WorldWideScience

Sample records for periodic time reversals

  1. Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals

    Directory of Open Access Journals (Sweden)

    D. Carpentier

    2015-07-01

    Full Text Available We present mathematical details of the construction of a topological invariant for periodically driven two-dimensional lattice systems with time-reversal symmetry and quasienergy gaps, which was proposed recently by some of us. The invariant is represented by a gap-dependent Z2-valued index that is simply related to the Kane–Mele invariants of quasienergy bands but contains an extra information. As a byproduct, we prove new expressions for the two-dimensional Kane–Mele invariant relating the latter to Wess–Zumino amplitudes and the boundary gauge anomaly.

  2. Periodicity and Immortality in Reversible Computing

    OpenAIRE

    Kari , Jarkko; Ollinger , Nicolas

    2008-01-01

    Additional material available on the web at http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/; We investigate the decidability of the periodicity and the immortality problems in three models of reversible computation: reversible counter machines, reversible Turing machines and reversible one-dimensional cellular automata. Immortality and periodicity are properties that describe the behavior of the model starting from arbitrary initial configurations: immortality is the property of having at le...

  3. Time reversal communication system

    Science.gov (United States)

    Candy, James V.; Meyer, Alan W.

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  4. Status of time reversal invariance

    International Nuclear Information System (INIS)

    Henley, E.M.

    1989-01-01

    Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed. 30 refs., 2 figs., 1 tab

  5. Introduction to time reversal theory

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Theory and reaction mechanisms relevant to time reversal invariance are reviewed. Consequences of time reversal invariance are presented under the headings of CP tests, electromagnetic moments, weak emissions or absorptions, and scattering reactions. 8 refs., 4 figs

  6. Time reversal and parity tests

    International Nuclear Information System (INIS)

    Terwilliger, K.

    1975-01-01

    A recent review by Henley discusses the present status of Time Reversal and Parity symmetry violations, and comments on the implications for high energy hadron scattering. This note will briefly summarize the situation with particular attention to the sizes of possible effects, relating them to experimental accuracy available or reasonably possible at the ZGS

  7. Remote Whispering Applying Time Reversal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-16

    The purpose of this project was to explore the use of time reversal technologies as a means for communication to a targeted individual or location. The idea is to have the privacy of whispering in one’s ear, but to do this remotely from loudspeakers not located near the target. Applications of this work include communicating with hostages and survivors in rescue operations, communicating imaging and operational conditions in deep drilling operations, monitoring storage of spent nuclear fuel in storage casks without wires, or clandestine activities requiring signaling between specific points. This technology provides a solution in any application where wires and radio communications are not possible or not desired. It also may be configured to self calibrate on a regular basis to adjust for changing conditions. These communications allow two people to converse with one another in real time, converse in an inaudible frequency range or medium (i.e. using ultrasonic frequencies and/or sending vibrations through a structure), or send information for a system to interpret (even allowing remote control of a system using sound). The time reversal process allows one to focus energy to a specific location in space and to send a clean transmission of a selected signal only to that location. In order for the time reversal process to work, a calibration signal must be obtained. This signal may be obtained experimentally using an impulsive sound, a known chirp signal, or other known signals. It may also be determined from a numerical model of a known environment in which the focusing is desired or from passive listening over time to ambient noise.

  8. Theta, time reversal and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, Davide [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Kapustin, Anton [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2017-05-17

    SU(N) gauge theory is time reversal invariant at θ=0 and θ=π. We show that at θ=π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ=π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ=0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ=π, several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ=π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. It may also be that the four-dimensional theory around θ=π is gapless, e.g. a Coulomb phase could match the underlying anomalies.

  9. Theta, time reversal and temperature

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Komargodski, Zohar; Seiberg, Nathan

    2017-01-01

    SU(N) gauge theory is time reversal invariant at θ=0 and θ=π. We show that at θ=π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ=π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ=0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ=π, several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ=π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. It may also be that the four-dimensional theory around θ=π is gapless, e.g. a Coulomb phase could match the underlying anomalies.

  10. Time reversal and the neutron

    International Nuclear Information System (INIS)

    Chupp, T. E.; Cooper, R. L.; Coulter, K. P.; Freedman, S. J.; Fujikawa, B. K.; Jones, G. L.; Garcia, A.; Mumm, H. P.; Nico, J. S.; Thompson, A. K.; Trull, C.; Wietfeldt, F. E.; Wilkerson, J. F.

    2013-01-01

    We have measured the triple correlation D n >/J n ·(β e x p-hat ν ) with a polarized cold-neutron beam (Mumm et al., Phys Rev Lett 107:102301, 2011; Chupp et al., Phys Rev C 86:035505, 2012). A non-zero value of D can arise due to parity-even-time-reversal-odd interactions that imply CP violation. Final-state effects also contribute to D at the level of 10  − 5 and can be calculated with precision of 1 % or better. The D coefficient is uniquely sensitive to the imaginary part of the ratio of axial-vector and vector beta-decay amplitudes as well as to scalar and tensor interactions that could arise due to beyond-Standard-Model physics. Over 300 million proton-electron coincidence events were used in a blind analysis with the result D = [ − 0.94±1.89 (stat)±0.97(sys)]×10  − 4 . Assuming only vector and axial vector interactions in beta decay, our result can be interpreted as a measure of the phase of the axial-vector coupling relative to the vector coupling, φ AV = 180.012 ° ± 0.028 °. This result also improves constrains on certain non-VA interactions.

  11. Time reversal and the neutron

    Energy Technology Data Exchange (ETDEWEB)

    Chupp, T. E., E-mail: chupp@umich.edu; Cooper, R. L.; Coulter, K. P. [Univeristy of Michigan (United States); Freedman, S. J.; Fujikawa, B. K. [University of California and Lawrence Berkeley Laboratory (United States); Jones, G. L. [Hamilton College (United States); Garcia, A. [University of Washington (United States); Mumm, H. P.; Nico, J. S.; Thompson, A. K. [National Institute of Standards and Technology (United States); Trull, C.; Wietfeldt, F. E. [Tulane University (United States); Wilkerson, J. F. [University of North Carolina (United States); Collaboration: emiT II Collaboration

    2013-03-15

    We have measured the triple correlation D/J{sub n}{center_dot}({beta}{sub e} x p-hat{sub {nu}}) with a polarized cold-neutron beam (Mumm et al., Phys Rev Lett 107:102301, 2011; Chupp et al., Phys Rev C 86:035505, 2012). A non-zero value of D can arise due to parity-even-time-reversal-odd interactions that imply CP violation. Final-state effects also contribute to D at the level of 10{sup - 5} and can be calculated with precision of 1 % or better. The D coefficient is uniquely sensitive to the imaginary part of the ratio of axial-vector and vector beta-decay amplitudes as well as to scalar and tensor interactions that could arise due to beyond-Standard-Model physics. Over 300 million proton-electron coincidence events were used in a blind analysis with the result D = [ - 0.94{+-}1.89 (stat){+-}0.97(sys)] Multiplication-Sign 10{sup - 4}. Assuming only vector and axial vector interactions in beta decay, our result can be interpreted as a measure of the phase of the axial-vector coupling relative to the vector coupling, {phi}{sub AV} = 180.012 Degree-Sign {+-} 0.028 Degree-Sign . This result also improves constrains on certain non-VA interactions.

  12. Reversible perspective and splitting in time.

    Science.gov (United States)

    Hart, Helen Schoenhals

    2012-01-01

    The element of time--the experience of it and the defensive use of it--is explored in conjunction with the use of reversible perspective as a psychotic defense. Clinical material from a long analysis illustrates how a psychotic patient used the reversible perspective, with its static splitting, to abolish the experience of time. When he improved and the reversible perspective became less effective for him, he replaced it with a more dynamic splitting mechanism using time gaps. With further improvement, the patient began to experience the passage of time, and along with it the excruciating pain of separation, envy, and loss.

  13. Time reversibility in the quantum frame

    Energy Technology Data Exchange (ETDEWEB)

    Masot-Conde, Fátima [Escuela Superior Ingenieros, Dpt. Física Aplicada III, Universidad de Sevilla Isla Mágica, 41092- Sevilla (Spain)

    2014-12-04

    Classic Mechanics and Electromagnetism, conventionally taken as time-reversible, share the same concept of motion (either of mass or charge) as the basis of the time reversibility in their own fields. This paper focuses on the relationship between mobile geometry and motion reversibility. The goal is to extrapolate the conclusions to the quantum frame, where matter and radiation behave just as elementary mobiles. The possibility that the asymmetry of Time (Time’s arrow) is an effect of a fundamental quantum asymmetry of elementary particles, turns out to be a consequence of the discussion.

  14. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai; Schuster, Gerard T.

    2016-01-01

    Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.

  15. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai

    2016-09-06

    Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.

  16. Time in Science: Reversibility vs. Irreversibility

    Science.gov (United States)

    Pomeau, Yves

    To discuss properly the question of irreversibility one needs to make a careful distinction between reversibility of the equations of motion and the choice of the initial conditions. This is also relevant for the rather confuse philosophy of the wave packet reduction in quantum mechanics. The explanation of this reduction requires also to make precise assumptions on what initial data are accessible in our world. Finally I discuss how a given (and long) time record can be shown in an objective way to record an irreversible or reversible process. Or: can a direction of time be derived from its analysis? This leads quite naturally to examine if there is a possible spontaneous breaking of the time reversal symmetry in many body systems, a symmetry breaking that would be put in evidence objectively by looking at certain specific time correlations.

  17. Time reversibility, computer simulation, algorithms, chaos

    CERN Document Server

    Hoover, William Graham

    2012-01-01

    A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of ba...

  18. Multiples least-squares reverse time migration

    KAUST Repository

    Zhang, Dongliang; Zhan, Ge; Dai, Wei; Schuster, Gerard T.

    2013-01-01

    To enhance the image quality, we propose multiples least-squares reverse time migration (MLSRTM) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. Since each recorded trace is treated

  19. Energy drift in reversible time integration

    International Nuclear Information System (INIS)

    McLachlan, R I; Perlmutter, M

    2004-01-01

    Energy drift is commonly observed in reversible integrations of systems of molecular dynamics. We show that this drift can be modelled as a diffusion and that the typical energy error after time T is O(√T). (letter to the editor)

  20. Time reversal technique for gas leakage detection.

    Science.gov (United States)

    Maksimov, A O; Polovinka, Yu A

    2015-04-01

    The acoustic remote sensing of subsea gas leakage traditionally uses sonars as active acoustic sensors and hydrophones picking up the sound generated by a leak as passive sensors. When gas leaks occur underwater, bubbles are produced and emit sound at frequencies intimately related to their sizes. The experimental implementation of an acoustic time-reversal mirror (TRM) is now well established in underwater acoustics. In the basic TRM experiment, a probe source emits a pulse that is received on an array of sensors, time reversed, and re-emitted. After time reversal, the resulting field focuses back at the probe position. In this study, a method for enhancing operation of the passive receiving system has been proposed by using it in the regime of TRM. Two factors, the local character of the acoustic emission signal caused by the leakage and a resonant nature of the bubble radiation at their birth, make particularly effective scattering with the conjugate wave (CW). Analytical calculations are performed for the scattering of CW wave on a single bubble when CW is formed by bubble birthing wail received on an array, time reversed, and re-emitted. The quality of leakage detection depends on the spatio-temporal distribution of ambient noise.

  1. Time-Reversal Generation of Rogue Waves

    Science.gov (United States)

    Chabchoub, Amin; Fink, Mathias

    2014-03-01

    The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.

  2. Time reversal tests in polarized neutron reactions

    International Nuclear Information System (INIS)

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized 3 He gas targets. Using the polarized 3 He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a 139 La sample

  3. Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel

    2015-01-01

    A time-reversal array in multimode fiber is proposed for lossless remotely controlled switching using passive optical splitters. The signal to be transmitted is digitally pre-distorted so that it is routed through the physical layer in order to arrive at only one receiver in an array. System...... performance in the presence of additive white gaussian noise, modal group delay, and timing error is investigated numerically for single-mode and 10-mode fiber. Focusing using a two-transmitter array and 44 km of single- mode fiber is demonstrated experimentally for 3 GBd QPSK signals with a bit error rate...

  4. Quasi-periodic fractal patterns in geomagnetic reversals, geological activity, and astronomical events

    International Nuclear Information System (INIS)

    Puetz, Stephen J.; Borchardt, Glenn

    2015-01-01

    Highlights: • Spectral analysis indicates similar harmonics in astronomical and geological events. • Quasi-periodic cycles occur in tripling patterns of 30.44, 91.33, 274, 822, and 2466 myr. • Similar astro- and geo-phases suggest that the cycles develop from a common source. - Abstract: The cause of geomagnetic reversals remains a geological mystery. With the availability of improved paleomagnetic databases in the past three years, a reexamination of possible periodicity in the geomagnetic reversal rate seems warranted. Previous reports of cyclicity in the reversal rate, along with the recent discovery of harmonic cycles in a variety of natural events, sparked our interest in reevaluating possible patterns in the reversal rate. Here, we focus on geomagnetic periodicity, but also analyze paleointensity, zircon formation, star formation, quasar formation, supernova, and gamma ray burst records to determine if patterns that occur in other types of data have similar periodicity. If so, then the degree of synchronization will indicate likely causal relationships with geomagnetic reversals. To achieve that goal, newly available time-series records from these disciplines were tested for cyclicity by using spectral analysis and time-lagged cross-correlation techniques. The results showed evidence of period-tripled cycles of 30.44, 91.33, 274, 822, and 2466 million years, corresponding to the periodicity from a new Universal Cycle model. Based on the results, a fractal model of the universe is hypothesized in which sub-electron fractal matter acts as a dynamic medium for large-scale waves that cause the cycles in astronomical and geological processes. According to this hypothesis, the medium of sub-electron fractal matter periodically compresses and decompresses according to the standard laws for mechanical waves. Consequently, the compressions contribute to high-pressure environments and vice versa for the decompressions, which are hypothesized to cause the

  5. Some factors affecting time reversal signal reconstruction

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Kober, Jan

    2015-01-01

    Roč. 70, September (2015), s. 604-608 ISSN 1875-3892. [ICU International Congress on Ultrasonics 2015. Metz, 10.05.2015-15.05.2015] Institutional support: RVO:61388998 Keywords : nondestructive testing * time reversal signal processing * ultrasonic source reconstruction * acoustic emission * coda wave interferometry Subject RIV: BI - Acoustic s http://ac.els-cdn.com/S1875389215007762/1-s2.0-S1875389215007762-main.pdf?_tid=1513a4a2-9e5b-11e5-9693-00000aab0f27&acdnat=1449655153_455a4e32a1135236d0796c3f973ff58e

  6. Underwater Time Service and Synchronization Based on Time Reversal Technique

    Science.gov (United States)

    Lu, Hao; Wang, Hai-bin; Aissa-El-Bey, Abdeldjalil; Pyndiah, Ramesh

    2010-09-01

    Real time service and synchronization are very important to many underwater systems. But the time service and synchronization in existence cannot work well due to the multi-path propagation and random phase fluctuation of signals in the ocean channel. The time reversal mirror technique can realize energy concentration through self-matching of the ocean channel and has very good spatial and temporal focusing properties. Based on the TRM technique, we present the Time Reversal Mirror Real Time service and synchronization (TRMRT) method which can bypass the processing of multi-path on the server side and reduce multi-path contamination on the client side. So TRMRT can improve the accuracy of time service. Furthermore, as an efficient and precise method of time service, TRMRT could be widely used in underwater exploration activities and underwater navigation and positioning systems.

  7. Time-reversal and Bayesian inversion

    Science.gov (United States)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  8. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai

    2017-03-08

    We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.

  9. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai; Schuster, Gerard T.

    2017-01-01

    We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.

  10. Multiples least-squares reverse time migration

    KAUST Repository

    Zhang, Dongliang

    2013-01-01

    To enhance the image quality, we propose multiples least-squares reverse time migration (MLSRTM) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. Since each recorded trace is treated as a virtual source, knowledge of the source wavelet is not required. Numerical tests on synthetic data for the Sigsbee2B model and field data from Gulf of Mexico show that MLSRTM can improve the image quality by removing artifacts, balancing amplitudes, and suppressing crosstalk compared to standard migration of the free-surface multiples. The potential liability of this method is that multiples require several roundtrips between the reflector and the free surface, so that high frequencies in the multiples are attenuated compared to the primary reflections. This can lead to lower resolution in the migration image compared to that computed from primaries.

  11. Do slow orbital periodicities appear in the record of earth's magnetic reversals?

    Science.gov (United States)

    Stothers, Richard B.

    1987-01-01

    Time-series spectral analysis has been performed on the dates of geomagnetic reversals of the last 20 Myr BP and earlier. Possible evidence is found from the presence of high spectral peaks for two very long periodicities, 0.4 Myr and 1.3 Myr, that may be associated with slow variations of the earth's orbital eccentricity as predicted by Berger. However, statistical significance tests and a number of other arguments do not confirm the two detections.

  12. Breast cancer detection using time reversal

    Science.gov (United States)

    Sheikh Sajjadieh, Mohammad Hossein

    Breast cancer is the second leading cause of cancer death after lung cancer among women. Mammography and magnetic resonance imaging (MRI) have certain limitations in detecting breast cancer, especially during its early stage of development. A number of studies have shown that microwave breast cancer detection has potential to become a successful clinical complement to the conventional X-ray mammography. Microwave breast imaging is performed by illuminating the breast tissues with an electromagnetic waveform and recording its reflections (backscatters) emanating from variations in the normal breast tissues and tumour cells, if present, using an antenna array. These backscatters, referred to as the overall (tumour and clutter) response, are processed to estimate the tumour response, which is applied as input to array imaging algorithms used to estimate the location of the tumour. Due to changes in the breast profile over time, the commonly utilized background subtraction procedures used to estimate the target (tumour) response in array processing are impractical for breast cancer detection. The thesis proposes a new tumour estimation algorithm based on a combination of the data adaptive filter with the envelope detection filter (DAF/EDF), which collectively do not require a training step. After establishing the superiority of the DAF/EDF based approach, the thesis shows that the time reversal (TR) array imaging algorithms outperform their conventional conterparts in detecting and localizing tumour cells in breast tissues at SNRs ranging from 15 to 30dB.

  13. Faraday waves under time-reversed excitation.

    Science.gov (United States)

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  14. The Two-Time Interpretation and Macroscopic Time-Reversibility

    Directory of Open Access Journals (Sweden)

    Yakir Aharonov

    2017-03-01

    Full Text Available The two-state vector formalism motivates a time-symmetric interpretation of quantum mechanics that entails a resolution of the measurement problem. We revisit a post-selection-assisted collapse model previously suggested by us, claiming that unlike the thermodynamic arrow of time, it can lead to reversible dynamics at the macroscopic level. In addition, the proposed scheme enables us to characterize the classical-quantum boundary. We discuss the limitations of this approach and its broad implications for other areas of physics.

  15. Multisource Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-12-01

    Least-squares migration has been shown to be able to produce high quality migration images, but its computational cost is considered to be too high for practical imaging. In this dissertation, a multisource least-squares reverse time migration algorithm (LSRTM) is proposed to increase by up to 10 times the computational efficiency by utilizing the blended sources processing technique. There are three main chapters in this dissertation. In Chapter 2, the multisource LSRTM algorithm is implemented with random time-shift and random source polarity encoding functions. Numerical tests on the 2D HESS VTI data show that the multisource LSRTM algorithm suppresses migration artifacts, balances the amplitudes, improves image resolution, and reduces crosstalk noise associated with the blended shot gathers. For this example, multisource LSRTM is about three times faster than the conventional RTM method. For the 3D example of the SEG/EAGE salt model, with comparable computational cost, multisource LSRTM produces images with more accurate amplitudes, better spatial resolution, and fewer migration artifacts compared to conventional RTM. The empirical results suggest that the multisource LSRTM can produce more accurate reflectivity images than conventional RTM does with similar or less computational cost. The caveat is that LSRTM image is sensitive to large errors in the migration velocity model. In Chapter 3, the multisource LSRTM algorithm is implemented with frequency selection encoding strategy and applied to marine streamer data, for which traditional random encoding functions are not applicable. The frequency-selection encoding functions are delta functions in the frequency domain, so that all the encoded shots have unique non-overlapping frequency content. Therefore, the receivers can distinguish the wavefield from each shot according to the frequencies. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is

  16. Three dimensional time reversal optical tomography

    Science.gov (United States)

    Wu, Binlin; Cai, W.; Alrubaiee, M.; Xu, M.; Gayen, S. K.

    2011-03-01

    Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to embedded objects. The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink (absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient μa ~ 0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.

  17. Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis

    NARCIS (Netherlands)

    Vermaas, D.A.; Kunteng, D.; Veerman, J.; Saakes, M.; Nijmeijer, K.

    2014-01-01

    Renewable energy can be generated using natural streams of seawater and river water in reverse electrodialysis (RED). The potential for electricity production of this technology is huge, but fouling of the membranes and the membrane stack reduces the potential for large scale applications. This

  18. Time-Varying Periodicity in Intraday Volatility

    DEFF Research Database (Denmark)

    Andersen, Torben Gustav; Thyrsgaard, Martin; Todorov, Viktor

    We develop a nonparametric test for deciding whether return volatility exhibits time-varying intraday periodicity using a long time-series of high-frequency data. Our null hypothesis, commonly adopted in work on volatility modeling, is that volatility follows a stationary process combined...... with a constant time-of-day periodic component. We first construct time-of-day volatility estimates and studentize the high-frequency returns with these periodic components. If the intraday volatility periodicity is invariant over time, then the distribution of the studentized returns should be identical across...... with estimating volatility moments through their sample counterparts. Critical values are computed via easy-to-implement simulation. In an empirical application to S&P 500 index returns, we find strong evidence for variation in the intraday volatility pattern driven in part by the current level of volatility...

  19. Tests of time reversal in neutron-nucleus scattering

    International Nuclear Information System (INIS)

    Bowman, J.D.

    1988-01-01

    Experiments to test time-reversal invariance are discussed. The experiments are based on observables constructed from the momentum and spin vectors of epithermal neutrons and from the spin of an aligned or polarized target. It is shown that the proposed tests are detailed balance tests of time-reversal invariance. The status of the experiments is briefly reviewed. 14 refs., 5 figs

  20. The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system

    International Nuclear Information System (INIS)

    Li, Chengzhi; Llibre, Jaume

    2009-01-01

    We prove that by perturbing the periodic annulus of the quadratic polynomial reversible Lotka–Volterra differential system, inside the class of all quadratic polynomial differential systems we can obtain at most two limit cycles

  1. The brief time-reversibility of the local Lyapunov exponents for a small chaotic Hamiltonian system

    International Nuclear Information System (INIS)

    Waldner, Franz; Hoover, William G.; Hoover, Carol G.

    2014-01-01

    Highlights: •We consider the local Lyapunov spectrum for a four-dimensional Hamilton system. •Its stable periodic motion can be reversed for long times. •In the chaotic motion, time reversal occurs only for a short time. •Perturbations will change this short unstable case into a different stable case. •These observations might relate chaos to the Second Law of Thermodynamics. - Abstract: We consider the local (instantaneous) Lyapunov spectrum for a four-dimensional Hamiltonian system. Its stable periodic motion can be reversed for long times. Its unstable chaotic motion, with two symmetric pairs of exponents, cannot. In the latter case reversal occurs for more than a thousand fourth-order Runge–Kutta time steps, followed by a transition to a new set of paired Lyapunov exponents, unrelated to those seen in the forward time direction. The relation of the observed chaotic dynamics to the Second Law of Thermodynamics is discussed

  2. Reversal of Hartmann's procedure following acute diverticulitis: is timing everything?

    LENUS (Irish Health Repository)

    Fleming, Fergal J

    2012-02-01

    BACKGROUND: Patients who undergo a Hartmann\\'s procedure may not be offered a reversal due to concerns over the morbidity of the second procedure. The aims of this study were to examine the morbidity post reversal of Hartmann\\'s procedure. METHODS: Patients who underwent a Hartmann\\'s procedure for acute diverticulitis (Hinchey 3 or 4) between 1995 and 2006 were studied. Clinical factors including patient comorbidities were analysed to elucidate what preoperative factors were associated with complications following reversal of Hartmann\\'s procedure. RESULTS: One hundred and ten patients were included. Median age was 70 years and 56% of the cohort were male (n = 61). The mortality and morbidity rate for the acute presentation was 7.3% (n = 8) and 34% (n = 37) respectively. Seventy six patients (69%) underwent a reversal at a median of 7 months (range 3-22 months) post-Hartmann\\'s procedure. The complication rate in the reversal group was 25% (n = 18). A history of current smoking (p = 0.004), increasing time to reversal (p = 0.04) and low preoperative albumin (p = 0.003) were all associated with complications following reversal. CONCLUSIONS: Reversal of Hartmann\\'s procedure can be offered to appropriately selected patients though with a significant (25%) morbidity rate. The identification of potential modifiable factors such as current smoking, prolonged time to reversal and low preoperative albumin may allow optimisation of such patients preoperatively.

  3. Forecasting with periodic autoregressive time series models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    1999-01-01

    textabstractThis paper is concerned with forecasting univariate seasonal time series data using periodic autoregressive models. We show how one should account for unit roots and deterministic terms when generating out-of-sample forecasts. We illustrate the models for various quarterly UK consumption

  4. Multisource Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-01-01

    is implemented with random time-shift and random source polarity encoding functions. Numerical tests on the 2D HESS VTI data show that the multisource LSRTM algorithm suppresses migration artifacts, balances the amplitudes, improves image resolution, and reduces

  5. Time reversibility of quantum diffusion in small-world networks

    Science.gov (United States)

    Han, Sung-Guk; Kim, Beom Jun

    2012-02-01

    We study the time-reversal dynamics of a tight-binding electron in the Watts-Strogatz (WS) small-world networks. The localized initial wave packet at time t = 0 diffuses as time proceeds until the time-reversal operation, together with the momentum perturbation of the strength η, is made at the reversal time T. The time irreversibility is measured by I = |Π( t = 2 T) - Π( t = 0)|, where Π is the participation ratio gauging the extendedness of the wavefunction and for convenience, t is measured forward even after the time reversal. When η = 0, the time evolution after T makes the wavefunction at t = 2 T identical to the one at t = 0, and we find I = 0, implying a null irreversibility or a complete reversibility. On the other hand, as η is increased from zero, the reversibility becomes weaker, and we observe enhancement of the irreversibility. We find that I linearly increases with increasing η in the weakly-perturbed region, and that the irreversibility is much stronger in the WS network than in the local regular network.

  6. Least squares reverse time migration of controlled order multiples

    Science.gov (United States)

    Liu, Y.

    2016-12-01

    Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).

  7. Reverse time migration by Krylov subspace reduced order modeling

    Science.gov (United States)

    Basir, Hadi Mahdavi; Javaherian, Abdolrahim; Shomali, Zaher Hossein; Firouz-Abadi, Roohollah Dehghani; Gholamy, Shaban Ali

    2018-04-01

    Imaging is a key step in seismic data processing. To date, a myriad of advanced pre-stack depth migration approaches have been developed; however, reverse time migration (RTM) is still considered as the high-end imaging algorithm. The main limitations associated with the performance cost of reverse time migration are the intensive computation of the forward and backward simulations, time consumption, and memory allocation related to imaging condition. Based on the reduced order modeling, we proposed an algorithm, which can be adapted to all the aforementioned factors. Our proposed method benefit from Krylov subspaces method to compute certain mode shapes of the velocity model computed by as an orthogonal base of reduced order modeling. Reverse time migration by reduced order modeling is helpful concerning the highly parallel computation and strongly reduces the memory requirement of reverse time migration. The synthetic model results showed that suggested method can decrease the computational costs of reverse time migration by several orders of magnitudes, compared with reverse time migration by finite element method.

  8. DSP-Based Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel

    2014-01-01

    A time-reversal array in multimode fiber is proposed for lossless switching using passive optical splitters. Numerical investigations are performed, and a two-transmitter array that routes a 3GBd QPSK signal through the physical layer is demonstrated experimentally.......A time-reversal array in multimode fiber is proposed for lossless switching using passive optical splitters. Numerical investigations are performed, and a two-transmitter array that routes a 3GBd QPSK signal through the physical layer is demonstrated experimentally....

  9. Parity- and time-reversal-violating moments of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Jordy de, E-mail: devries@kvi.nl [KVI, theory group (Netherlands)

    2013-03-15

    I present the calculation of parity- and time-reversal-violating moments of the nucleon and light nuclei, originating from the QCD {theta}-bar term and effective dimension-six operators. By applying chiral effective field theory these calculations are performed in a unified framework. I argue that measurements of a few light-nuclear electric dipole moments would shed light on the mechanism of parity and time-reversal violation.

  10. Time-reversal symmetry breaking in quantum billiards

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Florian

    2009-01-26

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  11. Time-reversal symmetry breaking in quantum billiards

    International Nuclear Information System (INIS)

    Schaefer, Florian

    2009-01-01

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  12. Estimate of Passive Time Reversal Communication Performance in Shallow Water

    Directory of Open Access Journals (Sweden)

    Sunhyo Kim

    2017-12-01

    Full Text Available Time reversal processes have been used to improve communication performance in the severe underwater communication environment characterized by significant multipath channels by reducing inter-symbol interference and increasing signal-to-noise ratio. In general, the performance of the time reversal is strongly related to the behavior of the q -function, which is estimated by a sum of the autocorrelation of the channel impulse response for each channel in the receiver array. The q -function depends on the complexity of the communication channel, the number of channel elements and their spacing. A q -function with a high side-lobe level and a main-lobe width wider than the symbol duration creates a residual ISI (inter-symbol interference, which makes communication difficult even after time reversal is applied. In this paper, we propose a new parameter, E q , to describe the performance of time reversal communication. E q is an estimate of how much of the q -function lies within one symbol duration. The values of E q were estimated using communication data acquired at two different sites: one in which the sound speed ratio of sediment to water was less than unity and one where the ratio was higher than unity. Finally, the parameter E q was compared to the bit error rate and the output signal-to-noise ratio obtained after the time reversal operation. The results show that these parameters are strongly correlated to the parameter E q .

  13. Least-squares reverse time migration of multiples

    KAUST Repository

    Zhang, Dongliang; Schuster, Gerard T.

    2013-01-01

    The theory of least-squares reverse time migration of multiples (RTMM) is presented. In this method, least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual

  14. Time reversal imaging, Inverse problems and Adjoint Tomography}

    Science.gov (United States)

    Montagner, J.; Larmat, C. S.; Capdeville, Y.; Kawakatsu, H.; Fink, M.

    2010-12-01

    With the increasing power of computers and numerical techniques (such as spectral element methods), it is possible to address a new class of seismological problems. The propagation of seismic waves in heterogeneous media is simulated more and more accurately and new applications developed, in particular time reversal methods and adjoint tomography in the three-dimensional Earth. Since the pioneering work of J. Claerbout, theorized by A. Tarantola, many similarities were found between time-reversal methods, cross-correlations techniques, inverse problems and adjoint tomography. By using normal mode theory, we generalize the scalar approach of Draeger and Fink (1999) and Lobkis and Weaver (2001) to the 3D- elastic Earth, for theoretically understanding time-reversal method on global scale. It is shown how to relate time-reversal methods on one hand, with auto-correlations of seismograms for source imaging and on the other hand, with cross-correlations between receivers for structural imaging and retrieving Green function. Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and to seismic waves in seismology for earthquake imaging. In the case of source imaging, time reversal techniques make it possible an automatic location in time and space as well as the retrieval of focal mechanism of earthquakes or unknown environmental sources . We present here some applications at the global scale of these techniques on synthetic tests and on real data, such as Sumatra-Andaman (Dec. 2004), Haiti (Jan. 2010), as well as glacial earthquakes and seismic hum.

  15. Air purification by catalytic oxidation in a reactor with periodic flow reversal

    NARCIS (Netherlands)

    van de Beld, L.; van de Beld, Bert; Westerterp, K.R.

    1994-01-01

    The behaviour of an adiabatic packed bed reactor with periodic flow reversal has been studied by means of model calculations. A heterogeneous model as well as a pseudo-homogeneous model have been developed. It is shown that a high degree of conversion can be obtained in an autothermal process even

  16. Naphthalocyanine-based time reversal mirror at 800 nm

    International Nuclear Information System (INIS)

    Galaup, Jean-Pierre; Fraigne, Sebastien; Le Goueet, Jean-Louis; Likforman, Jean-Pierre; Joffre, Manuel

    2004-01-01

    We performed pulse shaping and time reversal experiments using spectral holography based on persistent spectral hole burning in free-base naphthalocyanine-doped films. The application of a new pulse re-compression scheme based on a programmable hole burning material acting as a time reversal mirror is considered. In this work, we adapted the Fourier transform spectral interferometry technique for measuring the amplitude and phase of photon echo signals produced by diffraction of femtosecond pulses on a spectral hologram. We therefore demonstrated that we could control the pulses diffracted from the hologram by shaping and then characterizing these pulses in both amplitude and phase by spectral interferometry

  17. Subtleties in the BABAR measurement of time-reversal violation

    International Nuclear Information System (INIS)

    Efrati, Aielet

    2015-01-01

    A first measurement of time-reversal (T) asymmetries that are not also CP asymmetries has been recently achieved by the B A B AR collaboration. In this talk, which follows the work done in Ref. [1], I discuss the subtleties of this measurement in the presence of direct CP violation, CPT violation, wrong strangeness decays and wrong sign semi-leptonic decays. In particular, I explain why, in order to identify the measured asymmetries with time-reversal violation, one needs to assume (i) the absence of wrong strangeness decays or of CPT violation in strangeness changing decays, and (ii) the absence of wrong sign decays. (paper)

  18. Time-reversed absorbing condition: application to inverse problems

    International Nuclear Information System (INIS)

    Assous, F; Kray, M; Nataf, F; Turkel, E

    2011-01-01

    The aim of this paper is to introduce time-reversed absorbing conditions in time-reversal methods. They enable one to 'recreate the past' without knowing the source which has emitted the signals that are back-propagated. We present two applications in inverse problems: the reduction of the size of the computational domain and the determination, from boundary measurements, of the location and volume of an unknown inclusion. The method does not rely on any a priori knowledge of the physical properties of the inclusion. Numerical tests with the wave and Helmholtz equations illustrate the efficiency of the method. This technique is fairly insensitive to noise in the data

  19. Time reversal symmetry violation in the YbF molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, B. E., E-mail: ben.sauer@imperial.ac.uk; Devlin, J. A.; Hudson, J. J.; Kara, D. M.; Smallman, I. J.; Tarbutt, M. R.; Hinds, E. A. [Blackett Laboratory Imperial College London, Centre for Cold Matter (United Kingdom)

    2013-03-15

    We present a summary of the techniques used to test time reversal symmetry by measuring the permanent electric dipole moment of the YbF molecule. The results of a recent measurement (Hudson et al., Nature 473:493, 2011) are reported. We review some systematic effects which might mimic time reversal violation and describe how they are overcome. We then discuss improvements to the sensitivity of the apparatus, including both short term technical enhancements as well as a longer term goal to use laser cooled YbF in the experiment.

  20. Mechanism design of reverse auction on concession period and generalized quality for PPP projects

    Institute of Scientific and Technical Information of China (English)

    Xianjia WANG; Shiwei WU

    2017-01-01

    Reverse auctions of PPP projects usually require the bid to specify several characteristics of quality and the concession period to be fulfilled.This paper sets up a summary function of generalized quality,which contributes to reducing the dimensions of information.Thus,the multidimensional reverse auction model of a PPP project can be replaced by a two-dimensional direct mechanism based on the concession period and the generalized quality.Based on the theory of the revelation principle,the feasibility conditions,equilibrium solution and generalized quality requirements of such a mechanism,considering the influence of a variable investment structure are described.Moreover,two feasible multidimensional reverse auctions for implementing such a direct mechanism:Adjusting the scoring function and establishing a special reverse auction rule are built.The analysis shows that in these types of reverse auctions,optimal allocation can be achieved,the social benefit under the incomplete information will be maximized,and the private sector with the highest integrated management level wins the bid.In such a direct mechanism,the investment and financial pressure of the public sector can be reduced.

  1. Influence of periodic heartbeat reversal and abdominal movements on hemocoelic and tracheal pressure in resting blowflies Calliphora vicina.

    Science.gov (United States)

    Wasserthal, Lutz Thilo

    2012-01-15

    In Calliphoridae and Drosophilidae, the dorsal vessel (heart and aorta with associated venous channels) is the only connection between the thorax and the abdomen. Hemolymph oscillates between the compartments by periodic heartbeat reversal, but both the mechanism and its influence on hemocoelic and tracheal pressure have remained unclear. The pumping direction of the heart regularly reverses, with a higher pulse rate during backward compared with forward pumping. A sequence of forward and backward pulse periods lasts approximately 34 s. Pulse rate, direction, velocity and the duration of heartbeat periods were determined by thermistor and electrophysiological measurements. For the first time, heartbeat-induced pressure changes were measured in the hemocoel and in the tracheal system of the thorax and the abdomen. The tracheal pressure changed from sub-atmospheric during backward heartbeat to supra-atmospheric during forward heartbeat in the thorax and inversely in the abdomen. The heartbeat reversals were coordinated with slow abdominal movements with a pumping stroke at the beginning of the forward pulse period. The pressure effect of the pumping stroke was visible only in the abdomen. Periodic hemolymph shift and abdominal movements resulted in pressure changes in the hemocoel and tracheal system alternating in the thorax and abdomen, suggesting an effect on respiratory gas exchange.

  2. Current reversal in a continuously periodic system driven by an additive noise and a multiplicative noise

    International Nuclear Information System (INIS)

    Wang Canjun; Chen Shibo; Mei Dongcheng

    2006-01-01

    We study the noise-induce transport and current reversal of Brownian particles in a continuously periodic potential driven by cross correlation between a multiplicative white noise and an additive white noise. We find that directed motion of the Brownian particles can be induced by the correlation between the additive noise and the multiplicative noise. The current reversal and the direction of the current is controlled by the values of the intensity (λ) of the correlated noises and a dimensionless parameter R (R=α/D, D is the intensity of multiplicative noise and α is the intensity of additive noise)

  3. Time-reversal symmetry breaking by ac field: Effect of ...

    Indian Academy of Sciences (India)

    deviate from 2 thus signalling on the time-reversal breaking by the ac field. ... is also the parity effect: the enchancement is only present if either P or Q is even. ... analysis (see figure 1) is possible and the ergodic zero-dimensional approx-.

  4. Transducer frequency response variations investigated by time reversal calibration

    Czech Academy of Sciences Publication Activity Database

    Kober, Jan; Převorovský, Zdeněk

    2016-01-01

    Roč. 26, č. 2 (2016), A16-A16 ISSN 1213-3825. [Europen Conference on Acoustic Emission Testing /32./. 07.09.2016-09.09.2016, Praha] Institutional support: RVO:61388998 Keywords : calibration * time reversal * transducer * frequency response Subject RIV: BI - Acoustics

  5. Nonlinear Time-Reversal in a Wave Chaotic System

    Science.gov (United States)

    Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven

    2012-02-01

    Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)

  6. Barriers to Receiving Long-acting Reversible Contraception in the Postpartum Period.

    Science.gov (United States)

    Zerden, Matthew L; Tang, Jennifer H; Stuart, Gretchen S; Norton, Deborah R; Verbiest, Sarah B; Brody, Seth

    2015-01-01

    To assess why postpartum women who desired long-acting reversible contraception (LARC) did not receive it in the postpartum period and to assess which contraceptive methods they were using instead. This was a subgroup analysis of 324 women enrolled in a randomized, controlled trial to receive or not receive an educational LARC script during their postpartum hospitalization. Participants in this subgroup analysis stated that they were either using LARC (n = 114) or interested in using LARC (n = 210) during a follow-up survey completed after their scheduled 6-week postpartum visit. Modified Poisson regression analysis was used to assess for characteristics associated with using LARC by the time of the follow-up survey. Women who were interested in LARC but not using it were more likely to be multiparous (relative risk [RR], 1.59; 95% CI, 1.19-2.11) and to have missed their postpartum visit (RR, 25.88; 95% CI, 3.75-178.44) compared with those using LARC. Among the interested 210 who were not using LARC, the most common reasons provided for non-use were that they were told to come back for another insertion visit (45%), missed the postpartum visit (26%), and could not afford LARC (11%). The most common contraceptive methods used instead of LARC were barrier methods (42%) and abstinence (19%); 18% used no contraceptive method. Two-thirds (65%) of postpartum women who desired to use LARC did not receive it in the postpartum period and used less effective contraceptive methods. Increasing access to immediate postpartum LARC and eliminating two-visit protocols for LARC insertion may increase postpartum LARC use. As the Affordable Care Act moves toward full implementation, it is necessary to understand the barriers that prevent interested patients from receiving LARC. Copyright © 2015 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  7. Reversing the irreversible: From limit cycles to emergent time symmetry

    Science.gov (United States)

    Cortês, Marina; Smolin, Lee

    2018-01-01

    In 1979 Penrose hypothesized that the arrows of time are explained by the hypothesis that the fundamental laws are time irreversible [R. Penrose, in General Relativity: An Einstein Centenary Survey (1979)]. That is, our reversible laws, such as the standard model and general relativity are effective, and emerge from an underlying fundamental theory which is time irreversible. In [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007; 90, 044035 (2014), 10.1103/PhysRevD.90.044035; 93, 084039 (2016), 10.1103/PhysRevD.93.084039] we put forward a research program aiming at realizing just this. The aim is to find a fundamental description of physics above the Planck scale, based on irreversible laws, from which will emerge the apparently reversible dynamics we observe on intermediate scales. Here we continue that program and note that a class of discrete dynamical systems are known to exhibit this very property: they have an underlying discrete irreversible evolution, but in the long term exhibit the properties of a time reversible system, in the form of limit cycles. We connect this to our original model proposal in [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007], and show that the behaviors obtained there can be explained in terms of the same phenomenon: the attraction of the system to a basin of limit cycles, where the dynamics appears to be time reversible. Further than that, we show that our original models exhibit the very same feature: the emergence of quasiparticle excitations obtained in the earlier work in the space-time description is an expression of the system's convergence to limit cycles when seen in the causal set description.

  8. Constraints on a parity-even/time-reversal-odd interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2000-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement, one of the results of the CPLEAR experiment. What is the situation then with regard to time-reversal-invariance non-conservation in systems other than the neutral kaon system? Two classes of tests of time-reversal-invariance need to be distinguished: the first one deals with parity violating (P-odd)/time-reversal-invariance non-conserving (T-odd) interactions, while the second one deals with P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron. This in turn provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is 10 -4 times the weak interaction strength. Limits on a P-even/T-odd interaction are much less stringent. The better constraint stems also from the measurement of the electric dipole moment of the neutron. Of all the other tests, measurements of charge-symmetry breaking in neutron-proton elastic scattering provide the next better constraint. The latter experiments were performed at TRIUMF (at 477 and 347 MeV) and at IUCF (at 183 MeV). Weak decay experiments (the transverse polarization of the muon in K + →π 0 μ + ν μ and the transverse polarization of the positrons in polarized muon decay) have the potential to provide comparable or possibly better constraints

  9. A digital matched filter for reverse time chaos.

    Science.gov (United States)

    Bailey, J Phillip; Beal, Aubrey N; Dean, Robert N; Hamilton, Michael C

    2016-07-01

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.

  10. Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2013-12-01

    Full Text Available We analyze the time reversible Born-Oppenheimer molecular dynamics (TRBOMD scheme, which preserves the time reversibility of the Born-Oppenheimer molecular dynamics even with non-convergent self-consistent field iteration. In the linear response regime, we derive the stability condition, as well as the accuracy of TRBOMD for computing physical properties, such as the phonon frequency obtained from the molecular dynamics simulation. We connect and compare TRBOMD with Car-Parrinello molecular dynamics in terms of accuracy and stability. We further discuss the accuracy of TRBOMD beyond the linear response regime for non-equilibrium dynamics of nuclei. Our results are demonstrated through numerical experiments using a simplified one-dimensional model for Kohn-Sham density functional theory.

  11. Test of time-reversal invariance at COSY (TRIC)

    Energy Technology Data Exchange (ETDEWEB)

    Eversheim, D., E-mail: evershei@hiskp.uni-bonn.de; Valdau, Yu. [University Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik (Germany); Lorentz, B. [Forschungszentrum Juelich, Institut fuer Kernphysik (Germany)

    2013-03-15

    At the Cooler Synchrotron COSY a novel (P-even, T-odd) null test of time-reversal invariance to an accuracy of 10{sup - 6} is planned as an internal target transmission experiment. The parity conserving time-reversal violating observable is the total cross-section asymmetry A{sub y,xz}. This quantity is measured using a polarized proton beam with an energy of 135 MeV and an internal tensor polarized deuteron target from the PAX atomic beam source. The reaction rate will be measured by means of an integrating beam current transformer. Thus, in this experiment the cooler synchroton ring serves as ideal forward spectrometer, as a detector, and an accelerator.

  12. Testing the causality of Hawkes processes with time reversal

    Science.gov (United States)

    Cordi, Marcus; Challet, Damien; Muni Toke, Ioane

    2018-03-01

    We show that univariate and symmetric multivariate Hawkes processes are only weakly causal: the true log-likelihoods of real and reversed event time vectors are almost equal, thus parameter estimation via maximum likelihood only weakly depends on the direction of the arrow of time. In ideal (synthetic) conditions, tests of goodness of parametric fit unambiguously reject backward event times, which implies that inferring kernels from time-symmetric quantities, such as the autocovariance of the event rate, only rarely produce statistically significant fits. Finally, we find that fitting financial data with many-parameter kernels may yield significant fits for both arrows of time for the same event time vector, sometimes favouring the backward time direction. This goes to show that a significant fit of Hawkes processes to real data with flexible kernels does not imply a definite arrow of time unless one tests it.

  13. Non-linear time reversal ultrasonic pseudo-tomography

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Vejvodová, Šárka; Krofta, Josef; Převorovský, David

    2011-01-01

    Roč. 6, 3/4 (2011), s. 206-213 ISSN 1741-8410. [NDT in Progress. Praha, 05.11.2007-07.11.2007] R&D Projects: GA MPO(CZ) FR-TI1/274 Institutional research plan: CEZ:AV0Z20760514 Keywords : NDT * nonlinear elastic wave spectroscopy * time reversal mirrors * ultrasonic pseudo-tomography Subject RIV: BI - Acoustics http://www.inderscience.com/offer.php?id=43216

  14. Time reversal in photoacoustic tomography and levitation in a cavity

    International Nuclear Information System (INIS)

    Palamodov, V P

    2014-01-01

    A class of photoacoustic acquisition geometries in R n is considered such that the spherical mean transform admits an exact filtered back projection reconstruction formula. The reconstruction is interpreted as a time reversion mirror that reproduces exactly an arbitrary source distribution in the cavity. A series of examples of non-uniqueness of the inverse potential problem is constructed based on the same geometrical technique. (paper)

  15. Time reversal signal processing in acoustic emission testing

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Dvořáková, Zuzana; Chlada, Milan; Dos Santos, S.

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : acoustic emission (AE) * ultrasonic testing (UT) * signal processing * source location * time reversal acoustic s * acoustic emission * signal processing and transfer Subject RIV: BI - Acoustic s http://www.ndt.net/events/ECNDT2014/app/content/Slides/637_Prevorovsky.pdf

  16. Anisotropy signature in extended images from reverse-time migration

    KAUST Repository

    Sava, Paul

    2012-11-04

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the earth, i.e. at common-image-point gathers (CIPs), carry enough information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography.

  17. Unitarity and time reversal in the Glauber model

    International Nuclear Information System (INIS)

    Lazard, C.; Lombard, R.J.

    1984-12-01

    It has been pointed out by Formanek (1976-1980) that for incident energies above the particle production threshold the usual Glauber formulation of particle-nucleus scattering violates unitarity and time reversal invariance. We propose a simple method for recovering T-invariance and we discuss unitarity in view of the proposed modification. Numerical estimates are given to check the importance of T-invariance effects

  18. Anisotropy signature in extended images from reverse-time migration

    KAUST Repository

    Sava, Paul; Alkhalifah, Tariq Ali

    2012-01-01

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the earth, i.e. at common-image-point gathers (CIPs), carry enough information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography.

  19. Anti-Aliasing filter for reverse-time migration

    KAUST Repository

    Zhan, Ge

    2012-01-01

    We develop an anti-aliasing filter for reverse-time migration (RTM). It is similar to the traditional anti-aliasing filter used for Kirchhoff migration in that it low-pass filters the migration operator so that the dominant wavelength in the operator is greater than two times the trace sampling interval, except it is applied to both primary and multiple reflection events. Instead of applying this filter to the data in the traditional RTM operation, we apply the anti-aliasing filter to the generalized diffraction-stack migration operator. This gives the same migration image as computed by anti-aliased RTM. Download

  20. 7 CFR 1.603 - How are time periods computed?

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false How are time periods computed? 1.603 Section 1.603... Licenses General Provisions § 1.603 How are time periods computed? (a) General. Time periods are computed as follows: (1) The day of the act or event from which the period begins to run is not included. (2...

  1. 50 CFR 221.3 - How are time periods computed?

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false How are time periods computed? 221.3... Provisions § 221.3 How are time periods computed? (a) General. Time periods are computed as follows: (1) The day of the act or event from which the period begins to run is not included. (2) The last day of the...

  2. Time-reversal invariance in multiple collisions between coupled masses

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1989-01-01

    The time evolution of two mechanical oscillators coupled by a spring can (but need not) exhibit an instant t = 2t' when the initial conditions at t = 0 have been exactly restored. When that is the case, then at t = t' energy and momentum have been exchanged exactly as in an elastic collision between two free particles, and the evolution of the system from t = t' to 2t' is related to that from 0 to t' by time-reversal invariance. A similar ''simulation of elastic scattering'' at t = t' can occur for two free particles coupled via collisions with an intermediary mass that bounces back and forth between the two particles provided the intermediary is left at rest at t = t'. Examined here is the time evolution of the exchange of momentum and energy for these two examples, determining the values of the coupling spring constant (or mass value) of the intermediating spring (or mass) needed to simulate single elastic scattering between free particles, and looking at the manifestation of time-reversal invariance

  3. On periodic orbits in discrete-time cascade systems

    Directory of Open Access Journals (Sweden)

    Huimin Li

    2006-01-01

    Full Text Available We present some results on existence, minimum period, number of periodic orbits, and stability of periodic orbits in discrete-time cascade systems. Some examples are presented to illustrate these results.

  4. New Limit on Time-Reversal Violation in Beta Decay

    International Nuclear Information System (INIS)

    Mumm, H. P.; Chupp, T. E.; Cooper, R. L.; Coulter, K. P.; Freedman, S. J.; Fujikawa, B. K.; Garcia, A.; Jones, G. L.; Nico, J. S.; Thompson, A. K.; Trull, C. A.; Wietfeldt, F. E.; Wilkerson, J. F.

    2011-01-01

    We report the results of an improved determination of the triple correlation DP·(p e xp v ) that can be used to limit possible time-reversal invariance in the beta decay of polarized neutrons and constrain extensions to the standard model. Our result is D=[-0.96±1.89(stat)±1.01(sys)]x10 -4 . The corresponding phase between g A and g V is φ AV =180.013 deg. ±0.028 deg. (68% confidence level). This result represents the most sensitive measurement of D in nuclear β decay.

  5. Reverse time migration of multiples for OBS data

    KAUST Repository

    Zhang, Dongliang

    2014-01-01

    Reverse time migration of multiples (RTMM) is applied to OBS data with sparse receiver spacing. RTMM for OBS data unlike a marine streamer acquisition is implemented in the common receiver gathers (CRG) and provides a wider and denser illumination for each CRG than the conventional RTM of primaries. Hence, while the the conventional RTM image contains strong aliasing artifacts due to a sparser receiver interval, the RTMM image suffers from this artifacts less. This benefit of RTMM is demonstrated with numerical test on the Marmousi model for sparsely sampled OBS data.

  6. Sparse least-squares reverse time migration using seislets

    KAUST Repository

    Dutta, Gaurav

    2015-08-19

    We propose sparse least-squares reverse time migration (LSRTM) using seislets as a basis for the reflectivity distribution. This basis is used along with a dip-constrained preconditioner that emphasizes image updates only along prominent dips during the iterations. These dips can be estimated from the standard migration image or from the gradient using plane-wave destruction filters or structural tensors. Numerical tests on synthetic datasets demonstrate the benefits of this method for mitigation of aliasing artifacts and crosstalk noise in multisource least-squares migration.

  7. Reverse time migration of multiples for OBS data

    KAUST Repository

    Zhang, Dongliang

    2014-08-05

    Reverse time migration of multiples (RTMM) is applied to OBS data with sparse receiver spacing. RTMM for OBS data unlike a marine streamer acquisition is implemented in the common receiver gathers (CRG) and provides a wider and denser illumination for each CRG than the conventional RTM of primaries. Hence, while the the conventional RTM image contains strong aliasing artifacts due to a sparser receiver interval, the RTMM image suffers from this artifacts less. This benefit of RTMM is demonstrated with numerical test on the Marmousi model for sparsely sampled OBS data.

  8. Electric Dipole States and Time Reversal Violation in Nuclei

    International Nuclear Information System (INIS)

    Auerbach, N.

    2016-01-01

    The nuclear Schiff moment is essential in the mechanism that induces a parity and time reversal violation in the atom. In this presentation we explore theoretically the properties and systematics of the isoscalar dipole in nuclei with the emphasis on the low-energy strength and the inverse energy weighted sum which determines the Schiff moment. We also study the influence of the isovector dipole strength distribution on the Schiff moment. The influence of a large neutron excess in nuclei is examined. The centroid energies of the isoscalar giant resonance (ISGDR) and the overtone of the isovector giant dipole resonance (OIVGDR) are given for a range of nuclei. (paper)

  9. Multi-source least-squares reverse time migration

    KAUST Repository

    Dai, Wei

    2012-06-15

    Least-squares migration has been shown to improve image quality compared to the conventional migration method, but its computational cost is often too high to be practical. In this paper, we develop two numerical schemes to implement least-squares migration with the reverse time migration method and the blended source processing technique to increase computation efficiency. By iterative migration of supergathers, which consist in a sum of many phase-encoded shots, the image quality is enhanced and the crosstalk noise associated with the encoded shots is reduced. Numerical tests on 2D HESS VTI data show that the multisource least-squares reverse time migration (LSRTM) algorithm suppresses migration artefacts, balances the amplitudes, improves image resolution and reduces crosstalk noise associated with the blended shot gathers. For this example, the multisource LSRTM is about three times faster than the conventional RTM method. For the 3D example of the SEG/EAGE salt model, with a comparable computational cost, multisource LSRTM produces images with more accurate amplitudes, better spatial resolution and fewer migration artefacts compared to conventional RTM. The empirical results suggest that multisource LSRTM can produce more accurate reflectivity images than conventional RTM does with a similar or less computational cost. The caveat is that the LSRTM image is sensitive to large errors in the migration velocity model. © 2012 European Association of Geoscientists & Engineers.

  10. Plane-wave least-squares reverse-time migration

    KAUST Repository

    Dai, Wei

    2013-06-03

    A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.

  11. Multi-source least-squares reverse time migration

    KAUST Repository

    Dai, Wei; Fowler, Paul J.; Schuster, Gerard T.

    2012-01-01

    Least-squares migration has been shown to improve image quality compared to the conventional migration method, but its computational cost is often too high to be practical. In this paper, we develop two numerical schemes to implement least-squares migration with the reverse time migration method and the blended source processing technique to increase computation efficiency. By iterative migration of supergathers, which consist in a sum of many phase-encoded shots, the image quality is enhanced and the crosstalk noise associated with the encoded shots is reduced. Numerical tests on 2D HESS VTI data show that the multisource least-squares reverse time migration (LSRTM) algorithm suppresses migration artefacts, balances the amplitudes, improves image resolution and reduces crosstalk noise associated with the blended shot gathers. For this example, the multisource LSRTM is about three times faster than the conventional RTM method. For the 3D example of the SEG/EAGE salt model, with a comparable computational cost, multisource LSRTM produces images with more accurate amplitudes, better spatial resolution and fewer migration artefacts compared to conventional RTM. The empirical results suggest that multisource LSRTM can produce more accurate reflectivity images than conventional RTM does with a similar or less computational cost. The caveat is that the LSRTM image is sensitive to large errors in the migration velocity model. © 2012 European Association of Geoscientists & Engineers.

  12. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    International Nuclear Information System (INIS)

    Mirus, K.A.

    1998-06-01

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses

  13. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Mirus, Kevin A. [Univ. of Wisconsin, Madison, WI (United States)

    1998-01-01

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Roessler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high-dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  14. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch

    Science.gov (United States)

    Mirus, Kevin Andrew

    In this thesis, the possibility of controlling low- and high-dimensional chaotic systems by periodically driving an accessible system parameter is examined. This method has been carried out on several numerical systems and the MST Reversed Field Pinch. The numerical systems investigated include the logistic equation, the Lorenz equations, the Rossler equations, a coupled lattice of logistic equations, a coupled lattice of Lorenz equations, the Yoshida equations, which model tearing mode fluctuations in a plasma, and a neural net model for magnetic fluctuations on MST. This method was tested on the MST by sinusoidally driving a magnetic flux through the toroidal gap of the device. Numerically, periodic drives were found to be most effective at producing limit cycle behavior or significantly reducing the dimension of the system when the perturbation frequency was near natural frequencies of unstable periodic orbits embedded in the attractor of the unperturbed system. Several different unstable periodic orbits have been stabilized in this way for the low-dimensional numerical systems, sometimes with perturbation amplitudes that were less than 5% of the nominal value of the parameter being perturbed. In high- dimensional systems, limit cycle behavior and significant decreases in the system dimension were also achieved using perturbations with frequencies near the natural unstable periodic orbit frequencies. Results for the MST were not this encouraging, most likely because of an insufficient drive amplitude, the extremely high dimension of the plasma behavior, large amounts of noise, and a lack of stationarity in the transient plasma pulses.

  15. Least-squares reverse time migration of multiples

    KAUST Repository

    Zhang, Dongliang

    2013-12-06

    The theory of least-squares reverse time migration of multiples (RTMM) is presented. In this method, least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual sources at the hydrophones and the surface-related multiples are the observed data. For a single source, the entire free-surface becomes an extended virtual source where the downgoing free-surface multiples more fully illuminate the subsurface compared to the primaries. Since each recorded trace is treated as the time history of a virtual source, knowledge of the source wavelet is not required and the ringy time series for each source is automatically deconvolved. If the multiples can be perfectly separated from the primaries, numerical tests on synthetic data for the Sigsbee2B and Marmousi2 models show that least-squares reverse time migration of multiples (LSRTMM) can significantly improve the image quality compared to RTMM or standard reverse time migration (RTM) of primaries. However, if there is imperfect separation and the multiples are strongly interfering with the primaries then LSRTMM images show no significant advantage over the primary migration images. In some cases, they can be of worse quality. Applying LSRTMM to Gulf of Mexico data shows higher signal-to-noise imaging of the salt bottom and top compared to standard RTM images. This is likely attributed to the fact that the target body is just below the sea bed so that the deep water multiples do not have strong interference with the primaries. Migrating a sparsely sampled version of the Marmousi2 ocean bottom seismic data shows that LSM of primaries and LSRTMM provides significantly better imaging than standard RTM. A potential liability of LSRTMM is that multiples require several round trips between the reflector and the free surface, so that high frequencies in the multiples suffer greater attenuation compared to the primary reflections. This can lead to lower

  16. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  17. Spontaneous breaking of time-reversal symmetry in topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, Igor N., E-mail: karnaui@yahoo.com

    2017-06-21

    Highlights: • Proposed a new approach for description of phase transitions in topological insulators. • Considered the mechanism of spontaneous breaking of time-reversal symmetry in topological insulators. • The Haldane model can be implemented in real compounds of the condensed matter physics. - Abstract: The system of spinless fermions on a hexagonal lattice is studied. We have considered tight-binding model with the hopping integrals between the nearest-neighbor and next-nearest-neighbor lattice sites, that depend on the direction of the link. The links are divided on three types depending on the direction, the hopping integrals are defined by different phases along the links. The energy of the system depends on the phase differences, the solutions for the phases, that correspond to the minimums of the energy, lead to a topological insulator state with the nontrivial Chern numbers. We have analyzed distinct topological states and phase transitions, the behavior of the chiral gapless edge modes, have defined the Chern numbers. The band structure of topological insulator (TI) is calculated, the ground-state phase diagram in the parameter space is obtained. We propose a novel mechanism of realization of TI, when the TI state is result of spontaneous breaking of time-reversal symmetry due to nontrivial stable solutions for the phases that determine the hopping integrals along the links and show that the Haldane model can be implemented in real compounds of the condensed matter physics.

  18. Ultrasound breast imaging using frequency domain reverse time migration

    Science.gov (United States)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  19. Plane-wave Least-squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2012-11-04

    Least-squares reverse time migration is formulated with a new parameterization, where the migration image of each shot is updated separately and a prestack image is produced with common image gathers. The advantage is that it can offer stable convergence for least-squares migration even when the migration velocity is not completely accurate. To significantly reduce computation cost, linear phase shift encoding is applied to hundreds of shot gathers to produce dozens of planes waves. A regularization term which penalizes the image difference between nearby angles are used to keep the prestack image consistent through all the angles. Numerical tests on a marine dataset is performed to illustrate the advantages of least-squares reverse time migration in the plane-wave domain. Through iterations of least-squares migration, the migration artifacts are reduced and the image resolution is improved. Empirical results suggest that the LSRTM in plane wave domain is an efficient method to improve the image quality and produce common image gathers.

  20. Time reversal for ultrasonic transcranial surgery and echographic imaging

    Science.gov (United States)

    Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias

    2005-09-01

    High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.

  1. Time reversal invariance - a test in free neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Lising, Laura Jean [Univ. of California, Berkeley, CA (United States)

    1999-01-01

    Time reversal invariance violation plays only a small role in the Standard Model, and the existence of a T-violating effect above the predicted level would be an indication of new physics. A sensitive probe of this symmetry in the weak interaction is the measurement of the T-violating ''D''-correlation in the decay of free neutrons. The triple-correlation Dσn∙pe x pv involves three kinematic variables, the neutron spin, electron momentu, and neutrino (or proton) momentum, and changes sign under time reversal. This experiment detects the decay products of a polarized cold neutron beam with an octagonal array of scintillation and solid-state detectors. Data from first run at NIST's Cold Neutron Research Facility give a D-coefficient of -0.1 ± 1.3(stat.) ± 0.7(syst) x 10-3 This measurement has the greatest bearing on extensions to the Standard model that incorporate leptoquarks, although exotic fermion and lift-right symmetric models also allow a D as large as the present limit.

  2. Transmission mode acoustic time-reversal imaging for nondestructive evaluation

    Science.gov (United States)

    Lehman, Sean K.; Devaney, Anthony J.

    2002-11-01

    In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.

  3. Rattleback dynamics and its reversal time of rotation

    Science.gov (United States)

    Kondo, Yoichiro; Nakanishi, Hiizu

    2017-06-01

    A rattleback is a rigid, semielliptic toy which exhibits unintuitive behavior; when it is spun in one direction, it soon begins pitching and stops spinning, then it starts to spin in the opposite direction, but in the other direction, it seems to spin just steadily. This puzzling behavior results from the slight misalignment between the principal axes for the inertia and those for the curvature; the misalignment couples the spinning with the pitching and the rolling oscillations. It has been shown that under the no-slip condition and without dissipation the spin can reverse in both directions, and Garcia and Hubbard obtained the formula for the time required for the spin reversal tr [Proc. R. Soc. Lond. A 418, 165 (1988), 10.1098/rspa.1988.0078]. In this work, we reformulate the rattleback dynamics in a physically transparent way and reduce it to a three-variable dynamics for spinning, pitching, and rolling. We obtain an expression of the Garcia-Hubbard formula for tr by a simple product of four factors: (1) the misalignment angle, (2) the difference in the inverses of inertia moment for the two oscillations, (3) that in the radii for the two principal curvatures, and (4) the squared frequency of the oscillation. We perform extensive numerical simulations to examine validity and limitation of the formula, and find that (1) the Garcia-Hubbard formula is good for both spinning directions in the small spin and small oscillation regime, but (2) in the fast spin regime especially for the steady direction, the rattleback may not reverse and shows a rich variety of dynamics including steady spinning, spin wobbling, and chaotic behavior reminiscent of chaos in a dissipative system.

  4. Parity and time-reversal violation in nuclei and atoms

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1986-01-01

    Two topics are briefly reviewed: the parity (P)-violating NN interaction and the time-reversal (T) and P-violating electric moments (EDM's) of atoms. The ΔI = 1 P-violating NN amplitude dominated by weak π +- exchange is found to be appreciably smaller than bag-model predictions. This may be a dynamical symmetry of flavor-conserving hadronic weak processes reminiscent of the ΔI = 1/2 rule in flavor-changing decays. General principles of experimental searches for atomic EDM's are discussed. Atomic EDM's are sensitive to electronic or nuclear EDM's and to a P-and-T-violating electron-quark interaction. Even though the experimental precision is still ∼10 4 times worse than counting statistics, the recent results have reached a sensitivity to nuclear EDM's which rivals that of the neutron EDM data. Further significant improvements can be expected

  5. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping; Hanafy, Sherif M.; Schuster, Gerard T.; Zhan, Ge; Boonyasiriwat, Chaiwoot

    2011-01-01

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors

  6. Time-reversal-violating Schiff moment of 199Hg

    International Nuclear Information System (INIS)

    Jesus, J.H. de; Engel, J.

    2005-01-01

    We calculate the Schiff moment of the nucleus 199 Hg, created by πNN vertices that are odd under parity (P) and time-reversal (T). Our approach, formulated in diagrammatic perturbation theory with important core-polarization diagrams summed to all orders, gives a close approximation to the expectation value of the Schiff operator in the odd-A Hartree-Fock-Bogoliubov ground state generated by a Skyrme interaction and a weak P- and T-odd pion-exchange potential. To assess the uncertainty in the results, we carry out the calculation with several Skyrme interactions, the quality of which we test by checking predictions for the isoscalar-E1 strength distribution in 208 Pb, and estimate most of the important diagrams we omit

  7. Modified interferometric imaging condition for reverse-time migration

    Science.gov (United States)

    Guo, Xue-Bao; Liu, Hong; Shi, Ying

    2018-01-01

    For reverse-time migration, high-resolution imaging mainly depends on the accuracy of the velocity model and the imaging condition. In practice, however, the small-scale components of the velocity model cannot be estimated by tomographical methods; therefore, the wavefields are not accurately reconstructed from the background velocity, and the imaging process will generate artefacts. Some of the noise is due to cross-correlation of unrelated seismic events. Interferometric imaging condition suppresses imaging noise very effectively, especially the unknown random disturbance of the small-scale part. The conventional interferometric imaging condition is extended in this study to obtain a new imaging condition based on the pseudo-Wigner distribution function (WDF). Numerical examples show that the modified interferometric imaging condition improves imaging precision.

  8. Single-molecule stochastic times in a reversible bimolecular reaction

    Science.gov (United States)

    Keller, Peter; Valleriani, Angelo

    2012-08-01

    In this work, we consider the reversible reaction between reactants of species A and B to form the product C. We consider this reaction as a prototype of many pseudobiomolecular reactions in biology, such as for instance molecular motors. We derive the exact probability density for the stochastic waiting time that a molecule of species A needs until the reaction with a molecule of species B takes place. We perform this computation taking fully into account the stochastic fluctuations in the number of molecules of species B. We show that at low numbers of participating molecules, the exact probability density differs from the exponential density derived by assuming the law of mass action. Finally, we discuss the condition of detailed balance in the exact stochastic and in the approximate treatment.

  9. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    International Nuclear Information System (INIS)

    Ha, Taeyoung; Shin, Changsoo

    2007-01-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data

  10. Least-squares reverse time migration with radon preconditioning

    KAUST Repository

    Dutta, Gaurav

    2016-09-06

    We present a least-squares reverse time migration (LSRTM) method using Radon preconditioning to regularize noisy or severely undersampled data. A high resolution local radon transform is used as a change of basis for the reflectivity and sparseness constraints are applied to the inverted reflectivity in the transform domain. This reflects the prior that for each location of the subsurface the number of geological dips is limited. The forward and the adjoint mapping of the reflectivity to the local Radon domain and back are done through 3D Fourier-based discrete Radon transform operators. The sparseness is enforced by applying weights to the Radon domain components which either vary with the amplitudes of the local dips or are thresholded at given quantiles. Numerical tests on synthetic and field data validate the effectiveness of the proposed approach in producing images with improved SNR and reduced aliasing artifacts when compared with standard RTM or LSRTM.

  11. Time-Reversal Study of the Hemet (CA) Tremor Source

    Science.gov (United States)

    Larmat, C. S.; Johnson, P. A.; Guyer, R. A.

    2010-12-01

    Since its first observation by Nadeau & Dolenc (2005) and Gomberg et al. (2008), tremor along the San Andreas fault system is thought to be a probe into the frictional state of the deep part of the fault (e.g. Shelly et al., 2007). Tremor is associated with slow, otherwise deep, aseismic slip events that may be triggered by faint signals such as passing waves from remote earthquakes or solid Earth tides.Well resolved tremor source location is key to constrain frictional models of the fault. However, tremor source location is challenging because of the high-frequency and highly-scattered nature of tremor signal characterized by the lack of isolated phase arrivals. Time Reversal (TR) methods are emerging as a useful tool for location. The unique requirement is a good velocity model for the different time-reversed phases to arrive coherently onto the source point. We present results of location for a tremor source near the town of Hemet, CA, which was triggered by the 2002 M 7.9 Denali Fault earthquake (Gomberg et al., 2008) and by the 2009 M 6.9 Gulf of California earthquake. We performed TR in a volume model of 88 (N-S) x 70 (W-E) x 60 km (Z) using the full-wave 3D wave-propagation package SPECFEM3D (Komatitsch et al., 2002). The results for the 2009 episode indicate a deep source (at about 22km) which is about 4km SW the fault surface scarp. We perform STA/SLA and correlation analysis in order to have independent confirmation of the Hemet tremor source. We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work.

  12. 43 CFR 45.3 - How are time periods computed?

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false How are time periods computed? 45.3... IN FERC HYDROPOWER LICENSES General Provisions § 45.3 How are time periods computed? (a) General... run is not included. (2) The last day of the period is included. (i) If that day is a Saturday, Sunday...

  13. Concerning tests of time-reversal invariance via the polarization-analyzing power equality

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1982-01-01

    Previous tests of time-reversal invariance via comparisons of polarizations and analyzing powers in nuclear scattering have been examined. It is found that all of these comparisons fail as adequate tests of time-reversal invariance either because of a lack of experimental precision or the lack of sensitivity to any time-reversal symmetry violation

  14. Non-Abelian parafermions in time-reversal-invariant interacting helical systems

    Science.gov (United States)

    Orth, Christoph P.; Tiwari, Rakesh P.; Meng, Tobias; Schmidt, Thomas L.

    2015-02-01

    The interplay between bulk spin-orbit coupling and electron-electron interactions produces umklapp scattering in the helical edge states of a two-dimensional topological insulator. If the chemical potential is at the Dirac point, umklapp scattering can open a gap in the edge state spectrum even if the system is time-reversal invariant. We determine the zero-energy bound states at the interfaces between a section of a helical liquid which is gapped out by the superconducting proximity effect and a section gapped out by umklapp scattering. We show that these interfaces pin charges which are multiples of e /2 , giving rise to a Josephson current with 8 π periodicity. Moreover, the bound states, which are protected by time-reversal symmetry, are fourfold degenerate and can be described as Z4 parafermions. We determine their braiding statistics and show how braiding can be implemented in topological insulator systems.

  15. Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media

    Science.gov (United States)

    Vezzoli, Stefano; Bruno, Vincenzo; DeVault, Clayton; Roger, Thomas; Shalaev, Vladimir M.; Boltasseva, Alexandra; Ferrera, Marcello; Clerici, Matteo; Dubietis, Audrius; Faccio, Daniele

    2018-01-01

    Materials with a spatially uniform but temporally varying optical response have applications ranging from magnetic field-free optical isolators to fundamental studies of quantum field theories. However, these effects typically become relevant only for time variations oscillating at optical frequencies, thus presenting a significant hurdle that severely limits the realization of such conditions. Here we present a thin-film material with a permittivity that pulsates (uniformly in space) at optical frequencies and realizes a time-reversing medium of the form originally proposed by Pendry [Science 322, 71 (2008), 10.1126/science.1162087]. We use an optically pumped, 500 nm thick film of epsilon-near-zero (ENZ) material based on Al-doped zinc oxide. An incident probe beam is both negatively refracted and time reversed through a reflected phase-conjugated beam. As a result of the high nonlinearity and the refractive index that is close to zero, the ENZ film leads to time reversed beams (simultaneous negative refraction and phase conjugation) with near-unit efficiency and greater-than-unit internal conversion efficiency. The ENZ platform therefore presents the time-reversal features required, e.g., for efficient subwavelength imaging, all-optical isolators and fundamental quantum field theory studies.

  16. Imaging Method Based on Time Reversal Channel Compensation

    Directory of Open Access Journals (Sweden)

    Bing Li

    2015-01-01

    Full Text Available The conventional time reversal imaging (TRI method builds imaging function by using the maximal value of signal amplitude. In this circumstance, some remote targets are missed (near-far problem or low resolution is obtained in lossy and/or dispersive media, and too many transceivers are employed to locate targets, which increases the complexity and cost of system. To solve these problems, a novel TRI algorithm is presented in this paper. In order to achieve a high resolution, the signal amplitude corresponding to focal time observed at target position is used to reconstruct the target image. For disposing near-far problem and suppressing spurious images, combining with cross-correlation property and amplitude compensation, channel compensation function (CCF is introduced. Moreover, the complexity and cost of system are reduced by employing only five transceivers to detect four targets whose number is close to that of transceivers. For the sake of demonstrating the practicability of the proposed analytical framework, the numerical experiments are actualized in both nondispersive-lossless (NDL media and dispersive-conductive (DPC media. Results show that the performance of the proposed method is superior to that of conventional TRI algorithm even under few echo signals.

  17. Anisotropy signature in reverse-time migration extended images

    KAUST Repository

    Sava, Paul C.; Alkhalifah, Tariq Ali

    2014-01-01

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common-image-point gathers, carry rich information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common-image-point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common-image-point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V-shaped residual moveout with the slope of the "V" flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth-order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.

  18. Anisotropy signature in reverse-time migration extended images

    KAUST Repository

    Sava, Paul C.

    2014-11-04

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common-image-point gathers, carry rich information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common-image-point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common-image-point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V-shaped residual moveout with the slope of the "V" flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth-order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.

  19. Time-reversed lasing in the terahertz range and its preliminary study in sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yun, E-mail: shenyunoptics@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Huaqing [Department of Physics, Nanchang University, Nanchang 330031 (China); Deng, Xiaohua [Institute of Space Science and Technology, Nanchang University, Nanchang 330031 (China); Wang, Guoping [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-02-05

    Time-reversed lasing in a uniform slab and a grating structure are investigated in the terahertz range. The results show that both the uniform slab and grating can support terahertz time-reversed lasing. Nevertheless, due to the tunable effective refractive index, the grating structure can not only exhibit time-reversed lasing more effectively and flexibly than a uniform slab, but also can realize significant absorption in a broader operating frequency range. Furthermore, applications of terahertz time-reversed lasing for novel concentration/thickness sensors are preliminarily studied in a single-channel coherent perfect absorber system. - Highlights: • Time-reversed lasing are investigated in the terahertz range. • The grating structure exhibit time-reversed lasing more effectively and flexibly than a uniform slab. • THz time-reversed lasing for novel concentration/thickness sensors are studied.

  20. Laser oriented 36K for time reversal symmetry measurements

    International Nuclear Information System (INIS)

    Young, A.R.; Anderson, W.S.; Calaprice, F.P.; Cates, G.D.; Jones, G.L.; Krieger, D.A.; Vogelaar, R.B.

    1995-01-01

    We have produced very large nuclear alignments in radioactive 36 K (half-life 0.34 sec) through laser optical pumping techniques. The 36 K was created through (p,n) reactions using a 50 nA, 22 MeV proton beam, and a 3.3 atmosphere 36 Ar target. Measurements were made with the target cell at room temperature, when direct optical pumping produces nuclear orientation in the 36 K, and at elevated temperatures 160 degree C and 180 degree C where the 36 K is oriented through a combination of direct optical pumping and spin exchange. The fraction of the maximal nuclear alignment for the 180 degree C data was determined to be 0.46±0.07 stat±0.05 syst through measurements of the γ-ray anisotropy following positron decay. Roughly 10 5 or more decays of oriented 36 K occurred each second. The application of the superallowed decay of 36 K to measurements of time-reversal symmetry in β decay is discussed

  1. First direct observation of time-reversal violation

    International Nuclear Information System (INIS)

    Angelopoulos, A.; Apostolakis, A.; Aslanides, E.; Bertin, V.; Ealet, A.; Henry-Couannier, F.; Le Gac, R.; Montanet, F.; Touchard, F.; Backenstoss, G.; Benelli, A.; Kokkas, P.; Leimgruber, F.; Pavlopoulos, P.; Polivka, G.; Rickenbach, R.; Schietinger, T.; Tauscher, L.; Vlachos, S.; Bargassa, P.

    2000-01-01

    Using its unique capability of strangeness tagging at K 0 production in pp-bar→K ± π ± K 0 (K-bar) 0 ) and at decay with the lepton charge in semileptonic decays CPLEAR measured the semileptonic decay-rate asymmetry (R(K-bar) 0 →e + π - ν)-R(K 0 →e - π + ν-bar)/R(K-bar) 0 →e + π - ν)+R(K 0 →e - π + ν-bar). The asymmetry, fitted over the eigentime interval 1-20 τ S , yielded a non-zero result of (6.6±1.3 stat ±1.1 syst )x10 -3 . A thorough phenomenological analysis identifies T violation in K 0 mixing and/or CPT violation in semileptonic decays as possible interpretations. A confrontation with world data on neutral kaon decays, however, excludes the latter with sufficient precision to establish the result as the first direct observation of time reversal non-invariance

  2. Multiple time-reversed guide-sources in shallow water

    Science.gov (United States)

    Gaumond, Charles F.; Fromm, David M.; Lingevitch, Joseph F.; Gauss, Roger C.; Menis, Richard

    2003-10-01

    Detection in a monostatic, broadband, active sonar system in shallow water is degraded by propagation-induced spreading. The detection improvement from multiple spatially separated guide sources (GSs) is presented as a method to mitigate this degradation. The improvement of detection by using information in a set of one-way transmissions from a variety of positions is shown using sea data. The experimental area is south of the Hudson Canyon off the coast of New Jersey. The data were taken using five elements of a time-reversing VLA. The five elements were contiguous and at midwater depth. The target and guide source was an echo repeater positioned at various ranges and at middepth. The transmitted signals were 3.0- to 3.5-kHz LFMs. The data are analyzed to show the amount of information present in the collection, a baseline probability of detection (PD) not using the collection of GS signals, the improvement in PD from the use of various sets of GS signals. The dependence of the improvement as a function of range is also shown. [The authors acknowledge support from Dr. Jeffrey Simmen, ONR321OS, and the chief scientist Dr. Charles Holland. Work supported by ONR.

  3. Time-reversal of electromagnetic scattering for small scatterer classification

    International Nuclear Information System (INIS)

    Smith, J Torquil; Berryman, James G

    2012-01-01

    Time-reversal operators, or the alternatively labelled, but equivalent, multistatic response matrix methods, are used to show how to determine the number of scatterers present in an electromagnetic scattering scenario that might be typical of UneXploded Ordinance (UXO) detection, classification and removal applications. Because the nature of the target UXO application differs from that of many other common inversion problems, emphasis is placed here on classification and enumeration rather than on detailed imaging. The main technical issues necessarily revolve around showing that it is possible to find a sufficient number of constraints via multiple measurements (i.e. using several distinct views at the target site) to solve the enumeration problem. The main results show that five measurements with antenna pairs are generally adequate to solve the classification and enumeration problems. However, these results also demonstrate a need for decreasing noise levels in the multistatic matrix as the number n of scatterers increases for the intended practical applications of the method. (paper)

  4. Search for time reversal violation in neutron decay

    International Nuclear Information System (INIS)

    Gorel, P.

    2006-06-01

    The topic of this thesis is the implementation of an experimental setup designed to measure the R- and N-parameters in polarized neutron decay, together with the data analysis. Four observables are necessary for this measurement: the neutron polarization, the electron momentum and both transverse components of the electron polarization. These last two are measured using a Mott polarimeter. The other observables are determined using the same detectors. The precision to be reached on the R-parameter is 0.5%. A non zero value would sign a time reversal invariance violation and therefore would be a hint of physics beyond the Standard Model. This document presents the work done to prepare and optimize the experimental setup before the data acquisition run performed in 2004. Particular care was taken on the scintillator walls, used to trigger the acquisition and measure the electron energy. The second part concerns the implementation of methods to extract R and N from the data, and the study of the background recorded simultaneously. (author)

  5. Time reversal violation in radiative beta decay: experimental plans

    Science.gov (United States)

    Behr, J. A.; McNeil, J.; Anholm, M.; Gorelov, A.; Melconian, D.; Ashery, D.

    2017-01-01

    Some explanations for the excess of matter over antimatter in the universe involve sources of time reversal violation (TRV) in addition to the one known in the standard model of particle physics. We plan to search for TRV in a correlation between the momenta of the beta, neutrino, and the radiative gamma sometimes emitted in nuclear beta decay. Correlations involving three (out of four) momenta are sensitive at lowest order to different TRV physics than observables involving spin, such as electric dipole moments and spin-polarized beta decay correlations. Such experiments have been done in radiative kaon decay, but not in systems involving the lightest generation of quarks. An explicit low-energy physics model being tested produces TRV effects in the Fermi beta decay of the neutron, tritium, or some positron-decaying isotopes. We will present plans to measure the TRV asymmetry in radiative beta decay of laser-trapped 38mK at better than 0.01 sensitivity, including suppression of background from positron annihilation. Supported by NSERC, D.O.E., Israel Science Foundation. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  6. Time-reversal-noninvariant, parity-conserving nuclear interactions

    International Nuclear Information System (INIS)

    Haxton, W.C.; Hoering, A.; Washington Univ., Seattle, WA; Melbourne Univ., Parkville, VIC

    1993-01-01

    In this paper the authors quantify the relationship between compound nucleus (CN) and electric dipole moment (edm) constraints on long-ranged time-reversal-noninvariant (TRNI), parity-conserving (PC) interactions. It begins by reviewing the work that has been done in compound nuclei. In the second section, it considers the general form of the TRNI PC interaction in meson exchange models. In the third section discusses one mechanism for generating an atomic edm, a TRNI PC nuclear interaction mediate by ρ exchange coupled with Z exchange between atomic electrons and the nucleus. While a variety of other mechanisms can similarly generate edms from TRNI PC interactions this example has some interesting experimental consequences. The limits extracted are then translated into a constraint on α, the ratio of typical TRNI and TRI N N matrix elements. It is concluded that such atomic edm limits on TRNI PC interactions are at least comparable to those obtained in the best CN studies. These limits from long-distance contributions to edms are then compared to the stringent bounds obtained recently by Conti and Khriplovich from studies of short-ranged mechanisms. 37 refs., 2 figs

  7. Test of time-reversal invariance at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Valdau, Yury [Helmholtz Institut fuer Strahlen- und Kernphysik, Bonn Univ. (Germany); National Research Center ' ' Kurchatov Institute' ' Petersburg Nuclear Physics Institute B.P. Konstantinov, Gatchina (Russian Federation); Eversheim, Dieter [Helmholtz Institut fuer Strahlen- und Kernphysik, Bonn Univ. (Germany); Lorentz, Bernd [Forschungszentrum Juelich, Institute fuer Kernphysik (Germany)

    2016-07-01

    The experiment to test the Time Reversal Invariance at Cosy (TRIC) is under the preparation by the PAX collaboration. It is planned to improve present limit on the T-odd P-even interaction by at least one order of magnitude using a unique genuine null observable available in double polarized proton-deuteron scattering. The TRIC experiment is planned as a transmission experiment using a tensor polarized deuterium target placed at the internal target place of the Cooler-Synchrotron COSY-Juelich. Total double polarized cross section will be measured observing a beam current change due to the interaction of a polarized proton beam with an internal tensor polarized deuterium target from the PAX atomic beam source. Hence, in this experiment COSY will be used as an accelerator, detector and ideal zero degree spectrometer. In addition to the high intensity polarized proton beam and high density polarized deuterium target, a new high precision beam current measurement system will be prepared for the TRIC experiment. In this report status of all the activities of PAX collaboration towards realization of the TRIC experiment will be presented.

  8. Reverse time migration of prism waves for salt flank delineation

    KAUST Repository

    Dai, Wei; Schuster, Gerard T.

    2013-01-01

    In this paper, we present a new reverse time migration method for imaging salt flanks with prism wave reflections. It consists of four steps: (1) migrating the seismic data with conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model to simulate source-side reflections with the Born approximation; (3) zero-lag correlation of the source-side reflection wavefields and receiver-side wavefields to produce the prism wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An advantage of this method is that there is no need to pick the horizontal reflectors prior to migration of the prism waves. It also separately images the vertical structures at a different step to reduce crosstalk interference. The disadvantage of prism wave migration algorithm is that its computational cost is twice that of conventional RTM. The empirical results with a salt model suggest that prism wave migration can be an effective method for salt flank delineation in the absence of diving waves.

  9. Reverse time migration of prism waves for salt flank delineation

    KAUST Repository

    Dai, Wei

    2013-09-22

    In this paper, we present a new reverse time migration method for imaging salt flanks with prism wave reflections. It consists of four steps: (1) migrating the seismic data with conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model to simulate source-side reflections with the Born approximation; (3) zero-lag correlation of the source-side reflection wavefields and receiver-side wavefields to produce the prism wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An advantage of this method is that there is no need to pick the horizontal reflectors prior to migration of the prism waves. It also separately images the vertical structures at a different step to reduce crosstalk interference. The disadvantage of prism wave migration algorithm is that its computational cost is twice that of conventional RTM. The empirical results with a salt model suggest that prism wave migration can be an effective method for salt flank delineation in the absence of diving waves.

  10. On positive periodic solution of periodic competition Lotka-Volterra system with time delay and diffusion

    International Nuclear Information System (INIS)

    Sun Wen; Chen Shihua; Hong Zhiming; Wang Changping

    2007-01-01

    A two-species periodic competition Lotka-Volterra system with time delay and diffusion is investigated. Some sufficient conditions of the existence of positive periodic solution are established for the system by using the continuation theorem of coincidence degree theory

  11. A time reversal damage imaging method for structure health monitoring using Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Cao Ya-Ping; Sun Xiu-Li; Chen Xian-Hua; Yu Jian-Bo

    2010-01-01

    This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretically. It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation. Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations. The results show that the reconstructed time reversed wave exhibits close similarity to the reversed narrowband tone burst signal validating the theoretical model. To enhance the similarity, the cycle number of the excited signal should be increased. Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure. In this work, the time reversal technique is used for the recompression of Lamb wave signals. Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal. It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely, but the cycle number of the excited signal should be chosen reasonably

  12. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    Science.gov (United States)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  13. Almost Periodicity in Time of Solutions of the Toda Lattice

    OpenAIRE

    Binder, Ilia; Damanik, David; Lukic, Milivoje; VandenBoom, Tom

    2016-01-01

    We study an initial value problem for the Toda lattice with almost periodic initial data. We consider initial data for which the associated Jacobi operator is absolutely continuous and has a spectrum satisfying a Craig-type condition, and show the boundedness and almost periodicity in time and space of solutions.

  14. Periodic flows to chaos in time-delay systems

    CERN Document Server

    Luo, Albert C J

    2017-01-01

    This book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems. Facilitates discovery of analytical solutions of nonlinear time-delay systems; Illustrates bifurcation trees of periodic motions to chaos; Helps readers identify motion complexity and singularity; Explains pro...

  15. Factors affecting timing of closure and non-reversal of temporary ileostomies.

    Science.gov (United States)

    Sier, M F; van Gelder, L; Ubbink, D T; Bemelman, W A; Oostenbroek, R J

    2015-09-01

    Although stoma closure is considered a simple surgical intervention, the interval between construction and reversal is often prolonged, and some ileostomies may never be reversed. We evaluated possible predictors for non-reversal and prolonged interval between construction and reversal. In a cohort study of ileostomy patients treated in a large teaching hospital, we collected data from the surgical complication and enterostomal therapists' registries between January 2001 and December 2011. Parameters responsible for morbidity, mortality, length of stay and time interval between construction and reversal were analysed. Of 485 intentionally temporary ileostomies, 359 were reversed after a median of 5.6 months (IQR 3.8-8.9 months), while 126 (26%) remained permanent. End ileostomy and intra-abdominal abscess independently delayed reversal. Age, end ileostomy, higher body mass index and preoperative radiotherapy were independent factors for non-reversal. Median duration of hospitalisation for reversal was 7.0 days (5-13 days). Morbidity and mortality were 31 and 0.9%, respectively. In 20 patients (5.5%), re-ileostomy was necessary. A substantial number of ileostomies that are intended to be temporary will never be reversed. If reversed, the interval between construction and reversal is longer than anticipated, while morbidity after reversal and duration of hospitalisation are considerable. Besides a temporary ileostomy, there are two other options: no diversion or a permanent colostomy. Shared decision-making is to be preferred in these situations.

  16. Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide

    NARCIS (Netherlands)

    Lobino, M.; Marshall, G.D.; Xiong, C.; Clark, A.S.; Bonneau, D.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; Dorenbos, S.N.; Zijlstra, T.; Zwiller, V.; Marangoni, M.; Ramponi, R.; Thompson, M.G.; Eggleton, B.J.; O'Brien, J.L.

    2011-01-01

    We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process where a pump laser at wavelength of 1.55 ?m is first

  17. Ambient Noise Green's Function Simulation of Long-Period Ground Motions for Reverse Faulting

    Science.gov (United States)

    Miyake, H.; Beroza, G. C.

    2009-12-01

    Long-time correlation of ambient seismic noise has been demonstrated as a useful tool for strong ground motion prediction [Prieto and Beroza, 2008]. An important advantage of ambient noise Green's functions is that they can be used for ground motion simulation without resorting to either complex 3-D velocity structure to develop theoretical Green’s functions, or aftershock records for empirical Green’s function analysis. The station-to-station approach inherent to ambient noise Green’s functions imposes some limits to its application, since they are band-limited, applied at the surface, and for a single force. We explore the applicability of this method to strong motion prediction using the 2007 Chuetsu-oki, Japan, earthquake (Mw 6.6, depth = 9 km), which excited long-period ground motions in and around the Kanto basin almost 200 km from the epicenter. We test the performance of ambient noise Green's function for long-period ground motion simulation. We use three components of F-net broadband data at KZK station, which is located near the source region, as a virtual source, and three components of six F-net stations in and around the Kanto basin to calculate the response. An advantage to applying this approach in Japan is that ambient-noise sources are active in diverse directions. The dominant period of the ambient noise for the F-net datasets is mostly 7 s over the year, and amplitudes are largest in winter. This period matches the dominant periods of the Kanto and Niigata basins. For the 9 components of the ambient noise Green’s functions, we have confirmed long-period components corresponding to Love wave and Rayleigh waves that can be used for simulation of the 2007 Chuetsu-oki earthquake. The relative amplitudes, phases, and durations of the ambient noise Green’s functions at the F-net stations in and around the Kanto basin respect to F-net KZK station are fairly well matched with those of the observed ground motions for the 2007 Chuetsu

  18. New serial time codes for seismic short period and long period data acquisition systems

    International Nuclear Information System (INIS)

    Kolvankar, V.G.; Rao, D.S.

    1988-01-01

    This paper discusses a new time code for time indexing multichannel short period (1 to 25 hz) seismic event data recorded on a single track of magnetic tape in digital format and discusses its usefulness in contrast to Vela time code used in continuous analog multichannel data recording system on multitrack instrumentation tape deck. This paper also discusses another time code, used for time indexing of seismic long period (DC to 2.5 seconds) multichannel data recorded on a single track of magnetic tape in digital format. The time code decoding and display system developed to provide quick access to any desired portion of the tape in both data recording and repro duce system is also discussed. (author). 7 figs

  19. Effective diffusion in time-periodic linear planar flow

    International Nuclear Information System (INIS)

    Indeikina, A.; Chang, H.

    1993-01-01

    It is shown that when a point source of solute is inserted into a time-periodic, unbounded linear planar flow, the large-time, time-average transport of the solute can be described by classical anisotropic diffusion with constant effective diffusion tensors. For a given vorticity and forcing period, elongational flow is shown to be the most dispersive followed by simple shear and rotational flow. Large-time diffusivity along the major axis of the time-average concentration ellipse, whose alignment is predicted from the theory, is shown to increase with vorticity for all flows and decrease with increasing forcing frequency for elongational flow and simple shear. For the interesting case of rotational flow, there exist discrete resonant frequencies where the time-average major diffusivity reaches local maxima equal to the time-average steady flow case with zero forcing frequency

  20. Real time control of the sawtooth period using EC launchers

    International Nuclear Information System (INIS)

    Paley, J I; Felici, F; Coda, S; Goodman, T P; Piras, F

    2009-01-01

    Tokamak plasmas operating at high performance are limited by several MHD instabilities. The sawtooth instability limits the core plasma pressure and can drive the neoclassical tearing mode unstable, but also prevents accumulation of impurities in the core. Electron cyclotron heating and current drive systems can be used to modify the local current profile and therefore tailor the sawtooth period. This paper reports on demonstrations of continuous real time feedback control of the sawtooth period by varying the EC injection angle.

  1. Non-linear ultrasonic time-reversal mirrors in NDT

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    -, č. 4 (2012), s. 4-4 [World Conference on Nondestructive Testing /18./. 16.4.2012-20.4.2012, Durban] R&D Projects: GA MPO(CZ) FR-TI1/274; GA MPO(CZ) FR-T1/198; GA ČR(CZ) GAP104/10/1430 Institutional research plan: CEZ:AV0Z2076919 Keywords : non-linear ime reversal mirror * ultrasonic techniques * ESAM Subject RIV: BI - Acoustics http://www.academia-ndt.org/Downloads/AcademiaNews4.pdf

  2. Period doubling phenomenon in a class of time delay equations

    International Nuclear Information System (INIS)

    Oliveira, C.R. de; Malta, C.P.

    1985-01-01

    The properties of the solution of a nonlinear time delayed differential equation (infinite dimension) as function of two parameters: the time delay tau and another parameter A (nonlinearity) are investigated. After a Hopf bifurcation period doubling may occur and is characterized by Feigenbaum's delta. A strange atractor is obtained after the period doubling cascade and the largest Lyapunov exponent is calculated indicating that the attractor has low dimension. The behaviour of this Liapunov exponent as function of tau is different from its behaviour as function of A. (Author) [pt

  3. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  4. Time Reversal Reconstruction Algorithm Based on PSO Optimized SVM Interpolation for Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Mingjian Sun

    2015-01-01

    Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.

  5. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL‐Nawawy

    2018-01-01

    Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  6. Nonlinear Time Reversal Acoustic Method of Friction Stir Weld Assessment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project is demonstration of the feasibility of Friction Stir Weld (FSW) assessment by novel Nonlinear Time Reversal Acoustic (TRA) method. Time...

  7. 15 CFR 325.4 - Calculating time periods.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Calculating time periods. 325.4 Section 325.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS EXPORT TRADE CERTIFICATES...

  8. Problems of Software Detection of Periodic Features in a Time ...

    African Journals Online (AJOL)

    Problems arise when attempts are made to extract automatically, visually obvious periodic features indicative of defects in a vibration time series for diagnosis using computers. Such problems may be interpretational in nature arising either from insufficient knowledge of the mechanism, or the convolution of the source signal ...

  9. Time-periodic solutions of the Benjamin-Ono equation

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose , D.M.; Wilkening, Jon

    2008-04-01

    We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one of the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.

  10. Time-periodic solutions of the Benjamin-Ono equation

    International Nuclear Information System (INIS)

    Ambrose, D.M.; Wilkening, Jon

    2008-01-01

    We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one of the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations

  11. Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity

    Science.gov (United States)

    Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.

    2018-03-01

    The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.

  12. Unstable Periodic Orbit Analysis of Histograms of Chaotic Time Series

    International Nuclear Information System (INIS)

    Zoldi, S.M.

    1998-01-01

    Using the Lorenz equations, we have investigated whether unstable periodic orbits (UPOs) associated with a strange attractor may predict the occurrence of the robust sharp peaks in histograms of some experimental chaotic time series. Histograms with sharp peaks occur for the Lorenz parameter value r=60.0 but not for r=28.0 , and the sharp peaks for r=60.0 do not correspond to a histogram derived from any single UPO. However, we show that histograms derived from the time series of a non-Axiom-A chaotic system can be accurately predicted by an escape-time weighting of UPO histograms. copyright 1998 The American Physical Society

  13. Time analysis in astronomy: Tools for periodicity searches

    International Nuclear Information System (INIS)

    Buccheri, R.; Sacco, B.

    1985-01-01

    The authors discuss periodicity searches in radio and gamma-ray astronomy with special considerations for pulsar searches. The basic methodologies of fast Fourier transform, Rayleigh test, and epoch folding are reviewed with the main objective to compare cost and sensitivities in different applications. It is found that FFT procedures are convenient in unbiased searches for periodicity in radio astronomy, while in spark chamber gamma-ray astronomy, where the measurements are spread over a long integration time, unbiased searches are very difficult with the existing computing facilities and analyses with a-priori knowledge on the period values to look for are better done using the Rayleigh test with harmonics folding (Z /sub n/ test)

  14. Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

    KAUST Repository

    Dutta, Gaurav

    2013-08-20

    Attenuation leads to distortion of amplitude and phase of seismic waves propagating inside the earth. Conventional acoustic and least-squares reverse time migration do not account for this distortion which leads to defocusing of migration images in highly attenuative geological environments. To account for this distortion, we propose to use the visco-acoustic wave equation for least-squares reverse time migration. Numerical tests on synthetic data show that least-squares reverse time migration with the visco-acoustic wave equation corrects for this distortion and produces images with better balanced amplitudes compared to the conventional approach. © 2013 SEG.

  15. Time reversal in polarized neutron decay: the emiT experiment

    CERN Document Server

    Jones, G L; Anaya, J M; Bowles, T J; Chupp, T E; Coulter, K P; Dewey, M S; Freedman, S J; Fujikawa, B K; García, A; Greene, G L; Hwang, S R; Lising, L J; Mumm, H P; Nico, J S; Robertson, R G H; Steiger, T D; Teasdale, W A; Thompson, A K; Wasserman, E G; Wietfeldt, F E; Wilkerson, J F

    2000-01-01

    The standard electro-weak model predicts negligible violation of time-reversal invariance in light quark processes. We report on an experimental test of time-reversal invariance in the beta decay of polarized neutrons as a search for physics beyond the standard model. The emiT collaboration has measured the time-reversal-violating triple-correlation in neutron beta decay between the neutron spin, electron momentum, and neutrino momentum often referred to as the D coefficient. The first run of the experiment produced 14 million events which are currently being analyzed. However, a second run with improved detectors should provide greater statistical precision and reduced systematic uncertainties.

  16. Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy

    Science.gov (United States)

    van der Heyden, M. J.; Diks, C.; Pijn, J. P. M.; Velis, D. N.

    1996-02-01

    Intracranial electroencephalograms from patients suffering from mesial temporal lobe epilepsy were tested for time reversibility. If the recorded time series is irreversible, the input of the recording system cannot be a realisation of a linear Gaussian random process. We confirmed experimentally that the measurement equipment did not introduce irreversibility in the recorded output when the input was a realisation of a linear Gaussian random process. In general, the non-seizure recordings are reversible, whereas the seizure recordings are irreversible. These results suggest that time reversibility is a useful property for the characterisation of human intracranial EEG recordings in mesial temporal lobe epilepsy.

  17. Computing return times or return periods with rare event algorithms

    Science.gov (United States)

    Lestang, Thibault; Ragone, Francesco; Bréhier, Charles-Edouard; Herbert, Corentin; Bouchet, Freddy

    2018-04-01

    The average time between two occurrences of the same event, referred to as its return time (or return period), is a useful statistical concept for practical applications. For instance insurances or public agencies may be interested by the return time of a 10 m flood of the Seine river in Paris. However, due to their scarcity, reliably estimating return times for rare events is very difficult using either observational data or direct numerical simulations. For rare events, an estimator for return times can be built from the extrema of the observable on trajectory blocks. Here, we show that this estimator can be improved to remain accurate for return times of the order of the block size. More importantly, we show that this approach can be generalised to estimate return times from numerical algorithms specifically designed to sample rare events. So far those algorithms often compute probabilities, rather than return times. The approach we propose provides a computationally extremely efficient way to estimate numerically the return times of rare events for a dynamical system, gaining several orders of magnitude of computational costs. We illustrate the method on two kinds of observables, instantaneous and time-averaged, using two different rare event algorithms, for a simple stochastic process, the Ornstein–Uhlenbeck process. As an example of realistic applications to complex systems, we finally discuss extreme values of the drag on an object in a turbulent flow.

  18. Time scales of supercooled water and implications for reversible polyamorphism

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2015-09-01

    Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.

  19. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    Science.gov (United States)

    2016-08-29

    construction does not require the solution of any differential equations , only linear algebraic equations . By contrast, a mapping in the opposite...set of algebraic linear equations . The mapping between NESS and SP presented above was not intended as a set of operational instructions for... differential equations with time-periodic parameters. Typically, this can only be done numerically. In some applications, transition rates are constrained by

  20. Periodic solutions in reaction–diffusion equations with time delay

    International Nuclear Information System (INIS)

    Li, Li

    2015-01-01

    Spatial diffusion and time delay are two main factors in biological and chemical systems. However, the combined effects of them on diffusion systems are not well studied. As a result, we investigate a nonlinear diffusion system with delay and obtain the existence of the periodic solutions using coincidence degree theory. Moreover, two numerical examples confirm our theoretical results. The obtained results can also be applied in other related fields

  1. High parity predicts use of long-acting reversible contraceptives in the extended postpartum period among women in rural Uganda.

    Science.gov (United States)

    Anguzu, Ronald; Sempeera, Hassard; Sekandi, Juliet N

    2018-01-01

    The use of implants and Intra-uterine devices (IUD) during the post-partum period is very low in Uganda especially in rural settings. Long-acting reversible contraceptives (LARC) are known to be the most cost-effective for prevention of unintended pregnancy and unsafe abortions. This study aimed at determining the factors associated with long-acting reversible contraceptive use among women in the extended postpartum period in rural Uganda. We conducted a household-based, cross-sectional study among 400 women in two rural communities in Mityana district, central Uganda. Eligible women were aged 15 to 45 years who had childbirth within 12 months of study enrollment in September 2014. The outcome variable was self-reported use of a LARC method, either IUD or implants in the extended postpartum period. The main independent variables were previous childbirths (parity), fertility desire, willingness to use modern contraception, duration of postpartum period and previous pregnancies (gravidity). A logistic regression model was run in STATA v12.0 to compute adjusted odds ratios (AOR) for factors that predicted LARC use statistically significant at p  postpartum period (AOR = 4.07, 95%CI 1.08-15.4). Willingness to use modern contraception, desire for more children and postpartum duration had no significant association with LARC use in the extended postpartum period. This study revealed low use of LARC within twelve months of child birth despite women's willingness to use them. High parity (≥5 childbirths) predicted LARC use. The next logical step is to identify barriers to using LARC in the extended postpartum period and design appropriate interventions to increase access and use especially in multi-parous women.

  2. The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics

    International Nuclear Information System (INIS)

    Holster, A T

    2003-01-01

    Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe

  3. Comparison of source moment tensor recovered by diffraction stacking migration and source time reversal imaging

    Science.gov (United States)

    Zhang, Q.; Zhang, W.

    2017-12-01

    Diffraction stacking migration is an automatic location methods and widely used in microseismic monitoring of the hydraulic fracturing. It utilizes the stacking of thousands waveform to enhance signal-to-noise ratio of weak events. For surface monitoring, the diffraction stacking method is suffered from polarity reverse among receivers due to radiation pattern of moment source. Joint determination of location and source mechanism has been proposed to overcome the polarity problem but needs significantly increased computational calculations. As an effective method to recover source moment tensor, time reversal imaging based on wave equation can locate microseismic event by using interferometry on the image to extract source position. However, the time reversal imaging is very time consuming compared to the diffraction stacking location because of wave-equation simulation.In this study, we compare the image from diffraction stacking and time reversal imaging to check if the diffraction stacking can obtain similar moment tensor as time reversal imaging. We found that image produced by taking the largest imaging value at each point along time axis does not exhibit the radiation pattern, while with the same level of calculation efficiency, the image produced for each trial origin time can generate radiation pattern similar to time reversal imaging procedure. Thus it is potential to locate the source position by the diffraction stacking method for general moment tensor sources.

  4. Periodicity and stability for variable-time impulsive neural networks.

    Science.gov (United States)

    Li, Hongfei; Li, Chuandong; Huang, Tingwen

    2017-10-01

    The paper considers a general neural networks model with variable-time impulses. It is shown that each solution of the system intersects with every discontinuous surface exactly once via several new well-proposed assumptions. Moreover, based on the comparison principle, this paper shows that neural networks with variable-time impulse can be reduced to the corresponding neural network with fixed-time impulses under well-selected conditions. Meanwhile, the fixed-time impulsive systems can be regarded as the comparison system of the variable-time impulsive neural networks. Furthermore, a series of sufficient criteria are derived to ensure the existence and global exponential stability of periodic solution of variable-time impulsive neural networks, and to illustrate the same stability properties between variable-time impulsive neural networks and the fixed-time ones. The new criteria are established by applying Schaefer's fixed point theorem combined with the use of inequality technique. Finally, a numerical example is presented to show the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

    KAUST Repository

    Dutta, Gaurav; Lu, Kai; Wang, Xin; Schuster, Gerard T.

    2013-01-01

    Attenuation leads to distortion of amplitude and phase of seismic waves propagating inside the earth. Conventional acoustic and least-squares reverse time migration do not account for this distortion which leads to defocusing of migration images

  6. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  7. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei; Huang, Yunsong; Schuster, Gerard T.

    2013-01-01

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share

  8. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2011-01-01

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar

  9. The imaginary-time path integral and non-time-reversal-invariant saddle points of the Euclidean action

    International Nuclear Information System (INIS)

    Dasgupta, I.

    1998-01-01

    We discuss new bounce-like (but non-time-reversal-invariant) solutions to Euclidean equations of motion, which we dub boomerons. In the Euclidean path integral approach to quantum theories, boomerons make an imaginary contribution to the vacuum energy. The fake vacuum instability can be removed by cancelling boomeron contributions against contributions from time reversed boomerons (anti-boomerons). The cancellation rests on a sign choice whose significance is not completely understood in the path integral method. (orig.)

  10. The Organization of Behavior Over Time: Insights from Mid-Session Reversal

    OpenAIRE

    Rayburn-Reeves, Rebecca M.; Cook, Robert G.

    2016-01-01

    What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyse...

  11. Reconnection During Periods of Large IMF By Producing Shear Instabilities at the Dayside Convection Reversal Boundary

    Science.gov (United States)

    Qamar, S.; Clauer, C. R.; Hartinger, M.; Xu, Z.

    2017-12-01

    During periods of large interplanetary magnetic field (IMF) By component and small negative Bz (GSM Coordinates), the ionospheric polar electric potential system is distorted so as to produce large east-west convection shears across local noon. Past research has shown examples of ULF waves with periods of approximately 10 - 20 minutes observed at this convection shear by the Greenland west coast chain of magnetometers. Past work has shown examples of these waves and associated them with conditions in the solar wind and IMF, particularly periods of large IMF By component. Here we report the results of a search of several years of solar wind data to identify periods when the IMF By component is large and the magnetometer chains along the 40-degree magnetic meridian (Greenland west coast and conjugate Antarctic chains) are within a few hours of local noon. We test here the hypothesis that large IMF By reconnection leads to large convection shears across local noon that generate ULF waves through, presumably, a shear instability such as Kelvin-Helmholtz.

  12. [Effects of reversing the feeding cycle and the light period on the spontaneous activity of the rat (author's transl)].

    Science.gov (United States)

    Ticca, M

    1976-01-01

    The amount and the circadian distribution of spontaneous activity in the rat are influenced by a number of factors, whose importance and interrelationships are still deeply discussed. In order to check the reliability of previous studies about the effects of meal-eating on the spontaneous activity (wheel running) of rats of our Sprague-Dawley strain, the adjustment to the modifications of the normal day-night cycle and of the normal nocturnal feeding rhythm have been controlled. Reversing the normal light and dark periods caused the rats, after a 24 hours period, to lower and to irregularly distribute their spontaneous activity. Rats shifted their pattern of maximal activity by 12 hours in the new period of darkness in about five days, and showed to have completely fixed the new reversed running habit. Also feeding habits changed in a similar way, but more slowly. The levels of mean daily activity did not change. In a second experiment, rats, received food during light hours, and were deprived during dark hours. Their activity increased considerably and irregularly during dark hours, while a very slight rise of wheel running was shown during light hours. Body weight gain and food consumption were similar to those of the control group. These results slightly differ from those obtained using other rat strains, and are an interesting example of reinforcement of a spontaneous behavior resulting more from the light-dark cycle than from cues provided by food deprivation.

  13. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping

    2011-07-08

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration-scale seismic data. We now demonstrate the high-resolution and the super-stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal-to-noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super-stacking and greatly exceeds the classical signal-to-noise enhancement factor of. High-resolution and super-stacking are properties also enjoyed by seismic interferometry and reverse-time migration with the exact velocity model. © 2011 European Association of Geoscientists & Engineers.

  14. Neutral meson tests of time-reversal symmetry invariance

    OpenAIRE

    Bevan, Adrian; Inguglia, Gianluca; Zoccali, Michele

    2013-01-01

    The laws of quantum physics can be studied under the mathematical operation T that inverts the direction of time. Strong and electromagnetic forces are known to be invariant under temporal inversion, however the weak force is not. The BaBar experiment recently exploited the quantum-correlated production of pairs of B0 mesons to show that T is a broken symmetry. Here we show that it is possible to perform a wide range of tests of quark flavour changing processes under T in order to validate th...

  15. Transient habitats limit development time for periodical cicadas.

    Science.gov (United States)

    Karban, Richard

    2014-01-01

    Periodical cicadas (Magicicada spp.) mature in 13 or 17 years, the longest development times for any non-diapausing insects. Selection may favor prolonged development since nymphs experience little mortality and individuals taking 17 years have been shown to have greater fecundity than those taking 13 years. Why don't periodical cicadas take even longer to develop? Nymphs feed on root xylem fluid and move little. Ovipositing females prefer fast-growing trees at forest edges. I hypothesized that (1) adults emerging at edges would be heavier than those from forest interiors and (2) habitat changes could limit development time. I collected newly eclosed females that had neither fed as adults nor moved from their site of development. For M. septendecim, females from edges were 4.9% heavier than those from the interior. I assumed that emergence density indicated habitat quality and measured density at eight sites in 1979, 1996, and 2013. Over three generations, variation in densities was great; densities at two sites crashed, and at one site they exploded to 579/m2 Habitat transience may limit development time because only adults can reassess habitats and reposition offspring. In conclusion, cicadas are affected by habitat characteristics, habitats change over 17 years, and cicadas may emerge, mate, and redistribute their offspring to track habitat dynamics.

  16. Lagrangian structures in time-periodic vortical flows

    Directory of Open Access Journals (Sweden)

    S. V. Kostrykin

    2006-01-01

    Full Text Available The Lagrangian trajectories of fluid particles are experimentally studied in an oscillating four-vortex velocity field. The oscillations occur due to a loss of stability of a steady flow and result in a regular reclosure of streamlines between the vortices of the same sign. The Eulerian velocity field is visualized by tracer displacements over a short time period. The obtained data on tracer motions during a number of oscillation periods show that the Lagrangian trajectories form quasi-regular structures. The destruction of these structures is determined by two characteristic time scales: the tracers are redistributed sufficiently fast between the vortices of the same sign and much more slowly transported into the vortices of opposite sign. The observed behavior of the Lagrangian trajectories is quantitatively reproduced in a new numerical experiment with two-dimensional model of the velocity field with a small number of spatial harmonics. A qualitative interpretation of phenomena observed on the basis of the theory of adiabatic chaos in the Hamiltonian systems is given. The Lagrangian trajectories are numerically simulated under varying flow parameters. It is shown that the spatial-temporal characteristics of the Lagrangian structures depend on the properties of temporal change in the streamlines topology and on the adiabatic parameter corresponding to the flow. The condition for the occurrence of traps (the regions where the Lagrangian particles reside for a long time is obtained.

  17. Triiodothyronine and reverse triiodothyronine contents in human and pig thyroids at different periods of development

    International Nuclear Information System (INIS)

    Etling, Nicole; Gehin-Fouque, Francoise

    1978-01-01

    3,5,3'-triiodothyronine (T 3 ), and 3,3',5'-triiodothyronine (rT 3 ) were measured by radioimmunoassay in saline extracts of neonates and human adult thyroid tissues and of fetuses, Piglets and adult Swine thyroid tissues. In all these extracts, T 3 content was higher than rT 3 content whatever the period of development. Both triiodoamino acids represent a small percentage of the iodinated protein in thyroid tissues [fr

  18. Time reversal violating nuclear polarizability and atomic electric dipole moment

    International Nuclear Information System (INIS)

    Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.

    2000-01-01

    Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation

  19. Splitting of the rate matrix as a definition of time reversal in master equation systems

    International Nuclear Information System (INIS)

    Liu Fei; Le, Hong

    2012-01-01

    Motivated by recent progress in nonequilibrium fluctuation relations, we present a generalized time reversal for stochastic master equation systems with discrete states, which is defined as a splitting of the rate matrix into irreversible and reversible parts. An immediate advantage of this definition is that a variety of fluctuation relations can be attributed to different matrix splittings. Additionally, we find that the accustomed total entropy production formula and conditions of the detailed balance must be modified appropriately to account for the reversible rate part, which was previously ignored. (paper)

  20. Time reversal focusing of elastic waves in plates for an educational demonstration.

    Science.gov (United States)

    Heaton, Christopher; Anderson, Brian E; Young, Sarah M

    2017-02-01

    The purpose of this research is to develop a visual demonstration of time reversal focusing of vibrations in a thin plate. Various plate materials are tested to provide optimal conditions for time reversal focusing. Specifically, the reverberation time in each plate and the vibration coupling efficiency from a shaker to the plate are quantified to illustrate why a given plate provides the best spatially confined focus as well as the highest focal amplitude possible. A single vibration speaker and a scanning laser Doppler vibrometer (SLDV) are used to provide the time reversal focusing. Table salt is sprinkled onto the plate surface to allow visualization of the high amplitude, spatially localized time reversal focus; the salt is thrown upward only at the focal position. Spatial mapping of the vibration focusing on the plate using the SLDV is correlated to the visual salt jumping demonstration. The time reversal focusing is also used to knock over an object when the object is placed at the focal position; some discussion of optimal objects to use for this demonstration are given.

  1. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films

    Directory of Open Access Journals (Sweden)

    C. W. Su

    2013-07-01

    Full Text Available An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001 single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.

  2. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  3. Modelling and Comparative Performance Analysis of a Time-Reversed UWB System

    Directory of Open Access Journals (Sweden)

    Popovski K

    2007-01-01

    Full Text Available The effects of multipath propagation lead to a significant decrease in system performance in most of the proposed ultra-wideband communication systems. A time-reversed system utilises the multipath channel impulse response to decrease receiver complexity, through a prefiltering at the transmitter. This paper discusses the modelling and comparative performance of a UWB system utilising time-reversed communications. System equations are presented, together with a semianalytical formulation on the level of intersymbol interference and multiuser interference. The standardised IEEE 802.15.3a channel model is applied, and the estimated error performance is compared through simulation with the performance of both time-hopped time-reversed and RAKE-based UWB systems.

  4. A time-reversal invariant topological phase at the surface of a 3D topological insulator

    International Nuclear Information System (INIS)

    Bonderson, Parsa; Nayak, Chetan; Qi, Xiao-Liang

    2013-01-01

    A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p x + ip y superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases. (paper)

  5. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Hedqvist, A.; Rachlew-Kaellne, E.

    1998-01-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)

  6. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  7. On the record process of time-reversible spectrally-negative Markov additive processes

    NARCIS (Netherlands)

    J. Ivanovs; M.R.H. Mandjes (Michel)

    2009-01-01

    htmlabstractWe study the record process of a spectrally-negative Markov additive process (MAP). Assuming time-reversibility, a number of key quantities can be given explicitly. It is shown how these key quantities can be used when analyzing the distribution of the all-time maximum attained by MAPs

  8. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    Science.gov (United States)

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  9. Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.

    Science.gov (United States)

    Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K

    2016-07-01

    We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.

  10. Crossover driven by time-reversal symmetry breaking in quantum chaos

    International Nuclear Information System (INIS)

    Taniguchi, N.; Hashimoto, A.; Simons, B.D.; Altshuler, B.L.

    1994-01-01

    Parametric correlations of the energy spectra of quantum chaotic systems are presented in the presence of time-reversal symmetry-breaking perturbations. The spectra disperse as a function of two external perturbations, one of which preserves time-reversal symmetry, while the other violates it. Exact analytical expressions for the parametric two-point autocorrelation function of the density of states are derived in the crossover region by means of the supermatrix method. For the orthogonal-unitary crossover, the velocity distribution is determined and shown to deviate from Gaussian. (orig.)

  11. Time-reversal focusing of an expanding soliton gas in disordered replicas

    KAUST Repository

    Fratalocchi, Andrea

    2011-05-31

    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time-reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schrödinger equation.

  12. Time-reversal focusing of an expanding soliton gas in disordered replicas

    KAUST Repository

    Fratalocchi, Andrea; Armaroli, A.; Trillo, S.

    2011-01-01

    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time-reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schrödinger equation.

  13. Discover potential in a search for time-reversal invariance violation in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Vladimir, E-mail: gudkov@sc.edu; Song, Young-Ho [University of South Carolina, Department of Physics and Astronomy (United States)

    2013-03-15

    Time reversal invariance violating (TRIV) effects in low energy physics could be very important in searching for new physics, being complementary to neutron and atomic electric dipole moment (EDM) measurements. In this relation, we discuss a sensitivity of some TRIV observables to different models of time-reversal (CP) violation and their dependencies on nuclear structure. As a measure of a sensitivity of TRIV effects to the value of TRIV nucleon coupling constant, we introduce a coefficient of a 'discovery potential', which shows a possible factor for improving the current limits of the EDM experiments by measuring nuclear TRIV effects.

  14. Unsupervised Ensemble Anomaly Detection Using Time-Periodic Packet Sampling

    Science.gov (United States)

    Uchida, Masato; Nawata, Shuichi; Gu, Yu; Tsuru, Masato; Oie, Yuji

    We propose an anomaly detection method for finding patterns in network traffic that do not conform to legitimate (i.e., normal) behavior. The proposed method trains a baseline model describing the normal behavior of network traffic without using manually labeled traffic data. The trained baseline model is used as the basis for comparison with the audit network traffic. This anomaly detection works in an unsupervised manner through the use of time-periodic packet sampling, which is used in a manner that differs from its intended purpose — the lossy nature of packet sampling is used to extract normal packets from the unlabeled original traffic data. Evaluation using actual traffic traces showed that the proposed method has false positive and false negative rates in the detection of anomalies regarding TCP SYN packets comparable to those of a conventional method that uses manually labeled traffic data to train the baseline model. Performance variation due to the probabilistic nature of sampled traffic data is mitigated by using ensemble anomaly detection that collectively exploits multiple baseline models in parallel. Alarm sensitivity is adjusted for the intended use by using maximum- and minimum-based anomaly detection that effectively take advantage of the performance variations among the multiple baseline models. Testing using actual traffic traces showed that the proposed anomaly detection method performs as well as one using manually labeled traffic data and better than one using randomly sampled (unlabeled) traffic data.

  15. Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy

    International Nuclear Information System (INIS)

    Lozano, Gabriel; Barten, Tommy; Grzela, Grzegorz; Rivas, Jaime Gómez

    2014-01-01

    We demonstrate that an ordered array of aluminum nanopyramids, behaving as a phased array of optical antennae, strongly modifies light absorption in thin layers of dye molecules. Photoluminescence measurements as a function of the illumination angle are performed using a time-reversed Fourier microscope. This technique enables a variable-angle plane-wave illumination of nanostructures in a microscope-based setup. Our measurements reveal an enhancement of the light conversion in certain directions of illumination, which indicate the efficient diffractive coupling between the free space radiation and the surface plasmons. Numerical simulations confirm that surface modes supported by the periodic array enhance the intensity of the pump field in the space between particles, where the dye molecules are located, yielding a directional plasmonic-mediated enhancement of the optical absorption. This combined experimental and numerical characterization of the angular dependence of light absorption in nanostructures can be beneficial for the design and optimization of devices in which the harvesting of light plays a major role. (paper)

  16. Time reversal mirror and perfect inverse filter in a microscopic model for sound propagation

    International Nuclear Information System (INIS)

    Calvo, Hernan L.; Danieli, Ernesto P.; Pastawski, Horacio M.

    2007-01-01

    Time reversal of quantum dynamics can be achieved by a global change of the Hamiltonian sign (a hasty Loschmidt daemon), as in the Loschmidt Echo experiments in NMR, or by a local but persistent procedure (a stubborn daemon) as in the time reversal mirror (TRM) used in ultrasound acoustics. While the first is limited by chaos and disorder, the last procedure seems to benefit from it. As a first step to quantify such stability we develop a procedure, the perfect inverse filter (PIF), that accounts for memory effects, and we apply it to a system of coupled oscillators. In order to ensure a numerical many-body dynamics intrinsically reversible, we develop an algorithm, the pair partitioning, based on the Trotter strategy used for quantum dynamics. We analyze situations where the PIF gives substantial improvements over the TRM

  17. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL-Nawawy

    Full Text Available Abstract Objective: To evaluate the role of echocardiography in reducing shock reversal time in pediatric septic shock. Methods: A prospective study conducted in the pediatric intensive care unit of a tertiary care teaching hospital from September 2013 to May 2016. Ninety septic shock patients were randomized in a 1:1 ratio for comparing the serial echocardiography-guided therapy in the study group with the standard therapy in the control group regarding clinical course, timely treatment, and outcomes. Results: Shock reversal was significantly higher in the study group (89% vs. 67%, with significantly reduced shock reversal time (3.3 vs. 4.5 days. Pediatric intensive care unit stay in the study group was significantly shorter (8 ± 3 vs. 14 ± 10 days. Mortality due to unresolved shock was significantly lower in the study group. Fluid overload was significantly lower in the study group (11% vs. 44%. In the study group, inotropes were used more frequently (89% vs. 67% and initiated earlier (12[0.5-24] vs. 24[6-72] h with lower maximum vasopressor inotrope score (120[30-325] vs. 170[80-395], revealing predominant use of milrinone (62% vs. 22%. Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  18. Effect of electric field on the performance of soil electro-bioremediation with a periodic polarity reversal strategy.

    Science.gov (United States)

    Mena, E; Villaseñor, J; Cañizares, P; Rodrigo, M A

    2016-03-01

    In this work, it is studied the effect of the electric fields (within the range 0.0-1.5 V cm(-1)) on the performance of electrobioremediation with polarity reversal, using a bench scale plant with diesel-spiked kaolinite with 14-d long tests. Results obtained show that the periodic changes in the polarity of the electric field results in a more efficient treatment as compared with the single electro-bioremediation process, and it does not require the addition of a buffer to keep the pH within a suitable range. The soil heating was not very important and it did not cause a change in the temperature of the soil up to values incompatible with the life of microorganisms. Low values of water transported by the electro-osmosis process were attained with this strategy. After only 14 d of treatment, by using the highest electric field studied in this work (1.5 V cm(-1)), up to 35.40% of the diesel added at the beginning of the test was removed, value much higher than the 10.5% obtained by the single bioremediation technology in the same period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effective Lagrangians and parity-conserving time-reversal violation at low energies

    International Nuclear Information System (INIS)

    Engel, J.; Frampton, P.H.; Springer, R.P.

    1996-01-01

    Using effective Lagrangians, we argue that any time-reversal-violating but parity-conserving effects are too small to be observed in flavor-conserving nuclear processes without dramatic improvement in experimental accuracy. In the process we discuss other arguments that have appeared in the literature. copyright 1996 The American Physical Society

  20. On the focusing conditions in time-reversed acoustics, seismic interferometry, and Marchenko imaging

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Van der Neut, J.R.; Thorbecke, J.W.; Vasconcelos, I.; Van Manen, D.J.; Ravasi, M.

    2014-01-01

    Despite the close links between the fields of time-reversed acoustics, seismic interferometry and Marchenko imaging, a number of subtle differences exist. This paper reviews the various focusing conditions of these methods, the causality/acausality aspects of the corresponding focusing wavefields,

  1. Experimental study of time-reversal invariance in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Shaparov, E.I.; Shimizu, H.M.

    1996-01-01

    Experimental approaches for the test of time-reversal invariance in neutron-nucleus interactions are reviewed. Possible transmission experiments with polarized neutron beams and polarized or aligned targets are discussed as well as neutron capture experiments with unpolarized resonance neutrons. 102 refs., 13 figs., 3 tabs

  2. The invariance of classical electromagnetism under Charge-conjugation, Parity and Time-reversal (CPT) transformations

    Science.gov (United States)

    Norbury, John W.

    1989-01-01

    The invariance of classical electromagnetism under charge-conjugation, parity, and time-reversal (CPT) is studied by considering the motion of a charged particle in electric and magnetic fields. Upon applying CPT transformations to various physical quantities and noting that the motion still behaves physically demonstrates invariance.

  3. Derivation of the Time-Reversal Anomaly for (2 +1 )-Dimensional Topological Phases

    Science.gov (United States)

    Tachikawa, Yuji; Yonekura, Kazuya

    2017-09-01

    We prove an explicit formula conjectured recently by Wang and Levin for the anomaly of time-reversal symmetry in (2 +1 )-dimensional fermionic topological quantum field theories. The crucial step is to determine the cross-cap state in terms of the modular S matrix and T2 eigenvalues, generalizing the recent analysis by Barkeshli et al. in the bosonic case.

  4. Optimal One Bit Time Reversal For UWB Impulse Radio In Multi-User Wireless Communications

    DEFF Research Database (Denmark)

    Nguyen, Hung Tuan

    2008-01-01

    In this paper, with the purpose of further reducing the complexity of the system, while keeping its temporal and spatial focusing performance, we investigate the possibility of using optimal one bit time reversal (TR) system for impulse radio ultra wideband multi-user wireless communications...

  5. The time-reversal- and parity-violating nuclear potential in chiral effective theory

    NARCIS (Netherlands)

    Maekawa, C. M.; Mereghetti, E.; de Vries, J.; van Kolck, U.

    2011-01-01

    We derive the parity- and time-reversal-violating nuclear interactions stemming from the QCD (theta) over bar term and quark/gluon operators of effective dimension 6: quark electric dipole moments, quark and gluon chromo-electric dipole moments, and two four-quark operators. We work in the framework

  6. Time reversed Lamb wave for damage detection in a stiffened aluminum plate

    International Nuclear Information System (INIS)

    Bijudas, C R; Mitra, M; Mujumdar, P M

    2013-01-01

    According to the concept of time reversibility of the Lamb wave, in the absence of damage, a Lamb wave signal can be reconstructed at the transmitter location if a time reversed signal is sent back from the receiver location. This property is used for baseline-free damage detection, where the presence of damage breaks down the time reversibility and the mismatch between the reconstructed and the input signal is inferred as the presence of damage. This paper presents an experimental and a simulation study of baseline-free damage detection in a stiffened aluminum plate by time reversed Lamb wave (TRLW). In this study, single Lamb wave mode (A 0 ) is generated and sensed using piezoelectric (PZT) transducers through specific transducer placement and amplitude tuning. Different stiffening configurations such as plane and T-stiffeners are considered. Damage cases of disbonding of stiffeners from the base plate, and vertical and embedded cracks in the stiffened plate, are studied. The results show that TRLW based schemes can efficiently identify the presence of damage in a stiffened plate. (paper)

  7. On valuing patches: estimating contributions to metapopulation growth with reverse-time capture-recapture modeling

    Science.gov (United States)

    Jamie S. Sanderlin; Peter M. Waser; James E. Hines; James D. Nichols

    2012-01-01

    Metapopulation ecology has historically been rich in theory, yet analytical approaches for inferring demographic relationships among local populations have been few. We show how reverse-time multi-state capture­recapture models can be used to estimate the importance of local recruitment and interpopulation dispersal to metapopulation growth. We use 'contribution...

  8. A time reversal transmission approach for multi-user UWB communications

    DEFF Research Database (Denmark)

    Nguyen, Tuan Hung; Kovacs Z., Istvan; Eggers, Patrick

    2005-01-01

    In this paper we propose and evaluate the performance of the time reversal technique in impulse radio UWB communications. The evaluation was based on measured channel impulse responses in the UWB frequency band of 3 to 5 GHz of a 4x1 MISO system with both vertical and horizontal polarization at t...

  9. Majorana bound states in two-channel time-reversal-symmetric nanowire systems

    DEFF Research Database (Denmark)

    Gaidamauskas, Erikas; Paaske, Jens; Flensberg, Karsten

    2014-01-01

    We consider time-reversal-symmetric two-channel semiconducting quantum wires proximity coupled to a conventional s-wave superconductor. We analyze the requirements for a non-trivial topological phase, and find that necessary conditions are 1) the determinant of the pairing matrix in channel space...

  10. Statistics of resonances and time reversal reconstruction in aluminum acoustic chaotic cavities

    NARCIS (Netherlands)

    Antoniuk, O.; Sprik, R.

    2010-01-01

    The statistical properties of wave propagation in classical chaotic systems are of fundamental interest in physics and are the basis for diagnostic tools in materials science. The statistical properties depend in particular also on the presence of time reversal invariance in the system, which can be

  11. The nucleon electric dipole form factor from dimension-six time-reversal violation

    NARCIS (Netherlands)

    de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.

    2011-01-01

    We calculate the electric dipole form factor of the nucleon that arises as a low-energy manifestation of time-reversal violation in quark-gluon interactions of effective dimension 6: the quark electric and chromoelectric dipole moments, and the gluon chromoelectric dipole moment. We use the

  12. Time-reversibility in seismic sequences: Application to the seismicity of Mexican subduction zone

    Science.gov (United States)

    Telesca, L.; Flores-Márquez, E. L.; Ramírez-Rojas, A.

    2018-02-01

    In this paper we investigate the time-reversibility of series associated with the seismicity of five seismic areas of the subduction zone beneath the Southwest Pacific Mexican coast, applying the horizontal visibility graph method to the series of earthquake magnitudes, interevent times, interdistances and magnitude increments. We applied the Kullback-Leibler divergence D that is a metric for quantifying the degree of time-irreversibility in time series. Our findings suggest that among the five seismic areas, Jalisco-Colima is characterized by time-reversibility in all the four seismic series. Our results are consistent with the peculiar seismo-tectonic characteristics of Jalisco-Colima, which is the closest to the Middle American Trench and belongs to the Mexican volcanic arc.

  13. Performance and body composition of Nile tilapia fed diets supplemented with AminoGut® during sex reversal period

    Directory of Open Access Journals (Sweden)

    Themis Sakaguti Graciano

    2014-09-01

    Full Text Available The present study was to evaluate the effects of the commercial product AminoGut® (Ajinomoto, SP, a source of glutamine and glutamate, on performance and body composition of Nile tilapia fingerlings. A study was conducted with 26,000 Gift strain tilapias, with seven days of age during the sex reversal, with initial weight and length of 0.037±0.09 g and 13.28±0.78 mm. The fish were distributed in a completely randomized design with five treatments and four replications, totaling 1,300 fish/tank of 0,5m3 each one. Control diet was used with approximately 500 g/kg of crude protein and 3,840 kcal/ kg of digestible energy. The AminoGut® was added to the control diet at a ratio of 5, 10, 15 and 20g/kg to replace L-alanine. Each diet was provided 10 times per day at intervals of one hour, from 8:00 until 17:00, for 30 days. No effect was observed on weight gain (p>0.05 in fish fed with increasing levels of Aminogut®. However, a positive linear effect (p<0.05 on feed conversion, protein efficiency ratio and survival of the fish supplemented was verified. The inclusion of Aminogut® up to 20 g/kg improves the feed conversion, protein efficiency ratio and survival, parameters of Nile tilapia during sex reversal.

  14. Computation by symmetry operations in a structured model of the brain: Recognition of rotational invariance and time reversal

    Science.gov (United States)

    McGrann, John V.; Shaw, Gordon L.; Shenoy, Krishna V.; Leng, Xiaodan; Mathews, Robert B.

    1994-06-01

    Symmetries have long been recognized as a vital component of physical and biological systems. What we propose here is that symmetry operations are an important feature of higher brain function and result from the spatial and temporal modularity of the cortex. These symmetry operations arise naturally in the trion model of the cortex. The trion model is a highly structured mathematical realization of the Mountcastle organizational principle [Mountcastle, in The Mindful Brain (MIT, Cambridge, 1978)] in which the cortical column is the basic neural network of the cortex and is comprised of subunit minicolumns, which are idealized as trions with three levels of firing. A columnar network of a small number of trions has a large repertoire of quasistable, periodic spatial-temporal firing magic patterns (MP's), which can be excited. The MP's are related by specific symmetries: Spatial rotation, parity, ``spin'' reversal, and time reversal as well as other ``global'' symmetry operations in this abstract internal language of the brain. These MP's can be readily enhanced (as well as inherent categories of MP's) by only a small change in connection strengths via a Hebb learning rule. Learning introduces small breaking of the symmetries in the connectivities which enables a symmetry in the patterns to be recognized in the Monte Carlo evolution of the MP's. Examples of the recognition of rotational invariance and of a time-reversed pattern are presented. We propose the possibility of building a logic device from the hardware implementation of a higher level architecture of trion cortical columns.

  15. Real-time method of powder diffraction for non-periodic and nearly periodic materials

    International Nuclear Information System (INIS)

    Egami, T.; Toby, B.H.; Dmowski, T.W.; Jorgensen, J.D.

    1989-12-01

    The use of high-energy neutrons from pulsed or hot sources allows the method of atomic pair distribution analysis to be applied to the structural determination of crystalline as well as amorphous solids. This method complements the standard crystallographic methods in studying non-periodic aspects of solids with or without long range order. 14 refs., 3 figs

  16. Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations

    Science.gov (United States)

    Parthasarathy, Arun; Rakheja, Shaloo

    2018-06-01

    The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.

  17. Fast damage imaging using the time-reversal technique in the frequency–wavenumber domain

    International Nuclear Information System (INIS)

    Zhu, R; Huang, G L; Yuan, F G

    2013-01-01

    The time-reversal technique has been successfully used in structural health monitoring (SHM) for quantitative imaging of damage. However, the technique is very time-consuming when it is implemented in the time domain. In this paper, we study the technique in the frequency–wavenumber (f–k) domain for fast real-time imaging of multiple damage sites in plates using scattered flexural plate waves. Based on Mindlin plate theory, the time reversibility of dispersive flexural waves in an isotropic plate is theoretically investigated in the f–k domain. A fast damage imaging technique is developed by using the cross-correlation between the back-propagated scattered wavefield and the incident wavefield in the frequency domain. Numerical simulations demonstrate that the proposed technique cannot only localize multiple damage sites but also potentially identify their sizes. Moreover, the time-reversal technique in the f–k domain is about two orders of magnitude faster than the method in the time domain. Finally, experimental testing of an on-line SHM system with a sparse piezoelectric sensor array is conducted for fast multiple damage identification using the proposed technique. (paper)

  18. Controlling mixing and segregation in time periodic granular flows

    Science.gov (United States)

    Bhattacharya, Tathagata

    of realistic results and is used as a means of validating the model against available experimental data. The tuned model is then used to find the critical chute length for segregation based on the hypothesis that segregation can be thwarted if the particle flow is inverted at a rate above a critical forcing frequency. The critical frequency, fcrit, is inversely proportional to the characteristic time of segregation, ts. Mixing is observed instead of segregation when the chute length L Rate-based separation processes hold promise as both more environmentally benign as well as less energy intensive when compared to conventional particle separations technologies such as vibrating screens or flotation methods. This approach is based on differences in the kinetic properties of the components of a mixture, such as the velocity of migration or diffusivity. In this portion of the work, two examples of novel rate-based separation devices are demonstrated. The first example involves the study of the dynamics of gravity-driven particles through an array of obstacles. Both discrete element (DEM) simulations and experiments are used to augment the understanding of this device. Dissipative collisions (both between the particles themselves and with the obstacles) give rise to a diffusive motion of particles perpendicular to the flow direction and the differences in diffusion lengths are exploited to separate the particles. The second example employs DEM to analyze a ratchet mechanism where a current of particles can be produced in a direction perpendicular to the energy input. In this setup, a vibrating saw-toothed base is employed to induce different mobility for different types of particles. The effect of operating conditions and design parameters on the separation efficiency are discussed. Keywords: granular flow, particle, mixing, segregation, discrete element method, particle dynamics, tumbler, chute, periodic flow inversion, collisional flow, rate-based separation, ratchet

  19. New results for time reversed symplectic dynamic systems and quadratic functionals

    Directory of Open Access Journals (Sweden)

    Roman Simon Hilscher

    2012-05-01

    Full Text Available In this paper, we examine time scale symplectic (or Hamiltonian systems and the associated quadratic functionals which contain a forward shift in the time variable. Such systems and functionals have a close connection to Jacobi systems for calculus of variations and optimal control problems on time scales. Our results, among which we consider the Reid roundabout theorem, generalize the corresponding classical theory for time reversed discrete symplectic systems, as well as they complete the recently developed theory of time scale symplectic systems.

  20. Long-time correlations of periodic, area-preserving maps

    International Nuclear Information System (INIS)

    Meiss, J.D.; Cary, J.R.; Grebogi, C.; Crawford, J.D.; Kaufman, A.N.; Abarbanel, H.D.I.

    1982-04-01

    A simple analytical decay law for correlation functions of periodic, area-preserving maps is obtained. This law is compared with numerical experiments on the standard map. The agreement between experiment and theory is good when islands are absent, but poor when islands are present. When islands are present, the correlations have a long, slowly decaying tail

  1. Logic Model Checking of Time-Periodic Real-Time Systems

    Science.gov (United States)

    Florian, Mihai; Gamble, Ed; Holzmann, Gerard

    2012-01-01

    In this paper we report on the work we performed to extend the logic model checker SPIN with built-in support for the verification of periodic, real-time embedded software systems, as commonly used in aircraft, automobiles, and spacecraft. We first extended the SPIN verification algorithms to model priority based scheduling policies. Next, we added a library to support the modeling of periodic tasks. This library was used in a recent application of the SPIN model checker to verify the engine control software of an automobile, to study the feasibility of software triggers for unintended acceleration events.

  2. Test of feasibility of a novel high precision test of time reversal invariance

    International Nuclear Information System (INIS)

    Samuel, Deepak

    2007-01-01

    The first results of a feasibility test of a novel high precision test of time reversal invariance are reported. The Time Reversal Invariance test at COSY (TRIC) was planned to measure the time reversal violating observable A y,xz with an accuracy of 10 -6 in proton-deuteron (p-d) scattering. A novel technique for measuring total cross sections is introduced and the achievable precision of this measuring technique is tested. The correlation coefficient A y,y in p-d scattering fakes a time-reversal violating effect. This work reports the feasibility test of the novel method in the measurement of A y,y in p-p scattering. The first step in the experimental design was the development of a hard real-time data acquisition system. To meet stringent latency requirements, the capabilities of Windows XP had to be augmented with a real-time subsystem. The remote control feature of the data acquisition enables users to operate it from any place via an internet connection. The data acquisition proved its reliability in several beam times without any failures. The analysis of the data showed the presence of 1/f noise which substantially limits the quality of our measurements. The origin of 1/f noise was traced and found to be the Barkhausen noise from the ferrite core of the beam current transformer (BCT). A global weighted fitting technique based on a modified Wiener-Khinchin method was developed and used to suppress the influence of 1/f noise, which increased the error bar of the results by a factor 3. This is the only deviation from our expectations. The results are presented and discussed. (orig.)

  3. Test of feasibility of a novel high precision test of time reversal invariance

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Deepak

    2007-07-01

    The first results of a feasibility test of a novel high precision test of time reversal invariance are reported. The Time Reversal Invariance test at COSY (TRIC) was planned to measure the time reversal violating observable A{sub y,xz} with an accuracy of 10{sup -6} in proton-deuteron (p-d) scattering. A novel technique for measuring total cross sections is introduced and the achievable precision of this measuring technique is tested. The correlation coefficient A{sub y,y} in p-d scattering fakes a time-reversal violating effect. This work reports the feasibility test of the novel method in the measurement of A{sub y,y} in p-p scattering. The first step in the experimental design was the development of a hard real-time data acquisition system. To meet stringent latency requirements, the capabilities of Windows XP had to be augmented with a real-time subsystem. The remote control feature of the data acquisition enables users to operate it from any place via an internet connection. The data acquisition proved its reliability in several beam times without any failures. The analysis of the data showed the presence of 1/f noise which substantially limits the quality of our measurements. The origin of 1/f noise was traced and found to be the Barkhausen noise from the ferrite core of the beam current transformer (BCT). A global weighted fitting technique based on a modified Wiener-Khinchin method was developed and used to suppress the influence of 1/f noise, which increased the error bar of the results by a factor 3. This is the only deviation from our expectations. The results are presented and discussed. (orig.)

  4. Periodic capacity management under a lead-time performance constraint

    NARCIS (Netherlands)

    Büyükkaramikli, N.C.; Bertrand, J.W.M.; Ooijen, van H.P.G.

    2013-01-01

    In this paper, we study a production system that operates under a lead-time performance constraint which guarantees the completion of an order before a pre-determined lead-time with a certain probability. The demand arrival times and the service requirements for the orders are random. To reduce the

  5. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Cho, Sungjong; Wei, Wei

    2011-01-01

    We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A 0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect. (fundamental areas of phenomenology(including applications))

  6. Effect of iron ions and electric field on nitrification process in the periodic reversal bio-electrocoagulation system.

    Science.gov (United States)

    Qian, Guangsheng; Hu, Xiaomin; Li, Liang; Ye, Linlin; Lv, Weijian

    2017-11-01

    This study explored the nitrification mechanism of a periodic reversal bio-electrocoagulation system with Fe-C electrodes. The ammonia nitrogen removal was compared in four identical cylindrical sequencing bath reactors. Two of them were reactors with Fe-C electrodes (S1) and C-C electrodes (S2), respectively. The other two were a reactor with iron ions (S3) and a traditional SBR (S4), respectively. The results demonstrated that the effect on enhancing nitrification in S1 was the best among all four SBRs, followed by S3, S2 and S4. Iron ions increased the biomass, and electric field improved the proton transfer and enzyme activity. The dominant bacterial genera in the four SBRs were Hyphomicrobium, Thauera, Nitrobacter, Nitrosomonas, Paracoccus and Hydrogenophaga. The iron ions may increase the levels of Nitrosomonas and Nitrobacter, both of which were the main microbes of the nitrification process. This study provided a significant and meaningful understanding of nitrification in a bio-electrocoagulation system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Constraints of a parity-conserving/time-reversal-non-conserving interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2002-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement at CPLEAR. One then can ask the question: What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance can be distinguished as belonging to two classes: the first one deals with time-reversal-invariance-non-conserving (T-odd)/parity violating (P-odd) interactions, while the second one deals with T-odd/P-even interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a T-odd/P-odd interaction follow from measurements of the electric dipole moment of the neutron ( -26 e.cm [95% C.L.]). It provides a limit on a T-odd/P-odd pion-nucleon coupling constant which is less than 10 -4 times the weak interaction strength. Experimental limits on a T-odd/P-even interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges, it can be shown that only charged ρ-meson exchange and A 1 -meson exchange can lead to a T-odd/P-even interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). All other experiments, like detailed balance experiments, polarization - analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order to magnitude less sensitive. Is there room for further experimentation?

  8. Time-delayed feedback technique for suppressing instabilities in time-periodic flow

    Science.gov (United States)

    Shaabani-Ardali, Léopold; Sipp, Denis; Lesshafft, Lutz

    2017-11-01

    A numerical method is presented that allows to compute time-periodic flow states, even in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A 170, 421 (1992), 10.1016/0375-9601(92)90745-8]. Its use in flow problems is demonstrated here for the case of a periodically forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The optimal choice of the filter gain, which is a free parameter in the stabilization procedure, is investigated in the context of a low-dimensional model problem, and it is shown that this model predicts well the filter performance in the high-dimensional flow system. Vortex pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response to harmonic forcing is accurately retrieved. The procedure is straightforward to implement inside any standard flow solver. Memory requirements for the delayed feedback control can be significantly reduced by means of time interpolation between checkpoints. Finally, the method is extended for the treatment of periodic problems where the frequency is not known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven cavity in supercritical conditions.

  9. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    Science.gov (United States)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change

  10. Robust and Reversible Audio Watermarking by Modifying Statistical Features in Time Domain

    Directory of Open Access Journals (Sweden)

    Shijun Xiang

    2017-01-01

    Full Text Available Robust and reversible watermarking is a potential technique in many sensitive applications, such as lossless audio or medical image systems. This paper presents a novel robust reversible audio watermarking method by modifying the statistic features in time domain in the way that the histogram of these statistical values is shifted for data hiding. Firstly, the original audio is divided into nonoverlapped equal-sized frames. In each frame, the use of three samples as a group generates a prediction error and a statistical feature value is calculated as the sum of all the prediction errors in the frame. The watermark bits are embedded into the frames by shifting the histogram of the statistical features. The watermark is reversible and robust to common signal processing operations. Experimental results have shown that the proposed method not only is reversible but also achieves satisfactory robustness to MP3 compression of 64 kbps and additive Gaussian noise of 35 dB.

  11. The Organization of Behavior Over Time: Insights from Mid-Session Reversal.

    Science.gov (United States)

    Rayburn-Reeves, Rebecca M; Cook, Robert G

    2016-01-01

    What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyses also highlight some of the potential mechanisms underlying this serially organized behavior. MSR provides new evidence and we offer some ideas about how cues interact to compete for the control of behavior within and across sessions. We suggest that MSR is an excellent preparation for studying the competition among psychological states and their resolution toward action.

  12. Time reversal odd fragmentation functions in semi-inclusive deep inelastic lepton-hadron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, P.J. [National Inst. for Nuclear Physics and High Energy Physics, Amsterdam (Netherlands); Levelt, J. [Univ. of Erlangen-Nuernberg (Germany)

    1994-04-01

    In semi-inclusive scattering of polarized leptons from unpolarized hadrons, one can measure a time reversal odd structure function. It shows up as a sin({phi}) asymmetry of the produced hadrons. This asymmetry can be expressed as the product of a twist-three {open_quotes}hadron {r_arrow} quark{close_quotes} profile function and a time reversal odd twist-two {open_quotes}quark {r_arrow} hadron{close_quotes} fragmentation function. This fragmentation function can only be measured for nonzero transverse momenta of the produced hadron. Its appearance is a consequence of final state interactions between the produced hadron and the rest of the final state.

  13. High amplitude ultrasound pulse generation using time-reversal through a multiple scattering medium

    OpenAIRE

    ARNAL , Bastien; Pernot , Mathieu; Fink , Mathias; Tanter , Mickaël

    2012-01-01

    International audience; In histotripsy, soft tissues can be fragmented using very high pressure ultrasound pulses. Using time-reversal cavity is a way to generate high pressure pulses with a limited number of acoustic sources. The principle was already demonstrated by Montaldo et al. using a solid metal cavity, but low transmission coefficient was obtained due to the strong impedance mismatch at the metal/water interface. We propose here to use a waveguide filled with water containing a 2D mu...

  14. Generic transmission zeros in time-reversal symmetric single channel transport through quasi-1d systems

    International Nuclear Information System (INIS)

    Lee, H. W.

    1999-01-01

    Wh study phase coherent transport in a single channel system using the scattering matrix approach. It is show that the Friedel sum rule and the time-reversal symmetry result in the generic appearance of transmission zeros in quasi-1d systems. The transmission zeros naturally lead to abrupt phase changes (without any intrinsic energy scale) and in-phase resonances, thus providing insights to recent experiments on phase coherent transport through a quantum dot

  15. Time Reversal Methods for Structural Health Monitoring of Metallic Structures Using Guided Waves

    Science.gov (United States)

    2011-09-01

    measure elastic properties of thin isotropic materials and laminated composite plates. Two types of waves propagate a symmetric wave and antisymmetric...compare it to the original signal. In this time reversal procedure wave propagation from point-A to point-B and can be modeled as a convolution ...where * is the convolution operator and transducer transmit and receive transfer function are neglected for simplification. In the frequency

  16. Acoustic wave focusing in complex media using Nonlinear Time Reversal coded signal processing

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Dvořáková, Zuzana; Lints, M.; Kůs, V.; Salupere, A.; Převorovský, Zdeněk

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : ultrasonic testing (UT) * signal processing * TR- NEWS * nonlinear time reversal * NDT * nonlinear acoustics Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Slides/590_DosSantos_Rev1.pdf

  17. Nonlinear elastic wave spectroscopy in symbiosis with time reversal for localization of defects: TR-NEWS

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Vejvodová, Šárka; Převorovský, Zdeněk

    2009-01-01

    Roč. 19, č. 2 (2009), s. 14-14 ISSN 1213-3825. [NDT in PROGRESS. 12.11.2009-14.11.2009, Praha] R&D Projects: GA ČR GA106/07/1393; GA MPO(CZ) FR-TI1/274 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonlinear elastic wave spectroscopy (NEWS) * ESAM * time reversal (TR) * TR-NEWS imaging * tomography * DORT Subject RIV: BI - Acoustics

  18. Differential geometric invariants for time-reversal symmetric Bloch-bundles: The “Real” case

    International Nuclear Information System (INIS)

    De Nittis, Giuseppe; Gomi, Kiyonori

    2016-01-01

    Topological quantum systems subjected to an even (resp. odd) time-reversal symmetry can be classified by looking at the related “Real” (resp. “Quaternionic”) Bloch-bundles. If from one side the topological classification of these time-reversal vector bundle theories has been completely described in De Nittis and Gomi [J. Geom. Phys. 86, 303–338 (2014)] for the “Real” case and in De Nittis and Gomi [Commun. Math. Phys. 339, 1–55 (2015)] for the “Quaternionic” case, from the other side it seems that a classification in terms of differential geometric invariants is still missing in the literature. With this article and its companion [G. De Nittis and K. Gomi (unpublished)] we want to cover this gap. More precisely, we extend in an equivariant way the theory of connections on principal bundles and vector bundles endowed with a time-reversal symmetry. In the “Real” case we generalize the Chern-Weil theory and we show that the assignment of a “Real” connection, along with the related differential Chern class and its holonomy, suffices for the classification of “Real” vector bundles in low dimensions.

  19. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schemm, E.R., E-mail: eschemm@alumni.stanford.edu [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Levenson-Falk, E.M. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kapitulnik, A. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Stanford Institute of Energy and Materials Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2017-04-15

    Highlights: • Polar Kerr effect (PKE) probes broken time-reversal symmetry (TRS) in superconductors. • Absence of PKE below Tc in CeCoIn{sub 5} is consistent with dx2-y2 order parameter symmetry. • PKE in the B phase of the multiphase superconductor UPt3 agrees with an E2u model. • Data on URu2Si2 show broken TRS and additional structure in the superconducting state. - Abstract: The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of {sup 3}He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  20. Impact source identification in finite isotropic plates using a time-reversal method: theoretical study

    International Nuclear Information System (INIS)

    Chen, Chunlin; Yuan, Fuh-Gwo

    2010-01-01

    This paper aims to identify impact sources on plate-like structures based on the synthetic time-reversal (T-R) concept using an array of sensors. The impact source characteristics, namely, impact location and impact loading time history, are reconstructed using the invariance of time-reversal concept, reciprocal theory, and signal processing algorithms. Numerical verification for two finite isotropic plates under low and high velocity impacts is performed to demonstrate the versatility of the synthetic T-R method for impact source identification. The results show that the impact location and time history of the impact force with various shapes and frequency bands can be readily obtained with only four sensors distributed around the impact location. The effects of time duration and the inaccuracy in the estimated impact location on the accuracy of the time history of the impact force using the T-R method are investigated. Since the T-R technique retraces all the multi-paths of reflected waves from the geometrical boundaries back to the impact location, it is well suited for quantifying the impact characteristics for complex structures. In addition, this method is robust against noise and it is suggested that a small number of sensors is sufficient to quantify the impact source characteristics through simple computation; thus it holds promise for the development of passive structural health monitoring (SHM) systems for impact monitoring in near real-time

  1. Reverse Algols

    Science.gov (United States)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  2. Predictability of Landslide Timing From Quasi-Periodic Precursory Earthquakes

    Science.gov (United States)

    Bell, Andrew F.

    2018-02-01

    Accelerating rates of geophysical signals are observed before a range of material failure phenomena. They provide insights into the physical processes controlling failure and the basis for failure forecasts. However, examples of accelerating seismicity before landslides are rare, and their behavior and forecasting potential are largely unknown. Here I use a Bayesian methodology to apply a novel gamma point process model to investigate a sequence of quasiperiodic repeating earthquakes preceding a large landslide at Nuugaatsiaq in Greenland in June 2017. The evolution in earthquake rate is best explained by an inverse power law increase with time toward failure, as predicted by material failure theory. However, the commonly accepted power law exponent value of 1.0 is inconsistent with the data. Instead, the mean posterior value of 0.71 indicates a particularly rapid acceleration toward failure and suggests that only relatively short warning times may be possible for similar landslides in future.

  3. Network Organization Unfolds over Time during Periods of Anxious Anticipation

    OpenAIRE

    McMenamin, Brenton W.; Langeslag, Sandra J.E.; Sirbu, Mihai; Padmala, Srikanth; Pessoa, Luiz

    2014-01-01

    Entering a state of anxious anticipation triggers widespread changes across large-scale networks in the brain. The temporal aspects of this transition into an anxious state are poorly understood. To address this question, an instructed threat of shock paradigm was used while recording functional MRI in humans to measure how activation and functional connectivity change over time across the salience, executive, and task-negative networks and how they interact with key regions implicated in emo...

  4. Position-dependent radiative transfer as a tool for studying Anderson localization: Delay time, time-reversal and coherent backscattering

    Science.gov (United States)

    van Tiggelen, B. A.; Skipetrov, S. E.; Page, J. H.

    2017-05-01

    Previous work has established that the localized regime of wave transport in open media is characterized by a position-dependent diffusion coefficient. In this work we study how the concept of position-dependent diffusion affects the delay time, the transverse confinement, the coherent backscattering, and the time reversal of waves. Definitions of energy transport velocity of localized waves are proposed. We start with a phenomenological model of radiative transfer and then present a novel perturbational approach based on the self-consistent theory of localization. The latter allows us to obtain results relevant for realistic experiments in disordered quasi-1D wave guides and 3D slabs.

  5. Multiuser underwater acoustic communication using single-element virtual time reversal mirror

    Institute of Scientific and Technical Information of China (English)

    YIN JingWei; WANG YiLin; WANG Lei; HUI JunYing

    2009-01-01

    Pattern time delay shift coding (PDS) scheme is introduced and combined with spread spectrum tech-nique called SS-PDS for short which is power-saving and competent for long-range underwater acous-tic networks.Single-element virtual time reversal mirror (VTRM) is presented in this paper and validated by the lake trial results.Employing single-element VTRM in multiuser communication system based on SS-PDS can separate different users' information simultaneously at master node as indicated in the simulation results.

  6. Bounds on Time Reversal Violation From Polarized Neutron Capture With Unpolarized Targets.

    Science.gov (United States)

    Davis, E D; Gould, C R; Mitchell, G E; Sharapov, E I

    2005-01-01

    We have analyzed constraints on parity-odd time-reversal noninvariant interactions derived from measurements of the energy dependence of parity-violating polarized neutron capture on unpolarized targets. As previous authors found, a perturbation in energy dependence due to a parity (P)-odd time (T)-odd interaction is present. However, the perturbation competes with T-even terms which can obscure the T-odd signature. We estimate the magnitudes of these competing terms and suggest strategies for a practicable experiment.

  7. [Obesity and complementary feeding time: a period at risk].

    Science.gov (United States)

    Vidailhet, M

    2010-12-01

    Relation between rapid growth during the first months of life and secondary risk of excessive adiposity is well demonstrated. Many works have indicated a birth feeding effect on weight gain during the first year of life and a protective effect towards later childhood and adult obesity. However all these studies are observational and several works denied this protective effect. Concerning complementary feeding, 3 interventional, randomized, studies achieved between 4 and 6 months of age, showed a good regulation of caloric intake and no weight gain modification due to complementary foods. Most of others studies are observational and don't show any relation between time of introduction of complementary foods and later fat mass. However 3 recent studies indicate, respectively at 7, 10 and 42 years of age, an increased adiposity, suggesting the possibility of a programmed excessive fat gain induced by an early complementary foods introduction. Very few studies have evaluated, besides the time of weaning, the kind, quantity and caloric density of foods used as complements, whereas other recent studies show the importance of appetite differences since the first months of life and the importance of genetic influence on these variations. Others works have emphasized the possible role of an excessive protein intake during the first 2 years of life. So, it appears that it may be necessary to pay attention not only on the date, but also on the kind and quantity of complementary foods, particularly in infants at risk for obesity, because of parental obesity, rapid weight growth or an excessive appetite. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  8. Increasing dwell time of mitomycin C in the upper tract with a reverse thermosensitive polymer.

    Science.gov (United States)

    Wang, Agnes J; Goldsmith, Zachariah G; Neisius, Andreas; Astroza, Gaston M; Oredein-McCoy, Olugbemisola; Iqbal, Muhammad W; Simmons, W Neal; Madden, John F; Preminger, Glenn M; Inman, Brant A; Lipkin, Michael E; Ferrandino, Michael N

    2013-03-01

    Abstract Background and Purpose: Topical chemotherapy for urothelial cancer is dependent on adequate contact time of the chemotherapeutic agent with the urothelium. To date, there has not been a reliable method of maintaining this contact for renal or ureteral urothelial carcinoma. We evaluated the safety and feasibility of using a reverse thermosensitive polymer to improve dwell times of mitomycin C (MMC) in the upper tract. Using a porcine model, four animals were treated ureteroscopically with both upper urinary tracts receiving MMC mixed with iodinated contrast. One additional animal received MMC percutaneously. The treatment side had ureteral outflow blocked with a reverse thermosensitive polymer plug. MMC dwell time was monitored fluoroscopically and intrarenal pressures measured. Two animals were euthanized immediately, and three animals were euthanized 5 days afterward. In control kidneys, drainage occurred at a mean of 5.3±0.58 minutes. Intrarenal pressures stayed fairly stable: 9.7±14.0 cm H20. In treatment kidneys, dwell time was extended to 60 minutes, when the polymer was washed out. Intrarenal pressures in the treatment kidneys peaked at 75.0±14.7 cm H20 and reached steady state at 60 cm H20. Pressures normalized after washout of the polymer with cool saline. Average washout time was 11.8±9.6 minutes. No histopathologic differences were seen between the control and treatment kidneys, or with immediate compared with delayed euthanasia. A reverse thermosensitive polymer can retain MMC in the upper urinary tract and appears to be safe from our examination of intrarenal pressures and histopathology. This technique may improve the efficacy of topical chemotherapy in the management of upper tract urothelial carcinoma.

  9. Estimating medication stopping fraction and real-time prevalence of drug use in pharmaco-epidemiologic databases. An application of the reverse waiting time distribution

    DEFF Research Database (Denmark)

    Støvring, Henrik; Pottegård, Anton; Hallas, Jesper

    2017-01-01

    Purpose: To introduce the reverse waiting time distribution (WTD) and show how it can be used to estimate stopping fractions and real-time prevalence of treatment in pharmacoepidemiological studies. Methods: The reverse WTD is the distribution of time from the last dispensed prescription of each......-hoc decision rules for automated implementations, and it yields estimates of real-time prevalence....... patient within a time window to the end of it. It is a mirrored version of the ordinary WTD, which considers the first dispensed prescription of patients within a time window. Based on renewal process theory, the reverse WTD can be analyzed as an ordinary WTD with maximum likelihood estimation. Based...

  10. Factors affecting timing of closure and non-reversal of temporary ileostomies

    NARCIS (Netherlands)

    Sier, M. F.; van Gelder, L.; Ubbink, D. T.; Bemelman, W. A.; Oostenbroek, R. J.

    2015-01-01

    Although stoma closure is considered a simple surgical intervention, the interval between construction and reversal is often prolonged, and some ileostomies may never be reversed. We evaluated possible predictors for non-reversal and prolonged interval between construction and reversal. In a cohort

  11. First passage times for multiple particles with reversible target-binding kinetics

    Science.gov (United States)

    Grebenkov, Denis S.

    2017-10-01

    We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.

  12. A Robust Pre-Filter and Power Loading Design for Time Reversal UWB Systems over Time-Correlated MIMO Channels

    Directory of Open Access Journals (Sweden)

    Sajjad Alizadeh

    2014-04-01

    Full Text Available Conventional Time Reversal (TR technique suffers from performance degradation in time varying Multiple-Input Multiple-Output Ultra-Wideband (MIMO-UWB systems due to outdating Channel State Information (CSI over time progressions. That is, the outdated CSI degrades the TR performance significantly in time varying channels. The correlation property of time correlated channels can improve the TR performance against other traditional TR designs. Based on this property, at first, we propose a robust TR-MIMO-UWB system design for a time-varying channel in which the CSI is updated only at the beginning of each block of data where the CSI is assumed to be known. As the channel varies over time, pre-processor blindly pre-equalizes the channel during the next symbol time by using the correlation property. Then, a novel recursive power allocation strategy is derived over time-correlated time-varying TR-MIMO-UWB channels. We show that the proposed power loading technique, considerably improves the BER performance of TR-MIMO-UWB system in imperfect CSI with robust pre-filter. The proposed algorithms lead to a cost-efficient CSI updating procedure for the TR optimization. Simulation results are provided to confirm the new design performance against traditional method.

  13. Search for Time Reversal Violation in Neutron Decay: A Measurement of the Transverse Polarization of Electrons

    International Nuclear Information System (INIS)

    Bodek, K.; Kaczmarek, A.; Kistryn, St.; Kuzniak, M.; Zejma, J.; Pulut, J.; Kirch, K.; Bialek, A.; Kozela, A.; Ban, G.; Naviliat-Cuncic, O.; Gorel, P.; Beck, M.; Lindroth, A.; Severijns, N.; Stephan, E.; Czarnecki, A.

    2006-01-01

    A non-zero value of the R-correlation coefficient due to the e - polarization component, perpendicular to the plane spanned by the spin of the decaying neutron and the electron momentum, would signal a violation of time reversal symmetry and thus physics beyond the Standard Model. The value of the N-correlation coefficient, given by the transverse e - polarization component within that plane, is expected to be finite. The measurement of N serves as an important systematic check of the apparatus for the R-measurement. The first phase of data taking has been completed. Preliminary results from a limited data sample show no deviations from the Standard Model predictions

  14. In situ calibration of acoustic emission transducers by time reversal method

    Czech Academy of Sciences Publication Activity Database

    Kober, Jan; Převorovský, Zdeněk; Chlada, Milan

    2016-01-01

    Roč. 240, April (2016), s. 50-56 ISSN 0924-4247 Institutional support: RVO:61388998 Keywords : time reversed acoustic s * calibration * in situ * acoustic emission Subject RIV: BI - Acoustic s Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S0924424716300334/1-s2.0-S0924424716300334-main.pdf?_tid=0acf4736-ef6d-11e5-b826-00000aacb362&acdnat=1458568911_1c21eda9762b905a684ff939463ef3fe

  15. New development for the reverse time of flight analysis of spectra measured using Fourier Diffractometer Facilities

    CERN Document Server

    Maayouf, R M A

    2002-01-01

    The present work introduces a new design to replace the (Finnish make) reverse time of flight (RTOF) analyzer used for the Fourier diffractometer facilities. The new design applies a data acquisition system, a special interface card and software program installed in a PC computer, to perform the cross-correlation functions between signals received from the chopper-decoder and detector. It has been found from test measurements performed with the Cairo Fourier diffractometer facility (CFDF) and the similar high resolution one at JINR (Dubna-Russia) that the new design can successfully replace the Finnish make RTOF analyzer.

  16. Numerical Simulation of Ultrasonic Time Reversal Mirror in a Plate with Defect

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Krofta, Josef

    2008-01-01

    Roč. 13, č. 3 (2008), s. 1-5 ISSN 1435-4934. [NDT in Progress. Praha, 05.11.2007-07.11.2007] R&D Projects: GA ČR GA106/07/1393; GA ČR GA103/06/1711 Institutional research plan: CEZ:AV0Z20760514 Keywords : defect detection * nonlinear ultrasonic spectroscopy * time reversal mirror Subject RIV: BI - Acoustics http://www.ndt.net/ search /docs.php3?showForm=off&edit=1&MainSource=53&AuthorID=2812

  17. Time-reversal asymmetry: polarization and analyzing power in nuclear reactions

    International Nuclear Information System (INIS)

    Rioux, C.; Roy, R.; Slobodrian, R.J.; Conzett, H.E.

    1984-01-01

    Measurements of the proton polarization in the reactions 7 Li( 3 He, p vector) 9 Be and 9 Be( 3 He, p vector) 11 B and of the analyzing powers in the inverse reactions, initiated by polarized protons at the same center-of-mass energies, show significant differences. This implies the failure of the polarization-analyzing-power theorem and, prima facie, of time-reversal invariance in these reactions. The reaction 2 H( 3 He, p vector) 4 He and its inverse have also been investigated and show smaller differences. A discussion of instrumental asymmetries is presented

  18. Noncolocated Time-Reversal MUSIC: High-SNR Distribution of Null Spectrum

    Science.gov (United States)

    Ciuonzo, Domenico; Rossi, Pierluigi Salvo

    2017-04-01

    We derive the asymptotic distribution of the null spectrum of the well-known Multiple Signal Classification (MUSIC) in its computational Time-Reversal (TR) form. The result pertains to a single-frequency non-colocated multistatic scenario and several TR-MUSIC variants are here investigated. The analysis builds upon the 1st-order perturbation of the singular value decomposition and allows a simple characterization of null-spectrum moments (up to the 2nd order). This enables a comparison in terms of spectrums stability. Finally, a numerical analysis is provided to confirm the theoretical findings.

  19. Measuring the spin Chern number in time-reversal-invariant Hofstadter optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dan-Wei, E-mail: zdanwei@126.com [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou 510006 (China); Cao, Shuai, E-mail: shuaicao2004@163.com [Department of Applied Physics, College of Electronic Engineering, South China Agricultural University, Guangzhou 510642 China (China)

    2016-10-14

    We propose an experimental scheme to directly measure the spin Chern number of the time-reversal-invariant Hofstadter model in optical lattices. We first show that this model can be realized by using ultracold Fermi atoms with two pseudo-spin states encoded by the internal Zeeman states in a square optical lattice and the corresponding topological Bloch bands are characterized by the spin Chern number. We then propose and numerically demonstrate that this topological invariant can be extracted from the shift of the hybrid Wannier center in the optical lattice. By spin-resolved in situ detection of the atomic densities along the transverse direction combined with time-of-flight measurement along another spatial direction, the spin Chern number in this system is directly measured. - Highlights: • The cold-atom optical-lattice scheme for realizing the time-reversal-invariant Hofstadter model is proposed. • The intrinsic spin Chern number related to the hybrid Wannier center in the optical lattice is investigated. • Direct measurement of the spin Chern number in the proposed system is theoretically demonstrated.

  20. The double-slit experiment and the time-reversed fire alarm

    International Nuclear Information System (INIS)

    Halabi, T.

    2010-01-01

    When both slits of the double-slit experiment are open, closing one paradoxically increases the detection rate at some points on the detection screen. Feynman famously warned that temptation to understand such a puzzling feature only draws into blind alleys. Nevertheless, we gain insight into this feature by drawing an analogy between the double-slit experiment and a time-reversed fire alarm. Much as closing the slit increases probability of a future detection, ruling out fire drill scenarios, having heard the fire alarm, increases probability of a past fire (using Bayesian inference). Classically, Bayesian inference is associated with computing probabilities of past events. We therefore identify this feature of the double-slit experiment with a time-reversed thermodynamic arrow. We believe that much of the enigma of quantum mechanics is simply due to some variation of time's arrow. In further support of this, we employ a plausible formulation of the thermodynamic arrow to derive an uncertainty in classical mechanics that is reminiscent of quantum uncertainty.

  1. Analytical reverse time migration: An innovation in imaging of infrastructures using ultrasonic shear waves.

    Science.gov (United States)

    Asadollahi, Aziz; Khazanovich, Lev

    2018-04-11

    The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Enhanced diffusion with abnormal temperature dependence in underdamped space-periodic systems subject to time-periodic driving

    Science.gov (United States)

    Marchenko, I. G.; Marchenko, I. I.; Zhiglo, A. V.

    2018-01-01

    We present a study of the diffusion enhancement of underdamped Brownian particles in a one-dimensional symmetric space-periodic potential due to external symmetric time-periodic driving with zero mean. We show that the diffusivity can be enhanced by many orders of magnitude at an appropriate choice of the driving amplitude and frequency. The diffusivity demonstrates abnormal (decreasing) temperature dependence at the driving amplitudes exceeding a certain value. At any fixed driving frequency Ω normal temperature dependence of the diffusivity is restored at low enough temperatures, T oscillation frequency at the potential minimum, the diffusivity is shown to decrease with Ω according to a power law, with the exponent related to the transient superdiffusion exponent. This behavior is found similar for the cases of sinusoidal in time and piecewise constant periodic ("square") driving.

  3. First direct observation of time-reversal non-invariance in the neutral-kaon system

    CERN Document Server

    Angelopoulos, Angelos; Aslanides, Elie; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chertok, M B; Danielsson, M; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Faravel, L; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Haselden, A; Hayman, P J; Henry-Coüannier, F; Hollander, R W; Jon-And, K; Kettle, P R; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Santoni, C; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, O; Wolter, M; Zavrtanik, D; Zimmerman, D

    1998-01-01

    We report on the first observation of time-reversal symmetry violation through a comparison of the probabilities of $\\bar{K}^0$ transforming into $K^0$ and $K^0$ into $\\bar{K}^0$ as a function of the neutral-kaon eigentime $t$. The comparison is based on the analysis of the neutral-kaon semileptonic decays recorded in the CPLEAR experiment. There, the strangeness of the neutral kaon at time $t=0$ was tagged by the kaon charge in the reaction $p\\bar{p} \\rightarrow K^{\\pm} \\pi^{\\mp} K^0(\\bar{K}^0)$ at rest, whereas the strangeness of the kaon at the decay time $t=\\tau$ was tagged by the lepton charge in the final state. An average decay-rate asymmetry \\begin{equation*} \\langle^{R(\\bar{K}^0_{t=0} \\to e^+\\pi^-\

  4. Lateral Casimir-Polder forces by breaking time-reversal symmetry

    Science.gov (United States)

    Oude Weernink, Ricardo R. Q. P. T.; Barcellona, Pablo; Buhmann, Stefan Yoshi

    2018-03-01

    We examine the lateral Casimir-Polder force acting on a circular rotating emitter near a dielectric plane surface. As the circular motion breaks time-reversal symmetry, the spontaneous emission in a direction parallel to the surface is in general anisotropic. We show that a lateral force arises which can be interpreted as a recoil force because of this asymmetric emission. The force is an oscillating function of the distance between the emitter and the surface, and the lossy character of the dielectric strongly influences the results in the near-field regime. The force exhibits also a population-induced dynamics, decaying exponentially with respect to time on time scales of the inverse of the spontaneous decay rate. We propose that this effect could be detected measuring the velocity acquired by the emitter, following different cycles of excitation and spontaneous decay. Our results are expressed in terms of the Green's tensor and can therefore easily be applied to more complex geometries.

  5. Electronic simulation of the supported liquid membrane in electromembrane extraction systems: Improvement of the extraction by precise periodical reversing of the field polarity

    International Nuclear Information System (INIS)

    Moazami, Hamid Reza; Nojavan, Saeed; Zahedi, Pegah; Davarani, Saied Saeed Hosseiny

    2014-01-01

    Highlights: • A simple equivalent circuit has been proposed for a supported liquid membrane. • A dual charge transfer mechanism was proposed for electromembrane extraction. • An improvement was observed by precise periodical reversing of the field polarity. - Abstract: In order to understand the limitations of electromebrane extraction procedure better, a simple equivalent circuit has been proposed for a supported liquid membrane consisting of a resistor and a low leakage capacitor in series. To verify the equivalent circuit, it was subjected to a simulated periodical polarity changing potential and the resulting time variation of the current was compared with that of a real electromembrane extraction system. The results showed a good agreement between the simulated current patterns and those of the real ones. In order to investigate the impact of various limiting factors, the corresponding values of the equivalent circuit were estimated for a real electromembrane extraction system and were attributed to the physical parameters of the extraction system. A dual charge transfer mechanism was proposed for electromembrane extraction by combining general migration equation and fundamental aspects derived from the simulation. Dual mechanism comprises a current dependent contribution of analyte in total current and could support the possibility of an improvement in performance of an electromembrane extraction by application of an asymmetric polarity changing potential. The optimization of frequency and duty cycle of the asymmetric polarity exchanging potential resulted in a higher recovery (2.17 times greater) in comparison with the conventional electromebrane extraction. The simulation also provided more quantitative approaches toward the investigation of the mechanism of extraction and contribution of different limiting factors in electromembrane extraction. Results showed that the buildup of the double layer is the main limiting factor and the Joule heating has

  6. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia.

    Directory of Open Access Journals (Sweden)

    Junie P Warrington

    Full Text Available Whole brain radiation therapy (WBRT is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40-50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia or 21% oxygen (normoxia for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored.

  7. A Perspective for Time-Varying Channel Compensation with Model-Based Adaptive Passive Time-Reversal

    Directory of Open Access Journals (Sweden)

    Lussac P. MAIA

    2015-06-01

    Full Text Available Underwater communications mainly rely on acoustic propagation which is strongly affected by frequency-dependent attenuation, shallow water multipath propagation and significant Doppler spread/shift induced by source-receiver-surface motion. Time-reversal based techniques offer a low complexity solution to decrease interferences caused by multipath, but a complete equalization cannot be reached (it saturates when maximize signal to noise ratio and these techniques in conventional form are quite sensible to channel variations along the transmission. Acoustic propagation modeling in high frequency regime can yield physical-based information that is potentially useful to channel compensation methods as the passive time-reversal (pTR, which is often employed in Digital Acoustic Underwater Communications (DAUC systems because of its low computational cost. Aiming to overcome the difficulties of pTR to solve time-variations in underwater channels, it is intended to insert physical knowledge from acoustic propagation modeling in the pTR filtering. Investigation is being done by the authors about the influence of channel physical parameters on propagation of coherent acoustic signals transmitted through shallow water waveguides and received in a vertical line array of sensors. Time-variant approach is used, as required to model high frequency acoustic propagation on realistic scenarios, and applied to a DAUC simulator containing an adaptive passive time-reversal receiver (ApTR. The understanding about the effects of changes in physical features of the channel over the propagation can lead to design ApTR filters which could help to improve the communications system performance. This work presents a short extension and review of the paper 12, which tested Doppler distortion induced by source-surface motion and ApTR compensation for a DAUC system on a simulated time-variant channel, in the scope of model-based equalization. Environmental focusing approach

  8. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    Science.gov (United States)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  9. Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics

    Science.gov (United States)

    Patra, Puneet Kumar; Sprott, Julien Clinton; Hoover, William Graham; Griswold Hoover, Carol

    2015-09-01

    The relative stability and ergodicity of deterministic time-reversible thermostats, both singly and in coupled pairs, are assessed through their Lyapunov spectra. Five types of thermostat are coupled to one another through a single Hooke's-law harmonic spring. The resulting dynamics shows that three specific thermostat types, Hoover-Holian, Ju-Bulgac, and Martyna-Klein-Tuckerman, have very similar Lyapunov spectra in their equilibrium four-dimensional phase spaces and when coupled in equilibrium or nonequilibrium pairs. All three of these oscillator-based thermostats are shown to be ergodic, with smooth analytic Gaussian distributions in their extended phase spaces (coordinate, momentum, and two control variables). Evidently these three ergodic and time-reversible thermostat types are particularly useful as statistical-mechanical thermometers and thermostats. Each of them generates Gibbs' universal canonical distribution internally as well as for systems to which they are coupled. Thus they obey the zeroth law of thermodynamics, as a good heat bath should. They also provide dissipative heat flow with relatively small nonlinearity when two or more such temperature baths interact and provide useful deterministic replacements for the stochastic Langevin equation.

  10. Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves

    Science.gov (United States)

    Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua

    2017-09-01

    In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.

  11. Conjugate gradient and cross-correlation based least-square reverse time migration and its application

    Science.gov (United States)

    Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun

    2017-09-01

    Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.

  12. Analysis of Current-mode Detectors For Resonance Detection In Neutron Optics Time Reversal Symmetry Experiment

    Science.gov (United States)

    Forbes, Grant; Noptrex Collaboration

    2017-09-01

    One of the most promising explanations for the observed matter-antimatter asymmetry in our universe is the search for new sources of time-reversal (T) symmetry violation. The current amount of violation seen in the kaon and B-meson systems is not sufficient to describe this asymmetry. The Neutron Optics Time Reversal Experiment Collaboration (NOPTREX) is a null test for T violation in polarized neutron transmission through a polarized 139La target. Due to the high neutron flux needed for this experiment, as well as the ability to effectively subtract background noise, a current-mode neutron detector that can resolve resonances at epithermal energies has been proposed. In order to ascertain if this detector design would meet the requirements for the eventual NOPTREX experiment, prototypical detectors were tested at the NOBORU beam at the Japan Proton Accelerator Research Complex (JPARC) facility. Resonances in In and Ta were measured and the collected data was analyzed. This presentation will describe the analysis process and the efficacy of the detectors will be discussed. Department of Energy under Contract DE-SC0008107, UGRAS Scholarship.

  13. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation

    KAUST Repository

    Dutta, Gaurav

    2014-10-01

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. Conventional acoustic reverse time migration (RTM) and least-squares reverse time migration (LSRTM) do not account for this distortion, which can lead to defocusing of migration images in highly attenuative geologic environments. To correct for this distortion, we used a linearized inversion method, denoted as Qp-LSRTM. During the leastsquares iterations, we used a linearized viscoacoustic modeling operator for forward modeling. The adjoint equations were derived using the adjoint-state method for back propagating the residual wavefields. The merit of this approach compared with conventional RTM and LSRTM was that Qp-LSRTM compensated for the amplitude loss due to attenuation and could produce images with better balanced amplitudes and more resolution below highly attenuative layers. Numerical tests on synthetic and field data illustrated the advantages of Qp-LSRTM over RTM and LSRTM when the recorded data had strong attenuation effects. Similar to standard LSRTM, the sensitivity tests for background velocity and Qp errors revealed that the liability of this method is the requirement for smooth and accurate migration velocity and attenuation models.

  14. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation

    KAUST Repository

    Dutta, Gaurav; Schuster, Gerard T.

    2014-01-01

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. Conventional acoustic reverse time migration (RTM) and least-squares reverse time migration (LSRTM) do not account for this distortion, which can lead to defocusing of migration images in highly attenuative geologic environments. To correct for this distortion, we used a linearized inversion method, denoted as Qp-LSRTM. During the leastsquares iterations, we used a linearized viscoacoustic modeling operator for forward modeling. The adjoint equations were derived using the adjoint-state method for back propagating the residual wavefields. The merit of this approach compared with conventional RTM and LSRTM was that Qp-LSRTM compensated for the amplitude loss due to attenuation and could produce images with better balanced amplitudes and more resolution below highly attenuative layers. Numerical tests on synthetic and field data illustrated the advantages of Qp-LSRTM over RTM and LSRTM when the recorded data had strong attenuation effects. Similar to standard LSRTM, the sensitivity tests for background velocity and Qp errors revealed that the liability of this method is the requirement for smooth and accurate migration velocity and attenuation models.

  15. Precise discussion of time-reversal asymmetries in B-meson decays

    International Nuclear Information System (INIS)

    Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki

    2015-01-01

    BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_−→ (B"0)-bar and (B"0)-bar →B_− (− expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought to be T-odd since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵ_K is extracted and gives rise to O(10"−"3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of B_d meson, CPT violation, etc. We also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.

  16. Performance analysis of an acoustic time reversal system in dynamic and random oceanic environments

    Science.gov (United States)

    Khosla, Sunny Rajendra

    This dissertation provides a theoretical framework along with specific performance predictions for an acoustic time reversal system in shallow oceanic environments. Acoustic time-reversal is a robust means of retrofocusing acoustic energy, in both time and space, to the original sound-source location without any information about the acoustic environment in which it is deployed. The effect of three performance limiting oceanic complexities addressed, include (i)ambient noise field, (ii)reflection and volume scattering from a deterministic soliton internal wave traveling on the thermocline between two water masses, and (iii)volume scattering from a random superposition of linear internal waves convecting a gradient in the sound speed profile. The performance analysis establishes acoustic time reversal to be a promising technology for a two-way communication system in an oceanic medium. For an omni-directional noisy environment a general formulation for the probability of retrofocusing is developed that includes the effect of the medium, accounts for the system hardware and the acoustic parameters. Monte-Carlo simulations in both, a free-space environment and a shallow-ocean sound-channel environment compare well with theory. A 41 element TRA spanning a shallow water depth of 60 m is predicted to return a 70% focal probability at -15 dB SNR for a source to array range of 6 km. Preliminary research with broadband signals suggest that they should outperform narrowband response in both free space and sound channel environments. The impact of the nonlinear solitary waves is addressed using a two-path Green's function to treat the presence of a flat thermocline, and the single scattering Born approximation to address scattering from the soliton internal wave. It is predicted that a stationary soliton located along ray turning paths between the source and the TRA can lead to both enhanced and degraded focal performance. Based on extension of previous research in wave

  17. Statistical analysis of strait time index and a simple model for trend and trend reversal

    Science.gov (United States)

    Chen, Kan; Jayaprakash, C.

    2003-06-01

    We analyze the daily closing prices of the Strait Time Index (STI) as well as the individual stocks traded in Singapore's stock market from 1988 to 2001. We find that the Hurst exponent is approximately 0.6 for both the STI and individual stocks, while the normal correlation functions show the random walk exponent of 0.5. We also investigate the conditional average of the price change in an interval of length T given the price change in the previous interval. We find strong correlations for price changes larger than a threshold value proportional to T; this indicates that there is no uniform crossover to Gaussian behavior. A simple model based on short-time trend and trend reversal is constructed. We show that the model exhibits statistical properties and market swings similar to those of the real market.

  18. A reverse time of flight analyzer facility at the ETRR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maayouf, R M.A.; El-Shafey, A S; Khalil, M I [Reactor and Neutron Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The present work deals both with the theory and performance of a reverse-time-of-flight (RTOF) analyzer designed to analyze pulses emitted from a fourier chopper recently put into operation at the ETRR-1 reactor. The RTOF analyze was found to be adequate for use with pick up pulses from the fourier chopper which operates following a frequency window suitable for rotation rates from 0-9000 rpm; synchronically with neutron pulses from a {sup 6} Li glass detector set at time focusing geometry for scattering angle 20=90 degree. It was possible, with the present RTOF analyzer to obtain diffraction patterns at neutron wavelength range between 1 - 4 A within a resolution = 0.5%. 8 FIGS.

  19. CLINICAL-PHARMACOLOGY OF ROCURONIUM (ORG-9426) - STUDY OF THE TIME-COURSE OF ACTION, DOSE REQUIREMENT, REVERSIBILITY, AND PHARMACOKINETICS

    NARCIS (Netherlands)

    VANDENBROEK, L; WIERDA, JMKH; SMEULERS, NJ; VANSANTEN, GJ; LECLERCQ, MGL; HENNIS, PJ

    1994-01-01

    Study Objective: To evaluate the time course of action, dose requirement, reversibility, and pharmacokinetics of rocuronium (Org 9426) under 3 anesthetic techniques (nitrous oxide-fentanyl supplemented with propofol halothane, or isoflurane). Design: Prospective, randomized study. Setting: Operating

  20. Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng

    2013-01-01

    To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123

  1. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu; Zhang, Wei; Xi, Guang

    2015-01-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher

  2. Monitoring of Pre-Load on Rock Bolt Using Piezoceramic-Transducer Enabled Time Reversal Method.

    Science.gov (United States)

    Huo, Linsheng; Wang, Bo; Chen, Dongdong; Song, Gangbing

    2017-10-27

    Rock bolts ensure structural stability for tunnels and many other underground structures. The pre-load on a rock bolt plays an important role in the structural reinforcement and it is vital to monitor the pre-load status of rock bolts. In this paper, a rock bolt pre-load monitoring method based on the piezoceramic enabled time reversal method is proposed. A lead zirconate titanate (PZT) patch transducer, which works as an actuator to generate stress waves, is bonded onto the anchor plate of the rock bolt. A smart washer, which is fabricated by sandwiching a PZT patch between two metal rings, is installed between the hex nut and the anchor plate along the rock bolt. The smart washer functions as a sensor to detect the stress wave. With the increase of the pre-load values on the rock bolt, the effective contact surface area between the smart washer and the anchor plate, benefiting the stress wave propagation crossing the contact surface. With the help of time reversal technique, experimental results reveal that the magnitude of focused signal clearly increases with the increase of the pre-load on a rock bolt before the saturation which happens beyond a relatively high value of the pre-load. The proposed method provides an innovative and real time means to monitor the pre-load level of a rock bolt. By employing this method, the pre-load degradation process on a rock bolt can be clearly monitored. Please note that, currently, the proposed method applies to only new rock bolts, on which it is possible to install the PZT smart washer.

  3. The sensitive period for male-to-female sex reversal begins at the embryonic stage in the Nile tilapia and is associated with the sexual genotype.

    Science.gov (United States)

    Gennotte, Vincent; Mélard, Charles; D'Cotta, Helena; Baroiller, Jean-François; Rougeot, Carole

    2014-12-01

    In this study, we sought to determine the mechanism of early sex reversal in a teleost by applying 4 hr feminization treatments to XY (17α-ethynylestradiol 2000 μg L(-1) ) and YY (6500 μg L(-1) ) Nile tilapia embryos on the first day post-fertilization (dpf). We then searched for changes in the expression profiles of some sex-differentiating genes in the brain (cyp19a1b, foxl2, and amh) and in sex steroids (testosterone, 17β-estradiol, and 11-ketotestosterone) concentrations during embryogenesis and gonad differentiation. No sex reversal was observed in YY individuals, whereas sex-reversal rates in XY progeny ranged from 0-60%. These results, together with the clearance profile of 17α-ethynylestradiol, confirmed the existence of an early sensitive period for sex determination that encompasses embryonic and larval development and is active prior to any sign of gonad differentiation. Estrogen treatment induced elevated expression of cyp19a1b and higher testosterone and 17β-estradiol concentrations at 4 dpf in both XY and YY individuals. foxl2 and amh were repressed at 4 dpf and their expression levels were not different between treated and control groups at 14 dpf, suggesting that foxl2 did not control cyp19a1b in the brains of tilapia embryos. Increased cyp19a1b expression in treated embryos could reflect early brain sexualization, although this difference alone cannot account for the observed sex reversal as the treatment was ineffective in YY individuals. The differential sensitivity of XY and YY genotypes to embryonic induced-feminization suggests that a sex determinant on the sex chromosomes, such as a Y repressor or an X activator, may influence sex reversal during the first steps of tilapia embryogenesis. © 2014 Wiley Periodicals, Inc.

  4. Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S K

    2006-02-09

    We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.

  5. Photoacoustic imaging in scattering media by combining a correlation matrix filter with a time reversal operator.

    Science.gov (United States)

    Rui, Wei; Tao, Chao; Liu, Xiaojun

    2017-09-18

    Acoustic scattering medium is a fundamental challenge for photoacoustic imaging. In this study, we reveal the different coherent properties of the scattering photoacoustic waves and the direct photoacoustic waves in a matrix form. Direct waves show a particular coherence on the antidiagonals of the matrix, whereas scattering waves do not. Based on this property, a correlation matrix filter combining with a time reversal operator is proposed to preserve the direct waves and recover the image behind a scattering layer. Both numerical simulations and photoacoustic imaging experiments demonstrate that the proposed approach effectively increases the image contrast and decreases the background speckles in a scattering medium. This study might improve the quality of photoacoustic imaging in an acoustic scattering environment and extend its applications.

  6. Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-05-01

    We propose to apply a novel incoherent dictionary learning (IDL) algorithm for regularizing the least-squares inversion in seismic imaging. The IDL is proposed to overcome the drawback of traditional dictionary learning algorithm in losing partial texture information. Firstly, the noisy image is divided into overlapped image patches, and some random patches are extracted for dictionary learning. Then, we apply the IDL technology to minimize the coherency between atoms during dictionary learning. Finally, the sparse representation problem is solved by a sparse coding algorithm, and image is restored by those sparse coefficients. By reducing the correlation among atoms, it is possible to preserve most of the small-scale features in the image while removing much of the long-wavelength noise. The application of the IDL method to regularization of seismic images from least-squares reverse time migration shows successful performance.

  7. Multisource least-squares reverse-time migration with structure-oriented filtering

    Science.gov (United States)

    Fan, Jing-Wen; Li, Zhen-Chun; Zhang, Kai; Zhang, Min; Liu, Xue-Tong

    2016-09-01

    The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.

  8. Infrared absorption, multiphonon processes and time reversal effect on Si and Ge band structure

    International Nuclear Information System (INIS)

    Kunert, H.W.; Machatine, A.G.J.; Malherbe, J.B.; Barnas, J.; Hoffmann, A.; Wagner, M.R.

    2008-01-01

    We have examined the effect of Time Reversal Symmetry (TRS) on vibrational modes and on the electronic band structure of Si and Ge. Most of the primary non-interacting modes are not affected by TRS. Only phonons originating from high symmetry lines S and A of the Brillouin Zone (BZ) indicate extra degeneracy. Selection rules for some two and three phonons originating from high symmetry lines are determined. The states of electrons and holes described by electronic band structure due to spin-inclusion are assigned by spinor representations of the double space group. Inclusion of the TRS into the band structure results in extra degeneracy of electrons and holes, and therefore optical selection rules suppose to be modified

  9. On null tests of time-reversal invariance in scattering and reactions

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1993-01-01

    There have been suggestions in the literature, both recently and in the more distant past, that, in the lowest-order Born approximation, time-reversal (T)-odd experimental observables in certain reactions are required by T-symmetry to vanish. These observables are the final-state spin-correlation coefficient C xy in the reaction e + e - → τ + τ - and the target analysing power A oy in the inclusive process ep → eX with a polarized proton target. These assertions are in direct conflict with a theorem that states that there can be no null-test of T-symmetry in such processes; that is, T-symmetry does not require any single observable to vanish. This talk addresses the resolution of that conflict

  10. Time Reversibility, Correlation Decay and the Steady State Fluctuation Relation for Dissipation

    Directory of Open Access Journals (Sweden)

    Denis J. Evans

    2013-04-01

    Full Text Available Steady state fluctuation relations for nonequilibrium systems are under intense investigation because of their important practical implications in nanotechnology and biology. However the precise conditions under which they hold need clarification. Using the dissipation function, which is related to the entropy production of linear irreversible thermodynamics, we show time reversibility, ergodic consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions for steady state fluctuation relations to hold. Our results are not restricted to a particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these conditions. The dissipation function thus plays a comparable role in nonequilibrium systems to thermodynamic potentials in equilibrium systems.

  11. Common-image gathers in the offset domain from reverse-time migration

    KAUST Repository

    Zhan, Ge

    2014-04-01

    Kirchhoff migration is flexible to output common-image gathers (CIGs) in the offset domain by imaging data with different offsets separately. These CIGs supply important information for velocity model updates and amplitude-variation-with-offset (AVO) analysis. Reverse-time migration (RTM) offers more insights into complex geology than Kirchhoff migration by accurately describing wave propagation using the two-way wave equation. But, it has difficulty to produce offset domain CIGs like Kirchhoff migration. In this paper, we develop a method for obtaining offset domain CIGs from RTM. The method first computes the RTM operator of an offset gather, followed by a dot product of the operator and the offset data to form a common-offset RTM image. The offset domain CIGs are then achieved after separately migrating data with different offsets. We generate offset domain CIGs on both the Marmousi synthetic data and 2D Gulf of Mexico real data using this approach. © 2014.

  12. Ergodic time-reversible chaos for Gibbs' canonical oscillator

    International Nuclear Information System (INIS)

    Hoover, William Graham; Sprott, Julien Clinton; Patra, Puneet Kumar

    2015-01-01

    Nosé's pioneering 1984 work inspired a variety of time-reversible deterministic thermostats. Though several groups have developed successful doubly-thermostated models, single-thermostat models have failed to generate Gibbs' canonical distribution for the one-dimensional harmonic oscillator. A 2001 doubly-thermostated model, claimed to be ergodic, has a singly-thermostated version. Though neither of these models is ergodic this work has suggested a successful route toward singly-thermostated ergodicity. We illustrate both ergodicity and its lack for these models using phase-space cross sections and Lyapunov instability as diagnostic tools. - Highlights: • We develop cross-section and Lyapunov methods for diagnosing ergodicity. • We apply these methods to several thermostatted-oscillator problems. • We demonstrate the nonergodicity of previous work. • We find a novel family of ergodic thermostatted-oscillator problems.

  13. Compound-nuclear tests of time reversal invariance in the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    French, J.B.; Pandey, A.; Smith, J.

    1987-01-01

    The theory for the effects of time-reversal noninvariance (TRNI) in complex systems is reviewed. Applied to the compound-nuclear data for energy-level, width and cross-section fluctuations (the latter for detailed-balance pairs of reactions proceeding through the compound nucleus) this gives bounds on multiparticle TRNI Hamiltonian matrix elements. Using a fluctuation-free form of statistical spectroscopy the results are reduced to bounds on α, the relative magnitude of the TRNI nucleon-nucleon interaction. The level and width analyses for heavy nuclei gave α ≤ 2 x 10 -3 at high (∼99%) statistical confidence; preliminary calculations for detailed balance with 24 Mg(α,p) 27 Al and its inverse gives α ≤ 4 x 10 -3 at the same high confidence, but ≤0.2 x 10 -3 at 80% confidence. Suggestions are made about experiments which should yield sharper bounds. 28 refs., 1 tab

  14. Test of parity and time reversal invariance with low energy polarized neutrons

    International Nuclear Information System (INIS)

    Masaike, Akira

    1996-01-01

    Measurements of helicity asymmetries in slow neutron reactions on nuclei have been performed by transmission and capture γ-ray detection. Large enhancements of parity-violation effects have been observed on p-wave resonances of various medium and heavy nuclei. The weak matrix elements in hadron reactions have been deduced from these experimental results. Neutron spin precession near the p-wave resonance has been measured. In recent years violation of time reversal invariance is being searched for in the neutron reactions in which large enhancements of the parity violation effects have been observed. The measurement of the term σ n ·(k n x I) in a neutron reaction using polarized neutrons and a polarized target is an example of the test of T-violation. Polarizations of the neutron and lanthanum nucleus for these experiments are also presented. (author)

  15. Non invasive transcostal focusing based on the decomposition of the time reversal operator: in vitro validation

    Science.gov (United States)

    Cochard, Étienne; Prada, Claire; Aubry, Jean-François; Fink, Mathias

    2010-03-01

    Thermal ablation induced by high intensity focused ultrasound has produced promising clinical results to treat hepatocarcinoma and other liver tumors. However skin burns have been reported due to the high absorption of ultrasonic energy by the ribs. This study proposes a method to produce an acoustic field focusing on a chosen target while sparing the ribs, using the decomposition of the time-reversal operator (DORT method). The idea is to apply an excitation weight vector to the transducers array which is orthogonal to the subspace of emissions focusing on the ribs. The ratio of the energies absorbed at the focal point and on the ribs has been enhanced up to 100-fold as demonstrated by the measured specific absorption rates.

  16. Photo control of transport properties in a disordered wire: Average conductance, conductance statistics, and time-reversal symmetry

    International Nuclear Information System (INIS)

    Kitagawa, Takuya; Oka, Takashi; Demler, Eugene

    2012-01-01

    In this paper, we study the full conductance statistics of a disordered 1D wire under the application of light. We develop the transfer matrix method for periodically driven systems to analyze the conductance of a large system with small frequency of light, where coherent photon absorptions play an important role to determine not only the average but also the shape of conductance distributions. The average conductance under the application of light results from the competition between dynamic localization and effective dimension increase, and shows non-monotonic behavior as a function of driving amplitude. On the other hand, the shape of conductance distribution displays a crossover phenomena in the intermediate disorder strength; the application of light dramatically changes the distribution from log-normal to normal distributions. Furthermore, we propose that conductance of disordered systems can be controlled by engineering the shape, frequency and amplitude of light. Change of the shape of driving field controls the time-reversals symmetry and the disordered system shows analogous behavior as negative magneto-resistance known in static weak localization. A small change of frequency and amplitude of light leads to a large change of conductance, displaying giant opto-response. Our work advances the perspective to control the mean as well as the full conductance statistics by coherently driving disordered systems. - Highlights: ► We study conductance of disordered systems under the application of light. ► Full conductance distributions are obtained. ► A transfer matrix method is developed for driven systems. ► Conductances are dramatically modified upon the application of light. ► Time-reversal symmetry can also be controlled by light application.

  17. Breakthrough dynamics of s-metolachlor metabolites in drinking water wells: Transport pathways and time to trend reversal

    Science.gov (United States)

    Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; Köppchen, Stephan; Krause, Martina; Hofmann, Diana

    2018-06-01

    We present the results of a two years study on the contamination of the Luxembourg Sandstone aquifer by metolachlor-ESA and metolachlor-OXA, two major transformation products of s-metolachlor. The aim of the study was twofold: (i) assess whether elevated concentrations of both transformation products (up to 1000 ng/l) were due to fast flow breakthough events of short duration or the signs of a contamination of the entire aquifer and (ii) estimate the time to trend reversal once the parent compound was withdrawn from the market. These two questions were addressed by a combined use of groundwater monitoring, laboratory experiments and numerical simulations of the fate of the degradation products in the subsurface. Twelve springs were sampled weekly over an eighteen month period, and the degradation rates of both the parent compound and its transformation products were measured on a representative soil in the laboratory using a radiolabeled precursor. Modelling with the numeric code PEARL simulating pesticide fate in soil coupled to a simple transfer function model for the aquifer compartment, and calibrated from the field and laboratory data, predicts a significant damping by the aquifer of the peaks of concentration of both metolachlor-ESA and -OXA leached from the soil. The time to trend reversal following the ban of s-metolachlor in spring protection zones should be observed before the end of the decade, while the return of contaminant concentrations below the drinking water limit of 100 ng/l however is expected to last up to twelve years. The calculated contribution to total water discharge of the fast-flow component from cropland and short-circuiting the aquifer was small in most springs (median of 1.2%), but sufficient to cause additional peaks of concentration of several hundred nanograms per litre in spring water. These peaks are superimposed on the more steady contamination sustained by the base flow, and should cease immediately once application of the

  18. Multipathing Via Three Parameter Common Image Gathers (CIGs) From Reverse Time Migration

    Science.gov (United States)

    Ostadhassan, M.; Zhang, X.

    2015-12-01

    A noteworthy problem for seismic exploration is effects of multipathing (both wanted or unwanted) caused by subsurface complex structures. We show that reverse time migration (RTM) combined with a unified, systematic three parameter framework that flexibly handles multipathing can be accomplished by adding one more dimension (image time) to the angle domain common image gather (ADCIG) data. RTM is widely used to generate prestack depth migration images. When using the cross-correlation image condition in 2D prestack migration in RTM, the usual practice is to sum over all the migration time steps. Thus all possible wave types and paths automatically contribute to the resulting image, including destructive wave interferences, phase shifts, and other distortions. One reason is that multipath (prismatic wave) contributions are not properly sorted and mapped in the ADCIGs. Also, multipath arrivals usually have different instantaneous attributes (amplitude, phase and frequency), and if not separated, the amplitudes and phases in the final prestack image will not stack coherently across sources. A prismatic path satisfies an image time for it's unique path; Cavalca and Lailly (2005) show that RTM images with multipaths can provide more complete target information in complex geology, as multipaths usually have different incident angles and amplitudes compared to primary reflections. If the image time slices within a cross-correlation common-source migration are saved for each image time, this three-parameter (incident angle, depth, image time) volume can be post-processed to generate separate, or composite, images of any desired subset of the migrated data. Images can by displayed for primary contributions, any combination of primary and multipath contributions (with or without artifacts), or various projections, including the conventional ADCIG (angle vs depth) plane. Examples show that signal from the true structure can be separated from artifacts caused by multiple

  19. Prospects for Searching for Time-Reversal Violation In Pa-229

    Science.gov (United States)

    Singh, Jaideep

    2017-09-01

    Certain pear-shaped nuclei are expected to have enhanced sensitivity to time-reversal and parity-violating interactions originating within the nuclear medium. In particular, Pa-229 is thought to be about 100,000 times more sensitive than Hg-199 which currently sets some of the most stringent limits for these types of interactions. Several challenges would first have to be addressed in order to take advantage of this discovery potential. First, there is not currently a significant source of Pa-229; however, there are plans to harvest Pa-229 from the FRIB beam dump. Second, the spin-5/2 nucleus of Pa-229 limits its coherence time while also making it sensitive to systematic effects related to local field gradients. On the other hand, this also gives Pa-229 an additional source of signal in the form of a magnetic quadrupole moment (MQM) which violates the same symmetries as an EDM but is not observable in spin-1/2 systems. Third, in order to compensate for the small atom numbers and short coherence times, the Pa-229 atoms would have to be probed with exceptionally large electric & magnetic fields that are only possible if Pa-229 is a part of a polar molecule or embedded inside of an optical crystal. I will present an our plans to test some of these concepts using stable Pr-141.

  20. Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

    Directory of Open Access Journals (Sweden)

    N. Dadashzadeh

    2013-09-01

    Full Text Available Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We provide an overview of recent theoretical developments in a numerical modeling of Maxwell's equations to analyze the propagation of short laser pulses in photonic structures. The process of short light pulse propagation through 2D periodic and quasi-periodic photonic structures is simulated based on Finite-Difference Time-Domain calculations of Maxwell’s equations.

  1. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  2. Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media

    KAUST Repository

    Pestana, Reynam C; Ursin, Bjø rn; Stoffa, Paul L

    2012-01-01

    In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |ε- δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media. © 2012 Sinopec Geophysical Research Institute.

  3. Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media

    KAUST Repository

    Pestana, Reynam C

    2012-04-24

    In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |ε- δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media. © 2012 Sinopec Geophysical Research Institute.

  4. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.

    2012-01-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  5. Quantitative evaluation of stone fragments in extracorporeal shock wave lithotripsy using a time reversal operator

    Science.gov (United States)

    Wang, Jen-Chieh; Zhou, Yufeng

    2017-03-01

    Extracorporeal shock wave lithotripsy (ESWL) has been used widely in the noninvasive treatment of kidney calculi. The fine fragments less than 2 mm in size can be discharged by urination, which determines the success of ESWL. Although ultrasonic and fluorescent imaging are used to localize the calculi, it's challenging to monitor the stone comminution progress, especially at the late stage of ESWL when fragments spread out as a cloud. The lack of real-time and quantitative evaluation makes this procedure semi-blind, resulting in either under- or over-treatment after the legal number of pulses required by FDA. The time reversal operator (TRO) method has the ability to detect point-like scatterers, and the number of non-zero eigenvalues of TRO is equal to that of the scatterers. In this study, the validation of TRO method to identify stones was illustrated from both numerical and experimental results for one to two stones with various sizes and locations. Furthermore, the parameters affecting the performance of TRO method has also been investigated. Overall, TRO method is effective in identifying the fragments in a stone cluster in real-time. Further development of a detection system and evaluation of its performance both in vitro and in vivo during ESWL is necessary for application.

  6. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge

    2012-03-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  7. Time-periodic solution of a 2D fourth-order nonlinear parabolic ...

    Indian Academy of Sciences (India)

    appropriate function space for the initial boundary value problem. ... time discretizations which allow much larger time steps than those of a standard implicit– explicit approach. ... set of ω-periodic X-valued measurable functions on R such that.

  8. Time course of reversed cardiac remodeling after pulmonary endarterectomy in patients with chronic pulmonary thromboembolism

    Energy Technology Data Exchange (ETDEWEB)

    Iino, Misako; Dymarkowski, Steven; Chaothawee, Lertlak; Bogaert, Jan [UZ Leuven, Department of Radiology, Leuven (Belgium); Delcroix, Marion [UZ Leuven, Department of Pneumology, Leuven (Belgium)

    2008-04-15

    To evaluate the time course of reversed remodeling after pulmonary endarterectomy (PEA) in patients with chronic thromboembolic pulmonary hypertension(CTPEH), we studied 22 patients (age: 60 {+-} 13 years) with MRI immediately before, 1 month, 3 months, and 6 months after PEA. MRI included assessment of biventricular function, aortic and pulmonary artery(PA) flow, and right ventricular (RV) overload using the ratio of RV-to-biventricular diameter. Except in one patient, who died 2 months post-surgery, clinical improvement occurred early after PEA (NYHA class: 3.3 {+-} 0.6 to 1.5 {+-} 0.8, p < 0.0001) with a decrease of systolic pulmonary artery pressures (79 {+-} 14 to 44 {+-} 14 mmHg, p < 0.0001). At 1 month post PEA, RV end-diastolic volumes decreased (198 {+-} 72 to 137 {+-} 59 ml, p < 0.0001), and the RV ejection fraction (EF) improved (31 {+-} 9 to 47 {+-} 10%, p < 0.0001). No further significant improvement in pulmonary pressures or RV function occurred at 3 months or 6 months. Although no significant change was found in LV volumes or function, aortic flow increased early after surgery. PEA had only a beneficial effect on right PA flow. RV overload decreased early after PEA (ratio RV-to-biventricular diameter: before: 0.67 {+-} 0.04, after: 0.54 {+-} 0.06, p < 0.0001), showing a good correlation with the improvement in RVEF (r = 0.7, P < 0.0001). In conclusion, reversed cardiac remodeling occurs early after PEA, to slow down after 1 month. At 6 months, cardiac remodeling is incomplete as witnessed by low-normal RV function and residually elevated PA pressures. (orig.)

  9. Smith predictor-based multiple periodic disturbance compensation for long dead-time processes

    Science.gov (United States)

    Tan, Fang; Li, Han-Xiong; Shen, Ping

    2018-05-01

    Many disturbance rejection methods have been proposed for processes with dead-time, while these existing methods may not work well under multiple periodic disturbances. In this paper, a multiple periodic disturbance rejection is proposed under the Smith predictor configuration for processes with long dead-time. One feedback loop is added to compensate periodic disturbance while retaining the advantage of the Smith predictor. With information of the disturbance spectrum, the added feedback loop can remove multiple periodic disturbances effectively. The robust stability can be easily maintained through the rigorous analysis. Finally, simulation examples demonstrate the effectiveness and robustness of the proposed method for processes with long dead-time.

  10. 12 CFR 516.10 - How does OTS compute time periods under this part?

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false How does OTS compute time periods under this part? 516.10 Section 516.10 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPLICATION PROCESSING PROCEDURES § 516.10 How does OTS compute time periods under this part? In computing...

  11. 19 CFR 351.524 - Allocation of benefit to a particular time period.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Allocation of benefit to a particular time period. 351.524 Section 351.524 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE... Allocation of benefit to a particular time period. Unless otherwise specified in §§ 351.504-351.523, the...

  12. 17 CFR 260.7a-24 - Words relating to periods of time in the past.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Words relating to periods of time in the past. 260.7a-24 Section 260.7a-24 Commodity and Securities Exchanges SECURITIES AND... Requirements As to Contents § 260.7a-24 Words relating to periods of time in the past. Unless the context...

  13. Imaging Fracking Zones by Microseismic Reverse Time Migration for Downhole Microseismic Monitoring

    Science.gov (United States)

    Lin, Y.; Zhang, H.

    2015-12-01

    Hydraulic fracturing is an engineering tool to create fractures in order to better recover oil and gas from low permeability reservoirs. Because microseismic events are generally associated with fracturing development, microseismic monitoring has been used to evaluate the fracking process. Microseismic monitoring generally relies on locating microseismic events to understand the spatial distribution of fractures. For the multi-stage fracturing treatment, fractures created in former stages are strong scatterers in the medium and can induce strong scattering waves on the waveforms for microseismic events induced during later stages. In this study, we propose to take advantage of microseismic scattering waves to image fracking zones by using seismic reverse time migration method. For downhole microseismic monitoring that involves installing a string of seismic sensors in a borehole near the injection well, the observation geometry is actually similar to the VSP (vertical seismic profile) system. For this reason, we adapt the VSP migration method for the common shot gather to the common event gather. Microseismic reverse-time migration method involves solving wave equation both forward and backward in time for each microseismic event. At current stage, the microseismic RTM is based on 2D acoustic wave equation (Zhang and Sun, 2008), solved by the finite-difference method with PML absorbing boundary condition applied to suppress the reflections of artificial boundaries. Additionally, we use local wavefield decomposition instead of cross-correlation imaging condition to suppress the imaging noise. For testing the method, we create a synthetic dataset for a downhole microseismic monitoring system with multiple fracking stages. It shows that microseismic migration using individual event is able to clearly reveal the fracture zone. The shorter distance between fractures and the microseismic event the clearer the migration image is. By summing migration images for many

  14. A real-time reverse transcriptase polymerase chain reaction for detection and quantification of Vesiculovirus

    Directory of Open Access Journals (Sweden)

    Aline Lavado Tolardo

    2016-06-01

    Full Text Available Vesiculoviruses (VSV are zoonotic viruses that cause vesicular stomatitis disease in cattle, horses and pigs, as well as sporadic human cases of acute febrile illness. Therefore, diagnosis of VSV infections by reliable laboratory techniques is important to allow a proper case management and implementation of strategies for the containment of virus spread. We show here a sensitive and reproducible real-time reverse transcriptase polymerase chain reaction (RT-PCR for detection and quantification of VSV. The assay was evaluated with arthropods and serum samples obtained from horses, cattle and patients with acute febrile disease. The real-time RT-PCR amplified the Piry, Carajas, Alagoas and Indiana Vesiculovirus at a melting temperature 81.02 ± 0.8ºC, and the sensitivity of assay was estimated in 10 RNA copies/mL to the Piry Vesiculovirus. The viral genome has been detected in samples of horses and cattle, but not detected in human sera or arthropods. Thus, this assay allows a preliminary differential diagnosis of VSV infections.

  15. 3D Multi‐source Least‐squares Reverse Time Migration

    KAUST Repository

    Dai, Wei

    2010-10-17

    We present the theory and numerical results for least‐squares reverse time migration (LSRTM) of phase‐encoded supergathers, where each supergather is the superposition of phased‐encoded shots. Three type of encoding functions are used in this study: random time shift, random source polarity and random source location selected from a pre‐designed table. Numerical tests for the 3D SEG/EAGE Overthrust model show that multi‐source LSRTM can suppress migration artifacts in the migration image and remove most of the crosstalk noise from multi‐source data. Empirical results suggest that multi‐source LSRTM can provide a noticeable increase in computational efficiency compared to standard RTM, when the CSGs in a supergather are modeled and migrated together with a finite‐difference simulator. If the phase‐encoding functions are dynamically changed after each iteration of LSRTM, the best images are obtained. The potential drawback is that the final results are very sensitive to the accuracy of the starting model.

  16. Time Reversal Migration for Passive Sources Using a Maximum Variance Imaging Condition

    KAUST Repository

    Wang, H.; Alkhalifah, Tariq Ali

    2017-01-01

    The conventional time-reversal imaging approach for micro-seismic or passive source location is based on focusing the back-propagated wavefields from each recorded trace in a source image. It suffers from strong background noise and limited acquisition aperture, which may create unexpected artifacts and cause error in the source location. To overcome such a problem, we propose a new imaging condition for microseismic imaging, which is based on comparing the amplitude variance in certain windows, and use it to suppress the artifacts as well as find the right location for passive sources. Instead of simply searching for the maximum energy point in the back-propagated wavefield, we calculate the amplitude variances over a window moving in both space and time axis to create a highly resolved passive event image. The variance operation has negligible cost compared with the forward/backward modeling operations, which reveals that the maximum variance imaging condition is efficient and effective. We test our approach numerically on a simple three-layer model and on a piece of the Marmousi model as well, both of which have shown reasonably good results.

  17. Imaging of first-order surface-related multiples by reverse-time migration

    Science.gov (United States)

    Liu, Xuejian; Liu, Yike; Hu, Hao; Li, Peng; Khan, Majid

    2017-02-01

    Surface-related multiples have been utilized in the reverse-time migration (RTM) procedures, and additional illumination for subsurface can be provided. Meanwhile, many cross-talks are generated from undesired interactions between forward- and backward-propagated seismic waves. In this paper, subsequent to analysing and categorizing these cross-talks, we propose RTM of first-order multiples to avoid most undesired interactions in RTM of all-order multiples, where only primaries are forward-propagated and crosscorrelated with the backward-propagated first-order multiples. With primaries and multiples separated during regular seismic data processing as the input data, first-order multiples can be obtained by a two-step scheme: (1) the dual-prediction of higher-order multiples; and (2) the adaptive subtraction of predicted higher-order multiples from all-order multiples within local offset-time windows. In numerical experiments, two synthetic and a marine field data sets are used, where different cross-talks generated by RTM of all-order multiples can be identified and the proposed RTM of first-order multiples can provide a very interpretable image with a few cross-talks.

  18. Uncertainty Quantification of the Reverse Taylor Impact Test and Localized Asynchronous Space-Time Algorithm

    Science.gov (United States)

    Subber, Waad; Salvadori, Alberto; Lee, Sangmin; Matous, Karel

    2017-06-01

    The reverse Taylor impact is a common experiment to investigate the dynamical response of materials at high strain rates. To better understand the physical phenomena and to provide a platform for code validation and Uncertainty Quantification (UQ), a co-designed simulation and experimental paradigm is investigated. For validation under uncertainty, quantities of interest (QOIs) within subregions of the computational domain are introduced. For such simulations where regions of interest can be identified, the computational cost for UQ can be reduced by confining the random variability within these regions of interest. This observation inspired us to develop an asynchronous space and time computational algorithm with localized UQ. In the region of interest, the high resolution space and time discretization schemes are used for a stochastic model. Apart from the region of interest, low spatial and temporal resolutions are allowed for a stochastic model with low dimensional representation of uncertainty. The model is exercised on the linear elastodynamics and shows a potential in reducing the UQ computational cost. Although, we consider wave prorogation in solid, the proposed framework is general and can be used for fluid flow problems as well. Department of Energy, National Nuclear Security Administration (PSAAP-II).

  19. Echodentography based on nonlinear time reversal tomography: Ultrasonic nonlinear signature identification

    Science.gov (United States)

    Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek

    2012-05-01

    This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.

  20. Time Reversal Migration for Passive Sources Using a Maximum Variance Imaging Condition

    KAUST Repository

    Wang, H.

    2017-05-26

    The conventional time-reversal imaging approach for micro-seismic or passive source location is based on focusing the back-propagated wavefields from each recorded trace in a source image. It suffers from strong background noise and limited acquisition aperture, which may create unexpected artifacts and cause error in the source location. To overcome such a problem, we propose a new imaging condition for microseismic imaging, which is based on comparing the amplitude variance in certain windows, and use it to suppress the artifacts as well as find the right location for passive sources. Instead of simply searching for the maximum energy point in the back-propagated wavefield, we calculate the amplitude variances over a window moving in both space and time axis to create a highly resolved passive event image. The variance operation has negligible cost compared with the forward/backward modeling operations, which reveals that the maximum variance imaging condition is efficient and effective. We test our approach numerically on a simple three-layer model and on a piece of the Marmousi model as well, both of which have shown reasonably good results.

  1. Microseismic imaging using Geometric-mean Reverse-Time Migration in Hydraulic Fracturing Monitoring

    Science.gov (United States)

    Yin, J.; Ng, R.; Nakata, N.

    2017-12-01

    Unconventional oil and gas exploration techniques such as hydraulic fracturing are associated with microseismic events related to the generation and development of fractures. For example, hydraulic fracturing, which is popular in Southern Oklahoma, produces earthquakes that are greater than magnitude 2.0. Finding the accurate locations, and mechanisms, of these events provides important information of local stress conditions, fracture distribution, hazard assessment, and economical impact. The accurate source location is also important to separate fracking-induced and wastewater disposal induced seismicity. Here, we implement a wavefield-based imaging method called Geometric-mean Reverse-Time Migration (GmRTM), which takes the advantage of accurate microseismic location based on wavefield back projection. We apply GmRTM to microseismic data collected during hydraulic fracturing for imaging microseismic source locations, and potentially, fractures. Assuming an accurate velocity model, GmRTM can improve the spatial resolution of source locations compared to HypoDD or P/S travel-time based methods. We will discuss the results from GmRTM and HypoDD using this field dataset and synthetic data.

  2. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...

  3. Detecting a subsurface cylinder by a Time Reversal MUSIC like method

    Science.gov (United States)

    Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni

    2014-05-01

    In this contribution the problem of imaging a buried homogeneous circular cylinder is dealt with for a two-dimensional scalar geometry. Though the addressed geometry is extremely simple as compared to real world scenarios, it can be considered of interest for a classical GPR civil engineering applicative context: that is the subsurface prospecting of urban area in order to detect and locate buried utilities. A large body of methods for subsurface imaging have been presented in literature [1], ranging from migration algorithms to non-linear inverse scattering approaches. More recently, also spectral estimation methods, which benefit from sub-array data arrangement, have been proposed and compared in [2].Here a Time Reversal MUSIC (TRM) like method is employed. TRM has been initially conceived to detect point-like scatterers and then generalized to the case of extended scatterers [3]. In the latter case, no a priori information about the scatterers is exploited. However, utilities often can be schematized as circular cylinders. Here, we develop a TRM variant which use this information to properly tailor the steering vector while implementing TRM. Accordingly, instead of a spatial map [3], the imaging procedure returns the scatterer's parameters such as its center position, radius and dielectric permittivity. The study is developed by numerical simulations. First the free-space case is considered in order to more easily introduce the idea and the problem mathematical structure. Then the analysis is extended to the half-space case. In both situations a FDTD forward solver is used to generate the synthetic data. As usual in TRM, a multi-view/multi-static single-frequency configuration is considered and emphasis is put on the role played by the number of available sensors. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] A. Randazzo and R

  4. Scattering analysis of periodic structures using finite-difference time-domain

    CERN Document Server

    ElMahgoub, Khaled; Elsherbeni, Atef Z

    2012-01-01

    Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor

  5. The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks

    International Nuclear Information System (INIS)

    Huang Zhenkun; Wang Xinghua; Gao Feng

    2006-01-01

    In this Letter, we discuss discrete-time analogue of a continuous-time cellular neural network. Sufficient conditions are obtained for the existence of a unique almost periodic sequence solution which is globally attractive. Our results demonstrate dynamics of the formulated discrete-time analogue as mathematical models for the continuous-time cellular neural network in almost periodic case. Finally, a computer simulation illustrates the suitability of our discrete-time analogue as numerical algorithms in simulating the continuous-time cellular neural network conveniently

  6. Deformation effect and five-fold correlation time reversal test in neutron resonances using aligned 165Ho

    International Nuclear Information System (INIS)

    Huffman, P.R.; Roberson, N.R.; Gould, C.R.; Haase, D.G.

    1993-01-01

    In 1988, Bunakov proposed a test of parity (P) even time reversal (T) violation in the neighborhood of two interfering p-wave resonances of the same spin. A similar enhancement exists if a d-wave and s-wave resonance interfere. Until now, however, no suitable resonances have been located in nuclei which can be aligned, and the only tests of time reversal violation in neutron transmission have been carried out with MeV-energy neutrons. The authors estimate the deformation effect cross sections for neutron resonances in aligned 165 Ho, and estimate the sensitivity of a five-fold correlation time reversal test carried out on a resonance that exhibits a deformation effect

  7. Period, epoch, and prediction errors of ephemerides from continuous sets of timing measurements

    Science.gov (United States)

    Deeg, H. J.

    2015-06-01

    Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of these time series is derived, σP = σT (12 / (N3-N))1 / 2, where σP is the period error, σT the timing error of a single measurement, and N the number of measurements. Compared to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, usual linear ephemeris were epoch errors are quoted for the first time measurement, are prone to an overestimation of the error of that prediction. This may be avoided by a correction for the duration of the time series. An alternative is the derivation of ephemerides whose reference epoch and epoch error are given for the centre of the time series. For long continuous or near-continuous time series whose acquisition is completed, such central epochs should be the preferred way for the quotation of linear ephemerides. While this work was motivated from the analysis of eclipse timing measures in space-based light curves, it should be applicable to any other problem with an uninterrupted sequence of discrete timings for which the determination of a zero point, of a constant period and of the associated errors is needed.

  8. Conductance fluctuations in disordered superconductors with broken time-reversal symmetry near two dimensions

    International Nuclear Information System (INIS)

    Ryu, S.; Furusaki, A.; Ludwig, A.W.W.; Mudry, C.

    2007-01-01

    We extend the analysis of the conductance fluctuations in disordered metals by Altshuler, Kravtsov, and Lerner (AKL) to disordered superconductors with broken time-reversal symmetry in d=(2+ε) dimensions (symmetry classes C and D of Altland and Zirnbauer). Using a perturbative renormalization group analysis of the corresponding non-linear sigma model (NLσM) we compute the anomalous scaling dimensions of the dominant scalar operators with 2s gradients to one-loop order. We show that, in analogy with the result of AKL for ordinary, metallic systems (Wigner-Dyson classes), an infinite number of high-gradient operators would become relevant (in the renormalization group sense) near two dimensions if contributions beyond one-loop order are ignored. We explore the possibility to compare, in symmetry class D, the ε=(2-d) expansion in d<2 with exact results in one dimension. The method we use to perform the one-loop renormalization analysis is valid for general symmetric spaces of Kaehler type, and suggests that this is a generic property of the perturbative treatment of NLσMs defined on Riemannian symmetric target spaces

  9. Increasing The Electric Field For An Improved Search For Time-Reversal Violation Using Radium-225

    Science.gov (United States)

    Powers, Adam

    2017-09-01

    Radium-225 atoms, because of their unusual pear-shaped nuclei, have an enhanced sensitivity to the violation of time reversal symmetry. A breakdown of this fundamental symmetry could help explain the apparent scarcity of antimatter in the Universe. Our goal is to improve the statistical sensitivity of an ongoing experiment that precisely measures the EDM of Radium-225. This can be done by increasing the electric field acting on the Radium atoms. We do this by increasing the voltage that can be reliably applied between two electrodes, and narrowing the gap between them. We use a varying high voltage system to condition the electrodes using incremental voltage ramp tests to achieve higher voltage potential differences. Using an adjustable gap mount to change the distance between the electrodes, specific metals for their composition, and a clean room procedure to keep particulates out of the system, we produce a higher and more stable electric field. Progress is marked by measurements of the leakage current between the electrodes during our incremental voltage ramp tests or emulated tests of the actual experiment, with low and constant current showing stability of the field. This project is supported by Michigan State University, and the US DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.

  10. GPU-accelerated element-free reverse-time migration with Gauss points partition

    Science.gov (United States)

    Zhou, Zhen; Jia, Xiaofeng; Qiang, Xiaodong

    2018-06-01

    An element-free method (EFM) has been demonstrated successfully in elasticity, heat conduction and fatigue crack growth problems. We present the theory of EFM and its numerical applications in seismic modelling and reverse time migration (RTM). Compared with the finite difference method and the finite element method, the EFM has unique advantages: (1) independence of grids in computation and (2) lower expense and more flexibility (because only the information of the nodes and the boundary of the concerned area is required). However, in EFM, due to improper computation and storage of some large sparse matrices, such as the mass matrix and the stiffness matrix, the method is difficult to apply to seismic modelling and RTM for a large velocity model. To solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition and utilise the graphics processing unit to improve the computational efficiency. We employ the compressed sparse row format to compress the intermediate large sparse matrices and attempt to simplify the operations by solving the linear equations with CULA solver. To improve the computation efficiency further, we introduce the concept of the lumped mass matrix. Numerical experiments indicate that the proposed method is accurate and more efficient than the regular EFM.

  11. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-08-20

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the en- coded shots have unique non-overlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Since the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is compara- ble to conventional RTM for both the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM.

  12. Superconductivity in 2+1 dimensions without parity or time-reversal violation

    International Nuclear Information System (INIS)

    Dorey, N.; Mavromatos, N.E.

    1990-01-01

    A model of dynamical holes in a planar quantum antiferromagnet is analysed in the limit of large spin and small doping concentration. The long-wavelength limit of this system is found to be a relativistic QFT of multiflavour Dirac fermions with both four-fermion and statistical chiral gauge interactions. The Schwinger-Dyson equation for the fermion self-energy is solved in the limit of many flavours and the theory is found to possess a phase in which the global vector symmetry of the effective action is realised in the Kosterlitz-Thouless mode. The theory exhibits superconductivity without parity or time-reversal violation in this phase and the charge quantum assumes the phenomenologically relevant value of 2e. The mechanism is conjectured to be 'holepair' condensation due primarily to the statistical gauge interaction. Although there is a formal similarity with BCS theory the physical origin of the attraction between holes is quite different. The model may provide a prototype for further studies in realistic microscopic systems that attempt to simulate planar high temperature superconducting oxides. (orig.)

  13. Reversal in the time order of interactive events: the collision of inclined rods

    International Nuclear Information System (INIS)

    Iyer, Chandru; Prabhu, G M

    2006-01-01

    In the rod and hole paradox as described by Rindler (1961 Am. J. Phys. 29 365-6), a rigid rod moves at high speed over a table towards a hole of the same size. Observations from the inertial frames of the rod and slot are widely different. Rindler explains these differences by the concept of differing perceptions in rigidity. Groen and Johannesen (1993 Eur. J. Phys. 14 97-100) confirmed this aspect by computer simulation where the shapes of the rod are different as observed from the co-moving frames of the rod and slot. Lintel and Gruber (2005 Eur. J. Phys. 26 19-23) presented an approach based on retardation due to speed of stress propagation. In this paper, we consider the situation when two parallel rods collide while approaching each other along a line at an inclination with their axis. The collisions of the top and bottom ends are shown to be reversed in time order as seen from the two co-moving frames. This result is explained by the concept of 'extended present' derived from the principle of relativity of simultaneity

  14. Laser ultrasound and simulated time reversal on bulk waves for non destructive control

    International Nuclear Information System (INIS)

    Diot, G; Walaszek, H; Kouadri-David, A; Guégan, S; Flifla, J

    2014-01-01

    Laser welding of aluminium generally creates embedded welding defects, such as porosities or cracks. Non Destructive Inspection (NDI) after processing may ensure an acceptable weld quality by defect detection. Nowadays, NDI techniques used to control the inside of a weld are mainly limited to X-Rays or ultrasonics. The current paper describes the use of a Laser Ultrasound (LU) technique to inspect porosities in 2 and 4-mm thick sheet lap welds. First experimentations resulted in the detection of 0.5-mm drilled holes in bulk aluminium sheets. The measurement of the depth of these defects is demonstrated too. Further experimentations shows the applicability of the LU technique to detect porosities in aluminium laser welds. However, as the interpretation of raw measures is limiting the detection capacity of this technique, we developed a signal processing using Time-Reversal capabilities to enhance detection capacities. Furthermore, the signal processing output is a geometrical image of the material's inner state, increasing the ease of interpretation. It is based on a mass-spring simulation which enables the back-propagation of the acquired ultrasound signal. The spring-mass simulation allows the natural generation of all the different sound waves and thus enables the back-propagation of a raw signal without any need of filtering or wave identification and extraction. Therefore the signal processing uses the information contained in the compression wave as well as in the shear wave

  15. Detecting closing delaminations in laminated composite plates using nonlinear structural intensity and time reversal mirrors

    International Nuclear Information System (INIS)

    Lamberti, Alfredo; Semperlotti, Fabio

    2013-01-01

    Closing delaminations in composite laminated structures exhibit a nonlinear dynamic response when excited by high frequency elastic waves. The contact acoustic nonlinear effects taking place at the damage interface act as a mechanism of energy redistribution from the driving frequency to the nonlinear harmonic frequencies. In this paper, we extend the concept of nonlinear structural intensity (NSI) to the analysis of closing delaminations in composite laminated plates. NSI is calculated using a method based on a combination of finite element and finite difference techniques, which is suitable for processing both numerical and experimental data. NSI is proven to be an effective metric to identify the presence and location of closing delaminations. The highly directional nature of orthotropic composites results in vibrational energy propagating in a different direction from that of the initial elastic wave. This aspect reduces the ability to effectively interrogate the damage and, therefore, the sensitivity to the damage. The time reversal mirror technique is explored as a possible approach to overcome the effect of the material directionality and increase the ability to interrogate the damage. Numerical simulations show that this technique is able to overcome the material directionality and to drastically enhance the ability to interrogate the damage. (paper)

  16. Q-Least Squares Reverse Time Migration with Viscoacoustic Deblurring Filters

    KAUST Repository

    Chen, Yuqing; Dutta, Gaurav; Dai, Wei; Schuster, Gerard T.

    2017-01-01

    Viscoacoustic least-squares reverse time migration (Q-LSRTM) linearly inverts for the subsurface reflectivity model from lossy data. Compared to the conventional migration methods, it can compensate for the amplitude loss in the migrated images because of the strong subsurface attenuation and can produce reflectors that are accurately positioned in depth. However, the adjoint Q propagators used for backward propagating the residual data are also attenuative. Thus, the inverted images from Q-LSRTM are often observed to have lower resolution when compared to the benchmark acoustic LSRTM images from acoustic data. To increase the resolution and accelerate the convergence of Q-LSRTM, we propose using viscoacoustic deblurring filters as a preconditioner for Q-LSRTM. These filters can be estimated by matching a simulated migration image to its reference reflectivity model. Numerical tests on synthetic and field data demonstrate that Q-LSRTM combined with viscoacoustic deblurring filters can produce images with higher resolution and more balanced amplitudes than images from acoustic RTM, acoustic LSRTM and Q-LSRTM when there is strong attenuation in the background medium. The proposed preconditioning method is also shown to improve the convergence rate of Q-LSRTM by more than 30 percent in some cases and significantly compensate for the lossy artifacts in RTM images.

  17. Q-Least Squares Reverse Time Migration with Viscoacoustic Deblurring Filters

    KAUST Repository

    Chen, Yuqing

    2017-08-02

    Viscoacoustic least-squares reverse time migration (Q-LSRTM) linearly inverts for the subsurface reflectivity model from lossy data. Compared to the conventional migration methods, it can compensate for the amplitude loss in the migrated images because of the strong subsurface attenuation and can produce reflectors that are accurately positioned in depth. However, the adjoint Q propagators used for backward propagating the residual data are also attenuative. Thus, the inverted images from Q-LSRTM are often observed to have lower resolution when compared to the benchmark acoustic LSRTM images from acoustic data. To increase the resolution and accelerate the convergence of Q-LSRTM, we propose using viscoacoustic deblurring filters as a preconditioner for Q-LSRTM. These filters can be estimated by matching a simulated migration image to its reference reflectivity model. Numerical tests on synthetic and field data demonstrate that Q-LSRTM combined with viscoacoustic deblurring filters can produce images with higher resolution and more balanced amplitudes than images from acoustic RTM, acoustic LSRTM and Q-LSRTM when there is strong attenuation in the background medium. The proposed preconditioning method is also shown to improve the convergence rate of Q-LSRTM by more than 30 percent in some cases and significantly compensate for the lossy artifacts in RTM images.

  18. Time Reversal UWB Communication System: A Novel Modulation Scheme with Experimental Validation

    Directory of Open Access Journals (Sweden)

    Khaleghi A

    2010-01-01

    Full Text Available A new modulation scheme is proposed for a time reversal (TR ultra wide-band (UWB communication system. The new modulation scheme uses the binary pulse amplitude modulation (BPAM and adds a new level of modulation to increase the data rate of a TR UWB communication system. Multiple data bits can be transmitted simultaneously with a cost of little added interference. Bit error rate (BER performance and the maximum achievable data rate of the new modulation scheme are theoretically analyzed. Two separate measurement campaigns are carried out to analyze the proposed modulation scheme. In the first campaign, the frequency responses of a typical indoor channel are measured and the performance is studied by the simulations using the measured frequency responses. Theoretical and the simulative performances are in strong agreement with each other. Furthermore, the BER performance of the proposed modulation scheme is compared with the performance of existing modulation schemes. It is shown that the proposed modulation scheme outperforms QAM and PAM for in an AWGN channel. In the second campaign, an experimental validation of the proposed modulation scheme is done. It is shown that the performances with the two measurement campaigns are in good agreement.

  19. Improving imaging quality using least-squares reverse time migration: application to data from Bohai basin

    KAUST Repository

    Zhang, Hao; Liu, Qiancheng; Wu, Jizhong

    2017-01-01

    Least-squares reverse time migration (LSRTM) is a seismic imaging technique based on linear inversion, which usually aims to improve the quality of seismic image through removing the acquisition footprint, suppressing migration artifacts, and enhancing resolution. LSRTM has been shown to produce migration images with better quality than those computed by conventional migration. In this paper, our derivation of LSRTM approximates the near-incident reflection coefficient with the normal-incident reflection coefficient, which shows that the reflectivity term defined is related to the normal-incident reflection coefficient and the background velocity. With reflected data, LSRTM is mainly sensitive to impedance perturbations. According to an approximate relationship between them, we reformulate the perturbation related system into a reflection-coefficient related one. Then, we seek the inverted image through linearized iteration. In the proposed algorithm, we only need the migration velocity for LSRTM considering that the density changes gently when compared with migration velocity. To validate our algorithms, we first apply it to a synthetic case and then a field data set. Both applications illustrate that our imaging results are of good quality.

  20. Tunneling magnetoresistance in junctions composed of ferromagnets and time-reversal invariant topological superconductors

    International Nuclear Information System (INIS)

    Yan, Zhongbo; Wan, Shaolong

    2016-01-01

    Tunneling magnetoresistance between two ferrromagnets is an issue of fundamental importance in spintronics. In this work, we show that tunneling magnetoresistance can also emerge in junctions composed of ferromagnets and time-reversal invariant topological superconductors without spin-rotation symmetry. Here the physical origin is that when the spin-polarization direction of an injected electron from the ferromagnet lies in the same plane of the spin-polarization direction of Majorana zero modes, the electron will undergo a perfect spin-equal Andreev reflection, while injected electrons with other spin-polarization directions will be partially Andreev reflected and partially normal reflected, which consequently has a lower conductance, and therefore, the magnetoresistance effect emerges. Compared to conventional magnetic tunnel junctions, an unprecedented advantage of the junctions studied here is that arbitrary high tunneling magnetoresistance can be obtained even when the magnetization of the ferromagnets are weak and the insulating tunneling barriers are featureless. Our findings provide a new fascinating mechanism to obtain high tunneling magnetoresistance. (paper)

  1. Performance analysis of passive time reversal communication technique for multipath interference in shallow sea acoustic channel

    Science.gov (United States)

    Kida, Yukihiro; Shimura, Takuya; Deguchi, Mitsuyasu; Watanabe, Yoshitaka; Ochi, Hiroshi; Meguro, Koji

    2017-07-01

    In this study, the performance of passive time reversal (PTR) communication techniques in multipath rich underwater acoustic environments is investigated. It is recognized empirically and qualitatively that a large number of multipath arrivals could generally raise the demodulation result of PTR. However, the relationship between multipath and the demodulation result is hardly evaluated quantitatively. In this study, the efficiency of the PTR acoustic communication techniques for multipath interference cancelation was investigated quantitatively by applying a PTR-DFE (decision feed-back filter) scheme to a synthetic dataset of a horizontal underwater acoustic channel. Mainly, in this study, we focused on the relationship between the signal-to-interference ratio (SIR) of datasets and the output signal-to-noise ratio (OSNR) of demodulation results by a parametric study approach. As a result, a proportional relation between SIR and OSNR is confirmed in low-SNR datasets. It was also found that PTR has a performance limitation, that is OSNR converges to a typical value depending on the number of receivers. In conclusion, results indicate that PTR could utilize the multipath efficiently and also withstand the negative effects of multipath interference at a given limitation.

  2. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    International Nuclear Information System (INIS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V

    2013-01-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy. (letter)

  3. Time reversal optical tomography locates fluorescent targets in a turbid medium

    Science.gov (United States)

    Wu, Binlin; Cai, W.; Gayen, S. K.

    2013-03-01

    A fluorescence optical tomography approach that extends time reversal optical tomography (TROT) to locate fluorescent targets embedded in a turbid medium is introduced. It uses a multi-source illumination and multi-detector signal acquisition scheme, along with TR matrix formalism, and multiple signal classification (MUSIC) to construct pseudo-image of the targets. The samples consisted of a single or two small tubes filled with water solution of Indocyanine Green (ICG) dye as targets embedded in a 250 mm × 250 mm × 60 mm rectangular cell filled with Intralipid-20% suspension as the scattering medium. The ICG concentration was 1μM, and the Intralipid-20% concentration was adjusted to provide ~ 1-mm transport length for both excitation wavelength of 790 nm and fluorescence wavelength around 825 nm. The data matrix was constructed using the diffusely transmitted fluorescence signals for all scan positions, and the TR matrix was constructed by multiplying data matrix with its transpose. A pseudo spectrum was calculated using the signal subspace of the TR matrix. Tomographic images were generated using the pseudo spectrum. The peaks in the pseudo images provided locations of the target(s) with sub-millimeter accuracy. Concurrent transmission TROT measurements corroborated fluorescence-TROT findings. The results demonstrate that TROT is a fast approach that can be used to obtain accurate three-dimensional position information of fluorescence targets embedded deep inside a highly scattering medium, such as, a contrast-enhanced tumor in a human breast.

  4. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses

    Science.gov (United States)

    Liu, Yan; Shen, Yuecheng; Ruan, Haowen; Brodie, Frank L.; Wong, Terence T. W.; Yang, Changhuei; Wang, Lihong V.

    2018-01-01

    Normal development of the visual system in infants relies on clear images being projected onto the retina, which can be disrupted by lens opacity caused by congenital cataract. This disruption, if uncorrected in early life, results in amblyopia (permanently decreased vision even after removal of the cataract). Doctors are able to prevent amblyopia by removing the cataract during the first several weeks of life, but this surgery risks a host of complications, which can be equally visually disabling. Here, we investigated the feasibility of focusing light noninvasively through highly scattering cataractous lenses to stimulate the retina, thereby preventing amblyopia. This approach would allow the cataractous lens removal surgery to be delayed and hence greatly reduce the risk of complications from early surgery. Employing a wavefront shaping technique named time-reversed ultrasonically encoded optical focusing in reflection mode, we focused 532-nm light through a highly scattering ex vivo adult human cataractous lens. This work demonstrates a potential clinical application of wavefront shaping techniques.

  5. Locating the source of diffusion in complex networks by time-reversal backward spreading

    Science.gov (United States)

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H. Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  6. Time-reversed ultrasonically encoded (TRUE) focusing for deep-tissue optogenetic modulation

    Science.gov (United States)

    Brake, Joshua; Ruan, Haowen; Robinson, J. Elliott; Liu, Yan; Gradinaru, Viviana; Yang, Changhuei

    2018-02-01

    The problem of optical scattering was long thought to fundamentally limit the depth at which light could be focused through turbid media such as fog or biological tissue. However, recent work in the field of wavefront shaping has demonstrated that by properly shaping the input light field, light can be noninvasively focused to desired locations deep inside scattering media. This has led to the development of several new techniques which have the potential to enhance the capabilities of existing optical tools in biomedicine. Unfortunately, extending these methods to living tissue has a number of challenges related to the requirements for noninvasive guidestar operation, speed, and focusing fidelity. Of existing wavefront shaping methods, time-reversed ultrasonically encoded (TRUE) focusing is well suited for applications in living tissue since it uses ultrasound as a guidestar which enables noninvasive operation and provides compatibility with optical phase conjugation for high-speed operation. In this paper, we will discuss the results of our recent work to apply TRUE focusing for optogenetic modulation, which enables enhanced optogenetic stimulation deep in tissue with a 4-fold spatial resolution improvement in 800-micron thick acute brain slices compared to conventional focusing, and summarize future directions to further extend the impact of wavefront shaping technologies in biomedicine.

  7. Spectroscopic Visualization of Inversion and Time-Reversal Symmetry Breaking Weyl Semi-metals

    Science.gov (United States)

    Beidenkopf, Haim

    A defining property of a topological material is the existence of surface bands that cannot be realized but as the termination of a topological bulk. In a Weyl semi-metal these surface states are in the form of Fermi-arcs. Their open-contour Fermi-surface curves between pairs of surface projections of bulk Weyl cones. Such Dirac-like bulk bands, as opposed to the gapped bulk of topological insulators, land a unique opportunity to examine the deep notion of bulk to surface correspondence. We study the intricate properties both of inversion symmetry broken and of time-reversal symmetry broken Weyl semimetals using scanning tunneling spectroscopy. We visualize the Fermi arc states on the surface of the non-centrosymmetric Weyl semi-metal TaAs. Using the distinct structure and spatial distribution of the wavefunctions associated with the different topological and trivial bands we detect the scattering processes that involve Fermi arcs. Each of these imaged scattering processes entails information on the unique nature of Fermi arcs and their correspondence to the topological bulk. We further visualize the magnetic response of the candidate magnetic Weyl semimetal GdPtBi in which the magnetic order parameter is coupled to the topological classification. European Research Council (ERC-StG no. 678702, TOPO-NW\\x9D), the Israel Science Foundation (ISF), and the United States-Israel Binational Science Foundation (BSF).

  8. Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework

    International Nuclear Information System (INIS)

    Miller, Harry J D; Anders, Janet

    2017-01-01

    A central topic in the emerging field of quantum thermodynamics is the definition of thermodynamic work in the quantum regime. One widely used solution is to define work for a closed system undergoing non-equilibrium dynamics according to the two-point energy measurement scheme. However, due to the invasive nature of measurement the two-point quantum work probability distribution cannot describe the statistics of energy change from the perspective of the system alone. We here introduce the quantum histories framework as a method to characterise the thermodynamic properties of the unmeasured , closed dynamics. Constructing continuous power operator trajectories allows us to derive an alternative quantum work distribution for closed quantum dynamics that fulfils energy conservation and is time-reversal symmetric. This opens the possibility to compare the measured work with the unmeasured work, contrasting with the classical situation where measurement does not affect the work statistics. We find that the work distribution of the unmeasured dynamics leads to deviations from the classical Jarzynski equality and can have negative values highlighting distinctly non-classical features of quantum work. (fast track communication)

  9. Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry

    Science.gov (United States)

    Ghatak, Ananya; Das, Tanmoy

    2018-01-01

    Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.

  10. Least-squares reverse time migration with local Radon-based preconditioning

    KAUST Repository

    Dutta, Gaurav

    2017-03-08

    Least-squares migration (LSM) can produce images with better balanced amplitudes and fewer artifacts than standard migration. The conventional objective function used for LSM minimizes the L2-norm of the data residual between the predicted and the observed data. However, for field-data applications in which the recorded data are noisy and undersampled, the conventional formulation of LSM fails to provide the desired uplift in the quality of the inverted image. We have developed a leastsquares reverse time migration (LSRTM) method using local Radon-based preconditioning to overcome the low signal-tonoise ratio (S/N) problem of noisy or severely undersampled data. A high-resolution local Radon transform of the reflectivity is used, and sparseness constraints are imposed on the inverted reflectivity in the local Radon domain. The sparseness constraint is that the inverted reflectivity is sparse in the Radon domain and each location of the subsurface is represented by a limited number of geologic dips. The forward and the inverse mapping of the reflectivity to the local Radon domain and vice versa is done through 3D Fourier-based discrete Radon transform operators. The weights for the preconditioning are chosen to be varying locally based on the relative amplitudes of the local dips or assigned using quantile measures. Numerical tests on synthetic and field data validate the effectiveness of our approach in producing images with good S/N and fewer aliasing artifacts when compared with standard RTM or standard LSRTM.

  11. Odd-parity magnetoresistance in pyrochlore iridate thin films with broken time-reversal symmetry

    Science.gov (United States)

    Fujita, T. C.; Kozuka, Y.; Uchida, M.; Tsukazaki, A.; Arima, T.; Kawasaki, M.

    2015-01-01

    A new class of materials termed topological insulators have been intensively investigated due to their unique Dirac surface state carrying dissipationless edge spin currents. Recently, it has been theoretically proposed that the three dimensional analogue of this type of band structure, the Weyl Semimetal phase, is materialized in pyrochlore oxides with strong spin-orbit coupling, accompanied by all-in-all-out spin ordering. Here, we report on the fabrication and magnetotransport of Eu2Ir2O7 single crystalline thin films. We reveal that one of the two degenerate all-in-all-out domain structures, which are connected by time-reversal operation, can be selectively formed by the polarity of the cooling magnetic field. Once formed, the domain is robust against an oppositely polarised magnetic field, as evidenced by an unusual odd field dependent term in the magnetoresistance and an anomalous term in the Hall resistance. Our findings pave the way for exploring the predicted novel quantum transport phenomenon at the surfaces/interfaces or magnetic domain walls of pyrochlore iridates. PMID:25959576

  12. Improving imaging quality using least-squares reverse time migration: application to data from Bohai basin

    KAUST Repository

    Zhang, Hao

    2017-07-07

    Least-squares reverse time migration (LSRTM) is a seismic imaging technique based on linear inversion, which usually aims to improve the quality of seismic image through removing the acquisition footprint, suppressing migration artifacts, and enhancing resolution. LSRTM has been shown to produce migration images with better quality than those computed by conventional migration. In this paper, our derivation of LSRTM approximates the near-incident reflection coefficient with the normal-incident reflection coefficient, which shows that the reflectivity term defined is related to the normal-incident reflection coefficient and the background velocity. With reflected data, LSRTM is mainly sensitive to impedance perturbations. According to an approximate relationship between them, we reformulate the perturbation related system into a reflection-coefficient related one. Then, we seek the inverted image through linearized iteration. In the proposed algorithm, we only need the migration velocity for LSRTM considering that the density changes gently when compared with migration velocity. To validate our algorithms, we first apply it to a synthetic case and then a field data set. Both applications illustrate that our imaging results are of good quality.

  13. Two applications of time reversal mirrors: Seismic radio and seismic radar

    KAUST Repository

    Hanafy, Sherif M.

    2011-07-08

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibrationGreen’s functions in the area of interest. This reference Green’s function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismicradar can detect the moving coordinates ( x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

  14. Least-squares reverse time migration of marine data with frequency-selection encoding

    KAUST Repository

    Dai, Wei

    2013-06-24

    The phase-encoding technique can sometimes increase the efficiency of the least-squares reverse time migration (LSRTM) by more than one order of magnitude. However, traditional random encoding functions require all the encoded shots to share the same receiver locations, thus limiting the usage to seismic surveys with a fixed spread geometry. We implement a frequency-selection encoding strategy that accommodates data with a marine streamer geometry. The encoding functions are delta functions in the frequency domain, so that all the encoded shots have unique nonoverlapping frequency content, and the receivers can distinguish the wavefield from each shot with a unique frequency band. Because the encoding functions are orthogonal to each other, there will be no crosstalk between different shots during modeling and migration. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is comparable to conventional RTM for the Marmousi2 model and a marine data set recorded in the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved by suppressing migration artifacts, balancing reflector amplitudes, and enhancing the spatial resolution. We conclude that LSRTM with frequency-selection is an efficient migration method that can sometimes produce more focused images than conventional RTM. © 2013 Society of Exploration Geophysicists.

  15. Switched periodic systems in discrete time: stability and input-output norms

    Science.gov (United States)

    Bolzern, Paolo; Colaneri, Patrizio

    2013-07-01

    This paper deals with the analysis of stability and the characterisation of input-output norms for discrete-time periodic switched linear systems. Such systems consist of a network of time-periodic linear subsystems sharing the same state vector and an exogenous switching signal that triggers the jumps between the subsystems. The overall system exhibits a complex dynamic behaviour due to the interplay between the time periodicity of the subsystem parameters and the switching signal. Both arbitrary switching signals and signals satisfying a dwell-time constraint are considered. Linear matrix inequality conditions for stability and guaranteed H2 and H∞ performances are provided. The results heavily rely on the merge of the theory of linear periodic systems and recent developments on switched linear time-invariant systems.

  16. Test of time reversal invariance in p-p elastic scattering at 198.5 MeV

    International Nuclear Information System (INIS)

    Davis, C.A.; Greeniaus, L.G.; Moss, G.A.

    1986-01-01

    A precise measurement of the polarization-analyzing power difference in p-p elastic scattering has been made at 198.5 MeV to improve the experimental limits on time reversal violation in proton-proton scattering in this energy region. The experiment was performed in a kinematic regime where sensitivities to time reversal violating amplitudes should be high. Experimental methods which eliminated the need to refer to absolute values of the beam polarization or to the analyzing power of a polarimeter were used. The result is (P-A) = 0.0047 with a statistical uncertainty of +- 0.0025 and a systematic uncertainty of +- 0.0015

  17. Charge transport of graphene ferromagnetic-insulator-superconductor junction with pairing state of broken time reversal symmetry

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2015-04-01

    Full Text Available We investigate the charge transport through a graphene-based ferromagnetic-insulator-superconductor junction with a broken time reversal symmetry (BTRS of dx2−y2 + is and dx2−y2 + idxy superconductor using the extended Blonder-Tinkham-Klapwijk formalism. Our analysis have shown several charateristics in this junction, providing a useful probe to understand the role of the order parameter symmetry in the superconductivity. We find that the presence of the BTRS (X state in the superconductor region has a strong effect on the tunneling conductance curves which leads to a decrease in the height of the zero-bias conductance peak (ZBCP. In particular, we show that the magnitude of the superconducting proximity effect depends to a great extent on X and by increasing X, the zero-bias charge conductance oscillations with respect to the rotation angle β are suppressed. In addition, we find that at the maximum rotation angle β = π/4, introducing BTRS in the FIS junction causes oscillatory behavior of the zero-bias charge conductance with the barrier strength (χG by a period of π and by approaching the X to 1, the amplitude of charge conductance oscillations increases. This behavior is drastically different from none BTRS similar graphene junctions. At last, we suggest an experimental setup for verifying our predicted effects.

  18. Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations

    KAUST Repository

    Zhan, Ge

    2012-12-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the

  19. 46 CFR 167.60-5 - Period of time for which valid.

    Science.gov (United States)

    2010-10-01

    ... SCHOOL SHIPS Certificates of Inspection § 167.60-5 Period of time for which valid. A certificate of inspection for any period less than one year shall not be issued, but nothing herein shall be construed as preventing the revocation or suspension of a certificate of inspection in case such process is authorized by...

  20. Positive Almost Periodic Solutions for a Time-Varying Fishing Model with Delay

    Directory of Open Access Journals (Sweden)

    Xia Li

    2011-01-01

    Full Text Available This paper is concerned with a time-varying fishing model with delay. By means of the continuation theorem of coincidence degree theory, we prove that it has at least one positive almost periodic solution.

  1. Full-waveform detection of non-impulsive seismic events based on time-reversal methods

    Science.gov (United States)

    Solano, Ericka Alinne; Hjörleifsdóttir, Vala; Liu, Qinya

    2017-12-01

    We present a full-waveform detection method for non-impulsive seismic events, based on time-reversal principles. We use the strain Green's tensor as a matched filter, correlating it with continuous observed seismograms, to detect non-impulsive seismic events. We show that this is mathematically equivalent to an adjoint method for detecting earthquakes. We define the detection function, a scalar valued function, which depends on the stacked correlations for a group of stations. Event detections are given by the times at which the amplitude of the detection function exceeds a given value relative to the noise level. The method can make use of the whole seismic waveform or any combination of time-windows with different filters. It is expected to have an advantage compared to traditional detection methods for events that do not produce energetic and impulsive P waves, for example glacial events, landslides, volcanic events and transform-fault earthquakes for events which velocity structure along the path is relatively well known. Furthermore, the method has advantages over empirical Greens functions template matching methods, as it does not depend on records from previously detected events, and therefore is not limited to events occurring in similar regions and with similar focal mechanisms as these events. The method is not specific to any particular way of calculating the synthetic seismograms, and therefore complicated structural models can be used. This is particularly beneficial for intermediate size events that are registered on regional networks, for which the effect of lateral structure on the waveforms can be significant. To demonstrate the feasibility of the method, we apply it to two different areas located along the mid-oceanic ridge system west of Mexico where non-impulsive events have been reported. The first study area is between Clipperton and Siqueiros transform faults (9°N), during the time of two earthquake swarms, occurring in March 2012 and May

  2. Stability and periodicity of solutions for delay dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Zhu

    2014-04-01

    Full Text Available This article concerns the stability and periodicity of solutions to the delay dynamic system $$ x^{\\triangle}(t=A(t x(t + F(t, x(t, x(g(t+C(t $$ on a time scale. By the inequality technique for vectors, we obtain some stability criteria for the above system. Then, by using the Horn fixed point theorem, we present some conditions under which our system is asymptotically periodic and its periodic solution is unique. In particular, the periodic solution is positive under proper assumptions.

  3. Wuchereria bancrofti in Tanzania: microfilarial periodicity and effect of blood sampling time on microfilarial intensities

    DEFF Research Database (Denmark)

    Simonsen, Poul Erik; Niemann, L.; Meyrowitsch, Dan Wolf

    1997-01-01

    The circadian periodicity of Wuchereria bancrofti microfilarial (mf) intensities in peripheral blood was analysed in a group of infected individuals from an endemic community in north-eastern Tanzania. The mf density was quantified at two-hourly intervals for 24 hours. A clear nocturnal periodic...... of blood sampling before peak time is discussed, and the importance of taking sampling time into consideration when analysing data from epidemiological studies is emphasized. A simple method is devised which can be used to adjust for the influence of time on mf intensities, in studies where accurate...... information on mf intensities is necessary, and where it is impossible to obtain all samples at peak time....

  4. The Reverse Time Migration technique coupled with Interior Penalty Discontinuous Galerkin method.

    Science.gov (United States)

    Baldassari, C.; Barucq, H.; Calandra, H.; Denel, B.; Diaz, J.

    2009-04-01

    Seismic imaging is based on the seismic reflection method which produces an image of the subsurface from reflected waves recordings by using a tomography process and seismic migration is the industrial standard to improve the quality of the images. The migration process consists in replacing the recorded wavefields at their actual place by using various mathematical and numerical methods but each of them follows the same schedule, according to the pioneering idea of Claerbout: numerical propagation of the source function (propagation) and of the recorded wavefields (retropropagation) and next, construction of the image by applying an imaging condition. The retropropagation step can be realized accouting for the time reversibility of the wave equation and the resulting algorithm is currently called Reverse Time Migration (RTM). To be efficient, especially in three dimensional domain, the RTM requires the solution of the full wave equation by fast numerical methods. Finite element methods are considered as the best discretization method for solving the wave equation, even if they lead to the solution of huge systems with several millions of degrees of freedom, since they use meshes adapted to the domain topography and the boundary conditions are naturally taken into account in the variational formulation. Among the different finite element families, the spectral element one (SEM) is very interesting because it leads to a diagonal mass matrix which dramatically reduces the cost of the numerical computation. Moreover this method is very accurate since it allows the use of high order finite elements. However, SEM uses meshes of the domain made of quadrangles in 2D or hexaedra in 3D which are difficult to compute and not always suitable for complex topographies. Recently, Grote et al. applied the IPDG (Interior Penalty Discontinuous Galerkin) method to the wave equation. This approach is very interesting since it relies on meshes with triangles in 2D or tetrahedra in 3D

  5. Closeout Report - Search for Time Reversal Symmetry Violation with TREK at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, Michael [Hampton Univ., VA (United States)

    2015-04-15

    academic positions. Two former graduate students of the group have graduated and received their PhD degrees in nuclear physics (Dr. Anusha Liyanage and Dr. Ozgur Ates). In particular, this award has enabled Dr. Kohl to pursue the TREK project (Time Reversal Experiment with Kaons) at J-PARC, which he has been leading and advancing as International Spokesperson. Originally proposed as a search for time reversal symmetry violation [6], the project has evolved into a precision test of lepton flavor universality in the Standard Model along with sensitive searches for physics beyond the Standard Model through a possible discovery of new particles such as a sterile neutrino or a neutral gauge boson from the hidden sector in the mass region up to 300 MeV/c2 [7]. Experiment TREK/E36, first proposed in 2010, has been mounted between November 2014 and April 2015, and commissioning with beam has been started in April 2015, with production running anticipated in early summer and late fall 2015. It uses the apparatus from the previous KEK/E-246 experiment with partial upgrades to measure the ratio of decay widths of leptonic two-body decays of the charged kaon to µν and eν, respectively, which is highly sensitive to the ratio of electromagnetic charged lepton couplings and possible new physics processes that could differentiate between μ and e, hence breaking lepton flavor universality of the Standard Model. Through the searches for neutral massive particles, TREK/E36 can severely constrain any new physics scenarios designed to explain the proton radius puzzle [12, 13].

  6. Existence of time-periodic weak solutions to the stochastic Navier-Stokes equations around a moving body

    International Nuclear Information System (INIS)

    Chen, Feng; Han, Yuecai

    2013-01-01

    The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid

  7. Existence of time-periodic weak solutions to the stochastic Navier-Stokes equations around a moving body

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn; Han, Yuecai, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn [School of Mathematics, Jilin University, Changchun 130012 (China)

    2013-12-15

    The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid.

  8. Three-Dimensional Passive-Source Reverse-Time Migration of Converted Waves: The Method

    Science.gov (United States)

    Li, Jiahang; Shen, Yang; Zhang, Wei

    2018-02-01

    At seismic discontinuities in the crust and mantle, part of the compressional wave energy converts to shear wave, and vice versa. These converted waves have been widely used in receiver function (RF) studies to image discontinuity structures in the Earth. While generally successful, the conventional RF method has its limitations and is suited mostly to flat or gently dipping structures. Among the efforts to overcome the limitations of the conventional RF method is the development of the wave-theory-based, passive-source reverse-time migration (PS-RTM) for imaging complex seismic discontinuities and scatters. To date, PS-RTM has been implemented only in 2D in the Cartesian coordinate for local problems and thus has limited applicability. In this paper, we introduce a 3D PS-RTM approach in the spherical coordinate, which is better suited for regional and global problems. New computational procedures are developed to reduce artifacts and enhance migrated images, including back-propagating the main arrival and the coda containing the converted waves separately, using a modified Helmholtz decomposition operator to separate the P and S modes in the back-propagated wavefields, and applying an imaging condition that maintains a consistent polarity for a given velocity contrast. Our new approach allows us to use migration velocity models with realistic velocity discontinuities, improving accuracy of the migrated images. We present several synthetic experiments to demonstrate the method, using regional and teleseismic sources. The results show that both regional and teleseismic sources can illuminate complex structures and this method is well suited for imaging dipping interfaces and sharp lateral changes in discontinuity structures.

  9. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, Sirui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lin, Youzuo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-10

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismic data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.

  10. Reverse transcriptase real-time PCR for detection and quantification of viable Campylobacter jejuni directly from poultry faecal samples

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Wolff, Anders; Madsen, Mogens

    2012-01-01

    Campylobacter spp. is the most common cause of bacterial diarrhoea in humans worldwide. Therefore, rapid and reliable methods fordetection and quantification of this pathogen are required. In this study, we have developed a reverse transcription quantitative real-time PCR(RT-qPCR) for detection a...

  11. Time Reversal of Arbitrary Photonic Temporal Modes via Nonlinear Optical Frequency Conversion

    OpenAIRE

    Raymer, Michael G; Reddy, Dileep V; van Enk, Steven J; McKinstrie, Colin J

    2017-01-01

    Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is blind reversal of a photon's temporal wave-packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. This scheme allows for quantum operations such as a...

  12. Time-dependent reversal of significant intrapulmonary shunt after liver transplantation.

    Science.gov (United States)

    Jin, Xin; Sun, Byung Joo; Song, Jae-Kwan; Roh, Jae-Hyung; Jang, Jeong Yoon; Kim, Dae-Hee; Lim, Young-Suk; Song, Jong-Min; Kang, Duk-Hyun; Lee, Sung Gyu

    2018-03-05

    Although the association between intrapulmonary shunt (IPS) and liver cirrhosis is clear, data of repeated contrast echocardiography (CE) before and after liver transplantation (LT) to evaluate factors associated with IPS are limited. Hand-agitated saline was used for CE and, by assessing left-chamber opacification, IPS was classified as grade 0 to 4. Grade 3/4 constituted significant IPS and hepatopulmonary syndrome (HPS) was defined as significant IPS with the arterial partial pressure of oxygen < 70 mmHg. Before LT, 253 patients underwent CE and the frequency of significant IPS and HPS were 44% (n = 112) and 7% (n = 17), respectively. Child-Pugh score (odds ratio [OR], 1.345; 95% confidence interval [CI], 1.090 to 1.660; p = 0.006) and arterial oxygen content (OR, 0.838; 95% CI, 0.708 to 0.991; p = 0.039) were independent determinants of significant IPS, whereas direct bilirubin (OR, 1.076; 95% CI, 1.012 to 1.144; p = 0.019) was the only variable associated with HPS. Among 153 patients who underwent successful LT, repeated CE was performed in 97 (63%), which showed significant reductions in IPS grade (from 2.6 ± 1.0 to 1.2 ± 1.3, p < 0.001) and the prevalence of significant IPS (from 56% to 20%, p = 0.038). After adjustment for pre-LT IPS grade, time from LT to repeated CE presented negative linear relationship with post-LT IPS grade (r 2 = 0.366, p < 0.001) and was the only determinant of post-LT IPS grade (OR, 1.009; 95% CI, 1.003 to 1.014; p = 0.004). Repeated CE is useful to evaluate intrapulmonary vascular change before and after LT. Reversal of IPS after successful LT is time-dependent and follow-up duration should be considered for accurate assessment of IPS after LT.

  13. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...

  14. Investigation of unstable periodic space-time states in distributed active system with supercritical current

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.

    2003-01-01

    The set of the unstable periodic space-time states, characterizing the chaotic space-time dynamics of the electron beam with the supercritical current in the Pierce diode is discussed. The Lyapunov indicators of the revealed instable space-time states of the chaotic dynamics of the distributed self-excited system are calculated. It is shown that change in the set of the unstable periodic states in dependence on the Pierce parameter is determined by change in the various orbits stability, which is demonstrated by the values of senior Lyapunov unstable state index [ru

  15. Sensitivity of Hurst parameter estimation to periodic signals in time series and filtering approaches

    Science.gov (United States)

    Marković, D.; Koch, M.

    2005-09-01

    The influence of the periodic signals in time series on the Hurst parameter estimate is investigated with temporal, spectral and time-scale methods. The Hurst parameter estimates of the simulated periodic time series with a white noise background show a high sensitivity on the signal to noise ratio and for some methods, also on the data length used. The analysis is then carried on to the investigation of extreme monthly river flows of the Elbe River (Dresden) and of the Rhine River (Kaub). Effects of removing the periodic components employing different filtering approaches are discussed and it is shown that such procedures are a prerequisite for an unbiased estimation of H. In summary, our results imply that the first step in a time series long-correlation study should be the separation of the deterministic components from the stochastic ones. Otherwise wrong conclusions concerning possible memory effects may be drawn.

  16. Life time calculations for LCF loading combined with tensional hold periods

    International Nuclear Information System (INIS)

    Bocek, M.; Armas, A.; Piel, D.

    1983-01-01

    The life time in high amplitude strain cycling with tensional hold periods is analysed presuming that creep failure damage is life determining. The life fraction rule (LFR) is used to calculate the life time consumpted during the dwell period in strain controlled tests as well as during tensional hold time stress cycles. It follows from the present investigation that stress relaxation occurring during the strain hold periods plays the dominant influence upon the relationship between life and dwell time. For strong stress relaxation (e.g. high temperature) less damage is accumulated as compared to suppressed relaxation (low temperature). The damage in stress relaxation is calculated by means of the LFR and the results are compared to experiments conducted on Zircaloy-4 and the austenitic stainless stell Type AISI 304. From the very good agreement between both it is concluded that under the loading conditions considered, creep failure damage is the main life determining damage contribution. (orig.)

  17. Depression in the US population during the time periods surrounding the great recession.

    Science.gov (United States)

    Mehta, Kaushal; Kramer, Holly; Durazo-Arvizu, Ramon; Cao, Guichan; Tong, Liping; Rao, Murali

    2015-04-01

    To determine whether the time periods surrounding the 2008 US economic downturn were accompanied by an increase in prevalence of depression in the US adult population. We used data from the 24,182 adults aged ≥ 18 years who participated in the National Health and Nutrition Examination Survey during 2005-2012. A cross-sectional analysis was performed at each time period to determine prevalence of major and other depression as assessed by standardized questionnaires based on 9 criteria for major depressive episodes defined by DSM-IV. The demographic characteristics of the US population were similar across time periods except for the percentage of adults living in poverty, which increased from 26.43% during 2005-2006 to 33.46% during 2011-2012. The prevalence of major depression increased from 2.33% (95% CI, 1.64%-3.01%) during 2005-2006 to 3.49% (95% CI, 2.84%-4.03%) in 2009-2010 to 3.79% (95% CI, 3.01%-4.57%) in 2011-2012. Prevalence of other depression increased from 4.10% (95% CI, 3.37%-4.88%) in 2005-2006 to 4.79% (95% CI, 4.10%-5.44%) in the 2009-2010 period but then declined to 3.68% (95% CI, 2.84%-4.48%) in the 2011-2012 time period (P = .4). After adjustment for the distribution of age, sex, race/ethnicity, education, insurance status, and poverty status in the US adult noninstitutionalized population, each 2-year period after the 2005-2006 time period was associated with a 0.4% increase in major depression prevalence (P depression prevalence were noted by time period (P = .6). The time periods surrounding the recent economic recession were accompanied by a significant and sustained increase in major depression prevalence in the US population. It is plausible that the recession, given its strong, persistent, and negative effects on employment, job and housing security, and stock investments, contributed to the sustained increase in prevalence of major depression in the US population, but other factors associated with the recession time period could have

  18. Reversible and irreversible transformations in the Tomimatsu-Sato space-times

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia; Catenacci, R; Salmistraro, F [Pavia Univ. (Italy)

    1978-10-14

    The transformations which leave constant the area of the horizons are taken into account; it is show that for delta>1 they do not coincide with reversible transformations. The concepts of irreducible mass and unincreasable angular momentum are extended to the odd members of the T-S family.

  19. Effects of leptin on sperm count and morphology in Sprague-Dawley rats and their reversibility following a 6-week recovery period.

    Science.gov (United States)

    Almabhouh, F A; Osman, K; Siti Fatimah, I; Sergey, G; Gnanou, J; Singh, H J

    2015-09-01

    Altered epididymal sperm count and morphology following leptin treatment has been reported recently. This study examined the effects of 42 days of leptin treatment on sperm count and morphology and their reversibility during a subsequent 56-day recovery period. Twelve-week-old male Sprague-Dawley rats were randomised into four leptin and four saline-treated control groups (n = 6). Intraperitoneal injections of leptin were given daily (60 μg Kg(-1) body weight) for 42 days. Controls received 0.1 ml of 0.9% saline. Leptin-treated animals and their respective age-matched controls were euthanised on either day 1, 21, 42 or 56 of recovery for collection of epididymal spermatozoa. Sperm concentration was determined using a Makler counting chamber. Spermatozoa were analysed for 8-hydroxy-2-deoxyguanosine and DNA fragmentation (Comet assay). Data were analysed using anova. Sperm concentration was significantly lower but fraction of abnormal spermatozoa, and levels of 8-hydroxy-2-deoxyguanosine were significantly higher in leptin-treated rats on day 1 of recovery. Comet assays revealed significant DNA fragmentation in leptin-treated rats. These differences were reduced by day 56 of recovery. It appears that 42 days of leptin treatment to Sprague-Dawley rats has significant adverse effects on sperm count and morphology that reverse following discontinuation of leptin treatment. © 2014 Blackwell Verlag GmbH.

  20. Almost Periodic Solution for Memristive Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2013-01-01

    Full Text Available This paper is concerned with the dynamical stability analysis for almost periodic solution of memristive neural networks with time-varying delays. Under the framework of Filippov solutions, by applying the inequality analysis techniques, the existence and asymptotically almost periodic behavior of solutions are discussed. Based on the differential inclusions theory and Lyapunov functional approach, the stability issues of almost periodic solution are investigated, and a sufficient condition for the existence, uniqueness, and global exponential stability of the almost periodic solution is established. Moreover, as a special case, the condition which ensures the global exponential stability of a unique periodic solution is also presented for the considered memristive neural networks. Two examples are given to illustrate the validity of the theoretical results.

  1. The Sensitivity of Income Polarization - Time, length of accounting periods, equivalence scales, and income definitions

    DEFF Research Database (Denmark)

    Azhar, Hussain

    This study looks at polarization and its components’ sensitivity to assumptions about equivalence scales, income definition, ethical income distribution parameters, and the income accounting period. A representative sample of Danish individual incomes from 1984 to 2002 is utilised. Results show...... that polarization has increased over time, regardless of the applied measure, when the last part of the period is compared to the first part of the period. Primary causes being increased inequality (alienation) and faster income growth among high incomes relative to those in the middle of the distribution....... Increasing the accounting period confirms the reduction in inequality found for shorter periods, but polarization is virtually unchanged, because income group identification increases. Applying different equivalence scales does not change polarization ranking for different years, but identification ranks...

  2. Finding hidden periodic signals in time series - an application to stock prices

    Science.gov (United States)

    O'Shea, Michael

    2014-03-01

    Data in the form of time series appear in many areas of science. In cases where the periodicity is apparent and the only other contribution to the time series is stochastic in origin, the data can be `folded' to improve signal to noise and this has been done for light curves of variable stars with the folding resulting in a cleaner light curve signal. Stock index prices versus time are classic examples of time series. Repeating patterns have been claimed by many workers and include unusually large returns on small-cap stocks during the month of January, and small returns on the Dow Jones Industrial average (DJIA) in the months June through September compared to the rest of the year. Such observations imply that these prices have a periodic component. We investigate this for the DJIA. If such a component exists it is hidden in a large non-periodic variation and a large stochastic variation. We show how to extract this periodic component and for the first time reveal its yearly (averaged) shape. This periodic component leads directly to the `Sell in May and buy at Halloween' adage. We also drill down and show that this yearly variation emerges from approximately half of the underlying stocks making up the DJIA index.

  3. Boundedness and almost Periodicity in Time of Solutions of Evolutionary Variational Inequalities

    Science.gov (United States)

    Pankov, A. A.

    1983-04-01

    In this paper existence theorems are obtained for the solutions of abstract parabolic variational inequalities, which are bounded with respect to time (in the Stepanov and L^\\infty norms). The regularity and almost periodicity properties of such solutions are studied. Theorems are also established concerning their solvability in spaces of Besicovitch almost periodic functions. The majority of the results are obtained without any compactness assumptions. Bibliography: 30 titles.

  4. Practitioners' Perceptions of the Soccer Extra-Time Period: Implications for Future Research

    OpenAIRE

    Harper, Liam D.; Fothergill, Melissa; West, Daniel J.; Stevenson, Emma; Russell, Mark

    2016-01-01

    Qualitative research investigating soccer practitioners’ perceptions can allow researchers to create practical research investigations. The extra-time period of soccer is understudied compared to other areas of soccer research. Using an open-ended online survey containing eleven main and nine sub questions, we gathered the perceptions of extra-time from 46 soccer practitioners, all working for different professional soccer clubs. Questions related to current practices, views on extra-time reg...

  5. Period variations in pulsating X-ray sources. I. Accretion flow parameters and neutron star structure from timing observations

    International Nuclear Information System (INIS)

    Lamb, F.K.; Pines, D.; Shaham, J.

    1978-01-01

    We show that valuable information about both accretion flows and neutron star structure can be obtained from X-ray timing observations of period variations in pulsating sources. Such variations can result from variations in the accretion flow, or from internal torque variations, associated with oscillations of the fluid core or the unpinning of vortices in the inner crust. We develop a statistical description of torque variations in terms of noise processes, indicate how the applicability of such a description may be tested observationally, and show how it may be used to determine from observation both the properties of accretion flows and the internal structure of neutron stars, including the relative inertial moments of the crust and superfluid neutron core, the crust-core coupling time, and the frequencies of any low-frequency internal collective modes. Particular attention is paid to the physical origin of spin-down episodes; it is shown that usyc episodes may result either from external torque reversals or from internal torque variations.With the aid of the statistical description, the response of the star to torque fluctuations is calculated for three stellar models: (i) a completely rigid star; (ii) a two-component star; and (iii) a two-component star with a finite-frequency internal mode, such as the Tkachenko mode of a rotating neutron superfluid. Our calculations show that fluctuating torques could account for the period the period variations and spin-down episodes observed in Her X-1 and Cen X-3, including the large spin-down event observed in the latter source during 1972 September-October. The torque noise strengths inferred from current timing observations using the simple two-component models are shown to be consistent with those to be expected from fluctuations in accretion flows onto magnetic neutron stars

  6. Rank One Strange Attractors in Periodically Kicked Predator-Prey System with Time-Delay

    Science.gov (United States)

    Yang, Wenjie; Lin, Yiping; Dai, Yunxian; Zhao, Huitao

    2016-06-01

    This paper is devoted to the study of the problem of rank one strange attractor in a periodically kicked predator-prey system with time-delay. Our discussion is based on the theory of rank one maps formulated by Wang and Young. Firstly, we develop the rank one chaotic theory to delayed systems. It is shown that strange attractors occur when the delayed system undergoes a Hopf bifurcation and encounters an external periodic force. Then we use the theory to the periodically kicked predator-prey system with delay, deriving the conditions for Hopf bifurcation and rank one chaos along with the results of numerical simulations.

  7. Using a modified time-reverse imaging technique to locate low-frequency earthquakes on the San Andreas Fault near Cholame, California

    Science.gov (United States)

    Horstmann, Tobias; Harrington, Rebecca M.; Cochran, Elizabeth S.

    2015-01-01

    We present a new method to locate low-frequency earthquakes (LFEs) within tectonic tremor episodes based on time-reverse imaging techniques. The modified time-reverse imaging technique presented here is the first method that locates individual LFEs within tremor episodes within 5 km uncertainty without relying on high-amplitude P-wave arrivals and that produces similar hypocentral locations to methods that locate events by stacking hundreds of LFEs without having to assume event co-location. In contrast to classic time-reverse imaging algorithms, we implement a modification to the method that searches for phase coherence over a short time period rather than identifying the maximum amplitude of a superpositioned wavefield. The method is independent of amplitude and can help constrain event origin time. The method uses individual LFE origin times, but does not rely on a priori information on LFE templates and families.We apply the method to locate 34 individual LFEs within tremor episodes that occur between 2010 and 2011 on the San Andreas Fault, near Cholame, California. Individual LFE location accuracies range from 2.6 to 5 km horizontally and 4.8 km vertically. Other methods that have been able to locate individual LFEs with accuracy of less than 5 km have mainly used large-amplitude events where a P-phase arrival can be identified. The method described here has the potential to locate a larger number of individual low-amplitude events with only the S-phase arrival. Location accuracy is controlled by the velocity model resolution and the wavelength of the dominant energy of the signal. Location results are also dependent on the number of stations used and are negligibly correlated with other factors such as the maximum gap in azimuthal coverage, source–station distance and signal-to-noise ratio.

  8. Detecting method for crude oil price fluctuation mechanism under different periodic time series

    International Nuclear Information System (INIS)

    Gao, Xiangyun; Fang, Wei; An, Feng; Wang, Yue

    2017-01-01

    Highlights: • We proposed the concept of autoregressive modes to indicate the fluctuation patterns. • We constructed transmission networks for studying the fluctuation mechanism. • There are different fluctuation mechanism under different periodic time series. • Only a few types of autoregressive modes control the fluctuations in crude oil price. • There are cluster effects during the fluctuation mechanism of autoregressive modes. - Abstract: Current existing literatures can characterize the long-term fluctuation of crude oil price time series, however, it is difficult to detect the fluctuation mechanism specifically under short term. Because each fluctuation pattern for one short period contained in a long-term crude oil price time series have dynamic characteristics of diversity; in other words, there exhibit various fluctuation patterns in different short periods and transmit to each other, which reflects the reputedly complicate and chaotic oil market. Thus, we proposed an incorporated method to detect the fluctuation mechanism, which is the evolution of the different fluctuation patterns over time from the complex network perspective. We divided crude oil price time series into segments using sliding time windows, and defined autoregressive modes based on regression models to indicate the fluctuation patterns of each segment. Hence, the transmissions between different types of autoregressive modes over time form a transmission network that contains rich dynamic information. We then capture transmission characteristics of autoregressive modes under different periodic time series through the structure features of the transmission networks. The results indicate that there are various autoregressive modes with significantly different statistical characteristics under different periodic time series. However, only a few types of autoregressive modes and transmission patterns play a major role in the fluctuation mechanism of the crude oil price, and these

  9. Synthetic seismic monitoring using reverse-time migration and Kirchhoff migration for CO2 sequestration in Korea

    Science.gov (United States)

    Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.

    2012-12-01

    During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of

  10. Exact dynamics of a one dimensional Bose gas in a periodic time-dependent harmonic trap

    Science.gov (United States)

    Scopa, Stefano; Unterberger, Jéremie; Karevski, Dragi

    2018-05-01

    We study the unitary dynamics of a 1D gas of hard-core bosons trapped into a harmonic potential which varies periodically in time with frequency . Such periodic systems can be classified into orbits of different monodromies corresponding to two different physical situations, namely the case in which the bosonic cloud remains stable during the time-evolution and the case where it turns out to be unstable. In the present work we derive in the large particle number limit exact results for the stroboscopic evolution of the energy and particle densities in both physical situations.

  11. A Time-Delayed Mathematical Model for Tumor Growth with the Effect of a Periodic Therapy.

    Science.gov (United States)

    Xu, Shihe; Wei, Xiangqing; Zhang, Fangwei

    2016-01-01

    A time-delayed mathematical model for tumor growth with the effect of periodic therapy is studied. The establishment of the model is based on the reaction-diffusion dynamics and mass conservation law and is considered with a time delay in cell proliferation process. Sufficient conditions for the global stability of tumor free equilibrium are given. We also prove that if external concentration of nutrients is large the tumor will not disappear and the conditions under which there exist periodic solutions to the model are also determined. Results are illustrated by computer simulations.

  12. A Time-Delayed Mathematical Model for Tumor Growth with the Effect of a Periodic Therapy

    Directory of Open Access Journals (Sweden)

    Shihe Xu

    2016-01-01

    Full Text Available A time-delayed mathematical model for tumor growth with the effect of periodic therapy is studied. The establishment of the model is based on the reaction-diffusion dynamics and mass conservation law and is considered with a time delay in cell proliferation process. Sufficient conditions for the global stability of tumor free equilibrium are given. We also prove that if external concentration of nutrients is large the tumor will not disappear and the conditions under which there exist periodic solutions to the model are also determined. Results are illustrated by computer simulations.

  13. Periodic review inventory policy for non-instantaneous deteriorating items with time dependent deterioration rate

    Directory of Open Access Journals (Sweden)

    Anwesha Samanta

    2015-09-01

    Full Text Available The paper studies a periodic review inventory model with no shortages and different demand rates during pre- and post- deterioration periods . Deterioration of units start after a fixed time interval, and the deterioration rate is time dependent. The model determines the optimal reorder interval and the optimal order quantity so as to minimize the total cost per unit length of an inventory cycle. An extension of the model to include price discount has been further considered. Numerical examples are presented to illustrate the model and a sensitivity analysis is also reported.

  14. A multi-dataset time-reversal approach to clinical trial placebo response and the relationship to natural variability in epilepsy.

    Science.gov (United States)

    Goldenholz, Daniel M; Strashny, Alex; Cook, Mark; Moss, Robert; Theodore, William H

    2017-12-01

    Clinical epilepsy drug trials have been measuring increasingly high placebo response rates, up to 40%. This study was designed to examine the relationship between the natural variability in epilepsy, and the placebo response seen in trials. We tested the hypothesis that 'reversing' trial direction, with the baseline period as the treatment observation phase, would reveal effects of natural variability. Clinical trial simulations were run with time running forward and in reverse. Data sources were: SeizureTracker.com (patient reported diaries), a randomized sham-controlled TMS trial, and chronically implanted intracranial EEG electrodes. Outcomes were 50%-responder rates (RR50) and median percentage change (MPC). The RR50 results showed evidence that temporal reversal does not prevent large responder rates across datasets. The MPC results negative in the TMS dataset, and positive in the other two. Typical RR50s of clinical trials can be reproduced using the natural variability of epilepsy as a substrate across multiple datasets. Therefore, the placebo response in epilepsy clinical trials may be attributable almost entirely to this variability, rather than the "placebo effect". Published by Elsevier Ltd.

  15. Implementation on Electronic Circuits and RTR Pragmatical Adaptive Synchronization: Time-Reversed Uncertain Dynamical Systems' Analysis and Applications

    Directory of Open Access Journals (Sweden)

    Shih-Yu Li

    2013-01-01

    Full Text Available We expose the chaotic attractors of time-reversed nonlinear system, further implement its behavior on electronic circuit, and apply the pragmatical asymptotically stability theory to strictly prove that the adaptive synchronization of given master and slave systems with uncertain parameters can be achieved. In this paper, the variety chaotic motions of time-reversed Lorentz system are investigated through Lyapunov exponents, phase portraits, and bifurcation diagrams. For further applying the complex signal in secure communication and file encryption, we construct the circuit to show the similar chaotic signal of time-reversed Lorentz system. In addition, pragmatical asymptotically stability theorem and an assumption of equal probability for ergodic initial conditions (Ge et al., 1999, Ge and Yu, 2000, and Matsushima, 1972 are proposed to strictly prove that adaptive control can be accomplished successfully. The current scheme of adaptive control—by traditional Lyapunov stability theorem and Barbalat lemma, which are used to prove the error vector—approaches zero, as time approaches infinity. However, the core question—why the estimated or given parameters also approach to the uncertain parameters—remains without answer. By the new stability theory, those estimated parameters can be proved approaching the uncertain values strictly, and the simulation results are shown in this paper.

  16. The Improved Adaptive Silence Period Algorithm over Time-Variant Channels in the Cognitive Radio System

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2018-01-01

    Full Text Available In the field of cognitive radio spectrum sensing, the adaptive silence period management mechanism (ASPM has improved the problem of the low time-resource utilization rate of the traditional silence period management mechanism (TSPM. However, in the case of the low signal-to-noise ratio (SNR, the ASPM algorithm will increase the probability of missed detection for the primary user (PU. Focusing on this problem, this paper proposes an improved adaptive silence period management (IA-SPM algorithm which can adaptively adjust the sensing parameters of the current period in combination with the feedback information from the data communication with the sensing results of the previous period. The feedback information in the channel is achieved with frequency resources rather than time resources in order to adapt to the parameter change in the time-varying channel. The Monte Carlo simulation results show that the detection probability of the IA-SPM is 10–15% higher than that of the ASPM under low SNR conditions.

  17. Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation

    Science.gov (United States)

    Li, Panxiao; Wu, Shi-Liang

    2018-04-01

    This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.

  18. Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium.

    Science.gov (United States)

    Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A

    2014-06-13

    We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

  19. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    Science.gov (United States)

    Judkewitz, Benjamin; Wang, Ying Min; Horstmeyer, Roarke; Mathy, Alexandre; Yang, Changhuei

    2013-04-01

    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm.

  20. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE).

    Science.gov (United States)

    Judkewitz, Benjamin; Wang, Ying Min; Horstmeyer, Roarke; Mathy, Alexandre; Yang, Changhuei

    2013-04-01

    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance-encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at unprecedented, speckle-scale lateral resolution of ~ 5 μm.

  1. A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, Varun [ORNL; Vatsavai, Raju [ORNL

    2011-01-01

    Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).

  2. Practitioners' Perceptions of the Soccer Extra-Time Period: Implications for Future Research.

    Directory of Open Access Journals (Sweden)

    Liam D Harper

    Full Text Available Qualitative research investigating soccer practitioners' perceptions can allow researchers to create practical research investigations. The extra-time period of soccer is understudied compared to other areas of soccer research. Using an open-ended online survey containing eleven main and nine sub questions, we gathered the perceptions of extra-time from 46 soccer practitioners, all working for different professional soccer clubs. Questions related to current practices, views on extra-time regulations, and ideas for future research. Using inductive content analysis, the following general dimensions were identified: 'importance of extra-time', 'rule changes', 'efficacy of extra-time hydro-nutritional provision', 'nutritional timing', 'future research directions', 'preparatory modulations' and 'recovery'. The majority of practitioners (63% either agreed or strongly agreed that extra-time is an important period for determining success in knockout football match-play. When asked if a fourth substitution should be permitted in extra-time, 67% agreed. The use of hydro-nutritional strategies prior to extra-time was predominately considered important or very important. However; only 41% of practitioners felt that it was the most important time point for the use of nutritional products. A similar number of practitioners account (50% and do not (50% account for the potential of extra-time when training and preparing players and 89% of practitioners stated that extra-time influences recovery practices following matches. In the five minute break prior to extra-time, the following practices (in order of priority were advocated to players: hydration, energy provision, massage, and tactical preparations. Additionally, 87% of practitioners advocate a particular nutritional supplementation strategy prior to extra-time. In order of importance, practitioners see the following as future research areas: nutritional interventions, fatigue responses, acute injury risk

  3. Practitioners' Perceptions of the Soccer Extra-Time Period: Implications for Future Research.

    Science.gov (United States)

    Harper, Liam D; Fothergill, Melissa; West, Daniel J; Stevenson, Emma; Russell, Mark

    2016-01-01

    Qualitative research investigating soccer practitioners' perceptions can allow researchers to create practical research investigations. The extra-time period of soccer is understudied compared to other areas of soccer research. Using an open-ended online survey containing eleven main and nine sub questions, we gathered the perceptions of extra-time from 46 soccer practitioners, all working for different professional soccer clubs. Questions related to current practices, views on extra-time regulations, and ideas for future research. Using inductive content analysis, the following general dimensions were identified: 'importance of extra-time', 'rule changes', 'efficacy of extra-time hydro-nutritional provision', 'nutritional timing', 'future research directions', 'preparatory modulations' and 'recovery'. The majority of practitioners (63%) either agreed or strongly agreed that extra-time is an important period for determining success in knockout football match-play. When asked if a fourth substitution should be permitted in extra-time, 67% agreed. The use of hydro-nutritional strategies prior to extra-time was predominately considered important or very important. However; only 41% of practitioners felt that it was the most important time point for the use of nutritional products. A similar number of practitioners account (50%) and do not (50%) account for the potential of extra-time when training and preparing players and 89% of practitioners stated that extra-time influences recovery practices following matches. In the five minute break prior to extra-time, the following practices (in order of priority) were advocated to players: hydration, energy provision, massage, and tactical preparations. Additionally, 87% of practitioners advocate a particular nutritional supplementation strategy prior to extra-time. In order of importance, practitioners see the following as future research areas: nutritional interventions, fatigue responses, acute injury risk, recovery

  4. On time-periodic Navier-Stokes flows with fast spatial decay in the whole space

    Czech Academy of Sciences Publication Activity Database

    Nakatsuka, Tomoyuki

    2018-01-01

    Roč. 4, č. 1 (2018), s. 51-67 ISSN 2296-9020 Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * time-periodic solution * asymptotic property Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics https://link.springer.com/article/10. 1007 %2Fs41808-018-0011-8

  5. Four positive periodic solutions of a discrete time Lotka-Volterra competitive system with harvesting terms

    Directory of Open Access Journals (Sweden)

    Xinggui Liu

    2011-01-01

    Full Text Available In this paper, by using Mawhin's continuation theorem of coincidence degree theory, we establish the existence of at least four positive periodic solutions for a discrete time Lotka-Volterra competitive system with harvesting terms. An example is given to illustrate the effectiveness of our results.

  6. On time-periodic Navier-Stokes flows with fast spatial decay in the whole space

    Czech Academy of Sciences Publication Activity Database

    Nakatsuka, Tomoyuki

    2018-01-01

    Roč. 4, č. 1 (2018), s. 51-67 ISSN 2296-9020 Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * time-periodic solution * asymptotic property Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics https://link.springer.com/article/10.1007%2Fs41808-018-0011-8

  7. Reliability of fitness tests using methods and time periods common in sport and occupational management.

    Science.gov (United States)

    Burnstein, Bryan D; Steele, Russell J; Shrier, Ian

    2011-01-01

    Fitness testing is used frequently in many areas of physical activity, but the reliability of these measurements under real-world, practical conditions is unknown. To evaluate the reliability of specific fitness tests using the methods and time periods used in the context of real-world sport and occupational management. Cohort study. Eighteen different Cirque du Soleil shows. Cirque du Soleil physical performers who completed 4 consecutive tests (6-month intervals) and were free of injury or illness at each session (n = 238 of 701 physical performers). Performers completed 6 fitness tests on each assessment date: dynamic balance, Harvard step test, handgrip, vertical jump, pull-ups, and 60-second jump test. We calculated the intraclass coefficient (ICC) and limits of agreement between baseline and each time point and the ICC over all 4 time points combined. Reliability was acceptable (ICC > 0.6) over an 18-month time period for all pairwise comparisons and all time points together for the handgrip, vertical jump, and pull-up assessments. The Harvard step test and 60-second jump test had poor reliability (ICC < 0.6) between baseline and other time points. When we excluded the baseline data and calculated the ICC for 6-month, 12-month, and 18-month time points, both the Harvard step test and 60-second jump test demonstrated acceptable reliability. Dynamic balance was unreliable in all contexts. Limit-of-agreement analysis demonstrated considerable intraindividual variability for some tests and a learning effect by administrators on others. Five of the 6 tests in this battery had acceptable reliability over an 18-month time frame, but the values for certain individuals may vary considerably from time to time for some tests. Specific tests may require a learning period for administrators.

  8. Surface hopping, transition state theory and decoherence. I. Scattering theory and time-reversibility.

    Science.gov (United States)

    Jain, Amber; Herman, Michael F; Ouyang, Wenjun; Subotnik, Joseph E

    2015-10-07

    We provide an in-depth investigation of transmission coefficients as computed using the augmented-fewest switches surface hopping algorithm in the low energy regime. Empirically, microscopic reversibility is shown to hold approximately. Furthermore, we show that, in some circumstances, including decoherence on top of surface hopping calculations can help recover (as opposed to destroy) oscillations in the transmission coefficient as a function of energy; these oscillations can be studied analytically with semiclassical scattering theory. Finally, in the spirit of transition state theory, we also show that transmission coefficients can be calculated rather accurately starting from the curve crossing point and running trajectories forwards and backwards.

  9. Efficient Fourier-based algorithms for time-periodic unsteady problems

    Science.gov (United States)

    Gopinath, Arathi Kamath

    2007-12-01

    This dissertation work proposes two algorithms for the simulation of time-periodic unsteady problems via the solution of Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. These algorithms use a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). In contrast to conventional Fourier-based techniques which solve the governing equations in frequency space, the new algorithms perform all the calculations in the time domain, and hence require minimal modifications to an existing solver. The complete space-time solution is obtained by iterating in a fifth pseudo-time dimension. Various time-periodic problems such as helicopter rotors, wind turbines, turbomachinery and flapping-wings can be simulated using the Time Spectral method. The algorithm is first validated using pitching airfoil/wing test cases. The method is further extended to turbomachinery problems, and computational results verified by comparison with a time-accurate calculation. The technique can be very memory intensive for large problems, since the solution is computed (and hence stored) simultaneously at all time levels. Often, the blade counts of a turbomachine are rescaled such that a periodic fraction of the annulus can be solved. This approximation enables the solution to be obtained at a fraction of the cost of a full-scale time-accurate solution. For a viscous computation over a three-dimensional single-stage rescaled compressor, an order of magnitude savings is achieved. The second algorithm, the reduced-order Harmonic Balance method is applicable only to turbomachinery flows, and offers even larger computational savings than the Time Spectral method. It simulates the true geometry of the turbomachine using only one blade passage per blade row as the computational domain. In each blade row of the turbomachine, only the dominant frequencies are resolved, namely

  10. Effects of combined linear and nonlinear periodic training on physical fitness and competition times in finswimmers.

    Science.gov (United States)

    Yu, Kyung-Hun; Suk, Min-Hwa; Kang, Shin-Woo; Shin, Yun-A

    2014-10-01

    The purpose of this study was to investigate the effect of combined linear and nonlinear periodic training on physical fitness and competition times in finswimmers. The linear resistance training model (6 days/week) and nonlinear underwater training (4 days/week) were applied to 12 finswimmers (age, 16.08± 1.44 yr; career, 3.78± 1.90 yr) for 12 weeks. Body composition measures included weight, body mass index (BMI), percent fat, and fat-free mass. Physical fitness measures included trunk flexion forward, trunk extension backward, sargent jump, 1-repetition-maximum (1 RM) squat, 1 RM dead lift, knee extension, knee flexion, trunk extension, trunk flexion, and competition times. Body composition and physical fitness were improved after the 12-week periodic training program. Weight, BMI, and percent fat were significantly decreased, and trunk flexion forward, trunk extension backward, sargent jump, 1 RM squat, 1 RM dead lift, and knee extension (right) were significantly increased. The 50- and 100-m times significantly decreased in all 12 athletes. After 12 weeks of training, all finswimmers who participated in this study improved their times in a public competition. These data indicate that combined linear and nonlinear periodic training enhanced the physical fitness and competition times in finswimmers.

  11. Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices

    International Nuclear Information System (INIS)

    Keles, Dogan; Genoese, Massimo; Möst, Dominik; Fichtner, Wolf

    2012-01-01

    This paper evaluates different financial price and time series models, such as mean reversion, autoregressive moving average (ARMA), integrated ARMA (ARIMA) and general autoregressive conditional heteroscedasticity (GARCH) process, usually applied for electricity price simulations. However, as these models are developed to describe the stochastic behaviour of electricity prices, they are extended by a separate data treatment for the deterministic components (trend, daily, weekly and annual cycles) of electricity spot prices. Furthermore price jumps are considered and implemented within a regime-switching model. Since 2008 market design allows for negative prices at the European Energy Exchange, which also occurred for several hours in the last years. Up to now, only a few financial and time series approaches exist, which are able to capture negative prices. This paper presents a new approach incorporating negative prices. The evaluation of the different approaches presented points out that the mean reversion and the ARMA models deliver the lowest mean root square error between simulated and historical electricity spot prices gained from the European Energy Exchange. These models posses also lower mean average errors than GARCH models. Hence, they are more suitable to simulate well-fitting price paths. Furthermore it is shown that the daily structure of historical price curves is better captured applying ARMA or ARIMA processes instead of mean-reversion or GARCH models. Another important outcome of the paper is that the regime-switching approach and the consideration of negative prices via the new proposed approach lead to a significant improvement of the electricity price simulation. - Highlights: ► Considering negative prices improves the results of time-series and financial models for electricity prices. ► Regime-switching approach captures the jumps and base prices quite well. ► Removing and separate modelling of deterministic annual, weekly and daily

  12. Time to reach a given level of number of neutrons is stochastic analog of reactor period

    International Nuclear Information System (INIS)

    Ryazanov, V.V.

    2012-01-01

    In theory and in practice the operation of nuclear reactors to control the safety of the reactor is widely used deterministic value - the period of the reactor. It is proposed along with the period of the reactor using a stochastic analogue of this magnitude - a random amount of time to achieve a given level of a random process for the number of neutrons in the reactor. The paper discusses various features of the behavior of the mean and variance of time to achieve a specified level. This kind of features can be associated with impaired behavior of the reactor system. Introduced the value of time required to reach the level can be used to monitor and improve the safety of nuclear power plants

  13. Periodic Solution of Second-Order Hamiltonian Systems with a Change Sign Potential on Time Scales

    Directory of Open Access Journals (Sweden)

    You-Hui Su

    2009-01-01

    Full Text Available This paper is concerned with the second-order Hamiltonian system on time scales 𝕋 of the form uΔΔ(ρ(t+μb(t|u(t|μ−2u(t+∇¯H(t,u(t=0, Δ-a.e. t∈[0,T]𝕋 , u(0−u(T=uΔ(ρ(0−uΔ(ρ(T=0, where 0,T∈𝕋. By using the minimax methods in critical theory, an existence theorem of periodic solution for the above system is established. As an application, an example is given to illustrate the result. This is probably the first time the existence of periodic solutions for second-order Hamiltonian system on time scales has been studied by critical theory.

  14. Passive magnetic bearing systems stabilizer/bearing utilizing time-averaging of a periodic magnetic field

    Science.gov (United States)

    Post, Richard F.

    2017-10-03

    A high-stiffness stabilizer/bearings for passive magnetic bearing systems is provide where the key to its operation resides in the fact that when the frequency of variation of the repelling forces of the periodic magnet array is large compared to the reciprocal of the growth time of the unstable motion, the rotating system will feel only the time-averaged value of the force. When the time-averaged value of the force is radially repelling by the choice of the geometry of the periodic magnet array, the Earnshaw-related unstable hit motion that would occur at zero rotational speed is suppressed when the system is rotating at operating speeds.

  15. Storing quantum information in XXZ spin rings with periodically time-controlled interactions

    International Nuclear Information System (INIS)

    Giampaolo, S M; Illuminati, F; Mazzarella, G

    2005-01-01

    We introduce a general scheme to realize massive quantum memories in simple systems of interacting qubits. Such systems are described by spin rings with XXZ intersite couplings of suitably time-periodically controlled amplitudes. We show that initially localized excitations undergo perfect periodic revivals, allowing for the simultaneous storage of arbitrary sets of different local states. This novel approach to the problem of storing quantum information hints at a new way to control and suppress the effect of decoherence on a quantum computer realized in a system with nonvanishing interactions between the constituent qubits

  16. Storing quantum information in XXZ spin rings with periodically time-controlled interactions

    Energy Technology Data Exchange (ETDEWEB)

    Giampaolo, S M; Illuminati, F; Mazzarella, G [Dipartimento di Fisica ' E. R. Caianiello' , Universita di Salerno, INFM UdR di Salerno, INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, 84081 Baronissi, SA (Italy)

    2005-10-01

    We introduce a general scheme to realize massive quantum memories in simple systems of interacting qubits. Such systems are described by spin rings with XXZ intersite couplings of suitably time-periodically controlled amplitudes. We show that initially localized excitations undergo perfect periodic revivals, allowing for the simultaneous storage of arbitrary sets of different local states. This novel approach to the problem of storing quantum information hints at a new way to control and suppress the effect of decoherence on a quantum computer realized in a system with nonvanishing interactions between the constituent qubits.

  17. Plasticity of the intrinsic period of the human circadian timing system.

    Directory of Open Access Journals (Sweden)

    Frank A J L Scheer

    2007-08-01

    Full Text Available Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol, which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2 for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.

  18. PZT-Based Detection of Compactness of Concrete in Concrete Filled Steel Tube Using Time Reversal Method

    Directory of Open Access Journals (Sweden)

    Shi Yan

    2014-01-01

    Full Text Available A smart aggregate-based approach is proposed for the concrete compactness detection of concrete filled steel tube (CFST columns. The piezoceramic-based smart aggregates (SAs were embedded in the predetermined locations prior to the casting of concrete columns to establish a wave-based smart sensing system for the concrete compactness detection purpose. To evaluate the efficiency of the developed approach, six specimens of the CFST columns with the rectangular cross-section were produced by placing some artificial defects during casting of concrete for simulating various uncompacted voids such as cavities, cracks, and debond. During the test, the time reversal technology was applied to rebuild the received signals and launch the reversed signals again by SAs, to overcome the issue of the lack of the prototype. Based on the proposed nonprototype, two indices of time reversibility (TR and symmetry (SYM were applied to relatively evaluate the level of concrete compactness in the range of the two SAs. The experimental results show that the developed method can effectively detect the compactness of concrete in CFST columns.

  19. Current, temperature and confinement time scaling in toroidal reversed-field pinch experiments ZT-I and ZT-S

    International Nuclear Information System (INIS)

    Baker, D.A.; Burkhardt, L.C.; Di Marco, J.N.; Haberstich, A.; Hagenson, R.L.; Howell, R.B.; Karr, H.J.; Schofield, A.E.

    1977-01-01

    The scaling properties of a toroidal reversed-field Z pinch have been investigated over a limited range by comparing two experiments having conducting walls and discharge-tube minor diameters which differ by a factor of approximately 1.5. Both the confinement time of the plasma column and the electron temperature were found to increase about a factor of two with the increased minor diameter. Both the poloidal field diffusion and the decay of the toroidal reversed field were significantly reduced with the larger tube diameter. These results support the hypothesis that the loss of stability later in the discharge is caused by diffusion-induced deterioration of initially favourable plasma-field profiles to MHD unstable ones. This conclusion has been verified by stability analysis of the magnetic field profiles. Fusion reactor calculations show that small reactors are conceptually possible assuming good containment can be achieved for current densities approximately >20MAm -2 . (author)

  20. Copper, nickel and lead in lichen and tree bark transplants over different periods of time

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Mafalda S. [CIIMAR, Rua dos Bragas, 289, 4050-123 Porto (Portugal)], E-mail: abaptista@fc.up.pt; Vasconcelos, M. Teresa S.D. [CIIMAR, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Chemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-071 Porto (Portugal)], E-mail: mtvascon@fc.up.pt; Cabral, Joao Paulo [CIIMAR, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Botany Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 1191, 4150-181 Porto (Portugal)], E-mail: jpcabral@fc.up.pt; Freitas, M. Carmo [ITN - Technological and Nuclear Institute, Reactor E.N. 10, 2686-953 Sacavem (Portugal)], E-mail: cfreitas@itn.mcies.pt; Pacheco, Adriano M.G. [CVRM-IST - Technical University of Lisbon, Avenida Rovisco Pais, 1, 1049-001 Lisbon (Portugal)], E-mail: apacheco@ist.utl.pt

    2008-01-15

    This work aimed at comparing the dynamics of atmospheric metal accumulation by the lichen Flavoparmelia caperata and bark of Platanus hybrida over different periods of time. Transplants were exposed in three Portuguese coastal cities. Samples were retrieved (1) every 2 months (discontinuous exposure), or (2) after 2-, 4-, 6-, 8- and 10-month periods (continuous exposure), and analysed for Cu, Ni and Pb. Airborne accumulation of metals was essentially independent of climatic factors. For both biomonitors [Pb] > [Ni] > [Cu] but Pb was the only element for which a consistent pattern of accumulation was observed, with the bark outperforming the lichen. The longest exposure periods hardly ever corresponded to the highest accumulation. This might have been partly because the biomonitors bound and released metals throughout the exposure, each with its own dynamics of accumulation, but both according to the environmental metal availability. - Lichen and tree bark have distinct dynamics of airborne metal accumulation.

  1. Copper, nickel and lead in lichen and tree bark transplants over different periods of time

    International Nuclear Information System (INIS)

    Baptista, Mafalda S.; Vasconcelos, M. Teresa S.D.; Cabral, Joao Paulo; Freitas, M. Carmo; Pacheco, Adriano M.G.

    2008-01-01

    This work aimed at comparing the dynamics of atmospheric metal accumulation by the lichen Flavoparmelia caperata and bark of Platanus hybrida over different periods of time. Transplants were exposed in three Portuguese coastal cities. Samples were retrieved (1) every 2 months (discontinuous exposure), or (2) after 2-, 4-, 6-, 8- and 10-month periods (continuous exposure), and analysed for Cu, Ni and Pb. Airborne accumulation of metals was essentially independent of climatic factors. For both biomonitors [Pb] > [Ni] > [Cu] but Pb was the only element for which a consistent pattern of accumulation was observed, with the bark outperforming the lichen. The longest exposure periods hardly ever corresponded to the highest accumulation. This might have been partly because the biomonitors bound and released metals throughout the exposure, each with its own dynamics of accumulation, but both according to the environmental metal availability. - Lichen and tree bark have distinct dynamics of airborne metal accumulation

  2. Nonequilibrium steady states and resonant tunneling in time-periodically driven systems with interactions

    Science.gov (United States)

    Qin, Tao; Hofstetter, Walter

    2018-03-01

    Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.

  3. Abundant spontaneous VLFE activities in Cascadia during ETS and inter-ETS time periods

    Science.gov (United States)

    Ghosh, A.; Hutchison, A. A.; Hawthorne, J.

    2017-12-01

    Very low frequency earthquakes (VLFEs) are discrete seismic events associated with episodic tremor and slip (ETS) events. They are rich in 20-50s energy and depleted in higher frequencies compared to regular local earthquakes of similar magnitudes. VLFEs can be as large as Mw 4.0, and potentially release much more seismic moment than the tremor/LFE activities, making them a critical event determining stress evolution during slow earthquakes [Ghosh et al., 2015]. Their underlying physics and relationship with tremor/LFE, however, are still unclear. In Cascadia, the majority of the VLFEs found so far are clustered near the areas of high geodetic slip during ETS events [Ghosh et al., 2015; Hutchison and Ghosh, 2016]. Interestingly, we found VLFE activity has its own dynamics and can occur independent of tremor/LFE activity. For example, during the 2014 ETS event in northern Cascadia, VLFEs are found to be asynchronous with tremor activity, both in space and time [Hutchison and Ghosh, 2016]. We use a matched filter technique to detect thousands of VLFEs over an ETS-cycle, and perhaps more interestingly, even between ETS events. VLFE activities peak during ETS events, but significant VLFE activity is detected during the inter-ETS time period. Analyses of strainmeter data near the VLFE locations suggest statistically significant strain rate increases during VLFE time periods compared to the background. We suggest that VLFE is a distinct type of seismic radiation different from tremor/LFE, and can operate independently from tremor activities. This is in contrast to a model suggesting that VLFE signals may be a result of many LFE signals arriving at seismic stations in a short time period [Gomberg et al., 2016]. We are making a consistent catalog of VLFE in Cascadia for longer time period. Systematic study of VLFEs is going to provide new insights into the mechanism of slow earthquakes and its relationship with tremor/LFE and slow slip.

  4. Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field

    Science.gov (United States)

    Bandopadhyay, Aditya; Hardt, Steffen

    2017-12-01

    The stability of a horizontal interface between two viscous fluids, one of which is conducting and the other is dielectric, acted upon by a vertical time-periodic electric field is considered theoretically. The two fluids are bounded by electrodes separated by a finite distance. For an applied ac electric field, the unstable interface deforms in a time periodic manner, owing to the time dependent Maxwell stress, and is characterized by the oscillation frequency which may or may not be the same as the frequency of the ac electric field. The stability curve, which relates the critical voltage, manifested through the Mason number—the ratio of normal electric stress and viscous stress, and the instability wavenumber at the onset of the instability, is obtained by means of the Floquet theory for a general arbitrary time periodic electric field. The limit of vanishing viscosities is shown to be in excellent agreement with the marginal stability curves predicted by means of a Mathieu equation. The influence of finite viscosity and electrode separation is discussed in relation to the ideal case of inviscid fluids. The methodology to obtain the marginal stability curves developed here is applicable to any arbitrary but time periodic signal, as demonstrated for the case of a signal with two different frequencies, and four different frequencies with a dc offset. The mode coupling in the interfacial normal stress leads to appearance of harmonic and subharmonic modes, characterized by the frequency of the oscillating interface at an integral or half-integral multiple of the applied frequency, respectively. This is in contrast to the application of a voltage with a single frequency which always leads to a harmonic mode oscillation of the interface. Whether a harmonic or subharmonic mode is the most unstable one depends on details of the excitation signal.

  5. Current status and future prospect of space and time reversal symmetry violation on low energy neutron reactions

    International Nuclear Information System (INIS)

    Masuda, Yasuhiro

    1993-01-01

    In this report, the papers on symmetry violation under space reflection and time reversal and neutron spin, neutron spin rotation and P-violation, parity nonconservation in neutron capture reaction, some advantage of the search for CP-violation in neutron scattering, dynamic polarization of 139 La target, alexandrite laser for optical pumping, polarized 3 He system for T- and P-violation neutron experiments, control of neutron spin in T-violation neutron experiment, symmetry regarding time and space and angular distribution and angular correlation of radiation and particle beams, T-violation due to low temperature nuclear polarization and axion exploration using nuclear transition are collected. (K.I.)

  6. Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal

    International Nuclear Information System (INIS)

    Yong-Feng, Guo; Wei, Xu; Liang, Wang

    2010-01-01

    This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker–Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears. (general)

  7. Economic impact of reversion

    International Nuclear Information System (INIS)

    2005-01-01

    Estimations of the Norwegian hydropower production and various reversion models' market value have been made. The value of the Norwegian hydropower production until 01.01.2007 is estimated to about Nok 289 billion after taxes, or about 2,42 Nok/kWh medium production, given an expected future electricity price of around 0,25 Nok/kWh and a discount rate at 6,5 percent in nominal terms after taxes. The estimate is slightly above the level of prices for Norwegian hydropower plants in the last 8-10 years. The value of reversion in private plants which today have a limited licence time is estimated to Nok 5,5 billion. The value of reversion in public-owned Norwegian hydropower plants are about Nok 21 billion with a 60 year licence period from 01.01.2007, and about 12 billion for 75 years (ml)

  8. Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction

    Science.gov (United States)

    Moeeni, Hamid; Bonakdari, Hossein; Fatemi, Seyed Ehsan

    2017-04-01

    Because time series stationarization has a key role in stochastic modeling results, three methods are analyzed in this study. The methods are seasonal differencing, seasonal standardization and spectral analysis to eliminate the periodic effect on time series stationarity. First, six time series including 4 streamflow series and 2 water temperature series are stationarized. The stochastic term for these series obtained with ARIMA is subsequently modeled. For the analysis, 9228 models are introduced. It is observed that seasonal standardization and spectral analysis eliminate the periodic term completely, while seasonal differencing maintains seasonal correlation structures. The obtained results indicate that all three methods present acceptable performance overall. However, model accuracy in monthly streamflow prediction is higher with seasonal differencing than with the other two methods. Another advantage of seasonal differencing over the other methods is that the monthly streamflow is never estimated as negative. Standardization is the best method for predicting monthly water temperature although it is quite similar to seasonal differencing, while spectral analysis performed the weakest in all cases. It is concluded that for each monthly seasonal series, seasonal differencing is the best stationarization method in terms of periodic effect elimination. Moreover, the monthly water temperature is predicted with more accuracy than monthly streamflow. The criteria of the average stochastic term divided by the amplitude of the periodic term obtained for monthly streamflow and monthly water temperature were 0.19 and 0.30, 0.21 and 0.13, and 0.07 and 0.04 respectively. As a result, the periodic term is more dominant than the stochastic term for water temperature in the monthly water temperature series compared to streamflow series.

  9. Primate enamel evinces long period biological timing and regulation of life history.

    Science.gov (United States)

    Bromage, Timothy G; Hogg, Russell T; Lacruz, Rodrigo S; Hou, Chen

    2012-07-21

    The factor(s) regulating the combination of traits that define the overall life history matrix of mammalian species, comprising attributes such as brain and body weight, age at sexual maturity, lifespan and others, remains a complete mystery. The principal objectives of the present research are (1) to provide evidence for a key variable effecting life history integration and (2) to provide a model for how one would go about investigating the metabolic mechanisms responsible for this rhythm. We suggest here that a biological rhythm with a period greater than the circadian rhythm is responsible for observed variation in primate life history. Evidence for this rhythm derives from studies of tooth enamel formation. Enamel contains an enigmatic periodicity in its microstructure called the striae of Retzius, which develops at species specific intervals in units of whole days. We refer to this enamel rhythm as the repeat interval (RI). For primates, we identify statistically significant relationships between RI and all common life history traits. Importantly, RI also correlates with basal and specific metabolic rates. With the exception of estrous cyclicity, all relationships share a dependence upon body mass. This dependence on body mass informs us that some aspect of metabolism is responsible for periodic energy allocations at RI timescales, regulating cell proliferation rates and growth, thus controlling the pace, patterning, and co-variation of life history traits. Estrous cyclicity relates to the long period rhythm in a body mass-independent manner. The mass-dependency and -independency of life history relationships with RI periodicity align with hypothalamic-mediated neurosecretory anterior and posterior pituitary outputs. We term this period the Havers-Halberg Oscillation (HHO), in reference to Clopton Havers, a 17th Century hard tissue anatomist, and Franz Halberg, a long-time explorer of long-period rhythms. We propose a mathematical model that may help elucidate

  10. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu

    2015-03-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.

  11. Reversing a Negative Measurement in Process with Negative Events: A Haunted Negative Measurement and the Bifurcation of Time

    CERN Document Server

    Snyder, D M

    2003-01-01

    Reversing an ordinary measurement in process (a haunted measurement) is noted and the steps involved in reversing a negative measurement in process (a haunted negative measurement) are described. In order to discuss in a thorough manner reversing an ordinary measurement in process, one has to account for how reversing a negative measurement in process would work for the same experimental setup. The reason it is necessary to know how a negative measurement in process is reversed is because for a given experimental setup there is no physical distinction between reversing a negative measurement in process and reversing an ordinary measurement in process. In the absence of the reversal of a negative measurement in process in the same experimental setup that supports the reversal of an ordinary measurement in process, the possibility exists of which-way information concerning the negative measurement that would render theoretically implausible reversing an ordinary measuremnt in process. The steps in reversing a n...

  12. Tracing temperature in a nanometer size region in a picosecond time period.

    Science.gov (United States)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  13. The effect of rinsing time periods on wettability of elastomeric impression materials: in vitro study

    Directory of Open Access Journals (Sweden)

    Özlem Acar

    2016-01-01

    Full Text Available OBJECTIVE: The aim of this study was to determine whether different rinsing time periods affected the wettability of polymerized elastomeric impression materials. MATERIALS AND METHOD: Panasil Contact Plus (PCP, Panasil Contact Non-Surfactant (PCNS, Panasil Initial Contact (PIC, Express (EXP and Impregum (IMP impression materials were tested. Standardized samples were rinsed with water for 10 s, 15 s or 20 s, and the wettability was determined by contact angle measurement through an evaluation period of 60 seconds (n=7. Non-rinsed groups were used as control. Measurements were made at 5 time points (at 0, 6, 15, 30 and 60 seconds. Kruskal Wallis test and Conover’s multiple comparison tests were used for all multiple comparisons. Bonferroni adjustment was applied for controlling Type I error (p0.002. CONCLUSION: Rinsing the surfactant-containing polyvinylsiloxane impression materials decreased their wettability, whereas no such effect was seen for the surfactant free polyvinylsiloxane and polyether impression materials.

  14. Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays.

    Science.gov (United States)

    Şaylı, Mustafa; Yılmaz, Enes

    2015-08-01

    In this paper, we consider existence and global exponential stability of periodic solution for state-dependent impulsive shunting inhibitory cellular neural networks with time-varying delays. By means of B-equivalence method, we reduce these state-dependent impulsive neural networks system to an equivalent fix time impulsive neural networks system. Further, by using Mawhin's continuation theorem of coincide degree theory and employing a suitable Lyapunov function some new sufficient conditions for existence and global exponential stability of periodic solution are obtained. Previous results are improved and extended. Finally, we give an illustrative example with numerical simulations to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mimicking Nonequilibrium Steady States with Time-Periodic Driving (Open Source)

    Science.gov (United States)

    2016-05-18

    construction does not require the solution of any differential equations , only linear algebraic equations . By contrast, a mapping in the opposite...set of algebraic linear equations . The mapping between NESS and SP presented above was not intended as a set of operational instructions for... differential equations with time-periodic parameters. Typically, this can only be done numerically. In some applications, transition rates are constrained by

  16. ANALYSIS OF RELIABILITY OF THE PERIODICALLY AND CONTINUOUSLY CONTROLLED QUEUING SYSTEM WITH TIME REDUNDANCY

    International Nuclear Information System (INIS)

    Mikadze, I.; Namchevadze, T.; Gobiani, I.

    2007-01-01

    There is proposed a generalized mathematical model of the queuing system with time redundancy without preliminary checking of the queuing system at transition from the free state into the engaged one. The model accounts for various failures of the queuing system detected by continuous instrument control, periodic control, control during recovery and the failures revealed immediately after accumulation of a certain number of failures. The generating function of queue length in both stationary and nonstationary modes was determined. (author)

  17. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period

    DEFF Research Database (Denmark)

    Blunier, T; Brook, E J

    2001-01-01

    A precise relative chronology for Greenland and West Antarctic paleotemperature is extended to 90,000 years ago, based on correlation of atmospheric methane records from the Greenland Ice Sheet Project 2 and Byrd ice cores. Over this period, the onset of seven major millennial-scale warmings in A....... This pattern provides further evidence for the operation of a "bipolar see-saw" in air temperatures and an oceanic teleconnection between the hemispheres on millennial time scales....

  18. Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors

    Directory of Open Access Journals (Sweden)

    Y. Saiki

    2007-09-01

    Full Text Available An infinite number of unstable periodic orbits (UPOs are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.

  19. Period-doubling bifurcation and chaos control in a discrete-time mosquito model

    Directory of Open Access Journals (Sweden)

    Qamar Din

    2017-12-01

    Full Text Available This article deals with the study of some qualitative properties of a discrete-time mosquito Model. It is shown that there exists period-doubling bifurcation for wide range of bifurcation parameter for the unique positive steady-state of given system. In order to control the bifurcation we introduced a feedback strategy. For further confirmation of complexity and chaotic behavior largest Lyapunov exponents are plotted.

  20. Time-varying singular value decomposition for periodic transient identification in bearing fault diagnosis

    Science.gov (United States)

    Zhang, Shangbin; Lu, Siliang; He, Qingbo; Kong, Fanrang

    2016-09-01

    For rotating machines, the defective faults of bearings generally are represented as periodic transient impulses in acquired signals. The extraction of transient features from signals has been a key issue for fault diagnosis. However, the background noise reduces identification performance of periodic faults in practice. This paper proposes a time-varying singular value decomposition (TSVD) method to enhance the identification of periodic faults. The proposed method is inspired by the sliding window method. By applying singular value decomposition (SVD) to the signal under a sliding window, we can obtain a time-varying singular value matrix (TSVM). Each column in the TSVM is occupied by the singular values of the corresponding sliding window, and each row represents the intrinsic structure of the raw signal, namely time-singular-value-sequence (TSVS). Theoretical and experimental analyses show that the frequency of TSVS is exactly twice that of the corresponding intrinsic structure. Moreover, the signal-to-noise ratio (SNR) of TSVS is improved significantly in comparison with the raw signal. The proposed method takes advantages of the TSVS in noise suppression and feature extraction to enhance fault frequency for diagnosis. The effectiveness of the TSVD is verified by means of simulation studies and applications to diagnosis of bearing faults. Results indicate that the proposed method is superior to traditional methods for bearing fault diagnosis.

  1. Algorithm for determining two-periodic steady-states in AC machines directly in time domain

    Directory of Open Access Journals (Sweden)

    Sobczyk Tadeusz J.

    2016-09-01

    Full Text Available This paper describes an algorithm for finding steady states in AC machines for the cases of their two-periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain despite of the fact that two-periodic waveforms are not repeated in any finite time interval. The basis for such an algorithm is a discrete differential operator that specifies the temporary values of the derivative of the two-periodic function in the selected set of points on the basis of the values of that function in the same set of points. It allows to develop algebraic equations defining the steady state solution reached in a chosen point set for the nonlinear differential equations describing the AC machines when electrical and mechanical equations should be solved together. That set of those values allows determining the steady state solution at any time instant up to infinity. The algorithm described in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.

  2. Improved long-term outcomes after resection of pancreatic adenocarcinoma: a comparison between two time periods.

    Science.gov (United States)

    Serrano, Pablo E; Cleary, Sean P; Dhani, Neesha; Kim, Peter T W; Greig, Paul D; Leung, Kenneth; Moulton, Carol-Anne; Gallinger, Steven; Wei, Alice C

    2015-04-01

    Despite reduced perioperative mortality and routine use of adjuvant therapy following pancreatectomy for pancreatic ductal adenocarcinoma (PDAC), improvement in long-term outcome has been difficult to ascertain. This study compares outcomes in patients undergoing resection for PDAC within a single, high-volume academic institution over two sequential time periods. Retrospective review of patients with resected PDAC, in two cohorts: period 1 (P1), 1991-2000; and period 2 (P2), 2001-2010. Univariate and multivariate analyses using the Cox proportional hazards model were performed to determine prognostic factors associated with long-term survival. Survival was evaluated using Kaplan-Meier analyses. A total of 179 pancreatectomies were performed during P1 and 310 during P2. Perioperative mortality was 6.7 % (12/179) in P1 and 1.6 % (5/310) in P2 (p = 0.003). P2 had a greater number of lymph nodes resected (17 [0-50] vs. 7 [0-31]; p P2 (p P2 (p < 0.001). Factors associated with improved long-term survival remain comparable over time. Short- and long-term survival for patients with resected PDAC has improved over time due to decreased perioperative mortality and increased use of adjuvant therapy, although the proportion of 5-year survivors remains small.

  3. Evaluation of 'period-generated' control laws for the time-optimal control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1988-01-01

    Time-Optimal control of neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. These laws are designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws'. Relative to time-optimal response, they function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The results of a systematic evaluation of these laws are presented. The behavior of each term in the control laws is shown and the capability of these laws to control properly the reactor power is demonstrated. Factors affecting the implementation of these laws, such as the prompt neutron lifetime and the differential reactivity worth of the actuators, are discussed. Finally, the results of an experimental study in which these laws were used to adjust the power of the 5 MWt MIT Research Reactor are shown. The information presented should be of interest to those designing high performance control systems for test, spacecraft, or, in certain instances, commercial reactors

  4. A technique to detect periodic and non-periodic ultra-rapid flux time variations with standard radio-astronomical data

    Science.gov (United States)

    Borra, Ermanno F.; Romney, Jonathan D.; Trottier, Eric

    2018-06-01

    We demonstrate that extremely rapid and weak periodic and non-periodic signals can easily be detected by using the autocorrelation of intensity as a function of time. We use standard radio-astronomical observations that have artificial periodic and non-periodic signals generated by the electronics of terrestrial origin. The autocorrelation detects weak signals that have small amplitudes because it averages over long integration times. Another advantage is that it allows a direct visualization of the shape of the signals, while it is difficult to see the shape with a Fourier transform. Although Fourier transforms can also detect periodic signals, a novelty of this work is that we demonstrate another major advantage of the autocorrelation, that it can detect non-periodic signals while the Fourier transform cannot. Another major novelty of our work is that we use electric fields taken in a standard format with standard instrumentation at a radio observatory and therefore no specialized instrumentation is needed. Because the electric fields are sampled every 15.625 ns, they therefore allow detection of very rapid time variations. Notwithstanding the long integration times, the autocorrelation detects very rapid intensity variations as a function of time. The autocorrelation could also detect messages from Extraterrestrial Intelligence as non-periodic signals.

  5. Multiresource allocation and scheduling for periodic soft real-time applications

    Science.gov (United States)

    Gopalan, Kartik; Chiueh, Tzi-cker

    2001-12-01

    Real-time applications that utilize multiple system resources, such as CPU, disks, and network links, require coordinated scheduling of these resources in order to meet their end-to-end performance requirements. Most state-of-the-art operating systems support independent resource allocation and deadline-driven scheduling but lack coordination among multiple heterogeneous resources. This paper describes the design and implementation of an Integrated Real-time Resource Scheduler (IRS) that performs coordinated allocation and scheduling of multiple heterogeneous resources on the same machine for periodic soft real-time application. The principal feature of IRS is a heuristic multi-resource allocation algorithm that reserves multiple resources for real-time applications in a manner that can maximize the number of applications admitted into the system in the long run. At run-time, a global scheduler dispatches the tasks of the soft real-time application to individual resource schedulers according to the precedence constraints between tasks. The individual resource schedulers, which could be any deadline based schedulers, can make scheduling decisions locally and yet collectively satisfy a real-time application's performance requirements. The tightness of overall timing guarantees is ultimately determined by the properties of individual resource schedulers. However, IRS maximizes overall system resource utilization efficiency by coordinating deadline assignment across multiple tasks in a soft real-time application.

  6. Constraining the reversing and non-reversing modes of the geodynamo. New insights from magnetostratigraphy.

    Science.gov (United States)

    Gallet, Y.; Pavlov, V.; Shatsillo, A.; Hulot, G.

    2015-12-01

    Constraining the evolution in the geomagnetic reversal frequency over hundreds of million years is not a trivial matter. Beyond the fact that there are long periods without reversals, known as superchrons, and periods with many reversals, the way the reversal frequency changes through time during reversing periods is still debated. A smooth evolution or a succession of stationary segments have both been suggested to account for the geomagnetic polarity time scale since the Middle-Late Jurassic. Sudden changes from a reversing mode to a non-reversing mode of the geodynamo may also well have happened, the switch between the two modes having then possibly been controlled by the thermal conditions at the core-mantle boundary. There is, nevertheless, a growing set of magnetostratigraphic data, which could help decipher a proper interpretation of the reversal history, in particular in the early Paleozoic and even during the Precambrian. Although yielding a fragmentary record, these data reveal the occurrence of both additional superchrons and periods characterized by extremely high, not to say extraordinary, magnetic reversal frequencies. In this talk, we will present a synthesis of these data, mainly obtained from Siberia, and discuss their implication for the magnetic reversal behavior over the past billion years.

  7. Self-publishing of Lithuanian cultural periodicals in Soviet and contemporary times

    Directory of Open Access Journals (Sweden)

    Asta Urbanaviciute

    2015-07-01

    Full Text Available The aim of this article is to analyse self-publishing trends of Lithuanian cultural periodicals focusing on the historical and contemporary contexts. The article provides an overview of the reasons for historical cultural periodical self-published texts, known as samizdats, to appear, as well as their publishing and circulation trends in Lithuania. It also analyses what contemporary cultural self-publishing is: whether it is a completely independent, logical consequence of the digital age, which emerged under favourable circumstances, or if it can be characterized as having something in common with the past experiences. The most active years of the periodical underground press publishing in Soviet Lithuanian self-publishing development were between 1975 and 1981. Self-published texts ideologically diverged into three main directions: religious, civic, and cultural-artistic. A total of 22 publications were being published for a longer or shorter period of time. While analysing contemporary cultural self-publishing topics, the report focuses only on online cultural texts, irrespective of the printed ones. Survey method was used to find out how much and in what aspect modern Internet users perceive historical periodical self-publishing, and how and in what aspect they value modern cultural self-published texts. The results show that 18-35-year-old respondents have not acquired the skills necessary to analyse samizdat publishing. They associate the word self-publishing with digital texts only, which due to favourable conditions spread easily through social networks and blogs. In the era of advancing computer technologies and the Internet, every person who has the time and desire may become a developer, an author, or at least a disseminator of information: this tradition is becoming more and more topical and quite frequently – an almost self-evident phenomenon.

  8. The polarized atomic-beam target for the EDDA experiment and the time-reversal invariance test at COSY

    International Nuclear Information System (INIS)

    Eversheim, P.D.; Altmeier, M.; Felden, O.

    1996-01-01

    For the the EDDA experiment, which was set up to measure the p-vector - p-vector excitation function during the acceleration ramp of the cooler synchrotron COSY at Juelich, a polarized atomic-beam target was designed regarding the restrictions imposed by the geometry of the EDDA detector. Later, when the time-reversal invariance experiment is to be performed, the EDDA detector will serve as efficient internal polarimeter and the source has to deliver tensor polarized deuterons. The modular design of this polarized atomic-beam target that allows to meet these conditions are discussed in comparison to other existing polarized atomic-beam targets. (orig.)

  9. The polarized atomic-beam target for the EDDA experiment and the time-reversal invariance test at COSY

    Science.gov (United States)

    Eversheim, P. D.; Altmeier, M.; Felden, O.

    1997-02-01

    For the the EDDA experiment, which was set up to measure the p¯-p¯ excitation function during the acceleration ramp of the cooler synchrotron COSY at Jülich, a polarized atomic-beam target was designed regarding the restrictions imposed by the geometry of the EDDA detector. Later, when the time-reversal invariance experiment is to be performed, the EDDA detector will serve as efficient internal polarimeter and the source has to deliver tensor polarized deuterons. The modular design of this polarized atomic-beam target that allows to meet these conditions will be discussed in comparison to other existing polarized atomic-beam targets.

  10. Topological phases in a three-dimensional topological insulator with a time-reversal invariant external field

    International Nuclear Information System (INIS)

    Guo, Xiaoyong; Ren, Xiaobin; Wang, Gangzhi; Peng, Jie

    2014-01-01

    We investigate the impact of a time-reversal invariant external field on the topological phases of a three-dimensional (3D) topological insulator. By taking the momentum k z as a parameter, we calculate the spin-Chern number analytically. It is shown that both the quantum spin Hall phase and the integer quantum Hall phase can be realized in our system. When the strength of the external field is varied, a series of topological phase transitions occurs with the closing of the energy gap or the spin-spectrum gap. In a tight-binding form, the surface modes are discussed numerically to confirm the analytically results. (paper)

  11. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    Science.gov (United States)

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  12. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    International Nuclear Information System (INIS)

    Finn, John M.

    2015-01-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  13. On an nth-order infinitesimal generator and time-dependent operator differential equation with a strongly almost periodic solution

    Directory of Open Access Journals (Sweden)

    Aribindi Satyanarayan Rao

    2002-01-01

    Full Text Available In a Banach space, if u is a Stepanov almost periodic solution of a certain nth-order infinitesimal generator and time-dependent operator differential equation with a Stepanov almost periodic forcing function, then u,u′,…,u (n−2 are all strongly almost periodic and u (n−1 is weakly almost periodic.

  14. Dynamic effective properties of heterogeneous geological formations with spherical inclusions under periodic time variations

    Science.gov (United States)

    Rabinovich, A.; Dagan, G.; Miloh, T.

    2013-04-01

    In unsteady groundwater flow (or similar processes of heat/electrical conduction), the heterogeneous medium structure is characterized by two random properties, the conductivity K and the specific storativity S. The average head field ⟨H ⟩and the associated effective properties Kef, Sef are determined for a layer with a periodic head drop between boundaries, such that H is periodic in time, and a medium made up of a matrix with a dilute concentration of spherical inclusions. In the common quasi-steady approximation, Kef is equal to the classical steady solution while Sef = SA, the arithmetic mean. We derive expressions for the frequency dependent Kef, Sef, which are generally complex, i.e., dynamic. The main result is the delineation of the ranges of the parameters: dimensionless frequency (ω) and contrasts of conductivity (κ) and storativity (s) between the matrix and the inclusions, for which dynamic effects are significant.

  15. Current density waves in open mesoscopic rings driven by time-periodic magnetic fluxes

    International Nuclear Information System (INIS)

    Yan Conghua; Wei Lianfu

    2010-01-01

    Quantum coherent transport through open mesoscopic Aharonov-Bohm rings (driven by static fluxes) have been studied extensively. Here, by using quantum waveguide theory and the Floquet theorem we investigate the quantum transport of electrons along an open mesoscopic ring threaded by a time-periodic magnetic flux. We predicate that current density waves could be excited along such an open ring. As a consequence, a net current could be generated along the lead with only one reservoir, if the lead additionally connects to such a normal-metal loop driven by the time-dependent flux. These phenomena could be explained by photon-assisted processes, due to the interaction between the transported electrons and the applied oscillating external fields. We also discuss how the time-average currents (along the ring and the lead) depend on the amplitude and frequency of the applied oscillating fluxes.

  16. Development and applications of the reverse neutron time-of-flight method with Fourier-type beam chopper

    International Nuclear Information System (INIS)

    Antson, O.

    1991-09-01

    The neutron powder diffraction method has been applied to the crystal structure analysis of high-temperature superconductors such as La 0 .8Sr 0 .2CuO 4 - y , YBa 2 Cu 3 O 7 - y and Bi 2 Sr 2 CaCu 2 O 8 + y optically active yttriumformate Y(HCOO) 3 , and β phase of deuterated acetonitrile, CD 3 CN. The structural information, containing symmetry, positional and thermal parameters, occupation factors and the order parameter, was obtained by measuring the coherent elastic scattering cross-section. The Rietveld profile refinement method was used for the extraction of structural parameters from experimental data. The diffraction spectra were obtained by measuring the time-of-flight distribution of neutrons with a Fourier-type beam chopper. The neutron diffraction spectrum is created by the on-line synthesis of the cross-correlation function between the beam modulation function and the detector intensity. Such an operational mode, called the reverse time-of-flight method, has many unique properties. The possibility of filtering out a low-frequency part of a diffraction spectrum, eg. incoherent background, by a properly selected band-pass filter has been studied. One of the practical applications of the reverse time-of-flight method, the Mini-Sfinks facility, is described with technical details, and its operational characteristics are compared with other high-resolution instruments

  17. Prefrontal activity during response inhibition decreases over time in the postpartum period.

    Science.gov (United States)

    Bannbers, Elin; Gingnell, Malin; Engman, Jonas; Morell, Arvid; Sylvén, Sara; Skalkidou, Alkistis; Kask, Kristiina; Bäckström, Torbjörn; Wikström, Johan; Poromaa, Inger Sundström

    2013-03-15

    The postpartum period is characterized by complex hormonal changes, but human imaging studies in the postpartum period have thus far predominantly focused on the neural correlates of maternal behavior or postpartum depression, whereas longitudinal studies on neural correlates of cognitive function across the postpartum period in healthy women are lacking. The aim of this study was to longitudinally examine response inhibition, as a measure of executive function, during the postpartum period and its neural correlates in healthy postpartum women and non-postpartum controls. Thirteen healthy postpartum women underwent event-related functional magnetic resonance imaging while performing a Go/NoGo task. The first assessment was made within 48 h of delivery, and the second at 4-7 weeks postpartum. In addition, 13 healthy women examined twice during the menstrual cycle were included as non-postpartum controls. In postpartum women region of interest analyses revealed task-related decreased activations in the right inferior frontal gyrus, right anterior cingulate, and bilateral precentral gyri at the late postpartum assessment. Generally, postpartum women displayed lower activity during response inhibition in the bilateral inferior frontal gyri and precentral gyri compared to non-postpartum controls. No differences in performance on the Go/NoGo task were found between time-points or between groups. In conclusion, this study has discovered that brain activity in prefrontal areas during a response inhibition task decreases throughout the course of the first postpartum weeks and is lower than in non-postpartum controls. Further studies on the normal adaptive brain activity changes that occur during the postpartum period are warranted. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    John Reilly

    2018-03-01

    Full Text Available Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc. and generalized displacement (deflection, rotation, etc. to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i the range of raw temperatures on the structure, and (ii the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  19. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    Science.gov (United States)

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  20. Variation of Time Domain Failure Probabilities of Jack-up with Wave Return Periods

    Science.gov (United States)

    Idris, Ahmad; Harahap, Indra S. H.; Ali, Montassir Osman Ahmed

    2018-04-01

    This study evaluated failure probabilities of jack up units on the framework of time dependent reliability analysis using uncertainty from different sea states representing different return period of the design wave. Surface elevation for each sea state was represented by Karhunen-Loeve expansion method using the eigenfunctions of prolate spheroidal wave functions in order to obtain the wave load. The stochastic wave load was propagated on a simplified jack up model developed in commercial software to obtain the structural response due to the wave loading. Analysis of the stochastic response to determine the failure probability in excessive deck displacement in the framework of time dependent reliability analysis was performed by developing Matlab codes in a personal computer. Results from the study indicated that the failure probability increases with increase in the severity of the sea state representing a longer return period. Although the results obtained are in agreement with the results of a study of similar jack up model using time independent method at higher values of maximum allowable deck displacement, it is in contrast at lower values of the criteria where the study reported that failure probability decreases with increase in the severity of the sea state.

  1. Summary of the CDFE nuclear data activity for 2011 - 2012 period of time, Progress report

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Komarov, S.Yu.; Peskov, N.N.; Stepanov, M.E.

    2012-01-01

    This report contains the short review of the main fields of nuclear data activity of the Centre for Photonuclear Experiments Data (Centr Dannykh Fotoyadernykh Eksperimentov - CDFE) of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University and main results obtained. All works were carried out in close co-operation with the Nuclear Science Section in the frame of the IAEA Nuclear Reaction Data Centres Network for the period of time from the IAEA Technical Meeting on the International Network of Nuclear Reaction Data Centers' (23 - 24 May 2011, IAEA, Vienna, Austria) till the spring of 2012. (author)

  2. The Iterative Solution to Discrete-Time H∞ Control Problems for Periodic Systems

    Directory of Open Access Journals (Sweden)

    Ivan G. Ivanov

    2016-03-01

    Full Text Available This paper addresses the problem of solving discrete-time H ∞ control problems for periodic systems. The approach for solving such a type of equations is well known in the literature. However, the focus of our research is set on the numerical computation of the stabilizing solution. In particular, two effective methods for practical realization of the known iterative processes are described. Furthermore, a new iterative approach is investigated and applied. On the basis of numerical experiments, we compare the presented methods. A major conclusion is that the new iterative approach is faster than rest of the methods and it uses less RAM memory than other methods.

  3. Dynamical stability for finite quantum spin chains against a time-periodic inhomogeneous perturbation

    International Nuclear Information System (INIS)

    Kudo, Kazue; Nakamura, Katsuhiro

    2009-01-01

    We investigate dynamical stability of the ground state against a time-periodic and spatially-inhomogeneous magnetic field for finite quantum XXZ spin chains. We use the survival probability as a measure of stability and demonstrate that it decays as P(t) ∝ t -1/2 under a certain condition. The dynamical properties should also be related to the level statistics of the XXZ spin chains with a constant spatially-inhomogeneous magnetic field. The level statistics depends on the anisotropy parameter and the field strength. We show how the survival probability depends on the anisotropy parameter, the strength and frequency of the field.

  4. Time series modelling of increased soil temperature anomalies during long period

    Science.gov (United States)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  5. Detection of Quasi-Periodic Pulsations in Solar EUV Time Series

    Science.gov (United States)

    Dominique, M.; Zhukov, A. N.; Dolla, L.; Inglis, A.; Lapenta, G.

    2018-04-01

    Quasi-periodic pulsations (QPPs) are intrinsically connected to the mechanism of solar flares. They are regularly observed in the impulsive phase of flares since the 1970s. In the past years, the studies of QPPs regained interest with the advent of a new generation of soft X-ray/extreme ultraviolet radiometers that pave the way for statistical surveys. Since the amplitude of QPPs in these wavelengths is rather small, detecting them implies that the overall trend of the time series needs to be removed before applying any Fourier or wavelet transform. This detrending process is known to produce artificial detection of periods that must then be distinguished from real ones. In this paper, we propose a set of criteria to help identify real periods and discard artifacts. We apply these criteria to data taken by the Extreme Ultraviolet Variability Experiment (EVE)/ESP onboard the Solar Dynamics Observatory (SDO) and the Large Yield Radiometer (LYRA) onboard the PRoject for On-Board Autonomy 2 (PROBA2) to search for QPPs in flares stronger than M5.0 that occurred during Solar Cycle 24.

  6. A time reversal algorithm in acoustic media with Dirac measure approximations

    Science.gov (United States)

    Bretin, Élie; Lucas, Carine; Privat, Yannick

    2018-04-01

    This article is devoted to the study of a photoacoustic tomography model, where one is led to consider the solution of the acoustic wave equation with a source term writing as a separated variables function in time and space, whose temporal component is in some sense close to the derivative of the Dirac distribution at t  =  0. This models a continuous wave laser illumination performed during a short interval of time. We introduce an algorithm for reconstructing the space component of the source term from the measure of the solution recorded by sensors during a time T all along the boundary of a connected bounded domain. It is based at the same time on the introduction of an auxiliary equivalent Cauchy problem allowing to derive explicit reconstruction formula and then to use of a deconvolution procedure. Numerical simulations illustrate our approach. Finally, this algorithm is also extended to elasticity wave systems.

  7. ASTACUS, a time focussing neutron diffractometer based on the reverse Fourier principle

    International Nuclear Information System (INIS)

    Tiitta, A.; Hiismaeki, P.

    1979-01-01

    Design principles, technical realization, and performance of a new time-of-flight neutron diffractometer, built for high resolution powder work and successfully operated for one year, are reported. The range of lattice spacings covered by the instrument extends from 0.3 down to 0.04 nm while the resolution varies from about 0.16% up to 0.8% respectively as dicated by the 10 μs time resolution and about 8 m flight path. (Auth.)

  8. Incorporating time-delays in S-System model for reverse engineering genetic networks.

    Science.gov (United States)

    Chowdhury, Ahsan Raja; Chetty, Madhu; Vinh, Nguyen Xuan

    2013-06-18

    In any gene regulatory network (GRN), the complex interactions occurring amongst transcription factors and target genes can be either instantaneous or time-delayed. However, many existing modeling approaches currently applied for inferring GRNs are unable to represent both these interactions simultaneously. As a result, all these approaches cannot detect important interactions of the other type. S-System model, a differential equation based approach which has been increasingly applied for modeling GRNs, also suffers from this limitation. In fact, all S-System based existing modeling approaches have been designed to capture only instantaneous interactions, and are unable to infer time-delayed interactions. In this paper, we propose a novel Time-Delayed S-System (TDSS) model which uses a set of delay differential equations to represent the system dynamics. The ability to incorporate time-delay parameters in the proposed S-System model enables simultaneous modeling of both instantaneous and time-delayed interactions. Furthermore, the delay parameters are not limited to just positive integer values (corresponding to time stamps in the data), but can also take fractional values. Moreover, we also propose a new criterion for model evaluation exploiting the sparse and scale-free nature of GRNs to effectively narrow down the search space, which not only reduces the computation time significantly but also improves model accuracy. The evaluation criterion systematically adapts the max-min in-degrees and also systematically balances the effect of network accuracy and complexity during optimization. The four well-known performance measures applied to the experimental studies on synthetic networks with various time-delayed regulations clearly demonstrate that the proposed method can capture both instantaneous and delayed interactions correctly with high precision. The experiments carried out on two well-known real-life networks, namely IRMA and SOS DNA repair network in

  9. Prompt-period measurement of the Annular Core Research Reactor prompt neutron generation time

    International Nuclear Information System (INIS)

    Coats, R.L.; Talley, D.G.; Trowbridge, F.R.

    1994-07-01

    The prompt neutron generation time for the Annular Core Research Reactor was experimentally determined using a prompt-period technique. The resultant value of 25.5 μs agreed well with the analytically determined value of 24 μs. The three different methods of reactivity insertion determination yielded ±5% agreement in the experimental values of the prompt neutron generation time. Discrepancies observed in reactivity insertion values determined by the three methods used (transient rod position, relative delayed critical control rod positions, and relative transient rod and control rod positions) were investigated to a limited extent. Rod-shadowing and low power fuel/coolant heat-up were addressed as possible causes of the discrepancies

  10. Evaluation of cytotoxicity and degree of conversion of orthodontic adhesives over different time periods

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2010-06-01

    Full Text Available As new orthodontic resin adhesives continue to be marketed, rapid and sensitive tests for examining their toxic effects at the ' cell and tissue level ' are needed because patient safety has been identifi ed as a legal concept. The objective of the present study was to evaluate the cytotoxicity and degree of monomer conversion of orthodontic adhesives over different time periods. Seven adhesives: Transbond® XT, Transbond® Color Change, Quick Cure, EagleBond, Orthobond®, Fill Mágic® and Biofix® were evaluated for their cytotoxicity in L929 fibroblastic cells and for their degree of monomer conversion over different time periods. Three control groups were also analysed: Positive control (C+, consisting of Tween 80 cell detergent; Negative control (C-, consisting of PBS; and cell control (CC, consisting of cells exposed to any material. The dye-uptake technique that involves the absorption of a neutral red dye in viable cells was used for the cytotoxicity evaluation and the degree of conversion was evaluated using spectroscopy with infrared. The results showed the cytotoxicity of the adhesives at 24, 48, 72 and 168 hours. At these times, the viability values presented for these materials were statistically different from the groups CC and C- (p 0.05. In the monomer conversions there was a percentage increase of monomer conversion from 24 to 72 hours. A direct correlation could be observed between cytotoxicity and monomer conversions. From this work it can be concluded that all adhesives evaluated are cytotoxic at the times of 24, 48 and 72 hours. Monomers continued conversion even after photopolymerization had stopped.

  11. Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy

    Science.gov (United States)

    Montaldo, Gabriel; Roux, Philippe; Derode, Arnaud; Negreira, Carlos; Fink, Mathias

    2002-02-01

    The building of high-power ultrasonic sources from piezoelectric ceramics is limited by the maximum voltage that the ceramics can endure. We have conceived a device that uses a small number of piezoelectric transducers fastened to a cylindrical metallic waveguide. A one-bit time- reversal operation transforms the long-lasting low-level dispersed wave forms into a sharp pulse, thus taking advantage of dispersion to generate high-power ultrasound. The pressure amplitude that is generated at the focus is found to be 15 times greater than that achieved with comparable standard techniques. Applications to lithotripsy are discussed and the destructive efficiency of the system is demonstrated on pieces of chalk.

  12. Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop.

    Science.gov (United States)

    Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming

    2016-12-12

    A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.

  13. Parity-even and time-reversal-odd neutron optical potential in spinning matter induced by gravitational torsion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.N., E-mail: ivanov@kph.tuwien.ac.at [Atominstitut, Technische Universität Wien, Stadionallee 2, A-1020 Wien (Austria); Snow, W.M., E-mail: wsnow@indiana.edu [Indiana University, Bloomington, IN 47408 (United States); Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States)

    2017-01-10

    Recent theoretical work has shown that spin 1/2 particles moving through unpolarized matter which sources torsion fields experience a new type of parity-even and time-reversal-odd optical potential if the matter is spinning in the lab frame. This new type of optical potential can be sought experimentally using the helicity dependence of the total cross sections for longitudinally polarized neutrons moving through a rotating cylindrical target. In combination with recent experimental constraints on short-range P-odd, T-even torsion interactions derived from polarized neutron spin rotation in matter one can derive separate constraints on the time components of scalar and pseudoscalar torsion fields in matter. We estimate the sensitivity achievable in such an experiment and briefly outline some of the potential sources of systematic error to be considered in any future experimental search for this effect.

  14. Parity-even and time-reversal-odd neutron optical potential in spinning matter induced by gravitational torsion

    Directory of Open Access Journals (Sweden)

    A.N. Ivanov

    2017-01-01

    Full Text Available Recent theoretical work has shown that spin 1/2 particles moving through unpolarized matter which sources torsion fields experience a new type of parity-even and time-reversal-odd optical potential if the matter is spinning in the lab frame. This new type of optical potential can be sought experimentally using the helicity dependence of the total cross sections for longitudinally polarized neutrons moving through a rotating cylindrical target. In combination with recent experimental constraints on short-range P-odd, T-even torsion interactions derived from polarized neutron spin rotation in matter one can derive separate constraints on the time components of scalar and pseudoscalar torsion fields in matter. We estimate the sensitivity achievable in such an experiment and briefly outline some of the potential sources of systematic error to be considered in any future experimental search for this effect.

  15. QUANTIFICATION OF ENTEROVIRUS AND HEPATITIS A VIRUSES IN WELLS AND SPRINGS IN EAST TENNESSEE USING REAL-TIME REVERSE TRANSCIPTION PCR

    Science.gov (United States)

    This project involves development, validation testing and application of a fast, efficient method of quantitatively measuring occurrence and concentration of common human viral pathogens, enterovirus and hepatitis A virus, in ground water samples using real-time reverse transcrip...

  16. Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)

    KAUST Repository

    Pestana, Reynam C.; Stoffa, Paul L.

    2009-01-01

    an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second

  17. Rapid expansion method (REM) for time‐stepping in reverse time migration (RTM)

    KAUST Repository

    Pestana, Reynam C.

    2009-01-01

    We show that the wave equation solution using a conventional finite‐difference scheme, derived commonly by the Taylor series approach, can be derived directly from the rapid expansion method (REM). After some mathematical manipulation we consider an analytical approximation for the Bessel function where we assume that the time step is sufficiently small. From this derivation we find that if we consider only the first two Chebyshev polynomials terms in the rapid expansion method we can obtain the second order time finite‐difference scheme that is frequently used in more conventional finite‐difference implementations. We then show that if we use more terms from the REM we can obtain a more accurate time integration of the wave field. Consequently, we have demonstrated that the REM is more accurate than the usual finite‐difference schemes and it provides a wave equation solution which allows us to march in large time steps without numerical dispersion and is numerically stable. We illustrate the method with post and pre stack migration results.

  18. 3D Multi‐source Least‐squares Reverse Time Migration

    KAUST Repository

    Dai, Wei; Boonyasiriwat, Chaiwoot; Schuster, Gerard T.

    2010-01-01

    : random time shift, random source polarity and random source location selected from a pre‐designed table. Numerical tests for the 3D SEG/EAGE Overthrust model show that multi‐source LSRTM can suppress migration artifacts in the migration image and remove

  19. Prediction of in-service time period of three differently stabilized single base propellants

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Manfred A. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal-Berghausen (Germany)

    2009-06-15

    Three nitrocellulose-based propellants for use in micro gas generators equipped with different stabilizing systems have been investigated to assess the stabilization capability with regard to in-service time, whereby strong time-temperature profiles have been applied. The three stabilizing systems have been (i) 0.74 mass-% diphenylamine (DPA) and 0.48 mass-% Akardite II (Ak II); (ii) 1.25 mass-% Ak II; (iii) 2.04 mass-% Ak II. Several profiles were considered. Two simulate the heating at sun exposure in hot areas, others consider environmental temperatures in hot-humid and hot-dry areas. They were evaluated according to the load and finally one was chosen for the assessment. The contents of stabilizers were determined by high performance liquid chromatography after Soxhlet type extraction. To describe stabilizer consumption, the most suitable kinetic model was taken. Therewith a prediction was made using the chosen time-temperature profile named 'Phoenix', designed for temperatures at the steering wheel. The objective was to reach with this profile 15 years until the consumption of primary stabilizer content. This is conservative, because with the stabilizing action of the consecutive products of the stabilizers longer times are possible. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. GPU-accelerated Modeling and Element-free Reverse-time Migration with Gauss Points Partition

    Science.gov (United States)

    Zhen, Z.; Jia, X.

    2014-12-01

    Element-free method (EFM) has been applied to seismic modeling and migration. Compared with finite element method (FEM) and finite difference method (FDM), it is much cheaper and more flexible because only the information of the nodes and the boundary of the study area are required in computation. In the EFM, the number of Gauss points should be consistent with the number of model nodes; otherwise the accuracy of the intermediate coefficient matrices would be harmed. Thus when we increase the nodes of velocity model in order to obtain higher resolution, we find that the size of the computer's memory will be a bottleneck. The original EFM can deal with at most 81×81 nodes in the case of 2G memory, as tested by Jia and Hu (2006). In order to solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition (GPP), and utilize the GPUs to improve the computation efficiency. Considering the characteristics of the Gaussian points, the GPP method doesn't influence the propagation of seismic wave in the velocity model. To overcome the time-consuming computation of the stiffness matrix (K) and the mass matrix (M), we also use the GPUs in our computation program. We employ the compressed sparse row (CSR) format to compress the intermediate sparse matrices and try to simplify the operations by solving the linear equations with the CULA Sparse's Conjugate Gradient (CG) solver instead of the linear sparse solver 'PARDISO'. It is observed that our strategy can significantly reduce the computational time of K and Mcompared with the algorithm based on CPU. The model tested is Marmousi model. The length of the model is 7425m and the depth is 2990m. We discretize the model with 595x298 nodes, 300x300 Gauss cells and 3x3 Gauss points in each cell. In contrast to the computational time of the conventional EFM, the GPUs-GPP approach can substantially improve the efficiency. The speedup ratio of time consumption of computing K, M is 120 and the

  1. Evolution of illustrations in anatomy: a study from the classical period in Europe to modern times.

    Science.gov (United States)

    Ghosh, Sanjib Kumar

    2015-01-01

    Illustrations constitute an essential element of learning anatomy in modern times. However it required a significant evolutionary process spread over centuries, for illustrations to achieve the present status in the subject of anatomy. This review article attempts to outline the evolutionary process by highlighting on the works of esteemed anatomists in a chronological manner. Available literature suggests that illustrations were not used in anatomy during the classical period when the subject was dominated by the descriptive text of Galen. Guido da Vigevano was first to use illustrations in anatomy during the Late Middle Ages and this concept developed further during the Renaissance period when Andreas Vesalius pioneered in illustrations becoming an indispensable tool in conveying anatomical details. Toward later stages of the Renaissance period, Fabricius ab Aquapendente endeavored to restrict dramatization of anatomical illustrations which was a prevalent trend in early Renaissance. During the 18th century, anatomical artwork was characterized by the individual styles of prominent anatomists leading to suppression of anatomical details. In the 19th century, Henry Gray used illustrations in his anatomical masterpiece that focused on depicting anatomical structures and were free from any artistic style. From early part of the 20th century medical images and photographs started to complement traditional handmade anatomical illustrations. Computer technology and advanced software systems played a key role in the evolution of anatomical illustrations during the late 20th century resulting in new generation 3D image datasets that are being used in the 21st century in innovative formats for teaching and learning anatomy. © 2014 American Association of Anatomists.

  2. Wide-azimuth angle-domain imaging for anisotropic reverse-time migration

    KAUST Repository

    Sava, Paul C.; Alkhalifah, Tariq Ali

    2011-01-01

    Extended common-image-point gathers (CIP) constructed by wide-azimuth TI wave-equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The reflection and azimuth angles are derived from the extended images using analytic relations between the space-lag and time-lag extensions. This post-imaging decomposition requires only information which is already available at the time of migration, i.e. the model parameters and the tilt angles of the TI medium. The transformation amounts to a linear Radon transform applied to the CIPs obtained after the application of the extended imaging condition. If information about the reflector dip is available at the CIP locations, then only two components of the space-lag vectors are required, thus reducing computational cost and increasing the affordability of the method. This efficient angle decomposition method is suitable for wide-azimuth imaging in anisotropic media with arbitrary orientation of the symmetry plane. © 2011 Society of Exploration Geophysicists.

  3. Prediction of retention time in reversed-phase liquid chromatography as a tool for steroid identification

    International Nuclear Information System (INIS)

    Randazzo, Giuseppe Marco; Tonoli, David; Hambye, Stephanie; Guillarme, Davy; Jeanneret, Fabienne; Nurisso, Alessandra; Goracci, Laura; Boccard, Julien; Rudaz, Serge

    2016-01-01

    The untargeted profiling of steroids constitutes a growing research field because of their importance as biomarkers of endocrine disruption. New technologies in analytical chemistry, such as ultra high-pressure liquid chromatography coupled with mass spectrometry (MS), offer the possibility of a fast and sensitive analysis. Nevertheless, difficulties regarding steroid identification are encountered when considering isotopomeric steroids. Thus, the use of retention times is of great help for the unambiguous identification of steroids. In this context, starting from the linear solvent strength (LSS) theory, quantitative structure retention relationship (QSRR) models, based on a dataset composed of 91 endogenous steroids and VolSurf + descriptors combined with a new dedicated molecular fingerprint, were developed to predict retention times of steroid structures in any gradient mode conditions. Satisfactory performance was obtained during nested cross-validation with a predictive ability (Q"2) of 0.92. The generalisation ability of the model was further confirmed by an average error of 4.4% in external prediction. This allowed the list of candidates associated with identical monoisotopic masses to be strongly reduced, facilitating definitive steroid identification. - Highlights: • Difficulties regarding steroid identification are encountered when considering isotopomeric steroids. • Quantitative structure retention relationship (QSRR) models were developed from the linear solvent strength theory. • A dataset composed of 91 steroids and VolSurf + descriptors combined with a new dedicated molecular fingerprint, were used. • The list of candidates associated with identical monoisotopic masses was reduced, facilitating steroid identification.

  4. Prediction of retention time in reversed-phase liquid chromatography as a tool for steroid identification

    Energy Technology Data Exchange (ETDEWEB)

    Randazzo, Giuseppe Marco [School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva (Switzerland); Tonoli, David [School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva (Switzerland); Swiss Centre for Applied Human Toxicology (SCAHT), Universities of Basel and Geneva, Basel (Switzerland); Human Protein Sciences Department, University of Geneva, Geneva (Switzerland); Hambye, Stephanie; Guillarme, Davy [School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva (Switzerland); Jeanneret, Fabienne [School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva (Switzerland); Swiss Centre for Applied Human Toxicology (SCAHT), Universities of Basel and Geneva, Basel (Switzerland); Human Protein Sciences Department, University of Geneva, Geneva (Switzerland); Nurisso, Alessandra [School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva (Switzerland); Goracci, Laura [Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia (Italy); Boccard, Julien [School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva (Switzerland); Rudaz, Serge, E-mail: serge.rudaz@unige.ch [School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva (Switzerland); Swiss Centre for Applied Human Toxicology (SCAHT), Universities of Basel and Geneva, Basel (Switzerland)

    2016-04-15

    The untargeted profiling of steroids constitutes a growing research field because of their importance as biomarkers of endocrine disruption. New technologies in analytical chemistry, such as ultra high-pressure liquid chromatography coupled with mass spectrometry (MS), offer the possibility of a fast and sensitive analysis. Nevertheless, difficulties regarding steroid identification are encountered when considering isotopomeric steroids. Thus, the use of retention times is of great help for the unambiguous identification of steroids. In this context, starting from the linear solvent strength (LSS) theory, quantitative structure retention relationship (QSRR) models, based on a dataset composed of 91 endogenous steroids and VolSurf + descriptors combined with a new dedicated molecular fingerprint, were developed to predict retention times of steroid structures in any gradient mode conditions. Satisfactory performance was obtained during nested cross-validation with a predictive ability (Q{sup 2}) of 0.92. The generalisation ability of the model was further confirmed by an average error of 4.4% in external prediction. This allowed the list of candidates associated with identical monoisotopic masses to be strongly reduced, facilitating definitive steroid identification. - Highlights: • Difficulties regarding steroid identification are encountered when considering isotopomeric steroids. • Quantitative structure retention relationship (QSRR) models were developed from the linear solvent strength theory. • A dataset composed of 91 steroids and VolSurf + descriptors combined with a new dedicated molecular fingerprint, were used. • The list of candidates associated with identical monoisotopic masses was reduced, facilitating steroid identification.

  5. Development of potential map for landslides by comparing instability indices of various time periods

    Science.gov (United States)

    Chiang, Jie-Lun; Tian, Yu-Qing; Chen, Yie-Ruey; Tsai, Kuang-Jung

    2017-04-01

    In recent years, extreme rainfall events occur frequently and induced serious landslides and debris flow disasters in Taiwan. The instability indices will differ when using landslide maps of different time periods. We analyzed the landslide records during the period year, 2008 2012, the landslide area contributed 0.42% 2.94% of the total watershed area, the 2.94% was caused by the typhoon Morakot in August, 2009, which brought massive rainfall in which the cumulative maximum rainfall was up to 2900 mm. We analyzed the instability factors including elevation, slope, aspect, soil, and geology. And comparing the instability indices by using individual landslide map of 2008 2012, the landslide maps of the union of the five years, and interaction of the five years. The landslide area from union of the five years contributed 3.71%,the landslide area from interaction of the five years contributed 0.14%. In this study, Kriging was used to establish the susceptibility map in selected watershed. From interaction of the five years, we found the instability index above 4.3 can correspond to those landslide records. The potential landslide area of the selected watershed, where collapses occur more likely, belongs to high level and medium-high level; the area is 13.43% and 3.04% respectively.

  6. A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Xiuhong Zhang

    2018-01-01

    Full Text Available With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer related image products to users according to their preference. Although multiple studies on remote sensing retrieval and recommendation have been performed, most of these studies model the user profiles only from the perspective of spatial area or image features. In this paper, we propose a spatiotemporal recommendation method for remote sensing data based on the probabilistic latent topic model, which is named the Space-Time Periodic Task model (STPT. User retrieval behaviors of remote sensing images are represented as mixtures of latent tasks, which act as links between users and images. Each task is associated with the joint probability distribution of space, time and image characteristics. Meanwhile, the von Mises distribution is introduced to fit the distribution of tasks over time. Then, we adopt Gibbs sampling to learn the random variables and parameters and present the inference algorithm for our model. Experiments show that the proposed STPT model can improve the capability and efficiency of remote sensing image data services.

  7. Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series

    Science.gov (United States)

    Morales, Raffaello; Di Matteo, T.; Gramatica, Ruggero; Aste, Tomaso

    2012-06-01

    We investigate the use of the Hurst exponent, dynamically computed over a weighted moving time-window, to evaluate the level of stability/instability of financial firms. Financial firms bailed-out as a consequence of the 2007-2008 credit crisis show a neat increase with time of the generalized Hurst exponent in the period preceding the unfolding of the crisis. Conversely, firms belonging to other market sectors, which suffered the least throughout the crisis, show opposite behaviors. We find that the multifractality of the bailed-out firms increase at the crisis suggesting that the multi fractal properties of the time series are changing. These findings suggest the possibility of using the scaling behavior as a tool to track the level of stability of a firm. In this paper, we introduce a method to compute the generalized Hurst exponent which assigns larger weights to more recent events with respect to older ones. In this way large fluctuations in the remote past are less likely to influence the recent past. We also investigate the scaling associated with the tails of the log-returns distributions and compare this scaling with the scaling associated with the Hurst exponent, observing that the processes underlying the price dynamics of these firms are truly multi-scaling.

  8. Generation of a quantum integrable class of discrete-time or relativistic periodic Toda chains

    International Nuclear Information System (INIS)

    Kundu, Anjan

    1994-01-01

    A new integrable class of quantum models representing a family of different discrete-time or relativistic generalisations of the periodic Toda chain (TC), including that of a recently proposed classical model close to TC [Lett. Math. Phys. 29 (1993) 165] is presented. All such models are shown to be obtainable from a single ancestor model at different realisations of the underlying quantised algebra. As a consequence the 2x2 Lax operators and the associated quantum R-matrices for these models are easily derived ensuring their quantum integrability. It is shown that the functional Bethe ansatz developed for the quantum TC is trivially generalised to achieve separation of variables also for the present models. ((orig.))

  9. Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions

    International Nuclear Information System (INIS)

    Adesanya, S.O.; Oluwadare, E.O.; Falade, J.A.; Makinde, O.D.

    2015-01-01

    In this paper, the free convective flow of magnetohydrodynamic fluid through a channel with time periodic boundary condition is investigated by taking the effects of Joule dissipation into consideration. Based on simplifying assumptions, the coupled governing equations are reduced to a set of nonlinear boundary valued problem. Approximate solutions are obtained by using semi-analytical Adomian decomposition method. The effect of pertinent parameters on the fluid velocity, temperature distribution, Nusselt number and skin friction are presented graphically and discussed. The result of the computation shows that an increase in the magnetic field intensity has significant influence on the fluid flow. - Highlights: • The influence of magnetic field on the free convective fluid flow is considered. • The coupled equations are solved by using Adomian decomposition method. • The Adomian series solution agreed with previously obtained result. • Magnetic field decreases the velocity maximum but enhances temperature field

  10. Multiple periodic solutions for a discrete time model of plankton allelopathy

    OpenAIRE

    Zhang Jianbao; Fang Hui

    2006-01-01

    We study a discrete time model of the growth of two species of plankton with competitive and allelopathic effects on each other N1(k+1) = N1(k)exp{r1(k)-a11(k)N1(k)-a12(k)N2(k)-b1(k)N1(k)N2(k)}, N2(k+1) = N2(k)exp{r2(k)-a21(k)N2(k)-b2(k)N1(k)N1(k)N2(k)}. A set of sufficient conditions is obtained for the existence of multiple positive periodic solutions for this model. The approach is based on Mawhin's continuation theorem of coincidence degree theory as well as some a priori estimates. Some...

  11. Removing tidal-period variations from time-series data using low-pass digital filters

    Science.gov (United States)

    Walters, Roy A.; Heston, Cynthia

    1982-01-01

    Several low-pass, digital filters are examined for their ability to remove tidal Period Variations from a time-series of water surface elevation for San Francisco Bay. The most efficient filter is the one which is applied to the Fourier coefficients of the transformed data, and the filtered data recovered through an inverse transform. The ability of the filters to remove the tidal components increased in the following order: 1) cosine-Lanczos filter, 2) cosine-Lanczos squared filter; 3) Godin filter; and 4) a transform fitter. The Godin fitter is not sufficiently sharp to prevent severe attenuation of 2–3 day variations in surface elevation resulting from weather events.

  12. Crossing rule for a PT-symmetric two-level time-periodic system

    International Nuclear Information System (INIS)

    Moiseyev, Nimrod

    2011-01-01

    For a two-level system in a time-periodic field we show that in the non-Hermitian PT case the level crossing is of two quasistationary states that have the same dynamical symmetry property. At the field's parameters where the two levels which have the same dynamical symmetry cross, the corresponding quasienergy states coalesce and a self-orthogonal state is obtained. This situation is very different from the Hermitian case where a crossing of two quasienergy levels happens only when the corresponding two quasistationary states have different dynamical symmetry properties and, unlike the situation in the non-Hermitian case, the spectrum remains complete also when the two levels cross.

  13. Influence of the harvesting time, temperature and drying period on basil (Ocimum basilicum L. essential oil

    Directory of Open Access Journals (Sweden)

    José Luiz S. Carvalho Filho

    Full Text Available Ocimum basilicum L. essential oil with high concentration of linalool is valuable in international business. O. basilicum essential oil is widely used as seasoning and in cosmetic industry. To assure proper essential oil yield and quality, it is crucial to determine which environmental and processing factors are affecting its composition. The goal of our work is to evaluate the effects of harvesting time, temperature, and drying period on the yield and chemical composition of O. basilicum essential oil. Harvestings were performed 40 and 93 days after seedling transplantation. Harvesting performed at 8:00 h and 12:00 h provided higher essential oil yield. After five days drying, the concentration of linalool raised from 45.18% to 86.80%. O. basilicum should be harvested during morning and the biomass dried at 40ºC for five days to obtain linalool rich essential oil.

  14. Long time scale plasma dynamics driven by the double tearing mode in reversed shear plasmas

    International Nuclear Information System (INIS)

    Ishii, Y.; Azumi, M.; Kishimoto, Y.; Leboeuf, J.N.

    2003-01-01

    The new nonlinear destabilization process is found in the nonlinear phase of the double tearing mode (DTM) by using the reduced MHD equations in a helical symmetry. The nonlinear destabilization causes the abrupt growth of DTM and subsequent collapse after long time scale evolution in the Rutherford-type regime. The nonlinear growth of the DTM is suddenly triggered, when the triangular deformation of magnetic islands with sharp current point at the x-point around the outer rational surface exceeds a certain value. Such structure deformation is accelerated during the nonlinear growth phase. Decreasing the resistivity increases the sharpness of the triangularity and the spontaneous growth rate in the abrupt growth phase is almost independent on the resistivity. Current point formation is also confirmed in the multi-helicity simulation, where the magnetic fields become stochastic between two rational surfaces. (author)

  15. Long time scale plasma dynamics driven by the double tearing mode in reversed shear plasmas

    International Nuclear Information System (INIS)

    Ishii, Yasutomo; Azumi, M.; Kishimoto, Y.

    2003-01-01

    The new nonlinear destabilization process is found in the nonlinear phase of the double tearing mode(DTM) by using the reduced MHD equations in a helical symmetry. The nonlinear destabilization causes the abrupt growth of DTM and subsequent collapse after long time scale evolution in the Rutherford-type regime. The nonlinear growth of the DTM is suddenly triggered, when the triangular deformation of magnetic islands with sharp current point at the x-point around the outer rational surface exceeds a certain value. Such structure deformation is accelerated during the nonlinear growth phase. Decreasing the resistivity increases the sharpness of the triangularity and the spontaneous growth rate in the abrupt growth phase is almost independent on the resistivity. Current point formation is also confirmed in the multi-helicity simulation, where the magnetic fields become stochastic between two rational surfaces. (author)

  16. Investigation of the effects of time periodic pressure and engpotential gradients on viscoelastic fluid flow in circular narrow confinements

    DEFF Research Database (Denmark)

    Nguyen, Trieu; van der Meer, Devaraj; van den Berg, Albert

    2017-01-01

    -Boltzmann equation, together with the incompressible Cauchy momentum equation under no-slip boundary conditions for viscoelastic fluid in the case of a combination of time periodic pressure-driven and electro-osmotic flow. The resulting solutions allow us to predict the electrical current and solution flow rate...... conversion applications. We also found that time periodic electro-osmotic flow in many cases is much stronger enhanced than time periodic pressure-driven flow when comparing the flow profiles of oscillating PDF and EOF in micro-and nanochannels. The findings advance our understanding of time periodic......In this paper we present an in-depth analysis and analytical solution for time periodic hydrodynamic flow (driven by a time-dependent pressure gradient and electric field) of viscoelastic fluid through cylindrical micro-and nanochannels. Particularly, we solve the linearized Poisson...

  17. Comparison of confinement in resistive-shell reversed-field pinch devices with two different magnetic shell penetration times

    International Nuclear Information System (INIS)

    Gravestijn, R M; Drake, J R; Hedqvist, A; Rachlew, E

    2004-01-01

    A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, τ s , has a critical role in the stability and performance of the RFP. Confinement in the EXTRAP device has been studied with two values of τ s , first (EXTRAP-T2) with tau s of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with τ s much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence

  18. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok-Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-10-15

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  19. Photoelectric effect in the relativistic domain revealed by the time-reversed process for highly charged uranium ions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Mokler, P.H.; Kozhuharov, C.; Warczak, A.

    1996-10-01

    The photoelectric effect in the near relativistic energy regime of 80 to 350 keV is studied by the time-reversed process in ion-atom collisions, i.e. by the radiative capture of a quasi-free target electron. We review shell and subshell differential photon-angular distribution studies of radiative capture into highly-charged uranium ions. The experimental data are compared with exact relativistic calculations and give detailed insight into both the atomic structure of high-Z few-electron ions and into the fundamental electron-photon interaction process involved. In particular it is shown that the angular-differential measurements provide a unique method to study the magnetic interaction in relativistic electron-photon encoun- (orig.)

  20. A Numerical Investigation of the Time Reversal Mirror Technique for Trans-skull Brain Cancer Ultrasound Surgery

    Directory of Open Access Journals (Sweden)

    H. Zahedmanesh

    2007-06-01

    Full Text Available Introduction: The medical applications of ultrasound on human brain are highly limited by the phase and amplitude aberrations induced by the heterogeneities of the skull. However, it has been shown that time reversing coupled with amplitude compensation can overcome these aberrations. In this work, a model for 2D simulation of the time reversal mirror technique is proposed to study the possibility of targeting any point within the brain without the need for craniotomy and to calculate the acoustic pressure field and the resulting temperature distribution within the skull and brain during a High Intensity Focused Ultrasound (HIFU transcranial therapy. Materials and Methods: To overcome the sensitivity of the wave pattern to the heterogeneous geometry of the skull, a real MRI derived 2D model is constructed. The model should include the real geometry of brain and skull. The model should also include the couplant medium which has the responsibility of coupling the transducer to the skull for the penetration of ultrasound. The clinical substance used as the couplant is water. The acoustic and thermal parameters are derived from the references. Next, the wave propagation through the skull is computed based on the Helmholtz equation, with a 2D finite element analysis. The acoustic simulation is combined with a 2D thermal diffusion analysis based on Pennes Bioheat equation and the temperature elevation inside the skull and brain is computed. The numerical simulations were performed using the FEMLAB 3.2 software on a PC having 8 GB RAM and a 2.4 MHz dual CPU. Results: It is seen that the ultrasonic waves are exactly focalized at the location where the hydrophone has been previously implanted. There is no penetration into the sinuses and the waves are reflected from their surface because of the high discrepancy between the speed of sound in bone and air.  Under the focal pressure of 2.5 MPa and after 4 seconds of sonication the temperature at the focus