0.02.Our data suggest that T2DM is associated with PF enthesopathyindependently of DPN.

  14. Identification and Functional Characterization of Human Cd4+Cd25+ T Cells with Regulatory Properties Isolated from Peripheral Blood

    Science.gov (United States)

    Jonuleit, Helmut; Schmitt, Edgar; Stassen, Michael; Tuettenberg, Andrea; Knop, Jurgen; Enk, Alexander H.

    2001-01-01

    A subpopulation of peripheral human CD4+CD25+ T cells that expresses CD45RO, histocompatibility leukocyte antigen DR, and intracellular cytotoxic T lymphocyte–associated antigen (CTLA) 4 does not expand after stimulation and markedly suppresses the expansion of conventional T cells in a contact-dependent manner. After activation, CD4+CD25+ T cells express CTLA-4 on the surface detectable for several weeks. These cells show a G1/G0 cell cycle arrest and no production of interleukin (IL)-2, IL-4, or interferon (IFN)-γ on either protein or mRNA levels. The anergic state of CD4+CD25+ T cells is not reversible by the addition of anti-CD28, anti–CTLA-4, anti–transforming growth factor β, or anti–IL-10 antibody. However, the refractory state of CD4+CD25+ T cells was partially reversible by the addition of IL-2 or IL-4. These data demonstrate that human blood contains a resident T cell population with potent regulatory properties. PMID:11390435

  15. Comprehension of the Electric Polarization as a Function of Low Temperature

    Science.gov (United States)

    Liu, Changshi

    2017-01-01

    Polarization response to warming plays an increasingly important role in a number of ferroelectric memory devices. This paper reports on the theoretical explanation of the relationship between polarization and temperature. According to the Fermi-Dirac distribution, the basic property of electric polarization response to temperature in magnetoelectric multiferroic materials is theoretically analyzed. The polarization in magnetoelectric multiferroic materials can be calculated by low temperature using a phenomenological theory suggested in this paper. Simulation results revealed that the numerically calculated results are in good agreement with experimental results of some inhomogeneous multiferroic materials. Numerical simulations have been performed to investigate the influences of both electric and magnetic fields on the polarization in magnetoelectric multiferroic materials. Furthermore, polarization behavior of magnetoelectric multiferroic materials can be predicted by low temperature, electric field and magnetic induction using only one function. The calculations offer an insight into the understanding of the effects of heating and magnetoelectric field on electrical properties of multiferroic materials and offer a potential to use similar methods to analyze electrical properties of other memory devices.

  16. Vibration Prediction Method of Electric Machines by using Experimental Transfer Function and Magnetostatic Finite Element Analysis

    International Nuclear Information System (INIS)

    Saito, A; Kuroishi, M; Nakai, H

    2016-01-01

    This paper concerns the noise and structural vibration caused by rotating electric machines. Special attention is given to the magnetic-force induced vibration response of interior-permanent magnet machines. In general, to accurately predict and control the vibration response caused by the electric machines, it is inevitable to model not only the magnetic force induced by the fluctuation of magnetic fields, but also the structural dynamic characteristics of the electric machines and surrounding structural components. However, due to complicated boundary conditions and material properties of the components, such as laminated magnetic cores and varnished windings, it has been a challenge to compute accurate vibration response caused by the electric machines even after their physical models are available. In this paper, we propose a highly-accurate vibration prediction method that couples experimentally-obtained discrete structural transfer functions and numerically-obtained distributed magnetic-forces. The proposed vibration synthesis methodology has been applied to predict vibration responses of an interior permanent magnet machine. The results show that the predicted vibration response of the electric machine agrees very well with the measured vibration response for several load conditions, for wide frequency ranges. (paper)

  17. Study of the functional state of peripheral vessels in fingers of rheumatological patients by means of laser Doppler flowmetry and cutaneous thermometry measurements

    Science.gov (United States)

    Zherebtsova, Angelina I.; Zherebtsov, Evgeny A.; Dunaev, Andrey V.; Podmasteryev, Konstantin V.; Pilipenko, Olga V.; Krupatkin, Alexander I.; Khakhicheva, Lyudmila S.; Muradyan, Vadim F.

    2016-04-01

    Vasospastic disorders are a common class of rheumatic disease. These include syndromes such as vegetative dystonia, Raynaud's syndrome, vibration disease and rheumatoid arthritis among others. The aim of this work is to develop an original method of diagnosing the functional state of peripheral vessels of the fingers, based on the simultaneous recording of LDF- and thermograms during the occlusion test, for determining vascular disorders of rheumatological patients. A diagnostic method was developed for assessing the functional state of the peripheral vessels of fingers, based on carrying out occlusion test in a thermally stabilized environment, with simultaneous recording of signals of laser Doppler flowmetry and skin thermometry. To verify the diagnostic value of the proposed method, a series of experiments were carried out on 41 rheumatological patients: 5 male and 36 females (average age 56.0+/-12.2 years). The most common diagnoses in the patient group were rheumatoid arthritis, arthrosis, gout and systemic lupus erythematosus. The laser analyser of blood microcirculation "LAKK-02" (SPE "LAZMA" Ltd, Russia) and a custom developed multi-channel thermometry device for low inertia thermometry were used for experimental measurements. The measurements of cutaneous temperature and the index of microcirculation were performed on the distal phalanx of the third finger of the right hand. Occlusion tests were performed with water baths at 25 and 42 °C and a tonometer cuff with a pressure of 200-220 mmHg for 3 min on the upper arm. The results of experimental studies are presented and interpreted. These data indicate a violation of the blood supply regulation in the form of a pronounced tendency towards microvascular vasoconstriction in the fingers. Thus, the response displaying a tendency toward angiospasm among patients in the rheumatological diseases profile group was observed mainly in the most severe cases (49 % of this group). The prospects of the developed

  18. Non-canonical spectral decomposition of random functions of the traction voltage and current in electric transportation systems

    Directory of Open Access Journals (Sweden)

    N.A. Kostin

    2015-03-01

    Full Text Available The paper proposes the non-canonical spectral decomposition of random functions of the traction voltages and currents. This decomposition is adapted for the electric transportation systems. The numerical representation is carried out for the random function of voltage on the pantograph of electric locomotives VL8 and DE1.

  19. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    Science.gov (United States)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.

  20. Artificial Cochlear Sensory Epithelium with Functions of Outer Hair Cells Mimicked Using Feedback Electrical Stimuli

    Directory of Open Access Journals (Sweden)

    Tetsuro Tsuji

    2018-05-01

    Full Text Available We report a novel vibration control technique of an artificial auditory cochlear epithelium that mimics the function of outer hair cells in the organ of Corti. The proposed piezoelectric and trapezoidal membrane not only has the acoustic/electric conversion and frequency selectivity of the previous device developed mainly by one of the authors and colleagues, but also has a function to control local vibration according to sound stimuli. Vibration control is achieved by applying local electrical stimuli to patterned electrodes on an epithelium made using micro-electro-mechanical system technology. By choosing appropriate phase differences between sound and electrical stimuli, it is shown that it is possible to both amplify and dampen membrane vibration, realizing better control of the response of the artificial cochlea. To be more specific, amplification and damping are achieved when the phase difference between the membrane vibration by sound stimuli and electrical stimuli is zero and π , respectively. We also demonstrate that the developed control system responds automatically to a change in sound frequency. The proposed technique can be applied to mimic the nonlinear response of the outer hair cells in a cochlea, and to realize a high-quality human auditory system.

  1. Psychophysics, flare, and neurosecretory function in human pain models: capsaicin versus electrically evoked pain.

    Science.gov (United States)

    Geber, Christian; Fondel, Ricarda; Krämer, Heidrun H; Rolke, Roman; Treede, Rolfe-Detlef; Sommer, Claudia; Birklein, Frank

    2007-06-01

    Intradermal capsaicin injection (CAP) and electrical current stimulation (ES) are analyzed in respect to patterns and test-retest reliability of pain as well as sensory and neurosecretory changes. In 10 healthy subjects, 2x CAP (50 microg) and 2x ES (5 to 30 mA) were applied to the volar forearm. The time period between 2 identical stimulations was about 4 months. Pain ratings, areas of mechanical hyperalgesia, and allodynia were assessed. The intensity of sensory changes was quantified by using quantitative sensory testing. Neurogenic flare was assessed by using laser Doppler imaging. Calcitonin gene-related peptide (CGRP) release was quantified by dermal microdialysis in combination with an enzyme immunoassay. Time course and peak pain ratings were different between CAP and ES. Test-retest correlation was high (r > or = 0.73). Both models induced primary heat hyperalgesia and primary plus secondary pin-prick hyperalgesia. Allodynia occurred in about half of the subjects. Maximum flare sizes did not differ between CAP and ES, but flare intensities were higher for ES. Test-retest correlation was higher for flare sizes than for flare intensity. A significant CGRP release could only be measured after CAP. The different time courses of pain stimulation (CAP: rapidly decaying pain versus ES: pain plateau) led to different peripheral neurosecretory effects but induced similar central plasticity and hyperalgesia. The present study gives a detailed overview of psychophysical and neurosecretory characteristics induced by noxious stimulation with capsaicin and electrical current. We describe differences, similarities, and reproducibility of these human pain models. These data might help to interpret past and future results of human pain studies using experimental pain.

  2. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.

    Science.gov (United States)

    Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan

    2017-01-11

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.

  3. Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions

    Science.gov (United States)

    Kapusta, Joseph I.; Plumberg, Christopher

    2018-01-01

    We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.

  4. Upper limb functional electrical stimulation devices and their man-machine interfaces.

    Science.gov (United States)

    Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D

    2015-01-01

    Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.

  5. Effects of transportation, relocation, and acclimation on phenotypes and functional characteristics of peripheral blood lymphocytes in rhesus monkeys (Macaca mulatta)

    DEFF Research Database (Denmark)

    Nehete, Pramod N; Shelton, Kathryn A; Nehete, Bharti P

    2017-01-01

    . These findings have implications on the research participation of transported and relocated nonhuman primates in immunologic research studies, suggesting that 30 days is not sufficient to ensure return to baseline immune homeostasis. These data should be considered when planning research studies in order...... of transport, relocation, and acclimation on the phenotype and function of peripheral blood mononuclear cells (PBMCs) in a group of rhesus monkeys that were transported by road for approximately 21 hours from one facility to another. Using a panel of human antibodies and a set of standardized human immune...... assays, we evaluated the phenotype of lymphocyte subsets by flow, mitogen-specific immune responses of PBMCs in vitro, and levels of circulating cytokines and cortisol in plasma at various time points including immediately before transport, immediately upon arrival, and after approximately 30 days...

  6. Seismic functional qualification of active mechanical and electrical component based on shaking table testing

    International Nuclear Information System (INIS)

    Jurukovski, D.; Mamucevski, D.

    1996-01-01

    This report involves the description of the experimental seismic and vibration tests of electrical, mechanical and processing equipment that were carried out by using laboratory equipment with high performances. This equipment should generate programmable dynamic excitations, measure and analyze parameters defining dynamic behaviour of the structural and functional capabilities of the tested specimen. Development of testing methodology and criteria is described together with the method for processing the results. Application of the methodology and criteria to selected specimen is included

  7. Randomized controlled trial to evaluate the effect of canola oil on blood vessel function in peripheral arterial disease: rationale and design of the Canola-PAD Study

    Directory of Open Access Journals (Sweden)

    Enns JE

    2014-10-01

    Full Text Available Jennifer E Enns,1,2 Peter Zahradka,1–3 Randolph P Guzman,4,5 Alanna Baldwin,1 Brendon Foot,1 Carla G Taylor1–31Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Canada; 2Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada; 3Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; 4IH Asper Clinical Research Institute, St Boniface Hospital, Winnipeg, Canada; 5Section of Vascular Surgery, Department of Surgery, St Boniface Hospital, Winnipeg, CanadaBackground: Individuals with peripheral arterial disease (PAD are at high risk for cardiac events due to atherosclerosis. Dietary fatty acid composition has been shown to modulate blood vessel properties, but whether a diet enriched in conventional canola oil can improve clinical endpoints in PAD is not known.Purpose: To describe the rationale and design of a clinical trial testing the effect of canola oil consumption on vascular function and cardiovascular risk factors in an 8-week dietary intervention in individuals with PAD.Methods: The Canola-PAD Study was a single center, prospective, double-blind, randomized controlled trial in 50 patients over 40 years old with PAD. Participants were randomized into two groups and consumed food items containing either conventional canola oil (25 g/day or an oil mixture representing the Western diet (25 g/day for 8 weeks as part of their usual diet. The primary outcome was vascular function (ankle-brachial index, arterial stiffness, endothelial dysfunction, walking capacity, and cognitive function. Secondary measurements included anthropometrics, serum lipid profile and fatty acid composition, markers of inflammation and glycemic control, and serum metabolite profile.Discussion: The Canola-PAD Study uses an innovative and noninvasive approach to evaluate the effect of canola oil on clinically relevant outcomes in individuals with PAD, including

  8. Best time window for the use of calcium-modulating agents to improve functional recovery in injured peripheral nerves-An experiment in rats.

    Science.gov (United States)

    Yan, Yuhui; Shen, Feng-Yi; Agresti, Michael; Zhang, Lin-Ling; Matloub, Hani S; LoGiudice, John A; Havlik, Robert; Li, Jifeng; Gu, Yu-Dong; Yan, Ji-Geng

    2017-09-01

    Peripheral nerve injury can have a devastating effect on daily life. Calcium concentrations in nerve fibers drastically increase after nerve injury, and this activates downstream processes leading to neuron death. Our previous studies showed that calcium-modulating agents decrease calcium accumulation, which aids in regeneration of injured peripheral nerves; however, the optimal therapeutic window for this application has not yet been identified. In this study, we show that calcium clearance after nerve injury is positively correlated with functional recovery in rats suffering from a crushed sciatic nerve injury. After the nerve injury, calcium accumulation increased. Peak volume is from 2 to 8 weeks post injury; calcium accumulation then gradually decreased over the following 24-week period. The compound muscle action potential (CMAP) measurement from the extensor digitorum longus muscle recovered to nearly normal levels in 24 weeks. Simultaneously, real-time polymerase chain reaction results showed that upregulation of calcium-ATPase (a membrane protein that transports calcium out of nerve fibers) mRNA peaked at 12 weeks. These results suggest that without intervention, the peak in calcium-ATPase mRNA expression in the injured nerve occurs after the peak in calcium accumulation, and CMAP recovery continues beyond 24 weeks. Immediately using calcium-modulating agents after crushed nerve injury improved functional recovery. These studies suggest that a crucial time frame in which to initiate effective clinical approaches to accelerate calcium clearance and nerve regeneration would be prior to 2 weeks post injury. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. The effects of long-term oral benfotiamine supplementation on peripheral nerve function and inflammatory markers in patients with type 1 diabetes: a 24-month, double-blind, randomized, placebo-controlled trial.

    Science.gov (United States)

    Fraser, David A; Diep, Lien M; Hovden, Inger Anette; Nilsen, Kristian B; Sveen, Kari Anne; Seljeflot, Ingebjørg; Hanssen, Kristian F

    2012-05-01

    To study the effects of long-term oral benfotiamine supplementation on peripheral nerve function and soluble inflammatory markers in patients with type 1 diabetes. The study randomly assigned 67 patients with type 1 diabetes to receive 24-month benfotiamine (300 mg/day) or placebo supplementation. Peripheral nerve function and levels of soluble inflammatory variables were assessed at baseline and at 24 months. Fifty-nine patients completed the study. Marked increases in whole-blood concentrations of thiamine and thiamine diphosphate were found in the benfotiamine group (both P benfotiamine (300 mg/day) supplementation over 24 months has no significant effects upon peripheral nerve function or soluble markers of inflammation in patients with type 1 diabetes.

  10. Functioning of the Finnish electricity wholesale markets; Saehkoen tukkumarkkinan toimivuus Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Vehvilainen, I.; Broeckl, M.; Hakala, L.; Vanhanen, J.

    2012-12-15

    The purpose of common Nordic electricity market has been to increase competition and efficiency. Market seems to be moving to the opposite direction in the 2010s. Wholesale market has become more fragmented as the market is split to larger number of price areas more often. Poor functioning of the wholesale markets is also the largest contributor to problems in the retail market. Politicians, market regulators, transmission system operators, and market players need to take action to improve the functioning of the market. Separation of price areas reduces competition in all market areas. The Finnish wholesale market is moderately or highly concentrated when Finland is separated from other price areas. Concentration is moderate, if all production capacity is considered. If only price setting hydropower and condensing power capacity are considered, the market is highly concentrated. High concentration can provide opportunities for the biggest producers to use strategic bidding to increase market prices. Larger number of price areas has reduced competition and liquidity with the financial area price products or CfDs. Poor functioning of CfD markets is emphasized by the low competition within the price areas. Bottlenecks between market areas create income for the Transmission System Operators (TSOs) that are responsible of the border transmissions. TSOs have no economic incentives to maintain and repair the border transmission lines, which seems peculiar when compared to e.g. regulation of electricity distribution companies. Finnish Fingrid shows a good example on transparent disclosure of received income and how the accrued funds are used. Import of electricity from Russia to Finland has been reduced since the end of 2011 because of the changes made in the Russian electricity market. Market liberalization in Russia has lead to a market structure that is different from the Nordic markets. Despite the differences, the two markets are becoming more integrated as the

  11. The Possibility of Functioning at Maximum Power for Solar Photovoltaic - Electric Battery Systems

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2013-01-01

    Full Text Available The paper presents the functioning of a solar photovoltaic module(PVM that debits direct to on electric battery (EB. By a good adaptingof PVM to EB, so that the no load voltage of the two components (PVMand EB are well suited, during a day the energy value can be reachednear to the maximum possible value, when the PVM functions in themaximum power point (MPP. The proposed solution is much moreeconomic than the classical: PVM + DC – DC + EB because the directcurrent - direct current power converter, is not necessary (DC - DC.

  12. Effect of the metal work function on the electrical properties of carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Ko, Dae Young; Kil, Joon Pyo; Lee, Jung Wha; Park, Wan Jun

    2012-01-01

    A nearly perfect semiconducting single-walled carbon nanotube random network thin film transistor array was fabricated, and its reproducible transport properties were investigated. The effects of the metal work function for both the source and the drain on the electrical properties of the transistors were systematically investigated. Three different metal electrodes, Al, Ti, and Pd, were employed. As the metal work function increased, p-type behavior became dominant, and the field effect hole mobility dramatically increased. Also, the Schottky barrier of the Ti-nanotube contact was invariant to the molecular adsorption of species in air.

  13. A multi-pad electrode based functional electrical stimulation system for restoration of grasp

    Directory of Open Access Journals (Sweden)

    Malešević Nebojša M

    2012-09-01

    Full Text Available Abstract Background Functional electrical stimulation (FES applied via transcutaneous electrodes is a common rehabilitation technique for assisting grasp in patients with central nervous system lesions. To improve the stimulation effectiveness of conventional FES, we introduce multi-pad electrodes and a new stimulation paradigm. Methods The new FES system comprises an electrode composed of small pads that can be activated individually. This electrode allows the targeting of motoneurons that activate synergistic muscles and produce a functional movement. The new stimulation paradigm allows asynchronous activation of motoneurons and provides controlled spatial distribution of the electrical charge that is delivered to the motoneurons. We developed an automated technique for the determination of the preferred electrode based on a cost function that considers the required movement of the fingers and the stabilization of the wrist joint. The data used within the cost function come from a sensorized garment that is easy to implement and does not require calibration. The design of the system also includes the possibility for fine-tuning and adaptation with a manually controllable interface. Results The device was tested on three stroke patients. The results show that the multi-pad electrodes provide the desired level of selectivity and can be used for generating a functional grasp. The results also show that the procedure, when performed on a specific user, results in the preferred electrode configuration characteristics for that patient. The findings from this study are of importance for the application of transcutaneous stimulation in the clinical and home environments.

  14. Taurine Supplementation Improves Functional Capacity, Myocardial Oxygen Consumption, and Electrical Activity in Heart Failure.

    Science.gov (United States)

    Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Ashourpore, Eadeh

    2017-07-04

    Taurine is an amino acid found abundantly in the heart in very high concentrations. It is assumed that taurine contributes to several physiological functions of mammalian cells, such as osmoregulation, anti-inflammation, membrane stabilization, ion transport modulation, and regulation of oxidative stress and mitochondrial protein synthesis. The objective of the current study was to evaluate the effectiveness of taurine supplementation on functional capacity, myocardial oxygen consumption, and electrical activity in patients with heart failure. In a double-blind and randomly designed study, 16 patients with heart failure were assigned to two groups: taurine (TG, n = 8) and placebo (PG, n = 8). TG received 500-mg taurine supplementation three times per day for two weeks. Significant decrease in the values of Q-T segments (p heart failure patients. Together, these findings support the view that taurine improves cardiac function and functional capacity in patients with heart failure. This idea warrants further study.

  15. Correlation of STATs family expression in oral lichen planus tissue with peripheral blood PD-1 and PD-L1 expression as well as immune function

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-12-01

    Full Text Available Objective: To study the correlation of STATs family expression in oral lichen planus tissue with peripheral blood PD-1 and PD-L1 expression as well as immune function. Methods: A total of 47 patients diagnosed with oral lichen planus in our hospital between May 2015 and March 2016 were selected as the oral lichen planus group (OLP group of the study, and healthy volunteers receiving physical examination during the same period were selected as the control group of the study. Peripheral blood mononuclear cells were collected to detect the expression of PD-1, PD-L1 and immune cell surface marker molecules, serum was collected to detect the content of Th1 and Th2 cytokines as well as immunoglobulin, and oral lichen planus lesion tissue and adjacent normal tissue were collected to determine STATs family expression. Results: p-STAT1, p-STAT3 and p-STAT5a expression in lesion tissue were significantly higher than those in normal tissue while p-STAT2, p-STAT4 and p-STAT5b expression were not significantly different from those in normal tissue; PD-1 and PD-L1 mRNA expression as well as the mean fluorescence intensity of CD19+ in peripheral blood mononuclear cells of OLP group were significantly higher than those of control group and positively correlated with p-STAT1, p-STAT3 and p-STAT5a expression while the mean fluorescence intensity of CD3+, CD4+, CD8+ and CD16+CD56+ were significantly lower than those of control group and negatively correlated with p-STAT1, p-STAT3 and p-STAT5a expression; serum IFN-γ and IL-2 content of OLP group were significantly lower than those of control group and negatively correlated with p-STAT1, p-STAT3 and p-STAT5a expression while IL-4, IL-10, IgG, IgM and IgA content were significantly higher than those of control group and positively correlated with p-STAT1, p-STAT3 and p-STAT5a expression. Conclusion: p-STAT1, p-STAT3 and p-STAT5a expression abnormally increase in oral lichen planus tissues, and the Th1/Th2 cellular

  16. Study on the relationship between peripheral blood red blood cells imuno-function status and serum gastrin level in patients with peptic ulcer

    International Nuclear Information System (INIS)

    Li Qin; Fan Rong; Luo Honglai; Wang Ying; Tao Liangliang; Wang Zhenkai

    2011-01-01

    Objective: To explore the relationship between changes of peripheral blood red blood cells immuno-function status and serum gastrin level in patients with peptic ulcer. Methods: RBC immuno-function status was studied with immune methods and serum gastrin level was measured with RIA in 51 patients with peptic ulcer and compared with 35 healthy control group. Results: RBC-C3bRR percentage was significantly lower in patients with peptic ulcer than that in controls (P<0.01), while serum gastrin level was significantly higher (P<0.01). RBC-C3bRR was significantly nagatively correlated to serum gastrin (r=-0.3828, P<0.01). RBC-ICRRR percentage was prominently higher than that in healthy controls (P<0.01), and RBC-ICRRR was positively correlated to serum gastrin level (r=0.4185, P<0.01). Conclusion: There were disturbance of RBC immune-regulation with suppressed immune function and higher gastrin levels in patients with peptic ulcer. (authors)

  17. Cost function estimates, scale economies and technological progress in the Turkish electricity generation sector

    International Nuclear Information System (INIS)

    Ali Akkemik, K.

    2009-01-01

    Turkish electricity sector has undergone significant institutional changes since 1984. The recent developments since 2001 including the setting up of a regulatory agency to undertake the regulation of the sector and increasing participation of private investors in the field of electricity generation are of special interest. This paper estimates cost functions and investigates the degree of scale economies, overinvestment, and technological progress in the Turkish electricity generation sector for the period 1984-2006 using long-run and short-run translog cost functions. Estimations were done for six groups of firms, public and private. The results indicate existence of scale economies throughout the period of analysis, hence declining long-run average costs. The paper finds empirical support for the Averch-Johnson effect until 2001, i.e., firms overinvested in an environment where there are excess returns to capital. But this effect was reduced largely after 2002. Technological progress deteriorated slightly from 1984-1993 to 1994-2001 but improved after 2002. Overall, the paper found that regulation of the market under the newly established regulating agency after 2002 was effective and there are potential gains from such regulation. (author)

  18. No Clinically Significant Changes in Pulmonary Function Following Stereotactic Body Radiation Therapy for Early- Stage Peripheral Non-Small Cell Lung Cancer: An Analysis of RTOG 0236

    Energy Technology Data Exchange (ETDEWEB)

    Stanic, Sinisa, E-mail: sinisa.stanic@carle.com [Carle Cancer Center and University of Illinois College of Medicine, Urbana, Illinois (United States); Paulus, Rebecca [Radiation Therapy Oncology Group Statistical Center, Philadelphia, Pennsylvania (United States); Timmerman, Robert D. [University of Texas Southwestern, Dallas, Texas (United States); Michalski, Jeff M. [Washington University, St. Louis, Missouri (United States); Barriger, Robert B. [Indiana University, Indianapolis, Indiana (United States); Bezjak, Andrea [Princess Margaret Cancer Center, Toronto, Ontario (Canada); Videtic, Gregory M.M. [Cleveland Clinic Foundation, Cleveland, Ohio (United States); Bradley, Jeffrey [Washington University, St. Louis, Missouri (United States)

    2014-04-01

    Purpose: To investigate pulmonary function test (PFT) results and arterial blood gas changes (complete PFT) following stereotactic body radiation therapy (SBRT) and to see whether baseline PFT correlates with lung toxicity and overall survival in medically inoperable patients receiving SBRT for early stage, peripheral, non-small cell lung cancer (NSCLC). Methods and Materials: During the 2-year follow-up, PFT data were collected for patients with T1-T2N0M0 peripheral NSCLC who received effectively 18 Gy × 3 in a phase 2 North American multicenter study (Radiation Therapy Oncology Group [RTOG] protocol 0236). Pulmonary toxicity was graded by using the RTOG SBRT pulmonary toxicity scale. Paired Wilcoxon signed rank test, logistic regression model, and Kaplan-Meier method were used for statistical analysis. Results: At 2 years, mean percentage predicted forced expiratory volume in the first second and diffusing capacity for carbon monoxide declines were 5.8% and 6.3%, respectively, with minimal changes in arterial blood gases and no significant decline in oxygen saturation. Baseline PFT was not predictive of any pulmonary toxicity following SBRT. Whole-lung V5 (the percentage of normal lung tissue receiving 5 Gy), V10, V20, and mean dose to the whole lung were almost identical between patients who developed pneumonitis and patients who were pneumonitis-free. Poor baseline PFT did not predict decreased overall survival. Patients with poor baseline PFT as the reason for medical inoperability had higher median and overall survival rates than patients with normal baseline PFT values but with cardiac morbidity. Conclusions: Poor baseline PFT did not appear to predict pulmonary toxicity or decreased overall survival after SBRT in this medically inoperable population. Poor baseline PFT alone should not be used to exclude patients with early stage lung cancer from treatment with SBRT.

  19. No Clinically Significant Changes in Pulmonary Function Following Stereotactic Body Radiation Therapy for Early- Stage Peripheral Non-Small Cell Lung Cancer: An Analysis of RTOG 0236

    International Nuclear Information System (INIS)

    Stanic, Sinisa; Paulus, Rebecca; Timmerman, Robert D.; Michalski, Jeff M.; Barriger, Robert B.; Bezjak, Andrea; Videtic, Gregory M.M.; Bradley, Jeffrey

    2014-01-01

    Purpose: To investigate pulmonary function test (PFT) results and arterial blood gas changes (complete PFT) following stereotactic body radiation therapy (SBRT) and to see whether baseline PFT correlates with lung toxicity and overall survival in medically inoperable patients receiving SBRT for early stage, peripheral, non-small cell lung cancer (NSCLC). Methods and Materials: During the 2-year follow-up, PFT data were collected for patients with T1-T2N0M0 peripheral NSCLC who received effectively 18 Gy × 3 in a phase 2 North American multicenter study (Radiation Therapy Oncology Group [RTOG] protocol 0236). Pulmonary toxicity was graded by using the RTOG SBRT pulmonary toxicity scale. Paired Wilcoxon signed rank test, logistic regression model, and Kaplan-Meier method were used for statistical analysis. Results: At 2 years, mean percentage predicted forced expiratory volume in the first second and diffusing capacity for carbon monoxide declines were 5.8% and 6.3%, respectively, with minimal changes in arterial blood gases and no significant decline in oxygen saturation. Baseline PFT was not predictive of any pulmonary toxicity following SBRT. Whole-lung V5 (the percentage of normal lung tissue receiving 5 Gy), V10, V20, and mean dose to the whole lung were almost identical between patients who developed pneumonitis and patients who were pneumonitis-free. Poor baseline PFT did not predict decreased overall survival. Patients with poor baseline PFT as the reason for medical inoperability had higher median and overall survival rates than patients with normal baseline PFT values but with cardiac morbidity. Conclusions: Poor baseline PFT did not appear to predict pulmonary toxicity or decreased overall survival after SBRT in this medically inoperable population. Poor baseline PFT alone should not be used to exclude patients with early stage lung cancer from treatment with SBRT

  20. Investigation of Balance Function Using Dynamic Posturography under Electrical-Acoustic Stimulation in Cochlear Implant Recipients

    Directory of Open Access Journals (Sweden)

    B. Schwab

    2010-01-01

    Full Text Available Introduction. The purpose of the present study is to investigate the effect of electrical-acoustic stimulation on vestibular function in CI patients by using the EquiTest and to help answer the question of whether electrically stimulating the inner ear using a cochlear implant influences the balance system in any way. Material and Methods. A test population (=50 was selected at random from among the cochlear implant recipients. Dynamic posturography (using the EquiTest was performed with the device switched off an switched on. Results. In summary, it can be said that an activated cochlear implant affects the function of the vestibular system and may, to an extent, even lead to a stabilization of balance function under the static conditions of dynamic posturography, but nevertheless also to a significant destabilization. Significant improvements in vestibular function were seen mainly in equilibrium scores under conditions 4 and 5, the composite equilibrium score, and the vestibular components as revealed by sensory analysis. Conclusions. Only under the static conditions are significantly poorer scores achieved when stimulation is applied. It may be that the explanation for any symptoms of dizziness lies precisely in the fact that they occur in supposedly noncritical situations, since, when the cochlear implant makes increased demands on the balance system, induced disturbances can be centrally suppressed.

  1. Restoration of Upper Limb Function in an Individual with Cervical Spondylotic Myelopathy using Functional Electrical Stimulation Therapy: A Case Study.

    Science.gov (United States)

    Popovic, Milos R; Zivanovic, Vera; Valiante, Taufik A

    2016-01-01

    Non-traumatic spinal cord pathology is responsible for 25-52% of all spinal cord lesions. Studies have revealed that spinal stenosis accounts for 16-21% of spinal cord injury (SCI) admissions. Impaired grips as well as slow unskilled hand and finger movements are the most common complaints in patients with spinal cord disorders, such as myelopathy secondary to cervical spondylosis. In the past, our team carried out couple of successful clinical trials, including two randomized control trials, showing that functional electrical stimulation therapy (FEST) can restore voluntary reaching and/or grasping function, in people with stroke and traumatic SCI. Motivated by this success, we decided to examine changes in the upper limb function following FEST in a patient who suffered loss of hand function due to myelopathy secondary to cervical spondylosis. The participant was a 61-year-old male who had C3-C7 posterior laminectomy and instrumented fusion for cervical myelopathy. The participant presented with progressive right hand weakness that resulted in his inability to voluntarily open and close the hand and to manipulate objects unilaterally with his right hand. The participant was enrolled in the study ~22 months following initial surgical intervention. Participant was assessed using Toronto Rehabilitation Institute's Hand Function Test (TRI-HFT), Action Research Arm Test (ARAT), Functional Independence Measure (FIM), and Spinal Cord Independence Measure (SCIM). The pre-post differences in scores on all measures clearly demonstrated improvement in voluntary hand function following 15 1-h FEST sessions. The changes observed were meaningful and have resulted in substantial improvement in performance of activities of daily living. These results provide preliminary evidence that FEST has a potential to improve upper limb function in patients with non-traumatic SCI, such as myelopathy secondary to cervical spondylosis.

  2. Functionalization of carbon nanotubes/graphene by polyoxometalates and their enhanced photo-electrical catalysis

    International Nuclear Information System (INIS)

    Zhang Shuang-Shuang; Liu Rong-Ji; Zhang Guang-Jin; Gu Zhan-Jun

    2014-01-01

    Carbon nanotubes and graphene are carbon-based materials, which possess not only unique structure but also properties such as high surface area, extraordinary mechanical properties, high electronic conductivity, and chemical stability. Thus, they have been regarded as an important material, especially for exploring a variety of complex catalysts. Considerable efforts have been made to functionalize and fabricate carbon-based composites with metal nanoparticles. In this review, we summarize the recent progress of our research on the decoration of carbon nanotubes/graphene with metal nanoparticles by using polyoxometalates as key agents, and their enhanced photo-electrical catalytic activities in various catalytic reactions. The polyoxometalates play a key role in constructing the nanohybrids and contributing to their photo-electrical catalytic properties. (invited review — international conference on nanoscience and technology, china 2013)

  3. The effect of the adsorbate layer on the work function reduction of gold substrates under external electric fields

    Science.gov (United States)

    He, Xiang; Cheng, Feng; Chen, Zhao-Xu

    2017-12-01

    The interface interaction between the dimethyl sulfide (DMS) molecule and the gold substrate under external electric fields is investigated by density functional theory method. The polarized DMS adsorbate reduces the work function of the gold substrate while the induced substrate dipole upon the adsorption slightly increases the work function. The DMS layer partially shields the Au(111) substrate from the electric fields and the vacuum level of DMS/Au(111) shifts less than of Au(111) in consequence. Under electric fields pointing outward from the Au(111) surface, both the reduction of work function and the adsorption of DMS molecule are enhanced on the surface. We also suggest the possible application of the field-effect transistor (FET) sensor with gold gate for detecting DMS molecule by utilizing the reduction of substrate work function upon adsorption. The effects of coverage and electric field on the theoretical sensitivity of the sensor are also discussed.

  4. Improved proprioceptive function by application of subsensory electrical noise: Effects of aging and task-demand.

    Science.gov (United States)

    Toledo, Diana R; Barela, José A; Kohn, André F

    2017-09-01

    The application of subsensory noise stimulation over the lower limbs has been shown to improve proprioception and postural control under certain conditions. Whereas the effect specificity seems to depend on several factors, studies are still needed to determine the appropriate method for training and rehabilitation purposes. In the current study, we investigated whether the application of subsensory electrical noise over the legs improves proprioceptive function in young and older adults. We aimed to provide evidence that stronger and age-related differential effects occur in more demanding tasks. Proprioceptive function was initially assessed by testing the detection of passive ankle movement (kinesthetic perception) in twenty-eight subjects (14 young and 14 older adults). Thereafter, postural control was assessed during tasks with different sensory challenges: i) by removing visual information (eyes closed) and; ii) by moving the visual scene (moving room paradigm). Tests performed with the application of electrical noise stimulation were compared to those performed without noise. The results showed that electrical noise applied over the legs led to a reduction in the response time to kinesthetic perception in both young and older adults. On the other hand, the magnitude of postural sway was reduced by noise stimulation only during a more challenging task, namely, when the optical flow was changing in an unpredictable (nonperiodic) manner. No differential effects of stimulation between groups were observed. These findings suggest that the relevance of proprioceptive inputs in tasks with different challenges, but not the subjects' age, is a determining factor for sensorimotor improvements due to electrical noise stimulation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. The effect of peripherally inserted central catheter (PICC) valve technology on catheter occlusion rates--the 'ELeCTRiC' study.

    Science.gov (United States)

    Johnston, Andrew J; Streater, Carmel T; Noorani, Remy; Crofts, Joanne L; Del Mundo, Aldwin B; Parker, Richard A

    2012-01-01

    Peripherally Inserted Central Catheters (PICCs) are increasingly being used to provide short to medium-term central venous access. The current study was designed to test the hypothesis that PICC valve technology does not influence PICC occlusion rates. Intensive care unit (ICU) patients who required a PICC were randomized to one of three types of dual lumen PICC (open ended non-valved, Groshong valve, PASV valve). PICC occlusions were recorded and managed with a protocol that used urokinase. A total of 102 patients were recruited to the study. The overall risk of occlusion per catheter was 35% (95% CI 26% to 44%). The overall rate of occlusion was 76 occlusions per 1000 catheter days (95% CI 61 to 95). Presence or type of valve did not significantly influence this rate (open-ended non-valved PICC 38% of catheters, 79 occlusions per 1000 catheter days; Groshong 38% of catheters, 60 occlusions per 1000 catheter days; PASV 27% of catheters, 99 occlusions per 1000 catheter days). The dose of urokinase required to treat PICC occlusions did not significantly differ between PICC types. Valved PICCs do not appear to influence PICC occlusion rates.

  6. Hawaiian Electric Advanced Inverter Grid Support Function Laboratory Validation and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Prabakar, Kumar [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nepal, Shaili [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hoke, Anderson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Asano, Marc [Hawaiian Electric Company, Honolulu, HI (United States); Ueda, Reid [Hawaiian Electric Company, Honolulu, HI (United States); Shindo, Jon [Hawaiian Electric Company, Honolulu, HI (United States); Kubojiri, Kandice [Hawaiian Electric Company, Honolulu, HI (United States); Ceria, Riley [Hawaiian Electric Company, Honolulu, HI (United States); Ifuku, Earle [Hawaiian Electric Company, Honolulu, HI (United States)

    2016-12-01

    The objective for this test plan was to better understand how to utilize the performance capabilities of advanced inverter functions to allow the interconnection of distributed energy resource (DER) systems to support the new Customer Self-Supply, Customer Grid-Supply, and other future DER programs. The purpose of this project was: 1) to characterize how the tested grid supportive inverters performed the functions of interest, 2) to evaluate the grid supportive inverters in an environment that emulates the dynamics of O'ahu's electrical distribution system, and 3) to gain insight into the benefits of the grid support functions on selected O'ahu island distribution feeders. These goals were achieved through laboratory testing of photovoltaic inverters, including power hardware-in-the-loop testing.

  7. Functional Modeling of Perspectives on the Example of Electric Energy Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    2009-01-01

    The integration of energy systems is a proven approach to gain higher overall energy efficiency. Invariably, this integration will come with increasing technical complexity through the diversification of energy resources and their functionality. With the integration of more fluctuating renewable ...... which enables a reflection on system integration requirements independent of particular technologies. The results are illustrated on examples related to electric energy systems.......The integration of energy systems is a proven approach to gain higher overall energy efficiency. Invariably, this integration will come with increasing technical complexity through the diversification of energy resources and their functionality. With the integration of more fluctuating renewable...... energies higher system flexibility will also be necessary. One of the challenges ahead is the design of control architecture to enable the flexibility and to handle the diversity. This paper presents an approach to model heterogeneous energy systems and their control on the basis of purpose and functions...

  8. Functional requirements for an intelligent RPC. [remote power controller for spaceborne electrical distribution system

    Science.gov (United States)

    Aucoin, B. M.; Heller, R. P.

    1990-01-01

    An intelligent remote power controller (RPC) based on microcomputer technology can implement advanced functions for the accurate and secure detection of all types of faults on a spaceborne electrical distribution system. The intelligent RPC will implement conventional protection functions such as overcurrent, under-voltage, and ground fault protection. Advanced functions for the detection of soft faults, which cannot presently be detected, can also be implemented. Adaptive overcurrent protection changes overcurrent settings based on connected load. Incipient and high-impedance fault detection provides early detection of arcing conditions to prevent fires, and to clear and reconfigure circuits before soft faults progress to a hard-fault condition. Power electronics techniques can be used to implement fault current limiting to prevent voltage dips during hard faults. It is concluded that these techniques will enhance the overall safety and reliability of the distribution system.

  9. Restoration of orbicularis oculi muscle function in rabbits with peripheral facial paralysis via an implantable artificial facial nerve system.

    Science.gov (United States)

    Sun, Yajing; Jin, Cheng; Li, Keyong; Zhang, Qunfeng; Geng, Liang; Liu, Xundao; Zhang, Yi

    2017-12-01

    The purpose of the present study was to restore orbicularis oculi muscle function using the implantable artificial facial nerve system (IAFNS). The in vivo part of the IAFNS was implanted into 12 rabbits that were facially paralyzed on the right side of the face to restore the function of the orbicularis oculi muscle, which was indicated by closure of the paralyzed eye when the contralateral side was closed. Wireless communication links were established between the in vivo part (the processing chip and microelectrode) and the external part (System Controller program) of the system, which were used to set the working parameters and indicate the working state of the processing chip and microelectrode implanted in the body. A disturbance field strength test of the IAFNS processing chip was performed in a magnetic field dark room to test its electromagnetic radiation safety. Test distances investigated were 0, 1, 3 and 10 m, and levels of radiation intensity were evaluated in the horizontal and vertical planes. Anti-interference experiments were performed to test the stability of the processing chip under the interference of electromagnetic radiation. The fully implanted IAFNS was run for 5 h per day for 30 consecutive days to evaluate the accuracy and precision as well as the long-term stability and effectiveness of wireless communication. The stimulus intensity (range, 0-8 mA) was set every 3 days to confirm the minimum stimulation intensity which could indicate the movement of the paralyzed side was set. Effective stimulation rate was also tested by comparing the number of eye-close movements on both sides. The results of the present study indicated that the IAFNS could rebuild the reflex arc, inducing the experimental rabbits to close the eye of the paralyzed side. The System Controller program was able to reflect the in vivo part of the artificial facial nerve system in real-time and adjust the working pattern, stimulation intensity and frequency, range of wave

  10. Leaching Functions from the Outer Metropolitan Zones (Trade, Services - Increasing Peripherality of Small Towns and Rural Areas

    Directory of Open Access Journals (Sweden)

    Krystian Heffner

    2015-01-01

    Full Text Available Intensive spatial processes taking place around metropolitan areas leads to many economic, structural and social changes in their surroundings. The small towns and rural areas located in the outer zone of metropolitan areas are most affected by this functional changes. In the outer zone of a big urban canters appears a lot of new competing possibilities on the labor market and a comprehensive commercial, service and cultural offer to smaller centres. One of the most competitive advantage of the metropolitan zones becomes modern shopping centres being established in the most accessible places, providing a comprehensive shopping-services and even cultural-recreational offer.

  11. Can electrical stimulation enhance effects of a functional training program in hospitalized geriatric patients?

    Science.gov (United States)

    Zinglersen, Amanda Hempel; Halsteen, Malte Bjoern; Kjaer, Michael; Karlsen, Anders

    2018-06-01

    Hospitalization of older medical patients may lead to functional decline. This study investigated whether simultaneously applied neuromuscular electrical stimulation (NMES) can enhance the effects of a functional training program in hospitalized geriatric patients. This was a quasi-randomized controlled trial in geriatric hospitalized patients (N = 16, age = 83.1 ± 8.1 years, mean ± SD). The patients performed a simple and time efficient chair-stand based functional exercise program daily, either with (FT + NMES, N = 8) or without (FT, N = 8) simultaneous NMES to the knee extensor muscles. Physical function was assessed at day 2 and 6-10 of the hospitalization with the De Morton Mobility Index (DEMMI), a 30-second chair stand test (30 s-CST) and a 4-meter gait speed test (4 m-GST). Additionally, the pooled results of training from the two training groups (TRAINING, N = 16) was compared to a similar historical control-group (CON, N = 48) receiving only standard-care. Eight patients were assigned to FT, 12 to FT+NMES with 4 dropouts during intervention. During the 6-10 days of hospitalization, both groups improved in all functional measures (p  0.05). The training sessions within the FT+NMES-group were more time consuming (~11 vs ~7 min) and entailed higher levels of discomfort than FT-training sessions. Compared to standard-care, training resulted in significantly larger improvements in the 30 s-CST (TRAINING: +3.8 repetitions; CON: +1.4 repetitions, p functional training program improves chair stand performance in hospitalized geriatric patients, with no additional effect of simultaneous electrical muscle stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Pre-procedural peripheral endothelial function is associated with increased serum creatinine following percutaneous coronary procedure in stable patients with a preserved estimated glomerular filtration rate.

    Science.gov (United States)

    Sumida, Hitoshi; Matsuzawa, Yasushi; Sugiyama, Seigo; Sugamura, Koichi; Nozaki, Toshimitsu; Akiyama, Eiichi; Ohba, Keisuke; Konishi, Masaaki; Matsubara, Junichi; Fujisue, Koichiro; Maeda, Hirofumi; Kurokawa, Hirofumi; Iwashita, Satomi; Ogawa, Hisao; Tsujita, Kenichi

    2017-11-01

    Worsening renal function, indicated by increased serum creatinine (SCr), is a common complication of percutaneous coronary procedures. Risk factors for increased SCr overlap with coronary risk factors involved in endothelial dysfunction. We hypothesized that endothelial dysfunction, measured using the reactive hyperemia peripheral arterial tonometry index (RHI), can predict periprocedure-increased SCr. RHI was assessed before elective coronary procedures in 316 consecutive stable patients with a preserved estimated glomerular filtration rate (eGFR, >60mL/min/1.73m 2 ). SCr was measured before and 2 days after procedures. There was no significant correlation between natural logarithmic transformations of RHI (Ln-RHI) and basal Ln-eGFR. Periprocedure increase in SCr was observed in 148 (47%) patients. The increased SCr group had significantly lower Ln-RHI [0.48 (0.36, 0.62) vs. 0.59 (0.49, 0.76), pfunction by RHI is an effective strategy to assess the patient's risk conditions for worsening renal function after percutaneous coronary procedures. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  13. Enhancing efficient functioning of the nordic electricity market. Summary and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-01

    In September 2004, Nordic Council of Ministers (NCM) in their meeting in Akureyri, Iceland, assessed the state of the Nordic electricity market. The Ministers acknowledged that the market has proved it is well functioning in many respects, however, further development of the Nordic electricity market is needed, i.e. towards a regional market without borders. The Nordic Transmission System Operators (TSOs) were asked to study how a further co-ordination of the system responsibility, a joint organizing and financing of the grid investments and a handling of peak load situations can be established in the Nordic countries. In this report, the main focus is on market-related tasks within system responsibility that are market-related and may have an effect on the functioning of the market. The report covers the following issues: definition of the system responsibility and role of TSOs, harmonization of operational rules and practices in order to improve functioning of the market, TSOs' collaboration in disturbances and shortage situations and joint Nordic transmission investments. Furthermore, the report summarizes the concrete actions taken by the TSOs in strengthening of the market mechanisms in peak load situations. (BA)

  14. Enhancing efficient functioning of the nordic electricity market. Summary and conclusions

    International Nuclear Information System (INIS)

    2005-02-01

    In September 2004, Nordic Council of Ministers (NCM) in their meeting in Akureyri, Iceland, assessed the state of the Nordic electricity market. The Ministers acknowledged that the market has proved it is well functioning in many respects, however, further development of the Nordic electricity market is needed, i.e. towards a regional market without borders. The Nordic Transmission System Operators (TSOs) were asked to study how a further co-ordination of the system responsibility, a joint organizing and financing of the grid investments and a handling of peak load situations can be established in the Nordic countries. In this report, the main focus is on market-related tasks within system responsibility that are market-related and may have an effect on the functioning of the market. The report covers the following issues: definition of the system responsibility and role of TSOs, harmonization of operational rules and practices in order to improve functioning of the market, TSOs' collaboration in disturbances and shortage situations and joint Nordic transmission investments. Furthermore, the report summarizes the concrete actions taken by the TSOs in strengthening of the market mechanisms in peak load situations. (BA)

  15. Electrical Properties of Conductive Cotton Yarn Coated with Eosin Y Functionalized Reduced Graphene Oxide.

    Science.gov (United States)

    Kim, Eunju; Arul, Narayanasamy Sabari; Han, Jeong In

    2016-06-01

    This study reports the fabrication and investigation of the electrical properties of two types of conductive cotton yarns coated with eosin Y or eosin B functionalized reduced graphene (RGO) and bare graphene oxide (GO) using dip-coating method. The surface morphology of the conductive cotton yarn coated with reduced graphene oxide was observed by Scanning Electron Microscope (SEM). Due to the strong electrostatic attractive forces, the negatively charged surface such as the eosin Y functionalized reduced graphene oxide or bare GO can be easily coated to the positively charged polyethyleneimine (PEI) treated cotton yarn. The maximum current for the conductive cotton yarn coated with eosin Y functionalized RGO and bare GO with 20 cycles repetition of (5D + R) process was found to be 793.8 μA and 3482.8 μA. Our results showed that the electrical conductivity of bare GO coated conductive cotton yarn increased by approximately four orders of magnitude with the increase in the dipping cycle of (5D+R) process.

  16. Deuteron A(Q2) structure function and the neutron electric form factor

    International Nuclear Information System (INIS)

    Platchkov, S.; Amroun, A.; Auffret, S.; Cavedon, J.M.; Dreux, P.; Duclos, J.; Frois, B.; Goutte, D.; Hachemi, H.; Martino, J.

    1989-01-01

    We present new measurements of the deuteron A(Q 2 ) structure function in the momentum transfer region between 1 and 18 fm -2 . The accuracy of the data ranges from 2% to 6%. We investigate the sensitivity of A(Q 2 ) to the nucleon-nucleon interaction and to the neutron electric form factor G E n . Our analysis shows that below 20 fm -2 G E n can be inferred from these data with a significantly improved accuracy. The model dependence of this analysis is discussed

  17. Constraining the electric dipole photon strength function in {sup 130}Te

    Energy Technology Data Exchange (ETDEWEB)

    Isaak, J.; Loeher, B.; Savran, D.; Silva, J. [ExtreMe Matter Institute EMMI and Research Division, Darmstadt (Germany); FIAS, Frankfurt (Germany); Ahmed, M.W.; Kelley, J.H.; Tornow, W.; Weller, H.R. [Department of Physics, Duke University, TUNL (United States); Beller, J.; Pietralla, N.; Romig, C.; Zweidinger, M. [Institut fuer Kernphysik, TU Darmstadt (Germany); Glorius, J.; Sonnabend, K. [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt (Germany); Krticka, M. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Rusev, G. [Chemistry Division, LANL (United States); Scheck, M. [School of Engineering, University of the West of Scotland (United Kingdom); Tonchev, A.P. [Physics Division, LLNL (United States)

    2014-07-01

    The decay properties of photo-excited states in {sup 130}Te have been investigated by means of Nuclear Resonance Fluorescence experiments at the Darmstadt High Intensity Photon Setup (DHIPS) and the High Intensity γ-ray Source (HIγS). The combination of continuous-energy bremsstrahlung on the one hand and the quasi-monoenergetic and linearly polarized photon beam on the other enables a detailed insight into the photoabsorption cross section and the decay behavior of spin-1 states. Comparing these results to simulations within the statistical model allow for constraining the electric dipole photon strength function (E1-PSF). Results are presented and discussed.

  18. Gait training assisted by multi-channel functional electrical stimulation early after stroke: study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Bloemendaal, M. van; Bus, S.A.; Boer, C.E. de; Nollet, F.; Geurts, A.C.H.; Beelen, A.

    2016-01-01

    BACKGROUND: Many stroke survivors suffer from paresis of lower limb muscles, resulting in compensatory gait patterns characterised by asymmetries in spatial and temporal parameters and reduced walking capacity. Functional electrical stimulation has been used to improve walking capacity, but evidence

  19. Specification errors in estimating cost functions: the case of the nuclear-electric-generating industry

    International Nuclear Information System (INIS)

    Jorgensen, E.J.

    1987-01-01

    This study is an application of production-cost duality theory. Duality theory is reviewed for the competitive and rate-of-return regulated firm. The cost function is developed for the nuclear electric-power-generating industry of the United States using capital, fuel, and labor factor inputs. A comparison is made between the Generalized Box-Cox (GBC) and Fourier Flexible (FF) functional forms. The GBC functional form nests the Generalized Leontief, Generalized Square Root Quadratic and Translog functional forms, and is based upon a second-order Taylor-series expansion. The FF form follows from a Fourier-series expansion in sine and cosine terms using the Sobolev norm as the goodness-of-fit measure. The Sobolev norm takes into account first and second derivatives. The cost function and two factor shares are estimated as a system of equations using maximum-likelihood techniques, with Additive Standard Normal and Logistic Normal error distributions. In summary, none of the special cases of the GBC function form are accepted. Homotheticity of the underlying production technology can be rejected for both GBC and FF forms, leaving only the unrestricted versions supported by the data. Residual analysis indicates a slight improvement in skewness and kurtosis for univariate and multivariate cases when the Logistic Normal distribution is used

  20. Functional electrical stimulation of the ankle dorsiflexors during walking in spastic cerebral palsy: a systematic review.

    Science.gov (United States)

    Moll, Irene; Vles, Johannes S H; Soudant, Dan L H M; Witlox, Adhiambo M A; Staal, Heleen M; Speth, Lucianne A W M; Janssen-Potten, Yvonne J M; Coenen, Marcel; Koudijs, Suzanne M; Vermeulen, R Jeroen

    2017-12-01

    To assess the effect of functional electrical stimulation (FES) of ankle dorsiflexors in children and adolescents with spastic cerebral palsy (CP) during walking. A systematic review was performed using the American Academy of Cerebral Palsy and Developmental Medicine methodology and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Six databases were searched for studies applying interventions to patients aged younger than 20 years. Outcomes were classified according to the International Classification of Functioning, Disability and Health (ICF). Seven hundred and eighty abstracts were found, 35 articles were fully screened, and 14 articles were used for analysis. Only five articles (three studies) were of level I to III evidence. At ICF participation and activity level, there is limited evidence for a decrease in self-reported frequency of toe-drag and falls. At ICF body structure and function level, there is clear evidence (I-III) that FES increased (active) ankle dorsiflexion angle, strength, and improved selective motor control, balance, and gait kinematics, but decreased walking speed. Adverse events include skin irritation, toleration, and acceptation issues. There are insufficient data supporting functional gain by FES on activity and participation level. However, evidence points towards a role for FES as an alternative to orthoses in children with spastic CP. Effects of functional electrical stimulation (FES) point towards a potential role as an alternative to orthoses for patients with spastic cerebral palsy (CP). Some evidence for a decrease in self-reported frequency of toe-drag and falls with the use of FES in spastic CP. Limited evidence for improvements in activity and participation in patients with spastic CP using FES. © 2017 Mac Keith Press.

  1. Using climate response functions in analyzing electricity production variables. A case study from Norway.

    Science.gov (United States)

    Tøfte, Lena S.; Martino, Sara; Mo, Birger

    2016-04-01

    representation of hydropower is included and total hydro power production for each area is calculated, and the production is distributed among all available plants within each area. During simulation, the demand is affected by prices and temperatures. 6 different infrastructure scenarios of wind and power line development are analyzed. The analyses are done by running EMPS calibrated for today's situation for 11*11*8 different combinations of altered weather variables (temperature, precipitation and wind) describing different climate change scenarios, finding the climate response function for every EMPS-variable according the electricity production, such as prices and income, energy balances (supply, consumption and trade), overflow losses, probability of curtailment etc .

  2. Alteration of functional state of peripheral blood erythrocytes in women of different age groups at dislipidemia conditions.

    Science.gov (United States)

    Ratiani, L; Intskirveli, N; Ormotsadze, G; Sanikidze, T

    2011-12-01

    The aim of the study was identification of statistically reliable correlations and the cause-effect relationships between viability of red blood cells and dislipidema parametres and/or metabolic disorders, induced by age related alterations of estrogen content, in women of different ages (reproductive, menopausal) On the basis of the analysis of research results we can conclude that in the different age groups of women with atherosclerosis-induced cardiovascular diseases revealed estrogen-related dependence between Tg-s and HDL content, functional status of phereperial blood erytrotcites and severity of dislipidemia. The aterogenic index Tg/HD proved to be sensitive marker of dislipidemia in reproductive aging women, but does't reflect disorders of lipid metabolism in postmenosal women. It was proved the existence of reliable corelation between red blood cells dysfunction indicator, spherulation quality, and atherogenic index Tg/HDL highlights; however, the correlation coefficient is 2 times higher in the reproductive age as in menopause. Spherulation quality of red blood cells at low HDL content showd fast growth rate in reproductive-aged women, and was unsensetive to HDL content in postmenopasal women. It was concluded that age-related lack of estrogens in postmenopausal women indirectly contributes to decrease protection of red blood cells against oxidative damage, reduces their deformabelity and disturbances the rheological properties. So, Spherulation quality of red blood cells may be used as a diagnostic marker of severity of atherosclerosis.

  3. Short-term low-frequency electrical stimulation enhanced remyelination of injured peripheral nerves by inducing the promyelination effect of brain-derived neurotrophic factor on Schwann cell polarization.

    Science.gov (United States)

    Wan, Lidan; Xia, Rong; Ding, Wenlong

    2010-09-01

    Electrical stimulation (ES) has been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. However, the effect of ES on peripheral remyelination after nerve damage has been investigated less well, and the mechanism underlying its action remains unclear. In the present study, the crush-injured sciatic nerves in rats were subjected to 1 hr of continuous ES (20 Hz, 100 microsec, 3 V). Electron microscopy and nerve morphometry were performed to investigate the extent of regenerated nerve myelination. The expression profiles of P0, Par-3, and brain-derived neurotrophic factor (BDNF) in the injuried sciatic nerves and in the dorsal root ganglion neuron/Schwann cell cocultures were examined by Western blotting. Par-3 localization in the sciatic nerves was determined by immunohistochemistry to demonstrate Schwann cell polarization during myelination. We reported that 20-Hz ES increased the number of myelinated fibers and the thickness myelin sheath at 4 and 8 weeks postinjury. P0 level in the ES-treated groups, both in vitro and in vivo, was enhanced compared with the controls. The earlier peak of Par-3 in the ES-treated groups indicated an earlier initiation of Schwann cell myelination. Additionally, ES significantly elevated BDNF expression in nerve tissues and in cocultures. ES on the site of nerve injury potentiates axonal regrowth and myelin maturation during peripheral nerve regeneration. Furthermore, the therapeutic actions of ES on myelination are mediated via enhanced BDNF signals, which drive the promyelination effect on Schwann cells at the onset of myelination.

  4. Transplanted Peripheral Blood Stem Cells Mobilized by Granulocyte Colony-Stimulating Factor Promoted Hindlimb Functional Recovery After Spinal Cord Injury in Mice.

    Science.gov (United States)

    Takahashi, Hiroshi; Koda, Masao; Hashimoto, Masayuki; Furuya, Takeo; Sakuma, Tsuyoshi; Kato, Kei; Okawa, Akihiko; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Yamazaki, Masashi; Mannoji, Chikato

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) mobilizes peripheral blood stem cells (PBSCs) derived from bone marrow. We hypothesized that intraspinal transplantation of PBSCs mobilized by G-CSF could promote functional recovery after spinal cord injury. Spinal cords of adult nonobese diabetes/severe immunodeficiency mice were injured using an Infinite Horizon impactor (60 kdyn). One week after the injury, 3.0 µl of G-CSF-mobilized human mononuclear cells (MNCs; 0.5 × 10(5)/µl), G-CSF-mobilized human CD34-positive PBSCs (CD34; 0.5 × 10(5)/µl), or normal saline was injected to the lesion epicenter. We performed immunohistochemistry. Locomotor recovery was assessed by Basso Mouse Scale. The number of transplanted human cells decreased according to the time course. The CD31-positive area was significantly larger in the MNC and CD34 groups compared with the vehicle group. The number of serotonin-positive fibers was significantly larger in the MNC and CD34 groups than in the vehicle group. Immunohistochemistry revealed that the number of apoptotic oligodendrocytes was significantly smaller in cell-transplanted groups, and the areas of demyelination in the MNC- and CD34-transplanted mice were smaller than that in the vehicle group, indicating that cell transplantation suppressed oligodendrocyte apoptosis and demyelination. Both the MNC and CD34 groups showed significantly better hindlimb functional recovery compared with the vehicle group. There was no significant difference between the two types of transplanted cells. Intraspinal transplantation of G-CSF-mobilized MNCs or CD34-positive cells promoted angiogenesis, serotonergic fiber regeneration/sparing, and preservation of myelin, resulting in improved hindlimb function after spinal cord injury in comparison with vehicle-treated control mice. Transplantation of G-CSF-mobilized PBSCs has advantages for treatment of spinal cord injury in the ethical and immunological viewpoints, although further exploration

  5. Contralaterally Controlled Functional Electrical Stimulation Improves Hand Dexterity in Chronic Hemiparesis: A Randomized Trial.

    Science.gov (United States)

    Knutson, Jayme S; Gunzler, Douglas D; Wilson, Richard D; Chae, John

    2016-10-01

    It is unknown whether one method of neuromuscular electrical stimulation for poststroke upper limb rehabilitation is more effective than another. Our aim was to compare the effects of contralaterally controlled functional electrical stimulation (CCFES) with cyclic neuromuscular electrical stimulation (cNMES). Stroke patients with chronic (>6 months) moderate to severe upper extremity hemiparesis (n=80) were randomized to receive 10 sessions/wk of CCFES- or cNMES-assisted hand opening exercise at home plus 20 sessions of functional task practice in the laboratory for 12 weeks. The task practice for the CCFES group was stimulation assisted. The primary outcome was change in Box and Block Test (BBT) score at 6 months post treatment. Upper extremity Fugl-Meyer and Arm Motor Abilities Test were also measured. At 6 months post treatment, the CCFES group had greater improvement on the BBT, 4.6 (95% confidence interval [CI], 2.2-7.0), than the cNMES group, 1.8 (95% CI, 0.6-3.0), between-group difference of 2.8 (95% CI, 0.1-5.5), P=0.045. No significant between-group difference was found for the upper extremity Fugl-Meyer (P=0.888) or Arm Motor Abilities Test (P=0.096). Participants who had the largest improvements on BBT were <2 years post stroke with moderate (ie, not severe) hand impairment at baseline. Among these, the 6-month post-treatment BBT gains of the CCFES group, 9.6 (95% CI, 5.6-13.6), were greater than those of the cNMES group, 4.1 (95% CI, 1.7-6.5), between-group difference of 5.5 (95% CI, 0.8-10.2), P=0.023. CCFES improved hand dexterity more than cNMES in chronic stroke survivors. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00891319. © 2016 American Heart Association, Inc.

  6. Improved estimation of electricity demand function by integration of fuzzy system and data mining approach

    International Nuclear Information System (INIS)

    Azadeh, A.; Saberi, M.; Ghaderi, S.F.; Gitiforouz, A.; Ebrahimipour, V.

    2008-01-01

    This study presents an integrated fuzzy system, data mining and time series framework to estimate and predict electricity demand for seasonal and monthly changes in electricity consumption especially in developing countries such as China and Iran with non-stationary data. Furthermore, it is difficult to model uncertain behavior of energy consumption with only conventional fuzzy system or time series and the integrated algorithm could be an ideal substitute for such cases. To construct fuzzy systems, a rule base is needed. Because a rule base is not available, for the case of demand function, look up table which is one of the extracting rule methods is used to extract the rule base. This system is defined as FLT. Also, decision tree method which is a data mining approach is similarly utilized to extract the rule base. This system is defined as FDM. Preferred time series model is selected from linear (ARMA) and nonlinear model. For this, after selecting preferred ARMA model, McLeod-Li test is applied to determine nonlinearity condition. When, nonlinearity condition is satisfied, preferred nonlinear model is selected and compare with preferred ARMA model and finally one of this is selected as time series model. At last, ANOVA is used for selecting preferred model from fuzzy models and time series model. Also, the impact of data preprocessing and postprocessing on the fuzzy system performance is considered by the algorithm. In addition, another unique feature of the proposed algorithm is utilization of autocorrelation function (ACF) to define input variables, whereas conventional methods which use trial and error method. Monthly electricity consumption of Iran from 1995 to 2005 is considered as the case of this study. The MAPE estimation of genetic algorithm (GA), artificial neural network (ANN) versus the proposed algorithm shows the appropriateness of the proposed algorithm

  7. An enhanced radial basis function network for short-term electricity price forecasting

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Gow, Hong-Jey; Tsai, Ming-Tang

    2010-01-01

    This paper proposed a price forecasting system for electric market participants to reduce the risk of price volatility. Combining the Radial Basis Function Network (RBFN) and Orthogonal Experimental Design (OED), an Enhanced Radial Basis Function Network (ERBFN) has been proposed for the solving process. The Locational Marginal Price (LMP), system load, transmission flow and temperature of the PJM system were collected and the data clusters were embedded in the Excel Database according to the year, season, workday and weekend. With the OED applied to learning rates in the ERBFN, the forecasting error can be reduced during the training process to improve both accuracy and reliability. This would mean that even the ''spikes'' could be tracked closely. The Back-propagation Neural Network (BPN), Probability Neural Network (PNN), other algorithms, and the proposed ERBFN were all developed and compared to check the performance. Simulation results demonstrated the effectiveness of the proposed ERBFN to provide quality information in a price volatile environment. (author)

  8. Electric dipole moment function and line intensities for the ground state of carbon monxide

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Cheng Xin-Lu; Wu Jie; Liu Hao

    2015-01-01

    An accurate electric dipole moment function (EDMF) is obtained for the carbon monoxide (CO) molecule (X 1 Σ + ) by fitting the experimental rovibrational transitional moments. Additionally, an accurate ab initio EDMF is found using the highly accurate, multi-reference averaged coupled-pair functional (ACPF) approach with the basis set, aug-cc-pV6Z, and a finite-field with ±0.005 a.u. (The unit a.u. is the abbreviation of atomic unit). This ab initio EDMF is very consistent with the fitted ones. The vibrational transition matrix moments and the Herman–Wallis factors, calculated with the Rydberg–Klein–Rees (RKR) potential and the fitted and ab initio EDMFs, are compared with experimental measurements. The consistency of these line intensities with the high-resolution transmission (HITRAN) molecular database demonstrates the improved accuracy of the fitted and ab initio EDMFs derived in this work. (paper)

  9. Microsoft kinect-based artificial perception system for control of functional electrical stimulation assisted grasping.

    Science.gov (United States)

    Strbac, Matija; Kočović, Slobodan; Marković, Marko; Popović, Dejan B

    2014-01-01

    We present a computer vision algorithm that incorporates a heuristic model which mimics a biological control system for the estimation of control signals used in functional electrical stimulation (FES) assisted grasping. The developed processing software acquires the data from Microsoft Kinect camera and implements real-time hand tracking and object analysis. This information can be used to identify temporal synchrony and spatial synergies modalities for FES control. Therefore, the algorithm acts as artificial perception which mimics human visual perception by identifying the position and shape of the object with respect to the position of the hand in real time during the planning phase of the grasp. This artificial perception used within the heuristically developed model allows selection of the appropriate grasp and prehension. The experiments demonstrate that correct grasp modality was selected in more than 90% of tested scenarios/objects. The system is portable, and the components are low in cost and robust; hence, it can be used for the FES in clinical or even home environment. The main application of the system is envisioned for functional electrical therapy, that is, intensive exercise assisted with FES.

  10. Functional electrical stimulation of intrinsic laryngeal muscles under varying loads in exercising horses.

    Directory of Open Access Journals (Sweden)

    Jon Cheetham

    Full Text Available Bilateral vocal fold paralysis (BVCP is a life threatening condition and appears to be a good candidate for therapy using functional electrical stimulation (FES. Developing a working FES system has been technically difficult due to the inaccessible location and small size of the sole arytenoid abductor, the posterior cricoarytenoid (PCA muscle. A naturally-occurring disease in horses shares many functional and etiological features with BVCP. In this study, the feasibility of FES for equine vocal fold paralysis was explored by testing arytenoid abduction evoked by electrical stimulation of the PCA muscle. Rheobase and chronaxie were determined for innervated PCA muscle. We then tested the hypothesis that direct muscle stimulation can maintain airway patency during strenuous exercise in horses with induced transient conduction block of the laryngeal motor nerve. Six adult horses were instrumented with a single bipolar intra-muscular electrode in the left PCA muscle. Rheobase and chronaxie were within the normal range for innervated muscle at 0.55±0.38 v and 0.38±0.19 ms respectively. Intramuscular stimulation of the PCA muscle significantly improved arytenoid abduction at all levels of exercise intensity and there was no significant difference between the level of abduction achieved with stimulation and control values under moderate loads. The equine larynx may provide a useful model for the study of bilateral fold paralysis.

  11. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations.

    Science.gov (United States)

    Mandonnet, Emmanuel; Winkler, Peter A; Duffau, Hugues

    2010-02-01

    While the fundamental and clinical contribution of direct electrical stimulation (DES) of the brain is now well acknowledged, its advantages and limitations have not been re-evaluated for a long time. Here, we critically review exactly what DES can tell us about cerebral function. First, we show that DES is highly sensitive for detecting the cortical and axonal eloquent structures. Moreover, DES also provides a unique opportunity to study brain connectivity, since each area responsive to stimulation is in fact an input gate into a large-scale network rather than an isolated discrete functional site. DES, however, also has a limitation: its specificity is suboptimal. Indeed, DES may lead to interpretations that a structure is crucial because of the induction of a transient functional response when stimulated, whereas (1) this effect is caused by the backward spreading of the electro-stimulation along the network to an essential area and/or (2) the stimulated region can be functionally compensated owing to long-term brain plasticity mechanisms. In brief, although DES is still the gold standard for brain mapping, its combination with new methods such as perioperative neurofunctional imaging and biomathematical modeling is now mandatory, in order to clearly differentiate those networks that are actually indispensable to function from those that can be compensated.

  12. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Minkin, K.; Tanova, R.; Busarski, A.; Penkov, M.; Penev, L.; Hadjidekov, V.

    2009-01-01

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  13. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography

    Science.gov (United States)

    Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.

    2017-09-01

    Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.

  14. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Science.gov (United States)

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  15. On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase.

    Directory of Open Access Journals (Sweden)

    Patrick Schaub

    Full Text Available CRTI-type phytoene desaturases prevailing in bacteria and fungi can form lycopene directly from phytoene while plants employ two distinct desaturases and two cis-tans isomerases for the same purpose. This property renders CRTI a valuable gene to engineer provitamin A-formation to help combat vitamin A malnutrition, such as with Golden Rice. To understand the biochemical processes involved, recombinant CRTI was produced and obtained in homogeneous form that shows high enzymatic activity with the lipophilic substrate phytoene contained in phosphatidyl-choline (PC liposome membranes. The first crystal structure of apo-CRTI reveals that CRTI belongs to the flavoprotein superfamily comprising protoporphyrinogen IX oxidoreductase and monoamine oxidase. CRTI is a membrane-peripheral oxidoreductase which utilizes FAD as the sole redox-active cofactor. Oxygen, replaceable by quinones in its absence, is needed as the terminal electron acceptor. FAD, besides its catalytic role also displays a structural function by enabling the formation of enzymatically active CRTI membrane associates. Under anaerobic conditions the enzyme can act as a carotene cis-trans isomerase. In silico-docking experiments yielded information on substrate binding sites, potential catalytic residues and is in favor of single half-site recognition of the symmetrical C(40 hydrocarbon substrate.

  16. Evaluation of radiation-induced peripheral nerve injury in rabbits with MR neurography using diffusion tensor imaging and T2 measurements: Correlation with histological and functional changes.

    Science.gov (United States)

    Wan, Qi; Wang, Shiyang; Zhou, Jiaxuan; Zou, Qiao; Deng, Yingshi; Wang, Shouyang; Zheng, Xiaoying; Li, Xinchun

    2016-06-01

    To investigate the potential of diffusion tensor imaging (DTI) and T2 measurements in the evaluation of radiation-induced peripheral nerve injury (RIPNI). RIPNI was produced in a randomly selected side of sciatic nerve in each of 21 rabbits while the contralateral side served as the control. The limb function and MR parameters were evaluated over a 4-month period. Fractional anisotropy (FA), axial diffusivity (λ∥ ), radial diffusivity (λ⊥ ) and T2 values were obtained using 3T MR for quantitative analysis. Two animals were randomly killed for histological evaluation at each timepoint. The T2 value of irradiated nerve increased at 1 day (63.95 ± 15.60, P = 0.012) and was restored at 1 month (52.34 ± 5.38, P = 0.105). It increased progressively at 2 to 4 months (60.39 ± 10.60, 66.96 ± 6.08, 75.51 ± 7.39, all P evaluate RIPNI compared with T2 measurements. FA and λ⊥ are promising quantitative indices in monitoring RIPNI. J. Magn. Reson. Imaging 2016;43:1492-1499. © 2015 Wiley Periodicals, Inc.

  17. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral nerve... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain...

  18. Reversibility of peripheral blood leukocyte phenotypic and functional changes after exposure to and withdrawal from tofacitinib, a Janus kinase inhibitor, in healthy volunteers.

    Science.gov (United States)

    Weinhold, Kent J; Bukowski, Jack F; Brennan, Todd V; Noveck, Robert J; Staats, Janet S; Lin, Liwen; Stempora, Linda; Hammond, Constance; Wouters, Ann; Mojcik, Christopher F; Cheng, John; Collinge, Mark; Jesson, Michael I; Hazra, Anasuya; Biswas, Pinaki; Lan, Shuping; Clark, James D; Hodge, Jennifer A

    2018-06-01

    This study evaluated the short-term effects of tofacitinib treatment on peripheral blood leukocyte phenotype and function, and the reversibility of any such effects following treatment withdrawal in healthy volunteers. Cytomegalovirus (CMV)-seropositive subjects received oral tofacitinib 10 mg twice daily for 4 weeks and were followed for 4 weeks after drug withdrawal. There were slight increases in total lymphocyte and total T-cell counts during tofacitinib treatment, and B-cell counts increased by up to 26%. There were no significant changes in granulocyte or monocyte counts, or granulocyte function. Naïve and central memory T-cell counts increased during treatment, while all subsets of activated T cells were decreased by up to 69%. T-cell subsets other than effector memory cluster of differentiation (CD)4+, activated naïve CD4+ and effector CD8+ T-cell counts and B-cell counts, normalized 4 weeks after withdrawal. Following ex vivo activation, measures of CMV-specific T-cell responses, and antigen non-specific T-cell-mediated cytotoxicity and interferon (IFN)-γ production, decreased slightly. These T-cell functional changes were most pronounced at Day 15, partially normalized while still on tofacitinib and returned to baseline after drug withdrawal. Total natural killer (NK)-cell counts decreased by 33%, returning towards baseline after drug withdrawal. NK-cell function decreased during tofacitinib treatment, but without a consistent time course across measured parameters. However, markers of NK-cell-mediated cytotoxicity, antibody-dependent cellular cytotoxicity and IFN-γ production were decreased up to 42% 1 month after drug withdrawal. CMV DNA was not detectable in whole blood, and there were no cases of herpes zoster reactivation. No new safety concerns arose. In conclusion, the effect of short-term tofacitinib treatment on leukocyte composition and function in healthy CMV+ volunteers is modest and largely reversible 4 weeks after withdrawal

  19. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system function after developmental exposure to gasoline, E15, and E85 vapors.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Visual, auditory, somatosensory, and peripheral nerve evoked responses. This dataset is associated with the following publication: Herr , D., D. Freeborn , L. Degn ,...

  20. Disintegration of power grid as part of the task of increasing functionality of electric system

    Directory of Open Access Journals (Sweden)

    Mukatov Bekzhan

    2017-01-01

    operation is inevitable with reduced reliability or, otherwise, with incomplete functionality where functionality is the set of functions provided by the power system and the quality of their performance. With the mass input of distributed small generation in grids of almost all voltage classes it is necessary to solve the problem of ensuring stability in previously passive distribution networks. The traditional approach based on the “struggle” to maintain synchronism between power plants in the distribution networks is associated with a number of difficulties, which causes to apply another approach to control modes in distribution networks. Complication of the power grid, automatic devices, increase in possible variations of modes, and tendency to maximize the use of production assets lead to an increase in the complexity of tasks solved by dispatch centers. In this regard, it is important to note that availability of cascade failures in power systems speaks of the urgency of the task of ensuring the survivability of energy supply systems both globally and locally. The paper shows how disintegration of the power grid can solve the task of ensuring the functionality of traditional power systems and help to create favorable conditions for distributed small generation integration into the integrated electric power system.

  1. Effects of somatosensory electrical stimulation on motor function and cortical oscillations.

    Science.gov (United States)

    Tu-Chan, Adelyn P; Natraj, Nikhilesh; Godlove, Jason; Abrams, Gary; Ganguly, Karunesh

    2017-11-13

    Few patients recover full hand dexterity after an acquired brain injury such as stroke. Repetitive somatosensory electrical stimulation (SES) is a promising method to promote recovery of hand function. However, studies using SES have largely focused on gross motor function; it remains unclear if it can modulate distal hand functions such as finger individuation. The specific goal of this study was to monitor the effects of SES on individuation as well as on cortical oscillations measured using EEG, with the additional goal of identifying neurophysiological biomarkers. Eight participants with a history of acquired brain injury and distal upper limb motor impairments received a single two-hour session of SES using transcutaneous electrical nerve stimulation. Pre- and post-intervention assessments consisted of the Action Research Arm Test (ARAT), finger fractionation, pinch force, and the modified Ashworth scale (MAS), along with resting-state EEG monitoring. SES was associated with significant improvements in ARAT, MAS and finger fractionation. Moreover, SES was associated with a decrease in low frequency (0.9-4 Hz delta) ipsilesional parietomotor EEG power. Interestingly, changes in ipsilesional motor theta (4.8-7.9 Hz) and alpha (8.8-11.7 Hz) power were significantly correlated with finger fractionation improvements when using a multivariate model. We show the positive effects of SES on finger individuation and identify cortical oscillations that may be important electrophysiological biomarkers of individual responsiveness to SES. These biomarkers can be potential targets when customizing SES parameters to individuals with hand dexterity deficits. NCT03176550; retrospectively registered.

  2. Impact of neuromuscular electrical stimulation on functional capacity of patients with chronic kidney disease on hemodialysis.

    Science.gov (United States)

    Roxo, Renata Spósito; Xavier, Vivian Bertoni; Miorin, Luiz Antônio; Magalhães, Andrea Olivares; Sens, Yvoty Alves Dos Santos; Alves, Vera Lúcia Dos Santos

    2016-01-01

    Literature shows that patients undergoing hemodialysis present poor physical conditioning and low tolerance to exercise. They may also suffer from respiratory dysfunctions. The purpose of this study was to evaluate the effects of neuromuscular electrical stimulation on pulmonary function and functional capacity of patients with chronic kidney disease on hemodialysis. Forty adult patients with chronic kidney disease on hemodialysis were prospectively studied and randomized into two groups (control n = 20 and treatment n = 20). The treatment group underwent bilateral femoral quadriceps muscles electrical stimulation for 30 minutes during hemodialysis, three times per week, for two months. The patients were evaluated by pulmonary function test, maximum respiratory pressures, maximum one-repetition test, and six-minute walk test (6MWT), before and after the treatment protocol. The treatment group presented increased maximum inspiratory (MIP) (p = 0.02) and expiratory pressures (MEP) (p grupos (controle n = 20 e tratamento n = 20). O grupo tratamento realizou protocolo com estimulação elétrica neuromuscular em quadríceps femoral por 30 minutos durante a hemodiálise, três vezes por semana, durante dois meses. Todos pacientes realizaram espirometria, pressões respiratórias máximas, teste de uma repetição máxima e teste da caminhada dos seis minutos (TC6), antes e após o período de acompanhamento. O grupo tratamento apresentou aumento da pressão inspiratória máxima com p = 0,02 na comparação entre grupos e p grupo de tratamento com p grupo controle. A estimulação elétrica neuromuscular teve impacto positivo sobre a função pulmonar e a capacidade funcional levando ao melhor desempenho físico em pacientes em hemodiálise.

  3. Recovery of facial expressions using functional electrical stimulation after full-face transplantation.

    Science.gov (United States)

    Topçu, Çağdaş; Uysal, Hilmi; Özkan, Ömer; Özkan, Özlenen; Polat, Övünç; Bedeloğlu, Merve; Akgül, Arzu; Döğer, Ela Naz; Sever, Refik; Çolak, Ömer Halil

    2018-03-06

    We assessed the recovery of 2 face transplantation patients with measures of complexity during neuromuscular rehabilitation. Cognitive rehabilitation methods and functional electrical stimulation were used to improve facial emotional expressions of full-face transplantation patients for 5 months. Rehabilitation and analyses were conducted at approximately 3 years after full facial transplantation in the patient group. We report complexity analysis of surface electromyography signals of these two patients in comparison to the results of 10 healthy individuals. Facial surface electromyography data were collected during 6 basic emotional expressions and 4 primary facial movements from 2 full-face transplantation patients and 10 healthy individuals to determine a strategy of functional electrical stimulation and understand the mechanisms of rehabilitation. A new personalized rehabilitation technique was developed using the wavelet packet method. Rehabilitation sessions were applied twice a month for 5 months. Subsequently, motor and functional progress was assessed by comparing the fuzzy entropy of surface electromyography data against the results obtained from patients before rehabilitation and the mean results obtained from 10 healthy subjects. At the end of personalized rehabilitation, the patient group showed improvements in their facial symmetry and their ability to perform basic facial expressions and primary facial movements. Similarity in the pattern of fuzzy entropy for facial expressions between the patient group and healthy individuals increased. Synkinesis was detected during primary facial movements in the patient group, and one patient showed synkinesis during the happiness expression. Synkinesis in the lower face region of one of the patients was eliminated for the lid tightening movement. The recovery of emotional expressions after personalized rehabilitation was satisfactory to the patients. The assessment with complexity analysis of sEMG data can be

  4. High frequency oscillations evoked by peripheral magnetic stimulation.

    Science.gov (United States)

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  5. Functioning of the wholesale electricity, CO_2 and natural gas markets. Report 2015-2016 Surveillance

    International Nuclear Information System (INIS)

    2016-01-01

    No major tightness was observed in 2015 in the French wholesale electricity and gas markets, against a drop in raw material prices, with another year warmer than usual and a particularly mild winter 2015-2016. The drop in oil prices, which was fast in 2014, continued in 2015, down an average 36 % between the two years. Coal prices dropped. However, raw material prices rebounded in the first months of 2016. Therefore, between the first and second quarter of 2016, oil prices increased 26 % reaching euro-31/barrel. Similarly, the price of coal increased from euro-32.4/t in January to euro-50.1/t at the end of June (+55 %). Developments in supply, and especially in demand, related to growth prospects are responsible in part for these changes. These trends are reflected in the wholesale energy price developments. The price of CO_2 allowances was disconnected from the raw material trends, first with an increase in 2015 exceeding euro-8/ton, followed by a sharp decline early 2016. This fall is due in particular to sales carried out by electricity producers in Europe against a backdrop of excess allowances. In this context, the French government proposed a national minimum price for the ton of CO_2 for thermal power stations. On 11 July 2016, the government announced that this mechanism would be applied only to coal plants. CRE recommends that the effects of such a mechanism should be studied specifically given the potential effects on the functioning of markets. The following in particular should be analysed: - the effects on wholesale electricity prices in France and on border exchanges; - the resulting carbon footprint since the expected rise in French wholesale electricity prices could lead to high-carbon electricity imports from bordering countries according to the periods of the year; - the micro-economic effects for the plants concerned and the macro-economic effects in terms of supply security; - and lastly, how it will link with the European framework, in

  6. Electric organ discharge diversity in the genus Gymnotus: anatomo-functional groups and electrogenic mechanisms.

    Science.gov (United States)

    Rodríguez-Cattáneo, A; Aguilera, P; Cilleruelo, E; Crampton, W G R; Caputi, A A

    2013-04-15

    Previous studies describe six factors accounting for interspecific diversity of electric organ discharge (EOD) waveforms in Gymnotus. At the cellular level, three factors determine the locally generated waveforms: (1) electrocyte geometry and channel repertoire; (2) the localization of synaptic contacts on electrocyte surfaces; and (3) electric activity of electromotor axons preceding the discharge of electrocytes. At the organismic level, three factors determine the integration of the EOD as a behavioral unit: (4) the distribution of different types of electrocytes and specialized passive tissue forming the electric organ (EO); (5) the neural mechanisms of electrocyte discharge coordination; and (6) post-effector mechanisms. Here, we reconfirm the importance of the first five of these factors based on comparative studies of a wider diversity of Gymnotus than previously investigated. Additionally, we report a hitherto unseen aspect of EOD diversity in Gymnotus. The central region of the EO (which has the largest weight on the conspecific-received field) usually exhibits a negative-positive-negative pattern where the delay between the early negative and positive peaks (determined by neural coordination mechanisms) matches the delay between the positive and late negative peaks (determined by electrocyte responsiveness). Because delays between peaks typically determine the peak power frequency, this matching implies a co-evolution of neural and myogenic coordination mechanisms in determining the spectral specificity of the intraspecific communication channel. Finally, we define four functional species groups based on EO/EOD structure. The first three exhibit a heterogeneous EO in which doubly innervated electrocytes are responsible for a main triphasic complex. Group I species exhibit a characteristic cephalic extension of the EO. Group II species exhibit an early positive component of putative neural origin, and strong EO auto-excitability. Group III species exhibit

  7. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I: A Pilot Controlled Study.

    Science.gov (United States)

    Cudia, Paola; Weis, Luca; Baba, Alfonc; Kiper, Pawel; Marcante, Andrea; Rossi, Simonetta; Angelini, Corrado; Piccione, Francesco

    2016-11-01

    Functional electrical stimulation (FES) is a new rehabilitative approach that combines electrical stimulation with a functional task. This pilot study evaluated the safety and effectiveness of FES lower extremity training in myotonic dystrophy type 1. This is a controlled pilot study that enrolled 20 patients with myotonic dystrophy type 1 over 2 years. Eight patients (age, 39-67 years) fulfilled the inclusion criteria. Four participants performed FES cycling training for 15 days (one daily session of 30 minutes for 5 days a week). A control group, matched for clinical and genetic variables, who had contraindications to electrical stimulation, performed 6 weeks of conventional resistance and aerobic training. The modified Medical Research Council Scale and functional assessments were performed before and after treatment. Cohen d effect size was used for statistical analysis. Functional electrical stimulation induced lower extremity training was well tolerated and resulted in a greater improvement of tibialis anterior muscle strength (d = 1,583), overall muscle strength (d = 1,723), and endurance (d = 0,626) than conventional training. Functional electrical stimulation might be considered a safe and valid tool to improve muscle function, also in muscles severely compromised in which no other restorative options are available. Confirmation of FES efficacy through further clinical trials is strongly advised.

  8. Peripheral markers of thyroid function

    DEFF Research Database (Denmark)

    Schmidt, Ulla; Nygaard, Birte; Winther Jensen, Ebbe

    2013-01-01

    BACKGROUND: A recent randomized controlled trial suggests that hypothyroid subjects may find levothyroxine (l-T4) and levotriiodothyronine combination therapy to be superior to l-T4 monotherapy in terms of quality of life, suggesting that the brain registered increased T3 availability during the ...

  9. Long-duration transcutaneous electric acupoint stimulation alters small-world brain functional networks.

    Science.gov (United States)

    Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing

    2013-09-01

    Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Effect of long-term high-fat diet intake on peripheral insulin sensibility, blood pressure, and renal function in female rats

    Directory of Open Access Journals (Sweden)

    Noemi A. V. Roza

    2016-02-01

    Full Text Available Background: This study determines whether -week high-fat diet (HFD consumption alters insulin sensitivity, kidney function, and blood pressure (BP in female rats when compared with standard rodent diet (ND intake in gender- and age-matched rats. Methods: The present study investigates, in female Wistar HanUnib rats, the effect of long-term high-fat fed group (HFD compared with standard chow on BP by an indirect tail-cuff method using an electrosphygmomanometer, insulin and glucose function, and kidney function by creatinine and lithium clearances. Results: The current study shows glucose tolerance impairment, as demonstrated by increased fasting blood glucose (ND: ±2.8 vs. HFD: 87±3.8 mg/dL associated with reduced insulin secretion (ND: 0.58±0.07 vs. HFD: 0.40±0.03 ng/mL in 8-week female HFD-treated rats. The incremental area under the curve (AUC, ND: 1,4558.0±536.0 vs. HFD: 1,6507.8±661.9, homeostasis model assessment of insulin resistance (HOMA-IR index, and the first-order rate constant for the disappearance of glucose (Kitt were significantly enhanced in 8-week HFD-treated rats compared with age-matched ND group (respectively, P=0.03, P=0.002, and P<0.0001. The current study also shows a significantly higher systolic BP measured in 5 and 8 weeks posttreatment in HFD (5-week HFD-treated: 155.25±10.54 mmHg and 8-week HFD-treated: 165±5.8 mmHg (P=0.0001, when compared to BP values in 5-week ND, 137±4.24 mmHg and 8-week ND, 131.75±5.8 mmHg age-matched group. Otherwise, the glomerular filtration rate and renal sodium handling evaluated by FENa, FEPNa and FEPPNa, were unchanged in both groups. Conclusion: We may conclude that 8-week female HFD-fed rats compared with ND group stimulate harmful effects, such as BP rise and peripheral glucose intolerance. The increased BP occurs through insulin resistance and supposedly decreased vasodilatation response without any change on renal function.

  11. Effect of long-term high-fat diet intake on peripheral insulin sensibility, blood pressure, and renal function in female rats.

    Science.gov (United States)

    Roza, Noemi A V; Possignolo, Luiz F; Palanch, Adrianne C; Gontijo, José A R

    2016-01-01

    This study determines whether 8-week high-fat diet (HFD) consumption alters insulin sensitivity, kidney function, and blood pressure (BP) in female rats when compared with standard rodent diet (ND) intake in gender- and age-matched rats. The present study investigates, in female Wistar HanUnib rats, the effect of long-term high-fat fed group (HFD) compared with standard chow on BP by an indirect tail-cuff method using an electrosphygmomanometer, insulin and glucose function, and kidney function by creatinine and lithium clearances. The current study shows glucose tolerance impairment, as demonstrated by increased fasting blood glucose (ND: 78±2.8 vs. HFD: 87±3.8 mg/dL) associated with reduced insulin secretion (ND: 0.58±0.07 vs. HFD: 0.40±0.03 ng/mL) in 8-week female HFD-treated rats. The incremental area under the curve (AUC, ND: 1,4558.0±536.0 vs. HFD: 1,6507.8±661.9), homeostasis model assessment of insulin resistance (HOMA-IR) index, and the first-order rate constant for the disappearance of glucose (Kitt) were significantly enhanced in 8-week HFD-treated rats compared with age-matched ND group (respectively, P=0.03, P=0.002, and P<0.0001). The current study also shows a significantly higher systolic BP measured in 5 and 8 weeks posttreatment in HFD (5-week HFD-treated: 155.25±10.54 mmHg and 8-week HFD-treated: 165±5.8 mmHg) (P=0.0001), when compared to BP values in 5-week ND, 137±4.24 mmHg and 8-week ND, 131.75±5.8 mmHg age-matched group. Otherwise, the glomerular filtration rate and renal sodium handling evaluated by FENa, FEPNa and FEPPNa, were unchanged in both groups. We may conclude that 8-week female HFD-fed rats compared with ND group stimulate harmful effects, such as BP rise and peripheral glucose intolerance. The increased BP occurs through insulin resistance and supposedly decreased vasodilatation response without any change on renal function.

  12. Effects of motor imagery combined with functional electrical stimulation on upper limb motor function of patients with acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Shou-feng LIU

    2015-03-01

    Full Text Available Objective To explore the effects of motor imagery (MI combined with the third generation functional electrical stimulation (FES on upper limb motor function in acute ischemic stroke patients with hemiplegia.  Methods Forty acute ischemic stroke patients, within 48 h of onset, were randomly divided into FES group (N = 20 and combination group (FES combined with motor imagery, N = 20. All patients received basic routine rehabilitation training, for example, good limb positioning, accepting braces, balance training and training in the activities of daily living (ADL. FES group received the third generation FES therapy and the combination group also received motor imagery for 2 weeks. All of the patients were assessed with Fugl-Meyer Assessment (FMA, Action Research Arm Test (ARAT and active range of motion (AROM of wrist dorsiflexion before and after 2 weeks of treatment.  Results After 2 weeks of treatment, the 2 groups had significantly higher FMA score, ARAT score and AROM of wrist dorsiflexion than that in pre-treatment (P = 0.000, for all. Besides, the FMA score (t = - 2.528, P = 0.016, ARAT score (t = - 2.562, P = 0.014 and AROM of wrist dorsiflexion (t = - 2.469, P = 0.018 in the combination group were significantly higher than that in the FES group. There were interactions of treatment methods with observation time points (P < 0.05, for all.  Conclusions Motor imagery combined with the third generation FES can effectively promote the recovery of upper limb motor function and motion range of wrist dorsiflexion in patients with acute ischemic stroke. DOI: 10.3969/j.issn.1672-6731.2015.03.008

  13. Cost functions and the electric utility industry. A contribution to the debate on deregulation

    International Nuclear Information System (INIS)

    Ramos-Real, F.J.

    2005-01-01

    This study analyses the main articles that estimate cost functions in the electricity utility industry with a view to studying of the initial arguments for proposing competition and vertical disintegration. The works reviewed here, in general terms, confirm the initial arguments in favour of the deregulation process, mainly, the exhaustion of scale economies for moderate size firms in generation and the condition of natural monopoly for transmission and distribution. However, the savings obtained from undertaking different activities together should be kept in mind when restructuring the sector. On the other hand, the improvements in productivity deriving from the reforms have not translated into reductions in the price of electricity in many countries. These last two results suggest the need for appropriate market regulation for the deregulation process to translate into an improvement in how the sector works and into benefits for consumers. There is still insufficient empirical literature on these issues due to the fact that the process is still ongoing in many countries and more time will have to transpire before sufficient data is available

  14. Green Functions for the Radial Electric Component of the Monopole Wake Field in a Round Resistive Chamber

    International Nuclear Information System (INIS)

    Zimmermann, Frank

    1998-01-01

    We compare different approximations to the point-charge Green function for the radial electric monopole field excited by an ultrarelativistic particle propagating through a resistive pipe, and study the applicability of these approximations for calculating the field of a bunch with finite length. It has been speculated that the exact form of the electric field could be important for simulations of the electron-cloud instability. In this paper, we show, however, that the usual approximation of the Green function by a delta function is adequate, except for extremely short bunch lengths

  15. Motor Cortex Stimulation Regenerative Effects in Peripheral Nerve Injury: An Experimental Rat Model.

    Science.gov (United States)

    Nicolas, Nicolas; Kobaiter-Maarrawi, Sandra; Georges, Samuel; Abadjian, Gerard; Maarrawi, Joseph

    2018-06-01

    Immediate microsurgical nerve suture remains the gold standard after peripheral nerve injuries. However, functional recovery is delayed, and it is satisfactory in only 2/3 of cases. Peripheral electrical nerve stimulation proximal to the lesion enhances nerve regeneration and muscle reinnervation. This study aims to evaluate the effects of the motor cortex electrical stimulation on peripheral nerve regeneration after injury. Eighty rats underwent right sciatic nerve section, followed by immediate microsurgical epineural sutures. Rats were divided into 4 groups: Group 1 (control, n = 20): no electrical stimulation; group 2 (n = 20): immediate stimulation of the sciatic nerve just proximal to the lesion; Group 3 (n = 20): motor cortex stimulation (MCS) for 15 minutes after nerve section and suture (MCSa); group 4 (n = 20): MCS performed over the course of two weeks after nerve suture (MCSc). Assessment included electrophysiology and motor functional score at day 0 (baseline value before nerve section), and at weeks 4, 8, and 12. Rats were euthanized for histological study at week 12. Our results showed that MCS enhances functional recovery, nerve regeneration, and muscle reinnervation starting week 4 compared with the control group (P < 0.05). The MCS induces higher reinnervation rates even compared with peripheral stimulation, with better results in the MCSa group (P < 0.05), especially in terms of functional recovery. MCS seems to have a beneficial effect after peripheral nerve injury and repair in terms of nerve regeneration and muscle reinnervation, especially when acute mode is used. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Enhancing the smoothness of joint motion induced by functional electrical stimulation using co-activation strategies

    Directory of Open Access Journals (Sweden)

    Ruppel Mirjana

    2017-09-01

    Full Text Available The motor precision of today’s neuroprosthetic devices that use artificial generation of limb motion using Functional Electrical Stimulation (FES is generally low. We investigate the adoption of natural co-activation strategies as present in antagonistic muscle pairs aiming to improve motor precision produced by FES. In a test in which artificial knee-joint movements were generated, we could improve the smoothness of FES-induced motion by 513% when applying co-activation during the phases in which torque production is switched between muscles – compared to no co-activation. We further demonstrated how the co-activation level influences the joint stiffness in a pendulum test.

  17. Volatility transmission and volatility impulse response functions in European electricity forward markets

    International Nuclear Information System (INIS)

    Le Pen, Yannick; Sevi, Benoit

    2008-01-01

    Using daily data from March 2001 to June 2005, we estimate a VAR-BEKK model and find evidence of return and volatility spillovers between the German, the Dutch and the British forward electricity markets. We apply Hafner and Herwartz [2006, Journal of International Money and Finance 25, 719-740] Volatility Impulse Response Function(VIRF) to quantify the impact of shock on expected conditional volatility. We observe that a shock has a high positive impact only if its size is large compared to the current level of volatility. The impact of shocks are usually not persistent, which may be an indication of market efficiency. Finally, we estimate the density of the VIRF at different forecast horizon. These fitted distributions are asymmetric and show that extreme events are possible even if their probability is low. These results have interesting implications for market participants whose risk management policy is based on option prices which themselves depend on the volatility level. (authors)

  18. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    Science.gov (United States)

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Development and performance assessment of electrically heating gloves with smart temperature control function.

    Science.gov (United States)

    Ma, Nini; Lu, Yehu; Xu, Fanfei; Dai, Hongqin

    2018-03-27

    A pair of lightweight electrically heating gloves (EHG) with smart temperature control function was developed. To evaluate thermoregulation properties of EHG, human trials were conducted in a climate chamber (2.5 °C, 60% RH). The changes in skin temperature of all fingers and opisthenar and the subjective thermal sensation were recorded in 60 min. The effects of two air velocities (i.e., 0.17 m/s and 0.50 m/s) on the cold protective performance of EHG in scenarios of heating and control were also investigated. For heating scenarios, skin temperature and thermal sensation at all fingers and opisthenar were found significantly higher than those in control conditions. Moreover, the air velocity at 0.50 m/s greatly reduced cold protective performance of the gloves. The research findings can be applied to improve thermal comfort and extend working time for persons in cold environments.

  20. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.

    Science.gov (United States)

    Wengrowski, Anastasia M; Wang, Xin; Tapa, Srinivas; Posnack, Nikki Gillum; Mendelowitz, David; Kay, Matthew W

    2015-02-01

    Release of norepinephrine (NE) from sympathetic neurons enhances heart rate (HR) and developed force through activation of β-adrenergic receptors, and this sympathoexcitation is a key risk for the generation of cardiac arrhythmias. Studies of β-adrenergic modulation of cardiac function typically involve the administration of exogenous β-adrenergic receptor agonists to directly elicit global β-adrenergic receptor activation by bypassing the involvement of sympathetic nerve terminals. In this work, we use a novel method to activate sympathetic fibres within the myocardium of Langendorff-perfused hearts while measuring changes in electrical and mechanical function. The light-activated optogenetic protein channelrhodopsin-2 (ChR2) was expressed in murine catecholaminergic sympathetic neurons. Sympathetic fibres were then photoactivated to examine changes in contractile force, HR, and cardiac electrical activity. Incidence of arrhythmia was measured with and without exposure to photoactivation of sympathetic fibres, and hearts were optically mapped to detect changes in action potential durations and conduction velocities. Results demonstrate facilitation of both developed force and HR after photostimulated release of NE, with increases in contractile force and HR of 34.5 ± 5.5 and 25.0 ± 9.3%, respectively. Photostimulation of sympathetic fibres also made hearts more susceptible to arrhythmia, with greater incidence and severity. In addition, optically mapped action potentials displayed a small but significant shortening of the plateau phase (-5.5 ± 1.0 ms) after photostimulation. This study characterizes a powerful and clinically relevant new model for studies of cardiac arrhythmias generated by increasing the activity of sympathetic nerve terminals and the resulting activation of myocyte β-adrenergic receptors. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  1. Characterization of electrical resistivity as a function of temperature in the Mo-Si-B system

    International Nuclear Information System (INIS)

    Beckman, Sarah E.

    1999-01-01

    Measurements of electrical resistivity as a function of temperature from 25 to 1,500 C were conducted on polycrystalline samples in the Mo-Si-B system. Single phase, or nearly single phase, samples were prepared for the following phases: Mo 3 Si, Mo 5 SiB 2 , Mo 5 Si 3 B x , MoB, MoSi 2 , and Mo 5 Si 3 . Thesis materials all exhibit resistivity values within a narrow range(4--22 x 10 -7 Omega-m), and the low magnitude suggests these materials are semi-metals or low density of states metals. With the exception of MoSi 2 , all single phase materials in this study were also found to have low temperature coefficient of resistivity(TCR) values. These values ranged from 2.10 x 10 -10 to 4.74 x 10 -10 Omega-m/degree C, and MoSi 2 had a TCR of 13.77 x 10 -10 Omega-m/degree C. The results from the single phase sample measurements were employed in a natural log rule-of-mixtures model to relate the individual phase resistivity values to those of multiphase composites. Three Mo-Si-B phase regions were analyzed: the binary Mo 5 Si 3 -MoSi 2 system, the ternary phase field Mo 5 Si 3 B x MoB-MoSi 2 , and the Mo 3 Si-Mo 5 SiB 2 -Mo 5 Si 3 B x ternary region. The experimental data for samples in each of these regions agreed with the natural log model and illustrated that this model can predict the electrical resistivity as a function of temperature of multi-phase, sintered samples within an error of one standard deviation

  2. Estimating the cost of improving quality in electricity distribution: A parametric distance function approach

    International Nuclear Information System (INIS)

    Coelli, Tim J.; Gautier, Axel; Perelman, Sergio; Saplacan-Pop, Roxana

    2013-01-01

    The quality of electricity distribution is being more and more scrutinized by regulatory authorities, with explicit reward and penalty schemes based on quality targets having been introduced in many countries. It is then of prime importance to know the cost of improving the quality for a distribution system operator. In this paper, we focus on one dimension of quality, the continuity of supply, and we estimated the cost of preventing power outages. For that, we make use of the parametric distance function approach, assuming that outages enter in the firm production set as an input, an imperfect substitute for maintenance activities and capital investment. This allows us to identify the sources of technical inefficiency and the underlying trade-off faced by operators between quality and other inputs and costs. For this purpose, we use panel data on 92 electricity distribution units operated by ERDF (Electricité de France - Réseau Distribution) in the 2003–2005 financial years. Assuming a multi-output multi-input translog technology, we estimate that the cost of preventing one interruption is equal to 10.7€ for an average DSO. Furthermore, as one would expect, marginal quality improvements tend to be more expensive as quality itself improves. - Highlights: ► We estimate the implicit cost of outages for the main distribution company in France. ► For this purpose, we make use of a parametric distance function approach. ► Marginal quality improvements tend to be more expensive as quality itself improves. ► The cost of preventing one interruption varies from 1.8 € to 69.2 € (2005 prices). ► We estimate that, in average, it lays 33% above the regulated price of quality.

  3. Models of supply function equilibrium with applications to the electricity industry

    Science.gov (United States)

    Aromi, J. Daniel

    Electricity market design requires tools that result in a better understanding of incentives of generators and consumers. Chapter 1 and 2 provide tools and applications of these tools to analyze incentive problems in electricity markets. In chapter 1, models of supply function equilibrium (SFE) with asymmetric bidders are studied. I prove the existence and uniqueness of equilibrium in an asymmetric SFE model. In addition, I propose a simple algorithm to calculate numerically the unique equilibrium. As an application, a model of investment decisions is considered that uses the asymmetric SFE as an input. In this model, firms can invest in different technologies, each characterized by distinct variable and fixed costs. In chapter 2, option contracts are introduced to a supply function equilibrium (SFE) model. The uniqueness of the equilibrium in the spot market is established. Comparative statics results on the effect of option contracts on the equilibrium price are presented. A multi-stage game where option contracts are traded before the spot market stage is considered. When contracts are optimally procured by a central authority, the selected profile of option contracts is such that the spot market price equals marginal cost for any load level resulting in a significant reduction in cost. If load serving entities (LSEs) are price takers, in equilibrium, there is no trade of option contracts. Even when LSEs have market power, the central authority's solution cannot be implemented in equilibrium. In chapter 3, we consider a game in which a buyer must repeatedly procure an input from a set of firms. In our model, the buyer is able to sign long term contracts that establish the likelihood with which the next period contract is awarded to an entrant or the incumbent. We find that the buyer finds it optimal to favor the incumbent, this generates more intense competition between suppliers. In a two period model we are able to completely characterize the optimal mechanism.

  4. Language and motor function thresholds during pediatric extra-operative electrical cortical stimulation brain mapping.

    Science.gov (United States)

    Zea Vera, Alonso; Aungaroon, Gewalin; Horn, Paul S; Byars, Anna W; Greiner, Hansel M; Tenney, Jeffrey R; Arthur, Todd M; Crone, Nathan E; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra

    2017-10-01

    To examine current thresholds and their determinants for language and motor mapping with extra-operative electrical cortical stimulation (ECS). ECS electrocorticograph recordings were reviewed to determine functional thresholds. Predictors of functional thresholds were found with multivariable analyses. In 122 patients (age 11.9±5.4years), average minimum, frontal, and temporal language thresholds were 7.4 (± 3.0), 7.8 (± 3.0), and 7.4 (± 3.1) mA respectively. Average minimum, face, upper and lower extremity motor thresholds were 5.4 (± 2.8), 6.1 (± 2.8), 4.9 (± 2.3), and 5.3 (± 3.3) mA respectively. Functional and after-discharge (AD)/seizure thresholds were significantly related. Minimum, frontal, and temporal language thresholds were higher than AD thresholds at all ages. Minimum motor threshold was higher than minimum AD threshold up to 8.0years of age, face motor threshold was higher than frontal AD threshold up to 11.8years age, and lower subsequently. UE motor thresholds remained below frontal AD thresholds throughout the age range. Functional thresholds are frequently above AD thresholds in younger children. These findings raise concerns about safety and neurophysiologic validity of ECS mapping. Functional and AD/seizure thresholds relationships suggest individual differences in cortical excitability which cannot be explained by clinical variables. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Propylthiouracil and peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Valentina Van Boekel

    1992-06-01

    Full Text Available Peripheral neuropathy is a rare manifestation in hyperthyroidism. We describe the neurological manifestations of a 38 year old female with Graves' disease who developed peripheral neuropathy in the course of her treatment with propylthiouracil. After the drug was tapered off, the neurological signs disappeared. Therefore, we call attention for a possible toxic effect on peripheral nervous system caused by this drug.

  6. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice

    Directory of Open Access Journals (Sweden)

    Giorgio Bergamini

    2018-02-01

    Full Text Available Psychosocial stress is a major risk factor for depression, stress leads to peripheral and central immune activation, immune activation is associated with blunted dopamine (DA neural function, DA function underlies reward interest, and reduced reward interest is a core symptom of depression. These states might be inter-independent in a complex causal pathway. Whilst animal-model evidence exists for some specific steps in the pathway, there is currently no animal model in which it has been demonstrated that social stress leads to each of these immune, neural and behavioural states. Such a model would provide important existential evidence for the complex pathway and would enable the study of causality and mediating mechanisms at specific steps in the pathway. Therefore, in the present mouse study we investigated for effects of 15-day resident-intruder chronic social stress (CSS on each of these states. Relative to controls, CSS mice exhibited higher spleen levels of granulocytes, inflammatory monocytes and T helper 17 cells; plasma levels of inducible nitric oxide synthase; and liver expression of genes encoding kynurenine pathway enzymes. CSS led in the ventral tegmental area to higher levels of kynurenine and the microglia markers Iba1 and Cd11b and higher binding activity of DA D1 receptor; and in the nucleus accumbens (NAcc to higher kynurenine, lower DA turnover and lower c-fos expression. Pharmacological challenge with DA reuptake inhibitor identified attenuation of DA stimulatory effects on locomotor activity and NAcc c-fos expression in CSS mice. In behavioural tests of operant responding for sucrose reward validated as sensitive assays for NAcc DA function, CSS mice exhibited less reward-directed behaviour. Therefore, this mouse study demonstrates that a chronic social stressor leads to changes in each of the immune, neural and behavioural states proposed to mediate between stress and disruption of DA-dependent reward processing. The

  7. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats

    Science.gov (United States)

    Sanches, Jonas R.; França, Lucas M.; Chagas, Vinicyus T.; Gaspar, Renato S.; dos Santos, Kayque A.; Gonçalves, Luciana M.; Sloboda, Deborah M.; Holloway, Alison C.; Dutra, Richard P.; Carneiro, Everardo M.; Cappelli, Ana Paula G.; Paes, Antonio Marcus de A.

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10–1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated

  8. Increased ICAM-1 Expression in Transformed Human Oral Epithelial Cells: Molecular Mechanism and Functional Role in Peripheral Blood Mononuclear Cell Adhesion and Lymphokine-Activated-Killer Cell Cytotoxicity

    Science.gov (United States)

    Huang, George T.-J.; Zhang, Xinli; Park, No-Hee

    2012-01-01

    The intercellular adhesion molecule-1 (ICAM-1, CD54) serves as a counter-receptor for the β2-integrins, LFA-1 and Mac-1, which are expressed on leukocytes. Although expression of ICAM-1 on tumor cells has a role in tumor progression and development, information on ICAM-1 expression and its role in oral cancer has not been established. Normal human oral keratinocytes (NHOK), human papilloma virus (HPV)-immortalized human oral keratinocyte lines (HOK-16B, HOK-18A, and HOK-18C), and six human oral neoplastic cell lines (HOK-16B-BaP-T1, SCC-4, SCC-9, HEp-2, Tu-177 and 1483) were used to study ICAM-1 expression and its functional role in vitro. Our results demonstrated that NHOK express negligible levels of ICAM-1, whereas immortalized human oral keratinocytes and cancer cells express significantly higher levels of ICAM-1, except for HOK-16B-BaP-T1 and HEp-2. Altered mRNA half-lives did not fully account for the increased accumulation of ICAM-1 mRNA. Adhesion of peripheral blood mononuclear cells (PBMC) to epithelial cells correlated with cell surface ICAM-1 expression levels. This adhesion was inhibited by antibodies specific for either ICAM-1 or LFA-1/Mac-1, suggesting a role for these molecules in adhesion. In contrast, lymphokine-activated-killer (LAK) cell cytotoxic killing of epithelial cells did not correlate with ICAM-1 levels or with adhesion. Nonetheless, within each cell line, blocking of ICAM-1 or LFA-1/Mac-1 reduced LAK cells killing, suggesting that ICAM-1 is involved in mediating this killing. PMID:10938387

  9. Polyphenol-rich extract of Syzygium cumini leaf dually improves peripheral insulin sensitivity and pancreatic islet function in monosodium L-glutamate-induced obese rats

    Directory of Open Access Journals (Sweden)

    Jonas Rodrigues Sanches

    2016-03-01

    Full Text Available Syzygium cumini (L. Skeels (Myrtaceae has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed and pulp-fruit, however there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc on lean and monosodium L-glutamate (MSG-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a 2-fold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10 – 1000 ug/mL increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E beta cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating beta cell insulin release

  10. Modelling altered revenue function based on varying power consumption distribution and electricity tariff charge using data analytics framework

    Science.gov (United States)

    Zainudin, W. N. R. A.; Ramli, N. A.

    2017-09-01

    In 2010, Energy Commission (EC) had introduced Incentive Based Regulation (IBR) to ensure sustainable Malaysian Electricity Supply Industry (MESI), promotes transparent and fair returns, encourage maximum efficiency and maintains policy driven end user tariff. To cater such revolutionary transformation, a sophisticated system to generate policy driven electricity tariff structure is in great need. Hence, this study presents a data analytics framework that generates altered revenue function based on varying power consumption distribution and tariff charge function. For the purpose of this study, the power consumption distribution is being proxy using proportion of household consumption and electricity consumed in KwH and the tariff charge function is being proxy using three-tiered increasing block tariff (IBT). The altered revenue function is useful to give an indication on whether any changes in the power consumption distribution and tariff charges will give positive or negative impact to the economy. The methodology used for this framework begins by defining the revenue to be a function of power consumption distribution and tariff charge function. Then, the proportion of household consumption and tariff charge function is derived within certain interval of electricity power. Any changes in those proportion are conjectured to contribute towards changes in revenue function. Thus, these changes can potentially give an indication on whether the changes in power consumption distribution and tariff charge function are giving positive or negative impact on TNB revenue. Based on the finding of this study, major changes on tariff charge function seems to affect altered revenue function more than power consumption distribution. However, the paper concludes that power consumption distribution and tariff charge function can influence TNB revenue to some great extent.

  11. [Electrical stimulation of the facial nerve with a prognostic function in parotid surgery].

    Science.gov (United States)

    García-Losarcos, N; González-Hidalgo, M; Franco-Carcedo, C; Poch-Broto, J

    Continuous electromyography during parotidectomies and direct stimulation of the facial nerve as an intraoperative identification technique significantly lower the rate of post-operative morbidity. To determine the usefulness of intra-operative neurophysiological parameters registered by means of electrical stimulation of the facial nerve as values capable of predicting the type of lesion and the functional prognosis. Our sample consisted of a correlative series of 20 cases of monitored parotidectomies. Post-operative facial functioning, type of lesion and its prognosis were compared with the variations in latency/amplitude of the muscle response between two stimulations of the facial nerve before and after resection, as well as in the absence or presence of muscle response to stimulation after resection. All the patients except one presented motor evoked potentials (MEP) to stimulation after resection. There was no facial damage following the operation in 55% of patients and 45% presented some kind of paresis. The 21% drop in the amplitude of the intra-operative MEP and the mean increase in latency of 13.5% correspond to axonal and demyelinating insult, respectively, with a mean recovery time of three and six months. The only case of absence of response to the post-resection stimulation presented permanent paresis. The presence of MEP following resection does not ensure that functioning of the nerve remains undamaged. Nevertheless, it can be considered a piece of data that suggests a lower degree of compromise, if it is present, and a better prognosis. The variations in latency and amplitude of the MEP tend to be intra-operative parameters that indicate the degree of compromise and functional prognosis.

  12. The electricity exchange. On the organisation and latent functions of electricity exchange trading as seen from the viewpoint of market sociology; Die Stromboerse. Ueber Form und latente Funktionen des boerslichen Stromhandels aus marktsoziologischer Sicht

    Energy Technology Data Exchange (ETDEWEB)

    Giacovelli, Sebastian

    2014-07-01

    Electricity exchange trading in Germany has existed since the year 2000. Since this time, the Leipzig electricity exchange, a reference market for off-exchange electricity trading, has operated in an environment marked by both criticism and acceptance. Taking this field of controversy as a point of departure the present empirical study in market sociology undertakes to investigate the organisation and latent functions of electricity exchange trading. The ensuing analysis provides answers to questions as to how prices are formed on the electricity exchange and what officially incommunicable functions are served by price formation on exchanges.

  13. Peripheral Neuropathy and Agent Orange

    Science.gov (United States)

    ... Enter ZIP code here Enter ZIP code here Peripheral Neuropathy and Agent Orange VA presumes Veterans' early-onset ... 10 percent disabling by VA's rating regulations. About peripheral neuropathy Peripheral neuropathy is a condition of the peripheral ...

  14. Feasibility of using Lokomat combined with functional electrical stimulation for the rehabilitation of foot drop

    Directory of Open Access Journals (Sweden)

    Christian B. Laursen

    2016-08-01

    Full Text Available This study investigated the clinical feasibility of combining the electromechanical gait trainer Lokomat with functional electrical therapy (LokoFET, stimulating the common peroneal nerve during the swing phase of the gait cycle to correct foot drop as an integrated part of gait therapy. Five patients with different acquired brain injuries trained with LokoFET 2-3 times a week for 3-4 weeks. Pre- and post-intervention evaluations were performed to quantify neurophysiological changes related to the patients’ foot drop impairment during the swing phase of the gait cycle. A semi-structured interview was used to investigate the therapists’ acceptance of LokoFET in clinical practice. The patients showed a significant increase in the level of activation of the tibialis anterior muscle and the maximal dorsiflexion during the swing phase, when comparing the pre- and post-intervention evaluations. This showed an improvement of function related to the foot drop impairment. The interview revealed that the therapists perceived the combined system as a useful tool in the rehabilitation of gait. However, lack of muscle selectivity relating to the FES element of LokoFET was assessed to be critical for acceptance in clinical practice.

  15. Feasibility of Using Lokomat Combined with Functional Electrical Stimulation for the Rehabilitation of Foot Drop.

    Science.gov (United States)

    Laursen, Christian B; Nielsen, Jørgen F; Andersen, Ole K; Spaich, Erika G

    2016-06-13

    This study investigated the clinical feasibility of combining the electromechanical gait trainer Lokomat with functional electrical therapy (LokoFET), stimulating the common peroneal nerve during the swing phase of the gait cycle to correct foot drop as an integrated part of gait therapy. Five patients with different acquired brain injuries trained with LokoFET 2-3 times a week for 3-4 weeks. Pre- and post-intervention evaluations were performed to quantify neurophysiological changes related to the patients' foot drop impairment during the swing phase of the gait cycle. A semi-structured interview was used to investigate the therapists' acceptance of LokoFET in clinical practice. The patients showed a significant increase in the level of activation of the tibialis anterior muscle and the maximal dorsiflexion during the swing phase, when comparing the pre- and post-intervention evaluations. This showed an improvement of function related to the foot drop impairment. The interview revealed that the therapists perceived the combined system as a useful tool in the rehabilitation of gait. However, lack of muscle selectivity relating to the FES element of LokoFET was assessed to be critical for acceptance in clinical practice.

  16. Aging assessment of Westinghouse PWR and General Electric BWR containment isolation functions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.S.; Travis, R.; Grove, E.; DiBiasio, A.

    1996-03-01

    A study was performed to assess the effects of aging on the Containment Isolation (CI) functions of Westinghouse Pressurized Water Reactors and General Electric Boiling Water Reactors. This study is part of the Nuclear Plant Aging Research (NPAR) program, sponsored by the U.S. Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. Failure data from two national databases, Nuclear Plant Reliability Data System (NPRDS) and Licensee Event Reports (LERs), as well as plant specific data were reviewed and analyzed to understand the effects of aging on the CI functions. This study provided information on the effects of aging on component failure frequency, failure modes, and failure causes. Current inspection, surveillance, and monitoring practices were also reviewed.

  17. The threshold of cortical electrical stimulation for mapping sensory and motor functional areas.

    Science.gov (United States)

    Guojun, Zhang; Duanyu, Ni; Fu, Paul; Lixin, Cai; Tao, Yu; Wei, Du; Liang, Qiao; Zhiwei, Ren

    2014-02-01

    This study aimed to investigate the threshold of cortical electrical stimulation (CES) for functional brain mapping during surgery for the treatment of rolandic epilepsy. A total of 21 patients with rolandic epilepsy who underwent surgical treatment at the Beijing Institute of Functional Neurosurgery between October 2006 and March 2008 were included in this study. Their clinical data were retrospectively collected and analyzed. The thresholds of CES for motor response, sensory response, and after discharge production along with other threshold-related factors were investigated. The thresholds (mean ± standard deviation) for motor response, sensory response, and after discharge production were 3.48 ± 0.87, 3.86 ± 1.31, and 4.84 ± 1.38 mA, respectively. The threshold for after discharge production was significantly higher than those of both the motor and sensory response (both pstimulation frequency of 50 Hz and a pulse width of 0.2 ms, the threshold of sensory and motor responses were similar, and the threshold of after discharge production was higher than that of sensory and motor response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Aging assessment of Westinghouse PWR and General Electric BWR containment isolation functions

    International Nuclear Information System (INIS)

    Lee, B.S.; Travis, R.; Grove, E.; DiBiasio, A.

    1996-03-01

    A study was performed to assess the effects of aging on the Containment Isolation (CI) functions of Westinghouse Pressurized Water Reactors and General Electric Boiling Water Reactors. This study is part of the Nuclear Plant Aging Research (NPAR) program, sponsored by the U.S. Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. Failure data from two national databases, Nuclear Plant Reliability Data System (NPRDS) and Licensee Event Reports (LERs), as well as plant specific data were reviewed and analyzed to understand the effects of aging on the CI functions. This study provided information on the effects of aging on component failure frequency, failure modes, and failure causes. Current inspection, surveillance, and monitoring practices were also reviewed

  19. A new algorithm to compute conjectured supply function equilibrium in electricity markets

    International Nuclear Information System (INIS)

    Diaz, Cristian A.; Villar, Jose; Campos, Fco Alberto; Rodriguez, M. Angel

    2011-01-01

    Several types of market equilibria approaches, such as Cournot, Conjectural Variation (CVE), Supply Function (SFE) or Conjectured Supply Function (CSFE) have been used to model electricity markets for the medium and long term. Among them, CSFE has been proposed as a generalization of the classic Cournot. It computes the equilibrium considering the reaction of the competitors against changes in their strategy, combining several characteristics of both CVE and SFE. Unlike linear SFE approaches, strategies are linearized only at the equilibrium point, using their first-order Taylor approximation. But to solve CSFE, the slope or the intercept of the linear approximations must be given, which has been proved to be very restrictive. This paper proposes a new algorithm to compute CSFE. Unlike previous approaches, the main contribution is that the competitors' strategies for each generator are initially unknown (both slope and intercept) and endogenously computed by this new iterative algorithm. To show the applicability of the proposed approach, it has been applied to several case examples where its qualitative behavior has been analyzed in detail. (author)

  20. ALTERATION OF MUSCLE FUNCTION AFTER ELECTRICAL STIMULATION BOUT OF KNEE EXTENSORS AND FLEXORS

    Directory of Open Access Journals (Sweden)

    Marc Vanderthommen

    2012-12-01

    Full Text Available The purpose was to study the effects on muscle function of an electrical stimulation bout applied unilaterally on thigh muscles in healthy male volunteers. One group (ES group, n = 10 received consecutively 100 isometric contractions of quadriceps and 100 isometric contractions of hamstrings (on-off ratio 6-6 s induced by neuromuscular electrical stimulations (NMES. Changes in muscle torque, muscle soreness (0-10 VAS, muscle stiffness and serum creatine kinase (CK activity were assessed before the NMES exercise (pre-ex as well as 24h (d+1, 48h (d+2 and 120h (d+5 after the bout. A second group (control group, n = 10 were submitted to the same test battery than the ES group and with the same time-frame. The between-group comparison indicated a significant increase in VAS scores and in serum levels of CK only in the ES group. In the ES group, changes were more pronounced in hamstrings than in quadriceps and peaked at d+2 (quadriceps VAS scores = 2.20 ± 1.55 a.u. (0 at pre-ex; hamstrings VAS scores = 3.15 ± 2.14 a.u. (0 at pre-ex; hip flexion angle = 62 ± 5° (75 ± 6° at pre-ex; CK activity = 3021 ± 2693 IU·l-1 (136 ± 50 IU·l-1 at pre-ex. The results of the present study suggested the occurrence of muscle damage that could have been induced by the peculiar muscle recruitment in NMES and the resulting overrated mechanical stress. The sensitivity to the damaging effects of NMES appeared higher in the hamstrings than in quadriceps muscles

  1. Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia.

    Science.gov (United States)

    Deley, Gaëlle; Denuziller, Jérémy; Babault, Nicolas

    2015-01-01

    Regular exercise can be broadly beneficial to health and quality of life in humans with spinal cord injury (SCI). However, exercises must meet certain criteria, such as the intensity and muscle mass involved, to induce significant benefits. SCI patients can have difficulty achieving these exercise requirements since the paralysed muscles cannot contribute to overall oxygen consumption. One solution is functional electrical stimulation (FES) and, more importantly, hybrid training that combines volitional arm and electrically controlled contractions of the lower limb muscles. However, it might be rather complicated for therapists to use FES because of the wide variety of protocols that can be employed, such as stimulation parameters or movements induced. Moreover, although the short-term physiological and psychological responses during different types of FES exercises have been extensively reported, there are fewer data regarding the long-term effects of FES. Therefore, the purpose of this brief review is to provide a critical appraisal and synthesis of the literature on the use of FES for exercise in paraplegic individuals. After a short introduction underlying the importance of exercise for SCI patients, the main applications and effects of FES are reviewed and discussed. Major findings reveal an increased physiological demand during FES hybrid exercises as compared with arms only exercises. In addition, when repeated within a training period, FES exercises showed beneficial effects on muscle characteristics, force output, exercise capacity, bone mineral density and cardiovascular parameters. In conclusion, there appears to be promising evidence of beneficial effects of FES training, and particularly FES hybrid training, for paraplegic individuals.

  2. Peripheral degenerative joint diseases

    Directory of Open Access Journals (Sweden)

    Nilzio Antonio da Silva

    2008-03-01

    Full Text Available Osteoarthritis, a degenerative joint disease, is the most commonrheumatic disorder mainly in a geriatric population. Manifestationsare pain, stiffness and functional loss in the affected joint.According to etiology it is classifi ed as primary (or idiopathicand secondary. Some risk factors for disease development aregenetics, race, age, sex, obesity, occupational activities andarticular biomechanics. Pathogenesis is the same for any cause orlocalization, being catabolic alterations, with synthesis, inhibitionand reparing intent of the cartilage matrix. Metalloproteinases andcytokines (IL-1,IL-6,TNF-α actions promote infl ammatory reactionand cartilage degradation. Pain, the most important symptom,does not correlate with radiologic fi ndings. Peripheral osteoarthritisoccurs predominantly in the knee, hip and hand. Diagnosis is basedon clinical features, laboratorial tests and radiological changes.Rheumatological associations’ guidelines for treatment includenon-pharmacologic (education, physiotherapy, assistive devices,and pharmacologic (analgesics, anti-infl ammatory drugs therapyand surgery. Arthroplasty seems to work better than medicines, butshould be used if other treatments have failed.

  3. Neural tissue engineering options for peripheral nerve regeneration.

    Science.gov (United States)

    Gu, Xiaosong; Ding, Fei; Williams, David F

    2014-08-01

    Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Reagent-Free Quantification of Aqueous Free Chlorine via Electrical Readout of Colorimetrically Functionalized Pencil Lines.

    Science.gov (United States)

    Mohtasebi, Amirmasoud; Broomfield, Andrew D; Chowdhury, Tanzina; Selvaganapathy, P Ravi; Kruse, Peter

    2017-06-21

    Colorimetric methods are commonly used to quantify free chlorine in drinking water. However, these methods are not suitable for reagent-free, continuous, and autonomous applications. Here, we demonstrate how functionalization of a pencil-drawn film with phenyl-capped aniline tetramer (PCAT) can be used for quantitative electric readout of free chlorine concentrations. The functionalized film can be implemented in a simple fluidic device for continuous sensing of aqueous free chlorine concentrations. The sensor is selective to free chlorine and can undergo a reagent-free reset for further measurements. Our sensor is superior to electrochemical methods in that it does not require a reference electrode. It is capable of quantification of free chlorine in the range of 0.1-12 ppm with higher precision than colorimetric (absorptivity) methods. The interactions of PCAT with the pencil-drawn film upon exposure to hypochlorite were characterized spectroscopically. A previously reported detection mechanism relied on the measurement of a baseline shift to quantify free chlorine concentrations. The new method demonstrated here measures initial spike size upon exposure to free chlorine. It relies on a fast charge built up on the sensor film due to intermittent PCAT salt formation. It has the advantage of being significantly faster than the measurement of baseline shift, but it cannot be used to detect gradual changes in free chlorine concentration without the use of frequent reset pulses. The stability of PCAT was examined in the presence of free chlorine as a function of pH. While most ions commonly present in drinking water do not interfere with the free chlorine detection, other oxidants may contribute to the signal. Our sensor is easy to fabricate and robust, operates reagent-free, and has very low power requirements and is thus suitable for remote deployment.

  5. Functioning of the wholesale electricity, CO2 and natural gas markets - 2013-2014 Report

    International Nuclear Information System (INIS)

    Monteil, Anne; Casadei, Cecile

    2014-11-01

    from renewable energy sources continued to increase, exceeding fossil fuel energy generation during the first half of 2014 in France. Within this context, electricity prices continued to drop, leading to the 'cocooning' of a certain number of new combined cycle power plants. The LNG market remained highly competitive in a context of significant price differences between the different world markets. Asia and South America are the most profitable markets for LNG producers, to the detriment of the European market. This situation creates difficulties for the supply of regions that depend on LNG to function properly, in particular Spain and the south of France. Nevertheless, the first half of 2014 was marked by a closer alignment of prices between the different regions, due however more to conjunctural rather than structural factors. Lastly, the end of 2013 and the first half of 2014 saw the Ukrainian crisis and uncertainty regarding the supply of gas to Europe from Russia. Supply however remained relatively stable in the first half of 2014 and no country declared any potential risks concerning its short-term supply. However, the memory of the Russian crisis in January 2009 lingered and contributed to maintaining gas prices relatively high for winter 2014/2015 even while short-term prices dropped significantly. This CRE's seventh monitoring report contains information concerning the implementation of the REMIT regulation at European level, outlines the economic and geopolitical context of energy markets and gives a detailed presentation of the development of wholesale electricity and gas markets in France in 2013 and the first half of 2014

  6. Running performance at high running velocities is impaired but V'O(₂max and peripheral endothelial function are preserved in IL-6⁻/⁻ mice.

    Directory of Open Access Journals (Sweden)

    Marta Wojewoda

    Full Text Available It has been reported that IL-6 knockout mice (IL-6⁻/⁻ possess lower endurance capacity than wild type mice (WT, however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max, decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.00±0.97 m·min⁻¹ vs. 16.89±1.15 m·min⁻¹, P<0.02, respectively. Moreover, the time to exhaustion during running at 12 m·min⁻¹ in IL-6⁻/⁻ mice was significantly shorter (P<0.05 than in WT mice. V'O(₂max in IL-6⁻/⁻ (n = 20 amounting to 108.3±2.8 ml·kg⁻¹·min⁻¹ was similar as in WT mice (n = 22 amounting to 113.0±1.8 ml·kg⁻¹·min⁻¹, (P = 0.16. No difference in maximal COX activity between the IL-6⁻/⁻ and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6⁻/⁻ mice. Surprisingly, plasma lactate concentration during running at 8 m·min⁻¹ as well at maximal running velocity in IL-6⁻/⁻ mice was significantly lower (P<0.01 than in WT mice. Interestingly, IL-6⁻/⁻ mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca²⁺-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6⁻/⁻ mice could not be explained by reduced V'O(₂max, endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance

  7. Running performance at high running velocities is impaired but V'O(₂max) and peripheral endothelial function are preserved in IL-6⁻/⁻ mice.

    Science.gov (United States)

    Wojewoda, Marta; Kmiecik, Katarzyna; Ventura-Clapier, Renée; Fortin, Dominique; Onopiuk, Marta; Jakubczyk, Justyna; Sitek, Barbara; Fedorowicz, Andrzej; Majerczak, Joanna; Kaminski, Karol; Chlopicki, Stefan; Zoladz, Jerzy Andrzej

    2014-01-01

    It has been reported that IL-6 knockout mice (IL-6⁻/⁻) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max)), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.00±0.97 m·min⁻¹ vs. 16.89±1.15 m·min⁻¹, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m·min⁻¹ in IL-6⁻/⁻ mice was significantly shorter (P<0.05) than in WT mice. V'O(₂max) in IL-6⁻/⁻ (n = 20) amounting to 108.3±2.8 ml·kg⁻¹·min⁻¹ was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml·kg⁻¹·min⁻¹, (P = 0.16). No difference in maximal COX activity between the IL-6⁻/⁻ and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6⁻/⁻ mice. Surprisingly, plasma lactate concentration during running at 8 m·min⁻¹ as well at maximal running velocity in IL-6⁻/⁻ mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6⁻/⁻ mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca²⁺-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6⁻/⁻ mice could not be explained by reduced V'O(₂max), endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance

  8. Running Performance at High Running Velocities Is Impaired but V′O2max and Peripheral Endothelial Function Are Preserved in IL-6−/− Mice

    Science.gov (United States)

    Wojewoda, Marta; Kmiecik, Katarzyna; Ventura-Clapier, Renée; Fortin, Dominique; Onopiuk, Marta; Jakubczyk, Justyna; Sitek, Barbara; Fedorowicz, Andrzej; Majerczak, Joanna; Kaminski, Karol; Chlopicki, Stefan; Zoladz, Jerzy Andrzej

    2014-01-01

    It has been reported that IL-6 knockout mice (IL-6−/−) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6−/− mice is linked to impaired maximal oxygen uptake (V′O2max), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6−/− mice than in WT mice (13.00±0.97 m.min−1 vs. 16.89±1.15 m.min−1, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m.min−1 in IL-6−/− mice was significantly shorter (P<0.05) than in WT mice. V′O2max in IL-6−/− (n = 20) amounting to 108.3±2.8 ml.kg−1.min−1 was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml.kg−1.min−1, (P = 0.16). No difference in maximal COX activity between the IL-6−/− and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6−/− mice. Surprisingly, plasma lactate concentration during running at 8 m.min−1 as well at maximal running velocity in IL-6−/− mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6−/− mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca2+-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6−/− mice could not be explained by reduced V′O2max, endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance performance. Furthermore, we

  9. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  10. A New system for Measuring Electrical Conductivity of Water as a Function of Admittance

    Directory of Open Access Journals (Sweden)

    Haval Yacoob

    2011-12-01

    Full Text Available This paper presents a new system for measuring water conductivity as a function of electrophysical property (admittance. The system is cheap and its manufacturing is easy. In addition, it dose not require any sort of electrolysis and calibration. The system consists of four electrodes made of silver (Ag 92.5 g to Cu 7.5 g fixed in a plastic tube filled by water which allows the use of two and four electrode setups. The admittance (reciprocal of impedance is measured for different water sources (distilled, rainfall, mineral, river and tap water using different frequencies between 50 Hz and 100 kHz. These measurements were taken twice, once with four electrodes and another with two electrodes of two modes (inner and outer electrodes. The results have shown good correlation between the measured admittance and the conductivity of all the water sources and the best correlation was found at low frequencies between 50 Hz and 20 kHz. The highest efficiency can be achieved by performing the four electrodes system which allows circumventing the effect of the electrode impedance. This result makes the system efficient compared to traditional conductivity meters which usually require high frequencies for good operation. doi:10.5617/jeb.203 J Electr Bioimp, vol. 2, pp. 86-92, 2011

  11. A model for the electrical double layer combining integral equation techniques with quantum density functional theory

    International Nuclear Information System (INIS)

    Luque, N.B.; Woelki, S.; Henderson, D.; Schmickler, W.

    2011-01-01

    Highlights: · We augment a double-layer model based on integral equations by calculating the interaction parameters with the electrode from quantum density functional theory · Explicit model calculations for Ag(1 1 1) in aqueous solutions give at least qualitatively good results for the particle profiles · Ours is the only method which allows the calculation of capacity-charge characteristics. · We obtain reasonable values for the Helmholtz (inner-layer) capacity. - Abstract: We have complemented the singlet reference interaction site model for the electric double layer by quantum chemical calculations for the interaction of ions and solvents with an electrode. Specific calculations have been performed for an aqueous solution of NaCl in contact with a Ag(1 1 1) electrode. The particle profiles near the electrode show the specific adsorption of Cl - ions, but not of Na + , and are at least in qualitative agreement with those obtained by molecular dynamics. Including the electronic response of the silver surface into the model results in reasonable capacity-charge characteristics.

  12. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Science.gov (United States)

    Springer, Shmuel; Vatine, Jean-Jacques; Lipson, Ronit; Wolf, Alon; Laufer, Yocheved

    2012-01-01

    The study objective was to assess the effect of functional electrical stimulation (FES) applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years) with hemiparesis (5.37 ± 5.43 years since diagnosis) demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (P hemiparesis more than peroneal FES alone. PMID:23097635

  13. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton

    Directory of Open Access Journals (Sweden)

    Dingguo Zhang

    2017-12-01

    Full Text Available Functional electrical stimulation (FES and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton. Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  14. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    Directory of Open Access Journals (Sweden)

    Shmuel Springer

    2012-01-01

    Full Text Available The study objective was to assess the effect of functional electrical stimulation (FES applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years with hemiparesis (5.37 ± 5.43 years since diagnosis demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (. In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone.

  15. Model-based imaging of cardiac electrical function in human atria

    Science.gov (United States)

    Modre, Robert; Tilg, Bernhard; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Hintringer, Florian; Roithinger, Franz

    2003-05-01

    Noninvasive imaging of electrical function in the human atria is attained by the combination of data from electrocardiographic (ECG) mapping and magnetic resonance imaging (MRI). An anatomical computer model of the individual patient is the basis for our computer-aided diagnosis of cardiac arrhythmias. Three patients suffering from Wolff-Parkinson-White syndrome, from paroxymal atrial fibrillation, and from atrial flutter underwent an electrophysiological study. After successful treatment of the cardiac arrhythmia with invasive catheter technique, pacing protocols with stimuli at several anatomical sites (coronary sinus, left and right pulmonary vein, posterior site of the right atrium, right atrial appendage) were performed. Reconstructed activation time (AT) maps were validated with catheter-based electroanatomical data, with invasively determined pacing sites, and with pacing at anatomical markers. The individual complex anatomical model of the atria of each patient in combination with a high-quality mesh optimization enables accurate AT imaging, resulting in a localization error for the estimated pacing sites within 1 cm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias.

  16. Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury.

    Science.gov (United States)

    Hesse, S; Werner, C; Bardeleben, A

    2004-06-01

    Single case studies. To describe the technique of intensive locomotor training on an electromechanical gait trainer (GT) combined with functional electrical stimulation (FES). Neurological Rehabilitation Clinic, Berlin, Germany. Four spinal cord-injured (SCI) patients, one tetraparetic, two paraparetic, and one patient with an incomplete cauda syndrome, more than 3 months postinjury, who were unable to walk at all, or with two therapists. They received 25 min of locomotor training on the GT plus FES daily for 5 weeks in addition to the regular therapy. The patients tolerated the programme well, and therapists rated the programme less strenuous compared to manually assisted treadmill training. Gait ability improved in all four patients; three patients could walk independently on the floor with the help of technical aids, and one required the help of one therapist after therapy; gait speed and endurance more than doubled, and the gastrocnemius activity increased in the patients with a central paresis. This combined technique allows intensive locomotor therapy in SCI subjects with reduced effort from the therapists. The patients' improved walking ability confirmed the potential of locomotor therapy in SCI subjects.

  17. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.

    Science.gov (United States)

    Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong

    2017-01-01

    Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.

  18. Gait phase detection from sciatic nerve recordings in functional electrical stimulation systems for foot drop correction

    International Nuclear Information System (INIS)

    Chu, Jun-Uk; Song, Kang-Il; Han, Sungmin; Suh, Jun-Kyo Francis; Choi, Kuiwon; Youn, Inchan; Lee, Soo Hyun; Kang, Ji Yoon; Hwang, Dosik

    2013-01-01

    Cutaneous afferent activities recorded by a nerve cuff electrode have been used to detect the stance phase in a functional electrical stimulation system for foot drop correction. However, the implantation procedure was difficult, as the cuff electrode had to be located on the distal branches of a multi-fascicular nerve to exclude muscle afferent and efferent activities. This paper proposes a new gait phase detection scheme that can be applied to a proximal nerve root that includes cutaneous afferent fibers as well as muscle afferent and efferent fibers. To test the feasibility of this scheme, electroneurogram (ENG) signals were measured from the rat sciatic nerve during treadmill walking at several speeds, and the signal properties of the sciatic nerve were analyzed for a comparison with kinematic data from the ankle joint. On the basis of these experiments, a wavelet packet transform was tested to define a feature vector from the sciatic ENG signals according to the gait phases. We also propose a Gaussian mixture model (GMM) classifier and investigate whether it could be used successfully to discriminate feature vectors into the stance and swing phases. In spite of no significant differences in the rectified bin-integrated values between the stance and swing phases, the sciatic ENG signals could be reliably classified using the proposed wavelet packet transform and GMM classification methods. (paper)

  19. Electromagnetic Processing of Materials Materials Processing by Using Electric and Magnetic Functions

    CERN Document Server

    Asai, Shigeo

    2012-01-01

    This book is both a course book and a monograph. In fact, it has developed from notes given to graduate course students on materials processing in the years 1989 to 2006. Electromagnetic Processing of Materials (EPM), originates from a branch of materials science and engineering developed in the 1980s as a field aiming to create new materials and/or design processes by making use of various functions which appear when applying the electric and magnetic fields to materials. It is based on transport phenomena, materials processing and magnetohydrodynamics. The first chapter briefly introduces the history, background and technology of EPM. In the second chapter, the concept of transport phenomena is concisely introduced and in the third chapter the essential part of magnetohydrodynamics is transcribed and readers are shown that the concept of transport phenomena does not only apply to heat, mass and momentum, but also magnetic field. The fourth chapter describes electromagnetic processing of electrica...

  20. Evaluation of Functional Electrical Stimulation to Assist Cycling in Four Adolescents with Spastic Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Ann Tokay Harrington

    2012-01-01

    Full Text Available Introduction. Adolescents with cerebral palsy (CP often have difficulty participating in exercise at intensities necessary to improve cardiovascular fitness. Functional electrical stimulation- (FES- assisted cycling is proposed as a form of exercise for adolescents with CP. The aims of this paper were to adapt methods and assess the feasibility of applying FES cycling technology in adolescents with CP, determine methods of performing cycling tests in adolescents with CP, and evaluate the immediate effects of FES assistance on cycling performance. Materials/Methods. Four participants (12–14 years old; GMFCS levels III-IV participated in a case-based pilot study of FES-assisted cycling in which bilateral quadriceps muscles were activated using surface electrodes. Cycling cadence, power output, and heart rate were collected. Results. FES-assisted cycling was well tolerated (n=4 and cases are presented demonstrating increased cadence (2–43 rpm, power output (19–70%, and heart rates (4-5% and decreased variability (8–13% in cycling performance when FES was applied, compared to volitional cycling without FES assistance. Some participants (n=2 required the use of an auxiliary hub motor for assistance. Conclusions. FES-assisted cycling is feasible for individuals with CP and may lead to immediate improvements in cycling performance. Future work will examine the potential for long-term fitness gains using this intervention.

  1. Early Poststroke Rehabilitation Using a Robotic Tilt-Table Stepper and Functional Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Alexey N. Kuznetsov

    2013-01-01

    Full Text Available Background. Stroke frequently leaves survivors with hemiparesis. To prevent persistent deficits, rehabilitation may be more effective if started early. Early training is often limited because of orthostatic reactions. Tilt-table stepping robots and functional electrical stimulation (FES may prevent these reactions. Objective. This controlled convenience sample study compares safety and feasibility of robotic tilt-table training plus FES (ROBO-FES and robotic tilt-table training (ROBO against tilt-table training alone (control. A preliminary assessment of efficacy is performed. Methods. Hemiparetic ischemic stroke survivors (age years, days after stroke were assigned to 30 days of ROBO-FES (, ROBO (, or control ( in addition to conventional physical therapy. Impedance cardiography and transcranial doppler sonography were performed before, during, and after training. Hemiparesis was assessed using the British Medical Research Council (MRC strength scale. Results. No serious adverse events occurred; 8 patients in the tilt-table group prematurely quit the study because of orthostatic reactions. Blood pressure and CBFV dipped % during robot training. In 52% of controls mean arterial pressure decreased by %. ROBO-FES increased leg strength by points, ROBO by more than control (, . CBFV increased in both robotic groups more than in controls (. Conclusions. Robotic tilt-table exercise with or without FES is safe and may be more effective in improving leg strength and cerebral blood flow than tilt table alone.

  2. Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors

    Directory of Open Access Journals (Sweden)

    Jong-in Hahm

    2011-03-01

    Full Text Available The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered.

  3. Non parametric forecasting of functional-valued processes: application to the electricity load

    International Nuclear Information System (INIS)

    Cugliari, J.

    2011-01-01

    This thesis addresses the problem of predicting a functional valued stochastic process. We first explore the model proposed by Antoniadis et al. (2006) in the context of a practical application -the french electrical power demand- where the hypothesis of stationarity may fail. The departure from stationarity is twofold: an evolving mean level and the existence of groups that may be seen as classes of stationarity. We explore some corrections that enhance the prediction performance. The corrections aim to take into account the presence of these nonstationary features. In particular, to handle the existence of groups, we constraint the model to use only the data that belongs to the same group of the last available data. If one knows the grouping, a simple post-treatment suffices to obtain better prediction performances. If the grouping is unknown, we propose it from data using clustering analysis. The infinite dimension of the not necessarily stationary trajectories have to be taken into account by the clustering algorithm. We propose two strategies for this, both based on wavelet transforms. The first one uses a feature extraction approach through the Discrete Wavelet Transform combined with a feature selection algorithm to select the significant features to be used in a classical clustering algorithm. The second approach clusters directly the functions by means of a dissimilarity measure of the Continuous Wavelet spectra.The third part of thesis is dedicated to explore an alternative prediction model that incorporates exogenous information. For this purpose we use the framework given by the Autoregressive Hilbertian processes. We propose a new class of processes that we call Conditional Autoregressive Hilbertian (carh) and develop the equivalent of projection and resolvent classes of estimators to predict such processes. (author)

  4. Seismic functional qualification of active mechanical and electrical components based on shaking table testing

    International Nuclear Information System (INIS)

    Jurukovski, D.

    1999-01-01

    The seismic testing for qualification of one sample of the NPP Kozloduy Control Panel type YKTC was carried out under Research Contract no: 8008/Rl, entitled: 'Seismic Functional Qualification of Active Mechanical and Electrical Components Based on Shaking Table Testing'. The tested specimen was selected by the Kozloduy NPP staff, Section 'TIA-2' (Technical Instrumentation and Automatics), however the seismic input parameters were selected by the NPP Kozloduy staff, Section HTS and SC (Hydro-Technical Systems and Engineering Structures). The applied methodology was developed by the Institute of Earthquake Engineering and Engineering Seismology staff. This report presents all relevant items related to the selected specimen seismic testing for seismic qualification such as: description of the tested specimen, mounting conditions on the shaking table, selection of seismic input parameters and creation of seismic excitations, description of the testing equipment, explanation of the applied methodology, 'on line' and 'off line' monitoring of the tested specimen, functioning capabilities, discussion of the results and their presentation and finally conclusions and recommendations. In this partial project report, two items are presented. The first item presents a review of the existing and used regulations for performing of the seismic and vibratory withstand testing of electro-mechanical equipment. The selection is made based on MEA, IEEE, IEC and former Soviet Union regulations. The second item presents the abstracts of all the tests performed at the Institute of Earthquake Engineering and Engineering Seismology in Skopje. The selected regulations, the experience of the Institute that has been gathered for the last seventeen years and some theoretical and experimental research will be the basis for further investigations for development of a synthesised methodology for seismic qualification of differently categorized equipment for nuclear power plants

  5. The point-spread function measure of resolution for the 3-D electrical resistivity experiment

    Science.gov (United States)

    Oldenborger, Greg A.; Routh, Partha S.

    2009-02-01

    The solution appraisal component of the inverse problem involves investigation of the relationship between our estimated model and the actual model. However, full appraisal is difficult for large 3-D problems such as electrical resistivity tomography (ERT). We tackle the appraisal problem for 3-D ERT via the point-spread functions (PSFs) of the linearized resolution matrix. The PSFs represent the impulse response of the inverse solution and quantify our parameter-specific resolving capability. We implement an iterative least-squares solution of the PSF for the ERT experiment, using on-the-fly calculation of the sensitivity via an adjoint integral equation with stored Green's functions and subgrid reduction. For a synthetic example, analysis of individual PSFs demonstrates the truly 3-D character of the resolution. The PSFs for the ERT experiment are Gaussian-like in shape, with directional asymmetry and significant off-diagonal features. Computation of attributes representative of the blurring and localization of the PSF reveal significant spatial dependence of the resolution with some correlation to the electrode infrastructure. Application to a time-lapse ground-water monitoring experiment demonstrates the utility of the PSF for assessing feature discrimination, predicting artefacts and identifying model dependence of resolution. For a judicious selection of model parameters, we analyse the PSFs and their attributes to quantify the case-specific localized resolving capability and its variability over regions of interest. We observe approximate interborehole resolving capability of less than 1-1.5m in the vertical direction and less than 1-2.5m in the horizontal direction. Resolving capability deteriorates significantly outside the electrode infrastructure.

  6. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    Science.gov (United States)

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Asymptotic behavior of correlation functions for electric potential and field fluctuations in a classical one-component plasma

    NARCIS (Netherlands)

    Suttorp, L.G.

    1992-01-01

    The correlations of the electric potential fluctuations in a classical one-component plasma are studied for large distances between the observation points. The two-point correlation function for these fluctuations is known to decay slowly for large distances, even if exponential clustering holds for

  8. Analysis Of Functional Stability Of The Triphased Asynchronous Generator Used In Conversion Systems Of A Eolian Energy Into Electric Energy

    Directory of Open Access Journals (Sweden)

    Ion VONCILA

    2003-12-01

    Full Text Available This paper presents a study of the influence of the main perturbation agent over the functional stability of the triphased asynchronous generator (for the two alternative: with coiled and short circuit rotor, used for the conversion systems from a eolian energy into electric energy.

  9. Gait training assisted by multi-channel functional electrical stimulation early after stroke: study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    van Bloemendaal, Maijke; Bus, Sicco A.; de Boer, Charlotte E.; Nollet, Frans; Geurts, Alexander C. H.; Beelen, Anita

    2016-01-01

    Many stroke survivors suffer from paresis of lower limb muscles, resulting in compensatory gait patterns characterised by asymmetries in spatial and temporal parameters and reduced walking capacity. Functional electrical stimulation has been used to improve walking capacity, but evidence is mostly

  10. Effects of preoperative neuromuscular electrical stimulation on quadriceps strength and functional recovery in total knee arthroplasty. A pilot study.

    LENUS (Irish Health Repository)

    Walls, Raymond J

    2010-01-01

    Supervised preoperative muscle strengthening programmes (prehabilitation) can improve recovery after total joint arthroplasty but are considered resource intensive. Neuromuscular electrical stimulation (NMES) has been shown to improve quadriceps femoris muscle (QFM) strength and clinical function in subjects with knee osteoarthritis (OA) however it has not been previously investigated as a prehabilitation modality.

  11. Suitability of the double Langevin function for description of anhysteretic magnetization curves in NO and GO electrical steel grades

    Directory of Open Access Journals (Sweden)

    Simon Steentjes

    2017-05-01

    Full Text Available This paper compares the match obtained using the classical Langevin function, the tanh function as well as a recently by the authors proposed double Langevin function with the measured anhysteretic magnetization curve of three different non-oriented electrical steel grades and one grain-oriented grade. Two standard non-oriented grades and a high-silicon grade (Si content of 6.5% made by CVD are analyzed. An excellent match is obtained using the double Langevin function, whereas the classical solutions are less appropriate. Thereby, problems such as those due to propagation of approximation errors observed in hysteresis modeling can be bypassed.

  12. Conducting polymer scaffolds for electrical control of cellular functions (Conference Presentation)

    Science.gov (United States)

    Inal, Sahika; Wan, Alwin M.; Williams, Tiffany V.; Giannelis, Emmanuel P.; Fischbach-Teschl, Claudia; Gourdon, Delphine; Owens, Róisín. M.; Malliaras, George G.

    2016-09-01

    Considering the limited physiological relevance of 2D cell culture experiments, significant effort was devoted to the development of materials that could more accurately recreate the in vivo cellular microenvironment, and support 3D cell cultures in vitro. (1) One such class of materials is conducting polymers, which are promising due to their compliant mechanical properties, compatibility with biological systems, mixed electrical and ionic conductivity, and ability to form porous structures. (2) In this work, we report the fabrication of a single component, macroporous scaffold made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. (3) PEDOT:PSS scaffolds offer tunable pore size, morphology and shape through facile changes in preparation conditions, and are capable of supporting 3D cell cultures due to their biocompatibility and tissue-like elasticity. Moreover, these materials are functional: they exhibit excellent electrochemical switching behavior and significantly lower impedance compared to films. Their electrochemical activity enables their use in the active channel of a state of the art diagnostic tool in the field of bioelectronics, i.e., the organic electrochemical transistor (OECT). The inclusion of cells within the porous architecture affects the impedance of the electrically-conducting polymer network and, thus, may be used as a method to quantify cell growth. The adhesion and pro-angiogenic secretions of mouse fibroblasts cultured within the scaffolds can be controlled by switching the electrochemical state of the polymer prior to cell-seeding. In summary, these smart materials hold promise not only as extracellular matrix-mimicking structures for cell culture, but also as high-performance bioelectronic tools for diagnostic and signaling applications. References [1] M. Holzwarth, P. X. Ma, Journal of Materials Chemistry, 21, 10243-10251 (2011). [2] L. H. Jimison, J. Rivnay, R. M. Owens, in Organic

  13. Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement

    Directory of Open Access Journals (Sweden)

    King Christine E

    2011-08-01

    Full Text Available Abstract Background Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG-based BCI with a noninvasive functional electrical stimulation (FES system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. Methods A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Results Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77 with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions, and one subject had a single false alarm. Conclusions This study suggests that the integration of a noninvasive BCI with a lower

  14. Brain-computer interface controlled functional electrical stimulation system for ankle movement.

    Science.gov (United States)

    Do, An H; Wang, Po T; King, Christine E; Abiri, Ahmad; Nenadic, Zoran

    2011-08-26

    Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications

  15. Electrical Grid Conditioning For First NPP Integration, a Systems Engineering Approach Incorporating Quality Function Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Pwani, Henry; James, J. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    Nuclear power plant has a high potential to cause serious harm to environment as evidenced by effects of Fukushima and Chernobyl accidents. A reliable electrical power is required for a NPP to facilitate cooling after a shutdown. Failure of electrical power supply during shutdown increases core damage probability. Research shows that a total of 39% of LOOP related events in US are electrical grid centered. In Korea, 38% and 29% of all events that led to NPP shutdown at Hanul units 3-6 and at Hanbit units 3-6 respectively were electrical related. Electric grids for both operating and new NPPs must therefore be examined and upgraded for reliability improvement in order to enhance NPP safety.

  16. Beauty and cuteness in peripheral vision

    Science.gov (United States)

    Kuraguchi, Kana; Ashida, Hiroshi

    2015-01-01

    Guo et al. (2011) showed that attractiveness was detectable in peripheral vision. Since there are different types of attractiveness (Rhodes, 2006), we investigated how beauty and cuteness are detected in peripheral vision with a brief presentation. Participants (n = 45) observed two Japanese female faces for 100 ms, then were asked to respond which face was more beautiful (or cuter). The results indicated that both beauty and cuteness were detectable in peripheral vision, but not in the same manner. Discrimination rates for judging beauty were invariant in peripheral and central vision, while discrimination rates for judging cuteness declined in peripheral vision as compared with central vision. This was not explained by lower resolution in peripheral vision. In addition, for male participants, it was more difficult to judge cuteness than beauty in peripheral vision, thus suggesting that gender differences can have a certain effect when judging cuteness. Therefore, central vision might be suitable for judging cuteness while judging beauty might not be affected by either central or peripheral vision. This might be related with the functional difference between beauty and cuteness. PMID:25999883

  17. Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

    Science.gov (United States)

    Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.

    2018-01-01

    Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

  18. Functional near-infrared spectroscopy to probe sensorimotor region activation during electrical stimulation-evoked movement.

    Science.gov (United States)

    Muthalib, Makii; Ferrari, Marco; Quaresima, Valentina; Kerr, Graham; Perrey, Stephane

    2017-11-07

    This study used non-invasive functional near-infrared spectroscopy (fNIRS) neuroimaging to monitor bilateral sensorimotor region activation during unilateral voluntary (VOL) and neuromuscular electrical stimulation (NMES)-evoked movements. In eight healthy male volunteers, fNIRS was used to measure relative changes in oxyhaemoglobin (O 2 Hb) and deoxyhaemoglobin (HHb) concentrations from a cortical sensorimotor region of interest in the left (LH) and right (RH) hemispheres during NMES-evoked and VOL wrist extension movements of the right arm. NMES-evoked movements induced significantly greater activation (increase in O 2 Hb and concomitant decrease in HHb) in the contralateral LH than in the ipsilateral RH (O 2 Hb: 0·44 ± 0·16 μM and 0·25 ± 0·22 μM, P = 0·017; HHb: -0·19 ± 0·10 μM and -0·12 ± 0·09 μM, P = 0·036, respectively) as did VOL movements (0·51 ± 0·24 μΜ and 0·34 ± 0·21 μM, P = 0·031; HHb: -0·18 ± 0·07 μΜ and -0·12 ± 0·04 μΜ, P = 0·05, respectively). There was no significant difference between conditions for O 2 Hb (P = 0·144) and HHb (P = 0·958). fNIRS neuroimaging enables quantification of bilateral sensorimotor regional activation profiles during voluntary and NMES-evoked wrist extension movements. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. NRC Information No. 91-29: Deficiencies identified during electrical distribution system functional inspections

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    During multidisciplinary inspections, the US Nuclear Regulatory Commission (NRC) has identified many deficiencies related to the electrical distribution system. To address these deficiencies, the NRC has developed an inspection to specifically evaluate the electrical distribution system. During the last year, the NRC completed eight EDSFIs, performing at least one in each of the several common deficiencies in the licensees' programs and in the electrical distribution systems as designed and configured at each plant. These deficiencies included inadequate ac voltages at the 480 Vac and 120 Vac distribution levels, inadequate procedures to test circuit breakers, and inadequate determinations and evaluations of setpoints

  20. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  1. Vasculitic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Mona Amini

    2014-02-01

    Full Text Available Primary systemic vasculitis in pre-capillary arteries is associated with peripheral neuropathy. In some types of systematic vasculitis about 60 % of patients have peripheral nervous system (PNS involvement. In vasculitic peripheral neuropathies (VPN a necrotizing and inflammatory process leads to narrowing of vasa nervorum lumen and eventually the appearance of ischemic lesions in peripheral nerves. Some features might be suggestive of VPN, like: axonal nerve degeneration, wallerian-like degeneration, and diameter irregularity of nerve. Peripheral nervous system (PNS destruction during systemic vasculitides should be considered, due to its frequency and early occurrence in vasculitis progression. The first line treatment of non systematic VPNs is corticosteroid agents, but these drugs might worsen the VPNs or systemic vasculitis.

  2. Optical stimulation of peripheral nerves in vivo

    Science.gov (United States)

    Wells, Jonathon D.

    This dissertation documents the emergence and validation of a new clinical tool that bridges the fields of biomedical optics and neuroscience. The research herein describes an innovative method for direct neurostimulation with pulsed infrared laser light. Safety and effectiveness of this technique are first demonstrated through functional stimulation of the rat sciatic nerve in vivo. The Holmium:YAG laser (lambda = 2.12 mum) is shown to operate at an optimal wavelength for peripheral nerve stimulation with advantages over standard electrical neural stimulation; including contact-free stimulation, high spatial selectivity, and lack of a stimulation artifact. The underlying biophysical mechanism responsible for transient optical nerve stimulation appears to be a small, absorption driven thermal gradient sustained at the axonal layer of nerve. Results explicitly prove that low frequency optical stimulation can reliably stimulate without resulting in tissue thermal damage. Based on the positive results from animal studies, these optimal laser parameters were utilized to move this research into the clinic with a combined safety and efficacy study in human subjects undergoing selective dorsal rhizotomy. The clinical Holmium:YAG laser was used to effectively stimulate human dorsal spinal roots and elicit functional muscle responses recorded during surgery without evidence of nerve damage. Overall these results predict that this technology can be a valuable clinical tool in various neurosurgical applications.

  3. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    Science.gov (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Peripheral myelin protein 22 alters membrane architecture

    Science.gov (United States)

    Mittendorf, Kathleen F.; Marinko, Justin T.; Hampton, Cheri M.; Ke, Zunlong; Hadziselimovic, Arina; Schlebach, Jonathan P.; Law, Cheryl L.; Li, Jun; Wright, Elizabeth R.; Sanders, Charles R.; Ohi, Melanie D.

    2017-01-01

    Peripheral myelin protein 22 (PMP22) is highly expressed in myelinating Schwann cells of the peripheral nervous system. PMP22 genetic alterations cause the most common forms of Charcot-Marie-Tooth disease (CMTD), which is characterized by severe dysmyelination in the peripheral nerves. However, the functions of PMP22 in Schwann cell membranes remain unclear. We demonstrate that reconstitution of purified PMP22 into lipid vesicles results in the formation of compressed and cylindrically wrapped protein-lipid vesicles that share common organizational traits with compact myelin of peripheral nerves in vivo. The formation of these myelin-like assemblies depends on the lipid-to-PMP22 ratio, as well as on the PMP22 extracellular loops. Formation of the myelin-like assemblies is disrupted by a CMTD-causing mutation. This study provides both a biochemical assay for PMP22 function and evidence that PMP22 directly contributes to membrane organization in compact myelin. PMID:28695207

  5. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation.

    Science.gov (United States)

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the "electrical agonist-antagonist muscle ratio (EAA ratio)" and "electrical agonist-antagonist muscle activity (EAA activity)" in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  6. Synthesis of polypyrrole nanowires with positive effect on MC3T3-E1 cell functions through electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    He, Yuan; Wang, Shihui [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); Mu, Jing, E-mail: mujing@picb.ac.cn [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031 (China); Dai, Lingfeng [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); Zhang, Zhong [Department of Stomatology, The Affiliated Zhongshan Hospital of Xiamen University, Xiamen 361005 (China); Sun, Yanan; Shi, Wei [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China); Ge, Dongtao, E-mail: gedt@xmu.edu.cn [Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005 (China)

    2017-02-01

    Conducting polymer polypyrrole (PPy) possesses good biocompatibility and conductivity and has been used as functional coatings in bone tissue regeneration. In this study, a cholic acid doped PPy nanowires (PPy NWs) coating was electrochemically polymerized on the surface of titanium (Ti). The porous intertwined PPy NWs coating exhibited excellent electrical conductivity and electrochemical activity, better hydrophilicity and higher surface energy. In vitro cell experiments demonstrated that the PPy NWs coating together with a 10 μA substrate-mediate electrical stimulation (ES) was capable to positive regulate the functions of MC3T3-E1 such as cell adhesion, proliferation and differentiation. Further long-term functions of cell tests including alkaline phosphatase (ALP) activity, bone-carboxyglutamic acid-containing protein (BGP) and calcium deposition were all thoroughly increased. These confirmed that the combination of PPy NWs and ES could accelerate MC3T3-E1 cells mature and osteogenesis. Hence, the PPy NWs coating was an electro bioactive coating and may have potential applications in the treatment of bone damage repairing and regeneration with ES. - Highlights: • The porous PPy nanowire coating was electrochemically polymerized on Ti. • PPy NWs had good electrical conductivity, electrochemical stability and hydrophilicity. • Pure PPy NWs with ES could obviously promote the growth and cell functions of MC3T3-E1.

  7. Synthesis of polypyrrole nanowires with positive effect on MC3T3-E1 cell functions through electrical stimulation

    International Nuclear Information System (INIS)

    He, Yuan; Wang, Shihui; Mu, Jing; Dai, Lingfeng; Zhang, Zhong; Sun, Yanan; Shi, Wei; Ge, Dongtao

    2017-01-01

    Conducting polymer polypyrrole (PPy) possesses good biocompatibility and conductivity and has been used as functional coatings in bone tissue regeneration. In this study, a cholic acid doped PPy nanowires (PPy NWs) coating was electrochemically polymerized on the surface of titanium (Ti). The porous intertwined PPy NWs coating exhibited excellent electrical conductivity and electrochemical activity, better hydrophilicity and higher surface energy. In vitro cell experiments demonstrated that the PPy NWs coating together with a 10 μA substrate-mediate electrical stimulation (ES) was capable to positive regulate the functions of MC3T3-E1 such as cell adhesion, proliferation and differentiation. Further long-term functions of cell tests including alkaline phosphatase (ALP) activity, bone-carboxyglutamic acid-containing protein (BGP) and calcium deposition were all thoroughly increased. These confirmed that the combination of PPy NWs and ES could accelerate MC3T3-E1 cells mature and osteogenesis. Hence, the PPy NWs coating was an electro bioactive coating and may have potential applications in the treatment of bone damage repairing and regeneration with ES. - Highlights: • The porous PPy nanowire coating was electrochemically polymerized on Ti. • PPy NWs had good electrical conductivity, electrochemical stability and hydrophilicity. • Pure PPy NWs with ES could obviously promote the growth and cell functions of MC3T3-E1.

  8. Generic functional modelling of multi-pulse auto-transformer rectifier units for more-electric aircraft applications

    Directory of Open Access Journals (Sweden)

    Tao YANG

    2018-05-01

    Full Text Available The Auto-Transformer Rectifier Unit (ATRU is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced kVA ratings. Indeed, the ATRU has become a preferred AC/DC solution to supply power to the electric environment control system on-board future aircraft. In this paper, a general modelling method for ATRUs is introduced. The developed model is based on the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs. In this paper, we carry on our research in modelling symmetric 18-pulse ATRUs and develop a generic modelling technique. The developed generic model can study not only symmetric but also asymmetric ATRUs. An 18-pulse asymmetric ATRU is used to demonstrate the accuracy and efficiency of the developed model by comparing with corresponding detailed switching SABER models provided by our industrial partner. The functional models also allow accelerated and accurate simulations and thus enable whole-scale more-electric aircraft electrical power system studies in the future. Keywords: Asymmetric transformer, Functional modelling, More-Electric Aircraft, Multi-pulse rectifier, Transformer rectifier unit

  9. [Continuous improvement of portable domestic pelvic floor neuromuscular electrical stimulation on the pelvic floor function of patients with urinary incontinence].

    Science.gov (United States)

    Sun, Zhijing; Zhu, Lan; Lang, Jinghe; Wang, Wei; Shi, Honghui; Pang, Hongxia; Shi, Xinwen

    2015-12-01

    To evaluate continuous improvement of portable domestic pelvic floor neuromuscular electrical stimulation on the pelvic floor function of patients with stress urinary incontinence after short-term pelvic floor electrophysiological treatment in hospital. Totally 60 women with stress urinary incontinence were recruited for this randomized controlled trial. The control group including a total of 30 patients, only received 4 weeks pelvic floor electrophysiological treatment in the hospital. Family consolidation treatment group (experimental group) including 30 patients, after 4-week treatment in hospital, received 12-week of pelvic floor neuromuscular electrical stimulation using portable electrical stimulator at home under the guidance of doctors. In post-treatment 6 months and 9 months, 1-hour pad test was measured for urine leakage, pelvic floor electrical physiological parameters were assessed, and subjective improvement of symptoms of urinary incontinence were evaluated. All these data were analysed to compare the effect of the two groups. In 9 months after treatment, average change of urine leakage, the control group and experiment group were (75±24)% versus (99±3)%, the difference was statistically significant (Pcontinuous improvement of pelvic floor function.

  10. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, Flyura, E-mail: flyura.djurabekova@helsinki.fi; Ruzibaev, Avaz; Parviainen, Stefan [Helsinki Institute of Physics and Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Holmström, Eero [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Department of Earth Sciences, Faculty of Maths and Physical Sciences, UCL Earth Sciences, Gower Street, London WC1E 6BT (United Kingdom); Hakala, Mikko [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland)

    2013-12-28

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from −1 V/nm up to −2 V/nm (−1 to −2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms.

  11. Transcriptome Profiling of Peripheral Blood in 22q11.2 Deletion Syndrome Reveals Functional Pathways Related to Psychosis and Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Maria Jalbrzikowski

    Full Text Available 22q11.2 Deletion Syndrome (22q11DS represents one of the greatest known genetic risk factors for the development of psychotic illness, and is also associated with high rates of autistic spectrum disorders (ASD in childhood. We performed integrated genomic analyses of 22q11DS to identify genes and pathways related to specific phenotypes.We used a high-resolution aCGH array to precisely characterize deletion breakpoints. Using peripheral blood, we examined differential expression (DE and networks of co-expressed genes related to phenotypic variation within 22q11DS patients. Whole-genome transcriptional profiling was performed using Illumina Human HT-12 microarrays. Data mining techniques were used to validate our results against independent samples of both peripheral blood and brain tissue from idiopathic psychosis and ASD cases.Eighty-five percent of 22q11DS individuals (N = 39 carried the typical 3 Mb deletion, with significant variability in deletion characteristics in the remainder of the sample (N = 7. DE analysis and weighted gene co-expression network analysis (WGCNA identified expression changes related to psychotic symptoms in patients, including a module of co-expressed genes which was associated with psychosis in 22q11DS and involved in pathways associated with transcriptional regulation. This module was enriched for brain-expressed genes, was not related to antipsychotic medication use, and significantly overlapped with transcriptional changes in idiopathic schizophrenia. In 22q11DS-ASD, both DE and WGCNA analyses implicated dysregulation of immune response pathways. The ASD-associated module showed significant overlap with genes previously associated with idiopathic ASD.These findings further support the use of peripheral tissue in the study of major mutational models of diseases affecting the brain, and point towards specific pathways dysregulated in 22q11DS carriers with psychosis and ASD.

  12. Passive Scalar Evolution in Peripheral Region

    OpenAIRE

    Lebedev, V. V.; Turitsyn, K. S.

    2003-01-01

    We consider evolution of a passive scalar (concentration of pollutants or temperature) in a chaotic (turbulent) flow. A universal asymptotic behavior of the passive scalar decay (homogenization) related to peripheral regions (near walls) is established. The passive scalar moments and its pair correlation function in the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a pipe.

  13. Donating Peripheral Blood Stem Cells

    Science.gov (United States)

    ... Print this page My Cart Donating peripheral blood stem cells Peripheral blood stem cell (PBSC) donation is a nonsurgical procedure to collect ... Donating bone marrow Donor experiences videos Peripheral blood stem cell (PBSC) donation is one of two methods of ...

  14. Peripheral Neuropathy: Symptoms and Signs

    Science.gov (United States)

    ... Utah Research News Make a Difference Symptoms of Peripheral Neuropathy Print This Page Peripheral Neuropathy symptoms usually start ... more slowly over many years. The symptoms of peripheral neuropathy often include: A sensation of wearing an invisible “ ...

  15. Control of thumb force using surface functional electrical stimulation and muscle load sharing

    Science.gov (United States)

    2013-01-01

    Background Stroke survivors often have difficulties in manipulating objects with their affected hand. Thumb control plays an important role in object manipulation. Surface functional electrical stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and a single force direction. Methods Five able bodied subjects and five stroke subjects were strapped in a custom built setup. The forces perpendicular to the thumb in response to FES applied to three thumb muscles were measured. We evaluated the feasibility of using recruitment curve based force vector maps in predicting output forces. In addition, we developed a closed loop force controller. Load sharing between the three muscles was used to solve the redundancy problem having three actuators to control forces in two dimensions. The thumb force was controlled towards target forces of 0.5 N and 1.0 N in multiple directions within the individual’s thumb work space. Hereby, the possibilities to use these force vector maps and the load sharing approach in feed forward and feedback force control were explored. Results The force vector prediction of the obtained model had small RMS errors with respect to the actual measured force vectors (0.22±0.17 N for the healthy subjects; 0.17±0.13 N for the stroke subjects). The stroke subjects showed a limited work range due to limited force production of the individual muscles. Performance of feed forward control without feedback, was better in healthy subjects than in stroke subjects. However, when feedback control was added performances were similar between the two groups. Feedback force control lead, especially for the stroke subjects, to a reduction in stationary errors, which improved performance. Conclusions Thumb muscle responses to FES can be described by a single force direction and a sigmoidal recruitment curve. Force in desired direction can be

  16. Computer Simulation Tests of Feedback Error Learning Controller with IDM and ISM for Functional Electrical Stimulation in Wrist Joint Control

    OpenAIRE

    Watanabe, Takashi; Sugi, Yoshihiro

    2010-01-01

    Feedforward controller would be useful for hybrid Functional Electrical Stimulation (FES) system using powered orthotic devices. In this paper, Feedback Error Learning (FEL) controller for FES (FEL-FES controller) was examined using an inverse statics model (ISM) with an inverse dynamics model (IDM) to realize a feedforward FES controller. For FES application, the ISM was tested in learning off line using training data obtained by PID control of very slow movements. Computer simulation tests ...

  17. Transfer function of multimode fiber links using an electric field propagation model: Application to Radio over Fibre Systems.

    Science.gov (United States)

    Gasulla, I; Capmany, J

    2006-10-02

    We present a closed-form expression for the evaluation of the transfer function of a multimode fiber (MMF) link based on the electric field propagation model. After validating the result we investigate the potential for broadband transmission in regions far from baseband. We find that MMFs offer the potential for broadband ROF transmission in the microwave and millimetre wave regions in short and middle reach distances.

  18. Changes in Cardiopulmonary Reserve and Peripheral Arterial Function Concomitantly with Subclinical Inflammation and Oxidative Stress in Patients with Heart Failure with Preserved Ejection Fraction

    Directory of Open Access Journals (Sweden)

    Damien Vitiello

    2014-01-01

    Full Text Available Background. Changes in cardiopulmonary reserve and biomarkers related to wall stress, inflammation, and oxidative stress concomitantly with the evaluation of peripheral arterial blood flow have not been investigated in patients with heart failure with preserved ejection fraction (HFpEF compared with healthy subjects (CTL. Methods and Results. Eighteen HFpEF patients and 14 CTL were recruited. Plasma levels of inflammatory and oxidative stress biomarkers were measured at rest. Brain natriuretic peptide (BNP was measured at rest and peak exercise. Cardiopulmonary reserve was assessed using an exercise protocol with gas exchange analyses. Peripheral arterial blood flow was determined by strain gauge plethysmography. Peak VO2 (12.0±0.4 versus 19.1±1.1 mL/min/kg, P<0.001 and oxygen uptake efficiency slope (1.55±0.12 versus 2.06±0.14, P<0.05 were significantly decreased in HFpEF patients compared with CTL. BNP at rest and following stress, C-reactive-protein, interleukin-6, and TBARS were significantly elevated in HFpEF. Both basal and posthyperemic arterial blood flow were not significantly different between the HFpEF patients and CTL. Conclusions. HFpEF exhibits a severe reduction in cardiopulmonary reserve and oxygen uptake efficiency concomitantly with an elevation in a broad spectrum of biomarkers confirming an inflammatory and prooxidative status in patients with HFpEF.

  19. Ionization measurement as a function of the electric field in tetramethyl-silane (TMS)

    International Nuclear Information System (INIS)

    Daba, A.G.

    1992-07-01

    The WALIC collaboration has built a calorimeter prototype using the tetramethyl-pentane (TMP) as active medium and lead as absorber medium in order to study the response of electrons and hadrons. The aim of this work is to study the response of tetramethyl-silane to high electric fields knowing that TMP and TMS have similar properties and similar behaviour with electric field. A test bench is mounted to measure the charge deposited by electrons emitted by a ruthenium source. The trigger was made using a silicon detector. Low noise amplifiers were designed and built for the signal conditioning and in order to reduce the pick-up noise, the system is completely isolated in a double Faraday cage. A theoretical study of noise has been developed. The signal allowed to study the behaviour of warm liquid in presence of a high electric field

  20. French retail electricity and gas markets functioning - 2012-2013 report

    International Nuclear Information System (INIS)

    2014-01-01

    French retail electricity and gas markets are still progressively opening to competition. Competition dynamics, even if more limited on the electricity market, is changing in a favorable way. These changes reflect the development of more competitive market offers with respect to regulated sales tariffs in both energies, as well as a better knowledge of these markets by end-users. In this context of retail markets development, the Energy Regulatory Commission (CRE) pays more and more attention to the monitoring of actors behaviour, in particular in the domain of price and offer transparency. This activity is going to become reinforced in the future with the scheduled disappearance of regulated sales tariffs. This report presents the situation of the French retail electricity and gas markets by December 31, 2012 (supplies, offers and prices), with a comparison with other European countries (Germany, UK, Belgium)

  1. Electric behavior of functional glasses based on TeO2

    International Nuclear Information System (INIS)

    Terny, S.; Rubia, M. a. de la; Barolin, S.; Alonso, R. E.; Frutos, J. de; Frechero, M. A.

    2014-01-01

    In this paper we study the structural and electrical behavior of glass-ceramic material of general formula: xMgO (1-x) (0.5V 2 O 5 .0.5MoO 3 )2TeO 2 (0≤ x≤0.9) through measurements of density, molar volume, oxygen packing density (OPD), differential scanning calorimetry (DSC) and Raman spectroscopy: electric behavior was studied by impedance spectroscopy. We found that magnesium cation induces the growth of slightly crystallized areas inside the material. Those nanocrystallizations were detected to a greater extent by atomic force microscopy (AFM) and in lesser extent by X-ray diffraction (XRD). Regarding the electrical measurements, it can be established that magnesium cation does not act as good ionic conductor in this material. (Author)

  2. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Subretinal electrical stimulation preserves inner retinal function in RCS rat retina.

    Science.gov (United States)

    Ciavatta, Vincent T; Mocko, Julie A; Kim, Moon K; Pardue, Machelle T

    2013-01-01

    Previously, studies showed that subretinal electrical stimulation (SES) from a microphotodiode array (MPA) preserves electroretinography (ERG) b-wave amplitude and regional retinal structure in the Royal College of Surgeons (RCS) rat and simultaneously upregulates Fgf2 expression. This preservation appears to be associated with the increased current produced when the MPA is exposed to ERG test flashes, as weekly ERG testing produces greater neuroprotection than biweekly or no testing. Using an infrared source to stimulate the MPA while avoiding potential confounding effects from exposing the RCS retina to high luminance white light, this study examined whether neuroprotective effects from SES increased with subretinal current in a dose-dependent manner. RCS rats (n=49) underwent subretinal implantation surgery at P21 with MPA devices in one randomly selected eye, and the other eye served as the control. Naïve RCS rats (n=25) were also studied. To increase SES current levels, implanted eyes were exposed to 15 min per session of flashing infrared light (IR) of defined intensity, frequency, and duty cycle. Rats were divided into four SES groups that received ERG testing only (MPA only), about 450 µA/cm2 once per week (Low 1X), about 450 µA/cm2 three times per week (Low 3X), and about 1350 µA/cm2 once per week (High 1X). One eye of the control animals was randomly chosen for IR exposure. All animals were followed for 4 weeks with weekly binocular ERGs. A subset of the eyes was used to measure retina Fgf2 expression with real-time reverse-transcription PCR. Eyes receiving SES showed significant preservation of b-wave amplitude, a- and b-wave implicit times, oscillatory potential amplitudes, and post-receptoral parameters (Vmax and log σ) compared to untreated eyes. All SES-treated eyes had similar preservation, regardless of increased SES from IR light exposure. SES-treated eyes tended to have greater retinal Fgf2 expression than untreated eyes, but Fgf2 expression

  4. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    International Nuclear Information System (INIS)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-01-01

    Greenhouse gas (CO 2 , CH 4 and N 2 O, hereinafter GHG) and criteria air pollutant (CO, NO x , VOC, PM 10 , PM 2.5 and SO x , hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  5. Mechanism to preserve phrenic nerve function during photosensitization reaction: drug uptake and photosensitization reaction effect on electric propagation

    Science.gov (United States)

    Takahashi, Haruka; Hamada, Risa; Ogawa, Emiyu; Arai, Tsunenori

    2018-02-01

    To study a mechanism of phrenic nerve preservation phenomena during a photosensitization reaction, we investigated an uptake of talaporfin sodium and photosensitization reaction effect on an electric propagation. Right phrenic nerve was completely preserved after superior vena cava isolations using the photosensitization reaction in canine animal experiments, in spite of adjacent myocardium was electrically blocked. We predicted that low drug uptake and/or low photosensitization reaction effect on the nerve might be a mechanism of that phenomena. To investigate uptake to various nerve tissue, a healthy extracted crayfish ventral nerve cord and an extracted porcine phrenic nerve were immersed in 20 μg/ml talaporfin sodium solution for 0-240 min. The mean talaporfin sodium fluorescence brightness increased depending on the immersion time. This brightness saturated around the immersion time of 120 min. We found that talaporfin sodium uptake inside the perineurium which directly related to the electric propagation function was lower than that of outside in the porcine phrenic nerve. To investigate photosensitization reaction effect on electric propagation, the crayfish nerve was immersed into the same solution for 15 min and irradiated by a 663 nm laser light with 120 mW/cm2. Since we found the action potential disappeared when the irradiation time was 25-65 s, we consider that the crayfish nerve does not tolerant to the photosensitization reaction on electric propagation function at atmospheric pressure. From these results, we think that the low uptake of talaporfin sodium inside the perineurium and low oxygen partial pressure of nerve might be the possible mechanism to preserve phrenic nerve in vivo.

  6. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  7. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    Science.gov (United States)

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thiol-modified MoS2 nanosheets as a functional layer for electrical bistable devices

    Science.gov (United States)

    Li, Guan; Tan, Fenxue; Lv, Bokun; Wu, Mengying; Wang, Ruiqi; Lu, Yue; Li, Xu; Li, Zhiqiang; Teng, Feng

    2018-01-01

    Molybdenum disulfide nanosheets have been synthesized by one-pot method using 1-ODT as sulfur source and surfactant. The structure, morphology and optical properties of samples were investigated by XRD, FTIR, Abs spectrum and TEM patterns. The XRD pattern indicated that the as-obtained MoS2 belong to hexagonal system. The as-obtained MoS2 nanosheets blending with PVK could be used to fabricate an electrically bistable devices through a simple spin-coating method and the device exhibited an obvious electrical bistability properties. The charge transport mechanism of the device was discussed based on the filamentary switching models.

  9. Peripheral Ulcerative Keratitis

    Science.gov (United States)

    ... oval in shape. Diagnosis A doctor's evaluation Sometimes culture The diagnosis of peripheral ulcerative keratitis is suspected when the doctor sees the affected cornea in a person who also has a severe and/or long- ...

  10. Tumors of peripheral nerves

    International Nuclear Information System (INIS)

    Ho, Michael; Lutz, Amelie M.

    2017-01-01

    Differentiation between malignant and benign tumors of peripheral nerves in the early stages is challenging; however, due to the unfavorable prognosis of malignant tumors early identification is required. To show the possibilities for detection, differential diagnosis and clinical management of peripheral nerve tumors by imaging appearance in magnetic resonance (MR) neurography. Review of current literature available in PubMed and MEDLINE, supplemented by the authors' own observations in clinical practice. Although not pathognomonic, several imaging features have been reported for a differentiation between distinct peripheral nerve tumors. The use of MR neurography enables detection and initial differential diagnosis in tumors of peripheral nerves. Furthermore, it plays an important role in clinical follow-up, targeted biopsy and surgical planning. (orig.) [de

  11. Comprehensive management of presbycusis: central and peripheral.

    Science.gov (United States)

    Parham, Kourosh; Lin, Frank R; Coelho, Daniel H; Sataloff, Robert T; Gates, George A

    2013-04-01

    The prevailing otolaryngologic approach to treatment of age-related hearing loss (ARHL), presbycusis, emphasizes compensation of peripheral functional deficits (ie, hearing aids and cochlear implants). This approach does not address adequately the needs of the geriatric population, 1 in 5 of whom is expected to consist of the "old old" in the coming decades. Aging affects both the peripheral and central auditory systems, and disorders of executive function become more prevalent with advancing age. Growing evidence supports an association between age-related hearing loss and cognitive decline. Thus, to facilitate optimal functional capacity in our geriatric patients, a more comprehensive management strategy of ARHL is needed. Diagnostic evaluation should go beyond standard audiometric testing and include measures of central auditory function, including dichotic tasks and speech-in-noise testing. Treatment should include not only appropriate means of peripheral compensation but also auditory rehabilitative training and counseling.

  12. Optimum Dispatch of Hybrid Solar Thermal (HSTP Electric Power Plant Using Non-Smooth Cost Function and Emission Function for IEEE-30 Bus System

    Directory of Open Access Journals (Sweden)

    Saroj Kumar Dash

    2016-07-01

    Full Text Available The basic objective of economic load dispatch (ELD is to optimize the total fuel cost of hybrid solar thermal electric power plant (HSTP. In ELD problems the cost function for each generator has been approximated by a single quadratic cost equation. As cost of coal increases, it becomes even more important have a good model for the production cost of each generator for the solar thermal hybrid system. A more accurate formulation is obtained for the ELD problem by expressing the generation cost function as a piece wise quadratic cost function. However, the solution methods for ELD problem with piece wise quadratic cost function requires much complicated algorithms such as the hierarchical structure approach along with evolutionary computations (ECs. A test system comprising of 10 units with 29 different fuel [7] cost equations is considered in this paper. The applied genetic algorithm method will provide optimal solution for the given load demand.

  13. Promoting peripheral myelin repair

    OpenAIRE

    Zhou, Ye; Notterpek, Lucia

    2016-01-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the ...

  14. Tokamak edge electron diffusion and distribution function in the lower hybrid antenna electric field

    Czech Academy of Sciences Publication Activity Database

    Fuchs, Vladimír; Gunn, J. P.; Goniche, M.; Petržílka, Václav

    2003-01-01

    Roč. 43, č. 5 (2003), s. 341-351 ISSN 0029-5515 R&D Projects: GA ČR GA202/00/1217 Institutional research plan: CEZ:AV0Z2043910 Keywords : tokamak, grill electric field Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.390, year: 2003

  15. Impact analysis of coal-electricity pricing linkage scheme in China based on stochastic frontier cost function

    International Nuclear Information System (INIS)

    Li, Hong-Zhou; Tian, Xian-Liang; Zou, Tao

    2015-01-01

    Highlights: • This study evaluates the coal-electricity pricing linkage policy in China. • Six stochastic frontier cost models are used to estimate efficiency measures. • The coal-electricity pricing linkage scheme is a double-edged sword. • We suggest the threshold value of 5% or group specific. - Abstract: This study evaluates the feasibility and fairness of 2012 amendment to coal-electricity pricing linkage policy in China. Our empirical design is based on several stochastic frontier cost functions and the results show that the amended pricing linkage scheme is a double-edged sword as follows. On the one hand, it provides incentives for less-efficient (with efficiency less than 90%) power plants to increase their efficiency. One the other hand, it imposes a penalty to highly-efficient power plants (with efficiency more than 90%). And even worse, the higher the efficiency is, the bigger the penalty will be. To make the current coal-electricity pricing linkage scheme more feasible, we suggest the threshold value of 5 instead of 10%, and a group specific threshold value instead of the current one-size-for-all practice

  16. Functional end-arterial circulation of the choroid assessed by using fat embolism and electric circuit simulation.

    Science.gov (United States)

    Lee, Ji Eun; Ahn, Ki Su; Park, Keun Heung; Pak, Kang Yeun; Kim, Hak Jin; Byon, Ik Soo; Park, Sung Who

    2017-05-30

    The discrepancy in the choroidal circulation between anatomy and function has remained unsolved for several decades. Postmortem cast studies revealed extensive anastomotic channels, but angiographic studies indicated end-arterial circulation. We carried out experimental fat embolism in cats and electric circuit simulation. Perfusion defects were observed in two categories. In the scatter perfusion defects suggesting an embolism at the terminal arterioles, fluorescein dye filled the non-perfused lobule slowly from the adjacent perfused lobule. In the segmental perfusion defects suggesting occlusion of the posterior ciliary arteries, the hypofluorescent segment became perfused by spontaneous resolution of the embolism without subsequent smaller infarction. The angiographic findings could be simulated with an electric circuit. Although electric currents flowed to the disconnected lobule, the level was very low compared with that of the connected ones. The choroid appeared to be composed of multiple sectors with no anastomosis to other sectors, but to have its own anastomotic arterioles in each sector. Blood flows through the continuous choriocapillaris bed in an end-arterial nature functionally to follow a pressure gradient due to the drainage through the collector venule.

  17. Response of the Shockley surface state to an external electrical field: A density-functional theory study of Cu(111)

    Science.gov (United States)

    Berland, K.; Einstein, T. L.; Hyldgaard, P.

    2012-01-01

    The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wave functions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.

  18. Effects of cervical low-frequency electrical stimulation with various waveforms and densities on body mass, liver and kidney function, and death rate in ischemic stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yonghong Yang; Chengqi He; Lin Yang; Qiang Gao; Shasha Li; Jing He

    2011-01-01

    Low-frequency electrical stimulation has resulted in favorable effects in the treatment of post-stroke dysphagia. However, the safety of cervical low-frequency electrical stimulation remains unclear because of numerous nerves and blood vessels in the neck. In the present study, rats with ischemic stroke underwent low-frequency electrical stimulation, and systemic and local effects of electrical stimulation at different densities and waveforms were investigated. Electrical stimulation resulted in no significant effects on body mass, liver or kidney function, or mortality rate. In addition, no significant adverse reaction was observed, despite overly high intensity of low-frequency electrical stimulation, which induced laryngismus, results from the present study suggested that it is safe to stimulate the neck with a low-frequency electricity under certain intensities.

  19. Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research.

    Science.gov (United States)

    Hayashi-Takagi, Akiko; Vawter, Marquis P; Iwamoto, Kazuya

    2014-06-15

    Peripheral samples, such as blood and skin, have been used for decades in psychiatric research as surrogates for central nervous system samples. Although the validity of the data obtained from peripheral samples has been questioned and other state-of-the-art techniques, such as human brain imaging, genomics, and induced pluripotent stem cells, seem to reduce the value of peripheral cells, accumulating evidence has suggested that revisiting peripheral samples is worthwhile. Here, we re-evaluate the utility of peripheral samples and argue that establishing an understanding of the common signaling and biological processes in the brain and peripheral samples is required for the validity of such models. First, we present an overview of the available types of peripheral cells and describe their advantages and disadvantages. We then briefly summarize the main achievements of omics studies, including epigenome, transcriptome, proteome, and metabolome analyses, as well as the main findings of functional cellular assays, the results of which imply that alterations in neurotransmission, metabolism, the cell cycle, and the immune system may be partially responsible for the pathophysiology of major psychiatric disorders such as schizophrenia. Finally, we discuss the future utility of peripheral samples for the development of biomarkers and tailor-made therapies, such as multimodal assays that are used as a battery of disease and trait pathways and that might be potent and complimentary tools for use in psychiatric research. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  20. Objective function analysis for electric soundings (VES), transient electromagnetic soundings (TEM) and joint inversion VES/TEM

    Science.gov (United States)

    Bortolozo, Cassiano Antonio; Bokhonok, Oleg; Porsani, Jorge Luís; Monteiro dos Santos, Fernando Acácio; Diogo, Liliana Alcazar; Slob, Evert

    2017-11-01

    Ambiguities in geophysical inversion results are always present. How these ambiguities appear in most cases open to interpretation. It is interesting to investigate ambiguities with regard to the parameters of the models under study. Residual Function Dispersion Map (RFDM) can be used to differentiate between global ambiguities and local minima in the objective function. We apply RFDM to Vertical Electrical Sounding (VES) and TEM Sounding inversion results. Through topographic analysis of the objective function we evaluate the advantages and limitations of electrical sounding data compared with TEM sounding data, and the benefits of joint inversion in comparison with the individual methods. The RFDM analysis proved to be a very interesting tool for understanding the joint inversion method of VES/TEM. Also the advantage of the applicability of the RFDM analyses in real data is explored in this paper to demonstrate not only how the objective function of real data behaves but the applicability of the RFDM approach in real cases. With the analysis of the results, it is possible to understand how the joint inversion can reduce the ambiguity of the methods.

  1. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation

    Directory of Open Access Journals (Sweden)

    Kazuhiro eMatsui

    2014-06-01

    Full Text Available Functional electrical stimulation (FES is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly nonlinearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define theelectrical agonist-antagonist muscle ratio (EAA ratio and electrical agonist-antagonist muscle activity (EAA activity in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  2. Efficacy of electroacupuncture compared with transcutaneous electric nerve stimulation for functional constipation: Study protocol for a randomized, controlled trial.

    Science.gov (United States)

    Zeng, Yuxiao; Zhang, Xuecheng; Zhou, Jing; Wang, Xinwei; Jiao, Ruimin; Liu, Zhishun

    2018-05-01

    To treat functional constipation, both electroacupuncture (EA) therapy and transcutaneous electric nerve stimulation (TENS) are safe and effective. However, no head-to-head comparison trial has been conducted. This trial compares the efficacy of electroacupuncture relative to transcutaneous electric nerve stimulation for functional constipation. Individuals with functional constipation will be randomly allocated to receive either EA or TENS (n = 51, each), 3 times per week for 8 weeks. The primary outcome is the percentage of participants with an average increase from baseline of 1 or more complete spontaneous bowel movements at week 8. The secondary outcome measures are the following: at the time of visits, changes in the number of complete spontaneous bowel movements, number of spontaneous bowel movements, stool character, difficulty in defecation, patients' assessment of quality of life regarding constipation (self-report questionnaire), and use of auxiliary defecation methods. The results of this trial should verify whether EA is more efficacious than TENS for relieving symptoms of functional constipation. The major limitation of the study is the lack of blinding of the participants and acupuncturist.

  3. Effects of electron-electron interactions on the electron distribution function of a plasma in the presence of an external electric field

    International Nuclear Information System (INIS)

    Molinari, V.G.; Pizzio, F.; Spiga, G.

    1979-01-01

    The electron distribution function, the electron temperature and some transport parameters (electrical conductivity and energy flow coefficient) are obtained starting from the nonlinear Boltzmann equation for a plasma under the action of an external electric field. The Fokker-Planck approximation is used for electron-electron and electron-ion interactions. The effects of electron-electron collisions are studied for different values of collision frequencies and electric field. (author)

  4. Influence of electroencephalograph bionic electrical stimulation on neuronal activities in patients with Alzheimer's disease: A functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Liling Jiang

    2018-03-01

    Full Text Available Purpose: To investigate the influence of electroencephalograph bionic electrical stimulation on neuronal activity in patients with Alzheimer's disease (AD using resting-state blood oxygen level dependent functional MRI (BOLD-fMRI and amplitude of low-frequency fluctuation (ALFF and fraction ALFF (fALFF analysis. Methods: 42 AD patients were divided into two groups in accordance with the randomized double blind principle, every group was 21. Treatment group received electroencephalograph bionic electrical stimulation. Both groups received resting-state BOLD-fMRI scanning before and after treatment and comparing differences in ALFF and fALFF in each group by statistical methods. Correlation analysis was performed between ALFF or fALFF images and neuropsychological tests scale after treatment. Results: Post-therapy brain regions with higher ALFF included left cerebellum posterior lobe, right cerebellum posterior lobe, left hippocampus/parahippocampus, left posterior cingulated cortex, left dorsolateral prefrontal cortex, right inferior parietal lobule in treatment group. Higher fALFF was observed in the right inferior parietal lobule. In the placebo group lower ALFF was observed in bilateral cerebellum posterior lobe and left posterior cingulated cortex. Alzheimer's Disease Assessment Scale-Cognitive section was closely correlated with ALFF in left cerebellum posterior lobe and right cerebellum posterior lobe. Conclusion: These results indicated improved neuronal activity in some brain areas could be achieved in AD after treatment of electroencephalograph bionic electrical stimulation. The change of BOLD-fMRI signal might provide a potential imaging strategy for studying neural mechanisms of electroencephalograph bionic electrical stimulation for AD. Keywords: Electroencephalograph bionic electrical stimulation, Alzheimer's disease, Low-frequency fluctuation, Fraction low-frequency fluctuation

  5. Surveillance report 2015-2016. Functioning of the wholesale electricity, CO_2 and natural gas markets

    International Nuclear Information System (INIS)

    2016-01-01

    After a presentation of some key figures regarding the electric power and natural gas markets, this reports, illustrated by many data tables, discusses the integration of wholesale market surveillance in the European system: a complete and operational framework, constitution of a European register of participants, data reporting at the European level, link with financial regulation, and surveillance of wholesale agents. In the second part, it gives an overview of the context of the energy markets: drop in raw material prices, temperatures above normal with a particularly mild winter, sharp drop in the price of emission allowances. The third section proposes an analysis of wholesale electricity markets: fundamentals (evolutions of production and consumption, of production sources, D-7 nuclear availability), wholesale prices, major growth in exchanged volumes. The last section addresses wholesale natural gas markets: review of the gas system (evolution of demand and supply), evolution of gas prices, evolution of trading (global deliveries, spot and forward market)

  6. French retail electricity and gas markets functioning - 2011-2012 report

    International Nuclear Information System (INIS)

    2013-01-01

    French retail electricity and gas markets are progressively opening to competition. These changes reflect the development of more competitive market offers with respect to regulated sales tariffs in both energies, as well as a better knowledge of these markets by end-users. In this context of retail markets development, the Energy Regulatory Commission (CRE) pays attention to the monitoring of actors behaviour, in particular in the domain of price and offer transparency. This report presents, first, the situation of the French retail electricity and gas markets by December 31, 2011. Then, an economic analysis of the supplies on retail market is made. Next, a qualitative analysis of transparency and operation on retail markets is presented. Finally, CRE makes some proposals for the improvement of the transparency and operation of these markets

  7. Computer Simulation Tests of Feedback Error Learning Controller with IDM and ISM for Functional Electrical Stimulation in Wrist Joint Control

    Directory of Open Access Journals (Sweden)

    Takashi Watanabe

    2010-01-01

    Full Text Available Feedforward controller would be useful for hybrid Functional Electrical Stimulation (FES system using powered orthotic devices. In this paper, Feedback Error Learning (FEL controller for FES (FEL-FES controller was examined using an inverse statics model (ISM with an inverse dynamics model (IDM to realize a feedforward FES controller. For FES application, the ISM was tested in learning off line using training data obtained by PID control of very slow movements. Computer simulation tests in controlling wrist joint movements showed that the ISM performed properly in positioning task and that IDM learning was improved by using the ISM showing increase of output power ratio of the feedforward controller. The simple ISM learning method and the FEL-FES controller using the ISM would be useful in controlling the musculoskeletal system that has nonlinear characteristics to electrical stimulation and therefore is expected to be useful in applying to hybrid FES system using powered orthotic device.

  8. Wearable Neural Prostheses - Restoration of Sensory-Motor Function by Transcutaneous Electrical Stimulation

    OpenAIRE

    Micera, Silvestro; Keller, Thierry; Lawrence, Marc; Morari, Manfred; Popovic, Dejan B.

    2010-01-01

    In this article, we focus on the least invasive interface: transcutaneous ES (TES), i.e., the use of surface electrodes as an interface between the stimulator and sensory-motor systems. TES is delivered by a burst of short electrical charge pulses applied between pairs of electrodes positioned on the skin. Monophasic or charge-balanced biphasic (symmetric or asymmetric) stimulation pulses can be delivered. The latter ones have the advantage to provide contraction force while minimizing tissue...

  9. Wearable neural prostheses. Restoration of sensory-motor function by transcutaneous electrical stimulation.

    Science.gov (United States)

    Micera, Silvestro; Keller, Thierry; Lawrence, Marc; Morari, Manfred; Popović, Dejan B

    2010-01-01

    In this article, we focus on the least invasive interface: transcutaneous ES (TES), i.e., the use of surface electrodes as an interface between the stimulator and sensory-motor systems. TES is delivered by a burst of short electrical charge pulses applied between pairs of electrodes positioned on the skin. Monophasic or charge-balanced biphasic (symmetric or asymmetric) stimulation pulses can be delivered. The latter ones have the advantage to provide contraction force while minimizing tissue damage.

  10. Direct electrical control of IgG conformation and functional activity at surfaces

    Science.gov (United States)

    Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo

    2016-11-01

    We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics.

  11. Diagnostics of peripheric plasma in thermonuclear devices

    International Nuclear Information System (INIS)

    Vojtsenya, V.S.; Tereshin, V.I.

    1986-01-01

    Review of basic methods, applied or developed for peripheral plasma diagnostics is given, including electric probes of various types, collecting probes for studying impurity ion and main plasma component characteristics, spectroscopic and corpuscular-optical methods, laser fluorescence spectroscopy, mass-spectrometry, heavy ion and atom (lithium and hydrogen) beam methods. Ranges of plasma parameters their measurements being provided by the methods indicated are presented

  12. The functioning of the electricity, CO2 and natural gas wholesale markets in 2011-2012

    International Nuclear Information System (INIS)

    2012-11-01

    The Commission for Energy Regulation (CRE) monitors electricity and natural gas transactions carried out between suppliers, traders and producers, transactions carried out on the organised markets as well as cross-border trades. CRE's mission of monitoring wholesale markets aims to ensure that wholesale market energy prices are consistent with the technical and economic fundamentals of these markets. In particular, CRE strives to verify that no market power is exercised in such a way that a participant abuses its situation to attain abnormal prices, notably with regard to its costs. This task is now also in line with the Regulation on Energy Market Integrity and Transparency known as REMIT. This fifth surveillance report of the CRE presents and analyses the developments of wholesale markets in France in 2011 and the first semester of 2012 for electricity, gas and CO 2 . It also details the investigations carried out in relation to the behaviour of stakeholders or in case of particular market events. On the electricity market, the average spot price increased slightly and was established at euro 49/MWh (base-load), i.e. an increase of 3% compared with 2010; the price of the Calendar 2013 product increased following the German moratorium on nuclear energy before gradually decreasing over the second half of the year. The announcement of the moratorium also resulted in a price differential reversal with Germany (German prices becoming more expensive) until February 2012. Volumes traded also remained stable despite a drop in trade on the futures market. On the gas market, the LNG offer in Europe and France clearly fell on account of trade-offs with the Asian market where demand greatly increased following the accident of Fukushima, with gas replacing nuclear in electricity generation. Gas prices rose on average but remained more stable than in 2010 both on spot markets and futures markets. They progressed, however, at a lower rate than oil products on which long

  13. Influence of functional group on the electrical transport properties of polyvinyl alcohol grafted multiwall carbon nanotube composite thick film

    Science.gov (United States)

    Kumar Das, Amit; Dharmana, Reuben; Mukherjee, Ayan; Baba, Koumei; Hatada, Ruriko; Kumar Meikap, Ajit

    2018-04-01

    We present a novel technique to obtain a higher or lower value of dielectric constant due to the variation of a functional group on the surface of multiwall carbon nanotube (MWCNTs) for a polyvinyl alcohol (PVA) grafted MWCNT system. We have prepared PVA grafted pristine and different types of functionalized (-COOH, -OH, and -NH2) MWCNT nanocomposite films. The strong interfacial interaction between the host PVA matrix and nanofiller is characterized by different experimental techniques. The frequency variation of the electrical transport properties of the composite films is investigated in a wide temperature range (303 ≤ T ≤ 413 K) and frequency range (20 Hz ≤ f ≤ 1 MHz). The dielectric constant of the amine (-NH2) functionalized MWCNT incorporated PVA film is about 2 times higher than that of the pristine MWCNT embedded PVA film. The temperature variation of the dielectric constant shows an anomalous behaviour. The modified Cole-Cole equation simulated the experimentally observed dielectric spectroscopy at high temperature. The ac conductivity of the composite films obeys the correlated barrier hopping model. The imaginary part of the electric modulus study shows the ideal Debye-type behaviour at low frequency and deviation of that at high frequency. To illustrate the impedance spectroscopy of the nanocomposite films, we have proposed an impedance based battery equivalent circuit model. The current-voltage characteristic shows hysteresis behaviour of the nanocomposite films. The trap state height for all composite films is evaluated by simulating the current density-electric field data with the Poole-Frenkel emission model. This investigation opens a new avenue for designing electronic devices with a suitable combination of cost effective soft materials.

  14. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    Science.gov (United States)

    2016-10-01

    potentially meeting  selection   criteria , met with potential subjects, provided information to  allow them to give informed consent, and carried out...Organization. Investigational Device Exemption has been obtained from the Food and Drug Administration. Participant recruitment and screening has...defining new electrical stimulation parameters and protocols for  management of the neurogenic bladder.  The approval by the  Food  and Drug Administration of

  15. Wear resistance and electrical properties of functionally graded epoxy-resin/silica composites

    International Nuclear Information System (INIS)

    Rihan, Y. A.; Abd El-Bary, B.

    2012-12-01

    In this paper graded Silica/Epoxy composite fabricated by controlled mold filling to obtain a stepwise graded structure. The generated graded structure was controlled by the w 1% content of silica particulates of size range from (45 μm-250 μm). Microstructural characterization was conducted using Scanning Electron Microscope (SEM). Electrical properties were conducted in High Voltage-Lab using Sphere-Plate Electrode System and Insulating resistance equipment s. Wear characteristics were studied using Block-on-Ring wear testing machine for the different layers of the graded silica/epoxy composites, The prepared materials are used as coating materials for the floors of chemical laboratories. (Author)

  16. Wholesale electricity, CO2, and gas market functioning. 2012-2013 report

    International Nuclear Information System (INIS)

    2013-10-01

    The Energy Regulatory Commission (CRE) monitors transactions by participants on the French wholesale electricity and gas markets since 2006 and it monitors CO 2 trading since late 2010 in cooperation with the AMF. This power is granted by Articles L. 131-2 and L. 131-3 of the Energy Code. Therefore, in the context of its monitoring mission, CRE ensures that wholesale energy market prices are consistent with the technical and economic fundamentals of these markets. In particular, CRE strives to verify that no market power is exercised in such a way that a participant abuses its situation to attain abnormal prices, notably with regard to its costs. This mission is now also part of the European Regulation on Energy Market Integrity and Transparency of 25 October 2011 (REMIT). The REMIT organises wholesale energy market monitoring, prohibits market abuse (insider trading and market manipulation), and requires market participants to disclose any inside information they hold. It entrusts market monitoring, at European level, to the Agency for the Cooperation of Energy Regulators (ACER) in cooperation with national regulatory authorities responsible for national investigations and sanctions. The Brottes law of 15 April 2013 expressly entrusted CRE with the mission of ensuring REMIT implementation and CoRDis jurisdiction to sanction any breaches of the regulation. The energy markets are experiencing major change. The emergence of unconventional hydrocarbons in North America has profoundly changed the global balance of gas and oil production. American gas market prices dropped due to abundant supply causing a significant decline in imports of liquefied natural gas (LNG) from across the Atlantic and a strong incentive to produce electricity in gas-fired plants to the detriment of coal-fired plants. This significant decline in demand for coal in the United States significantly weakened global coal prices. World energy demand is mainly driven by emerging markets, particularly

  17. Combined arm stretch positioning and neuromuscular electrical stimulation during rehabilitation does not improve range of motion, shoulder pain or function in patients after stroke : a randomised trial

    NARCIS (Netherlands)

    de Jong, Lex D.; Dijkstra, Pieter U.; Gerritsen, Johan; Geurts, Alexander C. H.; Postema, Klaas

    2013-01-01

    Question Does static stretch positioning combined with simultaneous neuromuscular electrical stimulation (NMES) in the subacute phase after stroke have beneficial effects on basic arm body functions and activities? Design Multicentre randomised trial with concealed allocation, assessor blinding, and

  18. Peripheral epithelial odontogenic tumor

    International Nuclear Information System (INIS)

    Carzoglio, J.; Tancredi, N.; Capurro, S.; Ravecca, T.; Scarrone, P.

    2006-01-01

    A new case of peripheral epithelial odontogenic tumor (Pindborg tumor) is reported. It is localized in the superior right gingival region, a less frequent site, and has the histopathological features previously reported. Immunochemical studies were performed, revealing a differential positive stain to cytokeratins in tumor cells deeply seated in the tumor mass, probably related to tumoral cell heterogeneity.Interestingly, in this particular case S-100 protein positive reactivity was also detected in arborescent cells intermingled with tumoral cells, resembling Langerhans cells. Even though referred in the literature in central Pindborg tumors, no references were found about their presence in peripheral tumors, like the one that is presented here

  19. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    Science.gov (United States)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  20. Magnetic resonance imaging of morphological and functional changes of the uterus induced by sacral surface electrical stimulation

    International Nuclear Information System (INIS)

    Ogura, Takahide; Murakami, Takashi; Ozawa, Yuka; Seki, Kazunori; Handa, Yasunobu

    2006-01-01

    The purpose of this study is to examine the morphological and kinematical changes of the uterus induced by electrical stimulation applied to the skin just above the second and fourth posterior sacral foramens (sacral surface electrical stimulation [ssES]) in 26 healthy subjects. Out of them, eight subjects who had severe pain subjectively during every menstruation received ssES just in menstruation. Morphological and functional changes of the uterus were examined by using T2-weighted magnetic resonance (MR) imaging and T1-weighted MR cinematography, respectively. Cyclic electrical stimulation for 15 min with 5 sec ON and 5 sec OFF was applied just before MR scanning. A decrease in thickness of the muscular layer of the uterus was observed in every subject after ssES for 15 min and was significant as compared with the thickness before ssES. Periodic uterine movement during menstruation was observed in the subjects with severe menstrual pain in MR cine and the power spectrum analysis of the movement showed a marked decrease in peak power and frequency after ssES treatment. We conclude that ssES causes a reduction of static muscle tension of the uterus in all menstrual cycle periods and suppression of uterine peristalsis during menstruation in the subjects with severe menstrual pain. Possible neural mechanisms for these static and dynamic effects of ssES on the uterus at spinal level are discussed. (author)

  1. A systematic comparison of different approaches of density functional theory for the study of electrical double layers

    International Nuclear Information System (INIS)

    Yang, Guomin; Liu, Longcheng

    2015-01-01

    Based on the best available knowledge of density functional theory (DFT), the reference-fluid perturbation method is here extended to yield different approaches that well account for the cross correlations between the Columbic interaction and the hard-sphere exclusion in an inhomogeneous ionic hard-sphere fluid. In order to quantitatively evaluate the advantage and disadvantage of different approaches in describing the interfacial properties of electrical double layers, this study makes a systematic comparison against Monte Carlo simulations over a wide range of conditions. The results suggest that the accuracy of the DFT approaches is well correlated to a coupling parameter that describes the coupling strength of electrical double layers by accounting for the steric effect and that can be used to classify the systems into two regimes. In the weak-coupling regime, the approaches based on the bulk-fluid perturbation method are shown to be more accurate than the counterparts based on the reference-fluid perturbation method, whereas they exhibit the opposite behavior in the strong-coupling regime. More importantly, the analysis indicates that, with a suitable choice of the reference fluid, the weighted correlation approximation (WCA) to DFT gives the best account of the coupling effect of the electrostatic-excluded volume correlations. As a result, a piecewise WCA approach can be developed that is robust enough to describe the structural and thermodynamic properties of electrical double layers over both weak- and strong-coupling regimes

  2. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    Science.gov (United States)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  3. Peripheral Mechanisms of Ischemic Myalgia

    Directory of Open Access Journals (Sweden)

    Luis F. Queme

    2017-12-01

    Full Text Available Musculoskeletal pain due to ischemia is present in a variety of clinical conditions including peripheral vascular disease (PVD, sickle cell disease (SCD, complex regional pain syndrome (CRPS, and even fibromyalgia (FM. The clinical features associated with deep tissue ischemia are unique because although the subjective description of pain is common to other forms of myalgia, patients with ischemic muscle pain often respond poorly to conventional analgesic therapies. Moreover, these patients also display increased cardiovascular responses to muscle contraction, which often leads to exercise intolerance or exacerbation of underlying cardiovascular conditions. This suggests that the mechanisms of myalgia development and the role of altered cardiovascular function under conditions of ischemia may be distinct compared to other injuries/diseases of the muscles. It is widely accepted that group III and IV muscle afferents play an important role in the development of pain due to ischemia. These same muscle afferents also form the sensory component of the exercise pressor reflex (EPR, which is the increase in heart rate and blood pressure (BP experienced after muscle contraction. Studies suggest that afferent sensitization after ischemia depends on interactions between purinergic (P2X and P2Y receptors, transient receptor potential (TRP channels, and acid sensing ion channels (ASICs in individual populations of peripheral sensory neurons. Specific alterations in primary afferent function through these receptor mechanisms correlate with increased pain related behaviors and altered EPRs. Recent evidence suggests that factors within the muscles during ischemic conditions including upregulation of growth factors and cytokines, and microvascular changes may be linked to the overexpression of these different receptor molecules in the dorsal root ganglia (DRG that in turn modulate pain and sympathetic reflexes. In this review article, we will discuss the

  4. Determining optimal interconnection capacity on the basis of hourly demand and supply functions of electricity

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Meunier, William; Coquentin, Alexandre

    2017-01-01

    Interconnections for cross-border electricity flows are at the heart of the project to create a common European electricity market. At the time, increase in production from variable renewables clustered during a limited numbers of hours reduces the availability of existing transport infrastructures. This calls for higher levels of optimal interconnection capacity than in the past. In complement to existing scenario-building exercises such as the TYNDP that respond to the challenge of determining optimal levels of infrastructure provision, the present paper proposes a new empirically-based methodology to perform Cost-Benefit analysis for the determination of optimal interconnection capacity, using as an example the French-German cross-border trade. Using a very fine dataset of hourly supply and demand curves (aggregated auction curves) for the year 2014 from the EPEX Spot market, it constructs linearized net export (NEC) and net import demand curves (NIDC) for both countries. This allows assessing hour by hour the welfare impacts for incremental increases in interconnection capacity. Summing these welfare increases over the 8 760 hours of the year, this provides the annual total for each step increase of interconnection capacity. Confronting welfare benefits with the annual cost of augmenting interconnection capacity indicated the socially optimal increase in interconnection capacity between France and Germany on the basis of empirical market micro-data. (authors)

  5. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates

    Directory of Open Access Journals (Sweden)

    Gabriele Fisichella

    2013-04-01

    Full Text Available Chemical vapour deposition (CVD on catalytic metals is one of main approaches for high-quality graphene growth over large areas. However, a subsequent transfer step to an insulating substrate is required in order to use the graphene for electronic applications. This step can severely affect both the structural integrity and the electronic properties of the graphene membrane. In this paper, we investigated the morphological and electrical properties of CVD graphene transferred onto SiO2 and on a polymeric substrate (poly(ethylene-2,6-naphthalene dicarboxylate, briefly PEN, suitable for microelectronics and flexible electronics applications, respectively. The electrical properties (sheet resistance, mobility, carrier density of the transferred graphene as well as the specific contact resistance of metal contacts onto graphene were investigated by using properly designed test patterns. While a sheet resistance Rsh ≈ 1.7 kΩ/sq and a specific contact resistance ρc ≈ 15 kΩ·μm have been measured for graphene transferred onto SiO2, about 2.3× higher Rsh and about 8× higher ρc values were obtained for graphene on PEN. High-resolution current mapping by torsion resonant conductive atomic force microscopy (TRCAFM provided an insight into the nanoscale mechanisms responsible for the very high ρc in the case of graphene on PEN, showing a ca. 10× smaller “effective” area for current injection than in the case of graphene on SiO2.

  6. Evaluation of phrenic nerve and diaphragm function with peripheral nerve stimulation and M-mode ultrasonography in potential pediatric phrenic nerve or diaphragm pacing candidates.

    Science.gov (United States)

    Skalsky, Andrew J; Lesser, Daniel J; McDonald, Craig M

    2015-02-01

    Assessing phrenic nerve function in the setting of diaphragmatic paralysis in diaphragm pacing candidates can be challenging. Traditional imaging modalities and electrodiagnostic evaluations are technically difficult. Either modality alone is not a direct measure of the function of the phrenic nerve and diaphragm unit. In this article, the authors present their method for evaluating phrenic nerve function and the resulting diaphragm function. Stimulating the phrenic nerve with transcutaneous stimulation and directly observing the resulting movement of the hemidiaphragm with M-mode ultrasonography provides quantitative data for predicting the success of advancing technologies such as phrenic nerve pacing and diaphragm pacing. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Peripheral Artery Disease

    Science.gov (United States)

    ... pressure High blood cholesterol Coronary heart disease Stroke Metabolic syndrome Screening and Prevention Taking action to control your risk factors can help prevent or delay peripheral artery disease (P.A.D.) and its complications. Know your family history of health problems related to P.A. ...

  8. Quality Assurance and Functionality Tests on Electrical Components during the ATLAS IBL Production

    CERN Document Server

    Bassalat, A; The ATLAS collaboration

    2014-01-01

    During the shutdown of 2013-2014, for the enhancement of the current ATLAS Pixel Detector, a fourth layer (Insertable B Layer, IBL) is being built and will be installed between the innermost layer and a new beam pipe. A new generation of readout chip has been developed, and two different sensor designs, a rather conventional planar and a 3D design, have been bump bonded to the Front Ends. Additionally, new staves and module flex circuits have been developed. A production QA test bench was therefore established to test all production staves before integration with the new beam pipe. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are being performed on the individual components during the various production steps of the IBL; namely, connectivity tests, electrical tests and signal probing on individual parts and assembled subsystems. This paper discusses the pre-assembly QC procedures, the capabilities of the stave qualification setup, and recent results fr...

  9. Investigations of electrical and optical properties of functional TCO thin films

    Directory of Open Access Journals (Sweden)

    Domaradzki Jarosław

    2015-06-01

    Full Text Available Transparent conducting oxide (TCO films of indium-tin-oxide were evaporated on the surface of silicon wafers after phosphorous diffusion and on the reference glass substrates. The influence of deposition process parameters (electron beam current, oxygen flow and the substrate temperature on optical and electrical properties of evaporated thin films were investigated by means of resistivity measurements and optical spectrophotometry. The performance of prepared thin films was judged by calculated figure of merit and the best result was obtained for the sample deposited on the substrate heated to the 100 °C and then removed from the deposition chamber and annealed in an air for 5 minutes at 400 °C. Refractive index and extinction coefficient were evaluated based on measured transmission spectra and used for designing of antireflection coating for solar cell. The obtained results showed that prepared TCO thin films are promising as a part of counter electrode in crystalline silicon solar cell construction.

  10. Quality Assurance and Functionality Tests on Electrical Components during the ATLAS IBL Production

    CERN Document Server

    Jentzsch, J; The ATLAS collaboration

    2012-01-01

    For the first ATLAS pixel upgrade scheduled in 2013 a new front-end chip generation (FE- I4) has been developed. The second version (FE-I4B) hosting two different solid-state sensor technologies (planar silicon and 3D silicon) has been produced to be built into a new pixel layer (the Insertable B-Layer, IBL). Prototypes of these assembled modules have been tested in laboratory and testbeam measurements before and after irradiation. Quality assurance measurements under clean room conditions, including temperature and humidity control, have been and will be performed on the required parts during the various production steps of the IBL, namely connectivity as well as electrical tests and signal probing on individual parts and also assembled subsystems. Test results of measurements on flexes, modules and staves will be presented.

  11. High pressure-temperature electrical conductivity of magnesiowustite as a function of iron oxide concentration

    Science.gov (United States)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivity of (Mg, Fe)O magnesiowustite containing 9 and 27.5 mol pct FeO has been measured at simultaneously high pressures (30-32 GPa) and temperatures using a diamond anvil cell heated with a continuous wave Nd:YAG laser and an external resistance heater. The conductivity depends strongly on the FeO concentration at both ambient and high pressures. At the pressures and temperatures of about 30 GPa and 2000 K, conditions expected in the lower mantle, the magnesiowustite containing 27.5 percent FeO is 3 orders of magnitude more conductive than that containing 9 percent FeO. The activation energy of magnesiowustite decreases with increasing iron concentration from 0.38 (+ or - 0.09) eV at 9 percent FeO to 0.29 (+ or - 0.05) eV at 27.5 percent FeO.

  12. Analysis of retinal function using chromatic pupillography in retinitis pigmentosa and the relationship to electrically evoked phosphene thresholds.

    Science.gov (United States)

    Kelbsch, Carina; Maeda, Fumiatsu; Lisowska, Jolanta; Lisowski, Lukasz; Strasser, Torsten; Stingl, Krunoslav; Wilhelm, Barbara; Wilhelm, Helmut; Peters, Tobias

    2017-06-01

    To analyse pupil responses to specific chromatic stimuli in patients with advanced retinitis pigmentosa (RP) to ascertain whether chromatic pupillography can be used as an objective marker for residual retinal function. To examine correlations between parameters of the pupil response and the perception threshold of electrically evoked phosphenes. Chromatic pupillography was performed in 40 patients with advanced RP (visual acuity Chromatic pupillography demonstrated a significant decrease in outer retinal photoreceptor responses but a persisting and disinhibited intrinsic photosensitive retinal ganglion cell function in advanced RP. These phenomena may be useful as an objective marker for the efficacy of any interventional treatment for hereditary retinal diseases as well as for the selection of suitable patients for an electronic retinal implant. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Study of electric resistivity in function of temperature in Ni2Mn (Sn1-x Inx) type Heuster alloys

    International Nuclear Information System (INIS)

    Fraga, G.L.F.

    1984-01-01

    The electric resistivity as a function of temperature and concentration was measured in the range 4.2 2 Mn (Sn i-x In x ), with x = 0; 0.02; 0.05; 0.10; 0.15; 0.85; 0.90; 0.95; 0.98 and 1.00. In the lower temperature region (7 n - law. The 0 2 function; the linear term is mostly ascribed to electron-phonon scattering process and the quadratic one to magnetic scattering mechanism. For the ternary alloys Ni 2 MnSn and Ni 2 MnIn the experimental magnetic term BT 2 is well fitted by the Kasuya's magnetic spin-disorder model. (author) [pt

  14. On the contact values of the density profiles in an electric double layer using density functional theory

    Directory of Open Access Journals (Sweden)

    L.B. Bhuiyan

    2012-06-01

    Full Text Available A recently proposed, local second contact value theorem [Henderson D., Boda D., J. Electroanal. Chem., 2005, Vol. 582, 16] for the charge profile of an electric double layer is used in conjunction with existing Monte Carlo data from the literature to assess the contact behavior of the electrode-ion distributions predicted by the density functional theory. The results for the contact values of the co- and counterion distributions and their product are obtained for the symmetric valency, restricted primitive model planar double layer for a range of electrolyte concentrations and temperatures. Overall the theoretical results satisfy the second contact value theorem reasonably well the agreement with the simulations being semi-quantitative or better. The product of the co- and counterion contact values as a function of the electrode surface charge density is qualitative with the simulations with increasing deviations at higher concentrations.

  15. Experiencing Functional Electrical Stimulation Roots on Education, and Clinical Developments in Paraplegia and Tetraplegia With Technological Innovation.

    Science.gov (United States)

    Varoto, Renato; Cliquet, Alberto

    2015-10-01

    Cybernetics-based concepts can allow for complete independence for paralyzed individuals, including sensory motor recovery. Spinal cord injuries are responsible for a huge stress on health and a financial burden to society. This article focuses on novel procedures such as functional diagnosis for paraplegics and tetraplegics, cybertherapies toward lessening comorbidities such as cardiovascular diseases, osteoporosis, etc., and the production of new technology for upper and lower limb control. Functional electrical stimulation reflects a unique opportunity for bipedal gait to be achieved by paraplegics and tetraplegics. Education and training of undergraduates and postgraduates in engineering and life sciences have also been a major aim of this work. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    International Nuclear Information System (INIS)

    Akbi, Mohamed; Bouchou, Aïssa; Zouache, Noureddine

    2014-01-01

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10 −7 mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

  17. Continuous infusion versus intermittent flushing to prevent loss of function of peripheral intravenous catheters used for drug administration in newborn infants.

    Science.gov (United States)

    Flint, A; McIntosh, D; Davies, M W

    2005-10-19

    The use of peripheral intravenous cannulae is common in newborn babies. Many of them require an intravenous line only for medications and not for fluid. Currently there is little uniformity in methods used to maintain cannula patency. The object of this review was to determine which method was better for maintaining intravenous lines used in neonates for intravenous medication only: intermittent flushing or continuous infusion We searched The Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 2, 2004), CINAHL (from 1982 to June 2004) and MEDLINE (from 1966 to June 2004) . Randomised controlled trials comparing continuous infusion to intermittent flushing to maintain patency of intravenous cannulas. Units of randomisation might include individual catheters or individual babies. Three reviewers independently assessed trial quality and extracted data. Two studies were eligible for inclusion. In one study only one of our primary outcomes was available: the duration of cannula patency for the first cannula used per infant was slightly longer in the continuous infusion group, but not significantly so, with a mean difference of -4.3 hours (95% CI -18.2 to 9.7). In the second study, only one of our primary outcomes was available: the mean (SD) number cannulas used per infant in the first 48 hours was less in the intermittent flush group with a mean difference of -0.76 cannulas (95% CI -1.37 to -0.15). No results were available for any of our other primary outcomes: in the published report, results were reported per catheter rather than per infant, a number of infants received more than one intravenous catheter (39 infants received an unknown number of catheters). The overall duration of cannula patency was significantly longer in the intermittent flush group with a mean duration of patency in the intermittent flush group of 2.1 days (SD 1.0) compared with the continuous infusion group where the mean duration of patency was 1.0 days (SD 0

  18. Habitual Physical Activity, Peripheral Neuropathy, Foot Deformities ...

    African Journals Online (AJOL)

    Results: Habitual physical activity index (3.2 ± 0.83) was highest in work-related activities; 69 (26.1 %) patients presented with peripheral neuropathy and 52 (19. 7%) had the lowest limb function. Pes planus was the most prevalent foot deformity (20.1%). Significant differences existed in physical activity indices across ...

  19. Habitual physical activity, peripheral neuropathy, foot deformities ...

    African Journals Online (AJOL)

    joint or leg pain), lack of equipment, and exercise partner(s).20. Yet, many of these ... peripheral neuropathy and lower limb functions among a group of Nigerian .... scale for inpatients of an orthopaedic rehabilitation ward found that interclass ...

  20. Functional Magnetic Resonance Imaging Evaluation of Auricular Percutaneous Electrical Neural Field Stimulation for Fibromyalgia: Protocol for a Feasibility Study.

    Science.gov (United States)

    Gebre, Melat; Woodbury, Anna; Napadow, Vitaly; Krishnamurthy, Venkatagiri; Krishnamurthy, Lisa C; Sniecinski, Roman; Crosson, Bruce

    2018-02-06

    Fibromyalgia is a chronic pain state that includes widespread musculoskeletal pain, fatigue, psychiatric symptoms, cognitive and sleep disturbances, and multiple somatic symptoms. Current therapies are often insufficient or come with significant risks, and while there is an increasing demand for non-pharmacologic and especially non-opioid pain management such as that offered through complementary and alternative medicine therapies, there is currently insufficient evidence to recommend these therapies. Percutaneous electrical neural stimulation (PENS) is an evidence-based treatment option for pain conditions that involves electrical current stimulation through needles inserted into the skin. Percutaneous electrical neural field stimulation (PENFS) of the auricle is similar to PENS, but instead of targeting a single neurovascular bundle, PENFS stimulates the entire ear, covering all auricular branches of the cranial nerves, including the vagus nerve. The neural mechanisms of PENFS for fibromyalgia symptom relief are unknown. We hypothesize that PENFS treatment will decrease functional brain connectivity between the default mode network (DMN) and right posterior insula in fibromyalgia patients. We expect that the decrease in functional connectivity between the DMN and insula will correlate with patient-reported analgesic improvements as indicated by the Defense and Veterans Pain Rating Scale (DVPRS) and will be anti-correlated with patient-reported analgesic medication consumption. Exploratory analyses will be performed for further hypothesis generation. A total of 20 adults from the Atlanta Veterans Affairs Medical Center diagnosed with fibromyalgia will be randomized into 2 groups: 10 subjects to a control (standard therapy) group and 10 subjects to a PENFS treatment group. The pragmatic, standard therapy group will include pharmacologic treatments such as anticonvulsants, non-steroidal anti-inflammatory drugs, topical agents and physical therapy individualized to